JP2009300163A - 加圧水型原子力発電所の一次冷却系の脱塩装置およびホウ酸形陰イオン交換樹脂の調製方法ならびに一次冷却水の浄化方法 - Google Patents

加圧水型原子力発電所の一次冷却系の脱塩装置およびホウ酸形陰イオン交換樹脂の調製方法ならびに一次冷却水の浄化方法 Download PDF

Info

Publication number
JP2009300163A
JP2009300163A JP2008152948A JP2008152948A JP2009300163A JP 2009300163 A JP2009300163 A JP 2009300163A JP 2008152948 A JP2008152948 A JP 2008152948A JP 2008152948 A JP2008152948 A JP 2008152948A JP 2009300163 A JP2009300163 A JP 2009300163A
Authority
JP
Japan
Prior art keywords
boric acid
primary cooling
exchange resin
anion exchange
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008152948A
Other languages
English (en)
Inventor
Satoshi Kasahara
里志 笠原
Hirosuke Suwa
裕亮 諏訪
Chika Kenmochi
千佳 建持
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2008152948A priority Critical patent/JP2009300163A/ja
Priority to US12/483,034 priority patent/US9115010B2/en
Publication of JP2009300163A publication Critical patent/JP2009300163A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

【課題】ホウ酸を含む一次冷却水を接触させても、陰イオン交換樹脂に割れや亀裂が発生しない脱塩装置を目的とする。
【解決手段】本発明の一次冷却系8の脱塩装置は、加圧水型原子力発電所の一次冷却水を浄化する脱塩装置であって、ホウ酸形陰イオン交換樹脂が充填された浄化手段を有することよりなる。本発明の一次冷却水の浄化に用いるホウ酸形陰イオン交換樹脂の調製方法は、OH形陰イオン交換樹脂を充填した浄化手段に、ホウ酸溶液の通液量に従ってホウ素濃度を高めて通液することよりなる。本発明の一次冷却水の浄化に用いるホウ酸形陰イオン交換樹脂の調製方法は、空間速度SV=15L/L−R・h−1以下で、ホウ酸溶液をOH形陰イオン交換樹脂を充填した浄化手段に通液させることよりなる。
【選択図】図1

Description

本発明は加圧水型原子力発電所の一次冷却系の脱塩装置、および、ホウ酸形陰イオン交換樹脂の調製方法、ならびに、一次冷却水の浄化方法に関する。
加圧水型原子力発電所(PWR型発電所)は、原子炉を有する一次冷却系と、蒸気発生器で発生させた水蒸気を用いてタービンを駆動することにより発電を行う二次冷却系とが、蒸気発生器を介して接続され、構成されている。一次冷却系で使用される一次冷却水は、原子炉を冷却して高温、高圧となる。蒸気発生器では、高温、高圧となった一次冷却水が、二次冷却系の二次冷却水と熱交換を行い、二次冷却水を蒸発させて高圧の水蒸気を得る。そして、二次冷却系では、蒸気発生器において発生した水蒸気によりタービン駆動することにより発電を行う。
一次冷却系においては、一次冷却水に含まれる塩化物イオン、フッ化物イオン等の不純物や、131I等の核分裂生成物、および、58Co、60Co、ニッケル、鉄等の腐食生成物を除去するために、一次冷却水の一部を原子炉の外部に導き出して、化学体積制御(CVCS)系統およびホウ酸回収(BRS)系統の脱塩装置によって処理している。また、使用済燃料ピット水浄化冷却(SFPCS)系統においても、一次冷却水に含まれる塩化物イオン、フッ化物イオン等の不純物や、131I等の核分裂生成物、および、58Co、60Co、ニッケル、鉄等の腐食生成物を除去することで、一次冷却水を浄化している。
このような一次冷却水の浄化を目的とし、CVCS系統、BRS系統、SFPCS系統には、混床式の脱塩装置が設置されている。従来、前記混床式の脱塩装置の運用に関する発明がなされ、例えば、特許文献1では、陽イオン交換樹脂と陰イオン交換樹脂との混合比率についての発明が報告されている。なお、一次冷却系の脱塩装置には、陰イオン交換樹脂として、OH形のゲル形陰イオン交換樹脂が使用されることが一般的である。
一次冷却水には、原子炉燃料の臨界状態の制御を目的としてホウ酸が添加されている。特に、定期点検や燃料の交換の際には、一次冷却水のホウ素濃度を上げ、燃料を未臨界状態に保っている。そして、PWR型発電所の運転再開にあたっては、一次冷却系の脱塩装置に、通常運転時よりも高いホウ素濃度の一次冷却水が通水され、ホウ酸置換が行われる。近年では、発電効率、稼働率の向上を図るため、高燃焼度燃料の使用が検討されている。かかる高燃焼度燃料を使用する場合には、PWR型発電所運転時および停止時における一次冷却水のホウ素濃度をさらに高くする必要がある。
特開2005−3598号公報
しかしながら、PWR型発電所の一次冷却系の脱塩装置に、例えば、ホウ素濃度として3000ppmを超えるようなホウ酸溶液を通液すると、充填された陰イオン交換樹脂に割れや亀裂が生じると言う問題があった。陰イオン交換樹脂に割れや亀裂が生じると、微細化された樹脂が脱塩装置から流出し、該脱塩装置よりも後段に配置されたフィルタ差圧が上昇し、フィルタ交換頻度が増加することで、交換作業に伴う作業員の労力の増大、フィルタ廃棄に伴う放射性廃棄物量の増加という問題があった。
そこで、本発明は、ホウ酸を含む一次冷却水を接触させても、陰イオン交換樹脂に割れや亀裂が発生しない脱塩装置を目的とする。
本発明の一次冷却系の脱塩装置は、加圧水型原子力発電所の一次冷却水を浄化する脱塩装置であって、ホウ酸形陰イオン交換樹脂が充填された浄化手段を有することを特徴とする。本発明の一次冷却系の脱塩装置は、化学体積制御系統、ホウ酸回収系統、使用済燃料ピット水浄化冷却系統の少なくとも一箇所に設置されていることが好ましい。
本発明の加圧水型原子力発電所の一次冷却水の浄化に用いるホウ酸形陰イオン交換樹脂の調製方法は、OH形陰イオン交換樹脂を浄化手段に充填する充填工程と、前記浄化手段にホウ酸溶液を通液してホウ酸置換を行うホウ酸置換工程とを有し、前記ホウ酸置換工程は、前記ホウ酸溶液の通液量に従って、ホウ素濃度を高めてホウ酸溶液を通液することを特徴とする。前記ホウ酸置換工程は、前記浄化手段に、最初に接触させるホウ酸溶液のホウ素濃度が、3000ppm以下であることが好ましい。
本発明の加圧水型原子力発電所の一次冷却水の浄化に用いるホウ酸形陰イオン交換樹脂の調製方法は、OH形陰イオン交換樹脂を浄化手段に充填する充填工程と、前記浄化手段にホウ酸溶液を通液してホウ酸置換を行うホウ酸置換工程とを有し、前記ホウ酸置換工程は、空間速度SVを15L/L−R・h−1以下で、ホウ酸溶液を前記浄化手段に通液することを特徴とする。
本発明の一次冷却水の浄化方法は、予めホウ酸形に調整した陰イオン交換樹脂に、加圧水型原子力発電所の一次冷却水を接触させることを特徴とする。
本発明の脱塩装置によれば、ホウ酸を含む一次冷却水を接触させても、充填された陰イオン交換樹脂の割れや亀裂を防止することができる。
本発明は、ホウ酸形陰イオン交換樹脂に、一次冷却水を接触させて浄化する一次冷却系の脱塩装置である。本発明の実施形態の一例について、図1を用いて説明する。図1は、PWR型発電所の一次冷却系8を示す模式図である。図1に示すとおり、一次冷却系8は、一次冷却水循環ライン10と、CVCS系統30と、BRS系統60と、SFPCS系統100とを有する。
「一次冷却系の脱塩装置」は、本実施形態におけるCVCS系統30の混床式脱塩塔33、BRS系統60の混床式脱塩塔62、SFPCS系統100の混床式脱塩塔110である。また、「浄化手段」とは、一次冷却系の脱塩装置における、ホウ酸形陰イオン交換樹脂の充填層を意味する。
(一次冷却水循環ライン)
一次冷却水循環ライン10は、原子炉12で発生した熱を、一次冷却水を介して、蒸気発生器14の熱源として供給するものである。一次冷却水循環ライン10は、原子炉12と蒸気発生器14と、一次冷却水ポンプ16と、再生熱交換器18と配管20、21、22、24とで構成されている。原子炉12は配管20により蒸気発生器14と接続され、蒸気発生器14は配管21により一次冷却水ポンプ16と接続され、一次冷却水ポンプ16は、配管22により原子炉12と接続されている。配管21の分岐23で分岐した配管24は、再生熱交換器18に接続されている。
原子炉12は、PWR型発電所で通常用いられる原子炉を用いることができる。
蒸気発生器14は、原子炉12で高温、高圧となった一次冷却水を熱媒体とし、二次冷却水との熱交換により、水蒸気を発生させる装置である。
再生熱交換器18は、蒸気発生器14で熱交換を行った一次冷却水と、CVCS系統30から供給される一次冷却水との熱交換を行う装置である。
(化学体積制御系統:CVCS系統)
CVCS系統30は、一次冷却系8内における核分裂生成物、腐食生成物の除去による一次冷却水の浄化、および、一次冷却水の量、ホウ素濃度、腐食抑制剤の調整を行うものである。CVCS系統30は、非再生冷却器31と、混床式脱塩塔入口フィルタ32と、混床式脱塩塔33と、陽イオン脱塩塔35と、ホウ素除去脱塩塔37と、冷却水フィルタ38と、体積制御タンク39と、純水タンク80と、薬品タンク82と、配管40、41、43、44、46、47、49、50、51、53、55、57、58、81、83と、バルブ34、36とで構成されている。
再生熱交換器18と非再生熱交換器31とは、配管40により接続されている。非再生熱交換器31と混床式脱塩塔入口フィルタ32とは、配管41で接続されている。配管41は、分岐42で配管51に分岐し、配管51は、冷却水フィルタ38と接続されている。混床式脱塩塔入口フィルタ32と混床式脱塩塔33とは、配管43で接続され、混床式脱塩塔33に接続された配管44は、分岐52で配管51と接続されている。また、配管44は、分岐45で配管46に分岐し、配管46はバルブ34を経由して、陽イオン脱塩塔35と接続されている。陽イオン脱塩塔35には配管47が接続され、配管47は配管44と接続されている。配管44は、分岐48で配管49に分岐し、配管49はバルブ36を経由してホウ素除去脱塩塔37と接続されている。ホウ素除去脱塩塔37には配管50が接続され、配管50は配管44と接続されている。
冷却水フィルタ38と体積制御タンク39とは、配管53により接続されている。配管53は、分岐54で配管70が分岐している。また、配管53には、配管58の分岐56で分岐した配管55が接続されている。体積制御タンク39は、配管57により再生熱交換器18と接続されている。配管58には、純水タンク80の配管81が接続されている。配管57には、薬品タンク82の配管83が接続されている。
非再生冷却器31は、再生熱交換器18を経由した一次冷却水の温度をさらに低下させる装置である。
混床式脱塩塔入口フィルタ32は、微粒子等の、イオン交換樹脂で除去できない成分を除去する装置であり、例えば、ポリプロピレン製不織布を用いたプリーツフィルタを挙げることができる。
混床式脱塩塔33は、一次冷却水中の塩化物イオン、フッ化物イオン等の不純物や、131I等の核分裂生成物、および、58Co、60Co、ニッケル、鉄等の腐食生成物の除去を行う装置である。混床式脱塩塔33には、陰イオン交換樹脂と陽イオン交換樹脂とを混合したイオン交換樹脂が充填されている。
混床式脱塩塔33に充填される陰イオン交換樹脂は、ホウ酸形陰イオン交換樹脂である。ここで、ホウ酸形陰イオン交換樹脂とは、混床式脱塩塔33に充填される前に、ホウ酸形に置換(ホウ酸置換)した陰イオン交換樹脂のみならず、OH形陰イオン交換樹脂を混床式脱塩塔33に充填した後、ホウ酸溶液を接触させて、イオン交換基の対イオンをホウ酸に置換した陰イオン交換樹脂を含む。また、OH形陰イオン交換樹脂に、ホウ酸を含む一次冷却水を接触させて、ホウ酸形陰イオン交換樹脂としても良い。
混床式脱塩塔33に充填される陰イオン交換樹脂の構造はホウ酸形であれば構造は特に限定されず、ゲル形であっても、ポーラス形や、マクロポーラス(MR)形の多孔形であっても良い。また、前記陰イオン交換樹脂の母体は特に限定されず、スチレン系であってもアクリル系であっても良い。また、前記陰イオン交換樹脂は強塩基性陰イオン交換樹脂であっても、弱塩基性陰イオン交換樹脂であっても良いが、強塩基性陰イオン交換樹脂であることが好ましい。
前記陰イオン交換樹脂としては、アンバーライト(商品名)IRN78、アンバーライト(商品名)PCA1、アンバーライト(商品名)IRA900、アンバージェット(商品名)9090(以上、ローム・アンド・ハース社製)を挙げることができる。
混床式脱塩塔33に充填されている陽イオン交換樹脂は、イオン形がLi形の陽イオン交換樹脂である。前記Li形の陽イオン交換樹脂の構造は特に限定されず、ゲル形であっても、多孔形であっても良い。また、強酸性陽イオン交換樹脂であっても、弱酸性陽イオン交換樹脂であっても良いが、強酸性陽イオン交換樹脂であることが好ましい。
混床式脱塩塔33における、陰イオン交換樹脂と陽イオン交換樹脂との混合比率は特に限定されないが、陰イオン交換樹脂と陽イオン交換樹脂とは、イオン交換容量比で1:1とすることが好ましい。
陽イオン脱塩塔35は、主に一次冷却水中のリチウム濃度の制御と、混床式脱塩塔33では除去困難なセシウム濃度の低減を目的とする装置である。陽イオン脱塩塔35には、陽イオン交換樹脂が充填されている。陽イオン脱塩塔35に充填されている陽イオン交換樹脂は、H形の陽イオン交換樹脂である。
ホウ素除去脱塩塔37は、主に一次冷却水中のホウ酸を除去し、濃度を調製する装置である。ホウ素除去脱塩塔37には、OH形陰イオン交換樹脂が充填されている。ホウ素除去脱塩塔37に充填されているOH形陰イオン交換樹脂の構造は、OH形であれば特に限定されず、ゲル形であっても多孔形であっても良い。また、ホウ素除去脱塩塔37に充填されている陰イオン交換樹脂の母体は、スチレン系であっても、アクリル系であっても良い。
冷却水フィルタ38は、イオン交換樹脂で除去できない金属腐食生成物等の懸濁物や、混床式脱塩塔33、陽イオン脱塩塔35、ホウ素除去脱塩塔37から漏洩した微粒子を除去する装置である。冷却水フィルタ38は、混床式脱塩塔入口フィルタ32と同様である。
体積制御タンク39は特に限定されず、通常のPWR式発電所で使用されるものを用いることができる。
純水タンク80は、一次冷却水に使用する純水を貯水するものである。薬品タンク82は、一次冷却水のpH調整のためのリチウム添加、および、起動時の酸素除去のためのヒドラジン添加、ならびに、停止時の過酸化水素添加に使用する。
(ホウ酸回収系統:BRS系統)
BRS系統60は、一次冷却水中のホウ酸を分離回収し、再利用するものである。BRS系統60は、冷却水貯蔵タンク61と、混床式脱塩塔62と、冷却水フィルタ63と、ホウ酸回収装置64と、冷却器65と、混床式脱塩塔66と、ホウ酸タンク67と、ホウ酸フィルタ68と、配管70、71、72、73、74、76、77とで構成されている。
CVCS系統30の配管53の分岐54で分岐した配管70は、冷却水貯蔵タンク61に接続されている。冷却水貯蔵タンク61と混床式脱塩塔62とは配管71により接続され、混床式脱塩塔62と冷却水フィルタ63とは配管72により接続され、冷却水フィルタ63とホウ酸回収装置64とは配管73により接続されている。ホウ酸回収装置64には、配管74と配管76とが接続されている。配管74は、冷却器65を経由して混床式脱塩塔66と接続されている。配管76は、ホウ酸タンク67と接続され、ホウ酸タンク67とホウ酸フィルタ68とは配管77により接続されている。ホウ酸フィルタ68は、配管58により、配管57と接続されている。
混床式脱塩塔62は、混床式脱塩塔33と同様である。
冷却水フィルタ63は、微粒子のようなイオン交換樹脂で除去できない成分を除去する装置であり、混床式脱塩塔入口フィルタ32と同様である。
ホウ酸回収装置64は、一次冷却水中のホウ酸を濃縮して、ホウ酸濃縮液と水とに分離する装置である。
ホウ酸フィルタ68は、ホウ酸濃縮液中に含まれる微粒子等を除去する装置である。
冷却器65は、ホウ酸回収装置64で分離された水を凝縮する装置である。
混床式脱塩塔66は、ホウ酸回収装置64で分離された水を除去して浄化する装置である。混床式脱塩塔66に充填される陰イオン交換樹脂の構造は特に限定されず、ゲル形であっても多孔形であっても良い。また、陰イオン交換樹脂の種類は、強塩基性陰イオン交換樹脂であっても良いし、弱塩基性陰イオン交換樹脂であっても良い。
混床式脱塩装置66に充填される陽イオン交換樹脂は特に限定されず、混床式脱塩塔33と同様のものを用いることができる。
(使用済燃料ピット水浄化冷却系統:SFPCS系統)
SFPCS系統100は、ピットに貯蔵されている使用済み燃料の崩壊熱除去、および、ピット水の浄化を行う系統である。SFPCS系統100は、燃料ピット104と、混床式脱塩塔110と、使用済燃料ピットフィルタ111と、冷却器112と、配管120、122、123、124、125とで構成されている。
燃料ピット104は、原子炉ウェル101と、隔壁103と、使用済燃料ピット102とで構成されている。原子炉ウェル101と使用済燃料ピット102には、一次冷却水が貯留されている。
原子炉12の上部には原子炉ウェル101が設置され、原子炉ウェル101と隔壁103を介して使用済燃料ピット102が設置されている。使用済燃料ピット102と冷却器112とは、配管120により接続されている。冷却器112は、配管125により、配管124と接続されている。配管120は、分岐121で配管122に分岐し、配管122は、混床式脱塩塔110と接続されている。混床式脱塩塔110と使用済燃料ピットフィルタ111とは、配管123により接続されている。使用済燃料ピットフィルタ111には配管124が接続され、配管124は、使用済燃料ピット102と接続されている。
燃料ピット104は特に限定されず、PWR型発電所で通常使用されるものを用いることができる。
混床式脱塩塔110は、混床式脱塩塔33と同様である。
使用済燃料ピットフィルタ111は、微粒子のようなイオン交換樹脂で除去できない成分を除去する装置であり、混床式脱塩塔入口フィルタ32と同様である。
冷却器112は、使用済燃料により発生した崩壊熱を除去するものである。
(一次冷却水の浄化方法)
以下、一次冷却水の浄化方法について、説明する。
なお、本発明における「浄化」とは、一次冷却水から、塩化物イオン、フッ化物イオン等の不純物や、131I等の核分裂生成物、および、58Co、60Co、ニッケル、鉄等の腐食生成物を取り除くことを言う。
一次冷却水は、一次冷却水ポンプ16により、一次冷却水循環ライン10内を循環する。一次冷却水は、原子炉12を冷却して、高温、高圧(例えば、温度322℃、圧力15.4MPa)となる。高温、高圧となった一次冷却水は、配管20を経由して蒸気発生器14に送られる。蒸気発生器14に送られた一次冷却水は、蒸気発生器14の熱交換器を介して、二次冷却水との熱交換により、発電用の蒸気を発生させる。蒸気発生器14で熱交換をした一次冷却水は、配管21を経由して一次冷却水ポンプ16に送られ、一次冷却水ポンプ16から配管22を経由して原子炉12へ至る。一方、蒸気発生器14で熱交換をした一次冷却水の一部は、配管21の分岐23から配管24を経由して、再生熱交換器18へ送られる。再生熱交換器18に送られた配管24を経由した一次冷却水は、CVCS系統30から送られる一次冷却水と熱交換が行われた後、非再生型熱交換器31に送られる。
次いで、バルブ34、36を閉とした状態で、非再生型熱交換器31で冷却された一次冷却水は、配管41、混床式脱塩塔入口フィルタ32、配管43を経由して、混床式脱塩塔33に送られる。一次冷却水は、混床式脱塩塔33中の多孔形陰イオン交換樹脂に接触して、塩化物イオン、フッ化物イオン、硫酸イオン等の陰イオンが除去される。また、陽イオン交換樹脂と接触して、ニッケルイオン、鉄イオン、コバルトイオン等の陽イオンが除去される。その後、一次冷却水は、配管44を経由して、分岐52で、配管51に至る。
一次冷却水中のリチウム濃度、セシウム濃度の調整を行なう場合には、バルブ34を開、バルブ36を閉とし、混床式脱塩塔33を流通した一次冷却水を陽イオン脱塩塔35に流通させる。さらに、PWR型発電所の運転停止からの再開時等、一次冷却水中のホウ素濃度を低下させる場合には、バルブ36を開として、ホウ素除去脱塩塔37を流通させ、一次冷却水中のホウ酸を除去する。このようにして一次冷却水の浄化が行なわれる。
浄化された一次冷却水は、配管44、分岐52、配管51、冷却水フィルタ38、配管53を順に経由して、体積制御タンク39に貯留される。そして、体積制御タンク39に貯留された一次冷却水は、薬品タンク82から任意の薬品濃度となるように薬品の供給を受け、また、純水タンク80の純水、BRS系統60で回収されたホウ酸の供給を受け、配管57、再生熱交換器18を経由して、一次冷却水循環ライン10に至る(以上、CVCS系統30)。
また、核分裂生成物や腐食生成物等が除去された一次冷却水の一部は、配管53の分岐54から、配管70を経由して冷却水貯蔵タンク61に貯留される。冷却水貯蔵タンク61の一次冷却水は、配管71を経由して混床式脱塩塔62を流通する。この間、一次冷却水中の核分裂生成物や腐食生成物等が、さらに除去される。その後、配管72、冷却水フィルタ63、配管73を経由して、ホウ酸回収装置64に送られる。ホウ酸回収装置64で濃縮されたホウ酸濃縮液は、配管76を経由してホウ酸タンク67に貯留される。その後、配管77、ホウ酸フィルタ68、配管58を経由し、純水タンク80の純水で適宜希釈されて、配管57に至る。また、純水で希釈されたホウ酸濃縮液の一部は、配管58の分岐56から、配管55を経由して、体積制御タンク39の一次側に送られる。一方、ホウ酸回収装置64で分離された水は、配管74、冷却器65を経由して混床式脱塩塔66を流通し、さらに浄化される(以上、BRS系統60)。
原子炉12で使用済となった燃料は、原子炉12から原子炉ウェル101に取り出され、燃料ピット104の隔壁103を開き、原子炉ウェル101から使用済燃料ピット102に移される。使用済燃料は使用済燃料ピット102で、一次冷却水に浸漬される。使用済燃料ピット102の一次冷却水は、配管120により冷却器112に送られ、冷却された後、配管125、124を経由して使用済燃料ピット102に送られる。一次冷却水の一部は、配管120、分岐121、配管122を経由して混床式脱塩塔110に送られ、浄化される。そして、配管123、使用済燃料ピットフィルタ111、配管124を経由して、使用済燃料ピット102に送られる。こうして、浄化と冷却がなされた一次冷却水を使用済燃料ピット102に供給する(以上、SFPCS系統100)。
一次冷却系8の脱塩装置の、ホウ酸形陰イオン交換樹脂に接触させる一次冷却水のホウ素濃度は特に限定されず、例えば、ホウ素濃度として500〜10000ppmの範囲で運用される。本発明は3000ppm以上のホウ素濃度で運用される場合がより有効であり、3500ppm以上のホウ素濃度で運用される場合が特に有効である。
一次冷却系8の脱塩装置の充填層に、OH形陰イオン交換樹脂を充填した場合には、以下の方法によりホウ酸置換を行うことで、OH形陰イオン交換樹脂を一次冷却水の浄化に用いるホウ素形陰イオン交換樹脂とすることができる。
一次冷却系8の脱塩装置の充填層における、OH形陰イオン交換樹脂のホウ酸置換の第1の方法は、OH形陰イオン交換樹脂を充填層に充填し(充填工程)、該充填層にホウ酸溶液を通液してホウ酸置換を行い(ホウ酸置換工程)、前記ホウ酸置換工程は、ホウ酸溶液の通液量に従って、ホウ素濃度を高めるものである。
第1の方法のホウ酸置換は、例えば、次のように行うことができる。
まず、最初に、OH形陰イオン交換樹脂を充填層に充填する。次いで、最終的に通液する一次冷却水よりも、ホウ素濃度の低いホウ酸溶液を前記樹脂層に通液し、OH形陰イオン交換樹脂のOH基をホウ酸イオンで置換する。そして、一次冷却水と同じホウ素濃度のホウ酸溶液、または、一次冷却水そのものを樹脂層に通液することにより、ホウ酸置換工程を行うことができる。例えば、最終的に通液する一次冷却水のホウ素濃度が5000ppmである場合、ホウ酸置換工程では、ホウ素濃度2500ppmのホウ酸溶液を充填層に通液した後、ホウ素濃度5000ppmの一次冷却水を通液する方法を挙げることができる。
ホウ酸置換工程で、最初に、充填層に接触させるホウ酸溶液のホウ素濃度、即ち、ホウ酸溶液の通液開始時のホウ素濃度は、樹脂の重合度や強度等を勘案して決定することができる。例えば、3000ppm以下であることが好ましく、2500ppm以下であることがより好ましい。最初に通液するホウ素濃度が高すぎると、OH形陰イオン交換樹脂に急激な収縮が起き、収縮時に割れや亀裂が生じるおそれがあるためである。特にゲル形陰イオン交換樹脂において、この現象は顕著である。
第1の方法のホウ酸置換における、ホウ酸溶液の通液速度は特に限定されないが、空間速度(SV)を20L/L−R・h−1以下とすることが好ましく、SVを15L/L−R・h−1以下とすることがより好ましい。SVが20L/L−R・h−1を超えると、OH形のゲル形陰イオン交換樹脂の割れや亀裂の発生が多くなるためである。
なお、SVは、イオン交換樹脂の単位体積(L−R)に対して1時間に流通させる流量(L)であるL/L−R・h−1で表される(以降において同じ)。
第1の方法のホウ酸置換における、ホウ酸溶液の通液温度は特に限定されないが、20〜60℃が好ましく、30〜40℃がより好ましい。20℃未満であると、必要量のホウ酸が溶解せず、60℃を超えると陰イオン交換樹脂の最高使用温度を超えるためである。
一次冷却系8の脱塩装置の充填層における、OH形陰イオン交換樹脂のホウ酸置換の第2の方法は、OH形陰イオン交換樹脂を充填層に充填し(充填工程)、該充填層にホウ酸溶液を通液してホウ酸置換を行い(ホウ酸置換工程)、前記ホウ酸置換工程は、ホウ酸溶液のSVを15L/L−R・h−1以下で通液するものである。
第2の方法のホウ酸置換における、ホウ酸溶液の通液速度は、SVが15L/L−R・h−1以下であり、SV=10〜12L/L−R・h−1とすることが好ましい。SVが15L/L−R・h−1を超えると、OH形陰イオン交換樹脂の割れや亀裂の発生が多くなるためである。SVが10L/L−R・h−1未満であると、ホウ酸置換に時間がかかるためである。
第2の方法のホウ酸置換における、ホウ酸溶液のホウ素濃度は特に限定されず、陰イオン交換樹脂のホウ酸置換の程度に応じて決定することができ、例えば2000〜10000ppmの範囲で決定することが好ましい。
第2の方法のホウ酸置換における、ホウ酸溶液の通液温度は特に限定されないが、20〜60℃が好ましく、30〜40℃がより好ましい。20℃未満であると、必要量のホウ酸が溶解せず、60℃を超えると陰イオン交換樹脂の最高使用温度を超えるためである。
本発明によれば、一次冷却系8の脱塩装置に、ホウ酸形陰イオン交換樹脂を用いることで、高い濃度のホウ酸溶液を接触させても、該陰イオン交換樹脂に割れや亀裂等の破損が生じない。このため、脱塩装置から該陰イオン交換樹脂由来の粒子の漏洩を極めて少なくすることができ、各脱塩装置の後段に設置したフィルタ等を早期に閉塞させるようなことを防止することができる。従来使用されているOH形のゲル形陰イオン交換樹脂では、高い濃度のホウ酸溶液を接触させると、イオン形の変化、および、浸透圧差により樹脂が急激に収縮するために、体積変化に樹脂が耐えられず、割れや亀裂が生じると考えられる。一方、ホウ酸形の陰イオン交換樹脂は、イオン交換基におけるOHとホウ酸イオンとの置換が飽和しているため、高濃度のホウ酸溶液と接触してもイオン交換されず、樹脂の収縮も生じない。この結果、ホウ酸形の陰イオン交換樹脂は、ホウ酸溶液との接触による割れや亀裂の発生を防止することができる。
本発明によれば、OH系陰イオン交換樹脂を充填した充填層に、ホウ酸溶液の通液量に従って、ホウ素濃度を高めて通液してホウ酸形陰イオン交換樹脂とすることで、陰イオン交換樹脂の破損を抑制しつつ、ホウ酸形にすることができる。また、OH系陰イオン交換樹脂を充填した充填層に、ホウ酸溶液をSV15L/L−R・h−1以下で通液してホウ酸形陰イオン交換樹脂とすることで、陰イオン交換樹脂の破損を抑制しつつ、ホウ酸形にすることができる。
上述の一次冷却系8では、混床式脱塩塔33、混床式脱塩塔62、混床式脱塩塔110の全ての脱塩装置に、ホウ酸形陰イオン交換樹脂が充填されている。しかし、本発明は、これに限られることはなく、各脱塩装置の一部にホウ酸形陰イオン交換樹脂が充填されていても良い。
以下、本発明について実施例を挙げて具体的に説明するが、実施例に限定されるものではない。
(破損率の測定)
任意の樹脂300個について顕微鏡観察(25倍)を行い、割れ、ヒビ等の破損が生じている破損樹脂の個数を計測した。破損率は、下記(1)式で求められる百分率で表した。
破損率(%)=破損樹脂の個数÷300個×100% ・・・(1)
(製造例1)ホウ酸形陰イオン交換樹脂Aの製造
OH形ゲル形陰イオン交換樹脂であるアンバーライト(商品名)PCA1(ローム・アンド・ハース社製)15mLを内径21mmのガラス製カラムに充填し、ホウ素濃度3000ppmのホウ酸水溶液をSV=20L/L−R・h−1で1時間通液して、ホウ酸形陰イオン交換樹脂Aを製造した。
(製造例2)ホウ酸形陰イオン交換樹脂Bの製造
OH形多孔形陰イオン交換樹脂であるアンバージェット(商品名)9090(ローム・アンド・ハース社製)15mLを内径21mmのガラス製カラムに充填し、ホウ素濃度3000ppmのホウ酸水溶液をSV=20L/L−R・h−1で1時間通液して、ホウ酸形陰イオン交換樹脂Bを製造した。
(実施例1)
製造例1で得られたホウ酸形陰イオン交換樹脂Aについて、樹脂の破損率を求めた(通液前の破損率)。次いで、ホウ酸形陰イオン交換樹脂A15mLを内径21mmのガラス製カラムに充填し、陰イオン交換塔Aを作製した。得られた陰イオン交換塔Aに、ホウ素濃度4700ppmのホウ酸水溶液をSV=20L/L−R・h−1で1時間通液した。通液後、ホウ酸形陰イオン交換樹脂Aを取り出し、樹脂の破損率を求めた(通液後の破損率)。得られた結果を表1に示す。
(実施例2)
ホウ酸形陰イオン交換樹脂Aを製造例2で得られたホウ酸形陰イオン交換樹脂Bとした以外は、実施例1と同様にして、通液前の破損率と通液後の破損率を求めた。得られた結果を表1に示す。
(比較例1)
ホウ酸形陰イオン交換樹脂Aをホウ酸置換しないアンバーライト(商品名)PCA1とした以外は実施例1と同様にして、通液前の破損率と通液後の破損率を求めた。得られた結果を表1に示す。
Figure 2009300163
表1に示すとおり、ホウ酸形陰イオン交換樹脂Aを用いた実施例1では、ホウ素濃度4700ppmのホウ酸水溶液の通液前の樹脂の破損率が1%未満であり、通液後の樹脂の破損率が5%であった。また、ホウ酸形陰イオン交換樹脂Bを用いた実施例2では、ホウ素濃度4700ppmのホウ酸水溶液の通液前および通液後の樹脂の破損率が1%未満であった。これに対し、OH形ゲル形陰イオン交換樹脂を用いた比較例1では、ホウ素濃度4700ppmのホウ酸水溶液の通液前の破損率が1%未満であったのに対し、通液後の樹脂の破損率が20%となっていた。このことから、予めホウ酸形とした陰イオン交換樹脂は、ホウ酸の接触による破損が発生しにくいことが判った。
(実施例3)
OH形ゲル形陰イオン交換樹脂であるアンバーライト(商品名)PCA1の破損率を求めた(置換前の破損率)。次いで、アンバーライトPCA1を内径21mmのガラス製カラムに15mL充填し、陰イオン交換塔Dを作製した。得られた陰イオン交換塔Dに、ホウ素濃度1000ppmのホウ酸水溶液をSV=20L/L−R・h−1で1時間通液した。その後、ホウ素濃度として3300ppmのホウ酸水溶液をSV=20L/L−R・h−1で1時間通液し(段階式)、ホウ酸置換を行った。ホウ酸形となった陰イオン交換樹脂を取り出し、樹脂の破損率を求めた(置換後の破損率)。得られた結果を表2に示す。
(比較例2)
アンバーライト(商品名)PCA1の破損率を求めた(置換前の破損率)。次いで、アンバーライト(商品名)PCA1を内径21mmのガラス製カラムに15mL充填し、陰イオン交換塔Eを作製した。得られた陰イオン交換塔Eに、ホウ素濃度3300ppmのホウ酸水溶液をSV=20L/L−R・h−1で1時間通液し(一回式)、ホウ酸置換を行った。ホウ酸形となった陰イオン交換樹脂を取り出し、樹脂の破損率を求めた(置換後の破損率)。得られた結果を表2に示す。
Figure 2009300163
表2に示すとおり、段階的にホウ素濃度を高めて、ホウ酸置換を行った実施例3では、置換前の樹脂の破損率が1%未満であり、置換後の樹脂の破損率が5%であった。これに対して、3300ppmのホウ酸水溶液を接触させてホウ酸置換を行った比較例2では、置換前の樹脂の破損率が1%未満であり、置換後の樹脂の破損率が10%であった。このことから、ホウ素濃度を段階的に高めて、OH形ゲル形陰イオン交換樹脂のホウ酸置換を行うことで、樹脂の破損を低減できることが判った。
(実施例4)
アンバーライト(商品名)PCA1の破損率を求めた(置換前の破損率)。次いで、アンバーライト(商品名)PCA1を内径21mmのガラス製カラムに15mL充填し、陰イオン交換塔Fを作製した。得られた陰イオン交換塔Fに、ホウ素濃度3300ppmのホウ酸水溶液をSV=12L/L−R・h−1で1時間通液し、ホウ酸置換を行った。ホウ酸形となった陰イオン交換樹脂を取り出し、樹脂の破損率を求めた(置換後の破損率)。得られた結果を表2に示す。
(比較例3)
ホウ素濃度3300ppmのホウ酸水溶液をSV=20L/L−R・h−1で1時間通液した以外は、実施例4と同様にして、置換前の破損率と置換後の破損率を求めた。得られた結果を表3に示す。
Figure 2009300163
表3に示すとおり、SV=12L/L−R・h−1でホウ酸置換を行った実施例4では、置換前の樹脂の破損率が1%未満であり、置換後の樹脂の破損率が5%であった。これに対して、SV=20L/L−R・h−1でホウ酸水溶液を接触させてホウ酸置換を行った比較例3では、置換前の樹脂の破損率が1%未満であり、置換後の樹脂の破損率が10%であった。このことから、低いSVでOH形ゲル形陰イオン交換樹脂のホウ酸置換を行うことで、樹脂の破損を低減できることが判った。
本発明の実施形態の一例であるPWR型発電所の一次冷却系を示す模式図である。
符号の説明
8 一次冷却系
30 化学体積制御系統
33、62、110 混床式脱塩塔
60 ホウ酸回収系統
100 使用済燃料ピット水浄化冷却系統

Claims (6)

  1. 加圧水型原子力発電所の一次冷却水を浄化する脱塩装置であって、
    ホウ酸形陰イオン交換樹脂が充填された浄化手段を有する、加圧水型原子力発電所の一次冷却系の脱塩装置。
  2. 化学体積制御系統、ホウ酸回収系統、使用済燃料ピット水浄化冷却系統の少なくとも一箇所に設置されていることを特徴とする、請求項1に記載の加圧水型原子力発電所の一次冷却系の脱塩装置。
  3. OH形陰イオン交換樹脂を浄化手段に充填する充填工程と、
    前記浄化手段にホウ酸溶液を通液してホウ酸置換を行うホウ酸置換工程とを有し、
    前記ホウ酸置換工程は、前記ホウ酸溶液の通液量に従って、ホウ素濃度を高めてホウ酸溶液を通液することを特徴とする、加圧水型原子力発電所の一次冷却水の浄化に用いるホウ酸形陰イオン交換樹脂の調製方法。
  4. 前記ホウ酸置換工程は、前記浄化手段に、最初に接触させるホウ酸溶液のホウ素濃度が、3000ppm以下であることを特徴とする、請求項3に記載の加圧水型原子力発電所の一次冷却水の浄化に用いるホウ酸形陰イオン交換樹脂の調製方法。
  5. OH形陰イオン交換樹脂を浄化手段に充填する充填工程と、
    前記浄化手段にホウ酸溶液を通液してホウ酸置換を行うホウ酸置換工程とを有し、
    前記ホウ酸置換工程は、空間速度SVを15L/L−R・h−1以下で、ホウ酸溶液を前記浄化手段に通液することを特徴とする、加圧水型原子力発電所の一次冷却水の浄化に用いるホウ酸形陰イオン交換樹脂の調製方法。
  6. 予めホウ酸形に調整した陰イオン交換樹脂に、加圧水型原子力発電所の一次冷却水を接触させる、加圧水型原子力発電所の一次冷却水の浄化方法。
JP2008152948A 2008-06-11 2008-06-11 加圧水型原子力発電所の一次冷却系の脱塩装置およびホウ酸形陰イオン交換樹脂の調製方法ならびに一次冷却水の浄化方法 Pending JP2009300163A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008152948A JP2009300163A (ja) 2008-06-11 2008-06-11 加圧水型原子力発電所の一次冷却系の脱塩装置およびホウ酸形陰イオン交換樹脂の調製方法ならびに一次冷却水の浄化方法
US12/483,034 US9115010B2 (en) 2008-06-11 2009-06-11 Demineralizer of primary coolant system in pressurized-water reactor power plant and method for purifying primary cooling water in pressurized-water reactor power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008152948A JP2009300163A (ja) 2008-06-11 2008-06-11 加圧水型原子力発電所の一次冷却系の脱塩装置およびホウ酸形陰イオン交換樹脂の調製方法ならびに一次冷却水の浄化方法

Publications (1)

Publication Number Publication Date
JP2009300163A true JP2009300163A (ja) 2009-12-24

Family

ID=41547231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008152948A Pending JP2009300163A (ja) 2008-06-11 2008-06-11 加圧水型原子力発電所の一次冷却系の脱塩装置およびホウ酸形陰イオン交換樹脂の調製方法ならびに一次冷却水の浄化方法

Country Status (1)

Country Link
JP (1) JP2009300163A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013068512A (ja) * 2011-09-22 2013-04-18 Mitsubishi Chemicals Corp 強塩基性陰イオン交換樹脂、並びにそれを用いた脱塩方法及び脱塩装置
JP2022055079A (ja) * 2020-09-28 2022-04-07 三菱重工業株式会社 冷却水浄化装置の運用方法、及び冷却水浄化装置
CN115193490A (zh) * 2022-06-30 2022-10-18 江苏核电有限公司 一种vver机组一回路净化系统及使用方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58219946A (ja) * 1982-06-17 1983-12-21 Mitsubishi Heavy Ind Ltd 加圧水型原子炉の1次冷却材浄化用イオン交換樹脂の製造方法
JPS5917194A (ja) * 1982-07-21 1984-01-28 三菱重工業株式会社 加圧水型原子炉冷却水の浄化方法
JP2005003598A (ja) * 2003-06-13 2005-01-06 Nippon Rensui Co Ltd 加圧水型原子力発電プラントにおける混床式脱塩塔およびその運転方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58219946A (ja) * 1982-06-17 1983-12-21 Mitsubishi Heavy Ind Ltd 加圧水型原子炉の1次冷却材浄化用イオン交換樹脂の製造方法
JPS5917194A (ja) * 1982-07-21 1984-01-28 三菱重工業株式会社 加圧水型原子炉冷却水の浄化方法
JP2005003598A (ja) * 2003-06-13 2005-01-06 Nippon Rensui Co Ltd 加圧水型原子力発電プラントにおける混床式脱塩塔およびその運転方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013068512A (ja) * 2011-09-22 2013-04-18 Mitsubishi Chemicals Corp 強塩基性陰イオン交換樹脂、並びにそれを用いた脱塩方法及び脱塩装置
JP2022055079A (ja) * 2020-09-28 2022-04-07 三菱重工業株式会社 冷却水浄化装置の運用方法、及び冷却水浄化装置
JP7387568B2 (ja) 2020-09-28 2023-11-28 三菱重工業株式会社 冷却水浄化装置の運用方法
CN115193490A (zh) * 2022-06-30 2022-10-18 江苏核电有限公司 一种vver机组一回路净化系统及使用方法
CN115193490B (zh) * 2022-06-30 2023-08-15 江苏核电有限公司 一种vver机组一回路净化系统及使用方法

Similar Documents

Publication Publication Date Title
JP2009300163A (ja) 加圧水型原子力発電所の一次冷却系の脱塩装置およびホウ酸形陰イオン交換樹脂の調製方法ならびに一次冷却水の浄化方法
JP4938730B2 (ja) 加圧水型原子力発電所の一次冷却系の脱塩装置および一次冷却水の浄化方法
US9115010B2 (en) Demineralizer of primary coolant system in pressurized-water reactor power plant and method for purifying primary cooling water in pressurized-water reactor power plant
JP2005003598A (ja) 加圧水型原子力発電プラントにおける混床式脱塩塔およびその運転方法
JP2013194274A (ja) 原子力プラントの防食システム及び防食方法
JP2009066525A (ja) イオン交換樹脂の充填方法及び復水脱塩装置
CN110067610B (zh) 发电设备的运行方法以及火力发电设备
CN216472550U (zh) 一种用于去除反应堆冷却剂中硅元素的装置
JP2005066544A (ja) モノエタノールアミンの回収方法
CN113636674A (zh) 一种用于去除反应堆冷却剂中硅元素的装置及其处理方法
JP2009162514A (ja) 加圧水型原子力発電所の2次系系統水浄化システム
JP5039569B2 (ja) 加圧水型原子力発電所の補給水供給設備
JP4931107B2 (ja) 電気脱イオン装置およびそれを用いた加圧水型原子力発電所の2次系ライン水処理装置
JPH09276862A (ja) 復水脱塩装置
JP2006159013A (ja) イオン交換樹脂の通薬再生方法と装置
JP2013245833A (ja) 発電プラント
JP2004330154A (ja) 復水脱塩装置およびその装置へのイオン交換樹脂の充填方法
JP4367815B2 (ja) 復水脱塩装置の運転方法
KR102694533B1 (ko) 원자력발전소 복수탈염설비의 에탄올아민형 운전 및 관리 방법
JP6137972B2 (ja) 原子炉構造物の腐食抑制方法及び腐食抑制装置
JP2000002787A (ja) 原子力プラントの過酸化水素濃度低減装置
JP7261711B2 (ja) 超純水製造システム及び超純水製造方法
JP5564817B2 (ja) イオン交換樹脂の再生方法及び超純水製造装置
JP3610390B2 (ja) 復水脱塩装置におけるイオン交換樹脂の充填方法
JP3051005B2 (ja) 復水脱塩装置のNa/Clモル比調整方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101227

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110914

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120124