JP2009527952A - イーサネット符号化違反でもって仕切られたフレーム及びパケット構造を用いてイーサネット伝送線上で異なる首里のパケット化ストリーミングデータを転送するシステム及び方法 - Google Patents

イーサネット符号化違反でもって仕切られたフレーム及びパケット構造を用いてイーサネット伝送線上で異なる首里のパケット化ストリーミングデータを転送するシステム及び方法 Download PDF

Info

Publication number
JP2009527952A
JP2009527952A JP2008555522A JP2008555522A JP2009527952A JP 2009527952 A JP2009527952 A JP 2009527952A JP 2008555522 A JP2008555522 A JP 2008555522A JP 2008555522 A JP2008555522 A JP 2008555522A JP 2009527952 A JP2009527952 A JP 2009527952A
Authority
JP
Japan
Prior art keywords
data
network
port
node
streaming data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008555522A
Other languages
English (en)
Other versions
JP5102784B2 (ja
Inventor
ナップ,デイビッド・ジェイ
ミューラー,ライナー・ピイ
ホ,ホレス・シイ
ヘック,パトリック
クロス,ライナー
ティエリ,クリスチャン
Original Assignee
スタンダード マイクロシステムズ コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スタンダード マイクロシステムズ コーポレーション filed Critical スタンダード マイクロシステムズ コーポレーション
Publication of JP2009527952A publication Critical patent/JP2009527952A/ja
Application granted granted Critical
Publication of JP5102784B2 publication Critical patent/JP5102784B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0602Systems characterised by the synchronising information used
    • H04J3/0605Special codes used as synchronising signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0647Synchronisation among TDM nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/40006Architecture of a communication node
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/407Bus networks with decentralised control
    • H04L12/413Bus networks with decentralised control with random access, e.g. carrier-sense multiple-access with collision detection [CSMA-CD]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/42Loop networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/64Hybrid switching systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • H04L25/4906Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems using binary codes
    • H04L25/4908Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems using binary codes using mBnB codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0658Clock or time synchronisation among packet nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Small-Scale Networks (AREA)
  • Communication Control (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

ネットワークを介して異なる種類のデータを伝送するための、通信システム、ネットワーク、インターフェース、ポートが提供される。ネットワークは、リングアーキテクチャ又はトポロジーを実現するためにディジーチェーンでポート間を接続することによって形成される。ネットワークは、データを特定のネットワークトポロジーに従って伝送し、例え、ネットワークが非同期ネットワークを対象とするイーサネットパケットを受信しても、ネットワークのノードは送信器を駆動するためのビットストリームからクロックを再生して、同期ネットワークを生成する。イーサネットデータのような非準拠データを、フレーム構造内でパケットとして伝送することができる。フレームは、各フレームの開始を知らせるイーサネット符号化違反に同期させられ、各パケットはパケット符号化違反の直後に続く。フレームとパケットの符号化違反は、有効コードでない一連の4B/5Bコードとして表され、イーサネット符号化データとしては現れることはない。

Description

本発明は、通信システムに係り、より詳しくはそれぞれが仮想リングネットワークを形成すべくイーサネット(登録商標)伝送線(すなわち、導体のツイストペア線又はCAT5)上で情報を転送する少なくとも二つのポートを有するデイジーチェーンで相互接続したノードからなる同期通信システムに関し、各ノードが主クロックを供給するか又はネットワークからクロックを再生するかのいずれかができ、イーサネット符号化違反により示されるフレーム構造とパケット構造により仕切られた多重化チャネルで送信する各種類のデータの同期転送を形成する。各ノード内のポートは、ネットワークが使用する特定のプロトコルに準拠するデータ(すなわち、「準拠データ」)に対応し、又は非同期イーサネットに依拠するデータパケット及び/又はポートは、ソニー/フィリップス・デジタルインタフェースフォーマット(Sony/Philips Digital Interface Format:「SPDIF」)データ等の非準拠データに対応している。
通信システムは一般に、伝送線で相互接続されたノード間での通信を可能にするシステムとして知られている。各ノードは、伝送線を介して情報を送信したり、情報を受信することができる。相互接続したノードの通信システムは、バス、リング、スター型、ツリー型などの様々なトポロジに編成されている。
バストポロジネットワークは一般に線形と見なされ、1つのノードからの送信が伝送線の全長を伝搬し、そのバスに接続された他の全てのノードにより受信される。しかしながら、リングトポロジネットワークは一般に単方向の伝送リンク群で互いに接続され、単一の閉ループを形成する一連のノードから成る。リングネットワークの例は、IEEE802.5規格やファイバ分散データインタフェース(Fiber Distributed Data Interface:FDDI)に説明されている。
ノード間の伝送線は、有線又は無線いずれも可能である。伝送線は異なった種類のデータに対応していることが、好ましい。残念ながら、ネットワークの幾つかはイーサネットを介するTCP/IPなどのデータのバーストの送信用に特化され、他は音声データや映像データなどのストリーミングデータを送信するよう要請されている。どのような形態であれ、ネットワーク上で両方の首里の情報を転送できるネットワークを導入することが望ましい。さらに、選択された伝送線のために例えば銅線や光ファイバや無線伝送媒体を使用することが望ましい。
イーサネットとIEEE802.3規格は、コンピューティングシステム間でデータパケットを送信することのできる特定のプロトコルを規定している。イーサネットは複数のアクセスの衝突を検知することができ、どの送信元装置が伝送線の使用権を得ることになるかを調停することができる。イーサネットは、データリンク層と物理リンク層に対し通常予定されたOSI参照モデルの最低レベルで動作する。イーサネットプロトコルは、プリアンブル、その後に宛先アドレスと送信元アドレス、次にデータペイロードという特定のフレームフォーマットを規定している。データは通常、同軸伝送線又はツイストペア線の伝送線を介してデータを送信するのに先立ち、4B/5B符号化構造又は8B/10B符号化構造で符号化される。
イーサネットフレーム内で送信される符号化データパケットは通常、相対的な時間関係をまったく持たない。例えば、コンピュータは幾つかの連続フレームでデータバーストを送信し、その後相当な時間が経過してから、次のデータバーストを送信することができる。バースト性のデータ又はパケット化データは実時間の時間関連データとして送信する必要はない。何故ならパケットは通常宛先装置で格納され、後で使用されるからである。
反対に、ストリーミングデータは送信元ポートからネットワーク上に供給されるサンプル間に時間的関係を有する。それらのサンプル間のこの関係は伝送線全体に亙り保持し、ギャップや変化した周波数などの認知できるエラーを防止しなければならない。時間的関係における損失により、宛先の受信器が音声や映像のストリームにジッタやエコー又は最悪の場合周期的な空白を招くことがある。
例えば、イーサネットフレームに配置されるパケット化されたTCP/IPデータは、そのデータのサンプリングレート又は時間的関係を保持する必要がなく、パケット化データを送信するネットワークは通常、どのような速度であれ、送信元装置が動作する速度でそのデータを送信する。かくして、パケット化データを転送するネットワークは一般に非同期ネットワークと見なされる。反対に、ストリーミングデータを転送するネットワークは一般に同期型であり、各送信ノードと宛先ノードがネットワークに同期した速度でサンプリングを行う。
ストリーミングデータは通常ネットワーク上で同期して送信されるが、あるノードにローカルであるサンプリングレート(fs)が伝送線のフレーム同期レート(FSR又はFSY)と同一の周波数でない例が存在する事例がある。これに該当する場合、送信元装置からのデータストリームは、サンプリングレートが変換され、続いて同期させてネットワーク上で送信される。さもなくば、データはネットワーク上を等時的に送信することもできる。
各種のサンプリングレート変換器が市販されている。例えば、アナログ・デバイシーズ社(Analog Devices Corp.)は、ローカルクロックで提供されるサンプリングレートを、一例としてネットワークに関連する例えば別のクロックに同期する別のサンプリングレートに変換する品番AD1896を提供している。サンプリングレートを増大させる又は低減させることは、fsをFSYに合致させることのできるシステムが使用できる場合、有益である。ただし、サンプリングレート変換は、fsをFSYと比較するために往々にしてかなり複雑なアルゴリズム群を要し、一般にデジタル信号プロセッサ(DSP)が送信元ノードに使用される。例えば、送信元ノードがDVDからストリーミングされるAC3データ等の圧縮データを含む場合、データをサンプリングレート変換する前に被圧縮データを伸張させねばならない。残念ながら、被伸張データの送信は被圧縮データの送信よりも多くのネットワーク帯域幅を消費する。
改良された通信システム又は通信ネットワークを実装することが、望ましい。改良されたネットワークは、同期形態又は等時的形態のどちらのストリーミングデータにも対応することのできるネットワークでなければならない。送信元ノードからのデータストリーミングは、サンプリングレート変換せずに等時的形態にて送信されなければならない。さらに、改良されたネットワークは、コンピュータや対話型テレビ等のコンピューティングシステムが、そのようなシステムでアクセス可能なストリーミング音声データやストリーミング映像データにインタフェースするために、パケット化データにも対応していなければならない。
図1は、パケット化ストリーミングデータを送受信するノード群から成るシステムを示すが、そのようなノード間の通信はデータを転送するのに用いる異なるプロトコルの制約のため制限される。図示の如く、通信システム10は音声/映像受信器12を有する。受信器12は、例えば、MP3プレーヤ14、音声チューナ16、DVDプレーヤ(又はDVR)18、CDプレーヤ20の間で送信されるストリーミングデータに関する両用スイッチ(dual purpose switch)すなわち「ハブ」として実質動作する。受信器12は、様々なプレーヤ又は入力からストリーミングデータを受信し、処理後にシリアルビットストリームを例えば増幅器、スピーカ22及び/又はデジタルテレビ24へ転送することができる。
様々な装置14〜20から送信される情報は、アナログデータ又はデジタルデータとして受信器12に送信される。デジタルデータの普及フォーマットは、ソニー/フィリップス・デジタルインタフェース・フォーマット(SPDIF)である。SPDIFは、欧州放送連盟(EBU)と連携して音声技術学会(AES)により設立され、AES/EBUインタフェースとして知られる標準のインタフェースが生み出された。このインタフェースは、線形で表現されるデジタル音声データのためのシリアル伝送フォーマットで構成される。このフォーマットは通常サンプリング周波数とは無関係であるが、それでもパルス符号変調(PCM)の適用には次の三つのサンプリング周波数、すなわち32kHz、44.1kHz、48kHzがAESによって推奨されている。SPDIFのプロトコルとフレーム構造は、CDプレーヤ、DVDプレーヤ、MP3プレーヤ等のデジタルソースからのデータ転送に用いるソース番号とチャネル番号だけでなく、制御コードやカテゴリコードで始まる一連の16ビットバイトとして十分に文書化されている。
SPDIFプロトコルは、例えばデジタルテレビ(DTV)24に用いられ、パケットハブ26は、例えば時としてセットトップボックス28として知られるデジタル映像ブロードキャスト(DVB)受信器からのパケット化データを結合するために用いられる。セットトップボックス28からブロードキャストされた幾つかのコマンドは、ストリーミングデータが音声映像受信器12に転送されている間にハブ26へ転送される。セットトップボックス28から出るコマンド信号は、例えばOSIモデルのネットワーク層内のTCP/IPデータとして送信され、このデータは次にハブ26が認識できるイーサネットプロトコルにてラップ処理される。セットトップボックス28とデジタルテレビ24からのイーサネットパケットだけでなく、ハブ26はパーソナルコンピュータ(PC)30からのイーサネットパケットも受信することができる。ハブ26により処理される情報のパケットは、かくして制御情報を構成することができる。
ユーザの住居又は異なる住居若しくは異なる場所の複数の部屋の中で処理する対話型テレビを実装することが、望ましい。例えば、第1の部屋の中に配置されたDTV24とは別の離れた第2の部屋の中に別のDTV32を配置する。さもなくば、DTV32をDTV24が常駐する住宅の外に運ばれるラップトップ型コンピュータとすることもできる。DTV24と同様、音声増幅器34がDTV32の一部分を形成したり、DTV32の外部に構築することも可能であり、図示の如くデジタル情報又はアナログ情報のいずれかを受け取る。デジタルフォーマットである場合、情報は恐らくはSPDIFフォーマットで増幅器に送信され、増幅器34はそのデジタル情報を処理し、その情報を適切な左右のスピーカ又は複数のサラウンドスピーカ群36へ出力する。
家庭用又は一般消費者向けの音声/映像電子機器が抱える一般的な問題は、例えばPCを介するそれらの電子機器に対するデジタル対話の急速な進歩である。PCを用いた家電機器との対話は、単に非同期ネットワークと同期ネットワークの違いのため、ひいき目にみても困難である。図1のネットワーク10は、非同期型のパケット処理ノード群又はパケット処理装置群を同期型のストリーミングノード群又はストリーミング装置群と結合しようと試みるものである。しかしながら、DTV32が非同期バス38の使用権を得ることができない場合、ストリーミング情報をDTV32へ信頼できる形で送信できない。これは、DTV32上でストリーミングデータが失われる可能性を必然的に伴う。
音声データと映像データをネットワーク化するため、非同期伝送線を同期伝送線に繋ぐことの問題を克服しようとする試みがなされてきた。例えば、CobraNetとして知られる製品は、非同期ネットワークを介して送信されるストリーミングデータのドロップアウトや不連続をなくそうと試みている。CobraNetプロバイダは、音声用の専用イーサネットネットワークの使用とパケット化データ用の別の専用イーサネットネットワークの使用を推奨している。参照により本明細書に組込む、"Networking for Audio, Part 3," 2004を参照されたい。二つの別のイーサネットネットワークを必要とし、ノード間で非同期プロトコルを維持することは、ネットワークのオーバーヘッドを増加させると共にそのネットワークによって使用されるソフトウェア駆動回路群やハードウェア駆動回路群の複雑さを相当に増大させる。
パケット化されたTCP/IPデータや制御データだけでなくストリーミングデータ(等時性ストリーミングデータと同期ストリーミングデータの両方)もネットワークを介して同時転送できるネットワークを導入することが望ましい。また、各種類のデータをこれらの全てのデータに関する速度と同一速度でクロック動作するネットワークを介して送信することもまた望ましい。すなわち、所望のネットワークは、サンプリングされたストリーミングデータがネットワーク転送速度を認識していて、パケット化データがそのネットワーク転送速度でネットワークに載せる同期ネットワークである。さらに、改良されたネットワークは音声/映像情報とパケット化データのために二つの伝送路の利用を回避する。データをストリーミングしたり、データのバースト(パケット)を送信する任意のマルチメディア装置を、所望の通信システムや通信ネットワーク上でフォーマットし、タイムスロットを割り当てることができる。
所望の通信システム又はネットワークは、デイジーチェーン態様にて結合されたノード間の単一の通信リンクを利用する。各ノードは望ましくは最低二つのポートを有し、各ポートは二対の導体、好ましくはイーサネット接続性に付随するCAT5ケーブルに関連する導体のツイストペア線に対応させることができる。CAT5ケーブルは双方向であり、最低二つのポートノードにより従来のトポロジには見出せない同期ネットワーク内の仮想リング通信トポロジが可能となる。さらに、所望システムはフレーム符号化違反により仕切られたフレーム内で、異なるタイムスロットにてストリーミングデータと非ストリーミングデータとを送信することができる。所望のフレーム内には、パケット符号化違反がすぐ前にある非ストリーミングすなわちパケット化データが存在する。同期用主クロックは、ネットワーク内の一つのノードから生成され、リング内の残りの各ノードを通過し、フレームデータとして送信された異なった種類のデータを同期させることができる。
以上に概説した課題は、大半が第2のマルチメディア装置を結合できるネットワークを完成させるように互いに結合させたポート群を有するマルチメディア装置から成る通信システム及び通信ネットワークにより解決される。各ポートは、第2の装置からの受信ビットストリームがネットワークプロトコルに準拠しているか否かの判定に用いられる。準拠している場合、そのときはこの準拠データはネットワークパケットの適切なタイムスロット内に入るよう転送される。準拠していない場合、そのときはこの非準拠データはネットワークに直接に加えられず、代わりに非準拠データに対応するよう特別に設計された第1の装置の入力により認識される。そのポート内のインタフェースは、必要に応じて非準拠データを再フォーマットし、第1のポートからそのデータを出力し、リングネットワークを介して第2のポートのバイパス入力に送り込むために使用される。第1のポートからの出力は、第1のポートのバイパス出力ピンを介してネットワークパスに結合される。
本願明細書で使用されるように、マルチメディア装置はどのような形態のデータであれデータを送信し又は受信する任意の装置である。マルチメディア装置の例には、マルチメディアハブ、スイッチと音声プロセッサ(すなわち、音声及び/又は映像受信器)、コンピュータ、増幅器、スピーカ、マルチメディアプレーヤ(すなわち、CDプレーヤ、DVDプレーヤ、MP3プレーヤ等)、マルチメディアレコーダ(すなわち、VCRやDVR等)、GPSシステム等が含まれる。マルチメディア装置という用語は、以降、単に装置と呼ぶ。
本システムに使用するネットワークプロトコルは、送信元装置と宛先装置の間でチャネルを確立するプリアンブルを含み、宛先装置は、リングトポロジに構成された、互いに接続された装置のネットワークに接続された任意の装置とすることができる。プリアンブルに続く各フレームは、それぞれの通信チャネル用に予定された時分割多重フィールド集合から成る。例えば、第1のフィールドは同期ストリーミングデータ用に予定され、第2のフィールドはストリーミング等時性データ用に予定され、第3のフィールドはパケット化データ用に予定され、第4のフィールドは制御データ用に予定される。すなわち、リングに結合されたマルチメディア装置群は、各フレーム内で少なくとも一種類のデータを送信することができる。フレーム転送速度(FSY)はサンプリングレートに同期させるか、さもなくばサンプリングレートがFSYより高いか低い場合、そのときはストリーミングデータをリングネットワークに関して確立された特定のタイムスロット内、又は特定のチャネル内で等時性形態にて送信することができる。それ故、各フレームは、フレーム間で時間の中断無しで送信元装置から宛先装置へストリーミングデータの連続したチャネルを送信することができる。ストリーミングデータは、送信元装置上でサンプリングされると、フレーム内の可能なN個のチャネル又はフィールドの一つの中でネットワーク上を実時間で送信され、fsと同一の速度か恐らくはfsの整数倍の速度で送信される。
本願の同期ネットワークが使用するプロトコルは、各個別フレーム内において予定された特定の時分割多重チャネルを含む。各チャネルは、データの首里が同期型であれ等時型であれ又はパケットであれ制御データであれ、特定の種類のデータ転送用に割り当てられる。ネットワークプロトコルとのインタフェースをとるため、マルチメディア装置からの入来データをプロトコル内に含まれるデータか又はそのプロトコルから外れたデータのいずれかとして認識することが肝要である。指定されたタイムスロット(すなわち、時分割多重チャネル)に関するFSYパルスから時間のずれた特定種類のデータとしてフレーム同期パルスすなわちFSYに対しタイミング合わせされたデータは、ネットワークプロトコルに準拠する。FSYパルスは準拠データプロトコルの一部として存在し、各フレーム開始の発信に用いられる。しかしながら、パケット化イーサネットデータ等の非準拠データを送信しようとすると、各フレームの開始を、イーサネット物理層装置(すなわちPHY受信器)により各フレームの開始として認識しなければならない。
イーサネットPHYは、一般に普及している4B/5B符号化方式等の特定の様式にて符号化されたデータを認識する。ただし、4B/5B方式の下で転送される何らのデータも表さないコードが存在する場合、そのときはそのコードは「違反」と表明される。4B/5B符号化違反は、各フレームの開始を表す。各フレームの開始を知ることで、全てのデータを、そのチャネル内の特定の種類のデータ用に予定された時分割多重チャネルの一つの中で認識することができる。例えば、イーサネット首里のデータの受信用にチャネルを割り当てた場合、イーサネットデータは通常一対のマルチメディア装置間に存在するチャネルの一つのタイムスロットのパケット内に配置される。このタイムスロットは区別され、直ちにパケット符号化違反が先行する。フレーム符号化違反と同様、パケット符号化違反は4B/5B符号化違反の下で何らかの符号化データとして認識されない一連のビットとして表される。
デジタル−アナログ変換器(DAC)は通常、恐らく同期ネットワークが使用する周波数とは異なる周波数に従って変調されたアナログ信号を送信する。一般に、アナログ信号は20Hz〜20kHz辺りの範囲内、又は必要に応じてより広い範囲内にあるが、30kHzより高く、より好ましくは44.1kHz又は48kHzであるネットワークの転送速度よりは間違いなく低い。SPDIFデータは、44.1kHz又は48kHzで送信できるが、SPDIFデータはネットワーク上で送信されるデータのプリアンブルとは異なるプリアンブルを使用する。また、SPDIFデータには、複数の首里のストリーミングされたパケット化データに対応するネットワークプロトコルに従ったタイムスロット割り当ては行われない。同様に、包括的汎用シリアルバス(USB)上で送信されるデータは異なるプリアンブルを有する。さらにまた、イーサネットプロトコルに従って送信されるデータパケットは、ネットワークが使用するのとは異なるプロトコルを使用するが、それはイーサネットパケット内のTCP/IPデータがFSYレートで規則的に送られるフレームの特定のタイムスロットを対象とせず、パケット化データに関するプリアンブルがネットワーク上でブロードキャストチャネルとして同期送信されることもないからである。
アナログ信号、イーサネットパケット、USBデータ、SPDIFデータは、ネットワークとは異なる可変周波数で転送され、ネットワークに非同期の周波数で転送され、及び/又はネットワーク上で送信される準拠パケットとはまったく異なるプリアンブル又は符号化アルゴリズムを用いて転送される。かくして、ネットワークのパケット/フレームの周波数、振幅、プリアンブル、符号化(すなわち、ネットワークプロトコル)と整合性のないアナログデータ、パケット化データ、SPDIFデータ、さらには場合によって他の種類のデータを本明細書では非正規データすなわち非準拠データと呼ぶ。それ故、非準拠データを送信するマルチメディア装置群は、非準拠装置又は単に「旧来の」装置と呼ばれる。
SPDIFパケットとイーサネットパケットは、ネットワークの準拠データとは異なって符号化されるため、イーサネットやSPDIFデータを送受信する装置は非準拠装置として認識される。そのような装置の非準拠符号化メカニズムに対応するには、非準拠データがどのチャネル内でかつフレームのどのタイムスロット内に存在するかの境界を明確にしておく必要がある。イーサネットに認識できない符号化違反は、例えばフレーム内の何処にイーサネットパケットが存在するか確定することができる。
旧来の装置群が適切なタイムスロット内でネットワーク転送速度でデータを転送することができるまで、本ネットワークは、旧来の装置群及び旧来の装置群に関連するデータビットストリームに対応するポートを実装する。ただし、一部の装置はネットワークに準拠する可能性があり、それ故にポートは準拠装置群及び準拠装置群に関連するデータビットストリームを認識することもできる。本ネットワークと通信のシステムは、マルチメディア装置群を互いに接続してリングを形成でき、各装置から送信される準拠データ又は非準拠データのいずれかを認識して適切に導くことのできるポートに各装置が接続される。ポートは、準拠装置からネットワークに送り込まれる入来データを受信し、又は非準拠装置から非準拠データを受信するよう指定されたピンに入る入来データを受信する。
一実施態様によれば、一対の通信ポートが配設してある。両ポートは、第1のマルチメディア装置に関連付けられる。第1のポートは、第1のポート受信入力、第1のポートバイパス入力、第1のポート出力を有する。第2のポートは、第2のポート受信入力、第2のポートバイパス入力、第2のポート出力を有する。第1のポート出力は第2のポートバイパス入力に結合され、一対ポート(第1のポートと第2のポート)間でネットワークを形成する。ネットワークにより、第2のマルチメディア装置が入来データをネットワークパスに結合し、及び/又は第1のポートと第2のポートに関連する第1のマルチメディア装置と通信することができる。第2のマルチメディア装置からの入来データが準拠する(すなわち、準拠データである)場合、ただし二つのポートしか配設されていない場合、そのときはこの入来データは、ネットワークフレームの適切なタイムスロットに置かれ、データは第1のポートを通って第1のポートバイパス入力から第1のポート出力に進み、次に第2のポートバイパス入力に入って第2のポート出力に進み、第1のポートバイパス入力へ戻る。
入来データが非準拠である場合、そのときは入来データは、そのデータを受信するよう特に指定された第1のマルチメディア装置の入力に置かれ、その間にネットワークは、第1のポートバイパス入力から第1のポートバイパス出力を含む第1のポート出力まで続く。ピンは、好ましくはシリアルデータを受信するピンであり、非準拠シリアルデータは、一旦処理されると、必要に応じて第1のポート内のインタフェース回路又はインタフェースシステムによりネットワークプロトコルに準拠するフォーマットに再フォーマットされる。かくして、再フォーマットされた非準拠データは、第1のポートに関連するインタフェース回路によって処理された後、準拠型とされる。ネットワークの他のポート群も類似したインタフェース回路を有し、回路は、入来データを処理するデジタル信号プロセッサ(DSP)と、入来データを再フォーマットして、入来データを、その種類のデータ用に予定された特定のタイムスロットに準拠させる物理層送受信器装置又はコントローラを有することが好ましい。
一実施態様によれば、第1の装置に関連する第1のポートは、第1の装置に関連する第1のポート、第2のポートなどを経由してリングネットワーク上で転送されるデータの各フレームのプロトコル及び時分割構造を、第2の装置からの入来データのプロトコルと比較し、入来データがネットワークプロトコルに準拠しているかどうか判定する。準拠している場合、そのときは入来データは準拠装置から送信されたものとされる。非準拠である場合、そのときは入来データは非準拠の旧来のマルチメディア装置から送信されたものとされる。SPDIFデータ、アナログ信号データ、パケット化(すなわち、イーサネット)データは通常、非準拠装置群からの非準拠データと見なされる。
第1の装置のポートは、準拠装置又は非準拠装置からの入来データに対応している。準拠装置と非準拠装置をともに第1の装置に接続することが所望される場合、そのときは好ましくは第1の装置は二つのポート、すなわち各接続につき1つのポートを含む。二つのポートは、各ポートが二つの入力(入来データを受信するための受信入力及びバイパス入力)と二つの出力(送信データを送信するための送信出力及びバイパス出力)を含むようにバイパス入/出力を介して接続される。バイパス出力は、ポートシリーズ内の次のポートのバイパス入力へ結合される。シリーズ内の最後のポートからのバイパス出力はシリーズ内の最初のポートのバイパス入力に結合され、リングネットワークが完成する。
各ポートは、ネットワーク上で送信されるデータを入来データと比較し、入来データがネットワークプロトコルに類似するフォーマットである場合、バイパス出力を介して入来データをネットワーク上に転送するよう作動的に結合された自動検出検出器/比較器及びマルチプレクサ回路を含む。ポートは、入来データのサンプリングレートをネットワーク上で送信されるデータの転送速度に従わせるための周波数逓倍器/分周器を有する位相ロックループを含む。さもなくば、入来データの位相とネットワーク上で送信されるデータの位相との位相差を表す少なくとも1ビットが入来データとともに送信される。そのビット値に含まれる位相差情報をそこでネットワークのデータ転送速度とともに使用し、宛先ノード又は宛先装置においてサンプリングレートを再編することができる。ネットワーク転送速度に従うようにさせられた位相ロックループが送信元と宛先で存在する例は、ロックされた等時性転送モードでの動作を表す。位相差を表す少なくとも1ビットがデータとともにネットワーク上で送信される例は、ロックされていない等時性転送モードと呼ばれる。いずれの動作モードが選択されるかに拘わらず、送信元装置又は宛先装置上のサンプリングレートがネットワークのFSYと異なる場合、データはネットワーク上を等時性形態で送信することができる。
さらに別の実施態様により、第1のポート受信入力と第1のポート送信出力とを含む第1のポートを有する第1の装置を含む通信システムが提供される。第2のマルチメディア装置は、第2のポート受信入力と第2のポート送信出力とを含む第2のポートを有する。デジタルデータと右アナログ音声データを転送するために、第1のポート受信入力と第2のポート送信出力が互いに結合されている。第2のポート受信入力と第1のポート送信出力が互いに結合され、デジタルデータと左アナログ音声データを転送する。第1の装置がアナログ−デジタル変換器(ADC)を含むのに対し、第2の装置はデジタル−アナログ変換器(DAC)を含み、又はその逆が可能である。第1の装置に、第3のポートも含ませることができる。第1のポートには第1のポートバイパス入力と第1のポートバイパス出力とを含ませることができ、ここで第3のポートに第3のポートバイパス入力と第3のポートバイパス出力とを含ませることができる。第1のポートバイパス出力は、好ましくは第3のポートバイパス入力に結合される。第1のポートは、シリアル入力ピンとマルチプレクサをさらに含んでもよい。シリアル入力は、プロセッサを含むインタフェース回路上のピンとすることができ、このピンに全ての入来データが送り込まれる。シリアル入力は、非準拠データを含め全ての入来データを受信する。第1のポート受信入力に載せられる右アナログ音声データ及び/又はデジタルデータは、準拠データである場合はシリアル入力ピンへ導かれ、また非準拠データである場合はインタフェース回路上の受信入力へ載せるのを介して第1のポートバイパス出力へ導かれる。
本発明の好適な一実施態様によれば、第1のノード、第2のノード、第3のノードを有する通信装置が提供される。第1のノードと第2のノードとの間で非ストリーミングデータ及びストリーミングデータを同期転送させるため、第1のノードに結合された第1のポートを二つの主導体対と前記第1のノードとの間に配置する。第1のノードと第3のノードとの間で非ストリーミングデータ及びストリーミングデータを同期転送させるため、第2のポートを二つの副導体対と前記第1のノードとの間で第1のノードに結合させる。クロック信号は、第1、第2及び/又は第3のノードにおいて非ストリーミングデータとストリーミングデータのエッジから導出される。さもなくば、クロック信号は第1又は第2又は第3のノードに結合した水晶発振器から導出される。第1のポートには、受信器と駆動回路を含ませることができる。受信器を、非ストリーミングデータとストリーミングデータのエッジからクロック信号を再生する構成にし、駆動回路はクロック信号を受信し、再生クロック信号に同期して非ストリーミングデータとストリーミングデータを駆動する構成にすることができる。
一例によれば、主導体対と副導体対は例えばイーサネット通信に用いるCAT5ケーブルに関連する導体のツイストペア線である。非ストリーミングデータは、4B/5B符号化を用いて符号化することができる。第1、第2、第3のノードは、デイジーチェーンで互いに結合され、しかも第1、第2、第3のノードは少なくとも二つのポートを含み、第1、第2、第3のノード内の各ポートがマルチプレクサを用いた双方向差動信号の転送に対応し、このマルチプレクサは1つのポート内の受信器が受信した情報を、この同一ポート又は同一ノード内の他のポートの送信器へ送り、リング通信トポロジを実現する。
別の好適な実施態様によれば、第1のノードと第2のノードとを連結する二対の導体を備える通信装置が提供される。差動信号の一連のビットストリームをデータのフレームに分岐させ、二対の導体上を双方向に送信する。その際、各フレームはフレーム符号化違反を開始とし、各フレーム内のデータの各非ストリーミングパケットはパケット符号化違反を開始としている。フレーム符号化違反は、二つの連続する論理1電圧値により仕切られた三つの連続する論理0電圧値の2組を含む。パケット符号化違反には、連続する三つの論理0電圧値を含ませることができる。連続する三つの論理0電圧値には、バイトの半分すなわちニブル内に含まれる4B/5B符号化データが続く。フレーム符号化違反とパケット符号化違反は、イーサネット送信用の4B/5Bデータ符号化に用いるコードを表さない一連のビットで構成される。
さらに別の好適な実施態様によれば、データ転送方法が提供される。本方法は、符号化データとは非類似のビットシーケンスをフレーム符号化違反として、また別のビットシーケンスをパケット符号化違反として形成するステップを含む。ストリーミングデータと非ストリーミングデータは、フレーム符号化違反直後のフレームの二つの異なる時間セグメント内に配置される。非ストリーミングデータは、パケット符号化違反の直後のフレームに配置される。ストリーミングデータと非ストリーミングデータのフレームは、クロック信号に同期して通信システム上を転送される。
本発明のその他の目的並びに利点は、以下の詳細な説明を読み添付図面を参照することで明白となろう。
本発明は、様々な変更形態及び代替形態が可能であるが、本発明の特定の実施形態を例示により図面中に示し、下記に詳細に説明することにする。ただし、図面及びその詳細な説明は開示する特定の形態に本発明を限定するものではなく、反対に添付特許請求の範囲が定義する本発明の趣旨及び範囲に含まれるあらゆる変更形態や等価形態及び代替形態を包含することを意図しているものと理解されたい。
一又は複数のマルチメディア装置が伝送線のフレーム同期レート(FSY)より高いサンプリングレート(fs)でデータをサンプリングできることが、認識されている。例えば、マルチメディア装置はおよそ44.1kHzでサンプリングを行うCDプレーヤなどである。CDプレーヤは、例えばサンプル音声チャネル当り16ビット(32ビット/ステレオチャネル)でデータをストリーミングでき、それ故に32ビット/ステレオサンプル×44.1Kサンプル/秒=1.4112Mbpsなる伝送線上のbpsボーレートとなる。装置からの非ゼロ復帰(「NRZ」)データは、幾つかの形で符号化することができる。データは、例えば周知のミラー符号化技術を用いて符号化することもできる。
代替符号化には、2相符号化又は符号化ビットストリームが累積DC値を招来しないようにする符号化が含まれる。符号化ビットストリームが累積DC値を招来しないようにする符号化メカニズムは、しばしばDC適応符号化又はDCのない符号化と呼ばれ、参照用に本願明細書に組込む米国特許第6,437,710号に説明されている。伝送線上のFSYが、サンプリングレートfsとは異なる場合、マルチメディア装置からのストリーミングデータは、伝送線を介して別の装置に(すなわち、DVDプレーヤからスピーカ)に同期させて載せることことができない。その代り、ストリーミングデータは同期ストリーミングデータとは対照的に等時性ストリーミングデータとして載せねばならない。前述した他の種類のデータを、ネットワーク上に載せることもできる。
非同期データ又はパケット化データは、伝送制御プロトコル(TCP)とインターネットプロトコル(IP)とを用いたデータグラムとして配列される。TCP/IPは、IPパケットフォーマットに載せた断片化データグラムである。しかしながら、TCP/IPパケットをネットワーク上で転送する場合、OSI参照モデルの転送/ネットワーク層を、例えばイーサネットプロトコルに従うOSI参照モデルのデータ層又は物理層に従って送信される。所望に応じ、データグラムだけをイーサネットプロトコルから取り外し、所望とあらば異なるプロトコルを用い送信することができる。図2は、本ネットワークに固有のネットワーク伝送プロトコルを用い他種類のデータとともに送信するTCP/IPデータグラムを示す。
ここで図を参照するに、図2は転送対象である各個別のフレーム内で異なった種類のデータをネットワーク上で送信するフォーマットを示す。バイト幅のFSYに同期させたプリアンブルに続き、ネットワークに接続されたマスターユニットとスレーブユニットとの間に形成される幾つかのチャネルを指定するプロトコルをプリアンブル内に確立することができる。その後、各フレームは符号化違反などの一意に識別可能なFSYバイト値で始まり、その後に同期化データの受け取り専用の第1のタイムスロット、パケット化データの受け取り専用の第2のタイムスロット、等時性データの受け取り専用の第3のタイムスロット、制御データの受け取り専用第4のタイムスロットが続く。FSYバイト値は、PHY受信器にとって認識不能の何らかの符号化違反を含む。例えば、PHY送受信器及び特にPHY受信器部分は、イーサネットプロトコルに関連する4B/5B符号化データを復号化し認識することができる。しかしながら、FSYバイト値が4B/5B符号化方式にて認識不能のビットからなる場合、それらのビットは各フレームの開始、すなわち各フレームの範囲を明確にしブックマーク処理するのに用いられる。それ故、このフレームはFSYバイトに同期させることができる。
各タイムスロットは、チャネルを表す。例えば、64バイトのフレーム構造内に4つのチャネルを設けることができ、各チャネルは最低2バイトを有する。各チャネルが同数のバイトを有する場合、そのときは64バイトはノードを介してネットワークに接続された装置の音声サンプリングレートで反復するそれぞれ16バイトに細分することができる。例えば、音声サンプリングレートが48kHzである場合、任意の二つのノード間におけるネットワークの総ビットレートは48K/フレーム秒×64バイト/フレーム×8ビット/バイト=24.576Mbit/秒となる。
装置がアクティブにされる、すなわち「電源投入」されると、経路設定テーブルがネットワーク上の他の装置群のそれぞれに制御チャネル上でブロードキャストされる。制御チャネルは、新たにアクティブにされた装置間のデータ転送に対応するのに必要とされる構成(又は再構成)経路設定テーブル群を含む。それ故、経路設定テーブルは各種類のデータを受け取るよう確立された様々なチャネル又はフレーム部分の全てに対応するよう作成され、その後アクティブにされた装置間のネットワーク上で同期送信される。例えば、DSPのメモリ媒体内の経路設定テーブルは、後続の通信が所望される場合に、フレーム内のどのバイトが特定チャネルに関連するかをそこで識別することができる。
かくして、例えばDVDが1つのチャネル上にあり、CDが別のチャネル上にある場合、経路設定テーブルは実際にそれらのチャネルにタイムスロットを割り当てる。このように、DVDプレーヤは第1のチャネル内で音声情報及び映像情報を送信することになるが、CDプレーヤはタイムスロットに従って割り当てられた第2のチャネル内で音声情報を送信することができる。ネットワーク転送速度が48kHzである場合、そのときは48kHzでサンプリングを行うDVDプレーヤと44.1kHzでサンプリングを行うCDプレーヤが同期データチャネルをDVDプレーヤに割り当て、等時性データチャネルをCDプレーヤに割り当てる。
等時性データは、例えばネットワークに接続されたコンピュータがオンラインになると、例えば経路設定テーブル内で確立された可変チャネル長を有する。例えば、等時性転送が連続するフレーム内で追加のバイト(図2で、N+1バイトとして示す)を要する場合、そのときは例えば高い周波数でサンプリングされるDVDプレーヤがオンラインになり、より低い転送周波数に以前にロックされているネットワークに対してアクティブにされると、経路設定テーブルはそのバイトを割り当てる。デコーダが、同期バイト(FSY)を認識し、復号化し、制御バイトをプロセッサへ転送し、そこでプロセッサが対応するノード内の経路設定テーブルを更新する。同期バイトは、例えばインタフェースコントローラ内部のタイマへ転送される。タイマは、適切にタイミング調整されたバイト境界で宛先又は目標へ向けデータを適切に経路設定すべく、ネットワーク上で送信されるバイトが確実にスイッチに同期するよう保証することになる。
図2に示した4つのタイムスロットは、単一フレームに適用可能である。ただし、複数フレームが連続して送信されるものと理解されたい。各フレームは、経路設定テーブルに従ってタイムスロットとチャネルの伝送を維持する。装置群がオンライン接続されると、経路設定テーブルは更新され、タイムスロットが割り当てられる。例えば、単一の装置対がオンラインである場合、そのときは恐らくフレーム全体が単一のフレームセグメントに割り当てられ、これら装置間のデータ転送に対応させることができる。データがストリーミングである場合、経路設定テーブルはストリーミングソースがアクティブである期間中にネットワーク内で送信される全フレームに対し少なくとも1つのフレームセグメントを割り当てるように規定される。かくして、フレームは反復させることができ、例えばネットワーク上のノード内の送信元装置からデコーダへ連続して送信される。
例えば、電話機とCDがともにネットワークデータをクロック制御するのと同じ速度でデータをサンプリングすることが可能な例が存在し得る。この場合、二つのフレームセグメント又はタイムスロットが同期データ搬送用に各フレーム内に予定される。本例では、4つを上回るタイムスロットが確かに存在し得、二つ以上のタイムスロットが同期データの受け取り専用とされ、例えばより高いか又はより低いサンプリングレートのプレーヤ対がネットワーク上でアクティブにされる可能性がある場合、恐らくは別の二つ以上のタイムスロットが等時性データの受け取り専用となる。
タイムスロットTS0〜TS3は単に一例として示すが、フレーム1で始まり、フレームNで終わる各フレーム内の対応セグメントとして利用可能である。ネットワークが特定の装置のサンプリングレート(fs)よりも低いFSYで動作している場合、そのときは恐らくは等時性データを伝送するセグメント用に別のバイトが必要となる。典型的な例は、44.1kHzでサンプリングされるCD出力にロックしてDVDプレーヤ情報を48kHzでサンプリングするよう試行するネットワークであろう。DVDドライブのより高いサンプリングレートに対応するため、例えばタイムスロットTS2の等時性セグメント内に追加バイトを配置する。
送信対象データの首里にかかわらず、ネットワーク上で送信するデータの各チャネルは同一速度で転送される。これにより、通常は非同期送信されるデータやネットワーク転送速度より高い速度又は低い速度でサンプリングされるデータ(すなわち、等時性データ)に対応しながら、ネットワークを同期動作させることができる。これにより、各タイムスロット又は各チャネルは互いに同期する。チャネルの同期転送は、等時性データの同期転送に追加バイトを割り当てることにより実現される。
等時性データはその他のチャネルと同一の転送速度で送信されるが、シグナルバイトを用いてNバイト(サンプリングレートがフレーム同期レート未満である場合)又はN+1バイト(サンプリングレートがフレーム同期レートを超える場合)のいずれが各フレーム内で有効であるか識別する。例えば、ネットワークが48kHzで動作しており、装置が44.1kHzでネットワーク上にサンプリングを行うことが所望される場合、そのときはフレーム当り8バイトの等時性チャネルへの対応に最低8×44.1/48バイト/フレーム、すなわちフレーム当り7.35バイトが必要となる。N=8であるこの例では、この等時性データへの対応に最低フレーム当り8バイトが必要となるが、実際には各フレーム内のその8バイトの一部分だけが有効とされる。
シグナルバイトは、それらのフレームのいずれが有効であり、いずれが有効でないかを常時監視する。かくして、等時性データはシグナルバイトとの同期から外される。後述する理由からタグバイトを用い、パケット化データを同期させ、各フレーム内のどこにパケット化データが存在し有効であるかを示すことができる。シグナルバイトはデータ自体の中に埋め込むことができ、例えば符号化違反を表すことができる。例えば、米国特許第6,437,710号のDCA符号化やDCのない符号化とは異なる符号化違反は、等時性データや非同期データ及び/又は同期データが各フレーム内の配置箇所を、そのフレームセグメントを占有する一連のバイトの開始並びにメッセージ終端到来前の1又は複数の連続フレームセグメントを発信することで示す。データ符号違反の生起時点間の時間がそこでチャネルを表すことになり、このチャネルには異なった種類のデータを包含させることができる。
図3は、AV受信器又はマルチメディアデータハブ41等の装置の入/出力を形成する相互接続されたポート42,44,46の同期ネットワーク40を示す。ポート42,44,46は、バイパス出力(BO)を介してバイパス入力(BI)へ結合され、連鎖した一連のポートの最後のポート46がその連鎖の最初のポート42のBIにBOを結合され、ループすなわちリングネットワーク43を形成している。ループは、ポート42の送信を装置50aの受信に結合し、続いて装置50aの送信を検出器回路とマルチプレクサ回路を介してポート42の受信へ戻るよう結合したときに完成する。また、ループは装置50b又は50c又は50dを介して形成することもできる。図示の如く、ポート42のBOはポート44のBIに接続してあり、ポート44からのBOはポート46のBIに接続してあり、ポート46のBOはポート42のBIに接続してある。図面を簡潔にすべく、三つのポートだけ示してある。ただし、最低二つのポートが通常望ましく、必要に応じて3つを上回るポートを使用できるものと理解されたい。
各ポート内には、ポート42の詳細な拡大図で示す如く、検出器(又は比較器)45bと一対のマルチプレクサ48a,48bが存在する。マルチプレクサ48aは、ネットワークからのBIとAV受信器装置からのシリアル出力TXを受信する。外部装置50aが準拠型であるか非準拠型であるかに応じ、マルチプレクサ48aは装置50aのRXピンへの入力としてBI内の準拠データを選択し、又はマルチプレクサ48aは装置50aのRXピンへの入力として装置41の送信ピンTXからの非準拠データを選択することになる。入来データの自動検出は、装置41のTXピン上のデータ出力が非準拠であると分かっているので必要はない。検出器45bとマルチプレクサ48bは、BOと音声−映像(AV)受信器装置50aのRXとに起因するものである。装置50aの送信出力は、ポート42の受信入力に結合されている。検出器45bにより自動検出が行われ、マルチプレクサ48bは、入来データが準拠型であるか非準拠型であるかに応じて、受信入力上の信号をポート42のBOに送信するか、又はBIを送信するかのいずれかを行う。
自動検出機能すなわち自動ネゴシエーション機能の詳細が、図17に記載してある。自動ネゴシエーション機能の目的は、PHYの構成を対応ポートに接続された装置のリンクパラメータに自動的に構成することにある。構成レジスタは、装置がデータを送受信することのできる速度だけでなく恐らくはデータを送受信する装置の首里もまた設定するよう予定された1以上のビットを有する。例えば、装置の首里はTCP/IPデータを送信するパーソナルコンピュータ等のイーサネット装置である。その場合には、予定ビットを特定値の指示用に設定し、これにより自動ネゴシエーション機能が例えば通信システムの起動時又はリセット時にストリーミングデータとその装置から導出されたイーサネットデータとの間で切替えられるようにできる。どの装置、準拠又は非準拠、が結合されているかによらず、入来RXデータが検出器45bとマルチプレクサ48bの入力ピンの一つに載せられ、他方の入力ピンにBIが載せられる。検出器45b内で自動検出機能が実行され、入来データのプロトコルをネットワークプロトコルと比較し、入来データが準拠装置からか又は非準拠装置からかを判定する。
ポート42のRXピン上の入来データは、検出器45bと、最終的に装置41に通ずるインタフェースの受信ピンとの両方に載せられる。BI上のデータは、必要に応じてBOに載せられたBIを受信するコントローラを接続したポートを介して41へ経路設定される。図3に示す如く、ポート42,46上の入来データは準拠装置からであるのに対し、ポート44上の入来データは非準拠装置からである。マルチプレクサ48aは、装置41からのデータ及びBIがマルチプレクサ48aにより選択される以外は、マルチプレクサ48bと同様の諸機能を実行し、対象装置50aが準拠型であるか否かに応じて、装置41からのデータ(装置41に関連するインタフェースのTXを介して)又はBIからのデータがポート42の送出データTXに載せられる。
装置50aは、前述したネットワークプロトコルに従ってデータを送信/受信する準拠装置であり、チャネルAのチャネル情報は適切なタイムスロットに配置され、このため検出器45bとマルチプレクサ48bが適切なデータを比較し、装置41のインタフェースに関連する受信ピンRXに経路設定する。かくして、装置41のRXピン上の入来データは、例えばポート42のBOに対するI2Cポート又はI2Sポートを介してインタフェース回路及び関連する送受信器コントローラを通じ内部で処理されて結合され、装置41により入来データを処理するのみでなく、RXピン上の入来データ又はネットワークデータの入来データBIを必要に応じて他の装置50bと50c及び/又は50dへ送信する。コントローラを介してBOを装置41の入力に結合するのに用いるインタフェース回路の詳細を、図8を参照して以下に説明する。
装置が装置50bのように非準拠型である場合、そのときは特定のチャネル(すなわち、チャネルC)のデータがどこに載せられるは未定であり、何故なら装置44内部の自動検出回路が、検出するプロトコルがネットワークプロトコルに認識不能だからである。このため、ポート44はマルチプレクサ上だけでなくシリアル入力ピン上でも入来信号を受信する。ポート44内のマルチプレクサは、BOに結合してネットワークを継続させるため、BIを選択するが、装置41はシリアル入力ピンSRを介して非準拠データを受信できるようにする。RX入力ピン上に載せられた入来データが準拠型であるか否かについての判定は、例えばDSP内部で行われる。装置50aと同様、装置50c,50dも、図示したチャネルE等の特定の専用スロット内で情報チャネルを送信する準拠装置群である。装置50c,50dをリング内で結合し、二つを上回る装置を含むようリングネットワークを拡張することができる。
図3は、第2の装置50a(又は他の任意の外部装置)のTXピンから第1の装置41のRXピンへの、かくしてリングを形成する次の連続する装置の別の外部装置50cへのネットワークを巡る準拠データの転送を全事例において示す。非準拠の入来データが受信された場合、そのときはその入来データはネットワークに直ちに置かれず、装置のシリアル入力ピンに置かれ、その入来データが提供するどのようなプロトコルにも従って処理され、それ故に非準拠データを扱うよう設計されたシリアル入力ピンに受け入れ可能である。
図4は、SPDIFストリーミングデータやイーサネットパケット化データ等のある種の非準拠データを示す。非準拠装置50bのTXピンからの入来データは、伝送チャネル52上で到来し、そこで非準拠(SPDIF又はイーサネット)データが検出器/比較器54bによりネットワーク伝送路上で送信されるデータと比較される。プロトコルが異なる場合、そのときは比較器54bから比較器信号(C)が送信され、マルチプレクサ58bを介してBOに送信すべきBIからのネットワークデータを選択する。受信RXデータは、検出器54bの入力だけでなく装置41に関連するDSPのシリアル受信入力(SR)にも転送される。DSP60は、非準拠データに対応することのできる入力ピンを保持し、このためSRは例えばSPDIFプロトコル又はイーサネット符号化プロトコルを認識することができる。しかしながら、装置50bが準拠型である場合、準拠情報がBOに経路設定され、必要に応じて例えばI2Cポートを介してDSPに経路設定される。DSP60は、データが準拠型であるか否かに応じてデータに対する処理を実行することができる。それらの処理には、SRにおいて非準拠データの復号化と装置が必要とするあらゆる機能の実行とが含まれる。また、必要に応じて非準拠データは非準拠データを準拠データにするようDSP60の操作により再フォーマットされる。非準拠データをシリアル送信出力(ST)ポートへ送信し、続いて非準拠外部装置へ送信することができる。しかしながら、DSP60から出力されたデータが準拠装置を宛先とする場合、データはコントローラ56に提示される。コントローラ56は、非準拠データを準拠データ用に適切なタイムスロット及びプロトコルに再フォーマットし、BOを介してネットワーク上でそのデータを転送するよう動作する。かくして、DSP60からのデータはコントローラ56を含む送受信器インタフェースを介してフォーマットされる。コントローラ56は、図8に示す如く、自動検出器やマルチプレクサと一緒に単一のインタフェースとして統合することができる。
BIとRXの間には、BIをネットワークに送り込むネットワーク送受信器としてだけでなく、装置41がネットワーク上で転送される準拠データの宛先である場合、BIを装置41に送り込むようにも動作するコントローラ56が配置される。コントローラ56は準拠データを取り込み、そのデータをDSP60が受け入れることができる周知のI2Cプロトコル又はI2Sプロトコルに構成する。コントローラ56は、BIの入来データを同期させ、DSPが認識可能なフォーマットに再フォーマットする物理層装置として機能する。コントローラは、再フォーマットされたデータをI2Cバス上でDSP60へ送信することができる。それによって、コントローラ56は準拠ネットワークデータを装置41の入力に載せることができる。PHYやコントローラ56の物理層装置がイーサネット入来データの再フォーマットに関係する際のそれらのさらなる詳細が、例えば図15〜図17に示してある。
このように、各ポートはインタフェースを含む。ポート44のインタフェース64は、マルチプレクサ58a,58b、検出器54b、DSP60、コントローラ56を含むよう詳細に図示してある。図4の検出器54bは、自動検出又は自動ネゴシエーション機能を実行する。図4の例では、検出器54bは入来SPDIFプロトコルをネットワークプロトコルと比較するか、又は入来イーサネットプロトコルをネットワークプロトコルと比較する。インタフェース64の送信側で対応する検出器が必要となるが、それはマルチプレクサ58aがポート64のTX出力に接続された外部装置50bのステータスに応じて準拠データ又は非準拠データを選択するからである。構成レジスタは、外部装置の準拠ステータス/非準拠ステータスを保持し、外部装置が非準拠型であるか又は準拠型であるかに応じて、C=0又はC=1という適切な選択信号をそれぞれマルチプレクサに供給するようプログラミングされている。図示の如く、構成レジスタは、ポート44のTX出力に結合された非準拠装置を示す0なる選択ステータスを保持し、DSP60からの非準拠データのシリアル送信出力(ST)が非準拠装置50bに確実に転送されるようプログラムされている。図示の如く、STは外部装置50bのRXピンが認識可能なSPDIF出力データを生成することができる。
図5は、検出器54bの比較機能を実行するのに使用できる二つの分離された検出器、すなわちプリアンブル検出器/比較器66と符号検出器/比較器68を示す。SPDIFプロトコルは、各情報フレームに専用の時分割多重化チャネルを利用せず、イーサネットプロトコルは、米国特許第6,437,710号に記載されたDCA符号化又はDCのない符号化とは異なる符号化を含むものと認識されたい。
イーサネットの8B/10B又は4B/5B符号はDCA符号とは異なるものとして検出され、コード比較器68が比較結果をマルチプレクサへ送り、ネットワーク内の準拠装置の受信入力上で入来データを選択的に受信又は非受信とする。符号比較器68と同様に、プリアンブル比較器66はSPDIFのプリアンブルをネットワークプリアンブルと比較し、プロトコルの違いが存在するかどうか判定する。符号比較器とプリアンブル比較器はともにプロトコルのどんな違いも特定し、入来データを非準拠データの受信専用であるシリアル入力ピンに送り込むことになるか、又は入来データを、準拠データを受信すべくポートのBOに接続されたそのポートの受信入力に載せることになるかを表す。
図6と図7は、アナログデータである異なる首里の非準拠データを示す。装置50b内部のDACは左アナログ音声出力データと右アナログ音声出力データを送信するよう設計してあり、右アナログ音声データは装置50bの送信ピンからポート44の受信ピンに送り込まれる。ポート44上の受信ピンは、DACから右アナログ音声データを受信するのと同じピンである。左アナログ音声データは、装置50bの受信ピンからインタフェース65内部のADCの左アナログ音声入力にだけでなくポート44の送信ピンにも送信される。図示の如く、ポート42,44,46は図3のポート群と同じであるが、ポート44内部にはADCを含むインタフェース回路65が存在する。インタフェース回路67は、DACを含む。又は、インタフェース回路内部のADC回路及びDAC回路に代え、ADCとDACを関連する装置41(図3)の別の領域内に設けることもできる。
ポート44,46のインタフェース回路65,67の内部のADC回路とDAC回路と同様、非準拠装置50b,50cの内部に対応するDAC71とADC73を配置することができる。重要なことに、ADCの左アナログ音声データと右アナログ音声データは、送信ピンと受信ピンがそれぞれ共用する左アナログ音声ピンと右アナログ音声ピンに載せられる。反対に、DACの左アナログ音声データと右アナログ音声データは、受信ピンと送信ピンがそれぞれ共用する左アナログ音声ピンと右アナログ音声ピンに載せられる。このようにして、左/右音声情報はDACからADCに関連するポートの左/右ピン(及び送信/受信ピン)に送信される。DACにより送信される左情報と右情報はADCにより戻され、かくしてDAC上の送/受信の右/左変換はADC上の受/送信の右/左変換と整合性があり、ADCとDACの間にアナログ音声情報を送受信するための仮想ループネットワークが形成される。図6に示す如く、ADCは第1の装置のポートに関連させるか、又はそのポートを介して第1の装置に接続された第2の装置内部に設けることができる。同じことが、DACにも当てはまる。
図6にはインタフェース回路65、67の詳細な図もまた含まれており、ADCとDACは別々の左右のADCとADCに分けてある。左アナログ音声チャネルは、左ADC74に結合されている。マルチプレクサ76aは、DSPからのシリアル送信出力(ST)か又はネットワークからのBIを選択するよう結合されている。かくして、左アナログ音声チャネルのデジタル表現が選択され、ポート44のL/TXピンへ送信され、さもなくばBI内のネットワークデータがL/TXピンへ送信される。アナログ音声の左チャネルと右チャネルは、ADCからDSP78へ転送され、デジタルフォーマットにされ、ポート44に結合された外部装置が準拠型であるか又は非準拠型であるかに応じ、コントローラ56を介してネットワークへ転送されるか又はポート44のL/TXピンを介して出力されるかのいずれかが可能である。受信右アナログ音声チャネルは、右ADC79を用いて入来データを受信し、検出器75によりデータが準拠型であるかどうか判定し、準拠型でない場合はそこでマルチプレクサ76がBIをBOに載せるようにする点で、左チャネルと同様に動作する。アナログデータの左チャネルと右チャネルはDSP78へ転送され、次にインタフェース65を介してポート44に関連する内部装置へ転送される。
インタフェース65と同様、別のインタフェース67も同様に配置した回路要素を有し、詳しくは左DACと右DACを互いに別々に分離してある。DAC74a、79aは入来データを受信し、変換する。マルチプレクサ76a’が図示してあり、マルチプレクサ76aと同様に動作する。同じことが、マルチプレクサ76bや検出器75bと同様に動作するマルチプレクサ76b’と検出器75b’に関しても言える。適切な選択信号が構成レジスタを介して供給される場合、接続された装置に戻るようBIを介してネットワークから準拠データを送り出す駆動回路を各インタフェース内部に配設することができる。図6に示す如く、選択信号Cは0に設定されており、DSPのST出力を装置50b,50cの非準拠受信入力へ送り込むべきとの選択を示している。仮に装置50b,50cが準拠型であるとすると、そのときは選択信号Cは1に設定され、装置50b,50cの受信入力にBIが載せられるように選択する。
図7は、受信アナログ信号の周波数をポート間のネットワーク上で送信される準拠データのネットワーク転送速度と比較するのに用いる検出器75b/75b’を示す。通常、BIとBOの間のネットワーク上や、隣接するBOとBIの間で送信されるデジタルデータはFSYの倍数であり、FSYは44.1kHz又は48kHzである。アナログ信号は通常、30kHz未満の周波数で送信される。デジタル信号のDCバイアスは上方調整してネットワーク上で送信できるが、アナログ信号のDCバイアスは実質ゼロである。DCバイアスを調整することにより、周波数よりも振幅の比較が望ましいかどうかの区別がなされる。検出器75a/75a’を用い、DSPから送信されたデジタル信号がネットワークプロトコルに準拠しているかどうか判定し、かくして信号をネットワークに載せるか又は非準拠外部装置へ転送する。
図8は、コントローラ56を組込んだ二つのインタフェースユニット80,82を示しており、一方のインタフェースの送信ピンは図示の如くマルチプレクサにより別のインタフェースの受信ピンに実質接続されている。無論、インタフェースユニット80,82は、必要に応じて1つのユニットとして統合させることもできる。送信ピンと受信ピンの接続により、ポート100aのインタフェース回路80とポート100bのインタフェース回路82の間にそれぞれデイジーチェーン又はリングトポロジの形成が可能になる。加えて、装置(「第2の装置」)がデータを送信できるハブが形成されるように、インタフェース80とインタフェース82が結合される。さらに、第2の装置84に加え、第3の装置86を第1の装置90に接続することができる。図示の第2の装置と第3の装置は、この実施形態では音声−映像受信器84,86である。自動非準拠検出機構により、CDプレーヤやDVDプレーヤなどの旧来の家庭用機器が準拠ネットワークに接続され、44.1kHzや48kHzの音声情報や映像情報などの様々なサンプリングレートの素材をサポートするよう固定速度でネットワーク上で転送を行うことが可能になる。
音声−映像受信器(準拠型又は非準拠型)は、DVDプレーヤ90からネットワークに載せられた音声−映像情報又はインタフェース82を介してDVDプレーヤ90から送信されたSPDIF情報を再生することができる。情報は、宛先の音声−映像受信器が準拠型であるか否かに応じて、I2Cポート又はI2Sポートを介してインタフェース80又は82の入力であるシリアル受信SRへ送信される。インタフェースユニット内部のコントローラは、入来データを同期させ、入来データに対し他の物理層機能を実行する。音声−映像受信器84及び/又は86は、例えば光情報を光ファイバ受信器(FOR)92a及び92bへ送り込むことができる。
自動SPDIF(又はイーサネット)検出を実現するため、旧来の装置86から出力される非準拠データをインタフェース82のピンであるSPDIF/イーサネットシリアル入力SRにも接続してある。このピンは、SPDIF/イーサネットデータを受信するように構成されている。SPDIF/イーサネットが検出されると、入力マルチプレクサ状態はインタフェース80からのBIをインタフェース82のRX入力へ送るよう切替えられる。かくして、SPDIF装置86(すなわち、A/V受信器)が接続されると、リングが保持され、具体的には一方の装置から他方の装置へのネットワーク上の通信が維持される。ネットワークからの情報は、ネットワークを再び出て、光ファイバ送信器(FOX)98bを介して第3の装置86へ転送される。
破線内で、第1の装置、例えば、DVD90に対応する二つのポート100a,100bにラベルを付してある。ポート100aは、準拠装置84からの準拠データだけでなくネットワーク情報もまた受信することに専念する。しかしながら、ポート100bはネットワーク情報と装置86からの非準拠データをともに受信することに専念する。図示の例では、SPDIF/イーサネット入力はシリアル受信(SR)ポートなるラベルを付した非同期ソースポートにより回復させられる。コントローラとともに、前述した検出器/比較器をインタフェースに組込んで比較を行うことができ、ここでは適切な信号を多重化してインタフェースの受信ピンに載せるためにマルチプレクサを図示してある。SPDIF/イーサネットデータを受信する場合、SPDIF/イーサネットデータはロックされずに等時的に非同期シリアル受信ポート(SR)へ転送され、ここでインタフェース82内部のコントローラがPLL又は下記に説明する他の手段を用いて同期をとる。
マルチプレクサ94a,94bは、光が検出され、SPDIFデータが検出されなかった場合にだけ、光受信器データ出力信号をインタフェース80/82の受信入力へ接続する。光受信器のステータス信号は、インタフェースの汎用の入力/出力に接続される。ステータス信号により光が検出されたことが示された場合、そのときはインタフェースは対応するインタフェースユニット内部のSPDIFロック検出器を監視する。所定の時間枠内でロックが検出されなかった場合、そのときは光受信器データ出力が受信(RX)入力に接続される。SPDIF入力は48kHz又は44.1kHzであるのに対し、ネットワークは48kHzにロックされている。ソフトウェアが周波数の差を自動的に算出し、比較器がプリアンブルの違いを特定する。
DVDプレーヤ90は通常、PLL104から導出された27MHzクロックに同期する。DVDプレーヤ90は、好ましくは96/48kHz又は88.2/44.1kHzの音声データを供給する。DVD速度とネットワーク速度が等しくない場合、DVDデータはロックされた等時性モードで転送される。DVD速度とネットワーク速度が同一である場合、DVDデータは同期転送される。DVDからの最大データはおよそ6チャネル24ビットであり、96kHzである。同時に、DVDはSPDIFを介してCD音声帯域幅に等しいAC3符号化データを供給する。96kHz音声の6つ全てのチャネルに加え、ACデータを三つの等時性ストリーム内で同時に転送することができる。インタフェース80/82は、96kHz音声の6つのチャネルを処理し、それらのチャネルを一括して二つの等時性チャネルとし、その一方でインタフェースの一つの上の1つのDSPがAC3を一括して別の等時性チャネルとする。
データをロックせずに等時性形態で転送することには、通常、宛先装置におけるデジタルPLLが関わる。このため、PLL104(図8)は、FSY及びFSYと送信元装置におけるサンプリングクロックの間の周波数又は位相の差から宛先装置のシリアルクロック又はサンプリングレートを定めるデジタルPLLとすることができる。図9は、ロックされていない等時性転送機構を示す。送信元装置におけるサンプリングレート変換に代え、図9は宛先114におけるデジタルPLLを示す。送信元装置105は、fsでサンプリングが可能であり、比較器106は、ネットワークフレームレートFSYをfs=FSY1のサンプリングレートと比較する。位相差ΔΦ1又は時刻1と時刻2における位相差(ΔΦ1+ΔΦ2)を、ネットワーク上で単一のビットとして又は複数ビットバイトとして送信する。位相差すなわちΔΦ1には、位相差の大きさに応じて異なるビット値を持たせることができる。それ故、サンプルデータをFSY2のフレーム転送レートで等時性データとして送信できるが、恐らくは各フレーム内で追加のバイトを予定し、FSY2に比べより高速のFSY1に対応させる。このように、ストリーミングデータはネットワーク上で送信される連続するフレームのそれぞれに亙り保持される。
比較器106が、各フレーム転送クロック又は各サンプリングクロックの立上がり端又は立下り端の間の位相差を比較する。デジタル位相比較器108は、例えばタイマを用いて実装が可能である。三つのシリアルビットストリームを用いる場合、例えば高速クロックは3072fsとすることがきる。例えば、6サイクル分の3072fsだけFST1とFSY2の立ち下り端(ΔΦ1として表される)が離隔している場合、2進の6の値を示すバイトがネットワーク上で周期的に送信される。クロックレートを24576fsに高めることにより、2進値の分解能が大幅に向上し、かくして8ビットを周期的の送信に代え12ビットを送信することができる。
その後、位相差(例えば、8ビットバイト又は12ビットバイト)がPLLと宛先ポートにより用いられる。加算器110がFSY1とFSY2の位相差(A−Rで表される)からFSY2とFSY1の位相差(B−Rとして表される)を減算し、A−R−(B−R)を得る。それらの差が0で、かくしてデジタルPLL104がロックされている場合、加算器110からの出力はフィルタ/分周器/発振器ネットワーク112に載せられる0位相差となる。加算器110とフィルタ/分周器/発振器112は、DSPの一部分を形成している。位相比較器108は、ネットワーク転送フレームレートクロック端を基準点Bに示す宛先装置のローカルサンプリングレートと比較する。基準点Bは、デジタルフィルタ/プログラマブル分周器112からのフィードバックにより基準点Aに一致させられる。分周器112は、フィルタ112から出力された制御に基づいて発振器出力を分周し、ローカルサンプリングクロックBを送信元サンプリングクロックAにロックするのに必要な適切な周波数及び位相とする発振器112から高周波数クロックを受け取る。
宛先装置のローカルデジタルPLLにより、任意の周波数で任意のストリーミングデータをロックさせずにネットワークに送り込むことが可能になる。宛先装置114にデータが受信されるまで、サンプリングレートは送信元装置105上のサンプリングレートにロックされない。位相及び/又は周波数の差は、ネットワーク上で等時性データにロックされていない等時性データとして送信される。デジタルPLLにより、送信元装置における複雑なサンプリングレート変換メカニズムの使用とその装置におけるDSPのオーバーヘッドとが回避される。その代わりに、単一のPLLを宛先ポートにおいて使用し、それによって等時性データがネットワーク上で送信できるようにし、サンプリングレート変換やローカル化された水晶発振器に関連するジッタに代え、宛先ポートにおけるクロック再生が用いられる。
図8は、音声−映像受信器の準拠入力上又は非準拠入力上で受信対象SPDIFデータ及び/又はネットワーク準拠データをネットワークに送り込むDVDプレーヤ90を示している。反対に、図10は、ネットワーク又はそのネットワーク内に配置された音声−映像受信器の準拠ポートと非準拠ポートに情報を送り込む準拠装置と非準拠装置を示している。具体的には、図10は入来データをネットワーク又は音声−映像受信器124の準拠ポート/非準拠ポートに送り込む準拠DVDプレーヤ120と非準拠CDプレーヤ122を示している。簡単にするため、各ポート126a,126bの様々な詳細は図示していない。ただし、光ファイバ送信器と受信器のポート、同期ポート、マルチプレクサだけでなく、インタフェースのGPIピン、SRピン、GPOピンの機能もまた図8のポート100a,100bで示したのと同様であることは理解されたい。
非準拠CD又は旧来のCDは、左音声チャネル出力と右音声チャネル出力をADCインタフェースに送る。ADCインタフェースは、その音声情報をデジタル情報として受信器124のDSPへ転送する。準拠装置120も、同様に、データをポート126aに送ることができる。ポート126aは、データをネットワークへ転送するとともに、シリアル送信ピン(SX)を介して音声−映像受信器124のDSPへ転送することができる。
シリアルクロック(SCK)とフレーム同期クロック(FSY)は、図9のロックされていない等時性転送メカニズム又は図11のロックされた等時性転送メカニズムのいずれかを用いて導出される。送信元装置をネットワークタイミング、例えばデジタル映像ブロードキャスト受信器に従わせることができない場合、そのときはFSYとSCKは大抵ロックされていない等時性転送モードを用いて送信元装置から導出される。ここでFSYとSCKは宛先装置において送信元装置から編成される。しかしながら、送信元装置がクロックマスターユニットとならず、恐らくはネットワークに接続された何らかの他の装置がマスターユニットとして動作する場合、マスターユニットは基本的にネットワーク自体となる。かくして、送信元装置をネットワークマスターユニットに従わせることができ、宛先装置もネットワークマスターユニットに従わせることができる。この例では、図11は送信元装置及び宛先装置のネットワーククロックマスターユニットへ従うことを示しており、ここではネットワークフレーム同期FSY2が送信元サンプリングレート及び宛先サンプリングレートであるFSY1=fsの編成に用いられる。
図10と図11を併せて参照すると、宛先のPLL130が図10に示されている。PLL130には、分周器/逓倍器132が関連付けられている。分周器/逓倍器132は、FSY2なるネットワーク転送速度に相対的なX/Y係数での周波数の分周と逓倍とを行う。別個の分周器/逓倍器に代え、PLL130に部分分周器132を持たせることもできる。部分分周器又は別個の分周器/逓倍器132を、実際にはマルチメディア装置124の一部分に組込むことができる。
図11を参照するに、ネットワークフレーム同期FSY2が48kHzで、送信元サンプリングレート及び宛先サンプリングレートが44.1kHzである場合、分周器/逓倍器132a,132bには147/160なる累積比が生ずる。しかしながら、ネットワークフレームレートが44.1kHzで、送信元サンプリングレート及び宛先サンプリングレートが48kHzである場合、そのときは累積比は分周器/逓倍器132a,132b内で160/147となる。DVDドライブの一部として、システムコントローラが駆動回路を制御し、音声情報及び映像情報を復号化し、音声情報をアナログに変換する一方で、伸張した映像をディスプレイへ送る。
コントローラは通常、27MHzの局部水晶発振器によりクロック動作する。さもなくば、水晶発振器を非アクティブとし、FSY2から導出された27MHzクロックからコントローラをクロック動作させることもできる。コントローラは、インタフェース134a,134b内部にある。音声データは、駆動回路から読み取られると、映画の場合は伸張され、必要に応じてDACへ転送される。DACのサンプリングレートは一定で変化せず、27MHzの基準から直接に又は無条件に生成される。一例として、2/1125なる周波数変換比を有するPLLがコントローラの27MHz基準クロックを駆動回路から音声データをサンプリングするのに必要とされる48kHzサンプリングクロックへ変換する。49/30000という変換比が、27MHzを44.1kHzに変換する。かくして、送信元装置136及び宛先装置138は、インタフェース134a,134b内部でコントローラが動作する速度だけでなく、ほぼあらゆる周波数でサンプリングされたデータを受け取ることができる。このため、シリアルクロックとサンプリングレートは、送信元ノードと宛先ノードの両方の内部の局部PLLの分周係数と逓倍係数に基づき調整することができる。かくして、ロックされた等時性転送モードが実現できる。
図12は、ツイストペア線又はCAT5ケーブル上で非準拠装置へTCP/IP情報を送信するパーソナルコンピュータを含めることのできる代替実施形態を例示するものである。しかし、残念ながら、イーサネット通信に関連するTCP/IP情報はストリーミング映像音声情報等の他種類のデータとは異なるものである。図12は、例えばセットトップボックス(STB)200との間で各種類のデータを送信しあう住居を例示している。STB200へのクライアントとしてのDTV202は通常、同軸ケーブルに接続されて音声と映像のストリーミングデータを受信する。加えて、住居内には複数のDTVが存在している。各DTVは望ましくはウェブ閲覧ができることであり、かくして点線で示した別個のCAT5ケーブルを介してSTB200にリンクさせることになる。STB200と各クライアント間に二つの物理的接続を持たせることは、特に住居全体に配置されたSTBと複数のDTVとの間に物理的結線又は経路設定リンクを一つしか持たない住居では厄介なことが判っている。セットトップボックスとクライアントとの間の冗長な結線を取り除くことは極めて望ましく、好適な解決策が図13に示してある。
図13は、住居全体の既存のCAT5ケーブル上でインターネットアクセスとブロードキャストストリーミングデータの両方をサポートするSTB200と各DTV202との間の単一の物理的結線を示すものである。各DTV202がインターネットとストリーミングデータの両方にアクセス可能であることに加え、ネットワークを各部屋の他のノード又は住居内の他の部屋へ延長させることもまた望ましい。例えば、DTV202は音声映像受信器204へさらにデイジーチェーン接続することができる。DTV202bとDTV202cは内部通話装置へ結合させることもでき、一方でDTV202dは例えば防犯カメラに接続することができる。かくして、他のマルチメディア装置をデイジーチェーン内で各クライアントの第2のポートへ結合し、一方のポートをSTBに接続し、他方のポートを追加マルチメディア装置へ接続することができる。
図14は、デイジーチェーン態様にて接続したクライアント202間に仮想リングを形成するデイジーチェーン接続性をさらに詳しくしたものである。イーサネットとストリーミングデータは、各ポート210に接続した二対の導体のツイストペア線208として表した単一のCAT5ケーブルで結ばれている。すなわち、二つの導体がポート210の受信器に結合され、二つの導体がポート210の送信器に結合され、各対は差動信号に対応する。非準拠イーサネットパケットは4B/5B符号化を用いて符号化することができ、ネットワーク上を送信された準拠フレームのフレーム構造内でラップ処理される。例えば、クライアント202aはSTB200からパケット化イーサネット情報を受信できるが、別のセグメント又は同様にSTB200から送信されたフレームの一部に配置されたストリーミングデータもまた受信することができる。
各フレーム内のデータのビットストリームは、一つのクロック信号に同期される。ネットワークの起動時又はリセット時に、一つのクライアントを主クロッククライアントに割り当てることができ、それによってクライアント内の水晶発振器を用いてネットワーク伝送を同期させる。同期データは、スレーブクライアント位置にてクロック信号を再生するためのエッジを提供する。各スレーブクライアント又はノード内の受信器がクロック信号を再生し、その信号を用いて同期データをリング内の次のクライアント又はノードへ送信する。各クライアントが二つのポートを含み、また各ポートが差動信号を送受信する二対の導体に対応しているため、たとえクライアントノードがデイジーチェーン態様にて接続してあっても、ネットワークはリングとして構成される。単に一例として示したが、クライアント202eはストリーミング映像信号を受信するDTVとすることができ、音声信号はこれら音声信号を処理する音声映像受信器を持たせることのできるクライアント202fへクライアント202eを介して転送される。さらにフレーム構造内に、クライアント202gにより受信されて、クライアント202gにインターネットアクセス又は電子メールのメッセージ伝送を可能にするイーサネット信号を設けることができる。
クライアントノードはデイジーチェーン態様にて接続されるが、これらのノードを、同様にリングトポロジ又はスタートポロジで接続することができる。例えば、それぞれがその固有の関連ネットワークインタフェースを有する三つのノードを接続するときに、各ノードにノード間のCAT5リンクを用いてその固有のRJ45端末群を持たせることができる。最低1つのRJ45コネクタを、各ノードに関連付けることができる。ただし、リングトポロジにて接続すると、三つのノードに対し6つのRJ45コネクタが必要となる。スタートポロジでは、三つのCAT5と1つの経路設定ハブと併せ6つのRJ45コネクタが必要となる。経路設定ハブの一例が図3に示されており、ここではハブは準拠データと非準拠データの両方に適合させることができる。さもなくば、ネットワークインタフェースは図22に示す如くルータ構成の中で結合することができる。
図15は、クライアント202e等のクライアントの双方向能力をより詳細に示すものである。具体的には、第1のポート212はSTB又はモデム200への接続用にRJ45ジャックへ接続される。第2のポート214は、音声映像受信器202fへの接続用に別のRJ45ジャックへ接続される。ネットワークインタフェース216は、ポート212,214とそこに関連するマルチプレクサとを含んでいる。インタフェース216はまた、エンコーダ/デコーダやスクランブラ/デスクランブラや波形整形送信器や出力駆動回路やツイストペア線受信器や適応型イコライザやメディアアクセスコントローラ(MAC)等だけでなく、DSP218も含む。クライアント202eがDTVである場合、そのときは映像情報をデコーダ220へ送信でき、このデコーダが映像情報を復号化し、それをディスプレイ222用に適切なフォーマットにする。映像情報は、クライアント202eにより抽出される。しかしながら、パケット化データだけでなく音声情報もまた、バイパス出力(BO)ポート214を介して前述の如く音声映像受信器202fとパーソナルコンピュータ202gの下流へ転送される。
図16は、図15のネットワークインタフェース216をより詳細に示すものである。ネットワークインタフェース216は、幾つかの異なる速度を持たせることができて異なる符号化方式を受け入れることのできるPHYを表している。例えば、動作速度は150Mbit(3072Fs)、125Mbit(2560Fs)、100Mbit(2048Fs)とすることができる。異なる符号化には、DCAと4B/5B符号化を含めることができる。リングトポロジを実現すべく、両ポートはクロック再生とデータ再生を実行し、水晶220等の主クロック発生器又はPLL222を介する再生のいずれかを用いたロック指示を提供する。ポート対に関連付けたのが、駆動回路と、受信器と、そのノードを介するか又はネットワーク内の次のノードへ向けそのノードを迂回するかのいずれかにより情報チャネルを導く一連のマルチプレクサ224とである。論理回路226がデータを受信し、フレームエッジとビットタイミングエッジの両方に対する同期クロックを抽出し、位相ストリーム228についてデータ再生とクロック再生のための同期を確立する。
MAC230が論理回路226だけでなくクロック/データ再生回路網にも結合されており、MII及びRMIIバスをサポートするメディアに依存しないインタフェースを提供する。MAC230はホストコントローラ232とデータエンジン234とを含み、CAT3とCAT5のシールド無しのツイストペア線ケーブル用に全二重10ベースTと100ベースTをサポートし、前述したフレーム構造中に配置された準拠データに対応することもできる。
図22は、図5に類似の一群のインタフェース216を示すものである。ただし、これらインタフェースは準拠情報及び非準拠情報の両方を受信し転送するよう結合されている。非準拠情報は、対応するRJ45コネクタからポート212を介してポート214へ、さらに続いてルータ211へ送信される。ルータ211は、例えばルータがイーサネットルータであれば、そこで非準拠情報を転送する。非準拠情報は適切なインタフェースへ、さらに続いて個々のRJ45コネクタを介してその宛先へ返送される。図22は3つしかインタフェースを示していないが、全てルータに接続する3つ以上のインタフェースを設けることもできる。データが準拠している場合、そのときはローカルバス213上を本願明細書に記載したプロトコルに従って情報を送信することができる。
図17は、MAC230をさらに詳細に示すものである。論理回路240は、デコーダ220やディスプレイ222等のマルチメディア装置からデータを受信する。このデータは、そこで送信データとして駆動回路へ転送されるか、又は受信データとして受信器から受信でき、いずれも差動対242となる。MAC230はデータが準拠か否かに応じて異なる送信速度をサポートしているため、手作りの信号を用い4ビット送/受信バス上に有効な送/受データが存在することを示す。MACインタフェースは、MIIモード又はRMIIモードにて構成される。
MAC230はまた、自動検出又は自動ネゴシエーション機能244を含んでいる。自動ネゴシエーション機能の目的はその結合クライアントの能力に基づき最適リンクパラメータに合わせPHYを自動的に構成することにある。自動ネゴシエーションは二つのリンクパートナー間で構成情報を交換し、最高の性能モード又は結合クライアントの構成を自動的に選択するメカニズムである。自動ネゴシエーションはIEEE802.3仕様に定義されているが、クライアント結合装置が準拠型か否か規定する構成レジスタ246内の追加予定ビットは除外されている。
PHYの能力は、構成レジスタ246内に格納されている。自動ネゴシエーションは、ハードウェアリセット又はソフトウェアリセット、電源遮断リセット、リンク状態ダウンのいずれかの生起により、すなわちレジスタを0としてビット9を論理1電圧値に設定することで開始され、自動ネゴシエーションの再開を指示する。これらの事象の一つを検出すると、PHYは高速リンクされたパルス(FLP)のバーストを送信することで自動ネゴシエーションを開始する。これらは、10M送信器からのリンクパルスのバーストである。FLPバーストにより送信されるデータは、「リンクコードワード」として知られる。リンクコードワードは、IEEE802.03第28項により定義されている。構成レジスタ内に保存されたビット数をどれ位使用するかに応じ、リンクされたクライアントごとに恐らく複数の対応付けが存在する。例えば、リンクされたクライアントは100M全二重、100M半二重、10M全二重、10M半二重やイーサネット装置、SPDIF等として識別される。例えば、PHYの特別制御/状態レジスタからなるレジスタ31は、クライアント結合装置がイーサネットデータを送受信(すなわち、パーソナルコンピュータ)しているか、SPDIFデータ等を送受信しているか等の判定用の他にその予定ビットの一つを持つことができる。
図17は、10M又は100Mの全二重又は半二重の信号の送信又は準拠信号250と非準拠信号252の送信のいずれかに用いられるブロックを示している。反対に、受信信号はアナログフォーマットからデジタルフォーマット254へ変換することができ、受信信号の速度と受信信号が準拠装置か非準拠装置に由来するものかどうかに応じ、クロックとデータが256にて再生される。
図18は、PHYが行う処理260の論理的手順を示している。MAC230は、その固有の主水晶クロックか又はネットワークから再生されたクロックのいずれかに同期される。入来信号は、データが4B/5Bエンコーダ272を用いて符号化されるMII規格インタフェース又はRMII規格インタフェース270に入れられる。入来ニブルを1ビット増加させ、符号化された5ビットがスクランブラ274を用いてスクランブル処理される。反復データパターンは、電力スペクトル密度と大きな狭帯域ピークを取り除くために好ましくはスクランブル処理される。
スクランブラ274は5ビット幅並列データをNRZI変換器276へ送り、そこでこれを125MHzのシリアルNRZデータストリームとする。NRZデータストリームは、変換器278を用いMLT−3へ符号化される。MLT−3は、論理レベル中の変化がコードビット論理1を表し、同一レベルのままの論理出力が論理レベル0のコードビットを表す3レベルコードとなる。イコライザ280が、物理的伝送チャネルにより生じた位相と振幅の歪を補償する。イコライザ280は、例えば1メートルと150メートルの間のCAT5ケーブルに対して信号を復元する。一旦復元されると、データはRJ45ジャック282へ置かれ、その後にCAT5(又はCAT3)ケーブル284上に載せられる。しかしながら、無論のことMAC230からCAT5 284へのデータフローは双方向である。
図19を参照すると、4Bコードに対応する5Bシンボルを受信器が受信し、送信器が送信する。例えば、受信器は5Bコードを一意的4B値を有するものとして解釈する。送信器は、4B値に固有の5Bコードを送信する。4B値すなわちニブルでは、それぞれが固有シンボルで符号化され、例えば送信器によりCAT5ケーブル上に配置される16のデータ値の可能性がある。図19に示す16の一意的に識別されたニブルと5Bシンボルは周知であり、イーサネット送信プロトコル用に標準化されている。
図19と図20を併せ参照すると、イーサネットデータ290のパケットは、通常シンボル名JKすなわち1100010001の5Bシンボルを有するニブルからなるストリーム開始(SOS)対の後に送信される。パケット290は、シンボル名TRを有するストリーム終端(EOS)すなわち0110100111からなる5Bシンボルが後に続く。パケット290と292の間にはシンボル名Iを有する反復シーケンス、すなわち11111からなる5Bシンボルがあり、パケットが皆無であってチャネルが空いていることを知らせる。
イーサネット伝送プロトコルに特有なのが、全ての有効データが5Bシンボルシーケンス内に2続きを超える論理0を含まない点である。仮にデータが10ビットシーケンス内に一連の2続きを超える0を含むことがあれば、そのときは符号化違反が生起することが知られる筈である。データを表すよう互いに繋ながれた二つの5ビット5Bシンボルには少なくとも一つの論理1値により仕切られた2又は3ビット論理0値を含めることはできないため、フレーム開始において図21の参照符号294に示すように、そのようなシーケンスを定めることが、データ符号化違反を表しているだけでなく、FSY設定用の同期バイト(図2)もまた表している。FSYは同期バイトであり、各フレームの開始で反復される。JKの組合わせは、論理1値により仕切られた二つの論理0の3ビットシーケンスを、またKK値を用いた場合には二つの論理1値により仕切られた二つの論理0シーケンスを生成する。イーサネットパケット等のパケット開始は、参照符号296(図21)で示す10ビットシーケンス内の単一の三つの論理0ビット値により仕切られる。パケットヘッダ情報は、10ビットの二つの5Bシーケンス内で三つの論理0シーケンスを生成するK0やK1等の任意のシンボルシーケンスとすることができる。
図19に示す如く、5ビットの32の可能な組合わせが存在する。にもかかわらず、必要な4ビットを符号化するために16しか必要ない。このことで、16の未使用コードが残るであろう。イーサネットでは、これらのコードの一部を用いて、ストリーム開始、ストリーム終端、送信エラー、空コードを発信する。イーサネットでは、パケットは非同期ネットワークを用いて送信され、かくして任意の時間に送信され、同期情報は一切供給しない。すなわち、あらゆるパケットが所定時間内にその宛先にそれを作成する保証は皆無である。逆に、本通信システムは同期ネットワークである。一つのノードをタイミングマスターとし、他の全てのノードがビットストリームからその個別クロックを再生することができる。これによって、全ノードに同じクロックで正確に動作するよう強制することができる。
ノードはデイジーチェーン態様に接続してあるが、通信は仮想リング又は論理リングで動作する。イーサネット又はCAT5ケーブルはデイジーチェーンからの論理リングの生成に特に有用であり、何故ならそれが双方向通信用に複数のツイストペア線を含んでいるからである。ノードは共用チャネルに対するアクセスを調停し、ヘッダ付きパケットを宛先アドレスとヘッダへ送信することができる。チャネルはストリーミングチャネルとして特定ノードに割り当てられ、このチャネルが送信ノードに対しフレームごとに固定数のバイトを提供し、そのチャネルに音声又は映像ストリームを載せる。送信ノードは保証帯域を有しており、ネットワークの仮想リングにより保証対象データを所定時間内に宛先へ到達させることができる。
本願明細書のイーサネット送信プロトコルに準拠送信プロトコルを組合わせることで、サービス品質の問題は低減される。MAC回路網は、イーサネットと準拠パケットすなわちストリーミングデータとを自動的に識別することができる。ネットワークが別の準拠装置又は非準拠装置に繋がっていると自動検出が判定した場合、それを準拠送信プロトコルへの変換のために構成し、すなわちイーサネットモードにて通信させることができる。既存のイーサネットPHYを使用するには、準拠ネットワーク送信プロトコルはイーサネットが使用する4B/5B符号化を用いねばならない。再生クロックが利用可能であり、何故ならイーサネットPHYはイーサネットモードにおいてデータを再生するようそれを生成しなければならないからである。
イーサネット符号化規則は、3つを上回る連続する論理0はあり得ず、あらゆる5ビットコードに最低二つの1値が存在しなければならないことを要求している。かくして、データ送信用の16の有効コードは、どんな組み合わせも1以上の数の論理1により分離された2組の3つ連続する論理0を生成できないことが要求される。かくして、少なくとも一つの論理1により分離された三つの連続する論理0の符号化違反がフレームの開始を識別する。一旦フレーム同期パターンが識別されると、パケットの開始、パケット終端、待機識別子を識別するために、追加の符号化違反が用いられる。
多数の改善を本願明細書に記載したが、専用チャネル上でイーサネット様パケット情報を送信する能力により、例えばイーサネットモードで動作しているネットワークポートとの間でイーサネットデータの直接のトンネル接続が可能となる。イーサネット様非同期パケットには、開始バイトと幾つかの宛先バイトと優先認証(PACK)バイトとを割り当てることができる。イーサネット様パケットはまた、データの開始箇所と終端箇所を表す端部バイトを有する。開始バイトと終端バイトの組合わせには、前述のDCA符号化に違反する特別なコードが含まれる。PACKバイトは、フロー制御に用いられる。そのときのイーサネットMACアドレスと整合させるべく、パケット宛先アドレスは2バイトではなく6バイトとすることができる。イーサネットMACアドレスは不揮発性メモリ内にローカルに記憶させてあり、各装置ごとに一意的とされる。ノード上に常駐する応用が、準拠ポート又は非準拠ポートを通じて接続されているイーサネット装置と継ぎ目なく通信可能とすように、有効なイーサネットMACアドレスが用いられるべきである。
イーサネット非同期パケットチャネルと送信に合わせたこれらのチャネルの保守管理とを含む一つの問題が、調停である。一般に、例えばリングトポロジは、主ノードを有し、この主ノードに対する上流ノードと下流ノードとを有している。フレーム内の任意の所与のバイトについて、ノードはその固有値を送信するか又は先の上流ネットワークノードからの入来バイト値を迂回させるかのいずれかが可能である。各ノードは、データの送信前に入来データを変調することもできる。例えば、各ノードは入来バイト値をインクリメント処理し、そのインクリメント値を送信することができる。所与のフレームバイトについて、ノードはデータ値又は識別子のいずれかを送信することができる。識別子はあらゆるデータ値から一意的に識別可能でなければならず、通常は定義された符号化違反から構成される。調停期間中に開始識別子を用い、どのノードが特定チャネルの使用権を獲得することになるかを判定する。
2以上のノードが同じバイトチャネル上でデータを送信したいときは、調停プロトコルはどのノードが調停に勝利し、そのバイトチャネル上でそのデータの送信が許容されるか判定する。このチャネルは、調停に勝利したノードがそのデータを送信し終えるまで使用状態とされる。一旦チャネルがもはや使用されなくなると、ネットワーク内のノードはそのチャネルの使用権について再調停する。調停は、そのときにチャネルを要求しているどのノードが使用権を許可されたかの判定にだけ用いられる。例えばイーサネット非同期パケットチャネルに対する調停の一般則は、非常に直接的である。複数のノードがそれらの特定のフレーム内のイーサネットの開始を示す開始バイトを生成すると、そのフレームの開始に最も近い開始バイトを生成するノードが調停に勝利して使用権を得る。そのノードはそこで全パケットを自由に送信し、終了バイトで終了する。複数のノードが複数の同じバイト位置に開始バイトを配置しようと試みた場合、親ノードに最も近いノードが調停に勝利することになる。
さらにまた、他のノードが送信を終えたときに複数のノードがイーサネットパケットを送信すべく待機している場合、待機ノードはトークンリング態様にて(現在の送信ノードの直ぐ下流のノードで始まる、リングを通るデータフロー方向に)そのチャネルへのアクセス権を与えられる。複数ノードが送信態勢にあって、チャネルが既に使用されている場合は、そのときに通信しているノードに続くリング内のノードのうちの第1のノードだけが開始バイトの送信を許容され、チャネルが一旦空くと調停に勝利する。
単一リング又は仮想リング上の全てのノードがイーサネット様非同期パケットチャネルの帯域を共有することになるため、認証メカニズムを用いねばならない。全てのノードが同じ衝突ドメインを共有していて、全受信バッファが原因で一つのノードがパケットを受け入れることができない場合、優先認証(PACK)バイトを主張することでそのチャネル上の全ての通信データの流れを停止することができる。これは、イーサネット違反信号と機能的に等価である。ノードはPACKバイトをパケット用にアクティブとはせず、例えばそのMACに対する宛先アドレスやマルチキャスト又はブロードキャストアドレスを受信することを想定している。このときの非同期チャネル内のCRC返信応答バイトは、パケットがそれらの宛先に到達できないときに、低レベルハードウェアと送信ノードがこれを検出できるようにすることができる。このメカニズムは、全てのノードが単一のリング又は仮想リング内で互いに接続されているときにのみ機能する。
上記開示を十分理解することで、数多くの変形例と改変例が当業者には明白となろう。添付特許請求の範囲は、この種全ての変形例と改変例を包含するよう解釈されることを意図するものである。
両者間でストリーミングパケット化データを送信しようとする、成功していない試みにおける互いに結合された各そのような装置を示すブロック線図である。 各種類のデータ用に予定されたタイムスロットに基づきネットワーク上で準拠データの複数フレームを送信するのに用いるプロトコルを示す平面線図である。 リングネットワークを形成するよう装置(音声・映像受信器等)のポート群に結合され、準拠データをネットワークとの間で転送するポートを示す準拠装置及び非準拠装置を示すブロック線図である。 図3のポートの詳細を示すブロック線図である。 非準拠SPDIFデータをポートに関連する装置との間で転送し、必要に応じて非準拠データを再フォーマットしてネットワークに載せるためのポートに結合した非準拠SPDIF装置又はパケット(イーサネット上で駆動する)装置を示すブロック線図である。 図4の詳細を示すブロック線図である。 ポートに結合された装置からのデジタル信号のプロトコル(プリアンブル又は符号化)を比較し、デジタル信号をネットワークに転送するか、又はポートに関連する装置に先ず転送し、続いてネットワークに転送するか判定するのに用いる比較器を示すブロック線図である。 第1のポートの送信ピンに結合された左チャネル出力と第1のポートの受信ピンに結合された右チャネル出力とを有する非準拠DAC装置を示し、第2のポートから受信ピンが非準拠ADC装置の左チャネル入力に結合され、送信ピンが非準拠ADC装置の右チャネル入力に結合され、非準拠DACデータをポートに関連する装置に結合し、必要に応じて非準拠データを再フォーマットしてネットワークに印加し、再びDAC装置へ出力させるための第1のポートと第2のポートをともにブロック線図である。 図6のポート1の詳細を示すブロック線図である。 図6のポート2の詳細を示すブロック線図である。 ポートに結合された装置からのアナログ信号の振幅又は周波数を比較し、そのアナログ信号をネットワークに転送するか、又は第1のポートに関連する装置に先ず転送してからネットワークに転送するか判定するのに用いる比較器を示すブロック線図である。 一例示構成に従い、一対のポートを有し、その対を経由してAV受信器装置から準拠データ及び非準拠データを送信することのできるDVD装置を示すブロック線図である。 サンプリングされたデータを位相及び/又は周波数比較器を有する送信元ポートに送り込み、ロックされていない等時性データを送信元サンプリングレートとネットワーク上のネットワークフレームレートの位相差及び/又は周波数差とともに転送し、宛先ポートがデジタルPLLを実装して位相差及び/又は周波数差から宛先サンプリングレートをロックする送信元装置を示すブロック線図である。 図9のFSY2を示すロック線図である。 一対のポートを有し、その対を経由して準拠DVD装置及び非準拠CD装置から準拠データ及び非準拠データを送信することのできる一例示構成になるAV受信器装置を示すブロック線図である。 送信元ポートと宛先ポートがともにネットワークのフレーム同期周波数に対してロックされ、比例する周波数でサンプリングを行うPLLを含むサンプリングされたデータを送信元ポートに送り込む送信元装置及びサンプリングされたデータをロックされた等時性データとして受信する宛先装置を示すブロック線図である。 各クライアント、例えば住居に結合されて各クライアントごとにイーサネット(インターネット)情報と非インターネット情報とを受け入れる2本の伝送線の平面線図である。 好適な構成に従い図12の住居に巡らした各クライアントに結合した唯一の伝送線の平面線図である。 全てのクライアントとハブ間でデイジーチェーン態様にて結合されたイーサネットのカテゴリー3/カテゴリー5(CAT5)である単一伝送線のより詳細なブロック線図である。 仮想リングネットワーク接続を形成する最低二つのポートを有するデジタルテレビ等のクライアントのブロック線図である。 一実施例になる図15のネットワークインタフェースを示す図である。 一実施例になる図16のMACのブロック線図である。 MACからCAT5ツイストペア線伝送線へのデータ処理段のブロック線図である。 例えば4B/5B符号化を用いて符号化したデータからなる4ビット・ニブルのイーサネットパケットのテーブルを示す図である。 ストリームシンボルの開始とストリームシンボルの終端とを用いてイーサネット伝送プロトコルに従いパケット境界を表記するパケットにて送信するデータのビットストリームを示す図である。 同期仮想リングネットワーク上に配置した異なった種類のデータからなるビットストリームで、符号化違反をもってシンボル化したフレームに分岐せ、各パケットが同様に符号化違反をもって分岐せた各フレームを有する図である。 非準拠データを例えばイーサネットルータ等の非準拠ルータを介するポートを経由してインタフェース間で送信することのできる準拠データと非準拠データの両方を受け入れるよう結合したネットワークインタフェース群を示す図である。

Claims (20)

  1. 第1のノードと、
    第2のノードと、
    第3のノードと、
    二つの主導体対と前記第1のノードとの間にあって該第1のノードに結合され、該第1のノードと前記第2のノードとの間で非ストリーミングデータ及びストリーミングデータを同期転送する第1のポートと、
    二つの副導体対と前記第1のノードとの間にあって該第1のノードに結合され、該第1のノードと前記第3のノードとの間で非ストリーミングデータ及びストリーミングデータを同期転送する第2のポートとを備える、ことを特徴とする通信システム。
  2. 前記非ストリーミングデータとストリーミングデータは、前記第1、第2、第3のノードのうちの1つにのみ結合した水晶発振器から供給されるクロック信号に同期させる請求項1記載の通信システム。
  3. 前記第1、第2及び/又は第3のノードにおいて、前記非ストリーミングデータ及び前記ストリーミングデータのエッジからクロック信号を導出する請求項1記載の通信システム。
  4. 前記第1のポートは受信器と駆動回路とを備え、前記受信器は、前記非ストリーミングデータと前記ストリーミングデータのエッジからクロック信号を再生するように構成されており、及び前記駆動回路は、前記クロック信号を受信し、該再生クロック信号に同期して前記非ストリーミングデータと前記ストリーミングデータを駆動するように構成された請求項1記載の通信システム。
  5. 前記第1、第2、第3のノードは、パーソナルコンピュータ、音声/映像受信器、テレビ、コンパクトディスク(CD)プレーヤ、デジタル映像装置(DVD)、音響スピーカからなる群から選択されたマルチメディア装置をそれぞれ備える請求項1記載の通信システム。
  6. 前記第1、第2、第3のノードは相互接続されており、前記主導体対と前記副導体対のみを用いて互いに排他的に通信する請求項1記載の通信システム。
  7. 前記主導体対と前記副導体対は、導体のツイストペア線である請求項1記載の通信システム。
  8. 前記主導体対と前記副導体対は、4B/5B符号化等のイーサネット符号化プロトコルを用いて符号化された前記非ストリーミングデータを受信する請求項1記載の通信システム。
  9. 前記第1、第2、第3のノードはデイジーチェーンで互いに結合されており、かつ前記第1、第2、第3のノードは少なくとも二つのポートを含んでおり、前記第1、第2、第3のノード内の前記各ポートがマルチプレクサを用いた双方向差動信号の転送に対応しており、該マルチプレクサが1つのポート内の受信器が受信した情報を該同一ポート又は前記同一ノード内の他のポートの送信器へ送り、リング通信トポロジを実現する請求項1記載の通信システム。
  10. 第1のノードと第2のノードとを連結する二対の導体と、
    データのフレームに分岐せられ、前記二対の導体上を双方向に送信する差動信号の一連のビットストリームであって、該各フレームがフレーム符号化違反を開始とし、該各フレーム内のデータの前記各非ストリーミングパケットがパケット符号化違反を開始とする、前記ビットストリームとを有することを特徴とする通信システム。
  11. 前記フレーム符号化違反は、二つの連続する論理1電圧値により仕切られた三つの連続する論理0電圧値の2組を含む請求項10記載の通信システム。
  12. 前記パケット符号化違反は、連続する三つの論理0電圧値を含む請求項10記載の通信システム。
  13. 前記パケット符号化違反は、4B/5B符号化データが後に続く、連続する三つの論理0電圧値を含む請求項10記載の通信システム。
  14. 前記フレーム符号化違反と前記パケット符号化違反は、イーサネット送信用の4B/5Bデータ符号化に用いられているコードではない請求項10記載の通信システム。
  15. 符号化データとは同一でないビットシーケンスをフレーム符号化違反として、かつ別のビットシーケンスをパケット符号化違反として形成するステップと、
    前記フレーム符号化違反の直後に、フレームの二つの異なる時間セグメント内にストリーミングデータと非ストリーミングデータを配置し、該非ストリーミングデータを前記パケット符号化違反の直後に配置するステップと、
    クロック信号に同期して前記ストリーミングデータと非ストリーミングデータのフレームを転送するステップとを含む、ことを特徴とするデータ転送方法。
  16. 前記フレーム符号化違反の形成ステップは、二つ以下の連続する論理1電圧値により三つの連続する論理0電圧値を2組に分けるステップを含む請求項15記載の方法。
  17. 前記パケット符号化違反の形成ステップは、5ビットシーケンス内に連続する三つの論理0電圧値を配置するステップを含む請求項15記載の方法。
  18. 前記ストリーミングデータと非ストリーミングデータのエッジから前記クロック信号を再生することにより、マルチメディア装置をクロック動作させるステップをさらに含む請求項15記載の方法。
  19. マルチメディア装置を該マルチメディア装置に結合した水晶発振器によりクロック動作させるステップをさらに含む請求項15記載の方法。
  20. 前記転送ステップは、前記ストリーミングデータと非ストリーミングデータのフレームをデイジーチェーンにて互いに結合した複数のノードに送信するステップを含み、前記各ノードが前記複数のノード間でリング通信トポロジで差動信号を双方向に転送する少なくとも二つのポートを有する請求項15記載の方法。
JP2008555522A 2006-02-17 2007-02-16 イーサネット符号化違反でもって仕切られたフレーム及びパケット構造を用いてイーサネット伝送線上で異なる種類のパケット化ストリーミングデータを転送するシステム及び方法 Active JP5102784B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP06003321 2006-02-17
EP06003321.4 2006-02-17
EP06003322 2006-02-17
EP06003322.2 2006-02-17
PCT/US2007/062328 WO2007098412A1 (en) 2006-02-17 2007-02-16 System and method for transferring different types of streaming and packetized data across an ethernet transmission line using a frame and packet structure demarcated with ethernet coding violations

Publications (2)

Publication Number Publication Date
JP2009527952A true JP2009527952A (ja) 2009-07-30
JP5102784B2 JP5102784B2 (ja) 2012-12-19

Family

ID=38188672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008555522A Active JP5102784B2 (ja) 2006-02-17 2007-02-16 イーサネット符号化違反でもって仕切られたフレーム及びパケット構造を用いてイーサネット伝送線上で異なる種類のパケット化ストリーミングデータを転送するシステム及び方法

Country Status (6)

Country Link
US (1) US20070255855A1 (ja)
EP (2) EP2490359A3 (ja)
JP (1) JP5102784B2 (ja)
KR (1) KR101429249B1 (ja)
CN (1) CN102255796B (ja)
WO (1) WO2007098412A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012178749A (ja) * 2011-02-28 2012-09-13 Mitsubishi Electric Corp リング状ネットワークシステム
JP2015177344A (ja) * 2014-03-14 2015-10-05 富士通株式会社 配信方法、再生装置、配信装置、転送制御プログラムおよび配信制御プログラム

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8565337B2 (en) * 2007-02-07 2013-10-22 Valens Semiconductor Ltd. Devices for transmitting digital video and data over the same wires
US8391354B2 (en) * 2007-05-14 2013-03-05 Broadcom Corporation Method and system for transforming uncompressed video traffic to network-aware ethernet traffic with A/V bridging capabilities and A/V bridging extensions
WO2008156257A2 (en) * 2007-06-18 2008-12-24 Samsung Electronics Co., Ltd. Method and apparatus for transporting mobile broadcasting service, and method and apparatus for receiving mobile broadcasting service
EP2046061A1 (en) 2007-10-04 2009-04-08 SMSC Europe GmbH Real-time video transmission system
JP5012387B2 (ja) * 2007-10-05 2012-08-29 ヤマハ株式会社 音声処理システム
EP2220831A4 (en) * 2007-11-28 2010-12-22 Wiseriver Oy Ltd METHOD AND SYSTEM FOR ASYNCHRONOUS TRANSFER OF DATA IN A DATA TRANSMISSION NETWORK
US8179787B2 (en) * 2009-01-27 2012-05-15 Smsc Holding S.A.R.L. Fault tolerant network utilizing bi-directional point-to-point communications links between nodes
US9098816B2 (en) * 2009-01-14 2015-08-04 GM Global Technology Operations LLC Message loss prevention in can systems
US8358508B2 (en) * 2009-03-19 2013-01-22 Panduit Corp. Active patch panel
US10523402B1 (en) * 2010-05-07 2019-12-31 William George Pabst Multi-media full duplex packet data splitter
US10025734B1 (en) * 2010-06-29 2018-07-17 EMC IP Holding Company LLC Managing I/O operations based on application awareness
US8582581B2 (en) * 2010-09-28 2013-11-12 Cooper Technologies Company Dual-port ethernet traffic management for protocol conversion
US8699523B2 (en) 2011-08-01 2014-04-15 Cisco Technology, Inc. Inducing protocol violations for identifying a stream of information
TWI492622B (zh) * 2011-08-31 2015-07-11 Realtek Semiconductor Corp 網路訊號接收系統與網路訊號接收方法
US10311010B2 (en) * 2011-10-05 2019-06-04 Analog Devices, Inc. Two-wire communication systems and applications
US10649948B2 (en) * 2011-10-05 2020-05-12 Analog Devices, Inc. Two-wire communication systems and applications
TWI469534B (zh) * 2012-02-24 2015-01-11 Raydium Semiconductor Corp 數位資料處理方法及數位資料傳輸系統
US8466850B1 (en) * 2012-04-05 2013-06-18 Maxlinear, Inc. Method and system for multi-service reception
CN105027103A (zh) * 2012-12-31 2015-11-04 冷王公司 用于运输制冷系统的通信协议
AU2014318629A1 (en) 2013-09-13 2016-05-05 Smg Holdings-Anova Technologies, Llc Packet sharing data transmission system and relay to lower latency
US9288596B2 (en) 2013-09-30 2016-03-15 Sonos, Inc. Coordinator device for paired or consolidated players
WO2015062061A1 (zh) * 2013-10-31 2015-05-07 华为技术有限公司 一种传输方法和装置
TWI640870B (zh) * 2017-03-17 2018-11-11 新唐科技股份有限公司 集線器
JP6861348B2 (ja) * 2017-04-07 2021-04-21 パナソニックIpマネジメント株式会社 スレーブ装置およびホスト装置
CN111431610B (zh) * 2020-02-21 2021-06-04 北京仿真中心 串行通信中继装置及系统
US11328357B2 (en) 2020-08-07 2022-05-10 Hyannis Port Research, Inc. Sequencer bypass with transactional preprocessing in distributed system
US11228529B1 (en) 2020-08-07 2022-01-18 Hyannis Port Research, Inc. Local and global quality of service shaper on ingress in a distributed system
US11303389B2 (en) 2020-08-07 2022-04-12 Hyannis Port Research, Inc. Systems and methods of low latency data communication for physical link layer reliability
US11088959B1 (en) 2020-08-07 2021-08-10 Hyannis Port Research, Inc. Highly deterministic latency in a distributed system
US11683199B2 (en) 2020-08-07 2023-06-20 Hyannis Port Research, Inc. Distributed system with fault tolerance and self-maintenance
US11315183B2 (en) 2020-08-07 2022-04-26 Hyannis Port Research, Inc. Electronic trading system and method based on point-to-point mesh architecture
US11483087B2 (en) 2020-08-07 2022-10-25 Hyannis Port Research, Inc. Systems and methods for clock synchronization using special physical layer clock sync symbols
CN114372016B (zh) * 2021-12-27 2023-09-29 安徽大学 一种基于帧同步码加调制的异步串行通信方法
CN115589277B (zh) * 2022-11-29 2023-02-17 北京国科天迅科技有限公司 车载以太网的编码方法、装置及计算机设备
CN117806590A (zh) * 2023-12-18 2024-04-02 上海无问芯穹智能科技有限公司 一种矩阵乘硬件架构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2325124A (en) * 1997-03-27 1998-11-11 Harman Int Ind Configuration and synchronisation of a digital network
JP2003304283A (ja) * 1992-11-02 2003-10-24 Vertical Networks Inc 等時性リンクプロトコル
WO2004004181A2 (en) * 2002-06-26 2004-01-08 Oasis Silicon Systems Communication system for sending dissimilar types of data accross a synchronous network
JP2005348407A (ja) * 2004-06-02 2005-12-15 Oasis Silicon Systems Inc コンプライアント・データが送信されるネットワークに結合されたマルチメディア・デバイスに非コンプライアントのパケット化されたストリーミング・データを転送するため、及びそのデバイスから転送するためのシステムと方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1530405A (en) * 1975-03-24 1978-11-01 Okura Denki Co Ltd Loop data highway communication system
DE4224340A1 (de) * 1992-07-23 1994-01-27 Sel Alcatel Ag Rahmenstrukturiertes Bussystem
WO1998036533A1 (en) 1997-02-17 1998-08-20 Communication & Control Electronics Limited Local communication system
US6611537B1 (en) * 1997-05-30 2003-08-26 Centillium Communications, Inc. Synchronous network for digital media streams
US6437710B1 (en) 2000-11-10 2002-08-20 Oasis Design, Inc. Encoder within a communication system that avoids encoded DC accumulation and can use coding violations to synchronize a decoder and detect transmission errors
US7164691B2 (en) * 2002-06-26 2007-01-16 Standard Microsystems Corporation Communication system and method for sending isochronous streaming data across a synchronous network within a frame segment using a coding violation to signify invalid or empty bytes within the frame segment
US7327742B2 (en) * 2002-06-26 2008-02-05 Standard Microsystems Corp. Communication system and method for sending isochronous streaming data within a frame segment using a signaling byte
US7283564B2 (en) * 2002-06-26 2007-10-16 Standard Microsystems Corp. Communication system and method for sending asynchronous data and/or isochronous streaming data across a synchronous network within a frame segment using a coding violation to signify at least the beginning of a data transfer
CN1286290C (zh) * 2003-07-11 2006-11-22 中兴通讯股份有限公司 一种从同步数字传送体系中恢复e3/t3支路信号的装置及方法
AU2003904169A0 (en) * 2003-08-08 2003-08-21 Clipsal Intergrated Systems Pty Ltd Collision detection in a non-dominant bit radio network communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003304283A (ja) * 1992-11-02 2003-10-24 Vertical Networks Inc 等時性リンクプロトコル
GB2325124A (en) * 1997-03-27 1998-11-11 Harman Int Ind Configuration and synchronisation of a digital network
WO2004004181A2 (en) * 2002-06-26 2004-01-08 Oasis Silicon Systems Communication system for sending dissimilar types of data accross a synchronous network
JP2005348407A (ja) * 2004-06-02 2005-12-15 Oasis Silicon Systems Inc コンプライアント・データが送信されるネットワークに結合されたマルチメディア・デバイスに非コンプライアントのパケット化されたストリーミング・データを転送するため、及びそのデバイスから転送するためのシステムと方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012178749A (ja) * 2011-02-28 2012-09-13 Mitsubishi Electric Corp リング状ネットワークシステム
JP2015177344A (ja) * 2014-03-14 2015-10-05 富士通株式会社 配信方法、再生装置、配信装置、転送制御プログラムおよび配信制御プログラム
US10284681B2 (en) 2014-03-14 2019-05-07 Fujitsu Client Computing Limited Distribution method, playback apparatus, and distribution apparatus

Also Published As

Publication number Publication date
EP1989847B1 (en) 2017-01-04
EP2490359A3 (en) 2014-04-30
US20070255855A1 (en) 2007-11-01
EP1989847A1 (en) 2008-11-12
EP2490359A2 (en) 2012-08-22
CN102255796A (zh) 2011-11-23
KR101429249B1 (ko) 2014-08-14
CN102255796B (zh) 2015-02-11
JP5102784B2 (ja) 2012-12-19
WO2007098412A1 (en) 2007-08-30
KR20080102400A (ko) 2008-11-25

Similar Documents

Publication Publication Date Title
JP5102784B2 (ja) イーサネット符号化違反でもって仕切られたフレーム及びパケット構造を用いてイーサネット伝送線上で異なる種類のパケット化ストリーミングデータを転送するシステム及び方法
JP4751107B2 (ja) コンプライアント・データが送信されるネットワークに結合されたマルチメディア・デバイスに非コンプライアントのパケット化されたストリーミング・データを転送するため、及びそのデバイスから転送するためのシステムと方法
JP4625670B2 (ja) データ通信
US7333478B2 (en) Methods and apparatus for transporting digital audio-related signals
JP4829569B2 (ja) データ伝送
JP4702876B2 (ja) データ通信
JP4907924B2 (ja) データ伝送
JP2004297802A (ja) データ通信
US6874048B2 (en) Communication system and methodology for sending a designator for at least one of a set of time-division multiplexed channels forwarded across a locally synchronized bus
CN101385294B (zh) 利用以以太网编码违例区分的帧和分组结构在以太网传输线上传递不同类型的流数据和分组数据的系统和方法
WO1998004068A1 (fr) Procede de transmission de donnees numeriques et appareil correspondant
WO2001008366A1 (en) Apparatus and method for media access control
US6922747B2 (en) Communication system and methodology for addressing and sending data of dissimilar type and size across channels formed within a locally synchronized bus
EP1646187B1 (en) Communication system for sending data of dissimilar type and size across channels formed within a locally synchronized bus
JPH10257096A (ja) データ転送方法及び装置
JP3578156B2 (ja) パケット受信装置
JPH10257080A (ja) データ転送方法及び装置
JP2000174810A (ja) 伝送システム、インターフェース装置および伝送方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120906

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5102784

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250