JP2009286817A - Laminated substrate, fiber-reinforced plastic, and methods for producing them - Google Patents

Laminated substrate, fiber-reinforced plastic, and methods for producing them Download PDF

Info

Publication number
JP2009286817A
JP2009286817A JP2008137600A JP2008137600A JP2009286817A JP 2009286817 A JP2009286817 A JP 2009286817A JP 2008137600 A JP2008137600 A JP 2008137600A JP 2008137600 A JP2008137600 A JP 2008137600A JP 2009286817 A JP2009286817 A JP 2009286817A
Authority
JP
Japan
Prior art keywords
fiber
base material
laminated
cut
prepreg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008137600A
Other languages
Japanese (ja)
Other versions
JP5167953B2 (en
Inventor
Ichiro Takeda
一朗 武田
Shigemichi Sato
成道 佐藤
Tetsuya Motohashi
哲也 本橋
Eisuke Wadahara
英輔 和田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2008137600A priority Critical patent/JP5167953B2/en
Publication of JP2009286817A publication Critical patent/JP2009286817A/en
Application granted granted Critical
Publication of JP5167953B2 publication Critical patent/JP5167953B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/20Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres
    • B29C70/205Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres the structure being shaped to form a three-dimensional configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/0036Slitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/0081Shaping techniques involving a cutting or machining operation before shaping

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an intermediate substrate which is excellent in a handling property and in a shape-following property to complicated shapes, can be molded in a short time, and expresses excellent dynamic physical properties including impact resistance applicable to structural materials, their low irregularity, and excellent dimensional stability, when processed into fiber-reinforced plastics. <P>SOLUTION: Provided is an intermediate substrate which is a flat plate-like laminated substrate 10 produced by arranging prepreg layers 7, comprising a plurality of unidirectionally oriented reinforcing fibers and a thermoplastic resin, in two or more directions and then integrating the prepreg layers, characterized in that the whole surfaces of the prepreg layers have linear notches 4 at an angle Θ in an absolute value range of 2 to 25 degrees to the reinforcing fibers; substantially all the reinforcing fibers are divided with the notches; and the length L of the reinforcing fibers divided with the notches is in a range of 10 to 100 mm. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、取り扱い性、複雑な形状への形状追従性に優れ、短時間成形可能であるとともに、繊維強化プラスチックとした場合、構造材に適用可能な優れた力学物性、その低バラツキ性、優れた寸法安定性を発現する中間基材、およびその製造方法に関する。さらに詳しくは、例えば航空機部材、自動車部材、スポーツ用具等に好適に用いられる繊維強化プラスチックの中間基材である積層基材、およびその製造方法に関する。   The present invention is excellent in handleability and shape followability to complex shapes, can be molded in a short time, and, when made into fiber reinforced plastic, has excellent mechanical properties applicable to structural materials, its low variation, In particular, the present invention relates to an intermediate substrate that exhibits dimensional stability and a method for producing the same. More specifically, for example, the present invention relates to a laminated base material that is an intermediate base material of fiber reinforced plastic suitably used for aircraft members, automobile members, sports equipment, and the like, and a manufacturing method thereof.

高機能特性を有する繊維強化プラスチックの成形方法としては、プリプレグと称される連続した強化繊維に熱硬化性樹脂を含浸せしめた半硬化状態の中間基材を積層し、高温高圧釜で加熱加圧することにより熱硬化性樹脂を硬化させ繊維強化プラスチックを成形するオートクレーブ成形が最も一般的に行われている。また、近年では生産効率の向上を目的として、あらかじめ部材形状に賦形した連続繊維基材に熱硬化性樹脂を含浸および硬化させるRTM(レジントランスファーモールディング)成形等も行われている。これらの成形法により得られた繊維強化プラスチックは、連続繊維である所以優れた力学物性を有する。また、連続繊維は規則的な配列であるため、基材の配置により必要とする力学物性に設計することが可能であり、力学物性のバラツキも小さい。しかしながら、一方で連続繊維である所以3次元形状等の複雑な形状を形成することは難しく、主として平面形状に近い部材に限られる。   As a method of molding fiber reinforced plastic having high functional properties, a semi-cured intermediate base material impregnated with thermosetting resin is laminated on continuous reinforcing fiber called prepreg, and heated and pressurized in a high-temperature and high-pressure kettle. Autoclave molding, in which a thermosetting resin is cured to form a fiber reinforced plastic, is most commonly performed. In recent years, for the purpose of improving production efficiency, RTM (resin transfer molding) molding in which a continuous fiber base previously shaped into a member shape is impregnated with a thermosetting resin and cured has been performed. The fiber reinforced plastics obtained by these molding methods have excellent mechanical properties because they are continuous fibers. Further, since the continuous fibers are regularly arranged, it is possible to design the mechanical properties required by the arrangement of the base material, and the variation in the mechanical properties is small. However, on the other hand, it is difficult to form a complicated shape such as a three-dimensional shape because it is a continuous fiber, and it is mainly limited to members close to a planar shape.

3次元形状等の複雑な形状に適した成形方法として、SMC(シートモールディングコンパウンド)成形等がある。SMC成形は、通常25mm程度に切断したチョップドストランドに熱硬化性樹脂を含浸せしめ半硬化状態としたSMCシートを、加熱型プレス機を用いて加熱加圧することにより成形を行う。多くの場合、加圧前にSMCシートを成形体の形状より小さく切断して成形型上に配置し、加圧により成形体の形状に引き伸ばして(流動させて)成形を行う。そのため、その流動により3次元形状等の複雑な形状にも追従可能となる。しかしながら、SMCはそのシート化工程において、チョップドストランドの分布ムラ、配向ムラが必然的に生じてしまうため、力学物性が低下し、あるいはその値のバラツキが大きくなってしまう。さらには、そのチョップドストランドの分布ムラ、配向ムラにより、特に薄物の部材ではソリ、ヒケ等が発生しやすくなり、構造材としては不適な場合がある。また、熱硬化性樹脂を用いているため、成形時に化学反応を伴い、成形時間がかかる、という問題があった。   As a molding method suitable for a complicated shape such as a three-dimensional shape, there is SMC (sheet molding compound) molding. SMC molding is performed by heating and pressurizing a semi-cured SMC sheet obtained by impregnating a chopped strand cut to about 25 mm with a thermosetting resin using a heating press. In many cases, before pressing, the SMC sheet is cut smaller than the shape of the molded body, placed on a mold, and stretched (flowed) into the shape of the molded body by pressing to perform molding. Therefore, it is possible to follow a complicated shape such as a three-dimensional shape by the flow. However, since SMC inevitably causes distribution unevenness and orientation unevenness of chopped strands in the sheeting process, the mechanical properties deteriorate or the variation of the values increases. Furthermore, due to uneven distribution and alignment unevenness of the chopped strands, warpage, sink marks and the like are likely to occur particularly in a thin member, which may be unsuitable as a structural material. Further, since a thermosetting resin is used, there is a problem that a chemical reaction is involved at the time of molding and a molding time is required.

上述のような材料の欠点を埋めるべく、連続繊維と熱可塑性樹脂からなるプリプレグに切込を入れることにより、短時間成形が可能であり、成形時には優れた形状追従性を示し、繊維強化プラスチックとしたときに優れた力学物性を発現するとされる基材が開示されている(例えば、特許文献1,2)。しかしながら、SMCと比較すると力学特性は高く、かつそのバラツキが小さくなるものの、構造材として適用するには十分な強度とは言えない。連続繊維基材と比較すると切込という欠陥を内包した構成であるために、応力集中点である切込が破壊の起点となり、特に引張強度、引張疲労強度が低下する、という問題があった。さらに、熱可塑性樹脂のプリプレグはタックがないため、積層しただけでは一体化せず、成形が困難である、という問題があった。
特開昭63−247012号公報 特開平9−254227号公報
In order to fill the disadvantages of the above materials, by cutting into a prepreg made of continuous fiber and thermoplastic resin, it can be molded for a short time, and exhibits excellent shape following at the time of molding, Have been disclosed (for example, Patent Documents 1 and 2). However, although mechanical characteristics are higher than SMC and variation thereof is small, it cannot be said that the strength is sufficient for application as a structural material. Compared with a continuous fiber base material, since it has a configuration including a defect called a notch, the notch which is a stress concentration point becomes a starting point of fracture, and in particular, there is a problem that tensile strength and tensile fatigue strength are lowered. Furthermore, since the prepreg of the thermoplastic resin has no tack, there is a problem that it is not integrated only by being laminated and molding is difficult.
Japanese Unexamined Patent Publication No. 63-247010 Japanese Patent Laid-Open No. 9-254227

本発明は、かかる従来技術の背景に鑑み、取り扱い性、複雑な形状への形状追従性に優れ、短時間成形可能であるとともに、繊維強化プラスチックとした場合、構造材に適用可能な耐衝撃性をはじめとする優れた力学物性、その低バラツキ性、優れた寸法安定性を発現する中間基材、およびその製造方法を提供することにある。   In view of the background of such prior art, the present invention is excellent in handleability and shape followability to a complicated shape, can be molded in a short time, and can be applied to a structural material in the case of a fiber reinforced plastic. It is an object to provide an intermediate base material that exhibits excellent mechanical properties, such as low variability, excellent dimensional stability, and a method for producing the same.

本発明は、かかる課題を解決するために、次のような手段を採用するものである。すなわち、
(1)複数の一方向に配向した強化繊維と熱可塑性樹脂とからなるプリプレグ層が、2方向以上に配向して一体化されている平板状の積層基材であって、前記プリプレグ層の全面に強化繊維となす角度Θの絶対値が2〜25°の範囲内の直線状の切込を有し、実質的にすべての強化繊維が前記切込により分断され、前記切込により分断された強化繊維の繊維長さLが10〜100mmの範囲内である、積層基材。
The present invention employs the following means in order to solve such problems. That is,
(1) A prepreg layer composed of a plurality of reinforcing fibers oriented in one direction and a thermoplastic resin is a flat laminated base material which is integrated in two or more directions, and the entire surface of the prepreg layer The absolute value of the angle Θ formed with the reinforcing fiber has a linear cut in the range of 2 to 25 °, and substantially all the reinforcing fibers are cut by the cut and cut by the cut. The laminated base material whose fiber length L of a reinforced fiber exists in the range of 10-100 mm.

(2)前記切込が、強化繊維の垂直方向に投影した投影長さWsが30μm〜1.5mmの範囲内である、(1)に記載の積層基材。   (2) The laminated base material according to (1), wherein the cut has a projection length Ws projected in the vertical direction of the reinforcing fiber within a range of 30 μm to 1.5 mm.

(3)前記プリプレグ層が擬似等方に積層されている、(1)または(2)に記載の積層基材。   (3) The laminated base material according to (1) or (2), wherein the prepreg layer is laminated in a pseudo isotropic manner.

(4)前記積層基材の層間に熱可塑性樹脂が偏在している、(1)〜(3)のいずれかに記載の積層基材。   (4) The laminated substrate according to any one of (1) to (3), wherein a thermoplastic resin is unevenly distributed between the layers of the laminated substrate.

(5)前記プリプレグ層の厚み方向中央部が強化繊維のみからなる、(4)に記載の積層基材。   (5) The laminated base material according to (4), wherein the central portion in the thickness direction of the prepreg layer is composed of only reinforcing fibers.

(6)前記積層基材のボイド率が2%以下である、(1)〜(4)のいずれかに記載の積層基材。   (6) The laminated substrate according to any one of (1) to (4), wherein a void ratio of the laminated substrate is 2% or less.

(7)前記プリプレグ層同士が点状で一体化されている、(1)〜(5)のいずれかに記載の積層基材。   (7) The laminated base material according to any one of (1) to (5), wherein the prepreg layers are integrated in a dot shape.

(8)(1)〜(7)のいずれかに記載の前記積層基材の少なくとも一方の表面に強化繊維からなる不織布が配されている、複合積層基材。   (8) A composite laminated substrate in which a nonwoven fabric made of reinforcing fibers is arranged on at least one surface of the laminated substrate according to any one of (1) to (7).

(9)(1)〜(7)のいずれかに記載の積層基材または請求項8に記載の複合積層基材を三次元形状に成形して得た、繊維強化プラスチック。   (9) A fiber reinforced plastic obtained by molding the laminated base material according to any one of (1) to (7) or the composite laminated base material according to claim 8 into a three-dimensional shape.

(10)一方向に配向した強化繊維と熱可塑性樹脂とからなるプリプレグ基材の全面に、強化繊維となす角度Θの絶対値が2〜25°の範囲内となる直線状の切込を設け、実質的にすべての強化繊維を前記切込により分断し、前記切込により分断した強化繊維の繊維長さLを10〜100mmの範囲内にして切込プリプレグ基材とし、該切込プリプレグ基材を複数枚積層し、積層した前記切込プリプレグ基材を加熱するに際し、所定のボイド率となるまで加圧及び減圧を繰り返すことを特徴とする、積層基材の製造方法。   (10) A linear notch is provided on the entire surface of the prepreg base material composed of reinforced fibers and thermoplastic resin oriented in one direction so that the absolute value of the angle Θ between the reinforced fibers is in the range of 2 to 25 °. , Substantially all the reinforcing fibers are divided by the incision, the fiber length L of the reinforcing fibers divided by the incision is set within a range of 10 to 100 mm to form a notched prepreg base material, and the notched prepreg base A method for producing a laminated base material, comprising: laminating a plurality of materials and heating and pressing the laminated cut prepreg base material until the predetermined void ratio is reached.

(11)前記プリプレグ基材として、一方向に配向した強化繊維の表面にのみ熱可塑性樹脂が偏在して含浸されたものを用いる、(10)に記載の積層基材の製造方法。   (11) The method for producing a laminated base material according to (10), wherein the prepreg base material is one in which a thermoplastic resin is unevenly distributed and impregnated only on the surface of reinforcing fibers oriented in one direction.

(12)前記プリプレグ基材として、ボイド率が1%以下のものを用いる、(10)に記載の積層基材の製造方法。   (12) The method for producing a laminated base material according to (10), wherein the prepreg base material has a void ratio of 1% or less.

(13)一方向に強化繊維を平面状に引き揃えて繊維シートとし、該繊維シートの両面から熱可塑性樹脂からなる不織布を挟み、熱可塑性樹脂を前記繊維シート中に含浸して、前記プリプレグ基材を作成する、請求項(10)〜(12)に記載のいずれかに記載の積層基材の製造方法。   (13) A fiber sheet is formed by aligning reinforcing fibers in one direction in a flat shape, a nonwoven fabric made of a thermoplastic resin is sandwiched from both sides of the fiber sheet, and the fiber sheet is impregnated with the prepreg base. The manufacturing method of the laminated base material in any one of Claims (10)-(12) which produces a material.

(14)前記プリプレグ基材の全面に前記切込を挿入する抜き型を用いて、切込を挿入すると同時に所定の外形状に裁断して前記切込プリプレグ基材を形成する、請求項(10)〜(13)のいずれかに記載の積層基材の製造方法。   (14) The cutting prepreg base material is formed by cutting into a predetermined outer shape at the same time as inserting the notch using a punching die for inserting the notch into the entire surface of the prepreg base material. )-(13) The manufacturing method of the laminated base material in any one of.

(15)前記切込プリプレグ基材を複数枚積層して積層基材とするにあたり、異なる外形状の前記切込プリプレグ基材を含むように積層し、積層厚みが異なる箇所を有する積層基材を形成する、(10)〜(14)のいずれかに記載の積層基材の製造方法。   (15) In laminating a plurality of the cut prepreg base materials to form a laminated base material, a laminated base material is laminated so as to include the cut prepreg base materials having different outer shapes, and a laminated base material having a portion having a different laminated thickness The manufacturing method of the laminated base material in any one of (10)-(14) to form.

(16)(1)〜(7)のいずれかに記載の積層基材または(8)に記載の複合積層基材を加熱して軟化させた後、コールドプレスして三次元形状の繊維強化プラスチックを成形する、繊維強化プラスチックの製造方法。   (16) The laminated base material according to any one of (1) to (7) or the composite laminated base material according to (8) is softened by heating and then cold-pressed to obtain a three-dimensional fiber reinforced plastic. A method for producing a fiber-reinforced plastic.

(17)前記積層基材の周縁部を把持した後、前記積層基材の中央部に成形型を押し当てて成形する、(16)に記載の繊維強化プラスチックの製造方法。   (17) The method for producing a fiber-reinforced plastic according to (16), wherein the peripheral part of the laminated base material is gripped and then molded by pressing a molding die against a central part of the laminated base material.

(18)成形型のキャビティに該成形型のキャビティよりも小さな前記積層基材を配置し、前記積層基材を伸張して繊維強化プラスチックを成形する、(16)に記載の繊維強化プラスチックの製造方法。   (18) The production of a fiber reinforced plastic according to (16), wherein the laminated base material smaller than the mold cavity is disposed in a cavity of the mold, and the laminated base material is stretched to form a fiber reinforced plastic. Method.

(19)前記コールドプレスにおいて、加圧と減圧を繰り返す、(16)〜(18)のいずれかに記載の繊維強化プラスチックの製造方法。   (19) The method for producing a fiber-reinforced plastic according to any one of (16) to (18), wherein pressurization and decompression are repeated in the cold press.

本発明によれば、取り扱い性、複雑な形状への形状追従性に優れ、短時間成形可能であるとともに、繊維強化プラスチックとした場合、構造材に適用可能な耐衝撃性をはじめとする優れた力学物性、その低バラツキ性、優れた寸法安定性を発現する、中間基材、およびその製造方法を得ることができる。   According to the present invention, it is excellent in handleability, shape followability to a complicated shape, can be molded in a short time, and when made into a fiber reinforced plastic, it has excellent impact resistance applicable to structural materials. It is possible to obtain an intermediate base material that exhibits mechanical properties, its low variation, and excellent dimensional stability, and a method for producing the same.

本発明者らは、取り扱い性、複雑な形状への形状追従性に優れ、短時間成形可能であるとともに、繊維強化プラスチックとした場合、優れた力学物性、その低バラツキ性、優れた寸法安定性を発現する中間基材を得るため、鋭意検討し、プリプレグ基材として、一方向に配向した強化繊維と熱可塑性樹脂とから構成されるプリプレグ基材に特定な切込パターンを挿入して切込プリプレグ基材とし、該切込プリプレグ基材を積層して、加熱、加圧(必要に応じて、加圧及び減圧の繰り返し)することにより一体化し、特定の積層基材とすることにより、かかる課題を一挙に解決することを究明したのである。なお、本発明で用いられるプリプレグ基材には、一方向に配向した強化繊維や強化繊維基材に樹脂が完全に含浸した基材に加え、樹脂シートが繊維内に完全に含浸していない状態で一体化した樹脂半含浸基材(セミプレグ:以下、半含浸プリプレグを称することもある)を含むものとする。また、本明細書では、特に断らない限り、繊維あるいは繊維を含む用語(例えば“繊維方向”等)において、繊維とは強化繊維を表すものとする。また、本明細書では連続繊維とは100mm以上の繊維長さを持つ強化繊維を指す。   The present inventors have excellent handling properties, conformability to complicated shapes, can be molded in a short time, and when made into fiber reinforced plastic, have excellent mechanical properties, low variation, and excellent dimensional stability. In order to obtain an intermediate base material that expresses the prepreg base material, a specific cutting pattern is inserted into the prepreg base material composed of reinforcing fibers oriented in one direction and a thermoplastic resin. By making the prepreg base material, laminating the cut prepreg base material, heating and pressurizing (repeating pressurization and depressurization as necessary), and by integrating it into a specific laminated base material, this is required. They found out that they could solve the problem all at once. In addition, the prepreg base material used in the present invention is a state in which the resin sheet is not completely impregnated in the fiber in addition to the reinforced fiber oriented in one direction or the base material in which the resin is completely impregnated in the reinforcing fiber base material. And a resin semi-impregnated base material (semi-preg: hereinafter, sometimes referred to as semi-impregnated prepreg). In the present specification, unless otherwise specified, in the term including fibers or fibers (for example, “fiber direction”), the fibers represent reinforcing fibers. In the present specification, the continuous fiber refers to a reinforcing fiber having a fiber length of 100 mm or more.

中間基材中の強化繊維は長い程、力学特性に優れるものの、成形時には強化繊維が突っ張り、繊維配向方向に伸張することが難しく、複雑な形状への形状追従性(以下、流動性)に劣る。そのため、中間基材中の強化繊維の繊維長さを所定の範囲内とすることで、力学特性と流動性を両立できると考えた。   The longer the reinforcing fiber in the intermediate base material, the better the mechanical properties, but the reinforcing fiber is stretched during molding and it is difficult to stretch in the fiber orientation direction, resulting in inferior shape conformability (hereinafter referred to as fluidity) to a complicated shape. . For this reason, it was considered that both the mechanical properties and the fluidity can be achieved by setting the fiber length of the reinforcing fibers in the intermediate base material within a predetermined range.

また、強化繊維の単糸は断面形状(一般的には円状)を押し出した形状(一般的には円柱状)であるため、幾何的制約から隣接する強化繊維の繊維配向が揃っている方が充填しやすい。一般的に、強化繊維の繊維含有率が高い方が力学特性を向上させやすいが、例えば、SMCなどランダムに繊維配向した基材ではVfが高々40%に留まる一方、プリプレグなど一方向シート基材の繊維体積含有率Vfが最大70%にも達する。さらに、SMCなどランダムに繊維配向した基材では確率論的に強化繊維が凝集した部位で応力集中しやすく、材料のポテンシャルよりはるかに低強度で破壊する可能性があるため、強度バラツキが大きい。一方、一方向シート基材を繊維配向の異なる別の一方向シート基材と積層して得た積層基材は、隣接層にクラックを伝えにくく、強度が向上しやすい。従って、力学特性の観点からは、中間基材として一方向シート基材を積層した積層基材を用いるのが良い。   In addition, since the single yarn of reinforcing fiber has a cross-sectional shape (generally a circular shape) extruded (generally a cylindrical shape), the fiber orientation of adjacent reinforcing fibers is aligned due to geometric constraints Easy to fill. In general, the higher the fiber content of the reinforcing fibers, the easier it is to improve the mechanical properties. For example, Vf remains at most 40% in a randomly oriented substrate such as SMC, while a unidirectional sheet substrate such as a prepreg. The fiber volume content Vf of the maximum reaches 70%. Furthermore, in a base material randomly oriented such as SMC, stress concentration is likely to occur at a site where the reinforcing fibers are aggregated stochastically, and there is a possibility of breaking at a strength much lower than the potential of the material. On the other hand, a laminated base material obtained by laminating a unidirectional sheet base material with another unidirectional sheet base material having a different fiber orientation hardly transmits cracks to adjacent layers, and the strength is easily improved. Therefore, from the viewpoint of mechanical properties, it is preferable to use a laminated base material in which unidirectional sheet base materials are laminated as an intermediate base material.

加えて、中間基材に用いるマトリックス樹脂を熱可塑性樹脂とすることで、耐衝撃性に優れた繊維強化プラスチックを得ることができる。すなわち、不連続な強化繊維を用いた繊維強化プラスチックの場合、繊維端部同士を連結するように破壊するため、一般的に熱硬化性樹脂よりも靭性値が高い熱可塑性樹脂をマトリックス樹脂として用いることで、強度、特に耐衝撃性が向上する。耐衝撃性の必要な航空機部材の一部(例えばリーディングエッジ)には、炭素繊維とポリフェニレンサルファイドの繊維強化プラスチックが用いられた例もある。さらに、中間基材を三次元形状に成形して繊維強化プラスチックを得るにあたっては、熱可塑性樹脂は化学反応を伴うことなく、冷却固化することで形状が決定するので短時間成形が可能であり、生産性に優れる。   In addition, a fiber reinforced plastic having excellent impact resistance can be obtained by using a thermoplastic resin as the matrix resin used for the intermediate substrate. That is, in the case of a fiber reinforced plastic using discontinuous reinforcing fibers, a thermoplastic resin generally having a higher toughness value than a thermosetting resin is used as a matrix resin in order to break the fiber ends so as to connect each other. As a result, strength, particularly impact resistance, is improved. In some cases (for example, leading edge) of aircraft members that require impact resistance, carbon fiber and polyphenylene sulfide fiber reinforced plastics are used. Furthermore, in obtaining a fiber reinforced plastic by molding the intermediate substrate into a three-dimensional shape, the thermoplastic resin is not accompanied by a chemical reaction, and the shape is determined by cooling and solidifying, so it can be molded in a short time, Excellent productivity.

一方で、タックのない熱可塑性樹脂のプリプレグを積層するにあたっては、一体化が困難である。三次元形状の繊維強化プラスチックを成形するにあたり、一体化していないプリプレグ群は取り扱い性が悪く、直接成形型に正確に位置決めして配置することが難しい。特に肉厚な繊維強化プラスチックを成形するにあたっては、積層の手間がかかり、生産性が低下する。構造体として用いられる繊維強化プラスチックは一般的に一方向のみでなく、クロスプライや擬似等方など決まった対称積層に成形することが多いため、所定の積層構成の平板状の積層基材を予め準備しておくことで、飛躍的に繊維強化プラスチックの生産性が向上する。   On the other hand, when laminating a prepreg of a thermoplastic resin having no tack, integration is difficult. In molding a three-dimensional fiber reinforced plastic, the prepreg group which is not integrated is not easy to handle, and it is difficult to accurately position and arrange it directly on the mold. In particular, when molding a thick fiber-reinforced plastic, it takes time and labor to stack, and productivity is lowered. Since fiber reinforced plastic used as a structure is generally molded not only in one direction but also in a predetermined symmetrical laminate such as cross-ply or pseudo-isotropic, a flat laminated substrate having a predetermined laminated configuration is preliminarily formed. By preparing it, the productivity of fiber reinforced plastics will be dramatically improved.

まとめると本発明は、一方向に配向した繊維長さが所定の範囲内である強化繊維と熱可塑性樹脂とからなる切込プリプレグ基材で構成されたプリプレグ層が、2方向以上に配向して一体化されている平板状の積層基材を、中間基材として提供することにより、取り扱い性、複雑な形状への形状追従性に優れ、短時間成形可能であるとともに、繊維強化プラスチックとした場合、構造材に適用可能な耐衝撃性をはじめとする優れた力学物性、その低バラツキ性、優れた寸法安定性を発現することができる。図8には、[45/0/−45/90]にプリプレグ層が形成された本発明の積層基材の例を示している。   In summary, in the present invention, a prepreg layer composed of a cut prepreg base material made of a reinforced fiber and a thermoplastic resin having a fiber length oriented in one direction within a predetermined range is oriented in two or more directions. By providing an integrated flat plate-like laminated base material as an intermediate base material, it is excellent in handleability, shape followability to complex shapes, can be molded in a short time, and is made into fiber reinforced plastic Excellent mechanical properties such as impact resistance applicable to structural materials, low variation, and excellent dimensional stability can be exhibited. FIG. 8 shows an example of the laminated base material of the present invention in which a prepreg layer is formed on [45/0 / −45 / 90].

さらに本発明においては、流動性と力学特性を高い次元で両立するため、プリプレグ層を次のような構成とする必要がある。   Furthermore, in the present invention, the prepreg layer needs to have the following configuration in order to achieve both fluidity and mechanical properties at a high level.

本発明に係るプリプレグ層は、一方向に配向した強化繊維と熱可塑性樹脂とからなり、全面に強化繊維となす角度Θの絶対値が2〜25°の範囲内の切込が設けられており、実質的にすべての強化繊維が切込により分断され、切込により分断された繊維長さLが10〜100mmの範囲内である。なお、本発明において“実質的にすべての強化繊維が切込により分断され”とは、本発明の切込により分断されていない連続繊維が配向している面積が、プリプレグ層の面積に占める割合の5%より小さいことを示す。   The prepreg layer according to the present invention is composed of reinforcing fibers oriented in one direction and a thermoplastic resin, and the entire surface is provided with cuts in the range of an angle Θ between the reinforcing fibers of 2 to 25 °. , Substantially all of the reinforcing fibers are divided by cutting, and the fiber length L divided by the cutting is in the range of 10 to 100 mm. In the present invention, “substantially all of the reinforcing fibers are divided by the cut” means that the area where the continuous fibers not cut by the cut of the present invention are oriented accounts for the area of the prepreg layer. Of less than 5%.

本発明において、繊維長さLとは、任意の切込と、任意の切込と同等の切込が、強化繊維の垂直方向に投影した投影長さWsを有する繊維方向に最近接の切込(対になる切込)とにより分断される繊維の長さを指している。ここで、“切込が、強化繊維の垂直方向に投影した投影長さWs”とは図2に示すとおり、プリプレグ層の面内において、切込を強化繊維の垂直方向(繊維垂直方向2)を投影面として、切込から該投影面に垂直(繊維配向方向1)に投影した際の長さ9を指す。プリプレグ層の全面に切込が挿入され、基材中の強化繊維の繊維長さLをすべて100mm以下とすることにより、成形時に繊維は流動可能、特に繊維配向方向にも流動可能となり、複雑な形状への形状追従性にも優れる。該切込がない場合、すなわち連続繊維のみの場合、繊維配向方向には流動しないため、複雑形状を形成することは出来ない。繊維長さLを10mm未満にすると、さらに流動性が向上するが、他の用件を満たしても構造材として必要な高力学特性は得られない。流動性と力学特性との関係を鑑みると、さらに好ましくは20〜60mmの範囲内である。対になる切込以外に切込まれて分断される繊維長さLより短い繊維も存在するが、10mm以下の繊維は少なければ少ないほどよい。さらに好ましくは、10mm以下の繊維が配向している面積が、プリプレグ層の面積に占める割合の5%より小さいのがよい。   In the present invention, the fiber length L is an incision closest to the fiber direction in which an arbitrary incision and an incision equivalent to the arbitrary incision have a projected length Ws projected in the vertical direction of the reinforcing fiber. It refers to the length of the fiber that is divided by (a pair of cuts). Here, the “projection length Ws projected by the cut in the vertical direction of the reinforcing fiber” is the vertical direction of the reinforcing fiber (fiber vertical direction 2) in the plane of the prepreg layer as shown in FIG. Is the projection plane, and refers to the length 9 when projected perpendicularly to the projection plane (fiber orientation direction 1). Cutting is inserted in the entire surface of the prepreg layer, and by making the fiber length L of the reinforcing fibers in the substrate all 100 mm or less, the fibers can flow at the time of molding, particularly in the fiber orientation direction. Excellent shape followability to shape. When there is no notch, that is, when only continuous fibers are used, a complicated shape cannot be formed because the fibers do not flow in the fiber orientation direction. When the fiber length L is less than 10 mm, the fluidity is further improved. However, even if other requirements are satisfied, the high mechanical properties necessary as a structural material cannot be obtained. Considering the relationship between fluidity and mechanical properties, it is more preferably in the range of 20 to 60 mm. There are fibers shorter than the fiber length L that is cut and divided in addition to the pair of cuts, but the fewer the fibers of 10 mm or less, the better. More preferably, the area in which fibers of 10 mm or less are oriented is smaller than 5% of the ratio of the area of the prepreg layer.

プリプレグ層の厚みHは300μmより大きくても変わらず良い流動性を得ることが出来るが、本発明に係るプリプレグ層は切込を有するため、分断される層厚みが大きければ大きいほど強度が低下する傾向があり、構造材に適用することを前提とするならば、300μm以下とするのが良い。一方、Hは30μmより小さくても流動性を保ち、高強度を得ることが出来るが、極めて薄いプリプレグ層を安定的に形成するのは困難であるため、低コストに本発明の効果を得るには30μm以上であるのが良い。力学特性とコストとの関係を鑑みると、好ましくは50〜150μmである。   Even if the thickness H of the prepreg layer is larger than 300 μm, good fluidity can be obtained. However, since the prepreg layer according to the present invention has a cut, the strength decreases as the divided layer thickness increases. If there is a tendency and it is assumed to be applied to a structural material, it is preferable to set it to 300 μm or less. On the other hand, even if H is smaller than 30 μm, fluidity can be maintained and high strength can be obtained. However, since it is difficult to stably form an extremely thin prepreg layer, the effect of the present invention can be obtained at low cost. Is preferably 30 μm or more. In view of the relationship between mechanical properties and cost, the thickness is preferably 50 to 150 μm.

繊維体積含有率Vfは65%以下で十分な流動性を得ることができる。Vfが低いほど流動性は向上するが、Vfが45%より小さくなると、構造材に必要な高力学特性は得られにくい。流動性と力学特性との関係を鑑みると、さらに好ましくは55〜60%の範囲内である。   When the fiber volume content Vf is 65% or less, sufficient fluidity can be obtained. The lower the Vf, the better the fluidity. However, if Vf is less than 45%, it is difficult to obtain the high mechanical properties required for the structural material. Considering the relationship between fluidity and mechanical properties, it is more preferably in the range of 55-60%.

また、切込は強化繊維となす角度Θの絶対値が2〜25°の範囲内であることが本発明の大きな特徴である。Θの絶対値が25°より大きくても流動性は得ることができ、従来のSMC等と比較して高い力学特性は得ることができるが、特にΘの絶対値が25°以下であることで力学特性の向上が著しい。一方、Θの絶対値は2°より小さいと流動性も力学特性も十分得ることが出来るが、切込を安定して入れることが難しくなる。すなわち、繊維に対して切込が寝てくると、切込を入れる際、繊維が刃から逃げやすく、また、繊維長さLを100mm以下とするためには、Θの絶対値が2°より小さいと少なくとも切込同士の最短距離が0.9mmより小さくなるなど、切込の挿入が難しくなる。切込の制御のしやすさと力学特性との関係を鑑みると、さらに好ましくは5〜15°の範囲内である。   In addition, the notch is a major feature of the present invention that the absolute value of the angle Θ formed with the reinforcing fiber is in the range of 2 to 25 °. Even if the absolute value of Θ is larger than 25 °, fluidity can be obtained, and higher mechanical properties can be obtained as compared with conventional SMC, etc., but in particular, when the absolute value of Θ is 25 ° or less. Significant improvement in mechanical properties. On the other hand, if the absolute value of Θ is smaller than 2 °, sufficient fluidity and mechanical properties can be obtained, but it is difficult to make a stable cut. That is, when the incision lies on the fiber, the fiber easily escapes from the blade when making the incision, and in order to make the fiber length L 100 mm or less, the absolute value of Θ is more than 2 ° If it is smaller, at least the shortest distance between the cuts becomes smaller than 0.9 mm, making it difficult to insert the cuts. In view of the relationship between the ease of controlling the cutting and the mechanical characteristics, it is more preferably in the range of 5 to 15 °.

以下、好ましい切込パターンの一例を図1〜4を用いて説明する。   Hereinafter, an example of a preferable cutting pattern will be described with reference to FIGS.

強化繊維が一方向に配向したプリプレグ層上に制御されて整列した切込4を複数有する。繊維配向方向の対になる切込4同士で繊維が分断され、その間隔6を10〜100mmとすることで、実質的にプリプレグ層上の強化繊維すべてを繊維長さLが10〜100mmにすることができる。なお、“実質的に強化繊維のすべてが前記切込により分断され”ているとは、プリプレグ層に含まれる強化繊維本数のうち95%以上が10〜100mmに分断されていることを言う。また、図1、2に示すように、切込と強化繊維となす角度5をΘとするとΘの絶対値は全面で2〜25°の範囲内である。図3a)ではΘの絶対値が90°、b)では25°より大きい例を示しているが、これらの例では本発明により得られうる高強度を発現することは出来ない。   The reinforcing fibers have a plurality of cuts 4 controlled and aligned on the prepreg layer oriented in one direction. The fibers are divided by the notches 4 that form pairs in the fiber orientation direction, and the interval 6 is set to 10 to 100 mm, so that substantially all the reinforcing fibers on the prepreg layer have a fiber length L of 10 to 100 mm. be able to. The phrase “substantially all of the reinforcing fibers are divided by the incision” means that 95% or more of the reinforcing fibers included in the prepreg layer are divided into 10 to 100 mm. As shown in FIGS. 1 and 2, if the angle 5 between the cut and the reinforcing fiber is Θ, the absolute value of Θ is in the range of 2 to 25 ° over the entire surface. FIG. 3a) shows examples in which the absolute value of Θ is greater than 90 ° and b) is greater than 25 °. However, in these examples, the high strength obtainable by the present invention cannot be expressed.

図4には、5つの異なる切込パターンを有するプリプレグ層が示されている。図4a)のプリプレグ層7は、等間隔をもって配列された斜行した連続、直線状の切込4を有する。図4b)のプリプレグ層7は、2種類の間隔をもって配列された斜行した連続、直線状の切込を有する。図4c)のプリプレグ層7は、等間隔をもって配列された連続、曲線(蛇行線)の切込4を有する。図4d)のプリプレグ層7は、等間隔をもって配列され、かつ、2種類の異なる方向に斜行した断続的な直線状の切込4を有する。図4e)のプリプレグ層7は、等間隔をもって配列された斜行した断続的な直線状の切込4を有する。切込は図4c)のように曲線でも構わないが図4a)、b)、d)、e)のように直線状である方が流動性をコントロールしやすく好ましい。また、切込により分断される強化繊維の長さLは、図3b)のように一定でなくてもよいが、繊維長さLが全面で一定であると流動性をコントロールしやすく、強度ばらつきをさらに押さえることができるため好ましい。なお、ここで規定の直線状とは、幾何学上の直線の一部をなしている状態を意味するが、前記流動性のコントロールを容易にするという効果を損なわない限り、前記幾何学上の直線の一部をなしていない箇所があっても差支えが無く、その結果、繊維長さLが全面で一定とはならない箇所があっても(この場合、繊維長さLが実質的に全面で一定であると言えるので)差支えが無い。   FIG. 4 shows a prepreg layer having five different cutting patterns. The prepreg layer 7 in FIG. 4 a) has skewed continuous, straight cuts 4 arranged at equal intervals. The prepreg layer 7 of FIG. 4b) has skewed continuous, straight cuts arranged at two intervals. The prepreg layer 7 in FIG. 4c) has continuous, curved (meandering) cuts 4 arranged at equal intervals. The prepreg layer 7 of FIG. 4d) has intermittent linear cuts 4 arranged at equal intervals and skewed in two different directions. The prepreg layer 7 of FIG. 4e) has skewed intermittent linear cuts 4 arranged at equal intervals. The incision may be a curved line as shown in FIG. 4c), but a straight line as shown in FIGS. 4a), b), d), and e) is preferable because the flowability is easily controlled. Further, the length L of the reinforcing fiber divided by the cutting may not be constant as shown in FIG. 3b), but if the fiber length L is constant over the entire surface, the fluidity can be easily controlled and the strength varies. Can be further suppressed, which is preferable. Here, the prescribed linear shape means a state in which a part of a geometrical straight line is formed. However, as long as the effect of facilitating the fluidity control is not impaired, Even if there is a portion that does not form a part of the straight line, there is no problem. As a result, even if there is a portion where the fiber length L is not constant over the entire surface (in this case, the fiber length L is substantially over the entire surface). It can be said that it is constant).

さらに好ましい例[1]としては、図1や図4a)〜c)のように、切込4aが連続して入れられているのがよい。例[1]のパターンでは、切込4aが断続的でないため、切込端部付近での流動乱れが起きず、切込4aを入れた領域では、すべての繊維長さLを一定とすることができ、流動が安定している。切込4aが連続的に入れられているため、プリプレグ単体として扱うことは難しく、積層基材として用いるのが良い。   As a more preferable example [1], it is preferable that the cuts 4a are continuously made as shown in FIG. 1 and FIGS. 4a) to 4c). In the pattern of Example [1], since the cut 4a is not intermittent, flow turbulence does not occur near the cut end, and all the fiber lengths L should be constant in the region where the cut 4a is inserted. The flow is stable. Since the notches 4a are continuously formed, it is difficult to handle the prepreg alone, and it is preferable to use it as a laminated base material.

また、他の好ましい例[2]としては、図2のように、強化繊維の垂直方向に投影した長さ9をWsとするとWsが30μm〜100mmの範囲内である断続的な切込4bがプリプレグ層7全面に設けられており、切込4bと前記切込4bを繊維配向方向に隣接した切込4bの幾何形状が同一であるとよい。Wsが30μm以下となると、切込の制御が難しく、プリプレグ層全面に渡ってLが10〜100mmとなるよう、保障することが難しい。すなわち、切込により切断されていない繊維が存在すると基材の流動性は著しく低下するが、多めに切込を入れるとLが10mmを下回る部位が出てきてしまう、という問題点がある。逆にWsが10mmより大きいときにはほぼ強度が一定に落ち着く。すなわち、分断される繊維本数がある一定以上に大きくなると、破壊が始まる荷重がほぼ同等となる。図2では、LとWsがいずれも一種類である例を示している。いずれの切込4b(例えば4b)も繊維方向に平行移動することで重なる他の切込4b(例えば4b)がある。前記繊維方向の対になる切込4b同士により分断される繊維長さLよりさらに短い繊維長さで隣接する切込により分断され繊維が分断される幅8が存在することによって、安定的に繊維長さを100mm以下でプリプレグ層7を製造できる。図2d)、e)にはその他のパターンも例示したが、上記条件を満たせばどのようなパターンでも構わない。 Moreover, as another preferable example [2], as shown in FIG. 2, when the length 9 projected in the vertical direction of the reinforcing fiber is Ws, the intermittent cuts 4b in which Ws is in the range of 30 μm to 100 mm are provided. The prepreg layer 7 is provided on the entire surface, and the notch 4b 1 and the notch 4b 2 adjacent to the notch 4b 1 in the fiber orientation direction may have the same geometric shape. When Ws is 30 μm or less, it is difficult to control the cutting, and it is difficult to ensure that L is 10 to 100 mm over the entire surface of the prepreg layer. That is, if there is a fiber that is not cut by cutting, the fluidity of the base material is remarkably lowered. However, if a large amount of cutting is made, there is a problem that a portion where L is less than 10 mm appears. Conversely, when Ws is greater than 10 mm, the strength is almost constant. That is, when the number of fibers to be divided becomes larger than a certain value, the load at which breakage starts becomes substantially equal. FIG. 2 shows an example in which both L and Ws are one type. Any of the cuts 4b (for example, 4b 1 ) has another cut 4b (for example, 4b 2 ) that overlaps by translating in the fiber direction. The fiber 8 is stably separated by the presence of the width 8 where the fibers are divided by the adjacent notches with a fiber length shorter than the fiber length L which is divided by the notches 4b which are paired in the fiber direction. The prepreg layer 7 can be manufactured with a length of 100 mm or less. Although other patterns are illustrated in FIGS. 2d) and e), any pattern may be used as long as the above conditions are satisfied.

好ましい例[2]において、力学特性の観点から好ましくは、強化繊維の垂直方向に投影した長さWsが30μm〜1.5mmの範囲内であるのがよい。切込角度Θの絶対値が2〜25°であることにより、切込長さに対して、投影長さWsを小さくすることができるため、1.5mm以下という極小の切込を工業的に安定して設けることができる。Wsを小さくすることにより、一つ一つの切込により分断される繊維量が減り、強度向上が見込まれる。特に、Wsが1.5mm以下とすることで、大きな強度向上が見込まれる。   In the preferred example [2], the length Ws projected in the vertical direction of the reinforcing fiber is preferably in the range of 30 μm to 1.5 mm from the viewpoint of mechanical properties. Since the projection length Ws can be reduced with respect to the cut length when the absolute value of the cut angle Θ is 2 to 25 °, an extremely small cut of 1.5 mm or less is industrially applied. It can be provided stably. By reducing Ws, the amount of fibers cut by each cutting is reduced, and strength improvement is expected. In particular, when Ws is 1.5 mm or less, a great improvement in strength is expected.

上記のような構成のプリプレグ層が複数枚積層され、繊維方向が少なくとも2方向以上に配向して一体化して平板状の積層基材とし、複雑形状に形状追従させたり、伸張して成形した繊維強化プラスチックは、プリプレグ層を適用した部位が次のような特徴を有する。繊維強化プラスチックを構成する短繊維層の全面に複数の、強化繊維が存在せずに熱可塑樹脂または隣接層の強化繊維のみで形成される切込開口部を有し、該切込開口部によって強化繊維の繊維長さLが10〜100mmの範囲内に分断され、前記切込開口部の短繊維層表面における表面積が短繊維層の表面積の0.1〜10%の範囲内である。すなわち、プリプレグ層の切込部が成形により開口しない点も本発明の大きな特徴のひとつである。   A fiber formed by laminating a plurality of prepreg layers having the above-described configuration, and aligning and integrating the fiber directions in at least two directions to form a flat laminated substrate, following the shape of a complicated shape, or stretching the shape. The site | part to which the reinforced plastic applied the prepreg layer has the following characteristics. A plurality of cut fiber openings formed on the entire surface of the short fiber layer constituting the fiber reinforced plastic, which are formed of only the thermoplastic resin or the reinforcing fiber of the adjacent layer without the presence of the reinforcing fibers, The fiber length L of the reinforcing fiber is divided within a range of 10 to 100 mm, and the surface area of the cut opening at the surface of the short fiber layer is within a range of 0.1 to 10% of the surface area of the short fiber layer. That is, one of the major features of the present invention is that the cut portion of the prepreg layer does not open by molding.

本特徴を図5、6、7を用いて説明する。本発明の比較として図5には、切込4が繊維3となす角度Θの絶対値が90°であるプリプレグ層7から構成される積層基材10をa)、その積層基材10を伸張して成形した繊維強化プラスチック11をb)に、それぞれプリプレグ層7およびプリプレグ層7由来の短繊維層12をクローズアップした平面図と平面図のA−A断面を切り出した断面図を示した。a)に示すとおり、プリプレグ層7は、繊維に垂直な切込を全面に有しており、切込4は層の厚み方向を貫いている。繊維長さLを100mm以下とすることで、流動性が確保され、プレス成形などにより、容易に積層基材10より面積が伸長した繊維強化プラスチック11を得ることができる(ただし、厚みは減る)。b)のように、伸長した繊維強化プラスチック11を得た際、プリプレグ層7由来の短繊維層12は、繊維垂直方向に伸長すると共に、繊維が存在しない領域(切込開口部)13が生成される。これは一般的に強化繊維が成形程度の圧力では伸長しないためであり、図5のケースでは、伸張した長さ分だけ切込開口部13が生成され、例えば250×250mmの積層基材10から300×300mmの繊維強化プラスチック11を得た際には、300×300mmの繊維強化プラスチック11の表面積に対して、切込開口部13の総面積は50×300mm、すなわち1/6(約16.7%)が切込開口部となる計算である。この領域13は断面図に示すとおり、隣接層14が侵入してきて、略三角形の樹脂リッチ部16と隣接層が侵入している領域とで占められる。従って、積層基材10を伸長して成形した場合、繊維束端部15では層のうねり17や樹脂リッチ部16が発生し、これが力学特性の低下や表面品位の低下に影響を与える。また、繊維がある部位とない部位で剛性が異なるため、面内異方性の繊維強化プラスチック11となり、ソリなどの問題から設計が難しい。また、強度の面では、荷重方向から±10°以下程度に向いている繊維が大部分の荷重を伝達しているが、その繊維束端部15では隣接層14に荷重を再分配しなければならない。その際、図5b)のように、繊維束端部15が荷重方向に垂直となっていると、応力集中が起きやすく、剥離も起こりやすい。そのため、強度向上はあまり期待できない。   This feature will be described with reference to FIGS. As a comparison with the present invention, FIG. 5 shows a laminated base material 10 composed of a prepreg layer 7 having an absolute value of 90 ° of the angle Θ between the notch 4 and the fiber 3 a), and the laminated base material 10 is stretched. The fiber reinforced plastic 11 molded in this manner is shown in b) in which a prepreg layer 7 and a short fiber layer 12 derived from the prepreg layer 7 are respectively shown in a close-up plan view and a cross-sectional view taken along the line AA of the plan view. As shown to a), the prepreg layer 7 has the notch perpendicular | vertical to a fiber on the whole surface, and the notch 4 has penetrated the thickness direction of the layer. By setting the fiber length L to 100 mm or less, fluidity is ensured, and the fiber reinforced plastic 11 whose area is easily extended from the laminated base material 10 can be easily obtained by press molding or the like (however, the thickness is reduced). . When the stretched fiber reinforced plastic 11 is obtained as in b), the short fiber layer 12 derived from the prepreg layer 7 stretches in the fiber vertical direction, and a region (cut opening) 13 in which no fiber exists is generated. Is done. This is because the reinforcing fibers generally do not expand at a molding level pressure. In the case of FIG. 5, the cut opening 13 is generated for the extended length, for example, from the laminated base material 10 of 250 × 250 mm. When the fiber reinforced plastic 11 having a size of 300 × 300 mm is obtained, the total area of the cut openings 13 is 50 × 300 mm, that is, 1/6 (about 16.6) with respect to the surface area of the fiber reinforced plastic 11 having a size of 300 × 300 mm. 7%) is a cut opening. As shown in the cross-sectional view, the region 13 is occupied by the substantially triangular resin-rich portion 16 and the region in which the adjacent layer has intruded. Accordingly, when the laminated base material 10 is stretched and molded, the undulation 17 of the layer and the resin rich portion 16 are generated at the fiber bundle end portion 15, which affects the deterioration of the mechanical properties and the surface quality. In addition, since the rigidity is different between the part where the fiber is present and the part where the fiber is not present, the fiber-reinforced plastic 11 has in-plane anisotropy. Further, in terms of strength, the fiber oriented to about ± 10 ° or less from the load direction transmits most of the load, but the fiber bundle end 15 must redistribute the load to the adjacent layer 14. Don't be. At that time, as shown in FIG. 5b), when the fiber bundle end 15 is perpendicular to the load direction, stress concentration is likely to occur, and peeling is also likely to occur. Therefore, the strength improvement cannot be expected so much.

一方で図6には、本発明の好ましい例[1]のプリプレグ層7から構成される積層基材10をa)、その積層基材10を伸張して成形した繊維強化プラスチック11をb)に、それぞれプリプレグ層7およびプリプレグ層7由来の短繊維層12をクローズアップした平面図と平面図のA−A断面を切り出した断面図を示した。a)に示すとおり、プリプレグ層7は、繊維3となす角度Θの絶対値が25°以下の連続した切込4aを全面に有しており、切込4aは層の厚み方向を貫いている。繊維長さLを100mm以下とすることで、流動性が確保され、プレス成形などにより、容易に積層基材7より面積が伸長した繊維強化プラスチック11を得ることが出来る。b)のように、伸長した繊維強化プラスチック11を得た際、プリプレグ層7由来の短繊維層12は、繊維垂直方向に伸長すると共に、繊維3自体が回転18して伸長領域の面積を稼ぐため、図5のように繊維が存在しない領域(切込開口部)13が実質的に生成せず、切込開口部の短繊維層12の表面における面積が短繊維層12の表面積と比較して0.1〜10%の範囲内である。従って、断面図を見ても分かるとおり、隣接層14が侵入することもなく、層のうねりや樹脂リッチ部のない高強度で品位の高い繊維強化プラスチック11を得ることが出来る。面内全体にくまなく繊維3が配されているため、面内での剛性差がなく、設計も従来の連続繊維強化プラスチックと同様、簡易に適用できる。この繊維が回転して伸長し、層うねりのない繊維強化プラスチックを得るという画期的効果は、切込と強化繊維とのなす角度Θの絶対値が25°以下であり、かつ、切込が連続して入れられていることで初めて得ることができる。また、強度の面では、前述と同様に荷重方向から±10°以下程度に向いている繊維に注目すると、図6b)のように、繊維束端部15が荷重方向に対して寝てきている様子がわかる。繊維束端部15が層厚み方向に斜めとなっているため、荷重の伝達がスムーズであり、繊維束端部15からの剥離も起こりにくい。従って、図5に比べ格段の強度向上が見込まれる。この繊維束端部15が層厚み方向に斜めとなるのは上述の繊維が回転する際、上面と下面の摩擦により上面から下面で繊維3の回転18になだらかな分布があるためで、そのため、層厚み方向に繊維3の存在分布が発生し、繊維束端部15が層厚み方向に斜めとなったと考えられる。このような繊維強化プラスチック11の層内で層厚み方向に斜めの繊維束端部を形成し、強度を著しく向上する画期的効果は切込4aの繊維3となす角度Θの絶対値が25°以下であることで初めて得ることができる。   On the other hand, in FIG. 6, a laminated base material 10 composed of the prepreg layer 7 of the preferred example [1] of the present invention is shown in a), and a fiber reinforced plastic 11 formed by stretching the laminated base material 10 is shown in b). A cross-sectional view of the prepreg layer 7 and the short fiber layer 12 derived from the prepreg layer 7 in close-up and a cross-sectional view taken along the line AA of the plan view are shown. As shown to a), the prepreg layer 7 has the continuous cut 4a whose absolute value of angle (THETA) formed with the fiber 3 is 25 degrees or less, and the cut 4a has penetrated the thickness direction of the layer. . By setting the fiber length L to 100 mm or less, fluidity is ensured, and the fiber reinforced plastic 11 whose area is easily extended from the laminated substrate 7 can be obtained by press molding or the like. When the stretched fiber reinforced plastic 11 is obtained as in b), the short fiber layer 12 derived from the prepreg layer 7 stretches in the fiber vertical direction, and the fiber 3 itself rotates 18 to gain an area of the stretched region. Therefore, as shown in FIG. 5, a region (cut opening) 13 where no fiber exists is not substantially generated, and the area of the cut fiber opening 12 on the surface of the short fiber layer 12 is compared with the surface area of the short fiber layer 12. In the range of 0.1 to 10%. Therefore, as can be seen from the cross-sectional view, the adjacent layer 14 does not penetrate, and the high-strength and high-quality fiber-reinforced plastic 11 having no layer waviness or resin-rich portion can be obtained. Since the fibers 3 are arranged all over the surface, there is no difference in rigidity in the surface, and the design can be easily applied as in the conventional continuous fiber reinforced plastic. The revolutionary effect that this fiber rotates and stretches to obtain a fiber-reinforced plastic having no layer waviness is that the absolute value of the angle Θ between the cut and the reinforcing fiber is 25 ° or less, and the cut is It can be obtained for the first time by being put continuously. Further, in terms of strength, when attention is paid to the fibers oriented to about ± 10 ° or less from the load direction as described above, the fiber bundle end portion 15 lies down with respect to the load direction as shown in FIG. I can see the situation. Since the fiber bundle end portion 15 is slanted in the layer thickness direction, the load is smoothly transmitted, and peeling from the fiber bundle end portion 15 hardly occurs. Therefore, a marked improvement in strength is expected compared to FIG. The fiber bundle end 15 is inclined in the layer thickness direction because when the above-described fiber rotates, there is a gentle distribution in the rotation 18 of the fiber 3 from the upper surface to the lower surface due to friction between the upper surface and the lower surface. It is considered that the presence distribution of the fibers 3 occurs in the layer thickness direction, and the fiber bundle end 15 is inclined in the layer thickness direction. In such a layer of the fiber reinforced plastic 11, a fiber bundle end portion that is slanted in the layer thickness direction is formed, and the epoch-making effect of remarkably improving the strength is that the absolute value of the angle Θ formed with the fiber 3 of the cut 4 a is 25 It can be obtained for the first time when it is below °.

図7には、本発明の好ましい例[2]のプリプレグ層7から構成された積層基材10をa)、その積層基材10を伸張して成形した繊維強化プラスチック11をb)に、それぞれプリプレグ層7およびプリプレグ層7由来の短繊維層12をクローズアップした平面図を示した。a)に示すとおり、プリプレグ層7は、繊維3となす角度Θの絶対値が25°以下の断続的な切込4bを全面に有しており、切込4bは層の厚み方向を貫いている。切込4bにより繊維長さLをプリプレグ層7の全面で100mm以下とすることで、流動性が確保され、プレス成形などにより、容易に積層基材7より面積が伸長した繊維強化プラスチック11を得ることができる。切込長さ、切込角度を小さくすることにより、切込を強化繊維の垂直方向に投影した投影長さWsを1.5mm以下とすることができる。b)のように、伸長した繊維強化プラスチック11を得た際、プリプレグ層7由来の短繊維層12は、繊維垂直方向に伸長する際、繊維方向に繊維が伸張しないため、繊維が存在しない領域(切込開口部)13が生成されるが、隣接する短繊維群が繊維垂直方向に流動することで、切込開口部13を埋め、切込開口部13の面積が小さくなる。この傾向は特に、切込を強化繊維の垂直方向に投影した投影長さWsを1.5mm以下とすることで顕著となり、実質的に切込開口部13が生成せず、切込開口部の短繊維層12の表面における面積が短繊維層12の表面積と比較して0.1〜10%の範囲内とすることができる。従って、厚み方向に隣接層が侵入することもなく、層のうねりや樹脂リッチ部のない高強度で品位の高い繊維強化プラスチック11を得ることが出来る。面内全体にくまなく繊維3が配されているため、面内での剛性差がなく、設計も従来の連続繊維強化プラスチックと同様、簡易に適用できる。この切込開口部を繊維垂直方向の流動により埋め、層うねりのない繊維強化プラスチックを得るという画期的効果は切込角度Θの絶対値が25°以下であり、かつ切込を強化繊維の垂直方向に投影した投影長さWsを1.5mm以下とすることで初めて得ることができる。さらに好ましくはWsが1mm以下であることにより、より高強度、高品位とすることができる。   In FIG. 7, a laminated base material 10 composed of the prepreg layer 7 of the preferred example [2] of the present invention is shown in a), and a fiber reinforced plastic 11 formed by stretching the laminated base material 10 is shown in b). The top view which closed up the prepreg layer 7 and the short fiber layer 12 derived from the prepreg layer 7 was shown. As shown in a), the prepreg layer 7 has intermittent cuts 4b whose absolute value of the angle Θ between the fibers 3 is 25 ° or less, and the cuts 4b penetrate through the thickness direction of the layer. Yes. By making the fiber length L 100 mm or less over the entire surface of the prepreg layer 7 by the cuts 4b, the fluidity is ensured, and the fiber reinforced plastic 11 whose area is easily extended from the laminated base material 7 is obtained by press molding or the like. be able to. By reducing the cut length and the cut angle, the projection length Ws obtained by projecting the cut in the vertical direction of the reinforcing fiber can be made 1.5 mm or less. When the stretched fiber reinforced plastic 11 is obtained as in b), the short fiber layer 12 derived from the prepreg layer 7 does not stretch in the fiber direction when stretched in the fiber vertical direction. The (cut opening) 13 is generated, but the adjacent short fiber group flows in the fiber vertical direction, thereby filling the cut opening 13 and reducing the area of the cut opening 13. This tendency becomes remarkable particularly when the projection length Ws obtained by projecting the cut in the vertical direction of the reinforcing fiber is 1.5 mm or less, and the cut opening 13 is not substantially generated, and the cut opening Compared with the surface area of the short fiber layer 12, the area in the surface of the short fiber layer 12 can be 0.1 to 10% of range. Therefore, it is possible to obtain a high-strength and high-quality fiber-reinforced plastic 11 without layer undulation or resin-rich portion without adjacent layers intruding in the thickness direction. Since the fibers 3 are arranged all over the surface, there is no difference in rigidity in the surface, and the design can be easily applied as in the conventional continuous fiber reinforced plastic. The epoch-making effect of filling the cut opening with the flow in the vertical direction of the fiber to obtain a fiber reinforced plastic having no layer undulation is that the absolute value of the cut angle Θ is 25 ° or less and the cut is made of the reinforcing fiber. It can be obtained for the first time when the projection length Ws projected in the vertical direction is 1.5 mm or less. More preferably, when Ws is 1 mm or less, higher strength and higher quality can be achieved.

Θの絶対値が25°よりも大きければ、樹脂リッチ部やその層における繊維がない領域、すなわち隣接層の強化繊維がのぞいている領域が最外層に生成されるため、外板部材としては適用が難しい。一方で本発明では、樹脂リッチ部や繊維がない領域が生成されにくいため、外板部材としての適用も可能となる。   If the absolute value of Θ is larger than 25 °, a region where there is no fiber in the resin-rich part or its layer, that is, a region where the reinforcing fiber of the adjacent layer is viewed is generated in the outermost layer. Is difficult. On the other hand, in the present invention, it is difficult to generate a resin-rich portion or a region without fibers, so that it can be applied as an outer plate member.

本発明のプリプレグ層に用いられる強化繊維としては、例えば、アラミド繊維、ポリエチレン繊維、ポリパラフェニレンベンズオキサドール(PBO)繊維などの有機繊維、ガラス繊維、炭素繊維、炭化ケイ素繊維、アルミナ繊維、チラノ繊維、玄武岩繊維、セラミックス繊維などの無機繊維、ステンレス繊維やスチール繊維などの金属繊維、その他、ボロン繊維、天然繊維、変性した天然繊維などを繊維として用いた強化繊維などが挙げられる。その中でも特に炭素繊維は、これら強化繊維の中でも軽量であり、しかも比強度および比弾性率において特に優れた性質を有しており、さらに耐熱性や耐薬品性にも優れていることから、軽量化が望まれる自動車パネルなどの部材に好適である。なかでも、高強度の炭素繊維が得られやすいPAN系炭素繊維が好ましい。   Examples of the reinforcing fiber used in the prepreg layer of the present invention include organic fibers such as aramid fiber, polyethylene fiber, polyparaphenylene benzoxador (PBO) fiber, glass fiber, carbon fiber, silicon carbide fiber, alumina fiber, and Tyranno. Examples thereof include inorganic fibers such as fibers, basalt fibers, and ceramic fibers, metal fibers such as stainless fibers and steel fibers, and other reinforcing fibers using boron fibers, natural fibers, modified natural fibers, and the like as fibers. Among them, carbon fiber is particularly lightweight among these reinforcing fibers, and has particularly excellent properties in specific strength and specific modulus, and is also excellent in heat resistance and chemical resistance. It is suitable for members such as automobile panels that are desired to be made. Among these, PAN-based carbon fibers that can easily obtain high-strength carbon fibers are preferable.

本発明のプリプレグ層に用いられる熱可塑性樹脂としては、例えば、ポリアミド(PA)、ポリアセタール、ポリアクリレート、ポリスルフォン、ABS、ポリエステル、アクリル、ポリブチレンテレフタラート(PBT)、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリエチレン、ポリプロピレン、ポリフェニレンスルフィド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルイミド(PEI)、ポリエーテルケトン(PEK)、液晶ポリマー、塩ビ、ポリテトラフルオロエチレンなどのフッ素系樹脂、シリコーンなどが挙げられる。さらに、強化繊維との接着性、およびマトリックス樹脂としての力学特性を鑑みると、PA、PPS、PEEK、PEI、PEKが好ましい。さらに繊維強化プラスチックに特に高い力学特性を求める場合にはPEEKが、低コストを求める場合にはPA、PPSが好ましい。   Examples of the thermoplastic resin used in the prepreg layer of the present invention include polyamide (PA), polyacetal, polyacrylate, polysulfone, ABS, polyester, acrylic, polybutylene terephthalate (PBT), polycarbonate (PC), and polyethylene terephthalate. (PET), polyethylene, polypropylene, polyphenylene sulfide (PPS), polyetheretherketone (PEEK), polyetherimide (PEI), polyetherketone (PEK), liquid crystal polymer, vinyl chloride, polytetrafluoroethylene and other fluorine-based resins And silicone. Furthermore, PA, PPS, PEEK, PEI, and PEK are preferable in view of adhesiveness with reinforcing fibers and mechanical properties as a matrix resin. Furthermore, PEEK is preferable when particularly high mechanical properties are required for the fiber reinforced plastic, and PA and PPS are preferable when low cost is required.

本発明の積層基材はプリプレグ層の繊維方向が1方向にのみ配向している場合は、繊維垂直方向にしか流動しない。すなわち、90°方向への熱可塑性樹脂の流動が強化繊維を動かす原動力であるため、2方向以上に繊維配向して一体化されていることではじめて、流動性が発現する。プリプレグ層同士で繊維配向が異なると、プリプレグ層ごとの流動方向、距離に違いが生じるが、層間が滑ることで変位差を吸収できる。すなわち、繊維体積含有率Vfが45〜65%と高くても、本発明の積層基材は層間に熱可塑性樹脂を偏在させることができる構成のため、高い流動性を発現することができる。SMCの場合、ランダムに分散したチョップドストランド同士で流動性が異なり、互いに違う方向に流動しようとするが、繊維同士が干渉して流動しにくく、最大でVfが40%程度までしか流動性を確保することができない。すなわち、本発明の積層基材は力学特性を向上することが出来る高Vfの構成であっても高い流動性を発現できる、という特徴を有する。   When the fiber direction of the prepreg layer is oriented in only one direction, the laminated base material of the present invention flows only in the fiber vertical direction. That is, since the flow of the thermoplastic resin in the 90 ° direction is a driving force for moving the reinforcing fibers, fluidity is manifested only when the fibers are aligned and integrated in two or more directions. If the fiber orientation is different between the prepreg layers, a difference occurs in the flow direction and distance for each prepreg layer, but the displacement difference can be absorbed by sliding between the layers. That is, even if the fiber volume content Vf is as high as 45 to 65%, the laminated base material of the present invention can exhibit high fluidity because of the configuration in which the thermoplastic resin can be unevenly distributed between the layers. In the case of SMC, fluidity is different between randomly chopped strands, and they try to flow in different directions, but they are difficult to flow due to interference between fibers, and fluidity is ensured only up to about 40% Vf. Can not do it. That is, the laminated base material of the present invention is characterized in that high fluidity can be exhibited even with a high Vf configuration capable of improving mechanical properties.

さらに本発明に係るプリプレグ層は全面に切込を有するので、積層時にトラップされた空気が厚み方向に切込を通じて脱気しやすく、ボイドが発生しにくく、高力学特性が期待できる。なかでも、[+45/0/−45/90]、[0/±60]といった擬似等方積層が、均等な物性とし、ソリの発生を抑制する場合に好ましい。また前述のとおり90°方向への樹脂の流動が繊維を動かす原動力であるため、隣接層の繊維配向によって繊維の流れ具合が異なるが、擬似等方積層とすることで流動性が等方となり、流動性のバラツキが少なくロバスト性に優れた中間基材となる。また、本発明の積層基材は、成形して構造材として用いる繊維強化プラスチックとする場合、多方向からの荷重に耐える必要がある。流動性、力学特性の観点からも、本発明の積層基材は汎用的な使用に耐えるよう、擬似等方に積層されているのが良い。 Furthermore, since the prepreg layer according to the present invention has a cut on the entire surface, air trapped at the time of lamination is easily degassed through the cut in the thickness direction, voids are hardly generated, and high mechanical properties can be expected. Among them, quasi-isotropic lamination such as [+ 45/0 / −45 / 90] S and [0 / ± 60] S is preferable in order to obtain uniform physical properties and suppress the generation of warpage. In addition, since the flow of the resin in the 90 ° direction is a driving force for moving the fiber as described above, the flow of the fiber differs depending on the fiber orientation of the adjacent layer, but the fluidity becomes isotropic by using the pseudo isotropic lamination, It is an intermediate base material with little fluidity variation and excellent robustness. Further, when the laminated base material of the present invention is formed into a fiber reinforced plastic used as a structural material by molding, it is necessary to withstand loads from multiple directions. From the viewpoint of fluidity and mechanical properties, the laminated base material of the present invention is preferably laminated in a pseudo isotropic manner to withstand general use.

本発明の積層基材は、プリプレグ層同士の層間に熱可塑性樹脂が偏在しているのが良い。前述の通り、層間に熱可塑性樹脂を偏在させることで、繊維堆積含有率Vfが高くても流動性が向上する。また、一般的に積層構造を有する繊維強化プラスチックは面外から衝撃荷重が加わった場合、層間剥離が起こりやすいが、強化繊維に変位を拘束されていない熱可塑性樹脂が層間に偏在していることで、層間のひずみのギャップを吸収することができ、層間剥離がおきにくい。結果、衝撃荷重が加わっても繊維強化プラスチックの力学特性の低下が少なく、耐衝撃性に優れる。層間に偏在する熱可塑性樹脂が多すぎると、繊維強化プラスチック全体の繊維堆積含有率Vfが低下するため、弾性率が低下してしまう。好ましくは偏在する熱可塑性樹脂の樹脂堆積含有率Vimが5%以下であるのが好ましい。   In the laminated base material of the present invention, the thermoplastic resin may be unevenly distributed between the prepreg layers. As described above, by making the thermoplastic resin unevenly distributed between the layers, the fluidity is improved even if the fiber deposition content Vf is high. In general, fiber reinforced plastics with a laminated structure are prone to delamination when an impact load is applied from the outside, but thermoplastic resin that is not restrained from displacement by the reinforced fibers is unevenly distributed between the layers. Thus, the strain gap between layers can be absorbed, and delamination hardly occurs. As a result, even when an impact load is applied, the mechanical properties of the fiber reinforced plastic are hardly lowered and the impact resistance is excellent. If too much thermoplastic resin is unevenly distributed between the layers, the fiber deposition content Vf of the entire fiber reinforced plastic is lowered, so that the elastic modulus is lowered. The resin deposition content Vim of the unevenly distributed thermoplastic resin is preferably 5% or less.

本発明の積層基材は、図10のプリプレグ層の断面図に示したように、構成するプリプレグ層の厚み方向中央部21が強化繊維のみからなっていても良い。プリプレグ層の表面付近には熱可塑性樹脂が含浸しており、プリプレグ層同士の層間に熱可塑性樹脂が偏在していても良く、半含浸の状態で積層して、積層基材としても、成形時に完全含浸させれば、繊維強化プラスチックの力学特性としては問題ない。   As shown in the cross-sectional view of the prepreg layer in FIG. 10, in the laminated base material of the present invention, the central portion 21 in the thickness direction of the prepreg layer to be formed may be composed only of reinforcing fibers. Near the surface of the prepreg layer is impregnated with a thermoplastic resin, and the thermoplastic resin may be unevenly distributed between the prepreg layers, laminated in a semi-impregnated state, as a laminated substrate, If impregnated completely, there is no problem as a mechanical property of the fiber reinforced plastic.

一方、本発明の積層基材は、ボイド率を2%以下とするのが良い。熱可塑性樹脂が強化繊維中に完全含浸しており、ボイドがほとんど存在しない積層基材を用いて、繊維強化プラスチックを成形することで、剥離を生じさせやすいボイドがほとんど存在しない繊維強化プラスチックとすることができ、大きく力学特性が向上する。本発明において、ボイド率は試験体(ここでは積層基材)の水中における体積と重量の関係から求める。熱可塑性樹脂が吸湿しやすいため、デシケータ内に1日以上収納した後、測定を行う。まず、試験体の重量を測定した後、容器中の水に試験体を浸漬して体積増を測定して試験体の体積を測定する。一方、試験体を形成する繊維と樹脂のそれぞれの体積含有率と、繊維と樹脂のそれぞれの比重を掛け合わせて、試験体の理想比重を計算する。測定した試験体の重量を理想比重で割ることから予想される試験体の体積は、測定した試験体の体積よりも小さく、その差がボイドの体積となる。このボイドの体積を測定した試験体の体積で割ったものが、ボイド率(ボイドの体積含有率)となる。繊維強化プラスチックが安定して力学特性を発現するために、さらに好ましくはボイド率を1%以下とするのが良い。   On the other hand, the laminated base material of the present invention may have a void ratio of 2% or less. The fiber reinforced plastic is molded by using a laminated base material in which the thermoplastic resin is completely impregnated in the reinforced fiber, and there is almost no void. And mechanical properties are greatly improved. In the present invention, the void ratio is determined from the relationship between the volume and weight of the test specimen (here, the laminated base material) in water. Since the thermoplastic resin easily absorbs moisture, the measurement is performed after storing in a desiccator for one day or more. First, after measuring the weight of the test body, the volume of the test body is measured by immersing the test body in water in a container and measuring the volume increase. On the other hand, the ideal specific gravity of the test specimen is calculated by multiplying the respective volume contents of the fiber and resin forming the specimen and the specific gravity of the fiber and resin. The volume of the test specimen expected from the weight of the measured specimen divided by the ideal specific gravity is smaller than the volume of the measured specimen, and the difference is the void volume. The void ratio (the void volume content) is obtained by dividing the void volume by the measured specimen volume. In order for the fiber reinforced plastic to stably exhibit mechanical properties, the void ratio is more preferably 1% or less.

本発明の積層基材は、プリプレグ層同士が層間全面で融着していても良い。層間全面で融着していることで、取り扱い性が高くなると共に、ボイド率を低下させることができ、力学特性が向上する。一方で、プリプレグ層の一部同士のみをレーザーや半田ごてなどを用いて点状に融着(スポット溶接)しても良い。点状に融着させてプリプレグ層同士を一体化する場合、成形時に積層基材がばらばらにならないよう、取り扱い性を向上しつつ、積層基材として一体化する工程を短縮することが出来る、というメリットがある。   In the laminated base material of the present invention, the prepreg layers may be fused on the entire surface of the interlayer. By fusing all over the interlayer, the handleability is improved, the void ratio can be reduced, and the mechanical properties are improved. On the other hand, only a part of the prepreg layers may be fused (spot welded) in a spot shape using a laser or a soldering iron. When integrating prepreg layers by fusing in a dot shape, the process of integrating as a laminated substrate can be shortened while improving the handleability so that the laminated substrate does not fall apart during molding There are benefits.

さらに好ましくは、本発明の積層基材の少なくとも一方の表面に強化繊維からなる不織布が配されている複合積層基材が良い。成形時に表面は成形型に接触するため、流動が乱れやすい。強化繊維が一方向に配向したプリプレグ層が繊維強化プラスチックの表面に現れている場合、形状変化の大きなR部などで、繊維のみだれが顕著となる。従って、予めランダムに繊維配向した強化繊維からなる不織布を積層基材の表面に配することで、表面品位が著しく向上する。また、不織布が強化繊維から構成されることから、力学特性の低下を最小限とすることができる。好ましくは不織布に用いられている強化繊維がプリプレグ層に用いられている強化繊維と同一であるのが良い。さらに強化繊維からなる不織布はプリプレグ層の伸張にあわせて流動できることが好ましく、繊維長さが3〜15mmの範囲内であるのが良い。   More preferably, a composite laminated base material in which a nonwoven fabric made of reinforcing fibers is arranged on at least one surface of the laminated base material of the present invention is preferable. Since the surface is in contact with the mold during molding, the flow tends to be disturbed. When the prepreg layer in which the reinforcing fibers are oriented in one direction appears on the surface of the fiber reinforced plastic, the dripping of the fibers becomes noticeable at the R portion where the shape change is large. Therefore, the surface quality is remarkably improved by arranging a nonwoven fabric composed of reinforcing fibers randomly oriented in advance on the surface of the laminated base material. Moreover, since a nonwoven fabric is comprised from a reinforced fiber, the fall of a mechanical characteristic can be minimized. Preferably, the reinforcing fibers used in the nonwoven fabric are the same as the reinforcing fibers used in the prepreg layer. Furthermore, it is preferable that the nonwoven fabric made of reinforcing fibers can flow in accordance with the extension of the prepreg layer, and the fiber length is preferably in the range of 3 to 15 mm.

本発明の積層基材および複合積層基材は三次元形状に成形して繊維強化プラスチックとするのが良い。特に複雑形状の繊維強化プラスチックを製造するに当たり、平板上の本発明の積層基材または複合積層基材を成形型に配置するだけで容易に伸張し、また、一般的なプレス成形では圧力の加わりにくい立ち面であっても好適に充填できる。   The laminated base material and composite laminated base material of the present invention are preferably formed into a three-dimensional shape to be a fiber reinforced plastic. In particular, when manufacturing fiber-reinforced plastics with complex shapes, the laminate or composite laminate substrate of the present invention on a flat plate can be easily stretched simply by placing it in a mold, and pressure is applied in general press molding. Even a difficult standing surface can be suitably filled.

本発明の積層基材の製造方法としては、一方向に配向した強化繊維と熱可塑性樹脂とからなるプリプレグ基材の全面に、強化繊維となす角度Θの絶対値が2〜25°の範囲内となる直線状の切込を設け、実質的にすべての強化繊維を前記切込により分断し、前記切込により分断した強化繊維の繊維長さLを10〜100mmの範囲内にして切込プリプレグ基材とし、該切込プリプレグ基材を複数枚積層し、積層した切込プリプレグ基材を加熱および加圧により一体化して積層基材とするのが良い。所定の形状の積層基材を製造する方法としては、プリプレグ基材の全面に切込を挿入する前後にプリプレグ基材を裁断する方法と、積層基材自体を裁断する方法がある。   As a method for producing a laminated base material of the present invention, the absolute value of the angle Θ formed with the reinforcing fiber is within the range of 2 to 25 ° on the entire surface of the prepreg base material composed of the reinforcing fiber and the thermoplastic resin oriented in one direction. A straight notch is formed, substantially all the reinforcing fibers are divided by the incision, and the fiber length L of the reinforcing fiber divided by the incision is set within a range of 10 to 100 mm. A plurality of the cut prepreg base materials are laminated, and the laminated cut prepreg base materials are integrated by heating and pressurizing to form a laminated base material. As a method of manufacturing a laminated base material having a predetermined shape, there are a method of cutting the prepreg base material before and after inserting a cut into the entire surface of the prepreg base material, and a method of cutting the laminated base material itself.

プリプレグ基材に切込を挿入する方法としては、まず一方向に配向した連続繊維のプリプレグ基材を作製し、その後カッターを用いての手作業や自動裁断機により切込を入れる方法、あるいは一方向に配向した連続繊維のプリプレグ製造工程において所定の位置に刃を配置した回転ローラーを連続的に押し当てたり、多層にプリプレグ基材を重ねて所定の位置に刃を配置した型で押し切りする等の方法がある。簡易にプリプレグ基材に切込を入れる場合には前者が、生産効率を考慮し大量に作製する場合には後者が適している。本発明においては、切込角度が小さいことから、刃の単位長さあたり裁断する繊維量が減少し、小さな力で繊維を裁断できるため、繊維の切り残りを少なくするとともに、刃の耐久性を向上できる。回転ローラーを用いる場合には、直接ローラーを削りだして所定の刃を設けてもよいが、マグネットローラーなどに平板を削りだして所定の位置に刃を配置したシート状の型を巻きつけることにより、刃の取りかえが容易で好ましい。このような回転ローラーを用いることで、Wsが小さくても(具体的には1mm以下であっても)良好に切込を挿入することができる。   As a method for inserting the cut into the prepreg base material, first, a prepreg base material of continuous fibers oriented in one direction is prepared, and then the cut is made by manual operation using an cutter or an automatic cutting machine, or one In the prepreg manufacturing process of continuous fibers oriented in the direction, a rotating roller with blades arranged at predetermined positions is continuously pressed, or a prepreg base material is stacked on multiple layers and pressed with a mold with blades arranged at predetermined positions, etc. There is a way. The former is suitable when the prepreg base material is simply cut, and the latter is suitable when producing a large amount in consideration of production efficiency. In the present invention, since the cutting angle is small, the amount of fiber to be cut per unit length of the blade is reduced, and the fiber can be cut with a small force. Can be improved. When a rotating roller is used, the roller may be directly cut out to provide a predetermined blade, but by cutting a flat plate around a magnet roller or the like and winding a sheet-shaped mold with the blade placed at a predetermined position The replacement of the blade is easy and preferable. By using such a rotating roller, it is possible to insert the cut well even if Ws is small (specifically, 1 mm or less).

本発明の積層基材を製造するに当たり、一方向に配向した強化繊維と熱可塑性樹脂とからなるプリプレグ基材の全面に、強化繊維となす角度Θの絶対値が2〜25°の範囲内となる直線状の切込を設け、実質的にすべての強化繊維を切込により分断し、切込により分断した強化繊維の繊維長さLを10〜100mmの範囲内にして切込プリプレグ基材とし、該切込プリプレグ基材を複数枚積層し、積層した切込プリプレグ基材を加熱するに際し、所定のボイド率となるまで、加圧及び減圧を繰り返すのが良い。ダブルベルトプレスなどを用いて加圧と減圧を繰り返すことで、積層基材中の空隙が熱可塑性樹脂で充填される。さらに好ましくは、最終的に、積層基材のボイド率を体積含有率にして2%以下とすることにして、層間剥離がおき難く、強度、耐衝撃性に優れた繊維強化プラスチックを得ることができる。   In producing the laminated base material of the present invention, the absolute value of the angle Θ formed with the reinforcing fiber is within the range of 2 to 25 ° on the entire surface of the prepreg base material composed of the reinforcing fiber and the thermoplastic resin oriented in one direction. A linear incision is provided, substantially all the reinforcing fibers are divided by the incision, and the fiber length L of the reinforcing fibers divided by the incision is set within a range of 10 to 100 mm to form a incised prepreg base material. In addition, when a plurality of the cut prepreg base materials are stacked and the stacked cut prepreg base materials are heated, it is preferable to repeat the pressurization and pressure reduction until a predetermined void ratio is obtained. By repeating pressurization and pressure reduction using a double belt press or the like, the voids in the laminated base material are filled with the thermoplastic resin. More preferably, finally, the void content of the laminated base material is set to 2% or less in volume content to obtain a fiber-reinforced plastic that is difficult to delaminate and has excellent strength and impact resistance. it can.

本発明の積層基材を製造するに当たり、プリプレグ基材として、一方向に配向した強化繊維の表面にのみ熱可塑性樹脂が偏在して含浸されたプリプレグ基材を用いるのが良い。熱可塑性樹脂は加熱しても樹脂粘度が高く、強化繊維中に樹脂が含浸しにくい。そのため、半含浸状態のプリプレグ基材(セミプレグ)の方が、完全含浸したプリプレグ基材より低コストに製造できる。プリプレグ基材の段階で一枚一枚完全含浸させなくても、複数の切込プリプレグ基材を積層した段階でまとめて含浸させても良い。   In the production of the laminated base material of the present invention, it is preferable to use a prepreg base material in which a thermoplastic resin is unevenly distributed and impregnated only on the surface of reinforcing fibers oriented in one direction. The thermoplastic resin has a high resin viscosity even when heated, and the resin is not easily impregnated into the reinforcing fiber. Therefore, a semi-impregnated prepreg base material (semi-preg) can be manufactured at a lower cost than a fully impregnated prepreg base material. Instead of completely impregnating one by one at the stage of the prepreg base material, it may be impregnated together at the stage of laminating a plurality of cut prepreg base materials.

一方で、本発明の積層基材を製造するに当たり、プリプレグ基材として、ボイド率が1%以下のプリプレグ基材を用いても良い。ほぼ完全含浸したプリプレグ基材を積層することで、効率的にボイド率の低い積層基材を製造できるため、好ましい。   On the other hand, when manufacturing the laminated base material of the present invention, a prepreg base material having a void ratio of 1% or less may be used as the prepreg base material. Lamination of a substantially completely impregnated prepreg base material is preferable because a laminated base material having a low void ratio can be efficiently produced.

プリプレグ基材を作成するにあたっては、一方向に強化繊維を平面状に引き揃えて繊維シートとし、該繊維シートの両面から熱可塑性樹脂からなる不織布を挟み、加熱および加圧により熱可塑性樹脂を繊維シート中に含浸するのが良い。熱可塑性樹脂からなる樹脂フィルムを用いても良いが、不織布を用いた方が、面外方向にも脱気し、ボイド率の低いプリプレグ基材を作成することができる。その他、低分子量成分の反応性樹脂を繊維シート中に含浸した後、重合して熱可塑性樹脂としたり、溶媒に溶解して低粘度化した熱可塑性樹脂を繊維シート中に含浸した後、脱溶媒して、プリプレグ基材を作成しても良い。   In preparing the prepreg base material, reinforcing fibers are drawn in one direction to form a fiber sheet, a nonwoven fabric made of a thermoplastic resin is sandwiched from both sides of the fiber sheet, and the thermoplastic resin is made into a fiber by heating and pressing. It is better to impregnate the sheet. Although a resin film made of a thermoplastic resin may be used, the use of a nonwoven fabric can be deaerated also in the out-of-plane direction, and a prepreg base material having a low void ratio can be created. In addition, the fiber sheet is impregnated with a reactive resin having a low molecular weight component and then polymerized to obtain a thermoplastic resin, or the fiber sheet is impregnated with a thermoplastic resin that has been dissolved in a solvent to reduce the viscosity, and then the solvent is removed. Thus, a prepreg base material may be created.

プリプレグ基材に切込を挿入し、所定の外形状に裁断するにあたっては、プリプレグ基材の全面に切込を挿入する抜き型を用いて、切込を挿入すると同時に所定の外形状に裁断して切込プリプレグ基材を形成するのが良い。切込の挿入と外形状の裁断を同時、同じ抜き型を用いて実施することにより、短時間かつ低コストに積層に用いる切込プリプレグ基材を作成することができる。   When inserting a notch into a prepreg base material and cutting it into a predetermined outer shape, use a punching die that inserts a cut into the entire surface of the prepreg base material, and simultaneously cutting the cut into a predetermined outer shape. A cut prepreg base material is preferably formed. By carrying out the insertion of the cut and the cutting of the outer shape at the same time using the same punching die, a cut prepreg base material used for lamination can be created in a short time and at a low cost.

切込プリプレグ基材を複数枚積層するにあたり、切込プリプレグ基材を全面に渡って同一厚みに積層しても良いが、異なる外形状の切込プリプレグ基材を含むように積層して、積層厚みが異なる箇所を有する積層基材を形成しても良い。予め積層基材の段階で場所によって異なる積層厚みとすることで、場所によって厚みの異なる繊維強化プラスチックを成形するにあたり、無理に厚み方向に流動する必要がなくなるため、厚み方向の層うねりが少なく、高品位な繊維強化プラスチックの所望の形態を実現することができる。   When laminating a plurality of cut prepreg base materials, the cut prepreg base materials may be laminated to the same thickness over the entire surface, but they are laminated so as to include cut prepreg base materials having different outer shapes. You may form the laminated base material which has a location from which thickness differs. By making the laminated thickness different depending on the location at the stage of the laminated substrate in advance, it is not necessary to forcefully flow in the thickness direction when molding the fiber reinforced plastic with different thickness depending on the location, so there is less layer undulation in the thickness direction, A desired form of high-quality fiber reinforced plastic can be realized.

本発明の積層基材または複合積層基材を用いて繊維強化プラスチックを製造するにあたり、積層基材または複合積層基材を加熱して軟化させた後、コールドプレスして三次元形状の繊維強化プラスチックを成形するのが良い。積層基材または複合積層基材を加熱して軟化させる工程とコールドプレスする工程を別装置で行い、例えば前者はIRヒーターを用い、後者は温調した成形型をセットしたプレス機を用いることで、成形型の昇降温を伴うことなく繊維強化プラスチックを製造することができ、成形サイクルを早くすることができる。成形型を食い切り型として、トリムレスで所望の形状の繊維強化プラスチックを得ても良い。   In manufacturing a fiber reinforced plastic using the laminated base material or composite laminated base material of the present invention, the laminated base material or composite laminated base material is softened by heating and then cold-pressed to obtain a three-dimensional fiber reinforced plastic. It is good to mold. The process of heating and softening the laminated base material or composite laminated base material and the process of cold pressing are performed in separate devices. For example, the former uses an IR heater, and the latter uses a press set with a temperature-controlled mold. The fiber reinforced plastic can be manufactured without raising or lowering the temperature of the mold, and the molding cycle can be accelerated. It is also possible to obtain a fiber-reinforced plastic having a desired shape without using a trimming die as a biting die.

本発明の繊維強化プラスチックを製造するにあたり、本発明の積層基材の周縁部を把持した後、積層基材の中央部に成形型を押し当てて成形(ドロー成形)するのが良い。平板状の積層基材をしわを入れることなく全面的に伸張して成形できるため、成形を制御しやすい。また、従来成形時に圧力の加わりにくい、深い立ち面を形成させやすい特徴を有する。   In producing the fiber reinforced plastic of the present invention, it is preferable to mold (draw molding) by pressing a molding die against the central portion of the laminated base material after gripping the peripheral portion of the laminated base material of the present invention. Since the flat laminated substrate can be stretched and formed entirely without wrinkling, it is easy to control the forming. Further, it has a feature that it is easy to form a deep standing surface that is difficult to apply pressure during conventional molding.

本発明の繊維強化プラスチックを製造するにあたり、成形型のキャビティに成形型のキャビティよりも小さな本発明の積層基材を配置し、積層基材を伸張して繊維強化プラスチックを成形(チャージ成形)しても良い。積層基材を伸張、充填して成形可能なため、複雑な外形上に積層基材を裁断しておく必要がなく、低コストである。平板状の積層基材であっても、立ち面やリブを充填して形成できる特徴がある。   In producing the fiber reinforced plastic of the present invention, the laminated base material of the present invention which is smaller than the mold cavity is placed in the mold cavity, and the laminated base material is stretched to form the fiber reinforced plastic (charge molding). May be. Since the laminated substrate can be stretched, filled and molded, it is not necessary to cut the laminated substrate on a complicated outer shape, and the cost is low. Even a flat laminated substrate has a feature that it can be formed by filling standing surfaces and ribs.

本発明の繊維強化プラスチックを製造するにあたり、コールドプレスにて加圧と減圧を繰り返すのが良い。加圧と減圧を繰り返すことで、切込やプリプレグ層の層間を通じて脱気しやすく、ボイド率を低下させることができる。   In producing the fiber reinforced plastic of the present invention, it is preferable to repeatedly pressurize and depressurize with a cold press. By repeating pressurization and depressurization, it is easy to deaerate through the layers of the notch and the prepreg layer, and the void ratio can be reduced.

本発明の積層基材中に、回転部などの機構を備えるために金属インサートを埋め込み、成形時に一体化させることにより、アセンブリコストが低減できる。その際、金属インサートの周囲に複数の凹部設けることにより、流動した繊維が凹部に進入し、容易に隙間を充填することができるとともに、成形温度から低下することで、金属と繊維の熱膨張差でかしめられ、強固に一体化させることができる。   The assembly cost can be reduced by embedding a metal insert in the laminated base material of the present invention so as to have a mechanism such as a rotating part and integrating it at the time of molding. At that time, by providing a plurality of recesses around the metal insert, the flowed fibers can enter the recesses, and can easily fill the gaps. And can be firmly integrated.

また、本発明の積層基材およびこれを用いて成形した繊維強化プラスチックの用途としては、強度、剛性、軽量性が要求される、自転車用品、ゴルフ等のスポーツ部材のシャフトやヘッド、リーディングエッジや窓枠など航空機部材、ドアやシートフレームなどの自動車部材、ロボットアームなどの機械部品がある。中でも、強度、軽量に加え、耐衝撃性が要求される航空機部材、生産性が要求される自動車部材に好ましく適用できる。   In addition, as a use of the laminated base material of the present invention and fiber reinforced plastic molded using the same, the shaft, head, leading edge, and the like of sports parts such as bicycle equipment and golf that require strength, rigidity, and lightness are required. There are aircraft parts such as window frames, automobile parts such as doors and seat frames, and mechanical parts such as robot arms. In particular, in addition to strength and light weight, it can be preferably applied to aircraft members that require impact resistance and automobile members that require productivity.

以下、実施例により本発明をさらに具体的に説明するが、本発明は、実施例に記載の発明に限定されるというものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the inventions described in the examples.

(実施例1)
一方向に炭素繊維(引張強度4,900MPa、引張弾性率235GPa)を平面状に引き揃えて目付が125g/mとなる繊維シートとし、繊維シートの両面から、共重合ポリアミド樹脂(東レ(株)製“アミラン”(登録商標)CM4000、ポリアミド6/66/610共重合体、融点155℃)からなる目付が40g/mの不織布を挟み、カレンダーロールを何度も通して加熱と加圧により、樹脂を繊維シートに含浸し、繊維堆積含有率Vf50%、厚み0.14mmのプリプレグ基材を作成した。このプリプレグ基材を真空オーブン内に1日放置した後、一部を切り出して重量を測定し、水に浸漬して体積を測定し、炭素繊維の比重1.8g/cmと樹脂の比重1.14g/mから推定されるボイド率を測定したところ、ボイドの体積含有率は0.8%であった。
Example 1
Carbon fiber (tensile strength 4,900 MPa, tensile elastic modulus 235 GPa) is aligned in one direction to form a fiber sheet having a basis weight of 125 g / m 2, and copolymer polyamide resin (Toray Industries, Inc. ) “Amilan” (registered trademark) CM4000 manufactured by Polyamide 6/66/610 copolymer, melting point 155 ° C.) with a fabric weight of 40 g / m 2 sandwiched between them and heated and pressed through a calender roll many times. By impregnating the resin into the fiber sheet, a prepreg base material having a fiber deposition content Vf of 50% and a thickness of 0.14 mm was prepared. After leaving this prepreg base material in a vacuum oven for one day, a part is cut out and weighed, and immersed in water to measure the volume. The specific gravity of carbon fiber 1.8 g / cm 3 and the specific gravity of resin 1 When the void ratio estimated from .14 g / m 2 was measured, the void volume content was 0.8%.

このプリプレグ基材に、炭素繊維の配向方向(0°方向)と、炭素繊維の配向方向から右に45度ずらした方向(45°方向)に、金属をNC加工して得た抜き型をそれぞれ押し付けて、150×150mmの矩形の外形状と、その内側の全面に図4e)に示すような等間隔で規則的な繊維から10°の方向の直線的な切込を、同時に形成して切込プリプレグ基材とした。切込により分断された繊維長さLは30mmである。切込の繊維の垂直方向に投影した投影長さWsが0.17mm(実際の切込長さは1mm)で、図2のように隣接する切込によって繊維長さL以下(今回は15mm程度)に分断される部位があった。   In this prepreg base material, the die obtained by NC machining of the metal in the carbon fiber orientation direction (0 ° direction) and the direction shifted 45 degrees to the right from the carbon fiber orientation direction (45 ° direction), respectively. Press to form a rectangular outer shape of 150 × 150 mm and a straight cut in the direction of 10 ° from regular fibers at equal intervals as shown in FIG. An embedded prepreg base material was obtained. The fiber length L divided by the cutting is 30 mm. The projected length Ws projected in the vertical direction of the cut fiber is 0.17 mm (actual cut length is 1 mm), and the fiber length L or less (this time is about 15 mm) due to the adjacent cut as shown in FIG. ) Was parted.

得られた切込プリプレグ基材はタックがなく、16層を疑似等方([45/0/−45/90]2S)に重ね、積層した切込プリプレグ基材群の四隅に半田ごてを押し当て、スポット溶接して、一体化して平板状の積層基材を作成した。 The obtained cut prepreg base material has no tack, and 16 layers are stacked in a pseudo-isotropic manner ([45/0 / -45 / 90] 2S ), and soldering irons are provided at the four corners of the laminated cut prepreg base material group. It pressed and spot-welded and integrated and the flat laminated base material was created.

こうして得た平板状の積層基材を真空オーブン内に1日放置した後、図9に示すようなコールドプレスによりC型の繊維強化プラスチック(立ち面の高さ30mm)を製造した。まず、オーブン内に積層基材を配置して加熱し、表面温度が200℃となったところで、オーブンから取り出した。加熱した積層基材はすばやく100×100mmのキャビティを有する雌型20に押し込めるようにして配置した。雄型19、雌型20いずれも70℃に温調しており、雌型20内に配置した積層基材に雄型19を押し当て、プレス機による6MPaの加圧の元、1分間保持して冷却し、脱型した。   The flat laminated substrate thus obtained was left in a vacuum oven for one day, and then a C-type fiber reinforced plastic (height of standing surface 30 mm) was produced by a cold press as shown in FIG. First, the laminated substrate was placed in an oven and heated, and when the surface temperature reached 200 ° C., the laminate was taken out from the oven. The heated laminated substrate was arranged so as to be quickly pushed into the female mold 20 having a 100 × 100 mm cavity. Both the male mold 19 and the female mold 20 are temperature-controlled at 70 ° C., and the male mold 19 is pressed against the laminated base material arranged in the female mold 20 and held for 1 minute under a pressure of 6 MPa by a press. And then demolded.

得られた繊維強化プラスチックは成形型の隅々まで充填されており、良好な流動性を示した。積層基材より表面積が大きくなったので、嵩高な積層基材に比べ、繊維強化プラスチックの厚みは低下した。断面を観察したところ、立ち面の端部まで積層構造が保たれており、またR部もほぼ均等な厚みの積層構造となっていた。このようにして、複雑形状へ形状追従させても積層基材の積層構造が保存される、という画期的効果を見出した。従って本発明の積層基材を用いることで、繊維強化プラスチックの形状が複雑でも、場所によって力学特性が変化することなく、平板の物性を用いて設計可能であることが推測された。   The obtained fiber reinforced plastic was filled to every corner of the mold and showed good fluidity. Since the surface area was larger than the laminated substrate, the thickness of the fiber reinforced plastic was lower than that of the bulky laminated substrate. When the cross section was observed, the laminated structure was maintained up to the end portion of the standing surface, and the R portion was also a laminated structure having a substantially uniform thickness. Thus, the epoch-making effect that the laminated structure of the laminated base material was preserved even when the shape was followed to a complicated shape was found. Therefore, it was presumed that by using the laminated base material of the present invention, even if the shape of the fiber reinforced plastic is complicated, it is possible to design using the physical properties of the flat plate without changing the mechanical characteristics depending on the place.

(実施例2)
実施例1と同様のプリプレグ基材を繊維方向に送りながら、1mm間隔でカット部とアンカット部が並んだブレード状のミシン刃を配列して木型に10°の角度で埋め込んだ抜き型を押し当てて、図4e)に示すような繊維から10°の方向の直線的な切込を全面に断続的に挿入して、切込プリプレグ基材を作成してロールに巻き取った。切込により分断された繊維長さLは30mmである。切込の繊維の垂直方向に投影した投影長さWsが0.17mm(実際の切込長さは1mm)で、図2のように隣接する切込によって繊維長さL以下(今回は15mm程度)に分断される部位があった。この切込プリプレグ基材を真空オーブン内に1日放置した後、切込プリプレグ基材を複数のロールから巻き出して、16層の疑似等方([45/0/−45/90]2S)積層でシート状のまま重ね、ダブルベルトプレスにより、加熱しながら、加圧と減圧を繰り返して、切込プリプレグ基材同士を層間の全面で融着させて一体化して積層基材を得た。
(Example 2)
While feeding the same prepreg base material as in Example 1 in the fiber direction, a cutting die in which blade-like sewing blades with cut portions and uncut portions arranged at intervals of 1 mm are arranged and embedded in a wooden mold at an angle of 10 ° is used. By pressing, a linear notch in the direction of 10 ° was intermittently inserted from the fiber as shown in FIG. 4e) to the entire surface to create a notched prepreg base material and wound around a roll. The fiber length L divided by the cutting is 30 mm. The projected length Ws projected in the vertical direction of the cut fiber is 0.17 mm (actual cut length is 1 mm), and the fiber length L or less (this time is about 15 mm) due to the adjacent cut as shown in FIG. ) Was parted. After leaving this cut prepreg base material in a vacuum oven for one day, the cut prepreg base material was unwound from a plurality of rolls to form a 16-layer pseudo-isotropic ([45/0 / −45 / 90] 2S ) While being laminated in a sheet form, pressurization and depressurization were repeated while heating with a double belt press, and the cut prepreg base materials were fused and integrated on the entire surface to obtain a laminated base material.

得られた積層基材を真空オーブン内に1日放置した後、重量を測定し、水に浸漬して体積を測定し、ボイド率を測定したところ、ボイドの体積含有率は0.7%であった。切込プリプレグ基材の全面に切込が挿入されているため、面外にも脱気しやすく、ボイド率が低下したものと推測された。   The obtained laminated substrate was left in a vacuum oven for 1 day, and then the weight was measured, the volume was measured by immersing in water, and the void ratio was measured. The volume content of the void was 0.7%. there were. Since the cuts were inserted in the entire surface of the cut prepreg base material, it was presumed that the void ratio was reduced because it was easy to deaerate out of the surface.

この積層基材を250×250mmの大きさに切り出し、真空オーブン内に1日放置した後、コールドプレス成形を行った。まず、オーブン内に積層基材を配置して加熱し、表面温度が200℃となったところで、オーブンから取り出した。次に300×300mmのキャビティを有する70℃に温調した平板金型上の概中央部に配置した後、プレス機による6MPaの加圧の元、1分間保持して冷却し、脱型して300×300mmの平板状の繊維強化プラスチックを得た。金型を上から見たときの金型面積に対する基材の面積の割合をチャージ率と定義すると、チャージ率は70%に相当する。   The laminated base material was cut into a size of 250 × 250 mm, left in a vacuum oven for 1 day, and then cold pressed. First, the laminated substrate was placed in an oven and heated, and when the surface temperature reached 200 ° C., the laminate was taken out from the oven. Next, after placing it at the approximate center on a flat plate mold temperature controlled to 70 ° C. having a 300 × 300 mm cavity, it was held for 1 minute under pressure of 6 MPa by a press machine, cooled, and demolded. A 300 × 300 mm flat fiber-reinforced plastic was obtained. When the ratio of the area of the base material to the mold area when the mold is viewed from above is defined as the charge rate, the charge rate corresponds to 70%.

得られた繊維強化プラスチックは繊維のうねりがなく、その端部まで繊維が均等に流動していた。全体的にソリもなく、最外層の切込部においても、強化繊維が存在せずに樹脂リッチまたは隣接層の強化繊維がのぞいている部位はほとんどなく、良好な外観品位、平滑性を保っていた。   The obtained fiber reinforced plastic had no fiber undulation, and the fibers were flowing evenly to the end. There is no warpage as a whole, and there is almost no part where the reinforcing fiber is not present and the reinforcing fiber in the adjacent layer is not present in the cut portion of the outermost layer, and the appearance quality and smoothness are maintained. It was.

得られた平板状の成形体より、長さ250±1mm、幅25±0.2mmの引張強度試験片を切り出した。JIS K−7073(1998)に規定する試験方法に従い、標点間距離を150mmとし、クロスヘッド速度2.0mm/分で引張強度を測定した。試験機としてインストロン(登録商標)万能試験機4208型を用いた。測定した試験片の数はn=5とし、平均値を引張強度とした。さらに、測定値より標準偏差を算出し、その標準偏差を平均値で除することにより、バラツキの指標である変動係数(CV値(%))を算出した。   A tensile strength test piece having a length of 250 ± 1 mm and a width of 25 ± 0.2 mm was cut out from the obtained flat molded body. According to the test method specified in JIS K-7073 (1998), the tensile strength was measured at a crosshead speed of 2.0 mm / min with a distance between the gauge points of 150 mm. An Instron (registered trademark) universal testing machine type 4208 was used as a testing machine. The number of test pieces measured was n = 5, and the average value was the tensile strength. Further, a standard deviation was calculated from the measured value, and the standard deviation was divided by an average value, thereby calculating a variation coefficient (CV value (%)) as an index of variation.

引張弾性率は41GPaとほぼ理論値通り発現し、また、引張強度に関しても680MPaと高い値が発現し、そのCV値も4%ときわめてバラツキの小さい結果となった。これらの結果から構造材としての適用、外板部材への適用が可能な力学特性と品位が得られたことがわかった。   The tensile elastic modulus was expressed as 41 GPa almost as the theoretical value, and the tensile strength was as high as 680 MPa, and the CV value was 4%, which was a very small variation. From these results, it was found that mechanical properties and quality that can be applied to structural materials and outer plate members were obtained.

(実施例3)
実施例1と同様の繊維シートと樹脂の不織布を用い、樹脂を繊維シートに含浸するにあたり、カレンダーロールを一度しか通さず、半含浸状態のプリプレグ(セミプレグ)基材を作成した。実施例2と同様にして切込をプリプレグ基材に挿入し、実施例2と同様にダブルベルトプレスにより、切込プリプレグ基材同士を層間の全面で融着させて一体化するとともに、積層基材全体で繊維シート中に樹脂を含浸させて積層基材を得た。得られた積層基材を真空オーブン内に1日放置した後、ボイド率を測定したところ、ボイドの体積含有率は2.0%であった。この積層基材を実施例2と同様にして成形し、平板状の繊維強化プラスチックを得た。
(Example 3)
A fiber sheet similar to Example 1 and a nonwoven fabric of resin were used, and in impregnating the fiber sheet with the resin, a calender roll was passed only once to prepare a semi-impregnated prepreg (semi-preg) substrate. The cut is inserted into the prepreg base material in the same manner as in Example 2, and the cut prepreg base materials are fused and integrated with each other over the entire surface by a double belt press in the same manner as in Example 2. A laminated base material was obtained by impregnating a resin into a fiber sheet with the whole material. When the obtained laminated base material was left in a vacuum oven for 1 day and then the void ratio was measured, the volume content of voids was 2.0%. This laminated substrate was molded in the same manner as in Example 2 to obtain a flat fiber-reinforced plastic.

得られた繊維強化プラスチックは繊維のうねりがなく、その端部まで繊維が均等に流動していた。全体的にソリもなく、最外層の切込部においても、強化繊維が存在せずに樹脂リッチまたは隣接層の強化繊維がのぞいている部位はほとんどなく、良好な外観品位、平滑性を保っていた。引張弾性率は40GPaとほぼ理論値通り発現し、また、引張強度に関しても650MPaと高い値が発現し、そのCV値も6%とバラツキの小さい結果となった。   The obtained fiber reinforced plastic had no fiber undulation, and the fibers were flowing evenly to the end. There is no warpage as a whole, and there is almost no part where the reinforcing fiber is not present and the reinforcing fiber in the adjacent layer is not present in the cut portion of the outermost layer, and the appearance quality and smoothness are maintained. It was. The tensile modulus of elasticity was 40 GPa, which was expressed as theoretically, and the tensile strength was as high as 650 MPa, and the CV value was also as small as 6%.

(実施例4)
切込プリプレグ基材を湿度が60%以上の室内に1日放置した後、複数積層してダブルベルトプレスした他は実施例2と同様にして、積層基材を作成した。得られた積層基材を真空オーブン内に1日放置した後、ボイド率を測定したところ、ボイドの体積含有率は3.5%であった。吸湿した水分がボイド形成に影響したものと推測された。その後、この積層基材を実施例2と同様にして成形し、平板状の繊維強化プラスチックを得た。
Example 4
A laminated base material was prepared in the same manner as in Example 2 except that the cut prepreg base material was left in a room with a humidity of 60% or more for one day, and a plurality of layers were stacked and double belt pressed. When the obtained laminated base material was left in a vacuum oven for 1 day and then the void ratio was measured, the volume content of voids was 3.5%. It was speculated that the moisture absorbed absorbed the void formation. Thereafter, this laminated substrate was molded in the same manner as in Example 2 to obtain a flat fiber-reinforced plastic.

得られた繊維強化プラスチックは繊維のうねりがなく、その端部まで繊維が均等に流動していた。全体的にソリもなく、最外層の切込部においても、強化繊維が存在せずに樹脂リッチまたは隣接層の強化繊維がのぞいている部位はほとんどなく、良好な外観品位、平滑性を保っていた。引張弾性率は40GPaとほぼ理論値通り発現した一方、引張強度に関しては510MPa、そのCV値は11%と若干高めとなった。   The obtained fiber reinforced plastic had no fiber undulation, and the fibers were flowing evenly to the end. There is no warpage as a whole, and there is almost no part where the reinforcing fiber is not present and the reinforcing fiber in the adjacent layer is not present in the cut portion of the outermost layer, and the appearance quality and smoothness are maintained. It was. The tensile modulus of elasticity was 40 GPa, which was almost the same as the theoretical value, but the tensile strength was 510 MPa, and its CV value was slightly higher at 11%.

(実施例5)
ランダム共重合PP樹脂(プライムポリマー(株)製J229E,融点155℃)55重量%と酸変性PP系樹脂(三洋化成(株)製ユーメックス1010、酸価約52、融点142℃、重量平均分子量30,000)45重量%とを、日本製鋼所(株)製2軸押出機(TEX−30α2)を用い、200℃で溶融混練したペレットを、200℃で加熱したプレスで34μm厚みの樹脂フィルムに加工した。実施例1と同様の繊維シートの両面から、この樹脂フィルムを挟み、カレンダーロールを何度も通して加熱と加圧により、樹脂を繊維シートに含浸し、繊維堆積含有率Vf50%、厚み0.14mmのプリプレグ基材を作成した。このプリプレグ基材を真空オーブン内に1日放置した後、ボイド率を測定したところ、ボイドの体積含有率は1.0%であった。
(Example 5)
55% by weight of random copolymer PP resin (Prime Polymer Co., Ltd. J229E, melting point 155 ° C.) and acid-modified PP resin (Sanyo Chemical Co., Ltd. Yumex 1010, acid value about 52, melting point 142 ° C., weight average molecular weight 30 , 000) 45% by weight using a twin-screw extruder (TEX-30α2) manufactured by Nippon Steel Works Co., Ltd., pellets melted and kneaded at 200 ° C. into a 34 μm-thick resin film using a press heated at 200 ° C. processed. The resin film is sandwiched from both sides of the same fiber sheet as in Example 1, and the fiber sheet is impregnated by heating and pressing through a calender roll many times. The fiber deposition content Vf is 50%, the thickness is 0. A 14 mm prepreg substrate was prepared. When this prepreg base material was left in a vacuum oven for 1 day and then the void ratio was measured, the volume content of the void was 1.0%.

得られたプリプレグ基材を実施例2と同様にして切込を挿入して積層一体化して積層基材を得た。この積層基材を真空オーブン内に1日放置した後、ボイド率を測定したところ、ボイドの体積含有率は1.1%であった。得られた積層基材を実施例2と同様にして成形し、平板状の繊維強化プラスチックを得た。   The obtained prepreg base material was laminated and integrated as in Example 2 to obtain a laminated base material. When this laminated substrate was left in a vacuum oven for 1 day and the void ratio was measured, the volume content of voids was 1.1%. The obtained laminated substrate was molded in the same manner as in Example 2 to obtain a flat fiber reinforced plastic.

得られた繊維強化プラスチックは繊維のうねりがなく、その端部まで繊維が均等に流動していた。全体的にソリもなく、最外層の切込部においても、強化繊維が存在せずに樹脂リッチまたは隣接層の強化繊維がのぞいている部位はほとんどなく、良好な外観品位、平滑性を保っていた。引張弾性率は38GPa、引張強度は470MPaであり、そのCV値は6%とバラツキの小さい結果となった。   The obtained fiber reinforced plastic had no fiber undulation, and the fibers were flowing evenly to the end. There is no warpage as a whole, and there is almost no part where the reinforcing fiber is not present and the reinforcing fiber in the adjacent layer is not present in the cut portion of the outermost layer, and the appearance quality and smoothness are maintained. It was. The tensile elastic modulus was 38 GPa, the tensile strength was 470 MPa, and the CV value was 6%, showing a small variation.

(実施例6)
実施例2の抜き型において、1mm間隔でカット部とアンカット部が並んだブレード状のミシン刃同士の間隔を、対になるカット部により分断される繊維長さLが10mmとなるよう調節して、切込プリプレグ基材を得た。それ以外は実施例2と同様にして、平板状の繊維強化プラスチックを得た。
(Example 6)
In the punching die of Example 2, the interval between the blade-like sewing blades in which the cut portion and the uncut portion are arranged at intervals of 1 mm is adjusted so that the fiber length L divided by the pair of cut portions is 10 mm. Thus, a cut prepreg base material was obtained. Otherwise in the same manner as in Example 2, a flat fiber-reinforced plastic was obtained.

得られた繊維強化プラスチックは繊維のうねりがなく、その端部まで繊維が均等に流動していた。全体的にソリもなく、最外層の切込部においても、強化繊維が存在せずに樹脂リッチまたは隣接層の強化繊維がのぞいている部位はほとんどなく、良好な外観品位、平滑性を保っていた。引張弾性率は36GPaと若干低く、引張強度は580MPaであり、そのCV値は5%とバラツキの小さい結果となった。   The obtained fiber reinforced plastic had no fiber undulation, and the fibers were flowing evenly to the end. There is no warpage as a whole, and there is almost no part where the reinforcing fiber is not present and the reinforcing fiber in the adjacent layer is not present in the cut portion of the outermost layer, and the appearance quality and smoothness are maintained. It was. The tensile elastic modulus was slightly low as 36 GPa, the tensile strength was 580 MPa, and the CV value was as small as 5%.

(実施例7)
実施例2の抜き型において、1mm間隔でカット部とアンカット部が並んだブレード状のミシン刃同士の間隔を、対になるカット部により分断される繊維長さLが100mmとなるよう調節して、切込プリプレグ基材を得た。それ以外は実施例2と同様にして、平板状の繊維強化プラスチックを得た。
(Example 7)
In the punching die of Example 2, the interval between the blade-like sewing blades in which cut portions and uncut portions are arranged at intervals of 1 mm is adjusted so that the fiber length L divided by the pair of cut portions is 100 mm. Thus, a cut prepreg base material was obtained. Otherwise in the same manner as in Example 2, a flat fiber-reinforced plastic was obtained.

得られた繊維強化プラスチックは若干繊維にうねりが見られたが、概ね端部まで繊維が均等に流動していた。全体的にソリもなく、最外層の切込部においても、強化繊維が存在せずに樹脂リッチまたは隣接層の強化繊維がのぞいている部位はほとんどなく、良好な外観品位、平滑性を保っていた。引張弾性率は42GPaとほぼ理論値通り発現し、また、引張強度に関しても690MPaと高い値が発現し、そのCV値も7%とバラツキの小さい結果となった。   The obtained fiber reinforced plastic had some undulations in the fibers, but the fibers were flowing evenly to the ends. There is no warpage as a whole, and there is almost no part where the reinforcing fiber is not present and the reinforcing fiber in the adjacent layer is not present in the cut portion of the outermost layer, and the appearance quality and smoothness are maintained. It was. The tensile modulus was 42 GPa, which was almost the theoretical value, and the tensile strength was as high as 690 MPa, and the CV value was 7%, which showed a small variation.

(実施例8)
実施例2の抜き型において、1mm間隔でカット部とアンカット部が並んだブレード状のミシン刃を配列して木型に2°の角度で埋め込んだ抜き型を押し当てて、図4e)に示すような繊維から2°の方向の直線的な切込を全面に断続的に挿入して、切込プリプレグ基材を得た。切込により分断された繊維長さLは30mmである。切込の繊維の垂直方向に投影した投影長さWsが35μm(実際の切込長さは1mm)で、図2のように隣接する切込によって繊維長さL以下(今回は15mm程度)に分断される部位があった。それ以外は実施例2と同様にして、平板状の繊維強化プラスチックを得た。
(Example 8)
In the punching die of Example 2, a blade-like sewing blade in which cut portions and uncut portions are arranged at intervals of 1 mm is arranged, and the punching die embedded at an angle of 2 ° is pressed against the wooden die, and FIG. A straight cut in the direction of 2 ° was intermittently inserted into the entire surface from the fibers as shown to obtain a cut prepreg base material. The fiber length L divided by the cutting is 30 mm. The projected length Ws projected in the vertical direction of the cut fiber is 35 μm (the actual cut length is 1 mm), and the fiber length L or less (this time around 15 mm) by the adjacent cut as shown in FIG. There was a site to be divided. Otherwise in the same manner as in Example 2, a flat fiber-reinforced plastic was obtained.

得られた繊維強化プラスチックは若干繊維にうねりが見られたが、概ね端部まで繊維が均等に流動していた。全体的にソリもなく、最外層の切込部においても、強化繊維が存在せずに樹脂リッチまたは隣接層の強化繊維がのぞいている部位はほとんどなく、良好な外観品位、平滑性を保っていた。引張弾性率は39GPa、引張強度は740MPaと高い値が発現したが、そのCV値は8%と若干高めとなった。   The obtained fiber reinforced plastic had some undulations in the fibers, but the fibers were flowing evenly to the ends. There is no warpage as a whole, and there is almost no part where the reinforcing fiber is not present and the reinforcing fiber in the adjacent layer is not present in the cut portion of the outermost layer, and the appearance quality and smoothness are maintained. It was. Although the tensile elastic modulus was 39 GPa and the tensile strength was as high as 740 MPa, the CV value was slightly increased to 8%.

(実施例9)
実施例2の抜き型において、1mm間隔でカット部とアンカット部が並んだブレード状のミシン刃を配列して木型に25°の角度で埋め込んだ抜き型を押し当てて、図4e)に示すような繊維から25°の方向の直線的な切込を全面に断続的に挿入して、切込プリプレグ基材を得た。切込により分断された繊維長さLは30mmである。切込の繊維の垂直方向に投影した投影長さWsが0.42mm(実際の切込長さは1mm)で、図2のように隣接する切込によって繊維長さL以下(今回は15mm程度)に分断される部位があった。それ以外は実施例2と同様にして、平板状の繊維強化プラスチックを得た。
Example 9
In the punching die of Example 2, the blade-like sewing blades in which the cut portion and the uncut portion are arranged at intervals of 1 mm are arranged, and the punching die embedded at a 25 ° angle is pressed against FIG. A straight cut in the direction of 25 ° was intermittently inserted into the entire surface from the fibers as shown to obtain a cut prepreg base material. The fiber length L divided by the cutting is 30 mm. The projected length Ws projected in the vertical direction of the cut fiber is 0.42 mm (actual cut length is 1 mm), and the fiber length is less than L by the adjacent cut as shown in FIG. ) Was parted. Otherwise in the same manner as in Example 2, a flat fiber-reinforced plastic was obtained.

得られた繊維強化プラスチックは若干繊維にうねりが見られたが、概ね端部まで繊維が均等に流動していた。全体的にソリもなく、最外層の切込部においても、強化繊維が存在せずに樹脂リッチまたは隣接層の強化繊維がのぞいている部位はほとんどなく、良好な外観品位、平滑性を保っていた。引張弾性率は42GPaとほぼ理論値通り発現し、また、引張強度は540MPaであり、そのCV値も4%とバラツキの小さい結果となった。   The obtained fiber reinforced plastic had some undulations in the fibers, but the fibers were flowing evenly to the ends. There is no warpage as a whole, and there is almost no part where the reinforcing fiber is not present and the reinforcing fiber in the adjacent layer is not present in the cut portion of the outermost layer, and the appearance quality and smoothness are maintained. It was. The tensile modulus of elasticity was 42 GPa, which was almost the theoretical value, the tensile strength was 540 MPa, and the CV value was 4%, showing little variation.

(実施例10、11)
円柱状の金属を削りだし円周上に複数の刃を設けて回転ローラーとし、実施例1と同様のプリプレグ基材に押し当てて、図4e)に示すような繊維から10°の方向の直線的な切込を全面に断続的に挿入して、切込プリプレグ基材を得た。複数の対になる刃により分断された繊維長さLは30mmである。切込の繊維の垂直方向に投影した投影長さWsが実施例10では0.017mm(実際の切込長さは0.1mm)、実施例11では0.03mm(実際の切込長さは0.17mm)であった。いずれも、刃が一部繊維を切断しきれず、繊維長さLが30mm以上の繊維が5%以下ではあるものの若干残存していた。それ以外は実施例2と同様にして、平板状の繊維強化プラスチックを得た。
(Examples 10 and 11)
A cylindrical metal is cut out, a plurality of blades are provided on the circumference to form a rotating roller, pressed against the same prepreg substrate as in Example 1, and a straight line in the direction of 10 ° from the fiber as shown in FIG. A continuous cut was intermittently inserted into the entire surface to obtain a cut prepreg substrate. The fiber length L divided by a plurality of pairs of blades is 30 mm. The projection length Ws projected in the vertical direction of the cut fiber is 0.017 mm in Example 10 (the actual cut length is 0.1 mm), and 0.03 mm in Example 11 (the actual cut length is 0.17 mm). In either case, the blade could not cut the fibers partly, and the fibers having a fiber length L of 30 mm or more remained slightly but 5% or less. Otherwise in the same manner as in Example 2, a flat fiber-reinforced plastic was obtained.

得られた繊維強化プラスチックはいずれも繊維のうねりはないものの、表面層の一部が端部まで繊維が到達していなかった。全体的にソリもなく、最外層の切込部においても、強化繊維が存在せずに樹脂リッチまたは隣接層の強化繊維がのぞいている部位はほとんどなく、良好な外観品位、平滑性を保っていた。実施例10では、引張弾性率は40GPa、引張強度は700MPaと高い値が発現したが、そのCV値は9%と若干高めとなった。一方実施例11では、引張弾性率は39GPa、引張強度は720MPaと高い値が発現し、そのCV値は7%となった
(実施例12、13)
自動裁断機を用いて、図4e)に示すような繊維から10°の方向の直線的な切込を全面に断続的に挿入して、切込プリプレグ基材を得た。切込により分断された繊維長さLは30mmである。切込の繊維の垂直方向に投影した投影長さWsが実施例12では1.5mm(実際の切込長さは8.6mm)、実施例13では10mm(実際の切込長さは57.6mm)であった。
Although none of the obtained fiber reinforced plastics had fiber undulations, the fiber did not reach the end of part of the surface layer. There is no warpage as a whole, and there is almost no part where the reinforcing fiber is not present and the reinforcing fiber in the adjacent layer is not present in the cut portion of the outermost layer, and the appearance quality and smoothness are maintained. It was. In Example 10, the tensile modulus was as high as 40 GPa and the tensile strength was as high as 700 MPa, but the CV value was slightly increased to 9%. On the other hand, in Example 11, the tensile elastic modulus was 39 GPa and the tensile strength was as high as 720 MPa, and the CV value was 7% (Examples 12 and 13).
Using an automatic cutting machine, a linear notch in the direction of 10 ° was intermittently inserted from the fiber as shown in FIG. 4e) to obtain an incised prepreg base material. The fiber length L divided by the cutting is 30 mm. The projected length Ws projected in the vertical direction of the cut fibers is 1.5 mm in Example 12 (actual cut length is 8.6 mm), and 10 mm in Example 13 (actual cut length is 57.75 mm). 6 mm).

得られた繊維強化プラスチックは繊維のうねりがなく、その端部まで繊維が均等に流動していた。全体的にソリもなく、最外層の切込部においても、強化繊維が存在せずに樹脂リッチまたは隣接層の強化繊維がのぞいている部位はほとんどなく、良好な外観品位、平滑性を保っていた。実施例12では、引張弾性率は40GPa、引張強度は580MPaであり、そのCV値は4%とバラツキの小さい結果となった。一方実施例13では、引張弾性率は40GPa、引張強度は550MPaであり、そのCV値は7%となった
(実施例14)
実施例1と同様のプリプレグ基材に、自動裁断機を用いて図4a)に示すような繊維から10°の方向の直線的な切込を連続的に挿入した後、炭素繊維の配向方向(0°方向)と、炭素繊維の配向方向から右に45度ずらした方向(45°方向)に、それぞれ300×300mmの大きさに切り出し、等間隔で規則的な切込を有する切込プリプレグ基材を得た。うち、300×300mmの周囲5mmずつは切込を入れず、連続的な切込によりばらばらとならないようにした切込を繊維から10°の方向に入れ、切込プリプレグ基材の端部近傍からもう一方の端部近傍まで入れられており、290×290mmの範囲に切込が入れられた。切込により分断された繊維長さLは30mmである。上記切り出した切込プリプレグ基材を、16層疑似等方([−45/0/+45/90]2S)に積層した後、ダブルベルトプレスにより、加熱しながら、加圧と減圧を繰り返して、切込プリプレグ基材同士を層間の全面で融着させて一体化し、周囲25mmずつ切り落として全面に切込を有する250×250mmの積層基材を得た。
The obtained fiber reinforced plastic had no fiber undulation, and the fibers were flowing evenly to the end. There is no warpage as a whole, and there is almost no part where the reinforcing fiber is not present and the reinforcing fiber in the adjacent layer is not present in the cut portion of the outermost layer, and the appearance quality and smoothness are maintained. It was. In Example 12, the tensile elastic modulus was 40 GPa, the tensile strength was 580 MPa, and the CV value was as small as 4%. On the other hand, in Example 13, the tensile modulus was 40 GPa, the tensile strength was 550 MPa, and the CV value was 7% (Example 14).
Into the prepreg base material similar to that in Example 1, a straight cut in a direction of 10 ° from the fiber as shown in FIG. 4a) was continuously inserted using an automatic cutter, and then the orientation direction of the carbon fiber ( 0 ° direction) and a cut prepreg base having a regular cut at equal intervals, each cut into a size of 300 × 300 mm in a direction shifted 45 degrees to the right from the carbon fiber orientation direction (45 ° direction). The material was obtained. Among them, the notch is not made at every 5 mm around 300 × 300 mm, and the incision that is not separated by continuous incision is put in the direction of 10 ° from the fiber, and from the vicinity of the end of the incised prepreg base material The other end was inserted, and a cut was made in a range of 290 × 290 mm. The fiber length L divided by the cutting is 30 mm. After laminating the cut prepreg base material cut into 16 layers pseudo-isotropic ([−45 / 0 / + 45/90] 2S ), pressurization and pressure reduction are repeated while heating with a double belt press, The cut prepreg base materials were fused and integrated on the entire surface of the interlayer, and the periphery was cut off by 25 mm to obtain a 250 × 250 mm laminated base material having cuts on the entire surface.

得られた繊維強化プラスチックは繊維のうねりがなく、その端部まで繊維が均等に流動していた。全体的にソリもなく、最外層の切込部においても、強化繊維が存在せずに樹脂リッチまたは隣接層の強化繊維がのぞいている部位はほとんどなく、良好な外観品位、平滑性を保っていた。引張弾性率は39GPa、引張強度は560MPaであり、そのCV値は3%となった
以下、比較例を示す。
The obtained fiber reinforced plastic had no fiber undulation, and the fibers were flowing evenly to the end. There is no warpage as a whole, and there is almost no part where the reinforcing fiber is not present and the reinforcing fiber in the adjacent layer is not present in the cut portion of the outermost layer, and the appearance quality and smoothness are maintained. It was. The tensile modulus was 39 GPa, the tensile strength was 560 MPa, and the CV value was 3%.

(比較例1)
自動裁断機を用いて、実施例1と同様のプリプレグ基材を、炭素繊維の配向方向(0°方向)と、炭素繊維の配向方向から右に45度ずらした方向(45°方向)に、150×150mmの矩形に裁断した。それ以外は実施例1と同様にして平板状の積層基材を作成し、実施例1と同様のC型の成形型を用いて成形を行い、繊維強化プラスチックを得た。
(Comparative Example 1)
Using an automatic cutter, the same prepreg substrate as in Example 1 was aligned in the direction of carbon fiber (0 ° direction) and 45 ° to the right of the carbon fiber alignment direction (45 ° direction). It cut | judged to the rectangle of 150x150 mm. Otherwise, a flat laminated substrate was prepared in the same manner as in Example 1, and was molded using a C-shaped molding die similar to that in Example 1 to obtain a fiber-reinforced plastic.

得られた繊維強化プラスチックは立ち面の上部は未充填部や樹脂リッチ部が形成されており、複雑形状に追従していないことが分かった。断面を観察したところ、立ち面には積層基材の伸張方向には繊維が存在せず、積層基材の伸張方向と垂直な方向のプリプレグ層が厚く偏肉して存在していた。また、層うねりも大きかった。   It was found that the obtained fiber reinforced plastic had an unfilled portion and a resin-rich portion formed at the upper part of the standing surface, and did not follow a complicated shape. When the cross section was observed, no fiber was present in the extending direction of the laminated base material on the standing surface, and the prepreg layer in a direction perpendicular to the extending direction of the laminated base material was present with a thick uneven thickness. The layer swell was also large.

(比較例2)
実施例1と同様にして切込プリプレグ基材を作成し、単純に16層を疑似等方([45/0/−45/90]2S)に重ねて、互いに未固着の積層基材をオーブン内に配置して加熱し、表面温度が200℃となったところで、オーブンから取り出した。加熱した積層基材はすばやく100×100mmのキャビティを有する雌型20に押し込めるようにして配置した。その際、切込プリプレグ基材同士が固着していないことから、積層角度がずれ、また積層基材の外形状が100×100mmからはみ出してしまったため、雌型内に積層基材を押し込むのに時間がかかった。実施例1と同様にして成形を行ったところ、積層基材を雌型内に配置するのに時間がかかりすぎてしまい、C型の成形型を充填する前に冷却固化してしまったと推測され、得られた繊維強化プラスチックの立ち面の上部に未充填部が残った。
(Comparative Example 2)
A cut prepreg base material was prepared in the same manner as in Example 1, and 16 layers were simply stacked in a pseudo isotropic manner ([45/0 / −45 / 90] 2S ), and laminated base materials that were not fixed to each other were oven-bonded. It was placed inside and heated, and when the surface temperature reached 200 ° C., it was removed from the oven. The heated laminated substrate was arranged so as to be quickly pushed into the female mold 20 having a 100 × 100 mm cavity. At that time, since the cut prepreg base materials are not fixed to each other, the lamination angle is shifted, and the outer shape of the laminated base material protrudes from 100 × 100 mm, so that the laminated base material is pushed into the female mold. It took time. When molding was performed in the same manner as in Example 1, it was estimated that it took too much time to arrange the laminated base material in the female mold, and it was cooled and solidified before filling the C mold. The unfilled part remained on the upper part of the standing surface of the obtained fiber reinforced plastic.

(比較例3)
自動裁断機を用いて、実施例1と同様のプリプレグ基材を、複数の30×10mmの矩形(炭素繊維の配向方向に30mm)に裁断してチョップド繊維束とした。得られたチョップド繊維束を離型フィルムの上に目付けが3100g/m程度となるようにランダムに散布し、さらにその上から離形フィルムを乗せ、プレス機で平板状に加熱、加圧して一体化して、離型フィルムごと脱型してスタンパブルシートを得た。こうして得たスタンパブルシートを150×150mmの矩形に裁断した。このスタンパブルシートを実施例1と同様にして、オーブン内に配置して加熱し、表面温度が200℃となったところで、オーブンから取り出した。加熱したスタンパブルシートはすばやく100×100mmのキャビティを有する雌型に押し込めるようにして配置した。雄型、雌型いずれも70℃に温調しており、雌型内に配置した積層基材に雄型を押し当て、プレス機による6MPaの加圧の元、1分間保持して冷却し、脱型した。
(Comparative Example 3)
Using an automatic cutter, the same prepreg substrate as in Example 1 was cut into a plurality of 30 × 10 mm rectangles (30 mm in the orientation direction of carbon fibers) to obtain chopped fiber bundles. The obtained chopped fiber bundle is randomly spread on the release film so that the basis weight is about 3100 g / m 2, and the release film is further placed thereon, and then heated and pressed into a flat plate shape with a press. Then, the whole mold release film was removed to obtain a stampable sheet. The stampable sheet thus obtained was cut into a 150 × 150 mm rectangle. The stampable sheet was placed in an oven and heated in the same manner as in Example 1, and when the surface temperature reached 200 ° C., the stampable sheet was taken out from the oven. The heated stampable sheet was placed so as to be quickly pushed into a female mold having a 100 × 100 mm cavity. Both the male mold and the female mold are temperature-controlled at 70 ° C., the male mold is pressed against the laminated base material arranged in the female mold, and is cooled by holding for 1 minute under a pressure of 6 MPa by a press machine. Demolded.

得られた繊維強化プラスチックは成形型の隅々まで充填されており、良好な流動性を示した。断面を観察したところ、積層構造は構成されず、一部でチョップド繊維束の凝集やチョップド繊維束の厚み方向のうねりが観察された。これらチョップド繊維束の凝集やうねりが繊維強化プラスチックの力学特性に悪影響を与えるものと推測された。   The obtained fiber reinforced plastic was filled to every corner of the mold and showed good fluidity. When the cross section was observed, the laminated structure was not formed, and flocculation of the chopped fiber bundle and undulation in the thickness direction of the chopped fiber bundle were observed in part. It was speculated that the aggregation and undulation of these chopped fiber bundles adversely affected the mechanical properties of the fiber reinforced plastic.

(比較例4)
エポキシ樹脂(ジャパンエポキシレジン(株)製“エピコート(登録商標)”828:30重量部、“エピコート(登録商標)”1001:35重量部、“エピコート(登録商標)”154:35重量部)に、熱可塑性樹脂ポリビニルホルマール(チッソ(株)製“ビニレック(登録商標)”K)5重量部をニーダーで加熱混練してポリビニルホルマールを均一に溶解させた後、硬化剤ジシアンジアミド(ジャパンエポキシレジン(株)製DICY7)3.5重量部と、硬化促進剤3−(3,4−ジクロロフェニル)−1,1−ジメチルウレア(保土谷化学工業(株)製DCMU99)4重量部を、ニーダーで混練して未硬化のエポキシ樹脂組成物を調整した。このエポキシ樹脂組成物を、リバースロールコーターを用いてシリコーンコーティング処理された厚さ100μmの離型紙上に塗布して樹脂フィルムを作製した。次に、実施例1と同様の繊維シートの両面に樹脂フィルムをそれぞれ重ね、加熱・加圧することによって樹脂を含浸させ、単位面積あたりの炭素繊維重さ125g/m、繊維体積含有率Vf55%、厚み0.125mmのプリプレグ基材を作製した。
(Comparative Example 4)
Epoxy resin ("Epicoat (registered trademark)" 828: 30 parts by weight, "Epicoat (registered trademark)" 1001: 35 parts by weight, "Epicoat (registered trademark)" 154: 35 parts by weight, manufactured by Japan Epoxy Resin Co., Ltd. Then, 5 parts by weight of thermoplastic resin polyvinyl formal ("Vinylec (registered trademark) K" manufactured by Chisso Corporation) was kneaded with a kneader to uniformly dissolve the polyvinyl formal, and then the curing agent dicyandiamide (Japan Epoxy Resin Co., Ltd.) ) DICY7) 3.5 parts by weight and 4 parts by weight of curing accelerator 3- (3,4-dichlorophenyl) -1,1-dimethylurea (Hodogaya Chemical Co., Ltd. DCMU99) were kneaded in a kneader. Thus, an uncured epoxy resin composition was prepared. This epoxy resin composition was applied onto a release paper having a thickness of 100 μm that had been subjected to silicone coating using a reverse roll coater to prepare a resin film. Next, resin films are overlapped on both surfaces of the same fiber sheet as in Example 1, impregnated with resin by heating and pressurizing, carbon fiber weight per unit area 125 g / m 2 , fiber volume content Vf 55% A prepreg base material having a thickness of 0.125 mm was produced.

こうして得られたプリプレグ基材を実施例2と同様にして切込を挿入して切込プリプレグ基材とした。得られた切込プリプレグ基材を炭素繊維の配向方向(0°方向)と、炭素繊維の配向方向から右に45度ずらした方向(45°方向)に、それぞれ250×250mmの大きさに切り出し、16層の疑似等方([45/0/−45/90]2S)積層で重ねて、押圧してエポキシ樹脂のタックを利用して一体化し、積層基材を作成した。   The prepreg base material thus obtained was inserted in the same manner as in Example 2 to obtain a cut prepreg base material. The obtained cut prepreg base material was cut into a size of 250 × 250 mm in the carbon fiber orientation direction (0 ° direction) and in a direction shifted 45 degrees to the right from the carbon fiber orientation direction (45 ° direction). 16 layers of pseudo-isotropic ([45/0 / -45 / 90] 2S) layers were stacked, pressed and integrated using an epoxy resin tack to create a layered substrate.

上記の積層基材を用いて、実施例2と同様の成形型を用い、300×300mmのキャビティを有する平板金型上の概中央部に配置した後、加熱型プレス成形機により、6MPaの加圧のもと、150℃×30分間の条件により硬化せしめ、300×300mmの平板状の繊維強化プラスチックを得た。   Using the above-mentioned laminated base material, the same mold as in Example 2 was used and placed at the approximate center on a flat plate mold having a 300 × 300 mm cavity, and then heated at 6 MPa by a heating type press molding machine. Under pressure, it was cured under conditions of 150 ° C. × 30 minutes to obtain a plate-like fiber reinforced plastic of 300 × 300 mm.

得られた繊維強化プラスチックは繊維のうねりがなく、その端部まで繊維が均等に流動していた。全体的にソリもなく、最外層の切込部においても、強化繊維が存在せずに樹脂リッチまたは隣接層の強化繊維がのぞいている部位はほとんどなく、良好な外観品位、平滑性を保っていた。引張弾性率は47GPaとほぼ理論値通り発現し、また、引張強度に関しても690MPaと高い値が発現し、そのCV値も4%ときわめてバラツキの小さい結果となった。しかしながら、成形時に化学反応を伴うため、実施例1に比べ生産性に劣る、という問題があった。   The obtained fiber reinforced plastic had no fiber undulation, and the fibers were flowing evenly to the end. There is no warpage as a whole, and there is almost no part where the reinforcing fiber is not present and the reinforcing fiber in the adjacent layer is not present in the cut portion of the outermost layer, and the appearance quality and smoothness are maintained. It was. The tensile modulus of elasticity was 47 GPa, which was almost the same as the theoretical value, and the tensile strength was as high as 690 MPa, and the CV value was 4%. However, since a chemical reaction is involved at the time of molding, there is a problem that productivity is inferior to that of Example 1.

(比較例5)
比較例2と同様にしてスタンパブルシートを作成し、250×250mmの矩形に裁断した。このスタンパブルシートを実施例2と同様にして、真空オーブン内に1日放置した後、実施例2と同様にしてコールドプレス成形を行った。まず、オーブン内にスタンパブルシートを配置して加熱し、表面温度が200℃となったところで、オーブンから取り出した。次に300×300mmのキャビティを有する70℃に温調した平板金型上の概中央部に配置した後、プレス機による6MPaの加圧の元、1分間保持して冷却し、脱型して300×300mmの平板状の繊維強化プラスチックを得た。
(Comparative Example 5)
A stampable sheet was prepared in the same manner as in Comparative Example 2, and cut into a 250 × 250 mm rectangle. This stampable sheet was left in a vacuum oven for 1 day in the same manner as in Example 2, and then cold press-molded in the same manner as in Example 2. First, a stampable sheet was placed in the oven and heated. When the surface temperature reached 200 ° C., the stampable sheet was taken out from the oven. Next, after placing it at the approximate center on a flat plate mold temperature controlled to 70 ° C. having a 300 × 300 mm cavity, it was held for 1 minute under pressure of 6 MPa by a press machine, cooled, and demolded. A 300 × 300 mm flat fiber-reinforced plastic was obtained.

得られた繊維強化プラスチックは繊維のうねりがなく、その端部まで繊維が均等に流動していた。ただし、全体的にソリが発生しており、チョップド繊維束端部でヒケが多く発生して、平滑性に若干難があった。引張弾性率は35GPa、引張強度は260MPaであったが、特に引張強度のCV値は20%ときわめてバラツキが大きかった。積層構造をとらず、チョップド繊維束が凝集しやすいため、最弱部破壊することで、力学特性が安定して発現しない、と推測された。   The obtained fiber reinforced plastic had no fiber undulation, and the fibers were flowing evenly to the end. However, warpage was generated as a whole, many sink marks were generated at the end of the chopped fiber bundle, and smoothness was slightly difficult. The tensile elastic modulus was 35 GPa and the tensile strength was 260 MPa, but the CV value of the tensile strength was particularly varied as 20%. Since the chopped fiber bundle is easy to agglomerate without taking a laminated structure, it was assumed that the mechanical properties are not stably expressed by breaking the weakest part.

(比較例6)
実施例2の抜き型において、1mm間隔でカット部とアンカット部が並んだブレード状のミシン刃同士の間隔を、対になるカット部により分断される繊維長さLが7.5mmとなるよう調節して、切込プリプレグ基材を得た。それ以外は実施例2と同様にして、平板状の繊維強化プラスチックを得た。
(Comparative Example 6)
In the punching die of Example 2, the fiber length L divided by the pair of cut portions is 7.5 mm so that the interval between the blade-like sewing blades in which the cut portions and the uncut portions are arranged at intervals of 1 mm is 7.5 mm. A cut prepreg substrate was obtained by adjusting. Otherwise in the same manner as in Example 2, a flat fiber-reinforced plastic was obtained.

得られた繊維強化プラスチックは繊維のうねりがなく、その端部まで繊維が均等に流動していた。全体的にソリもなく、最外層の切込部においても、強化繊維が存在せずに樹脂リッチまたは隣接層の強化繊維がのぞいている部位はほとんどなく、良好な外観品位、平滑性を保っていた。引張弾性率は34GPaと低く、引張強度は480MPaであり、そのCV値は7%となった。   The obtained fiber reinforced plastic had no fiber undulation, and the fibers were flowing evenly to the end. There is no warpage as a whole, and there is almost no part where the reinforcing fiber is not present and the reinforcing fiber in the adjacent layer is not present in the cut portion of the outermost layer, and the appearance quality and smoothness are maintained. It was. The tensile modulus was as low as 34 GPa, the tensile strength was 480 MPa, and the CV value was 7%.

(比較例7)
実施例2の抜き型において、1mm間隔でカット部とアンカット部が並んだブレード状のミシン刃同士の間隔を、対になるカット部により分断される繊維長さLが120mmとなるよう調節して、切込プリプレグ基材を得た。それ以外は実施例2と同様にして、平板状の繊維強化プラスチックを得た。
(Comparative Example 7)
In the punching die of Example 2, the interval between the blade-like sewing blades in which the cut portion and the uncut portion are arranged at intervals of 1 mm is adjusted so that the fiber length L divided by the pair of cut portions is 120 mm. Thus, a cut prepreg base material was obtained. Otherwise in the same manner as in Example 2, a flat fiber-reinforced plastic was obtained.

得られた繊維強化プラスチックは若干繊維にうねりが見られ、端部まで繊維が充填しているものの、端部における繊維乱れが大きかった。   The obtained fiber reinforced plastic had some undulations in the fiber, and although the fiber was filled up to the end, fiber disturbance at the end was large.

(比較例8)
実施例2の抜き型において、1mm間隔でカット部とアンカット部が並んだブレード状のミシン刃を配列して木型に1°の角度で埋め込んだ抜き型を押し当てて、繊維から1°の方向の直線的な切込を全面に断続的に挿入して、切込プリプレグ基材を得た。切込により分断された繊維長さLは30mmである。切込の繊維の垂直方向に投影した投影長さWsが17μm(実際の切込長さは1mm)であった。刃が一部繊維を切断しきれず、繊維長さLが30mm以上の繊維が5%以上残存していた。それ以外は実施例2と同様にして、平板状の繊維強化プラスチックを得た。
(Comparative Example 8)
In the punching die of Example 2, the blade-like sewing blades in which cut portions and uncut portions are arranged at intervals of 1 mm are arranged, and the punching die embedded at an angle of 1 ° is pressed against the fiber to make 1 ° from the fiber. A straight cut in the direction of was intermittently inserted on the entire surface to obtain a cut prepreg base material. The fiber length L divided by the cutting is 30 mm. The projected length Ws projected in the vertical direction of the cut fibers was 17 μm (the actual cut length was 1 mm). The blade could not cut some fibers, and 5% or more of fibers with a fiber length L of 30 mm or more remained. Otherwise in the same manner as in Example 2, a flat fiber-reinforced plastic was obtained.

得られた繊維強化プラスチックは若干繊維にうねりが見られ、端部まで繊維が充填しているものの、端部における繊維乱れが大きかった。引張弾性率は40GPa、引張強度は700MPaと高い値が発現したが、そのCV値は10%と若干高めとなった。   The obtained fiber reinforced plastic had some undulations in the fiber, and although the fiber was filled up to the end, fiber disturbance at the end was large. The tensile modulus was 40 GPa and the tensile strength was as high as 700 MPa, but the CV value was a little higher at 10%.

(比較例9)
実施例2の抜き型において、1mm間隔でカット部とアンカット部が並んだブレード状のミシン刃を配列して木型に45°の角度で埋め込んだ抜き型を押し当てて、図3b)に示すような繊維から45°の方向の直線的な切込を全面に断続的に挿入して、切込プリプレグ基材を得た。切込により分断された繊維長さLは30mmである。切込の繊維の垂直方向に投影した投影長さWsが0.71mm(実際の切込長さは1mm)であった。それ以外は実施例2と同様にして、平板状の繊維強化プラスチックを得た。
(Comparative Example 9)
In the punching die of Example 2, the blade-like sewing blades in which cut portions and uncut portions are arranged at intervals of 1 mm are arranged, and the punching die embedded at a 45 ° angle is pressed against FIG. A straight cut in the direction of 45 ° was intermittently inserted into the entire surface from the fibers as shown to obtain a cut prepreg base material. The fiber length L divided by the cutting is 30 mm. The projected length Ws projected in the vertical direction of the cut fiber was 0.71 mm (actual cut length was 1 mm). Otherwise in the same manner as in Example 2, a flat fiber-reinforced plastic was obtained.

得られた繊維強化プラスチックは若干繊維にうねりが見られたが、概ね端部まで繊維が均等に流動していた。全体的にソリもないものの、最外層の切込部において、強化繊維が存在せずに樹脂リッチまたは隣接層の強化繊維がのぞいている部位が多く、ヒケにより若干平滑性が損なわれていた。引張弾性率は41GPaと高いものの、引張強度は450MPa(CV値5%)と低かった。   The obtained fiber reinforced plastic had some undulations in the fibers, but the fibers were flowing evenly to the ends. Although there is no warp as a whole, in the cut portion of the outermost layer, there are many portions where the reinforcing fibers are not present and the reinforcing fibers of the adjacent layer are peeking out, and the smoothness is slightly impaired by sink marks. Although the tensile modulus was as high as 41 GPa, the tensile strength was as low as 450 MPa (CV value 5%).

(比較例10)
実施例2の抜き型において、1mm間隔でカット部とアンカット部が並んだブレード状のミシン刃を配列して木型に90°の角度で埋め込んだ抜き型を押し当てて、図3a)に示すような繊維から90°の方向の直線的な切込を全面に断続的に挿入して、切込プリプレグ基材を得た。切込により分断された繊維長さLは30mmである。切込の繊維の垂直方向に投影した投影長さWsが1mm(実際の切込長さも1mm)であった。それ以外は実施例2と同様にして、平板状の繊維強化プラスチックを得た。
(Comparative Example 10)
In the punching die of Example 2, the blade-like sewing blades in which cut portions and uncut portions are arranged at intervals of 1 mm are arranged, and the punching die embedded at a 90 ° angle is pressed against FIG. 3 a). A straight cut in the direction of 90 ° was intermittently inserted into the entire surface from the fibers as shown to obtain a cut prepreg base material. The fiber length L divided by the cutting is 30 mm. The projection length Ws projected in the vertical direction of the cut fibers was 1 mm (the actual cut length was also 1 mm). Otherwise in the same manner as in Example 2, a flat fiber-reinforced plastic was obtained.

得られた繊維強化プラスチックは若干繊維にうねりが見られたが、概ね端部まで繊維が均等に流動していた。全体的にソリもないものの、最外層の切込部において、強化繊維が存在せずに樹脂リッチまたは隣接層の強化繊維がのぞいている部位が広く、かつ、多く、ヒケにより若干平滑性が損なわれていた。引張弾性率は40GPaと高いものの、引張強度は400MPa(CV値4%)と低かった。   Although the obtained fiber reinforced plastic had some undulations in the fibers, the fibers were flowing evenly to the ends. Although there is no warpage as a whole, there is a wide area where the reinforcing fibers in the outermost layer have no reinforcing fibers and the reinforcing fibers in the adjacent layer are peeking out, and there are many, and the smoothness is slightly impaired due to sink marks. It was. Although the tensile modulus was as high as 40 GPa, the tensile strength was as low as 400 MPa (CV value 4%).

本発明のプリプレグ層の切込パターンの一例を示す拡大平面図である。It is an enlarged plan view which shows an example of the cutting pattern of the prepreg layer of this invention. 本発明のプリプレグ層の切込パターンの一例を示す拡大平面図である。It is an enlarged plan view which shows an example of the cutting pattern of the prepreg layer of this invention. 比較用のプリプレグ層の切込パターンの数例を示す平面図である。It is a top view which shows several examples of the cutting pattern of the prepreg layer for a comparison. 本発明のプリプレグ層の切込パターンの数例を示す平面図である。It is a top view which shows several examples of the cutting pattern of the prepreg layer of this invention. 比較用の積層基材、繊維強化プラスチックの一例を示す平面図および断面図である。It is the top view and sectional drawing which show an example of the laminated base material for a comparison, and a fiber reinforced plastic. 本発明の積層基材、繊維強化プラスチックの一例を示す平面図および断面図である。It is the top view and sectional view which show an example of the lamination substrate of the present invention, and fiber reinforced plastics. 本発明の積層基材、繊維強化プラスチックの一例を示す平面図および断面図である。It is the top view and sectional view which show an example of the lamination substrate of the present invention, and fiber reinforced plastics. 本発明の積層基材の積層方法の一例を示す平面投影図である。It is a top projection figure which shows an example of the lamination | stacking method of the lamination base material of this invention. 本発明の繊維強化プラスチックの製造方法の一例を示す断面図である。It is sectional drawing which shows an example of the manufacturing method of the fiber reinforced plastics of this invention. 本発明のプリプレグ層の樹脂含浸性の一例を示す断面図である。It is sectional drawing which shows an example of the resin impregnation property of the prepreg layer of this invention.

符号の説明Explanation of symbols

1:繊維配向方向
2:繊維垂直方向
3:強化繊維
4:強化繊維の不連続端(切込)
4a:連続的な切込
4b(4b,4b):断続的な切込
4c:上層の切込
4d:下層の切込
4e:層の厚み方向に貫かない切込
4f:厚み方向に斜めの切込
5:切込と繊維方向のなす角度Θ
6:繊維方向に対になる切込で分断された繊維長さL
7:プリプレグ層
8:切込同士で互いに切込んだ幅
9:切込を強化繊維の垂直方向に投影した投影長さWs
10:積層基材
11:繊維強化プラスチック
12:短繊維層
13:強化繊維の存在しない領域(切込開口部)
14:隣接層
15:繊維束端部
16:樹脂リッチ部
17:層うねり
18:強化繊維の回転
19:雄型
20:雌型
21:厚み方向中央部
22:プリプレグ層同士の層間に偏在した熱可塑性樹脂
1: Fiber orientation direction 2: Fiber vertical direction 3: Reinforcing fiber 4: Discontinuous end (cutting) of reinforcing fiber
4a: Continuous cut 4b (4b 1 , 4b 2 ): Intermittent cut 4c: Upper layer cut 4d: Lower layer cut 4e: Cut not penetrating in the layer thickness direction 4f: Diagonal in the thickness direction Incision 5: Angle Θ between incision and fiber direction
6: Fiber length L divided by a notch paired in the fiber direction
7: Pre-preg layer 8: Width cut into each other by notches 9: Projected length Ws obtained by projecting the notches in the vertical direction of the reinforcing fibers
10: Laminated substrate 11: Fiber reinforced plastic 12: Short fiber layer 13: Region where no reinforcing fiber exists (cut opening)
14: Adjacent layer 15: Fiber bundle end portion 16: Resin rich portion 17: Layer waviness 18: Reinforcement fiber rotation 19: Male die 20: Female die 21: Thickness direction central portion 22: Heat unevenly distributed between prepreg layers Plastic resin

Claims (19)

複数の一方向に配向した強化繊維と熱可塑性樹脂とからなるプリプレグ層が、2方向以上に配向して一体化されている平板状の積層基材であって、前記プリプレグ層の全面に強化繊維となす角度Θの絶対値が2〜25°の範囲内の直線状の切込を有し、実質的にすべての強化繊維が前記切込により分断され、前記切込により分断された強化繊維の繊維長さLが10〜100mmの範囲内である、積層基材。 A prepreg layer composed of a plurality of reinforced fibers oriented in one direction and a thermoplastic resin is a flat laminated substrate integrated in two or more directions, and the reinforced fibers are formed on the entire surface of the prepreg layer. The absolute value of the angle Θ is a straight cut within a range of 2 to 25 °, and substantially all the reinforcing fibers are cut by the cut, and the reinforcing fibers cut by the cut A laminated substrate having a fiber length L in the range of 10 to 100 mm. 前記切込が、強化繊維の垂直方向に投影した投影長さWsが30μm〜1.5mmの範囲内である、請求項1に記載の積層基材。 The laminated substrate according to claim 1, wherein the cut has a projection length Ws projected in the vertical direction of the reinforcing fiber within a range of 30 μm to 1.5 mm. 前記プリプレグ層が擬似等方に積層されている、請求項1または2に記載の積層基材。 The laminated substrate according to claim 1 or 2, wherein the prepreg layer is laminated in a pseudo isotropic manner. 前記積層基材の層間に熱可塑性樹脂が偏在している、請求項1〜3のいずれかに記載の積層基材。 The laminated base material according to claim 1, wherein a thermoplastic resin is unevenly distributed between the layers of the laminated base material. 前記プリプレグ層の厚み方向中央部が強化繊維のみからなる、請求項4に記載の積層基材。 The laminated base material according to claim 4, wherein a central portion in the thickness direction of the prepreg layer is composed of only reinforcing fibers. 前記積層基材のボイド率が2%以下である、請求項1〜4のいずれかに記載の積層基材。 The laminated substrate according to any one of claims 1 to 4, wherein a void ratio of the laminated substrate is 2% or less. 前記プリプレグ層同士が点状で一体化されている、請求項1〜5のいずれかに記載の積層基材。 The laminated base material according to any one of claims 1 to 5, wherein the prepreg layers are integrated in a dotted manner. 請求項1〜7のいずれかに記載の前記積層基材の少なくとも一方の表面に強化繊維からなる不織布が配されている、複合積層基材。 The composite laminated base material by which the nonwoven fabric which consists of a reinforced fiber is distribute | arranged to the at least one surface of the said laminated base material in any one of Claims 1-7. 請求項1〜7のいずれかに記載の積層基材または請求項8に記載の複合積層基材を三次元形状に成形して得た、繊維強化プラスチック。 The fiber reinforced plastic obtained by shape | molding the laminated base material in any one of Claims 1-7, or the composite laminated base material of Claim 8 in the three-dimensional shape. 一方向に配向した強化繊維と熱可塑性樹脂とからなるプリプレグ基材の全面に、強化繊維となす角度Θの絶対値が2〜25°の範囲内となる直線状の切込を設け、実質的にすべての強化繊維を前記切込により分断し、前記切込により分断した強化繊維の繊維長さLを10〜100mmの範囲内にして切込プリプレグ基材とし、該切込プリプレグ基材を複数枚積層し、積層した前記切込プリプレグ基材を加熱するに際し、所定のボイド率となるまで加圧及び減圧を繰り返すことを特徴とする、積層基材の製造方法。 A straight notch is provided on the entire surface of the prepreg base material composed of unidirectionally oriented reinforcing fibers and a thermoplastic resin so that the absolute value of the angle Θ between the reinforcing fibers is within the range of 2 to 25 °. All the reinforcing fibers are divided by the incision, the fiber length L of the reinforcing fibers divided by the incision is set within a range of 10 to 100 mm, and a cut prepreg base material is used. A method for producing a laminated base material, characterized in that when the laminated cut prepreg base material is laminated, pressurization and decompression are repeated until a predetermined void ratio is obtained. 前記プリプレグ基材として、一方向に配向した強化繊維の表面にのみ熱可塑性樹脂が偏在して含浸されたものを用いる、請求項10に記載の積層基材の製造方法。 The manufacturing method of the laminated base material of Claim 10 using what the thermoplastic resin was unevenly distributed and impregnated only on the surface of the reinforced fiber oriented in one direction as said prepreg base material. 前記プリプレグ基材として、ボイド率が1%以下のものを用いる、請求項10に記載の積層基材の製造方法。 The method for producing a laminated base material according to claim 10, wherein a prepreg base material having a void ratio of 1% or less is used. 一方向に強化繊維を平面状に引き揃えて繊維シートとし、該繊維シートの両面から熱可塑性樹脂からなる不織布を挟み、熱可塑性樹脂を前記繊維シート中に含浸して、前記プリプレグ基材を作成する、請求項10〜12に記載のいずれかに記載の積層基材の製造方法。 A fiber sheet is formed by aligning reinforcing fibers in one direction in a flat shape, a nonwoven fabric made of a thermoplastic resin is sandwiched from both sides of the fiber sheet, and the fiber sheet is impregnated with the fiber sheet to create the prepreg base material. The manufacturing method of the laminated base material in any one of Claims 10-12. 前記プリプレグ基材の全面に前記切込を挿入する抜き型を用いて、切込を挿入すると同時に所定の外形状に裁断して前記切込プリプレグ基材を形成する、請求項10〜13のいずれかに記載の積層基材の製造方法。 The cutting prepreg base material is formed by cutting a predetermined outer shape at the same time as inserting a notch using a punching die for inserting the notch into the entire surface of the prepreg base material. The manufacturing method of the laminated base material of crab. 前記切込プリプレグ基材を複数枚積層して積層基材とするにあたり、異なる外形状の前記切込プリプレグ基材を含むように積層し、積層厚みが異なる箇所を有する積層基材を形成する、請求項10〜14のいずれかに記載の積層基材の製造方法。 In laminating a plurality of the cut prepreg base materials to form a laminated base material, the laminated base materials are laminated so as to include the cut prepreg base materials having different outer shapes, and a laminated base material having a portion having a different laminated thickness is formed. The manufacturing method of the laminated base material in any one of Claims 10-14. 請求項1〜7のいずれかに記載の積層基材または請求項8に記載の複合積層基材を加熱して軟化させた後、コールドプレスして三次元形状の繊維強化プラスチックを成形する、繊維強化プラスチックの製造方法。 A fiber that heats and softens the laminated substrate according to any one of claims 1 to 7 or the composite laminated substrate according to claim 8, and then cold-presses to form a three-dimensional fiber reinforced plastic. A method of manufacturing reinforced plastics. 前記積層基材の周縁部を把持した後、前記積層基材の中央部に成形型を押し当てて成形する、請求項16に記載の繊維強化プラスチックの製造方法。 The manufacturing method of the fiber reinforced plastics of Claim 16 which presses and shape | molds a shaping | molding die against the center part of the said laminated base material after holding the peripheral part of the said laminated base material. 成形型のキャビティに該成形型のキャビティよりも小さな前記積層基材を配置し、前記積層基材を伸張して繊維強化プラスチックを成形する、請求項16に記載の繊維強化プラスチックの製造方法。 The manufacturing method of the fiber reinforced plastics of Claim 16 which arrange | positions the said laminated base material smaller than the cavity of this shaping | molding die in a shaping | molding die cavity, and shape | molds the said laminated base material, and shape | molds a fiber reinforced plastic. 前記コールドプレスにおいて、加圧と減圧を繰り返す、請求項16〜18のいずれかに記載の繊維強化プラスチックの製造方法。 The method for producing a fiber-reinforced plastic according to any one of claims 16 to 18, wherein pressurization and decompression are repeated in the cold press.
JP2008137600A 2008-05-27 2008-05-27 Laminated substrate, fiber reinforced plastic, and production method thereof Active JP5167953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008137600A JP5167953B2 (en) 2008-05-27 2008-05-27 Laminated substrate, fiber reinforced plastic, and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008137600A JP5167953B2 (en) 2008-05-27 2008-05-27 Laminated substrate, fiber reinforced plastic, and production method thereof

Publications (2)

Publication Number Publication Date
JP2009286817A true JP2009286817A (en) 2009-12-10
JP5167953B2 JP5167953B2 (en) 2013-03-21

Family

ID=41456363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008137600A Active JP5167953B2 (en) 2008-05-27 2008-05-27 Laminated substrate, fiber reinforced plastic, and production method thereof

Country Status (1)

Country Link
JP (1) JP5167953B2 (en)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011224866A (en) * 2010-04-20 2011-11-10 Mitsubishi Rayon Co Ltd Method for producing fiber-reinforced thermoplastic resin, fiber-reinforced thermoplastic resin obtained by the method, and molding using fiber-reinforced thermoplastic resin
JP2012166481A (en) * 2011-02-15 2012-09-06 Toyota Motor Corp Method for manufacturing resin molding
WO2013031860A1 (en) 2011-08-31 2013-03-07 帝人株式会社 Molded body having rising surface, and method for producing same
WO2013108811A1 (en) 2012-01-20 2013-07-25 東レ株式会社 Fiber reinforced polypropylene resin composition, molding material and prepreg
JP2014091824A (en) * 2012-11-07 2014-05-19 Mitsubishi Rayon Co Ltd Multilayer base material of fiber-reinforced plastic, and method for producing the material
JP2014149985A (en) * 2013-02-01 2014-08-21 Nippon Kodoshi Corp Nonaqueous battery separator and nonaqueous battery
WO2014142061A1 (en) 2013-03-11 2014-09-18 三菱レイヨン株式会社 Layered substrate and method for manufacturing same
JP2014172241A (en) * 2013-03-07 2014-09-22 Toray Ind Inc Fiber-reinforced thermoplastic resin molding and method for manufacturing the same
JP2014189722A (en) * 2013-03-28 2014-10-06 Mitsubishi Chemicals Corp Laminated base material of fiber-reinforced plastic and method for producing the same
JP2014198756A (en) * 2013-03-29 2014-10-23 三菱レイヨン株式会社 Production method of carbon fiber resin composite material molding
WO2015037570A1 (en) 2013-09-10 2015-03-19 三菱レイヨン株式会社 Thermoplastic prepreg and laminate
JP2015051630A (en) * 2013-08-06 2015-03-19 三菱レイヨン株式会社 Method for producing laminate substrate and laminate substrate
WO2015083707A1 (en) 2013-12-03 2015-06-11 三菱レイヨン株式会社 Fiber-reinforced resin laminate
WO2016004096A3 (en) * 2014-06-30 2016-02-18 C&D Zodiac, Inc. Panel assembly with crush section
WO2016043156A1 (en) * 2014-09-19 2016-03-24 東レ株式会社 Notched pre-preg and notched pre-preg sheet
JP5975171B2 (en) * 2014-02-14 2016-08-23 三菱レイヨン株式会社 Fiber reinforced plastic and method for producing the same
JP2016179627A (en) * 2015-03-25 2016-10-13 三菱レイヨン株式会社 Fiber-reinforced thermoplastic resin laminate
JP2016221886A (en) * 2015-06-01 2016-12-28 富士重工業株式会社 Fiber-reinforced resin structure manufacturing process
JP2017043672A (en) * 2015-08-25 2017-03-02 三菱レイヨン株式会社 Composite material for thermoforming
JP2017052246A (en) * 2015-09-11 2017-03-16 三菱レイヨン株式会社 Manufacturing method of thermoformed articles and material for thermoforming
JPWO2017022835A1 (en) * 2015-08-04 2017-08-03 三菱ケミカル株式会社 Fiber reinforced plastic and method for producing the same
US9752002B2 (en) 2012-11-27 2017-09-05 Mitsubishi Chemical Corporation Fiber-reinforced thermoplastic resin prepreg, molded body of same, and method for producing fiber-reinforced thermoplastic resin prepreg
WO2017159567A1 (en) * 2016-03-16 2017-09-21 東レ株式会社 Manufacturing method for fiber-reinforced plastic and fiber-reinforced plastic
JP2018075827A (en) * 2016-09-14 2018-05-17 ザ・ボーイング・カンパニーThe Boeing Company Method of producing cored composite parts
JP2018123939A (en) * 2017-02-03 2018-08-09 三菱ケミカル株式会社 Energy absorption member and manufacturing method thereof
JP2018176444A (en) * 2017-04-04 2018-11-15 トヨタ自動車株式会社 Method of molding fiber-reinforced thermoplastic resin molded article
US10137664B2 (en) 2014-03-28 2018-11-27 Mitsubishi Heavy Industries, Ltd. Composite material structure, aircraft wing and aircraft fuselage provided with same, and method for manufacturing composite material structure
CN109015946A (en) * 2018-08-06 2018-12-18 宿迁茂诚木业有限公司 A kind of veneer, glued board, glued board processing method
JP2019001341A (en) * 2017-06-16 2019-01-10 林テレンプ株式会社 Vehicle board structure, vehicle, and manufacturing method of vehicle board structure
WO2019111737A1 (en) 2017-12-05 2019-06-13 大塚化学株式会社 Composite laminate and method for producing same
EP3578330A4 (en) * 2017-02-03 2020-02-26 Teijin Limited Composite material including carbon fibers and thermoplastic resin, molded body production method using same, and molded body
EP3581354A4 (en) * 2017-02-09 2020-03-25 Toray Industries, Inc. Preform element, preform using same, and method for producing same
WO2020235344A1 (en) 2019-05-17 2020-11-26 大塚化学株式会社 Composite laminate and method for producing same
WO2020235343A1 (en) 2019-05-17 2020-11-26 大塚化学株式会社 Composite laminate and method for producing same
JP2021091141A (en) * 2019-12-10 2021-06-17 東レ株式会社 Manufacturing method of fiber reinforced plastic and fiber reinforced plastic
WO2021180335A1 (en) * 2020-03-13 2021-09-16 Schunk Kohlenstofftechnik Gmbh Method for producing a layer containing fibres and a prepreg
CN113442466A (en) * 2015-10-27 2021-09-28 东丽株式会社 Incision prepreg
JP2021155513A (en) * 2020-03-26 2021-10-07 東レ株式会社 Prepreg laminate, fiber reinforced composite material, and method for producing fiber reinforced composite material
WO2022059598A1 (en) * 2020-09-17 2022-03-24 三井化学株式会社 Molded body and method for manufacturing same
CN114454533A (en) * 2020-11-10 2022-05-10 科展材料科技股份有限公司 Composite material shell and manufacturing method thereof
CN114746237A (en) * 2019-12-23 2022-07-12 东丽株式会社 Composite prepreg and fiber-reinforced resin molded body
US11517870B2 (en) 2012-08-10 2022-12-06 Aspen Aerogels, Inc. Segmented flexible gel composites and rigid panels manufactured therefrom

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018055932A1 (en) 2016-09-26 2018-03-29 東レ株式会社 Notched prepreg and method for producing notched prepreg

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63247012A (en) * 1987-04-02 1988-10-13 Mitsui Toatsu Chem Inc Preparation of fiber reinforced thermoplastic
JPH02115236A (en) * 1988-10-25 1990-04-27 Sumitomo Chem Co Ltd Fiber-reinforced resin sheet for molding, its production and production of fiber-reinforced resin molding
JPH05162133A (en) * 1991-12-13 1993-06-29 Asahi Fiber Glass Co Ltd Sheet for forming stamp manufacture thereof
JPH09254227A (en) * 1996-03-26 1997-09-30 Nitto Boseki Co Ltd Thermoplastic resin-covered reinforcing fiber bundle and its preparation
WO2007135418A1 (en) * 2006-05-22 2007-11-29 Advanced Composites Group Limited Moulding materials
JP2008207545A (en) * 2007-02-02 2008-09-11 Toray Ind Inc Notched prepreg substrate, composite notched prepreg substrate, laminated substrate, fiber-reinforced plastic, and method for manufacturing notched prepreg substrate
JP2008208343A (en) * 2007-02-02 2008-09-11 Toray Ind Inc Cut prepreg substrate, laminated substrate, fiber reinforced plastics and preparation method of cut prepreg substrate
JP2008273176A (en) * 2007-04-03 2008-11-13 Toray Ind Inc Manufacturing method for fiber-reinforced plastic
JP2008279753A (en) * 2007-04-13 2008-11-20 Toray Ind Inc Manufacturing method of fiber-reinforced plastics

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63247012A (en) * 1987-04-02 1988-10-13 Mitsui Toatsu Chem Inc Preparation of fiber reinforced thermoplastic
JPH02115236A (en) * 1988-10-25 1990-04-27 Sumitomo Chem Co Ltd Fiber-reinforced resin sheet for molding, its production and production of fiber-reinforced resin molding
JPH05162133A (en) * 1991-12-13 1993-06-29 Asahi Fiber Glass Co Ltd Sheet for forming stamp manufacture thereof
JPH09254227A (en) * 1996-03-26 1997-09-30 Nitto Boseki Co Ltd Thermoplastic resin-covered reinforcing fiber bundle and its preparation
WO2007135418A1 (en) * 2006-05-22 2007-11-29 Advanced Composites Group Limited Moulding materials
JP2009537691A (en) * 2006-05-22 2009-10-29 アドバンスト コンポジッツ グループ リミテッド Molding material
JP2008207545A (en) * 2007-02-02 2008-09-11 Toray Ind Inc Notched prepreg substrate, composite notched prepreg substrate, laminated substrate, fiber-reinforced plastic, and method for manufacturing notched prepreg substrate
JP2008208343A (en) * 2007-02-02 2008-09-11 Toray Ind Inc Cut prepreg substrate, laminated substrate, fiber reinforced plastics and preparation method of cut prepreg substrate
JP2008273176A (en) * 2007-04-03 2008-11-13 Toray Ind Inc Manufacturing method for fiber-reinforced plastic
JP2008279753A (en) * 2007-04-13 2008-11-20 Toray Ind Inc Manufacturing method of fiber-reinforced plastics

Cited By (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011224866A (en) * 2010-04-20 2011-11-10 Mitsubishi Rayon Co Ltd Method for producing fiber-reinforced thermoplastic resin, fiber-reinforced thermoplastic resin obtained by the method, and molding using fiber-reinforced thermoplastic resin
JP2012166481A (en) * 2011-02-15 2012-09-06 Toyota Motor Corp Method for manufacturing resin molding
WO2013031860A1 (en) 2011-08-31 2013-03-07 帝人株式会社 Molded body having rising surface, and method for producing same
US10322559B2 (en) 2011-08-31 2019-06-18 Teijin Limited Shaped product having standing plane, and method for manufacturing the same
WO2013108811A1 (en) 2012-01-20 2013-07-25 東レ株式会社 Fiber reinforced polypropylene resin composition, molding material and prepreg
KR20140114342A (en) 2012-01-20 2014-09-26 도레이 카부시키가이샤 Fiber reinforced polypropylene resin composition, molding material and prepreg
US11517870B2 (en) 2012-08-10 2022-12-06 Aspen Aerogels, Inc. Segmented flexible gel composites and rigid panels manufactured therefrom
JP2014091824A (en) * 2012-11-07 2014-05-19 Mitsubishi Rayon Co Ltd Multilayer base material of fiber-reinforced plastic, and method for producing the material
US9752002B2 (en) 2012-11-27 2017-09-05 Mitsubishi Chemical Corporation Fiber-reinforced thermoplastic resin prepreg, molded body of same, and method for producing fiber-reinforced thermoplastic resin prepreg
JP2014149985A (en) * 2013-02-01 2014-08-21 Nippon Kodoshi Corp Nonaqueous battery separator and nonaqueous battery
JP2014172241A (en) * 2013-03-07 2014-09-22 Toray Ind Inc Fiber-reinforced thermoplastic resin molding and method for manufacturing the same
KR20150107893A (en) 2013-03-11 2015-09-23 미쯔비시 레이온 가부시끼가이샤 Layered substrate and method for manufacturing same
KR20160066008A (en) 2013-03-11 2016-06-09 미쯔비시 레이온 가부시끼가이샤 Layered substrate and method for manufacturing same
WO2014142061A1 (en) 2013-03-11 2014-09-18 三菱レイヨン株式会社 Layered substrate and method for manufacturing same
US9969146B2 (en) 2013-03-11 2018-05-15 Mitsubishi Chemical Corporation Layered substrate and method for manufacturing same
EP2974842A1 (en) 2013-03-11 2016-01-20 Mitsubishi Rayon Co., Ltd. Layered substrate and method for manufacturing same
EP2974842A4 (en) * 2013-03-11 2016-08-03 Mitsubishi Rayon Co Layered substrate and method for manufacturing same
JP2014189722A (en) * 2013-03-28 2014-10-06 Mitsubishi Chemicals Corp Laminated base material of fiber-reinforced plastic and method for producing the same
JP2014198756A (en) * 2013-03-29 2014-10-23 三菱レイヨン株式会社 Production method of carbon fiber resin composite material molding
JP2015051630A (en) * 2013-08-06 2015-03-19 三菱レイヨン株式会社 Method for producing laminate substrate and laminate substrate
JP5858171B2 (en) * 2013-09-10 2016-02-10 三菱レイヨン株式会社 Thermoplastic prepreg, laminated substrate and molded product
US10604633B2 (en) 2013-09-10 2020-03-31 Mitsubishi Chemical Corporation Thermoplastic prepreg and laminate
WO2015037570A1 (en) 2013-09-10 2015-03-19 三菱レイヨン株式会社 Thermoplastic prepreg and laminate
KR20160065997A (en) 2013-12-03 2016-06-09 미쯔비시 레이온 가부시끼가이샤 Fiber-reinforced resin laminate
WO2015083707A1 (en) 2013-12-03 2015-06-11 三菱レイヨン株式会社 Fiber-reinforced resin laminate
JP5975171B2 (en) * 2014-02-14 2016-08-23 三菱レイヨン株式会社 Fiber reinforced plastic and method for producing the same
KR20160105877A (en) 2014-02-14 2016-09-07 미쯔비시 레이온 가부시끼가이샤 Fiber-reinforced plastic and production method therefor
US10773473B2 (en) 2014-02-14 2020-09-15 Mitsubishi Chemical Corporation Fiber-reinforced plastic and production method therefor
US11034103B2 (en) 2014-02-14 2021-06-15 Mitsubishi Chemical Corporation Fiber-reinforced plastic and production method therefor
US10137664B2 (en) 2014-03-28 2018-11-27 Mitsubishi Heavy Industries, Ltd. Composite material structure, aircraft wing and aircraft fuselage provided with same, and method for manufacturing composite material structure
EP3160731A4 (en) * 2014-06-30 2018-02-21 Zodiac Seats US LLC Panel assembly with crush section
JP2017521307A (en) * 2014-06-30 2017-08-03 ゾディアック シーツ ユーエス エルエルシィ Panel assembly having a crash section
WO2016004096A3 (en) * 2014-06-30 2016-02-18 C&D Zodiac, Inc. Panel assembly with crush section
US10059423B2 (en) 2014-06-30 2018-08-28 Zodiac Seats Us Llc Panel assembly with crush section
WO2016043156A1 (en) * 2014-09-19 2016-03-24 東レ株式会社 Notched pre-preg and notched pre-preg sheet
KR20170057316A (en) * 2014-09-19 2017-05-24 도레이 카부시키가이샤 Notched pre-preg and notched pre-preg sheet
CN106715547A (en) * 2014-09-19 2017-05-24 东丽株式会社 Notched pre-preg and notched pre-preg sheet
US10808091B2 (en) 2014-09-19 2020-10-20 Toray Industries, Inc. Notched pre-preg and notched pre-preg sheet
JPWO2016043156A1 (en) * 2014-09-19 2017-06-29 東レ株式会社 Cutting prepreg and cutting prepreg sheet
KR102417660B1 (en) * 2014-09-19 2022-07-07 도레이 카부시키가이샤 Notched pre-preg and notched pre-preg sheet
JP2016179627A (en) * 2015-03-25 2016-10-13 三菱レイヨン株式会社 Fiber-reinforced thermoplastic resin laminate
JP2016221886A (en) * 2015-06-01 2016-12-28 富士重工業株式会社 Fiber-reinforced resin structure manufacturing process
JPWO2017022835A1 (en) * 2015-08-04 2017-08-03 三菱ケミカル株式会社 Fiber reinforced plastic and method for producing the same
US10576695B2 (en) 2015-08-04 2020-03-03 Mitsubishi Chemical Corporation Fiber-reinforced plastic and method for producing same
CN109348708A (en) * 2015-08-04 2019-02-15 三菱化学株式会社 Fibre reinforced plastics and its manufacturing method
JP2017043672A (en) * 2015-08-25 2017-03-02 三菱レイヨン株式会社 Composite material for thermoforming
JP2017052246A (en) * 2015-09-11 2017-03-16 三菱レイヨン株式会社 Manufacturing method of thermoformed articles and material for thermoforming
CN113442466B (en) * 2015-10-27 2023-07-28 东丽株式会社 Incision prepreg
CN113442466A (en) * 2015-10-27 2021-09-28 东丽株式会社 Incision prepreg
WO2017159567A1 (en) * 2016-03-16 2017-09-21 東レ株式会社 Manufacturing method for fiber-reinforced plastic and fiber-reinforced plastic
JP7202771B2 (en) 2016-09-14 2023-01-12 ザ・ボーイング・カンパニー Method for manufacturing a composite part containing a core
JP2018075827A (en) * 2016-09-14 2018-05-17 ザ・ボーイング・カンパニーThe Boeing Company Method of producing cored composite parts
EP3578330A4 (en) * 2017-02-03 2020-02-26 Teijin Limited Composite material including carbon fibers and thermoplastic resin, molded body production method using same, and molded body
JP2018123939A (en) * 2017-02-03 2018-08-09 三菱ケミカル株式会社 Energy absorption member and manufacturing method thereof
EP3581354A4 (en) * 2017-02-09 2020-03-25 Toray Industries, Inc. Preform element, preform using same, and method for producing same
JP2018176444A (en) * 2017-04-04 2018-11-15 トヨタ自動車株式会社 Method of molding fiber-reinforced thermoplastic resin molded article
JP2019001341A (en) * 2017-06-16 2019-01-10 林テレンプ株式会社 Vehicle board structure, vehicle, and manufacturing method of vehicle board structure
KR20200088362A (en) 2017-12-05 2020-07-22 오츠카 가가쿠 가부시키가이샤 Composite laminate and manufacturing method thereof
US11491759B2 (en) 2017-12-05 2022-11-08 Otsuka Chemical Co., Ltd. Composite laminate and method for producing same
WO2019111737A1 (en) 2017-12-05 2019-06-13 大塚化学株式会社 Composite laminate and method for producing same
CN109015946A (en) * 2018-08-06 2018-12-18 宿迁茂诚木业有限公司 A kind of veneer, glued board, glued board processing method
KR20220009940A (en) 2019-05-17 2022-01-25 오츠카 가가쿠 가부시키가이샤 Composite laminate and manufacturing method thereof
WO2020235343A1 (en) 2019-05-17 2020-11-26 大塚化学株式会社 Composite laminate and method for producing same
WO2020235344A1 (en) 2019-05-17 2020-11-26 大塚化学株式会社 Composite laminate and method for producing same
JP2021091141A (en) * 2019-12-10 2021-06-17 東レ株式会社 Manufacturing method of fiber reinforced plastic and fiber reinforced plastic
JP7472480B2 (en) 2019-12-10 2024-04-23 東レ株式会社 Manufacturing method of fiber reinforced plastic
CN114746237A (en) * 2019-12-23 2022-07-12 东丽株式会社 Composite prepreg and fiber-reinforced resin molded body
WO2021180335A1 (en) * 2020-03-13 2021-09-16 Schunk Kohlenstofftechnik Gmbh Method for producing a layer containing fibres and a prepreg
JP2021155513A (en) * 2020-03-26 2021-10-07 東レ株式会社 Prepreg laminate, fiber reinforced composite material, and method for producing fiber reinforced composite material
JP7363630B2 (en) 2020-03-26 2023-10-18 東レ株式会社 Prepreg laminate, fiber reinforced composite material and method for producing fiber reinforced composite material
WO2022059598A1 (en) * 2020-09-17 2022-03-24 三井化学株式会社 Molded body and method for manufacturing same
JP7076656B1 (en) * 2020-09-17 2022-05-27 三井化学株式会社 Molded product and its manufacturing method
CN114454533A (en) * 2020-11-10 2022-05-10 科展材料科技股份有限公司 Composite material shell and manufacturing method thereof

Also Published As

Publication number Publication date
JP5167953B2 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
JP5167953B2 (en) Laminated substrate, fiber reinforced plastic, and production method thereof
JP5272418B2 (en) Cut prepreg base material, composite cut prepreg base material, laminated base material, fiber reinforced plastic, and method for producing cut prepreg base material
US8354156B2 (en) Prepreg base material, layered base material, fiber-reinforced plastic, process for producing prepreg base material, and process for producing fiber-reinforced plastic
JP5292972B2 (en) Manufacturing method of fiber reinforced plastic
JP5353099B2 (en) Manufacturing method of fiber reinforced plastic
JP5223354B2 (en) Cut prepreg base material, laminated base material, fiber reinforced plastic, and method for producing cut prepreg base material
US8906494B2 (en) Process for producing composite prepreg base, layered base, and fiber-reinforced plastic
US20100028616A1 (en) Fiber-reinforced plastic and process for production thereof
JP5572947B2 (en) Molding material, fiber reinforced plastic, and production method thereof
JP2008207544A5 (en)
JP2009062474A (en) Molding material, fiber-reinforced plastic, and manufacturing method for them
JP2010023359A (en) Method of manufacturing laminate
US20140154472A1 (en) Thermoplastic resin prepreg, molded preform and molded composite using same, and methods for producing them
JP2008279753A (en) Manufacturing method of fiber-reinforced plastics
JP2007261141A (en) Prepreg laminate and fiber-reinforced plastic
JP2013202890A (en) Molding material and method of manufacturing the same
JP2010018724A (en) Prepreg layered substrate and fiber-reinforced plastic
JP2009292002A (en) Method of manufacturing fiber-reinforced plastics
JP7259229B2 (en) chopped fiber bundle mat
JP2008254425A (en) Manufacturing method for fiber-reinforced plastic
US20220040935A1 (en) Method for manufacturing molded article of fiber-reinforced composite material, reinforcing fiber substrate and molded article of fiber-reinforced composite material
JP2008238809A (en) Method of manufacturing laminate
JP2008208343A (en) Cut prepreg substrate, laminated substrate, fiber reinforced plastics and preparation method of cut prepreg substrate
JP2016179647A (en) Method for producing fiber-reinforced plastic
JP2012167252A (en) Method for producing narrow prepreg, and fiber-reinforced plastic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121210

R151 Written notification of patent or utility model registration

Ref document number: 5167953

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160111

Year of fee payment: 3