WO2007133701A2 - Reduced capacity carrier, transport, load port, buffer system - Google Patents

Reduced capacity carrier, transport, load port, buffer system Download PDF

Info

Publication number
WO2007133701A2
WO2007133701A2 PCT/US2007/011443 US2007011443W WO2007133701A2 WO 2007133701 A2 WO2007133701 A2 WO 2007133701A2 US 2007011443 W US2007011443 W US 2007011443W WO 2007133701 A2 WO2007133701 A2 WO 2007133701A2
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
transport
exemplary embodiment
interface
port
Prior art date
Application number
PCT/US2007/011443
Other languages
English (en)
French (fr)
Other versions
WO2007133701A3 (en
WO2007133701A9 (en
Inventor
Michael L. Bufano
Ulysses Gilchrist
William Fosnight
Christopher Hofmeister
Daniel A. Babbs
Robert C. May
Original Assignee
Brooks Automation, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brooks Automation, Inc. filed Critical Brooks Automation, Inc.
Priority to CN2007800262360A priority Critical patent/CN101490833B/zh
Priority to JP2009509884A priority patent/JP2009537075A/ja
Publication of WO2007133701A2 publication Critical patent/WO2007133701A2/en
Publication of WO2007133701A9 publication Critical patent/WO2007133701A9/en
Publication of WO2007133701A3 publication Critical patent/WO2007133701A3/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67126Apparatus for sealing, encapsulating, glassing, decapsulating or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • H01L21/6735Closed carriers
    • H01L21/67379Closed carriers characterised by coupling elements, kinematic members, handles or elements to be externally gripped
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • H01L21/6735Closed carriers
    • H01L21/67386Closed carriers characterised by the construction of the closed carrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67715Changing the direction of the conveying path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67724Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations by means of a cart or a vehicule
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67727Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations using a general scheme of a conveying path within a factory
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/6773Conveying cassettes, containers or carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67733Overhead conveying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67736Loading to or unloading from a conveyor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67769Storage means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67772Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading involving removal of lid, door, cover
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67775Docking arrangements

Definitions

  • the exemplary embodiments described herein are related to substrate processing systems and particularly to substrate transport systems, transport carriers, transport to processing tool interfaces and arrangements .
  • the conventional fabrication facility or FAB has at its heart (or base organizational structure) the discrete processing tool, for example a cluster tool, for performing one or more processes to semiconductor substrates.
  • Conventional FABs are hence organized around the processing tool, that may be arranged in desired configurations to transform the semiconductor substrates into desired electronic devices.
  • the processing tool may be arrayed in the conventional FAB in processing bays .
  • substrates may be held in carriers, such as SMF' s, FOUP' s, so that between tools substrates in process may remain in substantially similar cleanliness conditions as within the tools.
  • Communication between tools may be provided by handling systems (such as automated material handling systems, AMHS) capable of transporting substrate carriers to the desired processing tools in the FAB.
  • handling systems such as automated material handling systems, AMHS
  • Interface between the handling system and processing tool may be considered for example purposes as having generally two parts, interface between handling system and tool to load/unload carriers to the loading stations of the processing tool, and interface of the carriers (i.e. (individually or in groups) to the tool to allow loading and unloading or substrates between carrier and tool.
  • the graph in Fig. 51A also shows a line indicating the maximum capacity of a conventional FAB handling system (e.g. about 6000-7000 moves per hour) .
  • a conventional FAB handling system e.g. about 6000-7000 moves per hour
  • the intersection between the handing system capacity line and the FAB rate curves identify the surfaces to lot size available.
  • the smallest lot size is about 15 wafers.
  • the use of smaller wafer lots causes a reduction in FAB rate.
  • a semiconductor workpiece processing system has at least one processing apparatus for processing workpieces, a primary transport system, a secondary transport system and one or more interfaces between first transport system and second transport system.
  • the primary and secondary transport systems each have one or more sections of substantially constant velocity and in queue sections communicating with the constant velocity sections.
  • FIG. 1 is a schematic elevation view of a workpiece carrier incorporating features in accordance with an exemplary embodiment, and a workpiece or substrate S positioned on the carrier; and Figs. 1A-1B are respectively schematic partial plan and elevation views of a workpiece support of the carrier in accordance with another exemplary embodiment;
  • FIG. 2A is a schematic cross-sectional elevation view of the carrier in Fig. 1 and a tool port interface in accordance with another exemplary embodiment ;
  • FIG. 2B is another schematic cross- section elevation of a tool port interface and carrier in accordance with another exemplary embodiment
  • FIGs. 3A-3C are schematic cross-section elevation views respectively illustrating a tool port interface and carrier, in accordance with another exemplary embodiment, in three different positions;
  • FIG. 4 is a schematic elevation view of a carrier and tool interface in accordance with yet another exemplary embodiment, and Figs. 4A-4C are respectively enlarged cross-sectional views of a portion of the interface between carrier and tool each illustrating the interface configuration in accordance with different exemplary embodiments;
  • FIGs. 5A-5C are schematic partial elevation views of a carrier and tool interface in accordance with yet another exemplary embodiment, showing the carrier and tool interface in three respective positions.
  • FIG. 6A-6B are respectively schematic elevation views of- workpiece carriers in accordance with other different exemplary embodiments.
  • FIGs. 7A-7B are schematic elevation views of a workpiece carrier, in accordance with another exemplary embodiment, respectively showing the carrier in different positions;
  • FIG. 8 is another schematic elevation view of tool interface and carrier in accordance with another exemplary embodiment
  • FIG. 9 is another schematic elevation view of tool interface and carrier in accordance with another exemplary embodiment
  • FIG. 10 is another schematic elevation view of tool interface and carrier in accordance with another exemplary embodiment
  • Fig. 1OA is a schematic partial elevation of a process tool and carrier interfaced therewith in accordance with another exemplary embodiment
  • FIG. 11 is a schematic elevation view of a process tool section and carrier interface therewith in accordance with another exemplary embodiment
  • Figs. 12A-12B are schematic bottom views of the carrier (workpiece transfer) opening and carrier door of the carrier in Fig. 11;
  • FIGs. 13A-13B are schematic top plan views of the interface and a tool to carrier door interface of the tool section in Fig. 11;
  • FIG. 14 is a schematic elevation of a process tool and carrier interfaced therewith in accordance with still another exemplary embodiment
  • Fig. 15 is a schematic elevation view of a tool interface and carrier in accordance with yet another exemplary embodiment
  • FIGs. 16A-16B are schematic elevation views of a tool interface and carrier respectively shown on two different positions in accordance with another exemplary embodiment
  • FIG. 17 is a schematic side view of a carrier, and Figs. 17A-17C are other schematic elevation views of the carrier and a tool interface and a plan view of the tool interface in accordance with another exemplary embodiment;
  • FIGs. 18-19 are schematic elevation views of a tool interface and carrier in accordance with another exemplary embodiment
  • FIG. 20 is a schematic plan view of a transport system in accordance with another exemplary embodiment
  • FIGS. 20A-20B are schematic partial plan views of portions of the transport system track in Figs. 10; and Figs. 20C-20D are schematic bottom views of a different payloads of the transport system in accordance with other exemplary embodiments;
  • FIG. 21 is a schematic partial plan view of another portion of the transport system in accordance with another exemplary embodiment
  • FIGs. 22-24 are other schematic partial plan views of portions of the transport system in accordance with other exemplary embodiments.
  • FIGS. 25A-25B respectively show different elevation views of a transport system and processing tool in accordance with another exemplary embodiment ;
  • Figs. 26A-26B respectively show different schematic elevation views of a transfer interface system for transferring carriers between transport system and tool in accordance with another exemplary embodiment;
  • FIG. 27 is a schematic partial elevation view of a transport system in accordance with another exemplary embodiment and Figs . 27A-27B are other schematic partial elevations of the transport system in different positions;
  • FIG. 28 is another schematic elevation view of a transport system in accordance with another exemplary embodiment
  • FIGs. 29A-29B are schematic plan views of transport systems in accordance with another exemplary embodiment
  • FIG. 29C is a schematic plan view of a transport system and processing tools in accordance with another exemplary embodiment
  • FIG. 30 is a schematic partial elevation of the transport system and processing tools in Fig. 29C;
  • Fig. 31 is another schematic partial elevation of the transport system
  • FIG. 32 is another schematic partial elevation of the transport system in accordance with another exemplary embodiment
  • FIGs. 33-34 are respectively schematic plan and elevation views of another transport system in accordance with other exemplary embodiments.
  • FIG. 35 is yet another schematic plan view of a transport system in accordance with another exemplary embodiment
  • Figs. 36A-36C are respectively bottom perspective, elevation and bottom plan views of a transport device in accordance with another exemplary embodiment ;
  • Fig. 36D is another bottom plan view of a transport device in accordance with another exemplary embodiment
  • Fig. 36E is a schematic cross-sectional view of a portion of a compliant kinematic coupling
  • FIGs. 37A-37D are respectively a perspective, end and side elevations, and top plan views of a tool loading station in accordance with an exemplary embodiment
  • FIG. 37E is a plan view of another tool load station in accordance with another exemplary embodiment
  • FIG. 37F is a plan view of still another tool loading ' station in accordance with still another exemplary embodiment
  • FIG. 37G is a plan view of yet another tool loading station in accordance with yet another exemplary embodiment
  • FIGs. 38A-38C are flow diagrams respectively graphically illustrating different processes in accordance with different exemplary embodiments ;
  • FIG. 39 is cross sectional view of a tool loading station in accordance with another exemplary embodiment
  • FIGS. 40A-40D are schematic cross sectional views of substrate supports in accordance with different respective exemplary embodiments;
  • Figs. 41 and 41A-41B are respectively a schematic perspective view, an end elevation view and a top plan view of a processing system in accordance with still another exemplary embodiment;
  • Fig. 42 is a schematic exploded perspective view of sections of the system in Fig. 41, and Figs. 43-47 respectively are schematic views illustrating different selectable arrangements of the system in accordance with different exemplary embodiments;
  • FIG. 48 is a schematic elevation view of the system in accordance with still another exemplary embodiment
  • FIG. 49 is a schematic a partial perspective view of the system in accordance with yet another exemplary embodiment.
  • FIG. 50 is another schematic plan view of a processing system in accordance with another exemplary embodiment ;
  • FIG. 51 is a schematic plan view of a transport system in accordance with another exemplary embodiment
  • Fig. 51A is a graph that illustrates the relationship between lot size and transport rate.
  • FIGs. 52-52A are schematic partial plan views respectively showing a portion of the transport system in accordance with other exemplary embodiments.
  • FIG. 52B is another partial plan view of the transport system in accordance with another exemplary embodiment
  • Fig. 53 is a schematic plan view of a vehicle of the transport system shown in Fig. 51; and [00061] Fig. 54 is a schematic end elevation view of the transport system in accordance with still another embodiment .
  • FIG. 55 is a schematic end elevation view of a transport system in accordance with yet another exemplary embodiment
  • Figs. 55A-55D respectively are a schematic partial side perspective view of the transport system, partial plan views of the transport system showing a carrier transported by the transport system in different positions, and a side elevation view of an interface portion of the transport system;
  • FIGs. 56-56A respectively are schematic plan view and end elevation view of a transport system in accordance with yet still another exemplary embodiment .
  • the workpiece carrier 200 defines a chamber 202 in which workpieces S may be carried in an environment capable of being isolated from the atmosphere exterior to the chamber.
  • the shape of the carrier 200 shown in Fig. 1 is merely exemplary, and in alternate embodiments the carrier may have any other desired shape.
  • the carrier 200 may be capable of accommodating a cassette 210 inside the chamber for supporting the workpieces S within the carrier as shown.
  • the cassette 210 generally has elongated supports 210S (in the embodiment two are shown for example) with workpiece support shelves 210V distributed thereon to provide a row or stack of supports, or shelves on which one or more workpieces may be individually supported as shown.
  • the cassette may be mounted or otherwise attached to the carrier structure, and will be described in greater detail below.
  • the carrier may not have a cassette, and the workpiece supports may be integral or formed as a unitary construction with the carrier structure.
  • the workpieces are shown as flat/substrate elements, such as 350mm, 300mm, 200mm or any desired size and shape semiconductor wafers, or reticles/masks or flat panels for displays or any other suitable items .
  • the carrier may be a reduced or small lot size carrier, relative to conventional 13 or 25 wafer carriers.
  • the carrier may be configured to carry a small lot with as few as one workpiece, or may be configured to carry small lots of less than ten workpieces. Suitable examples of reduced capacity carriers, similar to carrier 200, are described and shown in U.S. Patent application serial No.
  • a reduced size carrier similar to carrier 200, allows reduction of work in process in the FAB as the workpieces forming smaller lots may be immediately (upon completion of processing at a given workstation) transported to following workstations in the FAB without waiting for completion of processing of other workpieces as would occur in larger lots .
  • the features of the exemplary embodiments are described and shown with specific reference to small capacity carriers, the features of the exemplary embodiments apply equally to any other suitable carrier, such as carriers capable of housing 13, or 25, or any other desired number of workpieces therein.
  • carrier 200 may be shaped to hold the workpieces in a vertical (i.e. Z axis) stack.
  • Carrier 200 may be a bottom or top opening or bottom and top opening carrier.
  • top and bottom are disposed along the vertical or Z axis, though in alternate embodiments top and bottom may be oriented along any other axis.
  • Top and bottom openings which will be described in greater detail below, means that the opening (s) 204 of the carrier (though which workpieces S moved in and out of the chamber 202, defined by the carrier) are substantially aligned with the planar surface of the workpieces held in the carrier (in this embodiment substantially orthogonal to Z axis) .
  • Carrier 200 as will also be seen below, generally has a casing 212 with a base and a closable or removable door. When closed, the door may be locked and sealed to the base. The seal between door and base may allow the chamber 202 to be isolated from the exterior atmosphere.
  • the isolated chamber 202 may- hold any desired isolated atmosphere, such as clean air, an inert gas, or may be capable of holding a vacuum.
  • the door may be opened to allow workpieces to be loaded/unloaded from the carrier.
  • door means a removable or removed portion when the carrier is opened to access the workpieces/workpiece support shelves therein.
  • casing 200 generally has a generally recessed or hollow portion (referred to hereafter as the shell) 214 capable of receiving the workpieces therein, and a wall (cap/cover, etc.) 216.
  • the shell may operate as the carrier door.
  • the wall and shell are mated to close the carrier, and are separated to open the carrier.
  • the shell and wall may be metal, such as an aluminum alloy, or stainless steel made by any suitable process.
  • the wall or shell or both may be one piece members (unitary construction) .
  • the carrier casing may be made of any other suitable materials including suitable non metallic materials.
  • Cassette 210 may be mounted to the wall 216, though in alternate embodiments the cassette may be mounted to the shell.
  • the carrier casing may have a configuration with the shell on top and wall on the bottom.
  • the shell may have a removable wall both on top and bottom (i.e. carrier with top and bottom openings) .
  • the removable wall may be located on a lateral side of the carrier.
  • the door may be a passive component (for example, substantially without moving parts or components to effect closing and opening between door and carrier and between door and tool interface as will be described further below) .
  • carrier 200 is shown positioned at a tool port interface 2010 of a suitable processing tool .
  • the processing tool may be of any desired type, for example a sorter, stocker, or a tool capable of one or more processes, such as material deposition, lithography, masking, etching, polishing, metrology, or a tool with one or more process modules or chambers such as a load lock.
  • the processing tool may have a controlled atmosphere, at least in part, and the tool interface 2010 allows loading/unloading of workpieces between tool and carrier 200 without compromising the controlled atmosphere in tool or carrier 200.
  • the port interface 2010 may generally have a port or opening 2012, through which substrates may be loaded into the processing tool, and a door, cover or removable portion 2014 closing the port. In alternate embodiments the removable portion may block the opening in part.
  • the port door 2014 is shown in closed and open positions for example purposes.
  • the carrier 200 may be bottom loaded (i.e. moved in Z direction) to interface with the tool port 2012 as will be described below.
  • Fig. 2A shows top wall 216 operating as the door for carrier 200.
  • wall 216 may be connected to the port door 2014 and removed in unison with removal of the port door, for example into the tool, to open the tool port interface.
  • the configuration of cassette 210 with opposing supports 210S provide access areas 210A, 210B on more than one side of the cassette (in the exemplary embodiment two sides) which workpiece robot (s) (see also Fig. 2A) may load/unload workpieces onto the cassette shelves.
  • the carrier may have any desired number of workpiece access areas.
  • the access areas may be arranged symmetrically around the perimeter of the carrier, or may be disposed in an asymmetric configuration. In the exemplary embodiment shown in Fig.
  • the tool may have more than one workpiece handling robot 2016A, 2016B to access for example the workpieces V in the more than one access areas 210A, 210B.
  • the tool may have more or fewer workpiece transport robots.
  • Multiside robot access to the cassette may allow workpiece hand off between robots at the cassette.
  • multisided robot access to workpieces delimits the orientation of the carrier when transported or interfaced to tool port. Accordingly, the carrier 200 may be mated to the tool interface in more than one orientation relative to the tool interface. The carrier is closed by returning the port door to its closed position which returns the carrier wall 216 to mate with shell 214.
  • the interface of carrier 200 with a tool port interface 2010' in accordance with another exemplary embodiment.
  • the shell 214 of the carrier may operate as the door.
  • the tool port door 2014' may have a shape generally conformal to the carrier shell, to surround and seal around the shell in order to prevent exposure inside the tool interior to contamination on the outside of the shell.
  • the carrier 200 may be top loaded, (i.e. moved down along (-) Z direction) such as when the carrier is being lowered from an overhead transport system. To open the carrier 200, the port door is moved down (direction (-)Z), for example into the tool interior, simultaneously removing the shell 214 from the carrier.
  • the carrier door here (i.e. shell 214) is located on the bottom and opens the carrier by downward movement.
  • the opening of the carrier exposes the workpieces in the cassette, which remain with wall 216.
  • the robot (similar to robot (s) 2016A, 2016B in Fig. 2A) may be provided with degree of freedom in Z axis to access the vertically spaced cassette shelves or workpieces therein.
  • the robot may have a mapper (not shown) thereon.
  • the shell 216 may have an integral mapper, such as a through beam mapper allowing mapping of the cassette on removal of the shell.
  • Figs. 2A-2B illustrate that carrier 200 may be both top and bottom opening.
  • the shell and wall orientation may be reversed (shell on top of wall) and the carrier may be top opening in a similar but mirror image to Fig. 2B (i.e. lifting shell up) and bottom opening in a manner similar but opposite to Fig. 2A (i.e. lowering wall down) .
  • the wall 216 and shell 214 may be passive structures, without movable elements, such as locks, which have the potential for generating contamination by actuation within the tool or container clean space.
  • the wall and shell may be magnetically locked to each other.
  • Magnetic locks for example, may have permanent or electromagnetic elements 226, 228 or a combination thereof may be positioned as desired in wall 216 and shell 214 to lock and release wall and shell.
  • the magnetic locks may for example have a reversible magnetic element that is switched (i.e. to open or close) by passing a charge through the reversible element.
  • the wall 216 may include magnetic elements 228 (for example ferrous material) and the shell 214 may have a magnetic switch elements 226 actuated to lock and unlock the wall and shell.
  • the magnetic elements in the wall, and the operable magnets in the shell may be configured to allow cooperation with magnetic locks 2028', 2026' in the port door interface 2010, 2010' so that locking the carrier door (either wall or shell, see Figs; 2A-2B) to the port door causes unlocking of the carrier door from the rest of the carrier.
  • the magnetic locks between wall and shell may have any other desired configuration.
  • Fig. 1 the exemplary embodiment shown in Fig.
  • the carrier may include mechanical coupling elements 230, such as actuated pins, piezo coupling devices or shape memory devices to engage mating coupling features 2030 on the port interface and interlock the carrier to the port interface.
  • the devices are shown located in the wall portion, but in alternate embodiments the devices may be locked in the shell.
  • the actuable devices are enclosed in the sealed interface between the removable wall portion and port door trapping potential particulates, that may arise by operation of the devices therein.
  • the passive carrier and carrier door provide a clean, washable carrier that is vacuum compatible.
  • the carrier door and base i.e. wall 216 and shell 224) may be sealed to isolate the carrier chamber 202.
  • the carrier door and base may each have sealing interfaces for respectively sealing the carrier door (i.e. wall 216 or shell 214 in Fig. 1) to the port door and the carrier base to the port.
  • the port door may have a seal interface to the port.
  • Figs. 3A-3C show a carrier 200', similar to carrier 200, being interfaced to tool port 2220 in accordance with an exemplary embodiment where the respective seal interfaces (221' carrier door to carrier, 222' carrier to port, 223' port door to port and 224' port door to carrier door) form a combined seal 222 ' with what may be referred to for convenience as a general X configuration (seen best in Fig. 3B) .
  • the carrier seal interfaces are shown at the top opening for example purposes, and in alternate embodiments wherein the carrier has multiple openings (similar to opening 204 shown in Fig. 1, (e.g. top and bottom) sealing interfaces may be provided at each opening.
  • the general X configuration is merely a schematic representation of the sealing interface surface and in alternate embodiments the sealing interface surfaces may have any suitable arrangement, for example the seal interface surfaces may be curved.
  • the generally X shaped seal configuration defines multiple seal interfaces (e.g. 221 '-222') with substantially zero (0) trapped volume between the interfaces. Hence, opening of any sealed interface will not result in a release of contaminants into the space opened on opening of the seal interface.
  • the seal may have any desired orientation (e.g. the seal interfaces being oriented horizontally or vertically in a general + pattern) .
  • the carrier 200' is illustrated as a top opening (wall 216' is door opened by lifting upwards similar to the embodiment illustrated in Fig. 2A) and the port 2220 is configured for bottom loading (lifter lifts carrier 220' upwards to dock to tool port) for example purposes.
  • the shell 214' in this embodiment may have a sealing interface 2141' generally beveled sealing faces 221C 1 222C . Though the sealing faces 222C, 221C on the shell are shown substantially flat, in alternate embodiments the sealing faces may have inclusive or exclusive angles or other shapes formed therein for enhanced sealing though the surface is generally pitched to result in the generally X shape seal configuration.
  • the wall 216' of the carrier in this embodiment has sealing interface 2161' oriented (in the exemplary embodiment shown in Fig.
  • sealing faces 221CD' and 224CD' beveled generally to define sealing faces 221CD' and 224CD' .
  • the respective shell and wall sealing faces 221C, 221CD' are generally complementary defining seal interface 221' when wall and shell are closed.
  • the faces 221C on the carrier interface 214' form a general wedge providing a guide for the wall 216' when being seated onto the shell (see for example Fig. 3C) .
  • the carrier door to carrier seal interface 221' may be positioned so that the weight of the wall 216' acts to increase sealing pressure on the interface.
  • the cassette and workpieces supported from the wall 216' in this embodiment aid in sealing the carrier door to carrier. As seen in Figs.
  • sealing faces 222C and 224CD' are disposed to complement the sealing faces 222P' , 224PD' respectively on the port 2220 and port door 2214.
  • Fig. 3B shows the carrier 200' docked to the port 2220, and seals 221', 224' closed. Closure of seals 222', 224' seals off and isolates all exposed surfaces (i.e. surfaces exterior of controlled or isolated chambers inside the carrier or tool) with potential contamination from the interior/chambers of the tool and carrier.
  • the generally X shape seal 220' provides for optimal cleanliness as it forms what may be referred to as a substantially zero lost volume interface.
  • seal geometry of seal 220' does not generate substantial pockets or spaces having exterior surfaces that are exposed (i.e. become interior surfaces) when either the carrier door or the port door is opened. This is best seen in Fig. 3C, wherein removal of the port door 2214, thereby removing the carrier door 216' does not cause exposure of any previously unsealed/exterior surfaces to the carrier/process tool interiors.
  • top opening of the carrier door results, in this embodiment, in the carrier chamber 202' being located under the raised cassette supported from the wall 216'.
  • the carrier chamber 202' is in communication with the tool interior, that may have a forced air circulation system (not shown) , which may cause a general venturi flow within the carrier chamber.
  • the circulatory air flow within the carrier chamber is located below the workpieces on the raised cassette (hanging from wall 216') with minimum potential for deposition of particulates disturbed by the circulation (which settle down away from the workpieces above) .
  • a forced air circulation system not shown
  • the carrier 200' may be raised, to interface with and dock with the port 2220 by a suitable lifting device LD.
  • Suitable registration features LDR may be provided on carrier and lifting device to position the carrier on the device and hence position the carrier relative to the port.
  • the carrier may be held at the port in any suitable manner.
  • the carrier door 216' may be locked to the port door 2214 via a magnetic lock, mechanical interlocks (e.g. positioned in the sealed interface between doors) or vacuum suction generated in the sealed interface between doors.
  • the port door 2214 may be opened/closed by a suitable device that may be capable of indexing the cassette (similar to cassette 210 in Fig. 1) past a desired mapping sensor (not shown) . [00073] Referring now to Fig.
  • Carrier 300 is generally similar but inverse to carrier 200 with the shell 314 on top of wall 316. Similar to carrier 200, carrier 300 may be either top (shell operates as door) or bottom (wall operates as door) opening. In the exemplary embodiment shown, the carrier 300 may have integral transport components 300M.
  • the carrier shell (or wall) 314, 316 may have transport motive supports such as rollers or air bearings and a reactive member capable of being motivated by a drive or motor to cause the carrier to be self transportable (i.e. without using an independent transport vehicle) within the FAB.
  • Fig. 4 illustrates the carrier 300 positioned at a loading port 3010 (generally similar to port 2010 described before) for example purposes.
  • the carrier 300 may be top loaded onto the port interface.
  • the carrier door 316 may be positioned against or adjacent (to form an interface with) the port door 3014, and the shell 314 may interface the port 3012.
  • Carrier 300 and port interface may also have a three, four or five way "cross" type (or zero lost volume) seal similar to the general X seal 220' shown in Fig. 3B.
  • Fig. 4A shows a cross sectional view of the seal 320- in accordance with one embodiment.
  • seal 320 may be a four way seal for a bottom opening configuration but otherwise generally similar to seal 220'.
  • Fig. 4B shows another cross-section of the interface between carrier and port, and the seal therebetween in accordance with another exemplary embodiment.
  • seal 320' is substantially similar to seal 320.
  • Fig. 4B further shows that the shell interface 3141' may have supporting flanges/features 326', 328'.
  • Flange 326' in this embodiment may operate wall 316', for example the flange may overlap a portion of the carrier door (though in the embodiment shown the feature defines a door contact surface, in alternate embodiments, the feature may not contact the door) and locate a magnetic lock 326M' to hold the wall 316' to shell 314' when the carrier door is closed. Further, feature 326' may overlap magnetic lock 3040' in the port door 3014.
  • the magnetic lock 3040' in the port door may operate for locking the wall 316' to the port door 3014' for carrier door removal.
  • the position of the carrier shell feature 326' may enable the activation of the port door lock 3040' (locking wall 316' to the port door) and for example cause substantially simultaneous unlocking/deactivation of the wall 316' to shell 314' lock.
  • unlocking/deactivation of the port door lock 3040' may cause the magnetic latch 326M' between wall 316' and shell 314' to lock.
  • exterior feature 328' on the shell may engage a locating/centering feature 3012C of the port 3010' to locate the carrier when seated.
  • the shape of exterior feature 328' illustrated in Fig. 4B is merely exemplary, and in alternate embodiments the carrier may have any desired locating features.
  • the X configuration of seal 320' may eliminate purging the seal interface prior to opening the carrier door because the seal interface may have substantially zero purge volume.
  • the port may include a purge line 3010A.
  • the purge line 301OA may be on any of the seal interfaces or between them.
  • Fig. 4C shows another cross section of the carrier to tool port interface in accordance with , another exemplary embodiment.
  • the carrier to port interface has seal 320'' generally similar to seal 320 described before.
  • the carrier shell 314'' may have a support 328'' for seating the carrier 300'' on the port without loading the port door 3014'' (i.e. supporting the carrier 300'' on the port without distributing carrier weight onto the port door 3014'') with the carrier door (wall) 316''. Sealing contact at port door to carrier door seal 321'' remains substantially constant when opening and closing the carrier door.
  • Figs. 5A-5C illustrate a carrier 300A, similar to carrier 300, mated to a tool port in accordance with another exemplary embodiment.
  • Carrier 300A in this embodiment may be top opening and bottom loaded (in the direction indicated by arrow +z in Fig. 5A) .
  • Carrier shell 316A may operate as the carrier door.
  • the seal interface 320A, seen best in Fig. 5B is what may be referred to as a three way seal (with substantially zero purge or lost volume, similar to seal 320, 220 described before), with a general Y configuration (interface 321A, wall to shell, interface 322A wall to port, interface 323A port 3012A to port door 3014A) .
  • the port door 3014A may be generally conformal to the shell 316A.
  • shell 316A may be nested in the port door 3014A.
  • the fit and placement ' of the shell 316A and port door 3014A minimizes the volume at the interface in between.
  • a seal (not shown) may be provided between shell 316A and port door to seal the interface therebetween.
  • the port door, 3014A in this embodiment may have a vacuum port 3010V to purge the port door to carrier door interface volume.
  • Interface 220, 220' is substantially similar in the exemplary embodiments shown in Figs. 2A, 2B (bottom load/top opening, top load/bottom opening respectively) .
  • Seal interface 220, 220' may be a four way seal with a general "cross" or X configuration (interface 221 wall 216 to shell 214, interface 222 shell 214 to port, interface 223 port 2012 to port door 2014 and interface 224 port door to wall 216) .
  • seal interfaces 222, 224 may be positioned (e.g.
  • seal interfaces 222, 224 may be provided with actuable seals such as inflatable seal, piezo actuated seal or shape memory members to actuate the seal sections and close the seal interface without substantial rubbing contact at the seal interface.
  • actuable seals such as inflatable seal, piezo actuated seal or shape memory members to actuate the seal sections and close the seal interface without substantial rubbing contact at the seal interface.
  • carrier shell 214 may have external supports 240 for handling the carrier.
  • Supports 240 are shown, for example as handles, but may have any suitable form.
  • supports 240 may be located on opposite side of the shell as far apart as desired to optimize handling stability of the carrier. In alternate embodiments more or fewer supports may be provided.
  • carrier shell 220A may have a perforated or recessed member, membrane or filter 260A located proximate the bottom of the shell. The perforations or recesses in the member are sized and shaped to mitigate or reduce the strength of venturi or vortex flows induced in the shell when the carrier door is open.
  • venturi or vortex flow mitigation elements may be located in any other suitable location in the carrier.
  • Carrier 200A is shown with the shell on bottom for example purposes, and in alternate embodiments the carrier may be on top. Further flow straightening spaces and/or vanes (not shown) may be provided within the tool interior to aid maintaining substantially smooth/laminar flow over the workpieces when positioned inside the tool.
  • Fig. 6B shows a carrier 200B in accordance with another exemplary embodiment.
  • the carrier 200B may have a thermal regulator 250 for maintaining the workpieces within the chamber at a different temperature then ambient temperature.
  • the carrier shell or wall 214B, 216B may have a thermoelectric module connected thermally to the workpieces, such as via the cassette supports, to heat/raise the temperature of the workpieces over ambient. Higher workpiece temperature than ambient drives particles and water molecules away from the workpiece via thermophoresis, preventing contamination when workpieces are out of carrier, or the carrier door is opened.
  • any other desired thermal regulator may be used such as microwave energy.
  • an electrostatic field may be generated around each workpiece to repel contamination by water molecules and particulates .
  • the cassette 210 may have nested shelves 210V for 360° positive restraint of the workpiece supported by the shelf.
  • Each shelf 210V may be formed by one or more shelf seats or supports 210C.
  • the cassette shelf supports 210C may be located so that the workpiece is generally straddled by the supports.
  • Each shelf 210V may have a raised surface to form a perimeter constraint for the workpiece S seated on the shelf. The raised surface may be inclined (relative to the vertical) to form a locating guide 210L for seating the workpiece S.
  • the seating surface of the shelf 210V may be pitched (relative to the bottom surface of the workpiece, forming for example a pitch angle of about 1° to the workpiece bottom surface) to ensure contact with the bottom of the workpiece for example within the perimeter exclusion zone.
  • the workpiece shelves may have any suitable configuration defining passive workpiece restraints. In other alternate embodiments, the shelves may not have passive workpiece restraints.
  • the carrier 200C in accordance with another exemplary embodiment which is similar to carrier 200 shown in Fig. 1, is shown respectively in closed and opened positions.
  • Cassette 210B in this embodiment is capable of variable height.
  • cassette 210B When the carrier 200B is closed, cassette 210B may be at a min height, and when the carrier door (e.g. wall 216B) is opened, the cassette may be expanded to a maximum height.
  • the pitch between workpiece/shelves of the cassette is increased when cassette expands from min to max height thereby allowing min carrier height, with maximum space between workpieces when accessed.
  • the cassette supports 210SB may have a general bellows configuration.
  • the supports may be made for example of aluminum sheet, or any other suitable material (e.g. shape memory material) , allowing sufficient flexibility without articulated joints.
  • the cassette supports may be supported at the top to the carrier wall 216B. Top opening of the carrier (removing wall 216B as shown in Fig. 7B) or bottom opening (removing shell 214B similar to that shown in Fig. 2B) causes the cassette (bellows) supports 210SB to expand under gravity. The cassette bellows is compressed by closing the carrier door. As seen in Fig. 7C, the bellows 210SB may have workpiece supports 210VBon which the workpieces rest.
  • the workpiece supports 210VB may be shaped, relative to adjoining portions 210PB of the bellows, to remain in a substantially constant radial position (hence avoiding relative radial movement between workpiece and workpiece seat) when the bellows expands/collapses.
  • the bellows cassette may be collapsed so that the workpieces in the cassette are actively clamped between adjacent pleat section 210PB of the bellows.
  • the upper clamping portions may contact workpiece along its peripheral edge.
  • a through beam mapper 2060B, or other suitable device in the tool or carrier may be provided to determine the locations of the workpieces S when the cassette is expanded.
  • the workpiece robot (not shown) may also have a sensor for detecting proximity of workpiece to ensure proper positioning for workpiece pick.
  • the carrier with passive carrier door and seal is suitable for direct interface to a vacuum capable chamber such as a load lock.
  • Fig. 8 shows a carrier 200' (top opening) to be mated directly to a port interface 4010 of a vacuum capable chamber (referred to for convenience as load lock) 400 in accordance with another exemplary embodiment.
  • Carrier 200' shown in Fig. 8 may be generally similar to carrier 200, 300 described before.
  • the load lock in the exemplary embodiment, has an indexer 410 that operates to open/close the port door 4014, and hence open/close the carrier door (in this embodiment top wall 216') and raise/lower cassette 210'.
  • the indexer 410 may be configured to provide the load lock chamber with a low or minimal Z-height.
  • the indexer 410 may be positioned exterior to the load lock chamber 400C and arranged alongside the load lock chamber to reduce overall height of chamber and load lock.
  • the indexer 410 may have a drive section 412 and a coupling section 414.
  • the drive section 412 may have an electro-mechanical drive system with for example a motor driving belt or screw drive to raise/lower shuttle 416.
  • Coupling section 414 in the exemplary embodiment may be a magnetic coupling that couples the shuttle 416 on the drive section to the port door 4014.
  • the port door may for example have magnets (permanent, or electromagnets) or magnetic material located thereon forming the interior portion 4141 of the magnetic coupling 414.
  • the magnetic portion 4141 of the door 4014 may also lock the port door to the port frame 4012.
  • the port frame 4012 may have suitable magnets (similar to magnets 2028' in Fig. 2B) arranged to operate with the magnetic portion/magnets 4141 on the port door and lock the door and port when the door is in its closed position.
  • the magnetic lock elements in the port frame may operate with the magnetic coupling portion 4141 on the door 4014.
  • the magnetic coupling between door and drive, and magnetic lock between door and frame may have any suitable configuration. As seen in Fig.
  • the chamber walls 400W isolate the drive section 412 from the interior of the chamber 400C.
  • the drive section 412' may be linear motors (e.g. linear induction motors, LIM) that operate on a reactive portion 4141' of the port door 4014' to effect movement of the port door.
  • the LIM may be located exterior to the chamber walls and isolated from the chamber interior.
  • the drive may include magnetic material sections 4122 ' , or permanent magnets forming fail safe locks to hold the port door 4014' in the open position in the event of power loss to the chamber.
  • suitable accumulators may be connected to the drive to allow desired control for lowering the port door to the closed position. As may be realized from
  • the seal between port door and port frame, in the exemplary embodiment is located so that door weight contributes to sealing the interface.
  • the respective section 4141 of the magnetic coupling may also lock the port door 4014 and carrier door 216' to each other.
  • the carrier door may have suitable magnets ⁇ e.g. permanent magnets) or magnetic material 228' positioned to cooperate with the coupling section 4141 (e.g. may include electromagnets, or magnets with variable magnetic field) when activated to lock port and carrier doors to each other.
  • the port door motion may be guided by a guide that is also isolated from the chamber.
  • a bellows 400B connects the port door to the chamber walls and isolates the port door movement guide 4006 from the chamber.
  • the guide in this embodiment has generally telescoping sections.
  • the telescoping guide is shown as made from hollow cylindrical telescoping sections for example purposes, and may have any suitable configuration in alternate embodiments.
  • the indexer may have any other desired configuration.
  • suitable indexing motors may be located in the chamber walls, but isolated from the chamber interior such as disclosed in U.S. Patent Application 10/624,987, filed 7/22/03, and incorporated by reference herein in its entirety, capable of effecting controlled movement of the port door without mechanical guides for the port door.
  • the bellows 400B may be pressurized to assist port door closure.
  • the bellows may also house umbilical systems such as vacuum line, and power/signal lines connected to the port door.
  • the port door may have a port PDlO connected to a vacuum source forming the chamber pump down port as will be described further below.
  • the carrier 300' may be a bottom opening carrier (similar for example to carrier 300 described before, see also Fig. 3) .
  • the port door 4014' may be lowered into the chamber when opened.
  • the indexer (not shown) may be similar to that shown in Figs. 8, 18-19 but arranged to move the port door down.
  • the chamber and port door may have magnetic locks 4028', 4026' for locking the door in the closed position to the chamber frame.
  • the port frame may have one or more coil elements 4028' (defining the what may be referred to as the frame side portion of the magnetic locks .
  • the coil element (s) 4028' may be positioned as desired and may generate a magnetic field that operates on door lock components 4026'.
  • the magnetic lock components 4026' on the door may be permanent magnets or magnetic material .
  • the coil elements 4028' are shown located in the chamber for example purposes . In alternate embodiments, the coil elements may be located outside. The chamber walls, isolated from the chamber interior. The coil elements may be fixed or stationary relative to the frame. Field strength may be reduced when desired to reduce magnetic forces in the magnetic lock and ease movement of the port door.
  • the coil elements may be movable, for example mounted, to the shuttle of the drive system and may form part. of the magnetic coupling between port door and indexer.
  • the magnetic locks may be similar to those for locking the carrier door to the carrier described before.
  • the permanent magnets or magnetic material 4026' on the port door 4014' that effect magnetic locking to the frame, may also provide coupling to the indexer similar to that shown in Fig. 8.
  • the chamber in the embodiment shown in Fig. 9 may also have a bellows and port door guide similar to that shown in Fig. 8. The bellows may be pressurized to assist raising the port door and maintain in closed position, especially when carrier door and cassette are seated on the port door.
  • the chamber may have a bellows without a port door guide therein. Vacuum may be connected to the port door to effect chamber pump down through the port door to carrier door interface.
  • the chamber pump down port in the exemplary embodiment, may be located in the port door.
  • load lock chamber pump down may be performed for example with the carrier interfaced to the chamber port and the port door moved by the indexer 410 from its closed position.
  • pump down of the load lock chamber via vacuum port PDlO in the port door, may be through the carrier door 216' to port door 4014 interface.
  • the suction flow of chamber/carrier gas through the carrier door to port door interface generates a negative pressure on the interface preventing inadvertent escape of contaminants into the chamber.
  • Fig. 10 illustrates load lock chamber pump down through the port door 5014 in accordance with another exemplary embodiment.
  • purge of the port door to carrier door space 5430, and of the carrier chamber 202 may be performed prior to load lock chamber pump down.
  • purge gas may be introduced into space 5430 by applying vacuum and cracking a port door to port seal 5223 (or with suitable valving) .
  • the carrier 200 may be purged by cracking the carrier door 216 allowing load lock chamber 5400 gas to enter the carrier, or again by suitable valving.
  • a gas supply from the chamber shown in phantom in Fig. 10 may be provided to the carrier to introduce a desired gas species in the carrier 200. As seen in Fig.
  • the load lock chamber 5400 may have a vent (or gas species supply) 5440 disposed as desired in the load lock walls, to vent the load lock chamber.
  • the purge line may, in the exemplary embodiment, be used for purging, and venting of the chamber may be performed independent of the carrier door to port door interface.
  • Fig. 11 illustrates an exemplary embodiment where the carrier door 316A and port door 6414 have respective mechanical "failsafe" locks respectively locking the carrier door to carrier 3140 and port door to port 6412 or chamber 6400D.
  • the carrier 314D, carrier door 316D, port 6412 and port door 6414 may be passive (no articulated locking parts) .
  • the indexer may be capable of both Z axis indexing of the port door and of rotating the port door (for example about the Z axis) for engaging/disengaging the lock tabs on the port door and carrier door.
  • Z axis movement and rotation of the port door may be provided via different drive shafts.
  • the lower surface of the carrier shell has engagement tabs/surfaces 360D, that are engaged by engagement surfaces 362D on the carrier door 316D.
  • engagement/disengagement between engagement surfaces 360D, 362D may be effected via rotation of carrier door relative to the carrier 314D. Rotation of the carrier door is imparted by the port door 6414 as will be described below.
  • the engagement surfaces between door and carrier may have any desired configuration.
  • the carrier door 316D may have a male/female torque coupling feature 365D complementing a torque coupling member on the carrier door 6414T.
  • port door 6414 may have interlocking or engagement surfaces generally similar to the engagement features of the carrier and carrier door. As seen best in Figs. 13A, 13B, the port may have engagement surfaces
  • the 6414 may have complementing engagement surfaces 6462 to overlap and engage port surfaces 6460.
  • the engagement surface 3600, 3620 on the carrier, and the engagement surfaces 6460, 6462 on the port are located relative to each other to allow simultaneous engagement/disengagement between carrier and carrier door, and port and port door when the port door is rotated.
  • Fig. 14 illustrates load lock chamber 400E and indexer 6410E and carrier 300E.
  • the indexer may be located substantially axially in series with the load lock chamber. Similar to pod 200, 300, 3000, pod 300E in the exemplary embodiment shown in Fig. 4 may be a vacuum compatible top or bottom opening pod with features similar to those described before. Chamber 6400E may be similar to the chambers described previously.
  • Fig. 15 shows a load lock chamber and carrier 3OOF having a reduced pump down volume configuration.
  • the carrier door 316F may have top 350F and bottom 321F door to carrier shell 314F seals.
  • the bottom seals 3270F engage the shell 314F when the carrier door is closed, as shown in Fig. 15.
  • the top seals 350F seal against the carrier shell when the carrier door is opened (for example seal 350F may seat and seal against carrier seat surface 351F) .
  • the top seal 350F isolates the carrier chamber from the load lock chamber, hence reducing the pump down volume when pumping the load lock chamber to vacuum.
  • Figs. 16A-16B show a carrier 300G and load lock chamber 6400G respectively in docked and undocked positions in accordance with another exemplary embodiment.
  • Carrier 300G has a bottom wall 316G, annular section 314G and a top wall 314PD.
  • the annular section 314G or one or more portions thereof may operate as a carrier door.
  • the top and bottom walls 316G, 314PD may be fixed together and the movable section 314G, defining the door, may have seals 350G, 321G both top and bottom for respectively sealing to the top and bottom walls 316G, 314PD.
  • Load lock chamber 6400G may have an open port 6402G through which the carrier 300G may be nested into the load lock chamber as seen in Fig. 16B.
  • the load lock chamber 6400G may have a recess 6470G for lowering the carrier door 314G to open access to the carrier.
  • the top wall 314PD of the carrier may seal against the load lock chamber port thereby sealing the load lock chamber and allowing pump down of the chamber.
  • a suitable elevator may be provided to raise/lower the carrier door 314G.
  • Figs. 17-17C show another top sealing carrier 300H and load lock chamber 6400H in accordance with another exemplary embodiment.
  • the carrier 30OH may have a top sealing flange 314H and side opening 304H (along a carrier edge for loading/unloading of workpieces) .
  • the carrier top sealing flange 314H seats and seals against the rim 6412H of the chamber port as shown best in Fig. 17B.
  • the carrier door 314DR may be opened by radial outward .and rotational motion indicated by arrow 0 in Fig. 17C.
  • the carrier opening is aligned with a slot valve in the load lock chamber.
  • FIGs. 29A and 29B there is shown a schematic plan view of an automated material handling system 10, 10' in accordance with another exemplary embodiment.
  • the automated material handling system 10, 10' shown for example, in Figs. 29A and 29B generally includes one or more intrabay transport system section (s) 15, one or more interbay transport system section (s) 20, bay queue sections 35, transport sidings or shunt sections 25 and workpiece carriers or transports .
  • intrabay and interbay are used for convenience and do not limit the arrangement of the transport system 10110' (as used herein inter generally refers to a section extending across a number of groups, and intra refers generally to a section extending for example within a group) .
  • any suitable material may be conveyed in the automated material handling system.
  • the transport system 10 may also allow for the redirection of workpieces from one transport section to any another transport section.
  • An example of an automated material handling system for transporting workpieces having interbay and intrabay branches can be found in U.S.
  • Figs. 29A and 29B are representative configurations, and the automated material handling system 10, 10' may be disposed in any suitable configuration to accommodate any desired layout of processing bays and/or processing tools in a processing facility.
  • the interbay transport sections 15 may be located on one or more side(s) of and connected to each other by any number of transport sections 20, corresponding for example to one or more processing bay(s) 45.
  • the outer or side transport sections may be intrabay sections, and the sections traversing in between may be linking the intrabay sections to groups or arrays of processing tools within a bay.
  • the interbay transport sections 15 of Fig. 29A in the exemplary embodiment, may also be connected by a cross-shunt 50 that allows the movement of a workpiece transport directly between interbay transport sections 15 without passing through a processing or fab bay 45.
  • the transport sections 15 may be connected to each other by additional intrabay transport sections (not shown). In other exemplary embodiment (s), such as shown in Fig.
  • the interbay transport section 15 may be located between any number of processing bays 45, hence forming for example a generally center isle or a transport central artery between the branch sections serving bays or tool groups 45.
  • the intrabay transport section may form a perimeter around and enclose any number of processing bays 45.
  • there may be any number of nested loop sections such as for example N number of systems, such as system 10 or 10' as shown in Fig. 29A and 29B, connected generally in parallel by transport sections that directly connect each of the interbay transport sections 15.
  • the transport sections 15, 20 and processing tools may have any suitable configuration.
  • any number of intrabay/interbay systems may be joined together in any suitable configuration to form nested processing arrays.
  • the interbay transport section 15, may be a modular track system that provides for the movement of any suitable workpiece transport.
  • Each module of the track system may be provided with a suitable mating means (e.g. interlocking facets, mechanical fasteners) allowing the modules to be joined together end to end during installation of the intrabay transport sections 15.
  • the rail modules may be provided in any suitable length, such a few feet, or in any suitable shape, such as straight or curved, for ease of handling during installation and configuration flexibility.
  • the track system may support the workpiece transport from beneath or in alternate embodiments, the track system may be a suspended track system.
  • the track system may have roller bearings or any other suitable bearing surface so that the workpiece transports can move along the tracks without substantial resistance over the rollers.
  • the roller bearing may be tapered or the tacks may be angled towards the inside of a curve or corner in the track to provide additional directional stability when the workpiece container is moving along the track.
  • the intrabay transport sections 15 may ⁇ be a conveyor based transport system, a cable and pulley or chain and sprocket based transport system, a wheel driven system or a magnetic induction based transport system.
  • the motor used to drive the transport system may be any suitable linear motor with an unlimited travel capable of moving workpiece containers along the intrabay transport sections 15.
  • the linear motor may be a solid state motor without moving parts.
  • the linear motor may be a brushed or brushless AC or DC motor, a linear induction motor, or a linear stepper motor.
  • the linear motor may be incorporated into the intrabay transport sections 15 or into workpiece transports or containers themselves .
  • any suitable drive means may be incorporated to drive the workpiece transports through the intrabay transport system.
  • the intrabay transport system may be a pathway ' for trackless wheeled autonomous transport vehicles .
  • the intrabay transport sections 15 generally allow for uninterrupted high-speed movement or flow of the workpiece transports along the path of the intrabay transport sections 15 through the use of queue sections and shunts. This is highly advantageous compared to conventional transport systems that have to stop the flow of material when a transport container is added or removed from a transport line.
  • the intrabay transport sections 20 may define processing or fab bays 45 and may be connected to the interbay transport section(s) 15 through queue sections 35.
  • the queue sections 35 may be located for example on either side of the interbay or intrabay transport sections 15, 20 and allow a workpiece or workpiece container to- enter/exit the intrabay transport sections 20 without stopping or slowing down the flow of material along either the interbay transport sections 15 or the flow of material along the intrabay transport sections 20.
  • the queue section 35 are schematically shown as discrete sections from transport sections 15, 20. In alternate embodiments the queue section, or the queue paths between transport sections 15, 20 may be formed integral to the transport sections but defining discrete queue transport paths between transport sections.
  • the queues may be positioned on the interbay and intrabay sections as desired.
  • the intrabay transport sections 20 and the queue sections 35 may have track systems that are substantially similar to that described above for the interbay transport sections 15. ⁇
  • the intrabay transport sections and the queue sections tying intra and inter transport sections may have any suitable configuration, shape or form and may be driven in any suitable manner. As can best be seen in Fig.
  • the queue sections 35 may have an input section 35A and an output section 35B that correspond to the direction of movement Rl, R2 of the intrabay and interbay transport sections 20, 15.
  • the convention used herein for example purposes defines section 35A as input to section 20 (exit from section 15) and section 35B as exit/output from section 20 (input to section 15) .
  • the travel direction of the queue sections may be established as desired.
  • workpiece containers may exit the interbay transport sections 15 via the input section 35A and enter the interbay transport sections 15 via the output section 35B.
  • the queue sections 35 may be of any suitable length to allow for the exiting or entering of the workpiece transports on and off the transport sections 15, 20.
  • the intrabay transport sections 20 may extend within corridors or passages connecting any number of process tools 30 to the transport system 10, 10'.
  • the intrabay transport sections 20 may also connect two or more interbay transport sections 15 to each other as shown in Fig. 29A and as described above.
  • the intrabay transport sections 20 are shown in Figs. 29A and 29B as having an closed loop shape however, in alternate embodiments they may have any suitable configuration or shape and may be adaptable to any fabrication facility layout.
  • the intrabay transport sections 20 may be connected to the process tool(s) 30 through a transport siding or shunt 25, which may be similar to the queue section 35. in alternate embodiments, shunts may be provided on the interbay transport sections in a similar manner.
  • the shunts 25 effectively take the workpiece transports "off line" and have for example input sections 25A and output sections 25B corresponding to the direction of travel R2 of the interbay transport sections 20 as can be seen in Fig. 29A.
  • the shunts 25 allow the workpiece transports to exit and enter the intrabay transport sections 20, through the input and output sections 25A, 25B, substantially without interrupting the substantially constant velocity flow of workpiece transports on the intrabay transport sections 20.
  • the workpiece container may, for example, stop at a tool interface station that corresponds to the location of the process tool station 30, so that the workpieces and/or the container itself may be transferred into the process tool load port or any other suitable workpiece staging area by or through any suitable transfer means, such as for example, an equipment front end module, sorter or any other suitable transfer robot.
  • workpiece transports may be directed to desired shunts to effect reorder (e.g. reshuffling) of the transports on the given transport section.
  • the switching of the workpiece carriers or transports from and between the different sections 15, 20, 25, 35 may be controlled by a guidance system (not shown) connected to a controller (not shown) .
  • the guidance system may include positioning devices allowing for position determination of the transports moving along the sections 15, 20, 25, 35.
  • the positioning devices may be of any suitable type such as continuous or distributed devices, such as optical, magnetic, bar code or fiducial strips, that extend along and across the sections 15, 20, 25, 35.
  • the distributed devices may be read or otherwise interrogated by a suitable reading device located on the transport to allow the controller to establish the position of the transport on the section 15, 20, 25, 35 as well as the kinematic state of the transport.
  • the devices may sense and/or interrogate a sensory item, such as a RFID (rapid frequency identification device) , on the transport, workpiece carrier or workpiece, to identify position/kinematics.
  • the positioning devices may also include, alone or in combination with the distributed devices, discrete positioning devices (e.g. laser ranging device, ultrasonic ranging device, or internal positioning system akin to internal GPS, or internal reverse GPS) able to sense the position of the moving transport.
  • the controller may combine information from the guidance system with the position feed back information from the transport to establish and maintain the transport paths of the transport along and between the sections 15, 20, 25, 35.
  • guidance system may include or have grooves, rails, tracks or any other suitable structure forming structural or mechanical guide surface to cooperate with mechanical guidance features on the workpiece transports.
  • the sections 15, 20, 25, 35 may also include electrical lines, such as a printed strip or conductor providing electronic guidance for the workpiece transports (e.g. electrical lines sending a suitable electromagnetic signal that is detected by a suitable guidance system on the transports) .
  • electrical lines such as a printed strip or conductor providing electronic guidance for the workpiece transports (e.g. electrical lines sending a suitable electromagnetic signal that is detected by a suitable guidance system on the transports) .
  • the workpiece container may access the interbay transport section 20 via shunt 25.
  • the workpiece transport accelerates within the shunt 25 so that the transport is traveling the same speed as the flow of material in the intrabay transport section 20.
  • the shunt 25 allows the workpiece transport to accelerate, and hence the transport may merge into the flow of the intrabay transport section 20 without hindering that flow or colliding with any other transports traveling in the interbay transport section 20.
  • the workpiece transport may wait in the shunt 25 for suitable headway so that it may enter the flow of the intrabay transport section freely, without colliding with any other workpiece carriers or transports or causing reduction in velocity of transports traversing the intrabay section.
  • the workpiece transport continues, for example, along the intrabay transport section 20 at a substantially constant speed and switches, with the right-of-way, onto the output queue area or section 35B for example to switch an interbay section 15. In one embodiment, if there is no room within the output queue section 35B, the transport may continue to travel around the intrabay transport section 20 until the output queue section 35B becomes available.
  • cross shunts may be provided connecting opposing travel paths of the transport section, allowing transports to switch between transport paths to, for example, return to a bypassed station without traveling the whole loop of the transport section.
  • the transport may wait in the bay output queue section 35B for suitable headway, then accelerate and merge into the generally continuous constant velocity flow of the interbay transport section 15 in a manner substantially similar to the merge described above for the intrabay transport section 20.
  • the transport may for example continue at a generally continuous speed along the interbay transport section 15 to a predetermined bay and is switched onto the associated queue input section 35A for entry to desired intrabay section 20.
  • the transport may continue to travel around the intrabay transport section 15 until the input queue section 35A becomes available in a manner similar to that described previously.
  • the transport may wait in the input queue section 35A for suitable headway and accelerate to merge onto a second intrabay transport section 20, the second intrabay transport section 20 again having a continuous constant velocity flow.
  • the transport is switched off of the second intrabay transport section 20 and onto the transport shunt 25 where the transport interfaces with the process tool 30. If there is no room in the shunt 25 for the transport, due to other transports in the shunt 25, the transport continues to travel along the intrabay transport section 20, with the right-of-way, until the shunt 25 becomes available. Because the flow of material in the interbay transport sections 15 and the intrabay transport sections 20 is substantially uninterrupted and travels at a generally constant velocity, the system can maintain a high throughput of workpiece transports between processing bays and processing tools.
  • the transport may travel directly between processing bays via an extension 40 that may directly connect the queue sections 35, processing tools, intrabay transport sections 20 or interbay transport sections 15 together.
  • extensions 40 connect the queue sections 35 together.
  • the extensions 40 may provide access from one processing tool to another processing tool by connecting the transport shunts, similar to shunts 25, of each of the tools together.
  • the extensions may directly connect any number or any combination of elements of the automated material handling system together to provide a short access route. In larger nested networks, the shorter path between destinations of the transport created by the extensions 40 may cut down traveling time of the transports and further increase productivity of the system.
  • the flow of the automated material handling system 10, 10' may be bi-directional.
  • the transport sections 15, 20, 25, 35, 40, 50 may have side by side parallel lanes of travel each moving in opposite directions with exit ramps and on ramps looping around and connecting the opposite lanes of travel.
  • Each of the parallel lanes of the transport sections may be dedicated to a given direction of travel and may be switched individually or simultaneously so that the travel for each of the respective parallel lanes is reversed according to a transport algorithm to suit transport loading conditions.
  • the flow of material or transports along the parallel lanes of a transport section 15, 20, 25, 35, 40, 50 may be flowing in its respective direction.
  • the bidirectional lanes of travel may be located in stacks (i.e. one above the other).
  • the interface between the process tool and the transport shunts 25 may have an elevator type configuration to raise or lower a transport from a shunt to the process tool load port, for example, such as where a shunt having a clockwise flow of material is located above a shunt with a counterclockwise flow of material.
  • the bi-directional shunts and other transport sections may have any suitable configuration.
  • Fig. 20 shows a portion of a transport system track 500 of a transport system, for transporting carriers between tool stations in accordance with another exemplary embodiment.
  • the track may have a solid state conveyor system, similar to that described in U.S. Patent Application Serial No. 10/697,528 previously incorporated by reference.
  • the track may have stationary forcer segments cooperating with reactive portion integral to the carrier shell/casing.
  • the carrier may thus be transported directly by the conveyor.
  • the track system is configured to eliminate determining factors affecting transport rate of a given carrier due to actions of other carriers.
  • Conveyor track 500 employs main transport paths with on/off branching paths (see also Figs. 297-298) that routes a carrier away from the main transport path to effect routing changes and/or interface with tool stations (buffer, stocker, etc.) without impairing transport on main transport path.
  • Suitable example of transport system with branching on/off paths is disclosed in U.S. Patent application Serial No. 11/211,236 previously incorporated by reference.
  • segments 50OA, C, D may have winding sets for Al-D linear motor causing movement along the main travel path 500M (this is shown in Fig. 20A) .
  • Segment 500B is illustrated for example in Fig. 20 as an off/exit to what may be referred to as access path 500S.
  • the windings of the forcer in this segment be arranged to provide in effect a 2-D planar motor to allow both motion along main path 500M and when desired effect movement of the carrier (s) along path 500S (see Fig. 20B) .
  • the motor controller may be a zoned controller similar to the distributed control architecture described in U.S. Patent Application Serial No. 11/178,615, filed 7/11/05 incorporated by reference herein in its entirety.
  • the drives/motors may be zoned, efficiently controlled by zone controllers with appropriate hand off between zones.
  • the conveyor 500 may have suitable bearings to movably support carrier. For example, in segments 500A, 500C and 500D, bearings (e.g. roller, ball may allow 1 degree of freedom movement of the carrier along path 500M) .
  • Bearings in segment 500B may allow 2- degree of freedom movement of the carrier.
  • bearings may be provided on the carrier.
  • air bearings may be used to movably support the carrier on the track.
  • Guidance of the carriers between path 50OM and direction onto path 500S may be effected by suitable guide system such as steerable or articulated wheels on the carrier, articulated guide rails on the track, or magnetic steerage as shown in Fig. 2OB.
  • Fig. 2OA illustrates an exemplary transport element 500A of system 500.
  • the exemplary embodiment shown illustrates a segment with single travel lane or path (e.g. path 500M) .
  • the segment has linear motor portion or forcer 502A and support surface (s) 504(A) for motive supports on the transport.
  • the transport segment may have any other desired configuration.
  • guide rails 506A may be used to guide the transport.
  • the transport segment may have magnets or magnetic bearings in lieu of rails for transport guidance.
  • An electromagnet on the carrier may be used to assist decoupling the carrier from the track.
  • Segment 500A' may have multiple travel lanes (for example intersecting lanes similar to segment 500B shown in Fig. 20) or substantially parallel main travel lanes (similar to paths 500M) with switching therebetween.
  • the travel lanes (similar to paths 500M, 500S) are generally defined by the 1-D motor sections 502Al and corresponding carrier motive support surfaces/areas 504A' .
  • the intersection or switch between the travel lanes is formed by an array of 2-D motor elements capable of generating desired 2-D forces on the transport to effect traverse between travel lanes 500M', 500S'.
  • Fig. 21 shows an intersection, or turn segment of the conveyor transport system in accordance with another exemplary embodiment.
  • the transport segment 500A' ' defines multiple travel lanes 500M'', 500S'' that intersect.
  • the travel lanes are generally similar to lane 500M (see Fig. 20A) .
  • the transport vehicle may traverse a given lane 500S'', 500M'' until generally aligned with the intersecting lane.
  • the 1-D motor of the desired lane commences to move the transport along the intersecting lane.
  • the intersection may not be oriented at 90 o- Fig. 20C shows the bottom of the carrier 1200 and the reactive elements therein.
  • the reactive elements may be arranged to coincide with the orientation of the respective forcer sections at the intersection (see for example Fig. 21) . This allows the carrier to change tracks at the intersection substantially without stoppage.
  • Fig. 2OD shows the reactive elements 1202FA positioned on a pivotal section of a carrier 1200A that may be rotated to desired position in accordance with another exemplary embodiment.
  • Fig. 22 shows a track segment 500H''' with a beside track storage location 500S''', generally similar to the intersection shown in Fig. 21.
  • Figs. 23- 23A show track segments 500, with cutouts or openings 1500O for lift arms of a carrier lift or shuttle, (not shown) as described further below.
  • Fig. 24 shows a track segment 2500A with the forcer (such as a linear motor) 2502A located offset from carrier/track centerline indicated by arrow 2500M.
  • the forcer such as a linear motor
  • Figs. 25A-25B show a linear motor conveyor 3500 (having grounded forcer segments and reaction elements embedded within the carrier 3200) for transporting substrates within a semiconductor FAB.
  • the conveyor 3500 may be inverted (e.g. carrier is suspended from and is located below conveyor) , as shown such that the carrier is accessible from directly below.
  • the conveyor 3500 may otherwise be similar to transport system segments 500A, 500A'', 500A''' described previously.
  • a magnetic retention forcer 3502 may be employed to maintain the coupling between the conveyor 3500 and carrier 3200. This force may arise from the linear motor coils (e.g.
  • Coupling and decoupling of the carrier to the conveyor is rapid and may be achieved without moving parts (e.g., an electro-magnetic switch). Failsafe operation may be assured via flux path and/or passive mechanical retention features between carrier and conveyor .
  • intersections and branch points i.e., merge-diverge locations similar for example to segment 500B in Fig.
  • turntables or other routing devices may be used to transfer carriers between travel paths of the conveyor 3200.
  • the carrier 3200 may be arranged such that the reaction elements are on the top, and the substrates are accessed from the bottom of the carrier.
  • carrier 3200 may have a magnetic platen located to cooperate with the forcer of conveyor 3500.
  • the platen may also include an electromagnetic coupling allowing the container portion of the carrier to decouple from the platen portion that may remain connected to the conveyor when the workpiece container portion is loaded on a processing tool 3030.
  • the conveyor 3200 positions a carrier at the tool loadport, and for example a dedicated vertical transfer mechanism 3040 may be used (see also Figs. 26A-26B) to lower the carrier from the conveyor elevation to the (controlled environment) loading interface 3032 of the tool 3030.
  • the vertical transfer device may also be used as an indexer, thereby positioning the wafers for access by a wafer-handling robot.
  • a suitable example of a vertical transfer device is described in U.S. Patent Application Serial No. 11/210,918, filed 8/25/05 and previously incorporated by reference herein.
  • the conveyor may be a powered-wheel accumulating conveyor positioned in an inverted arrangement and having a suitable magnetic attractive force to hold the carrier on the conveyor wheels.
  • the general arrangement may be inverted such that the conveyor is below the loadport, the carrier has reaction features on the top.
  • Figs. 26A-26B show other examples of direct lower/Iift carriers from transport system to load port/tool interface.
  • the carriers may have a reaction platen that may be integral to the carrier.
  • the platen as noted before, may be detachable from the carrier, for example remaining on/coupled to the conveyor when the carrier is removed. In such a case, each platen in the transport system corresponds in a substantially 1:1 relationship to the carriers in the FAB.
  • Fig. 27 illustrates a carrier 4200 having a conveyor vehicle hybrid configuration in accordance with another exemplary embodiment.
  • Carrier vehicle (s) 4200 may be provided for automated conveyance of payloads (such as carriers containing semiconductor substrates) .
  • the vehicles may carry stored energy for self-propulsion, a steering system, at least one motor- powered drive wheel, sensors for odometry and obstacle detection, and associated control electronics .
  • the vehicles are outfitted with one or more reaction elements (similar to magnetic platens described before) that can cooperate with stationary linear motor forcer segments of a conveyor 4500, similar to conveyor system 500 (see also Fig. 20) .
  • the drive motor when a vehicle (s) 4200 is traveling along the path (similar to paths 50OM, 500J) defined by one or more forcer segments, the drive motor may be disconnected from the drive wheel (s) , and the vehicle be passively urged along the path via electromagnetic coupling with the reaction elements in the conveyor 4500.
  • the stored energy device e.g. batteries, ultracapacitors, flywheel, etc.
  • the motion of the traction wheel (s) along the guideway may be used to convert energy from the linear motor to the vehicle storage. In the case of electrical energy storage, this may be accomplished by re-connecting the vehicle drive motor to be used as a generator with suitable monitoring and conditioning electronics.
  • vehicle (s) 4200 may be capable of driving autonomously past failed conveyor segments, around obstacles or between work areas not serviced by a conveyor (see Figs. 27A, 27B).
  • the number and length of conveyor forcer segments may be tailored to an operating scheme such as a conveyor for interbay transport, and using autonomous vehicle motion with the bay for example.
  • Self-directed steering may be used for flexible route selection.
  • Self-directed cornering could be used to eliminate curved forcer segments.
  • High-speed travel may be effected along conveyor runs and, if desired, separated from operators by safety barriers .
  • Conveyor sections may be used for long runs, such as links to adjacent FABs. Conveyors may be used for grade changes, mitigating the difficulties encountered by vehicles using exclusively stored energy.
  • Fig. 28 shows another example of an integrated carrier and transport vehicle.
  • each carrier .5200 is a vehicle.
  • the integrated carrier/vehicle 5200 in the exemplary embodiment may be similar to vehicle 4200 described before.
  • the carrier vehicle may have any desired vehicle features .
  • vehicle 5200 may include integral carrier 5202 and vehicle 5204 portions.
  • the carrier 5202 is shown as front/side opening in Fig. 28 for example purposes. In alternate embodiments, the carrier may be top opening or may have any other suitable workpiece transfer opening.
  • the vehicle may drive directly to the loadport where work pieces are to be transferred, or may be engaged by another automation component such as a tool buffer.
  • Substantially permanently fixing the carrier 5202 and vehicle 5204 eliminates the time waiting for a free vehicle to be dispatched when a lot transfer is desired, as well as the associated deliver time variance.
  • the carrier vehicle 5200 eliminates "empty-car” moves and hence may reduce the total traffic on the transport network improving the system capacity.
  • the carrier and vehicle may have a coupling for detaching carrier from vehicle. Though vehicles in the system may be apportioned to carriers in a 1:1 relationship to eliminate delays in carrier transport awaiting for vehicles, system knowledge in a suitable controller may be used to allow separation in limited instances (e.g. repair/maintenance or either vehicle or workpiece carrier sections) . Otherwise, the carrier and vehicle remain an integral unit during transport or when engaged to a tool loading station or other automation component of the FAB.
  • Fig. 29C shows a plan view of a horizontally arrayed buffering system 6000 that may interface between a conveyor system 500 (or any other desired carrier transport system) and tool stations 1000 in accordance with another exemplary embodiment.
  • the buffering system may be located under tool stations or portions thereof or above the tool stations .
  • the buffering system may be positioned away (i.e. below or above) from operator access ways.
  • Fig. 30 is an elevation view of the buffering system.
  • Figs. 29C-30 show the buffering system located on one side of conveyor 500 for example purposes.
  • the buffering system may be extended to cover as large a portion of the FAB floor as desired.
  • operator walkways may be elevated above the buffering system.
  • the buffering system may be extended anywhere in the FAB overhead.
  • the buffering system 6000 may include a shuttle system 6100 (which may have suitable carrier lift or indexer) capable of at least 3- D movement and an array of buffer stations ST.
  • the shuttle system may generally include guide system (e.g. rails) 6102 for one or more shuttle (s) 6104 capable of at least 2-D traverse over the guide system.
  • guide system e.g. rails
  • shuttle (s) 6104 capable of at least 2-D traverse over the guide system.
  • the arrangement of the shuttle system illustrated in Figs. 29C-30 is merely exemplary and in alternate embodiments the shuttle system may have any other desired arrangement.
  • the shuttle system shuttles or interfaces between the conveyor 500, buffer stations ST and tool loading stations LP (see Fig. 29C).
  • the shuttle(s) 6102 are capable of traversing between horizontally disposed conveyor 500 (for example via an access lane 602 between the segments 600 of the conveyor) and buffer storage ST or loading locations LP on the tool stations to shuttle carriers 200 therebetween.
  • the shuttle (s) 6104 may include an indexer 6106 for picking/placing the carrier on the conveyor 600, or buffer stations ST or tool loadport LP.
  • the buffering system may be configured in modular form allow the system to be easily expanded or reduced. For example, each module may have corresponding storage location(s) ST and shuttle rails and coupling joints for joining to other installed modules of the buffering system.
  • the system may have buffering station modules (with one or more integral buffering stations) and shuttle rail modules allowing modular installation of the shuttle rails.
  • the access lane(s) 6OL of the conveyor 500 may have shuttle access ways allowing the shuttle indexer to access the carrier through the conveyor lane.
  • Fig. 31 shows elevation of a buffering system 6000 communicating with the merge/diverse lane of the conveyor 500.
  • the buffering system shuttle 6104 may access carriers directed onto the access lane of the conveyors. Stops (or lack of accessways similar to lanes 602 in Fig. 29C) may limit the shuttle from accessing or interfering with the travel lane of the conveyor.
  • FIG. 32 is yet another elevation showing multiple rows of buffering stations .
  • the buffering system may have any desired number of buffering stations in any desired number of rows.
  • Shuttle traverse (in the direction indicated by arrow Y in Fig. 32) may be adjusted as desired by modular replacement of traverse guide 61087.
  • the buffering stations may be arrayed in multiple horizontal planes or levels (i.e. two or more levels that may be vertically separated (to allow carrier height pass through between levers) . Multilevel buffering may be used with reduced capacity carriers.
  • Fig. 33 shows another plan view of a buffering system with an interface to a guided vehicle carrier V.
  • Fig. 34 shows an elevation view of an overhead buffering system 7000 otherwise similar to the under tool buffering system 6000 described before.
  • the overhead buffering system 7000 may be used in conjunction with the under tool buffering system (similar to system 6000) .
  • the overhead buffering system is shown interfacing with an overhead conveyor 500. in alternate embodiments, the overhead system may interface with a floor conveyor system or floor based vehicles.
  • Suitable control interlocks e.g. hard
  • Top shields over the walkway may be used for preventing suspended loads from crossing through walkway space.
  • Fig. 35 shows a looped buffering system 8000.
  • the buffering stations ST of the system may be movable, mounted on a track 8100 (in the exemplary embodiment shown as being closed looped) that moves the buffer stations ST between loading position (s) R in which carriers may be loaded into the buffer stations ST (for example with overhead loading) and loading station(s) LP of a tool interface.
  • the tool interface may have an indexer for loading the carrier to the tool station.
  • Figs. 36A-36C there is shown respectively perspective, side and bottom views of a substrate carrier 2000 in accordance with yet another exemplary embodiment.
  • the carrier 2000 is a representative carrier and is shown as having an exemplary configuration.
  • the carrier 2000 in the embodiment shown is illustrated as being a bottom opening carrier for example purposes, and in alternate embodiments the carrier may have any other desired configuration such as top opening, or side opening.
  • the carrier 2000 in the exemplary embodiment shown in Figs. 36A-36C may be generally similar to carrier 200, 200', 300 shown in Figs. 1-3, and similar features are similarly numbered.
  • Carrier 2000 thus has a shell or casing 2012 with one or more opening(s) 2004 (only one of the opening(s) is shown in figs.
  • the carrier shell may have removable wall(s) or section(s) 2016 that may form closure (s) or door(s) for opening and closing the respective opening(s) 2004.
  • the shell 2012 may have a bottom wall 2016 that is removable in order to open and close opening 2004.
  • any other section or wall of the carrier shell may be removable to allow wafer transport in and out of the carrier.
  • the removable sections 2016 may be sealed to the rest of the casing 2014 in a manner similar to that shown and described before, and the casing may be capable of holding an isolated atmosphere such as an inert gas, high cleanliness air with a pressure differential to ambient atmosphere or vacuum for example.
  • the wall(s) 2016 may be passive structure (s) similar to wall 216 and shell 214 described before, and may be locked to each other magnetically for example or any other desired passive lock.
  • the wall(s) 2016 may include magnetic elements 2016C (for example ferrous material) and the shell 2014 may have a magnetic switch 2014S actuated to lock and unlock the wall and shell.
  • 2014S in the shell may be configured to allow cooperation with magnetic locks in the port door interface (as will be described further below) so that locking the carrier door (either wall or shell, see
  • Figs. 36A, 36C to the port door causes unlocking of the carrier door from the rest of the carrier.
  • the magnetic locks between wall and shell may have any other desired configuration.
  • the metal passive carrier 2000 and carrier door- 2016, 2014 provide a clean, washable carrier that is vacuum compatible.
  • the carrier 2000 is illustrated as configured to carry multiple wafers .
  • the carrier may be sized as desired to carry but a single wafer with or without an integral wafer buffer, or any desired number of wafers.
  • carrier 2000 may be a reduced or small lot size carrier, relative to conventional 13 to
  • the carrier shell may have a transport system interface section 2060. " The transport system interface section
  • carrier 2000 may be arranged to interface with any desired transport system, such as a conveyor system similar to the exemplary embodiments shown in Figs. 20-
  • the carrier may include reactive elements, such as ferrous magnetic material pads or members, disposed or connected to the carrier casing, capable of cooperating with forcer sections of a linear or planar motor of the conveyor system transport to propel the carrier along the conveyor.
  • reactive elements such as ferrous magnetic material pads or members
  • the carrier interface section 2060 may also have carrier support member (s) or surface (s) 2062 that may interface with the transport system to support the carrier from the transport system when the carrier is moving and/or stationary on the transport system.
  • the support surface (s) may be non-contact or contact support surfaces and may be arranged on or facing the sides (e.g. surface(s) 2062S) or bottom (e.g. surface(s) 2062B) or any other desired location or facing to stably support the carrier from the transport system.
  • the non- contact support surfaces for example may be substantially flat areas, surfaces or pads, connected to or otherwise disposed on the casing and formed by any suitable means, capable of interacting with air bearings (not shown) of the transport system to stably hold the carrier (either on the basis of the air bearings alone or in combination with motive forces imparted on the carrier by the transport system motor; e.g. magnetic forces) .
  • the carrier casing may have one or more (active) air bearing (s) directing air (or any other desired gas) against (passive) transport system structure to provide floating (e.g. non-contact) but stable support of the carrier from the transport system structure.
  • a suitable source of air/gas e.g.
  • a fan or gas pump may be connected to the carrier to feed the air bearings of the carrier.
  • the carrier casing and the transport system may have both active air bearings and passive air bearing surfaces (e.g. lifting air bearings in the transport system and 1 horizontal guidance air bearings in the carrier) .
  • the carrier 2000 may have other handling members, flanges or surfaces such as for example handling flange 2068 as shown in Fig. 36B.
  • carrier 2000 may have a tool interface section 2070 that allows the carrier to interface with the loading section ⁇ for example a load port) of a processing tool.
  • the processing tool may be of any kind.
  • the interface 2070 may be located on the bottom of the carrier.
  • the carrier may have tool interfaces on any other desired sides of the carrier.
  • the carrier may have multiple tool interfaces (e.g. bottom and side) enabling the carrier to interface in different configurations with tools.
  • the tool interface section 2070 of the carrier 2000 in the exemplary embodiment is seen best in Fig. 36C.
  • carrier interface section 2070 may have features and generally conforms to the criteria set forth in the appropriate SEMI standards for a carrier (such as SEMI E.47.1 and E57 and any other appropriate SEMI or other standard) all of which are incorporated by reference herein in their entirety.
  • carrier interface section 2070 may include kinematic coupling (KC) receptacles, arranged in compliance with the criteria in SEMI STDS. E.47.1 and E57, for receiving primary and/or secondary KC pins (not shown) located in conventional load port interfaces.
  • KC kinematic coupling
  • the carrier interface 2070 may also have a section with one or more info pads in compliance with the SEMI STDS. for the carrier.
  • the carrier interface section may not be provided with one or more of the SEMi specified features (for example, the interface section may not be provided with kinematic coupling features) but may never the less have reserve areas on the interface side of the casing corresponding to the such features.
  • the carrier interface section 2070 may thus be capable of interfacing the carrier 2000 to conventional loading interface of conventional processing tools.
  • the carrier/load port contact interfaces, for sealing the carrier such as previously described, and the kinematic coupling between carrier and loadport may give rise to an over constrained condition between carrier and loadport. To relax the over constraints, the kinematic coupling between carrier and loadport may be compliant allowing repeatable positioning of carriers on the loadport interface.
  • Coupling compliance may be actuated with preload from the loadport interface.
  • Fig. 36E there is shown a schematic cross-section of a representative interface portion 2272 of the compliant kinematic coupling 2072 in accordance with an exemplary embodiment.
  • the coupling interface portion 2072 may generally have a pin 2274 and grooves or detent 2276 arrangement, and compliance or flexibility may be provided in one or more desired directions (such as indicated by arrows X, Z) to relax over constraints on the carrier in any desired degrees of freedom (e.g. carrier pitch, roll, yaw) .
  • the coupling pin 2274 may be compliant (such as by spring load, e.g.
  • the coupling grooves 2276 may also be compliant (such as by flexural mounting, or forming grooves in resiliently flexible materail allowing flexure of the groove surface when compressed under preload.
  • the carrier interface section 2070 may further be configured to allow non-contact coupling interface of the carrier to a loading interface of a processing tool, as will be described in greater detail below.
  • a wafer carrier such as carrier 2000
  • Conventional locating methods may generally use conventional mechanical couplings that contact the bottom surface of the carrier. For example, these conventional mechanical couplings provide a lead- in or cam to compensate for gross misalignments and aid in guiding a wafer carrier to the aligned position. Unfortunately, this feature relies on the lead-in surface of a carrier to make sliding contact with the mating pin of a loadport, thereby possibly causing wear and generation of contaminants.
  • a second issue related to the use of conventional mechanical coupling is the desire for the carrier to be coarsely located within the capture range of the conventional coupling to function properly.
  • the carrier transport system is responsible for achieving adding to either complexity of the transport system and/or time in effecting proper placement (e.g. retries) .
  • the design of the carrier transport system should be sufficiently repeatable to place the carrier within the capture range of the conventional mechanical coupling or in conventional applications the nominally aligned position to prevent wear.
  • the carrier transport system cannot achieve repeatability over many cycles and consequently results in sliding contact instigating particle generation.
  • the interface of carrier 2000 may provide the same repeatability in locating a wafer carrier to the process tool but with the use of a non- contact (e.g. magnetic) coupling.
  • the carrier interface section 2070 may have a non-contact coupling 2071 for non-contact interface and coupling of the carrier to a loadport.
  • the non-contact coupling 2071 may include generally non-contact support or lift area(s) 2072 and non-contact coupling section(s) 2074.
  • 'the lift area(s) 2072 may be substantially flat and smooth surfaces arranged to cooperate with air bearings of the load port (as will be described below) to allow controlled and stable lifting of the carrier by the air bearings in the load port.
  • the carrier lift area(s) are passive, but in alternate embodiments the carrier may include one or more active air/gas bearings to lift the carrier.
  • the lift area(s) 2072 may have three sections that are generally similar to each other and distributed on the interfacing (e.g. bottom) side of the carrier casing so that lift acting on the carrier from the load port air bearings is generated substantially by the pressure, from air bearings impinging on the lift area(s) sections, and the resultant lift is substantially coincident with the center of mass (CG) of the carrier.
  • the shape and number of the lift area(s) sections- 2072 shown in Fig. 36C is merely exemplary and in alternate embodiments the lift area(s) may have any desired shape and number.
  • the lift area(s) may be a single continuous (or substantially uninterrupted section extending around the perimeter of the carrier interface) .
  • the lift area(s) is located on the carrier interface 2070 as not to interfere with the SEMI compliant interface features (e.g. kinematic coupling receptacles, info pads, etc.).
  • the lift area(s) 2072 may be located as far from the CG as possible within the constraints of the interface, and may be sized as desired for generating desired pressure distribution and accommodating as large as desired translational (i.e. x- y plane) misalignment between carrier and load port.
  • the lift area(s) 2072 are arranged symmetrically about a single axis (indicated by axis X in Fig. 36C, e.g.
  • the carrier interface 2070 is polarized so that non-contact interface with the tool loading interface may be accomplished in but a single proper orientation. Placement of the carrier in an incorrect orientation may result in instability of the carrier lift, that may be sensed by suitable sensors of the transport system placing the carrier, or of the carrier itself or of the load port, and causing a signal to be sent to stop the incorrect placement.
  • the lift area(s) 2072 may also have a desired pitch or bias to aid in proper alignment of the carrier to the load port.
  • the lift area(s) may be movable or tiltable, such as by mechanical, electromechanical, piezoelectric, thermal or any other suitable means, in order to generate when impinged upon by the air bearing desired horizontal resultant force on the carrier of the variable magnitude and variable direction to effect alignment between carrier and load port.
  • the non-contact coupling section (s) 074 may have one or more permanent magnet (s) 2074A-2074C (three magnets 2074A-2074C are shown for example purposes and more or fewer magnets may be provided in alternate embodiments).
  • the coupling magnet (s) 2074A- 2074C may be part of the reactive section of the transport system linear/planar motor or may be independent of the motor reactive section.
  • the coupling magnet (s) 2074A-2074C may be of sufficient size to overlap coupling magnets of the load port (as will be described below) for a desired misalignment between carrier and load port.
  • the coupling magnet (s) 2074A-2074C are arranged symmetrically about a single axis (such as axis X in Fig. 36C) but are asymmetric about all other axis of the carrier interface.
  • the non-contact coupling section of the carrier is polarized preventing the carrier from coupling to a load port if the carrier is not in the desired orientation relative to the load port.
  • the non-contact coupling of the carrier may nevertheless be "keyed" to the load port for correct orientation and all other orientations would not be engaged by the coupling and thus would not attempt to load.
  • a suitable sensor (s) may be provided on the load port or carrier, to detect when the carrier may be incorrectly placed on the load port and coupling cannot be properly effected and send a suitable signal causing the transport system to remove, and if possible reposition the carrier in the proper orientation.
  • the non-contact coupling sections, and/or the lift area(s) may be arranged symmetrically about multiple axes of the carrier interface.
  • carrier 2000' in accordance with another exemplary embodiment carrier 2000' is substantially similar carrier 2000 described before and similar features are similarly numbered.
  • Carrier 2000' may have a carrier interface section 2070' with a non- contact coupling 2071' generally similar to non-contact coupling 2071 described before with reference to Figs. 36A-36C.
  • the non-contact coupling section 2074' may have ferrous magnetic material sections 2074A' , 2074B' , 2074C (that may be part of or independent of the transport system motor reactive components in the carrier) in place of permanent magnets .
  • the ferrous material sections 2074A', 2074B', 2074C may be of any desired shape such as rectangular, round cylindrical or spherical. Each of the sections 2074A' -2074C may be similar to each other, though in alternate embodiments different shared section defining desired magnetic coupling and directional characteristics may be used in each of the sections .
  • the sections may be of sufficient size to be within the magnetic field of the load port coupling points and accommodate a desired initial misalignment between carrier and load port when the carrier is initially placed on the load port.
  • the coupling sections 2074A' , 2074B', 2074C may be sized and arranged on the carrier interface so that the magnetic forces on the carrier bias the carrier into an aligned position relative to the load port. As seen in Fig.
  • the coupling sections 2074A' , 2074B', 2074C in the exemplary embodiment may be distributed on the carrier interface to define a single a single axis of symmetry (axis X) and thereby keying the non-contact coupling 2071' of the carrier to allow coupling to the load port in but one orientation.
  • the coupling sections may have any other desired arrangement.
  • Figs. 37A-D there is shown respectively a perspective, end, side elevation and top plan view of a tool loading station or load port 2300 in accordance with another exemplary embodiment.
  • the load port in the exemplary embodiment shown may have a configuration for interfacing with and loading wafers to and from a bottom opening carrier similar to carrier 2000, 200, 200' 300 described previously.
  • the load port may have any other desired configuration.
  • Load port 2300 may have a suitable mounting interface, such as a SEMI STD.
  • Comprises BOLTS interface allowing the load port to be mated to any desired processing tool or work station.
  • the load port may be mounted/mated to a controlled atmosphere section such as and EFEM of a processing tool (as will be described further) , or may be mated to an atmospherically isolated chamber (e.g. vacuum transfer chamber) of a processing tool (in a manner similar to that shown in Fig. 14) or to an atmospherically open chamber of a processing tool .
  • the load port in this exemplary embodiment is similar to the load ports described previously.
  • the load port 2300 may generally have a carrier loading interface 2302, and loading cavity or chamber 2304 (into which the wafer (s), individually or in a cassette are received from the carrier or returned to the carrier) .
  • the chamber 2304 may be capable of holding an isolated atmosphere (thereby allowing the load port to function as a load lock of the processing tool) or a controlled (highly clean) air atmosphere.
  • the carrier loading interface 2302 may have a loading plane 2302L, supporting the carrier when interfaces to the load port, that, unlike conventional load ports, is substantially free of protrusions in the carrier placement zone. As seen in Fig. 37A, the loading plane may have bumpers or snubbers exterior to the carrier placement zone to sub carrier movement in the event of cross misalignment between carrier and load port.
  • the loading interface 2302 of the load port may have a loading opening and, (or port 2308) (communicating with the loading chamber 2304) and port door closing the port similar to the load ports described before.
  • the port door 2310 may be substantially flat and level with the loading plane of the loading interface.
  • the port door 2310 may be sealed to the port rim in a seal arrangement similar to that described before and shown in Figs. 4A- 4B.
  • the carrier casing and carrier door are sealed respectively to the load port rim 2308R and the port door 2310 with what may be referred to as a substantially "zero volume purge" seal having an arrangement similar to that shown in Figs. 4A-4B.
  • the seals between the port rim, port door, carrier casing and carrier door may have any other desired configuration.
  • the port door 2310 in the exemplary embodiment may be coupled to the port with passive magnetic coupling or latch in a manner also similar to that described before.
  • the magnetic coupling/latching elements between the port door and port may be located and configured to ' actuate the passive magnetic latching between carrier door and casing simultaneous with the actuation of the latching between port door and port.
  • unlocking of the port door from the port also causes unlocking of the carrier door from the carrier, and locking of the port door locks the carrier door to the carrier.
  • the load port may include an indexer 2306 and a purge/vent system 2314 similar to that shown in Figs. 8-14.
  • the carrier loading interface of the load port of in the exemplary embodiment may have a substantially non-contact interface section 2371 that may cooperate with the non- contact interface section 2071 of the carrier 2000, for example for interfacing and coupling the carrier 2000 to the load port 2300.
  • the interface section 2371 may have one or more air bearings 2372 and a non-contact coupling section 2374.
  • the air bearing(s) 2372 of the load port may be of any suitable type and configuration, and may be located for example in a "keyed" arrangement, generally corresponding to the arrangement of the lifting areas 2072 on the carrier interface.
  • the air bearings 2372 may thus be symmetrically arranged with respect to the reference datum X that defines the alignment of the carrier 2000 when coupled to the load port.
  • a suitable source (not shown) of air/gas surprises the air bearings.
  • Suitable regulators (not shown) may be used to maintain desired gas flow from the air bearings .
  • the gas supply and regulators for the air bearings may be located as desired. For example exterior or interior to the loading chamber 2304 of the load port, but maybe isolated from the interior atmosphere of the chamber for example, the gas supply 2372S to the air bearings 2372 (see Fig. 37C) may extend within a bellows or other flexible sealed sleeve to the air bearings that isolates the gas supply from the loading chamber.
  • the gas supply to the air bearings may extend in a manner similar to the purge and vent lines shown in Fig. 14 within a bellows seal isolating the indexing device.
  • the air/lift areas of the carrier may be on the carrier door, and hence the air bearings 2372 of the load port (located substantially under the lift areas) in the exemplary embodiment may e located within the bounds of the port door 2310.
  • the air bearings may be located on the port frame or port rim, and the gas supply for the air bearings may be located entirely exterior to the loading chamber of the load port.
  • the air bearing (s) 2372 may be orifice bearings (having a substantially localized exhaust) or may be porous media air bearings having a distributed substantially uniform exhaust.
  • the exhaust flow from each of the air bearing (s) 2372 may be fixed (may remain substantially constant) in terms of pressure, mass flow and direction (indicated as substantially vertical by AB in Fig. 37C for example only) .
  • the air bearings may have a variable exhaust flow allowing for example changing the exhaust flow characteristics (e.g. pressure, mass or direction) to offset movement of the carrier relative to the load port and facilitate carrier to load port alignment.
  • the air bearings 2372 and lift pads 2072 on the carrier may be sized in order to provide a desired misalignment tolerance band or placement zone for the initial placement of the carrier onto the load port.
  • a plan view of a load port 2300' in accordance with another exemplary embodiment Load port 2300' is similar to load port 2300 and similar features are similarly numbered.
  • One or more of the air bearing (s) 2372' in this exemplary embodiment may have an array of nozzles.
  • the exhaust AB1-AB4 from the array nozzle may combine to provide a directable resultant exhaust.
  • each nozzle of the array may have an exhaust angled relative to other nozzle exhaust.
  • the exhaust flow from one or more of the nozzles may be fixed or variable. When air nozzles of the array are operating at full flow, the resultant exhaust has a first desired direct (e.g. substantially vertical) .
  • the air bearing nozzle may be movable (e.g. air bearing nozzle mounted on tiltable platform) , or capable of changing geometry (e.g. by use of piezoelectric materials or share memory materials) to directionally steel the exhaust.
  • the directional component of the air bearing exhaust in the loading plane imparts impetus of the carrier riding on the air bearings in the loading plane in the opposite direction of the directional component of the exhaust, and generates lateral motion of the carrier in the loading plane.
  • the non-contact coupling section 2374 of the load port may comprise magnet sections 2374A-2374C located to cooperate with the magnets 2074A-2074C (see Fig. 36C) or magnetic materials sections 2074A' -2074C of the carrier to define a magnetic lockable/unlockable coupling between carrier and load port (such as between carrier door 2016 and port door 2310 and, if also desired between carrier casing and load port frame) .
  • the magnet sections 2374A-2374C of the load port may also, in cooperation with the magnets 2074A-2074C, or magnetic material sections 2074A'- 2074Cl of the carrier, form a carrier position compensation device capable of adjusting the position of the carrier on the load portion to achieve desired alignment as will be described below.
  • the arrangement of the magnet sections 2374A-2374C shown in the figures is merely exemplary, and in alternate embodiments the magnet sections of the load port non-contact carrier coupling section may be arranged/configured in any desired manner.
  • the magnet sections 2374A-2374C may be operable magnets to effect a magnetic switch, that when actuated generates a desired magnetic field that biases the magnet or magnetic section in the carrier in a desired direction (such as to effect locking/coupling of carrier and load port) and/or impart correction forces on the carrier) .
  • the load port interface in the exemplary embodiment may have a non-contact alignment system 2380 to effect teaching of the carrier transport system the location/position of the load port and enable initial placement of the carrier onto the load port interface.
  • the placement zone of the load port is substantially free of protrusions, and initial placement of the carrier onto the placement zone is substantially without contact (i.e.
  • the alignment system 2380 may have an array or pattern of registration marks that are capable of being imaged by a suitable sensor.
  • the pattern of marks shown in Fig. 37D is merely exemplary, and in alternate embodiments any suitable marking pattern may be used that is capable of being imaged with a suitable sensor and defines positional information in all desired degrees of freedom.
  • the sensor (not shown) , that may be positioned for example on a carrier holding portion of the transport system, (see for example Fig. 26B) may be for example a CCD or CMOS imaging sensor capable of imaging the pattern and its spatial characteristics.
  • the image data embodying the pattern may be communicated to a suitable processor that also registers and relates the positional data of the carrier transport to the pattern in order to determine the position of the load port placement zone with respect to the carrier transport and teach the carrier transport said position.
  • the carrier 2000 may be placed by the transport system onto the loading plane that is free of protrusions in the placement zone 2302P.
  • the placement zone in the exemplary embodiment can be an area formed by the size of the carrier +/- for example about 20mm with respect to the alignment axis of the load port.
  • the actual placement error can be any value and is not dependent on the values stated, and may be specified in proportion to the compensation mechanism used to position the carrier after placement.
  • the alignment repeatability of this coupling is substantially the same as conventional coupling method, while at the same time increasing the allowable carrier transport placement error.
  • the forces on the carrier are its mass and the relative location of the center of gravity to the horizontal datum plane and the lifting force itself.
  • the carrier lift areas interface with the air pads on the load port to lift the carrier and establish repeatable positioning (both angular and transverse) of the carrier to the load port.
  • the carrier floating on the film of air may now be positioned in alignment with the load port.
  • the magnetic coupling can be used to impart forces on the carrier to translate and rotate the carrier. Any method other than magnetic can be used to impart forces on the carrier as long as it is of sufficient stroke and can predict the target position. Completing the coupling of the carrier and load port is clamping the two objects together and hold position.
  • the permanent magnet (s) 2074A-2074C overlap magnet (s) 2374A-2374C on the load port interface.
  • the air bearing may'be energized and the load port magnetic is activated either electronically or by mechanical means to present the opposite magnetic pole to the carrier magnet.
  • the absence of friction at the interface allows the carrier freedom to move in X, Y and Theta Z axes until the magnet poles naturally align but do not make physical contact.
  • the air bearing is preloaded by the magnetic force of the magnets in the carrier and load port. The preload is useful in maintaining control of the carrier and increases the stiffness of the air bearing.
  • the air bearing is deactivated for example after a predefined time period or by means of sensor feedback, allowing the carrier to lower onto the load port's port door.
  • the magnets are now in full contact and provide a clamping force to hold the carrier to the port door.
  • the carrier 2000 possesses ferrous material pad(s) 2074A and 2074C (see Fig. 36D) of sufficient size to be within the magnetic field of the load port coupling points after placement (by the carrier transport system) .
  • the air bearing may be activated and the magnets on the load port are activated either electronically or by mechanical means introducing the magnetic field(s) to the carrier ferrous pad(s) .
  • the absence of friction at the interface permits the attractive force between the magnet and the ferrous pad(s) to translate or rotate the carrier to the aligned position.
  • the air bearing is preloaded by the magnetic force. The preload is useful in maintaining control of the carrier and increases the stiffness of the air bearing. After a predefined time period or by means of sensor feedback for example, the air bearing is deactivated for example allowing the carrier to lower onto the load ports port door. The magnetic force on the ferrous pad(s) provide a clamping force to hold the carrier to the port door.
  • the carrier may be driven by a directed air nozzle 2372' (see Fig. 37E) integrated into the air bearing surface such as in the exemplary embodiment shown in Fig. 37E.
  • the air nozzle 2372 may provide a laterally applied pressure to the bottom surface which imparts a motion to the carrier.
  • the motion can be controlled by the controller energizing the appropriate set of nozzles to direct the carrier in the X or Y axis until the magnet on the carrier is aligned to the load port.
  • the platen may be energized to provide the desired direction to the nozzles.
  • the nozzles direct the exhaust opposite of the intended direction of motion of the carrier. This action imparts the lateral force to translate the carrier until alignment of the magnets.
  • Some form of sensor feedback including for example feedback from the magnetic coupling may be used to detect the actual position of the carrier and compare to the aligned position. This information may determine which direction the carrier should be translated, and how the forces to be applied to the carrier by the air nozzles.
  • the nozzles and magnetic coupling may be used in combination together to align the carrier to its desired position.
  • Fig. 37F shows a plan view of load port interface in accordance with another exemplary embodiment.
  • Load port 2300' ' in this embodiment is similar to previously described, except the magnet (s) 2374'' positioned in the load port is attached to a movable X-Y stage movement directions indicated by arrows in Fig. 37E) .
  • the carrier is placed onto the load port and the air bearing is activated the carrier magnet is attracted to the load port magnet coupled to X-Y stage 2374S''.
  • the X-Y stage 2374S'' can be either for example air cylinder, threadless screw or electric solenoid and is linear encoded to report the translated position.
  • the coupled carrier magnet and load port magnet are driven back to a learned (aligned) position.
  • the are bearing may be deactivated and the carrier lowers to the port door and is clamped.
  • this method could be adapted to existing kinematic coupling approach used whereby each kinematic pin is coupled to an X-Y stage.
  • two of the kinematic pins are driven to align X, Y and theta Z.
  • Fig. 37G shows another exemplary embodiment of a similar load port 2300A except the carrier may be driven by a mechanically actuated pusher arm 2374M to position the carrier and align the coupling points of the carrier to the load port.
  • the loading plane may be pivotally mounted (as indicated by the arrows R, P) about theta X and theta Y.
  • the degree of freedom in combination with an air bearing can be used to tilt the load plane shifting the center of gravity of the carrier to impart translation in the direction of the pivot angle.
  • This method uses position feedback to intelligently actuate the load plane in the appropriate carrier direction to align the carrier and load port magnets.
  • the air bearing may be deactivated and the carrier is clamped to the port door. Finally, the load plane is pivoted back to the original position to achieve proper alignment to the port for door removal.
  • the environment within a carrier may vary, for example depending on the prior process and environment to which the wafer (s) and carrier interior were subjected. Accordingly, carriers coupled to the load port or loading station may have an environment therein (e.g. gas species, cleanliness, or pressure) that is ' different than the environment of the current process.
  • a given process for the wafers of a carrier may employ an inert gas . Accordingly, the interface between the carrier and the load port of the given tool allows the suitable gas species to be input or vented as desired to minimize pressure differentials or introduction of undesired gas species during carrier opening.
  • the tool environment may be vacuum, and the carrier mated to the load port of the tool may be evacuated to a low pressure, via the interface, allowing wafers from the carrier to be loaded directly to a vacuum load lock.
  • the interface between the carrier and load port and environmental control system allowing environment matching between carrier and tool may be substantially similar to that previously described and shown in Figs. 10-lOA and 14.
  • Another suitable example of a carrier load port interface and environmental matching system is described in U.S. application Serial No. 11/210,918, filed 8/25/05 and previously incorporated by reference herein. Referring now to Fig. 38A there is shown a flow chart illustrating a process for matching the environment in a carrier to a load port that may have a different controlled environment.
  • the carrier and load port may both hold the same gas species ⁇ e.g. same species of inert gas) .
  • the carrier may be vented (via the interface) for example to the load port chamber (or other suitable plenum) until equilibrium is achieved, and if the carrier is at a lower pressure, then gas from the load port or other suitable supply may be inserted (via the interface) into the carrier until equilibrium is achieved between carrier and load port/tool environment.
  • the load port may have an atmospheric environment (e.g.
  • Fig. 38C illustrates the process in an exemplary embodiment where the load port has a vacuum environment.
  • the initial environment of the carrier may be evacuated and gas species such as in the load port may be input (e.g. from the load port) into the carrier before the door is opened.
  • the load port has an indexer 2306 that may raise and. lower the port door 2310 (to open and close the port) and also may raise and lower a wafer cassette from the carrier to the desired height in the load port chamber for wafer processing.
  • the indexer 2306 may be similar to the exemplary embodiments previously described and shown in Figs. 8, 9, 10-lOA, 14 and 18, with the indexing mechanism isolated from the volume/environment occupied by the wafers.
  • suitable examples of indexing mechanisms may have the following arrangements :
  • Lead Screw with Bellows employs a lead screw driven by an electric motor which is attached the port plate of the load port. The portion of the lead screw which enters the clean area is enclosed by a bellows.
  • the bellows can be of any material such as metal, plastic or fabric as long as it is generally clean during operation and can remain flexible without fatigue.
  • the bellows provides a barrier between the contaminant producing mechanism and the clean area where wafers are located. The flexible nature of the bellows provides this isolation throughout the entire stroke of the actuator.
  • the feedback of the mechanism can be by rotary encoder on the motor, or lead screw; or by linear encoder along the path of motion. (see Fig. 14)
  • Pneumatic cylinder with Bellows similar to earlier embodiment (1) except the drive mechanism is by pneumatic cylinder. May be used for example for movement between two positions; e.g. pod closed and lowered. (see Fig. 9)
  • Lead Screw of Pneumatic Cylinder remote drive similar to prior embodiment except the drive mechanism is remotely located outside the wafer volume (see Fig. 10) .
  • the port plate of the load port is attached to the drive with supporting structure.
  • the drive may be exposed to the clean areas but contamination is controlled through the airflow path or a labyrinth seal .
  • Use of the airflow entails placing the drive downstream of the wafers to that contaminants which might be generated are below the wafer and swept down and away from the wafer.
  • the addition of a labyrinth or other "no rubbing" seal can further limit the introduction of particles providing a solid barrier between the drive and the clean area.
  • the drive can be remotely located outside the process tool environment altogether.
  • Drive mechanism with magnetically coupled port plate employs a magnetic coupling between the port plate and the drive mechanism (see Fig. 8 for example but inverted) .
  • the magnetic coupling may operate through a non-ferrous wall across an air gap permitting the drive to be isolated outside the clean area.
  • the drive method can be of any type previously described such as lead screw, pneumatic cylinder or linear motor. The later could reside inside the clean area because of its inherent ability to operate cleanly in combination with an air bearing guide to constrain the direction of motion.
  • FIG. 39 there is shown a cross sectional view of a load port 2300A and carrier 2000A interfaced thereto, and a. wafer air flow management system in accordance with another exemplary embodiment .
  • the carrier 2000A and load port 2300A may be respectively similar to carriers and load ports of previously described exemplary embodiments .
  • the port door is opened and the cassette is indexed into the load port chamber and positioned for processing for example purposes.
  • the carrier is opened and the wafers are positioned for processing the air flow around the wafers may contribute to maintaining the cleanliness of the wafers .
  • the wafers may remain in the lowered position for a lengthy time increasing the risk of particles from within the environment depositing on the wafer surface.
  • any contaminants generated by the load port mechanisms could deposit on the wafer surface without proper airflow.
  • at least a portion of the airflow inside the process environment may be "captured” and redirected to flow across the wafers.
  • the air is then exhausted back to the process environment downstream of the wafer transfer plane (WTP) .
  • WTP wafer transfer plane
  • the airflow pattern passes horizontally in a parallel direction to the wafer top surface and exits out the back of the wafer cassette.
  • the exhaust routing pulls the air vertically after it exits the cassette and directs it out an exhaust port directed to the floor.
  • This approach is capable of maintaining a clean constant flow or air across the wafer surface while operating in a open loop or a sealed environment.
  • the load port operates in an environment with a process dependent gas species like nitrogen or argon, redirecting existing airflow and depositing back into the main stream as shown supports a closed loop environment used for a controlled gas species .
  • a supply air foil is mounted for example, above the zone where wafers are accessed, to the vertical surface of the process mini-environment. This location is a reserved space for FOUP door openers on the existing SEMI E63 standards.
  • the air foil is designed to capture a volume of the existing laminar air flow from the mini-environment and bend the air stream from a vertical to horizontal direction.
  • a diffuser element positioned at the back of the wafer cassette when it is lowered interior of the external skin of the loadport is a diffuser element.
  • the diffuser for example may be constructed of a solid panel which is partially open depending on the flow characteristics.
  • the diffuser is configured to manage the uniformity of the horizontal airflow as it passes over the wafers while providing a pressure differential prior to the air entering the exhaust side of the duct.
  • the exhaust side of the circuit be force inducted to ensure a steady and uniform stream of air across the wafers.
  • an axial fan mounted internal to the exhaust side duct with the output directed to the process tool mini-environment port.
  • the unit could be used without a fan and the configuration of the supply air foil, the diffuser and exhaust ducting may be arranged to ensure stable uniform air flow across the wafers.
  • FIG. 40A-40D there is shown schematic cross sectional views of wafer restraints of an exemplary carrier in accordance with respective exemplary embodiments .
  • the exemplary embodiment shown in Fig. 4OA illustrates a radial clamp wafer restraint.
  • Clamping maybe provided by translating side walls of cassette.
  • Mechanism resides within cassette and is actuated either by loadport or the pod shell to cassette interface (Z axis) .
  • Mechanism resides with pod shell and is actuated either by loadport, pod shell to port door (Z axis of OHT) or pod to cassette (Z axis of loadport) .
  • Use of advanced materials for actuation i.e.
  • Fig. 4OB illustrates a wafer restraint employing clamping force directed substantially normal to the wafer top surface.
  • a vertically translating finger integral to cassette. Mechanism resides within cassette. Mechanism is actuated either by loadport, pod to port door (Z axis of OHT) or pod to cassette (Z axis of loadport) .
  • an off-axis translating finger integral to pod shell or cassette. Mechanism can reside on either the cassette or pod shell. Finger translates at an off-horizontal angle to wafer (see Fig. 40C) .
  • Mechanism is actuated either by loadport, pod shell to port door (Z axis of OHT) or pod shell to cassette (Z axis of loadport) .
  • Mechanism is actuated either by load port, pod shell to port door (Z axis of OHT) or pod shell to cassette (Z axis of load port) .
  • the wafer restraint in the carrier may have any other suitable configuration.
  • the wafer may be wedged between wafer edge contact supported, such as support fingers on the cassette that form a linear edge contact with the wafer.
  • FIG. 41-41B there is shown respectively a schematic perspective view, an end elevation . view, and top plan view of a representative processing arrangement with processing tools PT and a transport system in accordance with another exemplary embodiment.
  • the processing tools PT are illustrated in an exemplary array such as tools arrayed in a processing bay of a FAB.
  • the transport system 3000 in the exemplary embodiment may service the tools of the processing bay for example, the transport system 3000 may be an intra-bay portion of a FAB wide transport system.
  • the transport system 3000 in the exemplary embodiment may be generally similar to a section of the
  • the transport system 3000 may communicate with other (e.g. interbay) portions 3102 of a FAB AMHS system via suitable transport interfaces seen in Fig. 41.
  • the arrangement of the processing tools PT in the tool array shown is merely exemplary, with multiple tool rows (in the example two rows Rl, R2 are shown, but alternate embodiments may have more or fewer tool rows) .
  • the tool rows may be arranged substantially parallel (geometrically, but may be angled relative to each other) and may define substantially parallel process directions. Process direction along different tool rows may be the same or opposite to each other.
  • process direction along a given row may reverse so that the process direction along one portion or zone of the tool row may be in one way and the process direction of another portion or zone of the same tool row may be the opposite way.
  • the process tools in row Rl, R2 may be distributed to define different process zones ZA-ZC (see for example Fig. 41) .
  • Each process zone ZA-ZC may include one or more process tools in rows Rl, R2.
  • a process zone may have tools located in but a single row.
  • the process tools in a given zone may be process related, such as having complementing processes and/or having similar tool throughput rates.
  • tool zone(s) ZA may have tools with a high throughput, (e.g.
  • tools with medium throughput e.g. roughly 75 WPH to less than 500 WPH
  • tools with a low throughput e.g. roughly 15 WPH to 100 WPH
  • the tools defining any given zone may not be identical, and one or more tools within a given zone may have a throughput or process that may be different than the other tools in the given zone, but a relationship may nevertheless exist between the tools in the zone so that it is organizationally appropriate, at least with respect to a transporting aspect, to have the tools organized within the same zone.
  • the tool zones illustrated in Fig. 41 are merely exemplary, and the tool zones may have any other desired arrangement in alternate embodiments.
  • the transport system 3000 is capable of transporting carriers to/from tools.
  • the transport system 3000 may be generally similar to the transport system in the previously described exemplary embodiment and shown in Figs. 29-35.
  • the transport system 3000 may have an overhead configuration (e.g. transport system is located above/over the tools) .
  • the transport system may have any other suitable configuration, such as having an underneath configuration (e.g. transport system is located underneath the tools for example similar to the transport system illustrated in Fig. 30-33) .
  • the transport system may generally have a number of transportation sub-systems or sections.
  • the transport system 3000 may generally have a bulk material/rapid transport section 3100, such as a conveyor section (e.g. similar to the solid-state conveyor previously described and shown in Figs. 20-25B or any other suitable conveyor).
  • the conveyor section may extend through all tool zones, and may transport carriers, for example, at a substantially constant transport rate without stopping/slowing when carriers are placed/removed from the conveyor section.
  • the transport system 3000 in the exemplary embodiment may also include storage stations/locations 3000S (see also Fig. 41B) , shuttle system section 3200 with shuttles 3202 capable of accessing one or more storage stations/location (see also Fig. 42) , and an interfacing transport system section 3300.
  • the interfacing transport system section may be capable of accessing carriers transported by the bulk transport conveyor section 3100, or at the storage stations, and transferring the carrier to loading sections of the processing tools.
  • the storage stations, shuttle system section 3200 and interfacing transport system section may be formed in selectably installable portions capable of selectable installation along the transport system.
  • the transport system sections 3100, 3300, 3200 may be modular for ease of installation of the portions of the system sections selected for installation in the transport system.
  • the portions of the transport system shuttle system, interface system, and storage system sections selected for installation along the transport system may correspond to the zones ZA-ZC of the processing tool.
  • the transport system 3000 may be configurable to correspond to the processing tools or processing tool zones.
  • the transport system may be configurable in zones TA-TC, generally commensurate with and corresponding to the processing tool zones ZA-ZC.
  • the transport system may have different zones with different system sections configurations.
  • the storage system and shuttle system sections may be configurable in each zone TA-TC of the transport system.
  • the interface transport system section may be configurable in each zone.
  • the interface transport system in the exemplary embodiment may have selectably installable interface transporter (in the example shown in Figs.
  • the interface transport system section may have a selectably variable number of transporter travel planes (e.g. some zones TC may have a single interface transporter travel plane, see Fig. 48, and other zones TA, TB may have more than one transporter travel plane ITCl, ITC2, (see Figs. 41A, 46).
  • transporters may be capable of traversing past one another. Though two planes are shown, more or fewer transporter planes may be provided. Although in the exemplary embodiment the transport system is arranged with the travel planes substantially horizontally, in alternate embodiments the transport system may have any other desired arrangement including having vertical travel planes for interface transporter bypass.
  • the Overhead Gantry System can be configured for low, medium, or high throughput. Changing factor or process capability can be met through field reconfigurable modular assemblies . These modular assemblies can be broken for example into three categories; low throughput, medium throughput, and high throughput. Arrangement of the various modules may be dependent upon many factors such as desired move rate, storage capacity, and distribution of the desired throughput in a bay.
  • Low Throughput By way of example, low throughput tools or tool zones can be sufficiently accommodated with a single gantry 3310.
  • This configuration may provide all the desired moves without the use of a "feeder" robot 3320 or a shuttling system 3200.
  • the gantry may pick carriers from the intrabay conveyor and transfer to a storage location in addition to transferring carriers from storage to the tool.
  • the carrier In order for carriers to be moved to an adjacent gantry zone, the carrier may be placed on the intrabay conveyor or placed in a storage nest for retrieval by the adjacent gantry. With this configuration one gantry to cross past another gantry until the intervening gantry has moved.
  • Medium Throughput For example, a medium throughput tool or tool zone can be satisfied with the addition of a "feeder" robot 3320 (e.g. an additional gantry/transporter level) .
  • a feeder robot 3320 e.g. an additional gantry/transporter level
  • This configuration is generally similar to the low throughput arrangement with the addition of a feeder robot 3320 and sorter/shuttle 33200.
  • the feeder robot and sorter/shuttle may be dedicated device for executing intrabay conveyor to storage moves only. For every feeder robot it may be desired to employ two gantry loader robots 3310, 3312 on either side (see Fig.
  • the feeder may be paired with one loader robot.
  • the sorter/shuttle's purpose is to accept the carrier from the feeder and queue it for storage. With this configuration the "loader" robot can focus on storage to tool moves and vice versa without the added burden of picking carriers from the intrabay conveyor.
  • the system can work with adjacent low, medium, or high throughput modules. In the event of a loader robot failure it is possible for an adjacent loader robot to move in and work the failed robot's zone, (see Figures 46 and 47) . If a feeder mechanism was to fail, the individual loader robots behave in the same manner as the low throughput configuration. In both failure cases the system remains active but at a reduced capacity.
  • High Throughput By way of example, for high throughput applications the gantry modules can be reconfigured to meet the demand of the specific tool or tool zone.
  • the high throughput arrangement may have a loader robot on each side of the bay, a similar feeder robot arrangement as in the medium throughput zone, and a similar sorter/shuttle for queuing the carriers to storage. (see figure 45) .
  • the loader robot is responsible for the tool located on one side of the bay, which allows for shorter moves. Carriers enter and exit the high throughput zone via the intrabay conveyor system.
  • the high throughput configuration has fault tolerance to both a loader robot failing and/or the feeder robot failing.
  • a loader robot may work both sides of the bay after the failed robot is moved out of the zone. If the feeder fails the loader robots become responsible for picking carriers from the intrabay conveyor system. If both a loader robot and a feeder robot fail, one loader robot becomes accountable for all desired moves.
  • Each configuration; low, medium, and high can operate as a single entity or adjacent to any of the three arrangements depending on the desired move rate.
  • the system does not have any single point failures that completely incapacitate the flow of carriers through the system.
  • the system can exploit multiple available move paths for a carrier.
  • the host controller employs a standard set of moves with successive levels of priority moves for a particular carrier under normal operating conditions .
  • a host's control logic can initiate schemes to reroute and divert carrier flow away ,from problem areas.
  • Figure 50 demonstrates the many methods to move a carrier from point A to B in accordance with the exemplary embodiment.
  • the "feeder" robot may retrieve carriers from the intrabay conveyor system and place them in the appropriate storage location. If desired the feeder robot allows the tool loading robot to focus solely on storage to tool moves and increases the systems total move capacity.
  • the feeder utilizes quick short moves allowing the intrabay conveyors to move with limited or no interruption (e.g. no conveyor interruption may exist when accessing carriers from access lanes similar to Fig. 20) .
  • the feeder mechanism relieves the workload of a gantry system.
  • Anticipated drive mechanisms to support the various motions include linear motors, ball screws, pneumatic drives, belt drives, friction drives, and magnetic propulsion. The following embodiments can be implemented based on the previously described premise:
  • the feeder robot is similar to the gantry loading robot except it is fixed in the x direction (length of the bay) and has degrees of freedom in the y (transverse to bay) and Z (vertical) directions.
  • the feeder mechanism is located on a plane below the tool loading robot to allow the loader robot to pass over without a payload.
  • the area above the load port zones is free to allow the loader robot to move across the feeder with a payload.
  • the feeder system is vertically located such that when the vehicle is in the raised position it can pass over the intrabay conveyor and have enough space to move over and grasp a carrier.
  • the feeder accesses carriers from above, utilizing short vertical strokes to pick and place carriers from the intrabay conveyor system to the storage flange desired.
  • the storage lanes exist coplanar to the intrabay conveyors .
  • the storage lanes possess a bi-directional sorter/shuttle mechanism used to shuttle a carrier to the next location along the storage row.
  • the shuttle drive mechanism is designed for example such that it can move a carrier at least one pitch distance along the length of the bay.
  • a pitch distance can be defined as the distance that allows the gantry tool loading robot to travel adjacent to the feeder robot and pick the carrier without interference.
  • the sorter/shuttle is also used to transport carriers between adjacent loader robot zones and storage lanes when desired. For example, a carrier move sequence is as follows:
  • Intrabay conveyor momentarily stops at feeder robot's fixed X position along the bay length.
  • Feeder robot travels from previous Y position to location directly above carrier on intrabay conveyor.
  • Feeder robot travels in Y direction (transverse to bay) to specific shuttle lane.
  • Feeder robot places carrier onto shuttle and proceeds to next move.
  • Shuttle/sorter mechanism drives carrier in X direction.
  • Gantry tool loading robot moves to storage location, then picks and places carrier to the appropriate tool .
  • Examples of some of the advances of the system in accordance with the exemplary embodiment are increased wafer throughput over conventional systems, multiple move paths to complete carrier moves, and increased fault tolerance.
  • the feeder robot is implemented as a linear stage that resides on a plane just below the shuttle and intrabay conveyor system.
  • the stage has the same degrees of freedom as embodiment 1 and grips the carrier from below rather than above.
  • This architecture has the benefit of allowing the conveyor lanes to be positioned anywhere between the equipment boundary.
  • the intrabay conveyors could exist in the center rather than the outside as in embodiment 1.
  • Another advantage with this arrangement is the loader robot can now pass over the feeder mechanism with payload in any Y position in the bay whereas with embodiment 1 the loader is limited to performing this move only when it is located inside the load port zone.
  • the overhead or mechanism from below can move in the X (length of bay) , Y (transverse to bay) , and Z (vertical) directions.
  • a shuttle/sorter may not be used because the 3 axis feeder can move to the specific storage lane and slot as necessary.
  • a carrier is removed from the intrabay conveyor, positioned to the appropriate storage lane then translated perpendicularly to the initial queuing the carrier in storage.
  • increased storage capacity may be generated by providing vertical storage columns that allow for carrier storage in a volume consistent with the carrier geometry that extends from the FAB floor to the highest reachable point by the OHT system can be arranged throughout the length of the bay.
  • cylindrical carrier nests can be placed as desired to allow for higher storage density in the FAB.
  • the cylindrical storage nests can hold carriers one on top of another and provide a mechanism for raising or lowering carriers to a specified height.
  • the mechanism for the vertical motion can be pneumatic, mechanical, or magnetic.
  • Fig. 51 there is shown a schematic plan view of a transport system 4000 in accordance with still another exemplary embodiment.
  • the transport system in the exemplary embodiment illustrated in Fig. 51 is a representative section, such as for example an interbay portion of a FAB-wide transport system, and in alternate embodiments, the transport system may have any desired size and configuration.
  • the transport system 4000 in the exemplary embodiment shown in Fig. 51 may be generally similar to the transport system 3000 described before and illustrated in Figs. 41-50. Similar features are similarly numbered. Similar to transport system 3000, the transport system 4000 in the exemplary embodiment shown in Fig. 51 may have a bulk or rapid mass transport section 4100 (e.g. conveyor) and an interface section 4200.
  • a bulk or rapid mass transport section 4100 e.g. conveyor
  • the interface section 4200 shown in this embodiment is merely exemplary, and in alternate embodiments may have any desired configuration with any desired number of subsections (e.g. storage sections, shuttling sections such as similar to those previously described) .
  • the interface section 4200 may have a number of feeder robot (s) capable of interfacing carriers between the bulk transport system section 4100 and the process tools.
  • the bulk transport system section 4100 may generally be similar to the transport system 500 described before and a portion of which is shown in Fig. 20.
  • the bulk transport system section 4100 may comprise a track with a solid state conveyor system.
  • the track may be similar to the conveyor tracks described in U.S. Patent Application Serial No.: 10/697,528 and Serial No.
  • the transport system 4100 may be an asynchronous transport system (similar to transport system 500) in which transport of carriers by the transport system is substantially decoupled from the actions of other carriers being transported.
  • one or more carriers may be capable of independent actions during transport (e.g. accel/decel, stopping, load/unload) without affecting the transport rate of other adjoining or proximate carriers in the carrier transport stream of the transport system.
  • the bulk transport system section referred to from hereon as bulk transport 4100, generally comprise a main transport track(s) 4100M.
  • the bulk transport 4100 may also have a number of siding track(s) 4100S.
  • the main transport track (s) 4100M shown in Fig. 51 as a loop for example purposes, and which may have any other desired shape in alternate embodiments, may define a main transport path (or stream) for carriers being transported by the bulk transport.
  • the description of the exemplary embodiment refers particularly to carriers, the features described herein are equally applicable to alternate embodiments where the (substrate) carrier may be seated on a payload platen or other motive device that is transported by the bulk transport.
  • the main transport path in the exemplary embodiment may have a continuous, and substantially constant speed.
  • carriers transported on main transport track (s) 410OM may be capable of a sustained, high rate of travel throughout the transport on the main path without impediment from carriers that stopped on the transport system.
  • the siding or branching track (s) 4100S in effect enable decoupling of the transport rate deterministic operations of carriers on the bulk transport from the main transport path. As noted before, such rate deterministic operation may be performed from the siding track without impairment to the main transport path.
  • the siding track 4100S may define for example a carrier buffer, loading/unloading station or path switching device. In the exemplary embodiment, one siding track is shown for example and in alternate embodiments, there may be any desired number of siding tracks.
  • the siding track may have any other desired configuration.
  • the siding track may shunt between opposing sides of the main track loop (within a given bay) or may shunt between main tracks of different interbay (e.g. inter-inter) transport sections, or inter-intra (or vice versa) transport sections such as shown for example in Figs. 29A, 29B.
  • the siding may have a different orientation than the main track and may cross over or under the main track.
  • the intersection between main and siding tracks may be arranged as desired such as a substantially orthogonal intersection or switch.
  • the main and siding track(s) 4100M, 4100S may comprise modular track segments A, B, C, D, L that are modularIy connected to assemble the tracks of the bulk transport.
  • the carriers may be driven on the tracks 4100S, 4100M of the bulk transport by for example linear motors. Similar to track 500 described before, the forcer of the linear motor may be located in/on the track(s) 4100M, 4100S and the reaction portion of the linear motor may be on the carrier.
  • the carrier (s) may be movably supported on the track by suitable devices such as contactless or lubricious bearings (e.g. air/gas bearings) maglev systems, or contact bearings (e.g.
  • the carrier (s) may have the motive supports integrated therein such as wheels , rollers, gas/air bearings.
  • the motive supports supporting carrier (s) on the main and siding tracks may have any desired arrangement on the track to stably support each carrier over the track, and may be distributed along the main and siding tracks to allow the carriers to move freely along the track.
  • the linear motor may be for example a linear induction motor (LIM) , a linear brushless DC motor (etc.), though in alternate embodiments any desired linear motor or any other type of motor/drive may be used to urge the carrier (s) along the main and siding tracks of the bulk transport.
  • the forcer (or phase windings) 4120, 4120M, 4120S of the LIM are located in the track modules A, B, C, D, L forming the main and siding tracks of the transport, and the carrier (s) has the reaction rate/members of the LIM as will be described in further detail below.
  • the motor coils may be mounted to the carrier or vehicle platen and the magnetic reaction elements may be mounted to the track.
  • the modular segments A, B, C, D, L of the main 4100M and siding 4100S tracks in the exemplary embodiment shown are representative and in alternate embodiments may have any desired configuration.
  • the track segments A, B, C, D, L are generally similar except as otherwise noted.
  • the track segments (modules) may generally include single track segments (e.g. A, C, D, L) and junction (track switching) segments.
  • any other desired modular track sections may be used.
  • a given track module may include multiple tracks (each forming a different carrier transport path) generally extending alongside each other in what may be referred to as a non-junction multi track module.
  • the single track segments may include substantially straight segments A, D, L and curved segments C, though in alternate embodiments, the single track segments may have any other desired shape.
  • the track sections are depicted as being at a substantially common elevation for description purposes.
  • the main and siding tracks may include sections at different elevations .
  • a siding may be located at a different elevation (e.g. lower or higher) than the main track and/or other sidings.
  • the main track and/or siding track may have track sections at different elevations along the track, such as higher and lower track portions. Suitable ramps (not shown) may join track sections at different elevations allowing the carrier (s) traveling the track to transition between. As may be realized from Fig.
  • the junction segments B, 4102, 4102' may be located where the siding or branch tracks 4100S merge with the main track 4100M or where some junction may be desired.
  • two junction track segments 4102, 4102' are shown for example purposes.
  • the configuration of the junction segments 4102, 4102' shown in Fig. 51 is merely exemplary, with a single branching track merging/diverging on one side (e.g. left side relative to the direction indicated by axis X in Fig. 51) of the main track 4100M.
  • the junction segment may branch to the right of the main track.
  • junction segments may have any other desired configuration, such as for example multiple branching in one segment with branches on opposite sides of the main track that may be substantially directly opposite from each other or staggered, or multiple branching on one (e.g. left and/or right) side of the main track.
  • the single track segments A, C, D, L though having different shapes (e.g. straight, curved, etc.) may be otherwise generally similar.
  • Each track segment A, C, D, L may include corresponding sections in the motor forcer 4120. As may be realized, and also as shown in Fig.
  • the motor forcer sections when the modular track segments are assembled the motor forcer sections (of the various track sections) when integrated operably (using a suitable controller) may define a substantially continuous motor forcer 4120M, 4120S for the main and siding track(s) to operate on the reaction plate (s) in the carrier (s) /platen (s) and drive the carriers/platens throughout the length of the main and siding tracks .
  • the tracks may include one or more segments without integral forcer sections.
  • the forcer 4120 or what may be otherwise referred to as the primary coil assembly of the linear motor may for example in the case of a LIM arrangement, generally comprise steel laminations and phase windings that may be formed integral to the track segments or may be housed in a forcer housing that is joined to the track segment.
  • the phase windings of the linear motor forcer integrated into the track segments may have any other suitable arrangement.
  • the forcer section in each segment A, C, D, L (see for example segment C in Fig. 52) may be itself segmented or may be continuous.
  • Curved track segments C may have forcer sections 412OC in which the phase windings may be arranged so that the coil assembly defines a curve commensurate with the curvature of the track, or may have a forcer section that is segmented, with the segments arranged to define a generally curved forcer section.
  • the forcer section of the track segments may have any other desired shape.
  • the forcer section of the track segments A, C, D, L may be arranged symmetrically relative to the track and the carrier (s) riding the track. In alternate embodiments, the forcer may be located asymmetric to the track and carrier (s) thereon.
  • Fig. 54 shows a schematic end view of a representative track segment A and representative carrier 5000 movably supported thereon.
  • the track(s) main(s) and siding(s) 4100M, 4100S, generally provide motive force/impetus, motive support and guidance to the carrier (s) 5000 to effect controlled movement of the carrier (s) along the track (s).
  • the linear motor driving the carrier (s) such as for example a LIM, bias the forcer 4120M, 4120S in the tracks operating on the reaction plate (s) /elements 5100 on the carrier (s).
  • reaction plate (s) 5100 there is shown a schematic bottom view of a representative carrier 5000 and the reaction plate (s) 5100 of the carrier.
  • the arrangement of the reaction plate (s) 5100 on the carrier shown in Fig. 53 is merely exemplary and in alternate embodiments, the reaction plate(s) on the carrier may have any other suitable arrangement. In alternate embodiments there may be more or fewer reaction plates.
  • the reaction plate (s) 5100 are shown on the bottom of the carrier, though in alternate embodiments the reaction plates may be located on any other desired sides or portions of the carrier.
  • the reaction plate (s) 5100 such as defining a LIM, may be made of metal such as steel or aluminum, though any other suitable material may be used.
  • reaction plates may be made of ferrous (magnetic) material as will be described below.
  • the reaction elements may include permanent magnets arrayed to operate with the motor phase windings, such as of a linear brushless DC motor.
  • the reaction plate (s) on the carrier may include one or more plate (s) 5102 corresponding to the forcer 4120M, 4120S in the track (s) 4100M, 4100S providing propulsion along the main or siding tracks. This is schematically illustrated in Fig. 54.
  • the reaction plate (s) 5102 is shown schematically in Fig. 53 as one plate, but may include any desired number of plates, for example having an arrangement as shown in Figs. 2OC, 2OD.
  • the forcer 4120 in the tracks ⁇ and hence the forcer sections 4120A, 4120C, see Figs. 52, 54, of the respective segments) and the corresponding reaction plate (s) 5102 may be arranged substantially symmetrically with respect to the carrier and track. In alternate embodiments, the motor forcer may be asymmetric. [000157] In the exemplary embodiment shown in
  • the carrier (s) 5000 is movably supported on the track by suitable air bearings 4200.
  • the distribution of the gas/air/fluid bearings shown in Fig. 54 is merely exemplary, and in alternate embodiments the exhaust ports may be arranged to provide any other desired gas pressure distribution stably supporting the carrier from the track. In alternate embodiments, the gas ports may be in the carrier exhausting gas to lift the carrier from the track.
  • the motive supports between carrier and track may be of any other desired type and may be dependent from either the track segments or the carrier (s) .
  • the gas ports for air bearings 4200 and/or the gas impingement areas on the carrier may be configured to generate a resultant directional force (s) that effect horizontal guidance of the carrier relative to the track.
  • the gas ports may be communicably connected to a suitable source of gas (not shown) .
  • the track sections, in the exemplary embodiment may have gas conduits for feeding gas from the gas supply to the gas ports of the fluidic bearings.
  • Suitable valving and controls may be included for example to operate gas ports in ' the proximity of where carriers are present on the track.
  • Control may be active (e.g. sensor identifies presence of carrier causing switch on/off of gas ports operated for track sections where carrier activity is known) .
  • the tracks 4100M, 4100S may include control and guide system(s) 4130 to guide the movement of the carriers as they are propelled down the tracks .
  • Ill Guide system 4130 may be a non-contact system extending along the main and siding tracks 4100M, 4100S.
  • each of the track segments A, C, D, L may include corresponding sections of the guide system 4130A, 4130C, (see Figs. 52, 54) that, when the segments are joined, may be combined to form the substantially continuous guide system(s) of the tracks.
  • the guide system may be independently mountable to the track.
  • the guide system may be of any suitable type, and may be for example, integral to the support system of the tracks (e.g.
  • the guide system 4130 in track 4100M, 4100S may generally comprise a guide magnet track 413OM, 413OS that extends substantially parallel to the linear motor forcer 4120 in the track.
  • the guide magnet track may comprise for example permanent magnets serially arrayed to form the magnet tracks .
  • Portions of the track such as OT switches/junctions may also include electromagnets that may be cycled on/off to allow switching.
  • the guidance may include providing the motor in the track section with windings capable of generating guidance forces on the carriers.
  • Such guidance windings may be integrated into the linear forcer, or may be separate and independent from the forcer providing propulsion along .the track.
  • the guide forcer in the track may interact with suitable guide plates/elements 5104 (such as magnetic material (e.g. ferrus) or permanent magnets in the carrier to maintain the carrier (s) in a desired horizontal position relative to the track 4100M, 4100S.
  • the locks for generating guidance forces on the carrier may be mounted on the carrier, and operate with stator elements in the track to effect carrier guidance.
  • the track segment modules A, C, D, L may each have corresponding sections 1430A, 143OL of the guide track as shown in Fig. 52 and 54.
  • the guide track section 1430A, 143OL of track sections A, C, D, L may comprise two guide tracks 4132, 4134 (for example see Fig. 54) located along but on opposite sides of the forcer 4120A.
  • the position of the guide tracks shown is exemplary. In alternate embodiments, the more or fewer guide tracks may be provided in any desired location.
  • the guide plate (s) /elements of the carrier, that interact with the guide tracks may be off axis (relative to axis X) linear motor reaction plates 5104R, 5106R, 5104L, 5106L (see Fig. 53) for other sections of the linear motor as will be described below, or may be other suitable ferrous plates/elements independent of the linear motor reaction plates.
  • the carrier may guide magnet elements, and the tracks may have ferrous/magnetic material tracks positioned to interact with the magnets on the carrier to define a track guide system.
  • the guide system may also include positioning/position sensing system/devices, such as Hall effect sensors, LVDT's etc.
  • positioning system/devices may be similar to that described in U.S. Application 11/211,236 previously incorporated by reference.
  • positioning feedback along the main and siding tracks may also be provided by suitable Hall effect sensors of the LIM.
  • junction segment C there is shown a schematic plan view of track segment C, described above, and representative junction segment B.
  • Other junction segments of the bulk transport 4100 are generally similar to junction segment B.
  • the junction segment may have forcer sections for both main and siding tracks 4120M, 4120S.
  • the segment B may also have a switching linear motor forcer section 4125.
  • an independent linear motor independent from the linear motors of the main track and the siding track, may be located at junctions to effect carrier switching between main and siding tracks as will be described below.
  • the switching linear motor may be a LIM, though any other suitable linear motor such as a brushless DC motor may be used.
  • any other suitable electrical or mechanical switching system may be used.
  • the forcer 4125 (for the switch motor) may be located offset from the forcers 4120M, 4120S of the main and siding tracks.
  • the forcer section for the main track may be further sub-sectioned 4122, 4124, 4126 as shown.
  • the subsections 4122, 4124, 4126 of the main track forcer may be physically separated as shown, or may be virtually separated via the controller, from each other to allow section 4124 across from the switching LIM forcer 4125, to be deenergizable independent of the other adjoining main track LIM forcer sections 4122,
  • the junction segments may have any other desired configuration.
  • the switching forcer 4125 may be offset from both main and siding track forcer in the direction (e.g. left from axis X) that the siding track merges/diverges .
  • the switching forcer 4125 in the exemplary embodiment, may have one end 4125M that may be aligned generally parallel to the direction of the main track (indicated by axis X) , and another end 4125S that may be aligned generally parallel to the local direction of the siding track (indicated by axis b in Fig. 52) .
  • the local direction of the siding (axis b) at the exit/entry from the main track is oriented at an acute angle relative to the travel direction of the main track (axis X) .
  • the carriers may take advantage of .momentum along axis X to effect switching and may not cancel momentum along axis X in its entirety (e.g. may not stop on the main track) when moving to the siding.
  • axis X may be oriented at an acute angle relative to the travel direction of the main track
  • the junction segment may be provided with switching guide 4130S' (tracks 4132S', 4134S") in place of the switching forcer (4125) , effecting switching by co-opting momentum of the carrier along the travel axis
  • the angle between entry/exit to siding and direction of main track may be provided as desired.
  • the configuration of the switching linear motor may take advantage of momentum in the X direction
  • the end 4125M of the switching LIM forcer 4125 may be located to operate on one or more of the reaction plate (s) 5104, 5106 of the carrier (see also Fig. 53) .
  • Reaction plates 5104, 5106 may be offset laterally (along axis Y) .
  • reaction plates 5106L, 5106R may also be offset longitudinally (along axis X) from a desired reference point (e.g. center) of the carrier.
  • reaction plates may be located on diagonal axes located at different angles ⁇ , ⁇ relative to lateral axis Y.
  • the carrier may have any other desired reaction plate arrangement with more or fewer reaction plates .
  • one or more of the reaction plate (s) 5104L, 5106L may be used with switching forcer 4125 to switch the carrier from the main track 4100M to the siding 4100S (and vice versa at the merging junction at the other end of siding 4100S, segment 4102', see Fig. 51).
  • the guide magnet section 4130 is arranged to effect switching between main and siding tracks.
  • guide magnet track 4134 (on the side proximate the siding entry) may be interrupted, so that at least a portion of switching guide track 4134s ' (corresponding to that side) may intermerge with track 4134M.
  • the interface of the guide tracks shown in Fig. 52B is merely exemplary, and in alternate embodiments the track interface/interchange may be arranged in any- other suitable manner.
  • the opposite guide magnet track 4132M (on the opposite side from the siding entry) may be intermerged with corresponding switching guide 4132S' as shown.
  • each of the guide tracks 4130M, 4130S' may include a section 4132J (see also Fig. 52) , comprising an actuable magnetic field that may be turned on/off.
  • the section 4132J of the guide track may be configured with electromagnet coils, for example similar to a magnetic chuck having a permanent magnet (s) and a coil arranged around the windings so that passing electric flow through the coil may in effect turn the magnetic field of the guide magnet section on/off, hence releasing the guidance force between the carrier and guide track.
  • the actuable magnetic section may have any other desired arrangement.
  • the guide magnet section 4132J of the desired guide tracks 4132M, 4132S' , 4134S, 4134S' is turned “on” and “off” to effect switching for example, when the carrier is to continue on the main track, the main guide tracks 4132M, 4134M are turned “on” and the switching guides are turned “off” when the carrier is being switched to the siding the switching guides 4132S' , 4134S' are “on” and the main guides are “off” .
  • Turning the guide magnet section 4132M, 4134M “off” allows the carrier to move freely laterally (off the main track) as it may no longer be held to the main track.
  • the junction segment guide system may include suitable windings to generate a canceling magnetic field to the carrier magnets.
  • the junction segment may further include one or more actuable/operable guide magnets (not shown) generally aligned with the entry (axis b) of the siding, that when turned “on” guide the carrier (moved by forcer 4125) onto the siding track 4100S. These guide magnet sections may be turned “off” when the carrier moves over the junction and continues on the main track.
  • the forcer section 4124 may be deactivated, the guide magnet section 4132M, 4134M is turned “off", and the switch in guide 4132S', 4134S' may be "on”.
  • the carrier momentum may move along the track with the switching guides in effect deflecting the trajectory of the carrier in the direction of arrow b (see Fig. 52) onto the siding.
  • the forcer 4125 (if provided) may further urge the carrier from the main track towards the entry to the siding, though in the exemplary embodiment carrier momentum may be sufficient to move the carrier toward the siding until siding forcer 4120S operates on the corresponding reaction plate (s) 5102 to continue motion along the siding track 4100S as desired.
  • the guide magnet track 4130S acquire the magnetic elements of the carrier to guide the carrier along the siding track 4100S.
  • carrier switching being accomplished in a generally passive manner, position feedback may not be employed for switching.
  • position feedback may not be employed for switching.
  • the guidance/positioning system that for example may be disposed to positionally acquire the carrier when on the main track prior to hand off to the switching LIM forcer, continue position feedback as the carrier is switching via the switching LIM and allow for handoff to the siding track LIM.
  • the positioning devices may be of any suitable type, continuous or distributed devices (e.g. optical, magnetic, bar-code, fiducial strips, laser/beam ranging or radio ranging) positioned to allow position feed back during the switch.
  • FIG. 52A there is shown another plan view of a junction segment B' of the bulk transporter in accordance with another exemplary embodiment.
  • the junction segment B' in this exemplary embodiment is similar to segment B shown in Fig. 52 except as otherwise noted.
  • the guide magnet tracks are not shown for clarity.
  • the main track LIM forcer section 4120M' on segment B' may also have a subsection 4124' that may be independently deenergized from the adjoining forcers 4122', 4126'.
  • the siding LIM forcer 4120B' may extend sufficiently towards the main track to be able to operate (if desired) on a reaction plate 5106L' of the carrier when the carrier is on the main track.
  • Fig. 52A shows the reaction plates 5102', 5106L' of the carrier (in phantom) located to effect switching.
  • the reaction plates 5102' for the track LIM may be for example located over the main track forcer segment 4124' (and for example clear from adjoining "upstream" main track forcer 4122', and the reaction plates) 5106L' may be located to operate with the siding LIM forcer 4120B' . Accordingly, to switch main track segment 4124' may be deenergized and the siding forcer 4120B' may be energized directing the carrier onto the siding track. Switching from siding to main track may be accomplished in similar manner.
  • the linear motor for the main and siding tracks may be any suitable linear motor such as a DC brushless motor or other brushless iron core motor.
  • the permanent magnet reaction elements may be in the carrier, and in other alternate embodiments, the permanent magnets may be in the track segment (core motor in the carrier) .
  • phase windings may be located as desired either in the track (in a manner similar to that shown in Figs. 2OA, 20B), or the carrier to cancel the magnetic field between magnets and motor core eliminating the guidance provided by the interaction of magnets/iron core elements of the motor and allowing carrier switching from one track to another.
  • one or more track segments L may have an area I where the carrier may be lifted from the track, such as by the robot of the interface section 4200.
  • the guide magnets tracks 4130S in the lift area I may be provided with sections having an actuable magnetic field similar to section 4132J shown in Fig. 52.
  • phase windings may be provided to cancel the field between magnets either in the track or carrier and magnetic material whether linear motor iron core, or ferrous reaction plates in either the track or carrier in order to "release" the carrier from capture by the track, and facilitate ease of lifting the carrier from the track.
  • one or more carriers 5000 may have couplings 5200 for coupling one or more carriers together in a carrier train.
  • the couplings may be of any suitable type such as magnetic couplings that may be operably connected to a controller to couple or release.
  • the inter carrier couplings may be for example mechanical couplings.
  • the couplings 5200 are shown schematically in Fig. 53 and in alternate embodiments may be positioned as desired on the carrier.
  • the intercarrier couplings may be used to train two or more carriers together during transport by the bulk transport 4100. As may be realized, this allows one or more entrained carriers to be engines for the train, while other carriers in the train may be passive.
  • the entrained carriers become batched, during the entrainment, allowing movement of all carriers to be effected by controlling the movement of the "engine" carrier (s) in the train. This may significantly reduce the burden on the controller.
  • Positional information of a given carrier in the train may be registered in the controlled relative to a desired reference in the carrier train, . (e.g. a fiducial of the "engine” carrier) .
  • the controller may identify and locate the desired carrier without tracking individual carriers movements of each carrier when moving as a train, when desired to commence individual control of a given carrier in the train, the controller may look up the train location on the track, and position of the given carrier relative to the desired reference on the train to identify a rough location of the carrier on the track. Fine positioning may be effected with the track positioning system. In alternate embodiments, positioning when decoupling from the carrier train may be effected in any other desired manner.
  • any carrier in the train may be the engine carrier. Positioning of the engine in the carrier train may be established to support desired operating parameters. Moreover, the position of the engine may be switched by deactivation of an engine carrier and activation of another carrier in the train to become the engine .
  • Fig. 55 there is shown a schematic end elevation view of a transport system A4000 in accordance with still another exemplary embodiment.
  • the arrangement of the transport system in the exemplary embodiment shown in Fig. 55 is merely exemplary and in alternate embodiments the transport system may have any other suitable arrangement.
  • the transport system A4000 may be generally similar to transport system 4000, described before and illustrated in Fig. 51, (similar features are similarly numbered) .
  • Transport system A4000 may generally include a rapid bulk or mass transport section A4100 and an interface section 4200.
  • the rapid mass transport section A4100 may have one or more rapid mass transport pathways A4102 (two pathways are shown in the embodiment illustrated in Fig. 55 for example purposes) .
  • the mass transport pathways A4102 may be configured as to effect mass transport of carriers A5000 within the FAB, such as in a manner similar to that described previously.
  • the mass transport pathways A4102 of mass transport section A4100 may also be arranged to transport the carriers traveling the pathways at a substantially constant speed (at least for some portion of the pathways) , in the direction of travel of the pathway.
  • the pathways of the mass transport section may be connected to each other in a manner similar to that described previously.
  • the interface section A4200 in the exemplary embodiment shown in Fig. 55 may for example be generally similar to interface section 4200 described before and shown in Fig. 51.
  • the interface section A4200 is capable of interfacing carriers between mass transport and process tools .
  • the interface section A4200 may generally have shuttling section (s) A4202 and storage section(s) A4204.
  • the storage section (s) A4204 may be arranged with storage location(s) A4204A, for storing or buffering carriers, for a number of processing tools.
  • the storage locations A4204A may be arranged in any desired manner in order to efficiently buffer carriers for the processing tools.
  • the shuttling section (s) A4202 may have a number of feeder robot (s) A4202 capable of interfacing carriers between storage locations of the storage section A4204 and the load interface (s) (e.g. load ports) of the processing tools.
  • the transport system A4000 may have a transport handoff section A4300 capable of interfacing carriers A5000 being transported, for example at a substantially constant rate on the bulk transport section pathways A4100, and the interface section A4200.
  • the transport system A4000 may be an asynchronous transport system even for the portions of the transport systems pathways where carriers traveling the pathways are transported at a substantially constant rate.
  • the transport handoff section (s) 'A4300 in effect enable decoupling of the transport rate deterministic operations of carriers, as they are being transported by transport system A4000 from the transport paths A4102 where carriers travel at a substantially constant rate.
  • the pathways A4102 of the mass or bulk transport section may comprise any desired type of bulk conveyor system.
  • the pathways A4102 of the mass transport section A4100 are shown as belt or ribbon conveyor A4103 for example purposes only.
  • the belt conveyor A4103 has carrier support or carry surfaces A4604, on which carrier (s) A5000 are supported from (or on) the belt A4103 for transport.
  • the belt A4103, and hence its carrier carry surfaces, (defined by or depending from the belt) may move at a substantially constant transport rate along the transport direction of the pathway (indicated by arrow X. in Fig. 55A.
  • the conveyance system for conveying carriers along the pathways of the mass transport system section may be of any desired configuration.
  • the pathways may have a solid state conveyor system, as described before, or may have mechanically defined conveyance means such as rollers, fluidic bearings, etc.).
  • the pathways may be tracks for autonomous or semiautonomous vehicles .
  • the conveyance system of the pathways may be configured to be operable so that the carriers conveyed by the system are transported at a substantially constant rate, or may be operable so that the transport rate may be variable if desired.
  • the transport handoff section enables operation of the conveyance system of desired pathways (or portions thereof) to maintain substantially constant transport rate independent of transport rate deterministic operations of carriers transported by the conveyance system.
  • the mass transport section pathways A4102 are shown as being an overhead system, located overhead the processing tools. In alternate embodiments the mass transport section pathways may be located at any desired elevation relative to the tools and the loading interface LP of the tools.
  • the carriers A5000 in the exemplary embodiment shown in Figs. 55, 55A-55C are representative. Carriers A5000 may be similar to carriers 2000 described before and shown in Figs. 36A- 36B. In the exemplary embodiment, the carriers A5000 may generally have upper interface section A5002 (e.g. arranged to allow interface and engagement of the carrier generally from above or over the carrier) and lower interface section A5004 (e.g.
  • the carrier may be side opening, top opening or bottom opening as described previously.
  • the carrier may have any desired arrangement of interface/engagement surfaces (e.g. side engagement) for interfacing the carrier with the transport system and the loading interfaces of the processing tools .
  • the loading interfaces LP, of the processing tools, in the exemplary embodiment shown in Fig. 55 are representative.
  • the loading interfaces LP may be arranged to interface with the lower interface section A5004 of the carrier, though in alternate embodiments the tool loading interface may be configured to engage with complementing carrier engagement features on any- desired side of the carrier.
  • the tool loading interface maybe positioned as desired relative to the transport system.
  • the conveyor system of the mass transport section pathways A4102 may have carrier support A4104 arranged to engage the upper interface section A5002 of the carrier A5000.
  • the configuration of the carrier supports shown in Figs. 55, 55A is representative, and the carrier supports may have any suitable configuration complementing and operable with engagement features of the carrier upper interface A5002 to releasably capture and hold the carrier from the conveyor during transport.
  • the carrier A5000 may be carried by the ' conveyor of pathways A4102 suspended substantially under the pathway.
  • the carrier lower interface A5004 may be accessible (such as from under, or from the side of the carrier) during transport on pathways A4102.
  • the carrier supports on the conveyor of the pathway may have any desired configuration to engage and support the carrier during conveyance on any desired side or surface of the carrier (e.g. conveyor may engage or interface with the carrier bottom) .
  • the interface section A4200 of the transport system may be an overhead gantry system generally similar to interface systems 3200, 3300, 4200 described previously and shown in Figs. 41-46 and 51.
  • the interface system A4200 may have a selectably variable number of transporter travel planes ⁇ such as defined by gantries A4201) traversed by shuttle (s) and feeder robots A4202.
  • the interface system may have any other desired configuration.
  • the gantries A4201 and storage locations A4204 may be nested between the pathways A4102 of the mass transport section.
  • the feeder robots A4204 may be configured to engage the carriers A5000 from the carrier upper interface A5002, and support the carrier from above.
  • Shuttles (not shown) may support the carrier from above or below.
  • the robots and shuttles of the interface section may have any suitable arrangement.
  • handoff of carriers between the mass transport section A4100 and the interface section 4200 may be performed with the handoff section A4300 as will be described further below.
  • the handoff section A4300 generally has a carriage surface capable of accessing and capturing carriers transported along the mass transport pathways (such as at the substantially constant transport rate of the pathway) , decoupling the carrier from the pathway and positioning the carrier at a drop station from which the robots/shuttles of the interface section A4200 are capable of accessing the carrier.
  • the handoff section A4300 may have a number of carrier (s) A4302 (one is shown for example purposes) .
  • the carriage A4302 may be a vehicle or any other suitable conveyance mechanism or system, capable of positioning alignment with the carrier, as it is transported on the pathway at- the transport rate.
  • the carriage A4302 may be capable of travel in the transport direction of the pathway (indicated by arrow X) for a sufficient distance to allow carriage coupling to the carrier and decoupling of the carrier from the mass transport conveyance support A4104.
  • the carriage A4302 is schematically illustrated as a vehicle riding a track or path A4304.
  • the track A4304 may be located below the pathways A4102 of the mass transport section (see also Fig. 55) .
  • the track A4304 may be suspended by hangers from the overhead.
  • the track, and carriage A4302 thereon are also located below the interface section.
  • the handoff section carriage may have any other suitable configuration.
  • the arrangement of the handoff section allows the carriage to access carriers on the pathways in, for example, discrete portions of the pathways .
  • the handoff section may be distributed at appropriate sections of the pathways.
  • the carriage A4302 may have a carrier interface A4306 with which to engage and capture the carrier on the pathways.
  • the carrier interface A4306 of the carriage A4302 may have any suitable arrangement.
  • the carrier interface A4306 may have engagement features to engage for example the lower interface A5004 of the carrier (see Fig.
  • the carriage interface A4306 may have kinematic coupling features that complement kinematic coupling features of the carrier resulting in passive alignment at engagement and secure passive lock between carrier and carriage when engaged.
  • the carriage interface may have any other desired passive or active coupling or engagement system (e.g. clamps magnetic chuck(s) etc.) to capture the carrier.
  • the carriage A4302 may be supported on the track A4304 so that the carrier interface A4306 of the carriage A4302 may be sufficiently aligned with the carrier A5000 so that coupling may be effected.
  • the carriage track A4304 may be sufficient to allow carriage A4302 to accelerate to match travel rate of pathway A4102, align and capture a desired carrier A5000 conveyed by the pathway and disengage the carrier from the pathway supports A4204.
  • the carriage track A4304 may be sufficient to allow the carriage for example to decelerate to a desired speed, to allow handoff to the interface system A4200 at the drop off station DS.
  • the drop off station DS may be stationary, though its location may be selectably variable (such as along the hand off section track A4304) .
  • the carriage may be disposed on the track, such as on an endless loop track, moving at substantially matched travel rates as the pathways .
  • the carriage surface of hand off section A4300 may have movement in the Z direction in order to close with the carrier (s) on the pathway, and to load/unload the carriers from the pathway supports .
  • the carriage may be provided with a suitable Z drive (such as lead screw, pneumatic, electro-magnetic) capable of driving the carriage interface A4306 in the Z-direction.
  • the carriage interface A4306 may be raised to contact the carrier interface A5004 (with the carriage and carrier aligned) .
  • the carrier interface may be further raised, for example after coupling the carrier to effect release of the carrier A5000 from the pathway (by way of example the carriage travel rate relative to the pathway may be varied, such as advanced/retarded to facilitate carrier release from the pathway supports) .
  • the carrier released from the pathway may be lowered by the carriage A4302, so that the carrier clears the transport envelope of carriers conveyed by the pathway.
  • the loading of a carrier onto the pathway with the hand off section A4300 may be accomplished in a substantially similar but opposite manner.
  • Z direction movement of the carriage interface may be effected in any other desired manner, such as the supporting track may have a Z-drive or lift, or may have support surface for the carriage of variable height, such as up and down ramps that raise and lower the carriage to contact the carrier on the pathway.
  • movement along the axis to close the carrier and carriage may be effected by a suitable drive or other displacement means of the pathway or the carrier (e.g. the pathway supports may have a Z-axis drive) .
  • the axis of movement or closure axis to close carrier and carriage for coupling and decoupling the carrier to and from the pathway with the hand off section may be in any desired direction (relative to ground reference frame) .
  • the handoff section A4300 has drop station(s) DS positioned for example to be accessible by robots A4202 of the interface section A4200.
  • the drop stations DS may be offset from the transport envelope TE of the mass transport section pathways and carriers conveyed thereon, such as in the Y axis (though in alternate embodiments the offset may be along any desired axis) .
  • the offset of the drop station(s) DS (seen best in Figs. 55B-55C) , which may be generally referred to as a lateral offset from the longitudinal direction defined by the pathway, facilitates access of the interface section A4200 to the upper carrier interface A5002.
  • the upper interface A500N of the carrier may be free to be engaged by the interface section A4200 when the carrier is positioned at the drop station DS by the carriage A4302, because the carriage interfaces the carrier at another carrier interface A5002.
  • the carrier may be transferred directly between carriage A4302 and interface section robot A4202 without an intervening pick/place action.
  • the hand off system carriage may be arranged to place the carrier in a storage location, and the interface section may access the carrier from the storage location.
  • the handoff section carriage and interface section robot may interface the carrier at a common interface.
  • top access to the carrier enables the interface section to employ its feeder robot (s) A4202 to interface the carrier from the drop station DS.
  • the drop station of the handoff section may be offset from the transport envelope in any suitable direction to allow the interface section to access and interface the carrier at the drop station.
  • the carrier A5000 may be moved to and from the drop station DS by the carriage A4302.
  • the carriage may have a suitable Y-drive (the drive may be as desired to provide the carriage, or at least the portion interfacing/supporting the carrier freedom of movement in the offset direction) allowing the carriage to move the carrier to the drop station.
  • the carriage interface A4306 may be on a movable support capable of movement in the Y- direction.
  • the carriage may be capable of movement, such as a unit with the carrier, in the Y-direction to move the carrier to the drop station.
  • the track may be shaped, such as with bends (e.g. endless loop) away from the transport envelope, so that the carriage traveling along the track is guided to the drop station.
  • FIG. 56-56A there is shown respectively schematic plan and elevation views of a representative transport system A4000' in accordance with another exemplary embodiment.
  • the transport system A4000' in the exemplary embodiment illustrated in Figs. 56-56A is substantially similar to transport system A4000 described before (similar features being similarly numbered) .
  • the transport system A4000' generally has a mass transport section A4100', with a number of pathway(s) A4102', an interface section A4200' (illustrated for example purposes as a gantry) and a hand off section A4300' to hand off carriers A5000' between the mass transport and interface sections and allow carriers conveyed by the desired mass transport section pathways to maintain a substantially constant travel rate.
  • separation or offset between the drop station DS' of the hand off section A4300' and the transport envelope TE' of the pathways A4102' may be effected by changes in direction of the pathway(s) A4102'.
  • pathway(s) may have sections A4102A' , A4102B' , A4102C with different directions relative to each other. For example this may occur at intersection of shunts/bypass sections, end sections of pathways (see also Figs. 29A-29B and Fig. 51).
  • Pathways sections A4102A' , A4102B' , A4102C with different directions, such as in the example shown in Fig. 56, may also be provided in FAB zones where it may be desired to load/unload carriers from the mass transport system pathways.
  • the arrangement of the pathway sections A4102A' , A4102B', A4102C in the exemplary embodiment illustrated in Fig. 56, generally defines two bends, each of which is of sufficient size to provide desired separation between transport envelope TE' and hand off section to establish a drop station DS.
  • the direction and arrangement of the pathway sections shown is merely exemplary.
  • each section has a handoff section portion A4300', that may be substantially similar to each other and to handoff section A4300 described before and shown in Figs. 55A-55D.
  • Each handoff section portion A4300' may have carriage and traversing track A4304' arranged to load/unload carriers A5000' (see also Fig. 56A) from pathway(s) A4102' (in a manner similar to that previously described) .
  • Each handoff section portion A4300D' may have a drop station DS' for the carrier.
  • the drop station DS' may be substantially in line with the track A4304' (as well as with the transport envelope TE' of the pathway at some downstream or upstream portion as shown in Fig. 56) .
  • one portion A4300, A4300B of the hand off section may be used to unload carriers from the pathway, and the other portion may be used to load carriers on the pathway.
  • portion A4300' may interface and pick carriers from pathway section A4102A' .
  • Unloaded carriers A5000' may be brought to drop station DS', for example located at an end of track A4304', for handoff to the interface section A4200'.
  • Carriers destined for loading onto the pathway may be brought by the interface section A4200' to the drop station DSB' of portion A4300B' for handoff.
  • the handoff section portion A4300B' may then move the carrier, matching transport rate and direction with pathway section A4102C and load the carriers on the pathway.
  • each portion of the handoff section may be capable of loading and unloading carriers to/from the pathways (e.g. tracks may have multiple drop stations positioned to support carrier load or unload relative to the pathway and/or the carriage may be cycled along the track to effect both loading and unloading.
  • Transport system A4000' may thus be asynchronous.
  • Factory automation uses wafer identification for example to plan, schedule and track each wafer through the process .
  • the ID is machine readable and is managed with a database on the host server. Wafer identification within the database may be affected by wafer breakage equipment down situations or software error. Hence repetitive reading steps at each process tool may be used to overcome this. Machine reading of wafer typically may occur for example after the carrier is loaded, wafer is removed and then oriented. The ID is reported back to the host for verification then processing begins after authentication. Conventionally if the incorrect wafer is loaded it is not caught until after much time was wasted to identify. In addition, when a tool goes down with an error the wafers must be rescued and re-entered into the carrier/database creating potential for human error.
  • Carriers may posses an onboard writeable data tag which can store the wafer ID'S contained within and is read by the loadport.
  • the carriers in accordance with the exemplary embodiments previously described, may have interlocks that interlock the carrier writeable ID tag with the wafer ID'S at the loadport.
  • the writeable ID tag on the carrier incorporates an external digital I/O signal.
  • the signal is tied to a sensor which can detect the removal of a pod door.
  • the sensor may be of any suitable type such as optical, mechanical, acoustic, capacitive etc.
  • a low voltage signal line may run through electrically conductive pads on both the pod shell and the pod door. The pads are in local contact when the door is closed completing the flow of voltage. When the door is removed the flow of voltage is interrupted and the signal is made to the carrier ID tag.
  • the integrity tag is written to the writeable carrier ID after the wafers are loaded and the door is locked to the pod.
  • the tag is read along with the integrity tag. If the integrity tag is valid than the wafer ID'S are assumed untampered and valid. If the integrity tag is invalid than the door has been removed at some point and the wafer ID accuracy is suspect. Based on this information the host forces a wafer read at the tool to validate integrity.
  • an integral wafer ID reader may be provided into the loadport.
  • the reader is positioned such that ID'S can be read during the door opening sequence to minimize cycle time.
  • This embodiment has the advantage of reduced cycle time compared to methods which reside in the process tool and also can execute the entire validation scheme separate from the process tool host communication.
  • a dedicated alph-numeric display (s) for each wafer slot within the carrier may be added to the carrier.
  • the integrated display correlates to the actual wafer ID resident within the carrier.
  • the character height may be sufficiently large to be read from a large distance similar to the length between an operator and a ceiling mounted storage nest.
  • the display indicates the ID integrity graphically. If the integrity tag is invalid it is shown graphically on the display by a distinguishing character or color.
  • an external wafer ID reader integrates an external wafer ID reader.
  • the external wafer ID reader may be located, for example external to the loadport and process tool within the AMHS system. Carriers with suspect wafer ID's are loaded to the external reader and validated Once the operation is completed the door is locked and the integrity tag is written to the writeable carrier ID. The carrier is now moved to the final destination storage/loadport position. This has the advantage of being performed in parallel to the wafer carrier wait time rather than serial to the tool process time.
  • the external reader can incorporate a wafer orientation method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
PCT/US2007/011443 2006-05-11 2007-05-11 Reduced capacity carrier, transport, load port, buffer system WO2007133701A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2007800262360A CN101490833B (zh) 2006-05-11 2007-05-11 容量减少的载物台,传送,加载端口,缓冲系统
JP2009509884A JP2009537075A (ja) 2006-05-11 2007-05-11 低減容量キャリア、搬送機、積載ポート、緩衝装置システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US79990806P 2006-05-11 2006-05-11
US60/799,908 2006-05-11

Publications (3)

Publication Number Publication Date
WO2007133701A2 true WO2007133701A2 (en) 2007-11-22
WO2007133701A9 WO2007133701A9 (en) 2008-01-17
WO2007133701A3 WO2007133701A3 (en) 2008-12-04

Family

ID=38694507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/011443 WO2007133701A2 (en) 2006-05-11 2007-05-11 Reduced capacity carrier, transport, load port, buffer system

Country Status (4)

Country Link
JP (4) JP2009537075A (ja)
CN (1) CN101490833B (ja)
TW (1) TWI405290B (ja)
WO (1) WO2007133701A2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8297319B2 (en) 2006-09-14 2012-10-30 Brooks Automation, Inc. Carrier gas system and coupling substrate carrier to a loadport
CN101752221B (zh) * 2008-12-17 2014-07-30 佳能安内华股份有限公司 真空容器及制造方法、真空处理设备和电子器件制造方法
CN105543807A (zh) * 2015-12-15 2016-05-04 华中科技大学 一种变温薄膜沉积系统
US9978623B2 (en) 2007-05-09 2018-05-22 Brooks Automation, Inc. Side opening unified pod
US10170379B2 (en) * 2015-02-12 2019-01-01 Disco Corporation Wafer processing system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101712130B (zh) * 2009-12-22 2012-11-14 中国电子科技集团公司第四十五研究所 应用于硅片化学机械抛光设备中的定位转换装置
JP6599094B2 (ja) * 2014-11-13 2019-10-30 株式会社ミツトヨ 光学装置
US9601360B2 (en) * 2015-03-16 2017-03-21 Taiwan Semiconductor Manufacturing Co., Ltd. Wafer transport method
EP3539903B1 (en) * 2016-11-14 2022-04-27 Murata Machinery, Ltd. Ceiling conveyance system, and relay conveyance apparatus and conveyance method used therefor
US11031266B2 (en) * 2018-07-16 2021-06-08 Taiwan Semiconductor Manufacturing Co., Ltd. Wafer handling equipment and method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5411358A (en) * 1992-08-04 1995-05-02 International Business Machines Corporation Dispatching apparatus with a gas supply distribution system for handling and storing pressurized sealable transportable containers
US5980183A (en) * 1997-04-14 1999-11-09 Asyst Technologies, Inc. Integrated intrabay buffer, delivery, and stocker system
US6026561A (en) * 1994-01-14 2000-02-22 International Business Machines Corporation Automatic assembler/disassembler apparatus adapted to pressurized sealable transportable containers

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0221740U (ja) * 1988-07-28 1990-02-14
JPH04171841A (ja) * 1990-11-05 1992-06-19 Matsushita Electron Corp 自走式搬送台車
US5204739A (en) * 1992-02-07 1993-04-20 Karl Suss America, Inc. Proximity mask alignment using a stored video image
JP4056141B2 (ja) * 1998-08-07 2008-03-05 松下電器産業株式会社 基板搬送装置
KR100303321B1 (ko) * 1999-05-20 2001-09-26 박종섭 반도체 라인 자동화 시스템에서의 오류발생 로트 제어 장치 및그 방법
JP2005294280A (ja) * 2002-04-12 2005-10-20 Hirata Corp 密閉容器搬送システム
AU2003259203A1 (en) * 2002-07-22 2004-02-09 Brooks Automation, Inc. Substrate processing apparatus
JP2004227060A (ja) * 2003-01-20 2004-08-12 Murata Mach Ltd 無人搬送車システム
US7221993B2 (en) * 2003-01-27 2007-05-22 Applied Materials, Inc. Systems and methods for transferring small lot size substrate carriers between processing tools
JP4470576B2 (ja) * 2003-05-20 2010-06-02 ムラテックオートメーション株式会社 搬送システム
JP4487302B2 (ja) * 2003-05-20 2010-06-23 株式会社安川電機 ロードポート
JP4259968B2 (ja) * 2003-09-22 2009-04-30 大日本スクリーン製造株式会社 基板処理装置
US20050095087A1 (en) * 2003-10-30 2005-05-05 Sullivan Robert P. Automated material handling system
JP2005243729A (ja) * 2004-02-24 2005-09-08 Asyst Shinko Inc 搬送システム
JP2006051886A (ja) * 2004-08-12 2006-02-23 Murata Mach Ltd 天井走行車システム
EP1803151B1 (en) * 2004-08-23 2011-10-05 Murata Machinery, Ltd. Elevator-based tool loading and buffering system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5411358A (en) * 1992-08-04 1995-05-02 International Business Machines Corporation Dispatching apparatus with a gas supply distribution system for handling and storing pressurized sealable transportable containers
US6026561A (en) * 1994-01-14 2000-02-22 International Business Machines Corporation Automatic assembler/disassembler apparatus adapted to pressurized sealable transportable containers
US5980183A (en) * 1997-04-14 1999-11-09 Asyst Technologies, Inc. Integrated intrabay buffer, delivery, and stocker system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8297319B2 (en) 2006-09-14 2012-10-30 Brooks Automation, Inc. Carrier gas system and coupling substrate carrier to a loadport
US9978623B2 (en) 2007-05-09 2018-05-22 Brooks Automation, Inc. Side opening unified pod
CN101752221B (zh) * 2008-12-17 2014-07-30 佳能安内华股份有限公司 真空容器及制造方法、真空处理设备和电子器件制造方法
US10170379B2 (en) * 2015-02-12 2019-01-01 Disco Corporation Wafer processing system
CN105543807A (zh) * 2015-12-15 2016-05-04 华中科技大学 一种变温薄膜沉积系统

Also Published As

Publication number Publication date
CN101490833B (zh) 2013-08-14
TW200816351A (en) 2008-04-01
JP2017069583A (ja) 2017-04-06
JP6630296B2 (ja) 2020-01-15
TWI405290B (zh) 2013-08-11
JP2009537075A (ja) 2009-10-22
CN101490833A (zh) 2009-07-22
JP6073262B2 (ja) 2017-02-01
WO2007133701A3 (en) 2008-12-04
JP6896027B2 (ja) 2021-06-30
JP2014146825A (ja) 2014-08-14
WO2007133701A9 (en) 2008-01-17
JP2019192942A (ja) 2019-10-31

Similar Documents

Publication Publication Date Title
US10679882B2 (en) Reduced capacity carrier, transport, load port, buffer system
US8267634B2 (en) Reduced capacity carrier, transport, load port, buffer system
US8328495B2 (en) Reduced capacity carrier, transport, load port, buffer system
JP7405699B2 (ja) 半導体被加工物処理システム
JP6896027B2 (ja) 半導体部品処理システム
US20070201967A1 (en) Reduced capacity carrier, transport, load port, buffer system
JP5543205B2 (ja) 半導体ワークピース処理システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780026236.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07809070

Country of ref document: EP

Kind code of ref document: A2

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2009509884

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07809070

Country of ref document: EP

Kind code of ref document: A2

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)