JP5292972B2 - Manufacturing method of fiber reinforced plastic - Google Patents

Manufacturing method of fiber reinforced plastic Download PDF

Info

Publication number
JP5292972B2
JP5292972B2 JP2008195913A JP2008195913A JP5292972B2 JP 5292972 B2 JP5292972 B2 JP 5292972B2 JP 2008195913 A JP2008195913 A JP 2008195913A JP 2008195913 A JP2008195913 A JP 2008195913A JP 5292972 B2 JP5292972 B2 JP 5292972B2
Authority
JP
Japan
Prior art keywords
fiber
cut
base material
laminate
prepreg base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008195913A
Other languages
Japanese (ja)
Other versions
JP2010030193A (en
Inventor
哲也 本橋
英輔 和田原
一朗 武田
成道 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2008195913A priority Critical patent/JP5292972B2/en
Publication of JP2010030193A publication Critical patent/JP2010030193A/en
Application granted granted Critical
Publication of JP5292972B2 publication Critical patent/JP5292972B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/20Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres
    • B29C70/205Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres the structure being shaped to form a three-dimensional configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/0036Slitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/0081Shaping techniques involving a cutting or machining operation before shaping

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fiber-reinforced plastic having excellent fluidity and complex form followability in the molding, and achieving excellent dynamic properties, low dispersibility and excellent dimensional stability as the fiber-reinforced plastic, and a manufacturing method therefor. <P>SOLUTION: The manufacturing method of the fiber-reinforced plastic for obtaining the fiber-reinforced plastic by integrally manufacturing prepreg base materials into a laminated body and press-molding the laminated body by arranging it in the mold, includes at least three steps of 1-3 for: (1) a lamination step of manufacturing the laminated body by cutting the cut prepreg base material with which the reinforcing fiber is cut so that the layer 11 in contact with the recessed part 5 has an area larger than a projected area of an opening of the recessed part 5, and forming a thin part 10 with the thickness of the laminated body getting thin toward the outer edge; (2) a setting step of arranging the thin part of the laminated body along the mold; and (3) a press step of press-molding by fluidizing the laminated body. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、良好な流動性、成形追従性を有し、繊維強化プラスチックとした場合、優れた力学特性、低バラツキ性、優れた寸法安定性を発現する積層体をプレス成形し、繊維強化プラスチックを得る、繊維強化プラスチックの製造方法に関する。かかる繊維強化プラスチックは、例えば自動車などの輸送機器、自転車などのスポーツ用具などの構造部材に特に好適に用いられる。     In the present invention, when a fiber reinforced plastic has good fluidity and molding followability, a laminate that exhibits excellent mechanical properties, low variation, and excellent dimensional stability is press-molded, and fiber reinforced plastic is obtained. The present invention relates to a method for producing a fiber-reinforced plastic. Such fiber reinforced plastics are particularly preferably used for structural members such as transport equipment such as automobiles and sports equipment such as bicycles.

強化繊維とマトリックス樹脂からなる繊維強化プラスチックは、比強度、比弾性率が高く、力学特性に優れること、耐候性、耐薬品性などの高機能特性を有することなどから産業用途においても注目され、その需要は年々高まりつつある。   Fiber reinforced plastic consisting of reinforced fiber and matrix resin is attracting attention in industrial applications because it has high specific properties, high specific modulus, excellent mechanical properties, weather resistance, chemical resistance, etc. The demand is increasing year by year.

高機能特性を有する繊維強化プラスチックの成形法としては、プリプレグと称される連続した強化繊維にマトリックス樹脂を含浸せしめた半硬化状態の中間基材を積層し、高温高圧釜で加熱加圧することによりマトリックス樹脂を硬化させ繊維強化プラスチックを成形するオートクレーブ成形が最も一般的に行われている。また、前記プリプレグ基材の積層体を予備加熱して軟化状態にある該積層体を雌雄一対からなる金型間に供給し、次いで加圧することで所望の形状の成形体を得るプレス成形も広く行われている。特にプレス成形は、比較的均一な精度の製品を多量に生産できることが特徴であり、多量生産を行うために高速化、高精度化、品質の安定化などの要求が高く、それらを実現するために作業性、成型性の向上に関する市場の要求は非常に高い。   As a molding method of fiber reinforced plastic having high functional properties, a semi-cured intermediate base material impregnated with matrix resin is laminated on continuous reinforcing fiber called prepreg, and heated and pressurized in a high temperature and high pressure kettle. Autoclave molding in which a matrix resin is cured and a fiber reinforced plastic is molded is most commonly performed. In addition, there is a wide range of press molding in which a laminate of the prepreg base material is preheated to supply the laminate in a softened state between a pair of male and female molds and then pressed to obtain a molded body of a desired shape. Has been done. In particular, press molding is characterized by the ability to produce a large amount of products with relatively uniform accuracy, and there are high demands for high speed, high accuracy, and stable quality in order to achieve mass production. In addition, the market demand for improving workability and moldability is very high.

これらの成形法により得られた繊維強化プラスチックは、連続繊維で構成される所以、優れた力学物性を有する。また、連続繊維は規則的な配列であるため、基材の配置により必要とする力学物性に設計することが可能であり、力学物性のバラツキも小さい。しかしながら、一方で元来強化繊維自体の伸縮性が乏しいため、凹凸部や、ダブルコンター曲面等を有する複雑な三次元形状を形成することは困難である。このような連続繊維基材を賦形した場合には、形状表面を覆いきれない箇所で突っ張りが、基材が余った箇所でシワが発生するため、高品位な賦形が難しい。連続繊維基材であっても、織物基材のように面内でせん断変形が可能な場合は、かなり賦形し易くはなるものの、形状が複雑になれば、やはり繊維の突っ張りやシワが発生してしまう、という問題があり、したがって、現在は主として一次曲面や平面形状に近い部材に限られているのが実状である。   The fiber reinforced plastics obtained by these molding methods have excellent mechanical properties because they are composed of continuous fibers. Further, since the continuous fibers are regularly arranged, it is possible to design the mechanical properties required by the arrangement of the base material, and the variation in the mechanical properties is small. However, on the other hand, it is difficult to form a complicated three-dimensional shape having an uneven part, a double contour curved surface, and the like because the reinforcing fiber itself originally lacks elasticity. When such a continuous fiber base material is shaped, it is difficult to achieve high-quality shaping because it is stretched in places where the shape surface cannot be covered but wrinkles are generated in places where the base material remains. Even if it is a continuous fiber base material, if it can be sheared in-plane like a woven base material, it will be fairly easy to shape, but if the shape becomes complicated, fiber tension and wrinkles will still occur Therefore, at present, the actual situation is that it is mainly limited to members close to a primary curved surface or a planar shape.

一方、ダブルコンター曲面や凹凸部等の複雑な三次元形状に適した成形法として、SMC(シートモールディングコンパウンド)を用いたプレス成形がある。この成形法では、通常25mm程度に切断したチョップドストランドに熱硬化性のマトリックス樹脂を含浸せしめ半硬化状態としたSMCシートを、プレス機を用いて加熱・加圧することにより成形を行う。多くの場合、加圧前にSMCを成形体の形状より小さく切断して成形型上に配置し、加圧により成形体の形状に引き伸ばして(流動させて)成形を行う。そのため、その流動により凹凸部やダブルコンター曲面等の複雑な形状にも追従可能となる。しかしながら、SMCはそのシート化工程において、チョップドストランドの分布ムラ、配向ムラが必然的に生じてしまうため、力学特性が低下し、そのバラツキが大きくなる問題があった。さらには、特に薄物の部材ではソリ、ヒケ等が発生しやすくなり、構造材としては不適な場合が多い。   On the other hand, as a molding method suitable for a complicated three-dimensional shape such as a double contour curved surface or an uneven portion, there is press molding using SMC (sheet molding compound). In this molding method, the SMC sheet which is made into a semi-cured state by impregnating a chopped strand, which is usually cut to about 25 mm, with a thermosetting matrix resin, is heated and pressed using a press. In many cases, the SMC is cut to be smaller than the shape of the molded body before pressurization and placed on the mold, and is stretched (flowed) into the shape of the molded body by pressurization. Therefore, it is possible to follow complicated shapes such as uneven portions and double contour curved surfaces by the flow. However, SMC has a problem that distribution unevenness and alignment unevenness of the chopped strands are inevitably generated in the sheet forming process, so that the mechanical characteristics are lowered and the variation is increased. Furthermore, warpage, sink marks, and the like are likely to occur particularly in a thin member, which is often unsuitable as a structural material.

これに対して、上述のような材料の欠点を埋めるべく、連続繊維と熱可塑性樹脂からなるプリプレグ基材に切り込みを入れることにより、流動可能で力学物性のバラツキも小さくなるとされる基材が開示されている(例えば特許文献1、2)。しかしながら、SMCと比較すると力学特性が大きく向上し、バラツキが小さくなるものの、構造材として適用するには十分な強度とは言えない。連続繊維基材と比較すると切り込みという欠陥を内包した構成であるために、応力集中点である切り込みが破壊の起点となり、特に引張強度、引張疲労強度が低下するという問題があった。
特開昭63−247012号公報 特開平9−254227号広報
On the other hand, in order to fill the drawbacks of the materials as described above, a base material that can flow and reduce the variation in mechanical properties by cutting into a prepreg base material made of continuous fibers and a thermoplastic resin is disclosed. (For example, Patent Documents 1 and 2). However, compared with SMC, the mechanical properties are greatly improved and the variation is small, but it cannot be said that the strength is sufficient for application as a structural material. Compared to a continuous fiber base material, since it has a configuration including a defect called a notch, the notch which is a stress concentration point becomes a starting point of fracture, and there is a problem that particularly tensile strength and tensile fatigue strength are lowered.
Japanese Unexamined Patent Publication No. 63-247010 JP 9-254227 A

本発明は、従来技術では複雑形状の形成と低バラツキ性、十分な強度、及び取扱いの両立が困難であった背景を鑑み、成形時において、良好な流動性および複雑形状追従性を有し、繊維強化プラスチックとした場合、優れた力学特性、その低バラツキ性、優れた寸法安定性を発現する、繊維強化プラスチックおよびその製造方法を提供することにある。   The present invention has a good fluidity and a complicated shape followability at the time of molding in view of the background in which it was difficult to achieve both complex shape formation and low variation, sufficient strength, and handling in the prior art, An object of the present invention is to provide a fiber reinforced plastic and a method for producing the same, which exhibit excellent mechanical properties, low variability, and excellent dimensional stability when used as a fiber reinforced plastic.

上記の課題を解決するため、本発明は以下の構成からなる。すなわち、
(I)一方向に配向した強化繊維とマトリックス樹脂とからなるプリプレグ基材を、所定の形状に裁断した後、前記プリプレグ基材の繊維方向が少なくとも2方向以上に配向して一体化して積層体を作製し、さらに該積層体を、凹部と該凹部に対応する凸部を有し、前記凹部と前記凸部との間にキャビティが構成される成形型に配置してプレス成形し、繊維強化プラスチックを得る繊維強化プラスチックの製造方法であって、少なくとも下記(1)〜(3)の工程を有する繊維強化プラスチックの製造方法。
(1)前記プリプレグ基材の全面に切込を有し、実質的に全ての強化繊維が前記切込により切断されている切込プリプレグ基材を、少なくとも前記凹部と接する層が、前記凹部の開口部の投影面積以上の面積を有するように裁断し、かつ、前記積層体の端部の少なくとも一部において前記積層体の最厚部における前記切込プリプレグ基材の積層数に対して、積層数が少なくとも1層以上少なくなることにより形成される、最厚部の厚みよりも薄い薄肉部を形成するように前記切込プリプレグ基材を積層して前記積層体を作製する積層工程
(2)前記積層体を、前記積層体の薄肉部の少なくとも一部を、前記成形型の端部の少なくとも一部において、型に沿わせて配置するセット工程
(3)前記成形型の一方の型上に配置した積層体を前記成形型のもう一方の型を押し当て加圧し、前記積層体を流動させてプレス成形するプレス工程。
In order to solve the above problems, the present invention has the following configuration. That is,
(I) After a prepreg base material composed of reinforcing fibers and matrix resin oriented in one direction is cut into a predetermined shape, the fiber direction of the prepreg base material is aligned in at least two directions and integrated to form a laminate. Further, the laminate is press-molded by placing it in a mold having a concave portion and a convex portion corresponding to the concave portion, and a cavity is formed between the concave portion and the convex portion, and fiber reinforced. A method for producing a fiber-reinforced plastic, which is a method for producing a fiber-reinforced plastic, comprising at least the following steps (1) to (3).
(1) A notch prepreg base material that has a notch on the entire surface of the prepreg base material and substantially all of the reinforcing fibers are cut by the notch, and at least a layer that is in contact with the concave part is formed of the concave part. Cut to have an area equal to or larger than the projected area of the opening, and at least part of the end of the laminate is laminated with respect to the number of laminations of the cut prepreg base material in the thickest portion of the laminate. Lamination process (2) for laminating the cut prepreg base material so as to form a thin part thinner than the thickness of the thickest part, formed by reducing the number by at least one layer or more. A step of placing the laminated body along at least part of the thin-walled portion of the laminated body along at least part of the end of the molding die; The formed laminate is molded The other type of pressing pressurized, the press step of the laminate are fluidized press molding of.

(II)前記(1)の積層工程で用いられる切込プリプレグ基材が、前記切込により分断された強化繊維の繊維長さLが10〜100mmの範囲内であり、繊維体積含有率Vfが45〜65%の範囲内であり、かつ、前記切込が強化繊維となす角度Θの絶対値が2〜25°の範囲内であり、強化繊維の垂直方向に投影した投影長さWsが0.1〜1.5mmの範囲内である、(I)に記載の繊維強化プラスチックの製造方法。   (II) The cut prepreg base material used in the laminating step of (1) has a fiber length L of the reinforcing fibers divided by the cut in the range of 10 to 100 mm, and the fiber volume content Vf is The absolute value of the angle Θ between the cut and the reinforcing fiber is in the range of 2 to 25 °, and the projected length Ws projected in the vertical direction of the reinforcing fiber is 0. The manufacturing method of the fiber reinforced plastic as described in (I) which exists in the range of 0.1-1.5 mm.

(III)前記(1)の積層工程で得られる積層体の端部の薄肉部の厚みが、前記成形型のキャビティの厚みの80%以下となるように前記切込プリプレグ基材を積層して前記積層体を得る、(I)または(II)に記載の繊維強化プラスチックの製造方法。   (III) The cut prepreg base material is laminated so that the thickness of the thin portion at the end of the laminate obtained in the lamination step (1) is 80% or less of the thickness of the cavity of the mold. The method for producing a fiber-reinforced plastic according to (I) or (II), wherein the laminate is obtained.

(IV)前記(1)の積層工程において、前記積層体を作製する手段が、1つのカットパターンの端部の少なくとも一部において外縁に向かってオフセットした複数のカットパターンに従って前記プリプレグ基材を裁断し、得た複数の前記プリプレグ基材を積層して薄肉部を有する前記積層体を得る、(I)〜(III)いずれかに記載の繊維強化プラスチックの製造方法。   (IV) In the laminating step of (1), the means for producing the laminated body cuts the prepreg base material according to a plurality of cut patterns offset toward the outer edge at at least a part of one end of the cut pattern. And the manufacturing method of the fiber reinforced plastic in any one of (I)-(III) which laminates | stacks the obtained some said prepreg base material, and obtains the said laminated body which has a thin part.

(V)前記(1)の積層工程において、前記積層体の両表層を構成する前記プリプレグ基材のカットパターンより、前記積層体の両表層以外の中央層を構成する前記プリプレグ基材のカットパターンを小さくして、前記プリプレグ基材を一体化して薄肉部を有する前記積層体を得る、(I)〜(III)のいずれかに記載の繊維強化プラスチックの製造方法。   (V) In the laminating step of (1), the cut pattern of the prepreg base material constituting the central layer other than both surface layers of the laminated body from the cut pattern of the prepreg base material constituting both surface layers of the laminated body. The method for producing a fiber-reinforced plastic according to any one of (I) to (III), wherein the laminated body having a thin portion is obtained by integrating the prepreg base material.

(VI)前記(3)のプレス工程において、前記積層体の外縁の少なくとも一部を伸張させ、立ち壁を有する繊維強化プラスチックを成形する、(I)〜(V)のいずれかに記載の繊維強化プラスチックの製造方法。   (VI) The fiber according to any one of (I) to (V), wherein in the pressing step of (3), at least a part of the outer edge of the laminate is stretched to form a fiber-reinforced plastic having a standing wall. A method of manufacturing reinforced plastics.

本発明によれば、プレス成形する積層体が凹凸部やダブルコンター曲面等の複雑形状が形成可能な良好な流動性および複雑形状追従性を有しており、これを繊維強化プラスチックとした場合、優れた力学特性、その低バラツキ性、優れた寸法安定性を発現する、繊維強化プラスチックを得ることが出来る。   According to the present invention, the laminate to be press-molded has good fluidity and complex shape followability capable of forming complex shapes such as uneven portions and double contour curved surfaces, and when this is a fiber reinforced plastic, A fiber-reinforced plastic that exhibits excellent mechanical properties, low variability, and excellent dimensional stability can be obtained.

本発明を、図面を参照しながら詳細に説明する。   The present invention will be described in detail with reference to the drawings.

図1は本発明で用いられる積層体平面の概略拡大図である。図2は本発明における凹部と該凹部に対応する凸部を有し、前記凹部と前記凸部との間にキャビティが構成される成形型の概略図であり、図2a)は成形型を横から見た断面図、図2b)は成形型凹部を上から見た際の投影図である。図3は本発明における薄肉部を有する積層体の一例を示す概略図である。図4は前記薄肉部を有する積層体を前記成形型に配置した際の様子を示す概略図である。   FIG. 1 is a schematic enlarged view of a plane of a laminate used in the present invention. FIG. 2 is a schematic view of a mold having a concave portion and a convex portion corresponding to the concave portion in the present invention, and a cavity is formed between the concave portion and the convex portion. FIG. FIG. 2 b) is a projected view when the mold recess is viewed from above. FIG. 3 is a schematic view showing an example of a laminate having a thin portion in the present invention. FIG. 4 is a schematic view showing a state when the laminated body having the thin-walled portion is arranged in the mold.

本発明は、凹凸部やダブルコンター曲面等の複雑形状が形成可能な良好な流動性、および複雑形状追従性を有し、繊維強化プラスチックとした場合、優れた力学特性、その低バラツキ性、優れた寸法安定性を発現する繊維強化プラスチックを得るための製造方法について鋭意検討し、全面に渡って切込を挿入して強化繊維(本明細書中では、単に “繊維”と記述することがある)を特定の長さに切断した切込プリプレグ基材を、少なくとも成形型の凹部側と接する前記切込プリプレグ基材の面積が、該凹部の開口部の投影面積以上であるように裁断し、端部が外縁に向かって薄肉部を形成するように前記切込プリプレグ基材を積層して積層体を作製し、該積層体の薄肉部の少なくとも一部を成形型の端部の少なくとも一部において型に沿わせて配置してプレス成形することにより、かかる課題を一挙に解決することを究明したものである。なお、本発明において“ダブルコンター曲面”とは、2次曲面以上の複曲面を少なくとも一部に含む形状を指す。また、“薄肉部”とは、図3、図15に示すように、積層体31が複数種の寸法のカットパターンの切込プリプレグ基材2によって構成され、これによって、積層体31の最厚部における切込プリプレグ基材の積層数に対して、積層数が少なくとも1層以上少なくなることにより形成される、最厚部の厚みよりも薄い領域10のことである。また、薄肉部10の厚みについて、積層体31を成形型に配置する際、領域Aや領域Bのような、型に沿わせる領域(10’、10”)における最厚部の厚み32を“薄肉部の厚み”とする。
また、“成形型のキャビティの厚み”とは、図2a)に示すように、成形型の端部に形成される形状7の厚み8のことを指す。
The present invention has good fluidity capable of forming complex shapes such as uneven portions and double contour curved surfaces, and complex shape followability, and when made into a fiber reinforced plastic, it has excellent mechanical properties, its low variation, The manufacturing method for obtaining a fiber reinforced plastic exhibiting excellent dimensional stability has been intensively studied, and a reinforcing fiber (which may be simply referred to as “fiber” in this specification) is inserted through the entire surface. ) Is cut so that the area of the cut prepreg base material at least in contact with the concave side of the mold is equal to or greater than the projected area of the opening of the concave part, The cut prepreg base material is laminated so that the end portion forms a thin portion toward the outer edge to produce a laminate, and at least part of the thin portion of the laminate is at least part of the end portion of the mold In line with the mold It was clarified that this problem can be solved at once by arranging and press forming. In the present invention, “double contour curved surface” refers to a shape including at least part of a double curved surface or more. In addition, the “thin wall portion” is, as shown in FIG. 3 and FIG. 15, the laminated body 31 is configured by the cut prepreg base material 2 having a cut pattern having a plurality of dimensions. the laminated number of cutting prepreg base material in the parts, even without less laminated number is formed by less than one layer is that a thin region 10 than the thickness of the thickest portion. In addition, regarding the thickness of the thin portion 10, the thickness 32 of the thickest portion in the region (10 ′, 10 ″) along the mold, such as the region A or the region B, is set to “ The thickness of the thin part ”.
Further, “the thickness of the cavity of the mold” means the thickness 8 of the shape 7 formed at the end of the mold as shown in FIG. 2a).

本発明では、プリプレグ基材の全面に切込を有し、実質的に全ての強化繊維が前記切込により切断されている切込プリプレグ基材を、少なくとも前記凹部と接する層が、前記凹部の開口部の投影面積以上の面積を有するように裁断し、前記積層体の端部の少なくとも一部において前記積層体の最厚部における前記切込プリプレグ基材の積層数に対して、積層数が少なくとも1層以上少なくなることにより形成される、最厚部の厚みよりも薄い薄肉部を形成するように積層して積層体を作製する積層工程を有する。本発明における積層体は、図1に示すように、強化繊維1が一方向に配列された一方向プリプレグ基材が、その繊維配向方向が少なくとも2方向以上に配向して一体化されているものからなり、また、該一方向プリプレグ基材には全面に渡って切込3が挿入され、実質的に全ての強化繊維が前記切込によって短繊維へと切断された切込プリプレグ基材2で構成される。 In the present invention, the prepreg base material that has a notch on the entire surface of the prepreg base material and substantially all of the reinforcing fibers are cut by the incision, at least the layer in contact with the concave portion is the Cut to have an area equal to or larger than the projected area of the opening, and the number of stacks relative to the number of stacks of the cut prepreg base material in the thickest part of the stack in at least part of the end of the stack There is a laminating step in which a laminated body is produced by laminating so as to form a thin part thinner than the thickness of the thickest part formed by reducing at least one layer . As shown in FIG. 1, the laminate in the present invention has a unidirectional prepreg base material in which reinforcing fibers 1 are arranged in one direction, and the fiber orientation directions are aligned in at least two directions and integrated. In addition, a cut 3 is inserted over the entire surface of the unidirectional prepreg substrate, and substantially all of the reinforcing fibers are cut into short fibers by the cut. Composed.

なお、本発明において、“実質的に全ての強化繊維が切込により切断され”とは、本発明の切込により切断されていない連続繊維が引き揃えられている面積が、プリプレグ基材面積に占める割合の5%より小さいことを示す。また、“短繊維”とは、繊維が繊維方向全長に渡って連続している連続繊維との対比において用いられる概念であり、繊維長さLが100mm以下のものを指す。本発明においては、前記短繊維により構成された切込プリプレグ基材を積層して得た積層体は、成型時に繊維が層内のいずれの方向にも流動可能となるので、ダブルコンター曲面や凹凸部などの複雑形状追従性に優れるのである。一方、前記切断を行わない場合、すなわち積層体の強化繊維が全て連続繊維で構成される場合、繊維方向にはほとんど流動せず、流動可能な方向に異方性があるため、凹凸部やダブルコンター曲面などの複雑形状を形成することは極めて難しい。   In the present invention, “substantially all the reinforcing fibers are cut by cutting” means that the area where the continuous fibers not cut by the cutting of the present invention are aligned is the prepreg base material area. It is less than 5% of the proportion. The “short fiber” is a concept used in comparison with a continuous fiber in which fibers are continuous over the entire length in the fiber direction, and refers to a fiber having a fiber length L of 100 mm or less. In the present invention, the laminate obtained by laminating the cut prepreg base material composed of the short fibers allows the fibers to flow in any direction in the layer at the time of molding. It is excellent in following complicated shapes such as parts. On the other hand, when the cutting is not performed, that is, when the reinforcing fibers of the laminated body are all composed of continuous fibers, the flow direction is hardly flowable and the flowable direction has anisotropy. It is extremely difficult to form complex shapes such as contoured curved surfaces.

また、本発明において、強化繊維1の配向が異なる方向に積層することにより、繊維強化プラスチックとした場合の寸法安定性に優れる。さらに、前記切込3によって強化繊維1が切断された切込プリプレグ基材2は、成形時に繊維が流動するにあたり、繊維方向と繊維直交方向との流動に異方性を生じるため、効果的に繊維を流動させるためには、強化繊維の配向が異なる方向に積層することが重要となる。なかでも、[0/90]nSや[0/±60]nS、[+45/0/−45/90]nSといった等方積層で、かつ、対称積層であることが、成形時の流動の均質性、および繊維強化プラスチックとした場合のソリ低減等を考慮すると好ましい。ここで、本発明において“強化繊維の配向が異なる”とは、強化繊維の方向のなす角度の絶対値が10〜170°であることを表す。 Moreover, in this invention, it is excellent in the dimensional stability at the time of setting it as a fiber reinforced plastic by laminating | stacking in the direction from which the orientation of the reinforced fiber 1 differs. Furthermore, since the cut prepreg base material 2 in which the reinforcing fibers 1 are cut by the cut 3 causes anisotropy in the flow between the fiber direction and the fiber orthogonal direction when the fibers flow during molding, it is effective. In order to flow the fibers, it is important to laminate the reinforcing fibers in different directions. Among them, it is an isotropic laminate such as [0/90] nS , [0 / ± 60] nS , and [+ 45/0 / −45 / 90] nS and a symmetrical laminate, so that the flow during molding is uniform. In view of the properties and warpage reduction in the case of a fiber reinforced plastic, it is preferable. Here, “the orientation of the reinforcing fibers is different” in the present invention means that the absolute value of the angle formed by the directions of the reinforcing fibers is 10 to 170 °.

さらに本発明における前記積層体は、図3に示すように、少なくとも前記成形型の凹部と接する層11が、図2b)に示す該凹部の開口部9の投影面積9’以上の面積を有し、かつ、前記積層体の端部の少なくとも一部において前記積層体の最厚部における前記切込プリプレグ基材の積層数に対して、積層数が少なくとも1層以上少なくなることにより形成される、最厚部の厚みよりも薄い薄肉部10を形成するように前記切込プリプレグ基材を積層して作製する。なお、“成形型凹部の開口部の投影面積”とは、図2b)に示す成形型凹部を上から見た場合の投影図において、斜線で示される開口部9の面積9’を指す。本発明において、このような薄肉部10を有する積層体31は、薄肉にした積層体31の端部が容易に変形し、積層体31を成形型に配置する際、図4に示すように、型に沿わせて配置することが容易となる。なお、図4a)は積層体31を成形型の凹部に配置した様子を、図4b)は積層体を成形型凸部に配置した様子を示している。さらに、少なくとも前記成形型の凹部と接する層11が該凹部の開口部9の投影面積9’以上の面積を有することで、前記成形型の凹部の開口部全域を覆い、かつ該成形型凹部の端部に沿わせることが可能となる。 Further, in the laminate according to the present invention, as shown in FIG. 3, at least the layer 11 in contact with the concave portion of the mold has an area of a projected area 9 ′ or more of the opening 9 of the concave portion shown in FIG. And, at least part of the end of the laminate is formed by reducing the number of laminations by at least one layer relative to the number of laminations of the cut prepreg base material in the thickest part of the laminate. The cut prepreg base material is laminated and produced so as to form a thin portion 10 thinner than the thickness of the thickest portion . The “projected area of the opening of the mold recess” refers to the area 9 ′ of the opening 9 indicated by hatching in the projection view when the mold recess shown in FIG. 2B) is viewed from above. In the present invention, the laminated body 31 having such a thin portion 10 is easily deformed at the end of the thin laminated body 31, and when the laminated body 31 is placed in a mold, as shown in FIG. It becomes easy to arrange along the mold. 4A) shows a state in which the laminate 31 is arranged in the concave portion of the mold, and FIG. 4B) shows a state in which the laminate is arranged in the convex portion of the mold. Further, at least the layer 11 in contact with the concave portion of the mold has an area that is greater than or equal to the projected area 9 ′ of the opening 9 of the concave portion so as to cover the entire opening of the concave portion of the mold and It is possible to follow the edge.

また、本発明は前記積層体を、前記積層体の薄肉部10の少なくとも一部を、前記成形型の端部の少なくとも一部において、型に沿わせて配置するセット工程、及び、前記成形型の一方の型上に配置した積層体を前記成形型のもう一方の型を押し当て加圧し、前記積層体を流動させてプレス成形するプレス工程を有する。本発明において、前記積層体を前記成形型に配置する際、図4に示すように、前記積層体の薄肉部10の少なくとも一部を、前記成形型の端部の少なくとも一部において、成形型に沿わせて配置することで、図5a)、b)、c)に示すように、プレス成形時に前記成形型の凹部と接する層11に沿って積層体の他の層が流動するため、成形体の端部において、繊維配向や層構造12の乱れが生じることなく繊維強化プラスチックを得ることができる。さらに、前記積層体を成形型に沿わせることで積層体の位置決めが可能となり、プレス時における積層体の位置ずれによって生じる品質のバラツキを小さくし、安定的に所望の品質の成形体を得ることができる。   In addition, the present invention provides a set step in which the laminate is disposed along a die at least a part of the thin portion 10 of the laminate along at least a part of an end of the mold, and the mold A pressing step in which the laminate placed on one of the molds is pressed against the other die of the molding die and pressed to cause the laminate to flow. In the present invention, when the laminate is disposed in the mold, as shown in FIG. 4, at least a part of the thin portion 10 of the laminate is formed on at least a part of the end of the mold. 5a), b), and c), the other layers of the laminate flow along the layer 11 in contact with the concave portion of the mold during press molding. At the end of the body, fiber reinforced plastic can be obtained without causing fiber orientation or disturbance of the layer structure 12. Furthermore, the laminated body can be positioned by placing the laminated body along the mold, and the quality variation caused by the misalignment of the laminated body during pressing can be reduced, and a molded body having a desired quality can be stably obtained. Can do.

なお、セット工程において、図4a)に示すように、前記成形型の凹部に前記積層体を配置して、もう一方の凸部で加圧・プレス成形しても、図4bに示すように前記成形型の凸部に前記積層体を配置して、もう一方の凹部で加圧・プレス成形しても、前記積層体の少なくとも前記凹部と接する層11が該凹部の開口部9の投影面積9’以上の面積を有し、前記成形型に沿わせて配置していれば、前記成形型を型締めした際に成形型のキャビティに沿うようにして繊維の流動が起こるため、構わない。ここで、前記積層体の成形型凹部と接する層11が、該凹部の開口部9の投影面積9’以上の面積を有していない場合、型に沿わせて配置する事ができないため、図6に示すように、前記積層体をプレスし、強化繊維を流動させても、前記凹部の端部の壁面で強化繊維の流動が乱れ、得られた強化繊維プラスチックの繊維配向や層構造の乱れ13が生じ、表面品位の低下や、力学特性、寸法安定性にバラツキが生じる。   In the setting step, as shown in FIG. 4a), as shown in FIG. 4b, even if the laminate is disposed in the concave portion of the mold and is pressed and press-molded with the other convex portion, as shown in FIG. Even if the laminated body is arranged on the convex portion of the mold and is pressed and press-molded in the other concave portion, at least the layer 11 in contact with the concave portion of the laminated body has a projected area 9 of the opening 9 of the concave portion. If it has the above-mentioned area and is arranged along the mold, fiber flow may occur along the cavity of the mold when the mold is clamped. Here, when the layer 11 in contact with the concave part of the mold of the laminate does not have an area larger than the projected area 9 ′ of the opening 9 of the concave part, it cannot be arranged along the mold. As shown in FIG. 6, even when the laminate is pressed and the reinforcing fibers are flowed, the flow of the reinforcing fibers is disturbed on the wall surface at the end of the recess, and the fiber orientation and the layer structure of the obtained reinforcing fiber plastic are disturbed. 13 occurs, and the surface quality is deteriorated, and the mechanical characteristics and dimensional stability vary.

また、少なくとも前記凹部と接する層11が、前記凹部の開口部9の投影面積9’以上の面積を有するが、前記積層体の端部の少なくとも一部において前記積層体の最厚部における前記切込プリプレグ基材の積層数に対して、積層数が少なくとも1層以上少なくなることにより形成される、最厚部の厚みよりも薄い薄肉部10を形成しなかった場合、すなわち、前記積層体の厚みが全体に渡って実質的に均一な場合、前記積層体の厚みが前記成形型のキャビティ寸法の影響を強く受けることとなり、安定的に所望の繊維強化プラスチックを得ることが困難となる。ここで、“前記積層体の厚みが前記成形型のキャビティ寸法の影響を受ける”とは、前記積層体の厚みが前記成形型のキャビティの厚みより大きく、さらに積層体を成形型に沿わせるようにして配置するのが困難な程、積層体の厚みが厚い場合、プレス成形しても、図7a)に示すように、成形型の端部14で強化繊維が突っ張り、成形品端部において樹脂溜まり15が生じたり、形状が形成されない等の問題が生じることである。仮に積層体を成形型に沿わせるようにして配置できたとしても、図7b)に示すように、型締めの際に成形型の端部14が配置した積層体の端部16に当たってしまうため、得られる繊維強化プラスチックの表面品位が著しく低下したり、層構造が乱れるなどの問題が生じる。なお、積層体の厚みが前記成形型のキャビティの厚みより小さい場合には、積層体の配置の仕方に関わらず、積層体と成形型との間に空間が生じてしまうため、十分に加圧することができず、所望の形状が得られない。 In addition, at least the layer 11 in contact with the recess has an area that is greater than or equal to the projected area 9 ′ of the opening 9 of the recess, but the cut in the thickest part of the stack is at least part of the end of the stack. When the thin- walled portion 10 thinner than the thickness of the thickest portion is formed by reducing the number of stacked layers by at least one or more layers relative to the number of stacked prepreg base materials , that is, When the thickness is substantially uniform throughout, the thickness of the laminate is strongly influenced by the cavity size of the mold, and it is difficult to stably obtain a desired fiber-reinforced plastic. Here, “the thickness of the laminate is affected by the cavity size of the mold” means that the thickness of the laminate is larger than the thickness of the cavity of the mold and that the laminate is further along the mold. In the case where the thickness of the laminate is so thick that it is difficult to dispose, even if press-molded, as shown in FIG. 7a), the reinforcing fiber stretches at the end 14 of the mold, and the resin at the end of the molded product The problem is that the reservoir 15 is formed or the shape is not formed. Even if the laminated body can be arranged along the mold, as shown in FIG. 7b), the end 14 of the molding die hits the end 16 of the laminated body when the mold is clamped. There arise problems that the surface quality of the obtained fiber reinforced plastic is remarkably lowered and the layer structure is disturbed. When the thickness of the laminated body is smaller than the thickness of the cavity of the molding die, a space is generated between the laminated body and the molding die regardless of the arrangement of the laminated body. And the desired shape cannot be obtained.

また、前記凹部と接する層11が、前記凹部の開口部9の投影面積以上の面積を有しない場合、前記積層体の薄肉部の有無に関わらず、図6に示すように、前記積層体をプレスし、強化繊維を流動させても、前記凹部の端部壁面で強化繊維の流動が乱れ、得られた強化繊維プラスチックの繊維配向や層構造の乱れが生じ、力学特性や寸法安定性にバラツキが生じてしまう。   Further, when the layer 11 in contact with the concave portion does not have an area equal to or larger than the projected area of the opening 9 of the concave portion, as shown in FIG. Even if the reinforcing fiber is pressed and flowed, the flow of the reinforcing fiber is disturbed at the end wall surface of the recess, and the fiber orientation and the layer structure of the obtained reinforcing fiber plastic are disturbed, resulting in variations in mechanical properties and dimensional stability. Will occur.

本発明における前記積層体を構成する前記切込プリプレグ基材について、図8に示すように、前記プリプレグ基材が前面に切込3を有し、実質的に全ての強化繊維1が前記切込3によって、強化繊維の繊維長さL(21)が10〜100mmの範囲内の短繊維へと切断されているのが好ましい。前述の通り、該短繊維により構成された切込プリプレグ基材2を積層して得た積層体は、成型時に繊維が層内のいずれの方向にも流動可能となるので、ダブルコンター曲面や凹凸部などの複雑形状追従性に優れるのである。ここで、繊維長さLが10mmより小さい場合は、流動性が向上するものの繊維による補強効果が低下し、繊維強化プラスチックとしたときに十分な力学特性を得ることができないことがある。また、繊維長さLが100mmより大きい場合は、成形時における繊維の流動が悪くなり複雑形状を形成するのが困難になる。成形性と物性の両特性を鑑みると、さらに好ましくは繊維長さLが20〜60mmの範囲内である。ただし、切断部の形状や、工業的プロセスによっては、前記切込プリプレグ基材の一部に10mmよりも短い繊維が混入してしまう恐れもあるが、実質的に全繊維量のうち95%以上の繊維が10〜100mmの範囲内に入っていれば成形性および物性での問題はない。   As for the cut prepreg base material constituting the laminate in the present invention, as shown in FIG. 8, the prepreg base material has a cut 3 on the front surface, and substantially all the reinforcing fibers 1 are cut. 3, the reinforcing fiber is preferably cut into short fibers having a fiber length L (21) in the range of 10 to 100 mm. As described above, the laminate obtained by laminating the cut prepreg base material 2 composed of the short fibers allows the fibers to flow in any direction in the layer at the time of molding. It is excellent in following complicated shapes such as parts. Here, when the fiber length L is smaller than 10 mm, although the fluidity is improved, the reinforcing effect by the fiber is lowered, and sufficient mechanical properties may not be obtained when the fiber reinforced plastic is obtained. On the other hand, when the fiber length L is larger than 100 mm, the flow of the fiber during molding becomes worse and it becomes difficult to form a complicated shape. Considering both characteristics of moldability and physical properties, the fiber length L is more preferably in the range of 20 to 60 mm. However, depending on the shape of the cut part and the industrial process, fibers shorter than 10 mm may be mixed in a part of the cut prepreg base material, but substantially 95% or more of the total fiber amount. If the fiber is within the range of 10 to 100 mm, there is no problem in moldability and physical properties.

また、本発明における前記切込プリプレグ基材の強化繊維は、図9に示す切込3と繊維方向17とのなす角度Θ(以下、切込角度と称することもある)の絶対値が2〜25°の範囲内で切断されているのが好ましい。Θの絶対値が25°より大きくても流動性は得ることができ、従来のSMC等と比較して高い力学特性は得ることができるが、特にΘの絶対値が25°以下であることで力学特性の向上が著しい。一方、Θの絶対値は2°より小さいと流動性も力学特性も十分得ることが出来るが、切込を安定して入れることが難しくなる。すなわち、繊維に対して切込が寝てくると、切込を入れる際、繊維が刃から逃げやすく、プリプレグ基材中に存在する切断されていない繊維の割合が大きくなる。また、繊維長さLを100mm以下とするためには、Θの絶対値が2°より小さいと少なくとも切込同士の最短距離が0.9mmより小さくなるなど、生産安定性に欠ける。また、このように切込同士の距離が小さいと積層時の取り扱い性が難しくなるという問題がある。切込の制御のしやすさと力学特性との関係を鑑みると、さらに好ましくは5〜15°の範囲内である。なお、本発明におけるΘとは、切込上の任意の点を点Xとしたとき、点Xにおける繊維長手方向と切込とのなす角をθ(X)とすれば、Θはθ(X)の切込上の平均値、すなわち(式1)によって与えられる値とする。ここで、図8に示すように、切込3の端点をそれぞれ点A、点Bとし、点Aと点Bを結び、切込に沿った曲線をCとしており、また点Xにおける曲線Cの微小線分をdsとしている。   Further, the reinforcing fiber of the cut prepreg base material in the present invention has an absolute value of an angle Θ (hereinafter also referred to as a cut angle) formed by the cut 3 and the fiber direction 17 shown in FIG. It is preferable that it is cut within a range of 25 °. Even if the absolute value of Θ is larger than 25 °, fluidity can be obtained, and higher mechanical properties can be obtained as compared with conventional SMC, etc., but in particular, when the absolute value of Θ is 25 ° or less. Significant improvement in mechanical properties. On the other hand, if the absolute value of Θ is smaller than 2 °, sufficient fluidity and mechanical properties can be obtained, but it is difficult to make a stable cut. That is, when the incision lies on the fiber, the fiber easily escapes from the blade when making the incision, and the proportion of uncut fibers present in the prepreg base material increases. Moreover, in order to make the fiber length L 100 mm or less, when the absolute value of Θ is smaller than 2 °, production stability is lacking, such as at least the shortest distance between notches being smaller than 0.9 mm. In addition, when the distance between the cuts is small as described above, there is a problem that handling at the time of stacking becomes difficult. In view of the relationship between the ease of controlling the cutting and the mechanical characteristics, it is more preferably in the range of 5 to 15 °. Note that Θ in the present invention means that when an arbitrary point on the cut is a point X, if the angle formed by the fiber longitudinal direction and the cut at the point X is θ (X), Θ is θ (X ) Is the average value on the notch, that is, the value given by (Equation 1). Here, as shown in FIG. 8, the end points of the incision 3 are point A and point B, respectively, the points A and B are connected, the curve along the incision is C, and the curve C at the point X is The minute line segment is ds.

Figure 0005292972
Figure 0005292972

さらに、以下には以下、前記切込プリプレグ基材における好ましい切込パターンの一例を、図8、10、11を用いて説明する。   Furthermore, below, an example of the preferable cutting pattern in the said cutting prepreg base material is demonstrated using FIG.

強化繊維1が一方向に引き揃えられたプリプレグ基材上に制御されて整列した切込3を複数入れる。繊維配向方向の対になる切込3同士で繊維が分断され、その間隔21を10〜100mmとすることで、実質的に切込プリプレグ基材2上の強化繊維1すべてを繊維長さLが10〜100mmにすることができる。また、図9に示すように、切込3と強化繊維1となす角度19をΘとするとΘの絶対値は全面で2〜25°の範囲内である。図10aではΘの絶対値が90°、bでは25°を超えた例を示しているが、これらの例では本発明により得られうる高強度を発現することは出来ない。   A plurality of controlled and aligned cuts 3 are made on a prepreg base material in which the reinforcing fibers 1 are aligned in one direction. The fibers are divided at the notches 3 that form pairs in the fiber orientation direction, and the interval 21 is set to 10 to 100 mm, so that substantially all the reinforcing fibers 1 on the notched prepreg substrate 2 have a fiber length L. It can be 10-100 mm. As shown in FIG. 9, if the angle 19 between the notch 3 and the reinforcing fiber 1 is Θ, the absolute value of Θ is in the range of 2 to 25 ° over the entire surface. FIG. 10a shows an example in which the absolute value of Θ exceeds 90 ° and b exceeds 25 °. However, in these examples, the high strength that can be obtained by the present invention cannot be expressed.

図11には、5つの異なる切込パターンを有するプリプレグ基材が示されている。図11a)の切込プリプレグ基材2は、等間隔をもって配列された斜行した連続、直線状の切込3bを有する。図11b)の切込プリプレグ基材2は、2種類の間隔をもって配列された斜行した連続、直線状の切込3bを有する。図11c)の切込プリプレグ基材2は、等間隔をもって配列された連続、曲線(蛇行線)の切込3を有する。図11d)の切込プリプレグ基材2は、等間隔をもって配列され、かつ、2種類の異なる方向に斜行した断続的な直線状の切込3aを有する。図11e)の切込プリプレグ基材2は、等間隔をもって配列された斜行した断続的な直線状の切込3aを有する。切込は図11c)のように曲線でも構わないが図11a)、b)、d)、e)のように直線状である方が流動性をコントロールしやすく好ましい。また、切込により分断される強化繊維の長さLは、図11b)のように一定でなくてもよいが、繊維長さLが全面で一定であると流動性をコントロールしやすく、強度ばらつきをさらに押さえることができるため好ましい。なお、ここで規定の直線状とは、幾何学上の直線の一部をなしている状態を意味するが、前記流動性のコントロールを容易にするという効果を損なわない限り、前記幾何学上の直線の一部をなしていない箇所があっても差支えが無く、その結果、繊維長さLが全面で一定とはならない箇所があっても(この場合、繊維長さLが実質的に全面で一定であると言えるので)差支えが無い。   FIG. 11 shows a prepreg substrate having five different cutting patterns. The cut prepreg base material 2 in FIG. 11a) has slanted continuous and straight cuts 3b arranged at equal intervals. The cut prepreg substrate 2 in FIG. 11b) has skewed continuous, straight cuts 3b arranged at two different intervals. The cut prepreg substrate 2 in FIG. 11c) has continuous, curved (meandering) cuts 3 arranged at equal intervals. The cut prepreg substrate 2 in FIG. 11d) has intermittent linear cuts 3a arranged at equal intervals and skewed in two different directions. The cut prepreg base material 2 of FIG. 11e) has skewed intermittent linear cuts 3a arranged at equal intervals. The incision may be a curved line as shown in FIG. 11c), but a straight line as shown in FIGS. 11a), b), d), and e) is preferable because the fluidity can be easily controlled. Further, the length L of the reinforcing fiber divided by the cut may not be constant as shown in FIG. 11b), but if the fiber length L is constant over the entire surface, the fluidity can be easily controlled and the strength varies. Can be further suppressed, which is preferable. Here, the prescribed linear shape means a state in which a part of a geometrical straight line is formed. However, as long as the effect of facilitating the fluidity control is not impaired, Even if there is a portion that does not form a part of the straight line, there is no problem. As a result, even if there is a portion where the fiber length L is not constant over the entire surface (in this case, the fiber length L is substantially over the entire surface). It can be said that it is constant).

さらに好ましい例[1]としては、図11a)〜c)のように、切込3が連続して入れられているのがよい。例[1]のパターンでは、切込3bが断続的でないため、切込端部付近での流動乱れが起きず、切込3bを入れた領域では、すべての繊維長さLを一定とすることができ、流動が安定している。切込3bが連続的に入れられているため、切込プリプレグ基材2がばらばらになってしまうのを防ぐ目的で、切込プリプレグ基材2の周辺部に切込がつながっていない領域を設けたり、切込の入っていないシート状の離型紙やフィルムなどの支持体で把持したりすることで、取り扱い性を向上させることができる。   As a more preferable example [1], it is preferable that the cuts 3 are continuously formed as shown in FIGS. In the pattern of Example [1], since the cut 3b is not intermittent, flow turbulence does not occur in the vicinity of the cut end, and all the fiber lengths L are constant in the region where the cut 3b is inserted. The flow is stable. In order to prevent the cut prepreg base material 2 from falling apart because the cuts 3b are continuously formed, an area where the cut is not connected to the peripheral portion of the cut prepreg base material 2 is provided. Or by gripping with a support such as a sheet-like release paper or film that is not cut, the handling property can be improved.

また、他の好ましい例[2]としては、図8のように、切込を強化繊維の垂直方向に投影した長さをWs(20)としたとき、Wsが30μm〜100mmの範囲内である断続的な切込3aが切込プリプレグ基材2全面に設けられており、切込3a1と、該切込3a1に繊維配向方向で隣接した切込3a2の幾何形状が同一であるとよい。ここで、“切込を強化繊維の垂直方向に投影した投影長さWs”とは図8に示す通り、プリプレグ層の面内において、切込を強化繊維の垂直方向(繊維直行方向18)を投影面として、切込から該投影面に垂直(繊維配向方向17)に投影した際の長さ20を指す。Wsが30μm以下となると、切込の制御が難しく、切込プリプレグ基材全面に渡って繊維長さLが10〜100mmとなるよう、保障することが難しい。すなわち、切込により切断されていない繊維が存在すると基材の流動性は著しく低下し、余分に切断されているとLが10mmを下回る部位が出てきてしまう、という問題点がある。逆にWsが10mmより大きいときにはほぼ強度が一定に落ち着く。すなわち、繊維束端部がある一定以上に大きくなると、破壊が始まる荷重がほぼ同等となる。図8では、LとWsがいずれも一種類である例を示している。いずれの切込3a(例えば3a1)も繊維方向に平行移動することで重なる他の切込3a(例えば3a2)がある。前記繊維方向の対になる切込3a同士により分断される繊維長さLよりさらに短い繊維長さで隣接する切込により分断され繊維が分断される幅が存在することによって、安定的に繊維長さを100mm以下で切込プリプレグ基材2を製造できる。例[2]のパターンでは、得られた切込プリプレグ基材2を積層する際、切込が断続的なため取り扱い性に優れる。図11d)、11e)にはその他のパターンも例示したが、上記条件を満たせばどのようなパターンでも構わない。   Further, as another preferable example [2], as shown in FIG. 8, when Ws (20) is a length obtained by projecting the cut in the vertical direction of the reinforcing fiber, Ws is in the range of 30 μm to 100 mm. Intermittent cuts 3a are provided on the entire surface of the cut prepreg substrate 2, and the geometric shapes of the cuts 3a1 and the cuts 3a2 adjacent to the cuts 3a1 in the fiber orientation direction may be the same. Here, the “projection length Ws obtained by projecting the cut in the vertical direction of the reinforcing fiber” means that the vertical direction of the reinforcing fiber (direction perpendicular to the fiber 18) is the cut in the plane of the prepreg layer as shown in FIG. As a projection surface, the length 20 when projected perpendicularly to the projection surface from the cut (fiber orientation direction 17) is indicated. When Ws is 30 μm or less, it is difficult to control the cutting, and it is difficult to ensure that the fiber length L is 10 to 100 mm over the entire surface of the cut prepreg substrate. That is, there is a problem that if there is a fiber that has not been cut by cutting, the fluidity of the base material is remarkably lowered, and if it is cut excessively, a portion where L is less than 10 mm appears. Conversely, when Ws is greater than 10 mm, the strength is almost constant. That is, when the fiber bundle end becomes larger than a certain value, the load at which breakage starts becomes substantially equal. FIG. 8 shows an example in which both L and Ws are one type. Any of the cuts 3a (for example, 3a1) has another cut 3a (for example, 3a2) that overlaps by translating in the fiber direction. The fiber length can be stably increased by the presence of a width in which the fibers are divided by adjacent cuts at a fiber length shorter than the fiber length L divided by the cuts 3a that form pairs in the fiber direction. The cut prepreg base material 2 can be manufactured with a thickness of 100 mm or less. In the pattern of Example [2], when the obtained cut prepreg base material 2 is laminated, the cut is intermittent, and thus the handleability is excellent. Although other patterns are illustrated in FIGS. 11d) and 11e), any pattern may be used as long as the above conditions are satisfied.

好ましい例[2]において、力学特性の観点から好ましくは、強化繊維の垂直方向に投影した長さWsが0.1〜1.5mmの範囲内であるのが好ましい。Wsを小さくすることにより、一つ一つの切込により分断される繊維量が減り、強度向上が見込まれる。特に、Wsが1.5mm以下とすることで、大きな強度向上が見込まれる。また、切込長さが長ければ長いほど、積層作業時に基材の切込が開口し易くなり、基材の取り扱い性が大幅に低下する。切込が1.5mm以下であれば、積層作業時に切込が開口しにくく、基材の取り扱い性の良い切込プリプレグ基材となる。なお、本発明において、切込角度Θの絶対値が2〜25°であることにより、切込長さに対して投影長さWsを小さくすることができる。そのため、Wsが1.5mm以下という極小の切込であっても、工業的に安定して設けることが可能となる。また、プリプレグ基材への切込の挿入を、刃を押し当てて行おうとする場合、裁断時に強化繊維が繊維直行方向に蛇行し刃から逃げるために、繊維をうまく裁断できないことがある。このような繊維逃げの影響を小さくするためには、Wsは0.1mm以上であることが好ましい。より好ましくはWsを0.2mm以上とすることで、より連続繊維を残すことなくプリプレグ基材に切込を挿入することが可能となる。   In the preferred example [2], the length Ws projected in the vertical direction of the reinforcing fiber is preferably in the range of 0.1 to 1.5 mm from the viewpoint of mechanical properties. By reducing Ws, the amount of fibers cut by each cutting is reduced, and strength improvement is expected. In particular, when Ws is 1.5 mm or less, a great improvement in strength is expected. In addition, the longer the cut length, the easier it is for the base material notches to open during the laminating operation, and the handleability of the base material is greatly reduced. If the cut is 1.5 mm or less, the cut is less likely to open during the laminating operation, and a cut prepreg base material with good substrate handling properties is obtained. In the present invention, when the absolute value of the cutting angle Θ is 2 to 25 °, the projection length Ws can be reduced with respect to the cutting length. Therefore, even if it is the minimum notch | incision whose Ws is 1.5 mm or less, it becomes possible to provide industrially stably. Further, when the cutting is inserted into the prepreg base material by pressing the blade, the reinforcing fiber may meander in the direction perpendicular to the fiber at the time of cutting and escape from the blade, so that the fiber may not be cut well. In order to reduce the influence of such fiber escape, Ws is preferably 0.1 mm or more. More preferably, by setting Ws to 0.2 mm or more, it becomes possible to insert the cut into the prepreg base material without leaving more continuous fibers.

本発明に用いる切込プリプレグ基材の特徴を、図12〜14を用いて説明する。本発明の比較として図12には、切込3が強化繊維1となす角度Θの絶対値が90°である切込プリプレグ基材2を積層した積層体22をa)、その積層体22を成形した繊維強化プラスチック23をb)に、それぞれ切込プリプレグ基材2由来の層をクローズアップした平面図と平面図のA−A断面を切り出した断面図を示した。a)に示す通り、切込プリプレグ基材2は、繊維に垂直な切込を全面に設けられており、切込3は層の厚み方向を貫いている。繊維長さLを100mm以下とすることで、流動性が確保され、プレス成形などにより、容易に積層体22より面積が伸長した繊維強化プラスチック23を得ることができる(ただし、厚みは減る)。b)のように、伸長した繊維強化プラスチック23を得た際、切込プリプレグ基材2由来の短繊維層24は、繊維直行方向に伸長すると共に、繊維が存在しない領域(切込開口部)25が生成される。これは一般的に強化繊維が成形程度の圧力では伸長しないためであり、図12のケースでは、伸張した長さ分だけ切込開口部25が生成され、例えば250×250mmの積層体22から300×300mmの繊維強化プラスチック23を得た際には、300×300mmの繊維強化プラスチック23の表面積に対して、切込開口部25の総面積は50×300mm、すなわち1/6(約16.7%)が切込開口部となる計算である。この領域25は断面図に示すとおり、隣接層27が侵入してきて、樹脂リッチ部28と隣接層27が侵入している領域とで占められる。従って、切込プリプレグ基材2を用いた積層体22を伸長して成形した場合、繊維束端部26では層のうねり29や樹脂リッチ部28が発生し、これが力学特性の低下や表面品位の低下に影響を与える。また、繊維がある部位とない部位で剛性が異なるため、面内異方性の繊維強化プラスチック23となり、ソリなどの問題から設計が難しい。また、強度の面では、荷重方向から±10°以下程度に向いている繊維が大部分の荷重を伝達しているが、その繊維束端部26では隣接層27に荷重を再分配しなければならない。その際、図12b)のように、繊維束端部26が荷重方向に垂直となっていると、応力集中が起きやすく、剥離も起こりやすい。そのため、強度向上はあまり期待できない。   The characteristics of the cut prepreg base material used in the present invention will be described with reference to FIGS. As a comparison of the present invention, FIG. 12 shows a laminated body 22 in which a cut prepreg base material 2 having an absolute value of an angle Θ between the cut 3 and the reinforcing fiber 1 of 90 ° is laminated a), and the laminated body 22 is The formed fiber reinforced plastic 23 b) is a plan view showing a close-up of the layer derived from the cut prepreg substrate 2 and a cross-sectional view taken along the line AA of the plan view. As shown in a), the cut prepreg base material 2 is provided with a cut perpendicular to the fiber on the entire surface, and the cut 3 penetrates the thickness direction of the layer. By setting the fiber length L to 100 mm or less, fluidity is ensured, and the fiber reinforced plastic 23 whose area is easily extended from the laminate 22 can be easily obtained by press molding or the like (however, the thickness is reduced). As in b), when the elongated fiber reinforced plastic 23 is obtained, the short fiber layer 24 derived from the cut prepreg base material 2 extends in the direction perpendicular to the fiber and has no fiber (cut opening). 25 is generated. This is because the reinforcing fiber generally does not expand at a pressure of the molding level. In the case of FIG. 12, the cut opening 25 is generated for the extended length, for example, from 250 × 250 mm laminates 22 to 300. When the fiber reinforced plastic 23 having a size of 300 mm is obtained, the total area of the cut openings 25 is 50 × 300 mm, that is, 1/6 (about 16.7 with respect to the surface area of the fiber reinforced plastic 23 having a size of 300 × 300 mm. %) Is the calculation for the cut opening. As shown in the sectional view, the region 25 is occupied by the adjacent layer 27 and the region where the resin-rich portion 28 and the adjacent layer 27 enter. Therefore, when the laminated body 22 using the cut prepreg base material 2 is stretched and formed, the undulation 29 of the layer and the resin rich portion 28 are generated at the fiber bundle end portion 26, which causes a decrease in mechanical properties and surface quality. Affects decline. In addition, since the rigidity is different between a portion where the fiber is present and a portion where the fiber is not present, the fiber reinforced plastic 23 is an in-plane anisotropic fiber, which is difficult to design due to problems such as warping. Further, in terms of strength, fibers oriented to about ± 10 ° or less from the load direction transmit most of the load, but the fiber bundle end portion 26 must redistribute the load to the adjacent layer 27. Don't be. At that time, as shown in FIG. 12b), when the fiber bundle end portion 26 is perpendicular to the load direction, stress concentration is likely to occur, and peeling is also likely to occur. Therefore, the strength improvement cannot be expected so much.

一方で図13には、本発明の好ましい例[1]の切込プリプレグ基材2を積層した積層体22をa)、その積層体22を成形した繊維強化プラスチック23をb)に、それぞれ切込プリプレグ基材2由来の層をクローズアップした平面図と平面図のA−A断面を切り出した断面図を示した。a)に示すとおり、切込プリプレグ基材2は、繊維1となす角度Θの絶対値が25°以下の連続した切込3bが全面に設けられており、切込3bは層の厚み方向を貫いている。繊維長さLを100mm以下とすることで、流動性が確保され、プレス成形などにより、容易に積層体22より面積が伸長した繊維強化プラスチック23を得ることが出来る。b)のように、伸長した繊維強化プラスチック23を得た際、切込プリプレグ基材2由来の短繊維層24は、繊維直交方向に伸長すると共に、繊維1自体が回転30して伸長領域の面積を稼ぐため、図12のように繊維が存在しない領域(切込開口部)25が実質的に生成せず、層表面に存在する切込開口部の面積が層の表面積と比較して0.1〜10%の範囲内である。従って、断面図を見ても分かるとおり、隣接層27が侵入することもなく、層のうねり29や樹脂リッチ部28のない高強度で品位の高い繊維強化プラスチック23を得ることが出来る。面内全体にくまなく繊維1が配されているため、面内での剛性差がなく、設計も従来の連続繊維強化プラスチックと同様、簡易に適用できる。この繊維が回転して伸長し、層うねりのない繊維強化プラスチックを得るという画期的効果は、切込と強化繊維とのなす角度Θの絶対値が25°以下であり、かつ、切込が連続して入れられていることで初めて得ることができる。また、強度の面では、前述と同様に荷重方向から±10°以下程度に向いている繊維に注目すると、図13b)のように、繊維束端部26が荷重方向に対して寝てきている様子がわかる。繊維束端部26が層厚み方向に斜めとなっているため、荷重の伝達がスムーズであり、繊維束端部26からの剥離も起こりにくい。従って、図12に比べ格段の強度向上が見込まれる。この繊維束端部26が層厚み方向に斜めとなるのは上述の繊維1が回転30する際、上面と下面の摩擦により上面から下面で繊維1の回転30になだらかな分布があるためで、そのため、層厚み方向に繊維1の存在分布が発生し、繊維束端部26が層厚み方向に斜めとなったと考えられる。このような繊維強化プラスチック23の層内で層厚み方向に斜めの繊維束端部を形成し、強度を著しく向上する画期的効果は切込3bの繊維1となす角度Θの絶対値が25°以下であることで初めて得ることができる。   On the other hand, FIG. 13 shows a laminate 22 in which the cut prepreg base material 2 of the preferred example [1] of the present invention is laminated in a), and a fiber reinforced plastic 23 in which the laminate 22 is molded in b). The top view which closed the layer derived from the embedded prepreg base material 2, and the sectional view which cut out the AA cross section of the top view were shown. As shown in a), the cut prepreg base material 2 is provided with continuous cuts 3b having an absolute value of the angle Θ between the fibers 1 of 25 ° or less, and the cuts 3b are arranged in the thickness direction of the layers. It has penetrated. By setting the fiber length L to 100 mm or less, the fluidity is ensured, and the fiber reinforced plastic 23 whose area is easily extended from the laminate 22 can be obtained by press molding or the like. When the stretched fiber reinforced plastic 23 is obtained as in b), the short fiber layer 24 derived from the cut prepreg base material 2 stretches in the direction perpendicular to the fiber, and the fiber 1 itself rotates 30 to expand the stretched region. In order to increase the area, a region (cut opening) 25 in which no fiber exists as shown in FIG. 12 is not substantially generated, and the area of the cut opening existing on the layer surface is 0 compared to the surface area of the layer. Within the range of 1 to 10%. Therefore, as can be seen from the sectional view, the adjacent layer 27 does not penetrate, and the high-strength and high-quality fiber-reinforced plastic 23 without the undulation 29 and the resin-rich portion 28 can be obtained. Since the fibers 1 are arranged all over the surface, there is no difference in rigidity in the surface, and the design can be easily applied as in the conventional continuous fiber reinforced plastic. The revolutionary effect that this fiber rotates and stretches to obtain a fiber-reinforced plastic having no layer waviness is that the absolute value of the angle Θ between the cut and the reinforcing fiber is 25 ° or less, and the cut is It can be obtained for the first time by being put continuously. In addition, in terms of strength, when attention is paid to the fibers oriented to about ± 10 ° or less from the load direction as described above, the fiber bundle end portion 26 lies down with respect to the load direction as shown in FIG. 13b). I can see the situation. Since the fiber bundle end portion 26 is slanted in the layer thickness direction, load transmission is smooth, and peeling from the fiber bundle end portion 26 hardly occurs. Therefore, a marked improvement in strength is expected compared to FIG. The fiber bundle end portion 26 is inclined in the layer thickness direction because when the fiber 1 rotates, there is a gentle distribution in the rotation 30 of the fiber 1 from the upper surface to the lower surface due to friction between the upper surface and the lower surface. Therefore, it is considered that the existence distribution of the fibers 1 occurs in the layer thickness direction, and the fiber bundle end portion 26 is inclined in the layer thickness direction. In such a layer of fiber reinforced plastic 23, a fiber bundle end portion which is slanted in the layer thickness direction is formed, and the epoch-making effect of remarkably improving the strength is that the absolute value of the angle Θ formed with the fiber 1 of the cut 3b is 25 It can be obtained for the first time when it is below °.

図14には、本発明の好ましい例[2]の切込プリプレグ基材2を積層した積層体22をa)、その積層体22を成形した繊維強化プラスチック23をb)に、それぞれ切込プリプレグ基材2由来の層をクローズアップした平面図を示した。a)に示すとおり、切込プリプレグ基材2は、繊維1となす角度Θの絶対値が25°以下の断続的な切込3aが全面に設けられており、切込3aは層の厚み方向を貫いている。切込3aにより繊維長さLを切込プリプレグ基材2の全面で100mm以下とすることで、流動性が確保され、プレス成形などにより、容易に積層体22より面積が伸長した繊維強化プラスチック23を得ることができる。切込長さ、切込角度を小さくすることにより、切込を強化繊維の垂直方向に投影した投影長さWsを1.5mm以下とすることができる。b)のように、伸長した繊維強化プラスチック23を得た際、切込プリプレグ基材2由来の短繊維層24は、繊維垂直方向に伸長する際、繊維方向に繊維が伸張しないため、繊維が存在しない領域(切込開口部)25が生成されるが、隣接する短繊維群が繊維直行方向に流動することで、切込開口部25を埋め、切込開口部25の面積が小さくなる。この傾向は特に、切込を強化繊維の垂直方向に投影した投影長さWsを1.5mm以下とすることで顕著となり、実質的に切込開口部25が生成せず、層表面に存在する切込開口部の面積が層の表面積と比較して0.1〜10%の範囲内とすることができる。従って、厚み方向に隣接層27が侵入することもなく、層のうねり29や樹脂リッチ部28のない高強度で品位の高い繊維強化プラスチック23を得ることが出来る。面内全体にくまなく繊維1が配されているため、面内での剛性差がなく、設計も従来の連続繊維強化プラスチックと同様、簡易に適用できる。この切込開口部を繊維直行方向の流動により埋め、層うねりのない繊維強化プラスチックを得るという画期的効果は切込角度Θの絶対値が25°以下であり、かつ切込を強化繊維の垂直方向に投影した投影長さWsを1.5mm以下とすることで初めて得ることができる。さらに好ましくはWsが1mm以下であることにより、より高強度、高品位とすることができる。   In FIG. 14, the laminated body 22 in which the cut prepreg base material 2 of the preferred example [2] of the present invention is laminated is shown in a), and the fiber reinforced plastic 23 in which the laminated body 22 is molded is shown in b). The top view which closed up the layer derived from the base material 2 was shown. As shown in a), the cut prepreg base material 2 is provided with intermittent cuts 3a having an absolute value of the angle Θ between the fibers 1 of 25 ° or less, and the cuts 3a are in the layer thickness direction. Through. By making the fiber length L to be 100 mm or less over the entire surface of the cut prepreg base material 2 by the cut 3a, the fluidity is ensured, and the fiber reinforced plastic 23 whose area is easily extended from the laminate 22 by press molding or the like. Can be obtained. By reducing the cut length and the cut angle, the projection length Ws obtained by projecting the cut in the vertical direction of the reinforcing fiber can be made 1.5 mm or less. When the stretched fiber reinforced plastic 23 is obtained as in b), the short fiber layer 24 derived from the cut prepreg base material 2 does not stretch in the fiber direction when stretched in the fiber vertical direction. A non-existent region (cut opening) 25 is generated, but the adjacent short fiber group flows in the direction perpendicular to the fiber, thereby filling the cut opening 25 and reducing the area of the cut opening 25. This tendency becomes remarkable particularly when the projected length Ws obtained by projecting the cut in the vertical direction of the reinforcing fiber is 1.5 mm or less, and the cut opening 25 is not substantially generated and exists on the layer surface. The area of the cut opening can be in the range of 0.1 to 10% compared to the surface area of the layer. Accordingly, the adjacent layer 27 does not invade in the thickness direction, and a high-strength and high-quality fiber-reinforced plastic 23 without the layer undulation 29 or the resin-rich portion 28 can be obtained. Since the fibers 1 are arranged all over the surface, there is no difference in rigidity in the surface, and the design can be easily applied as in the conventional continuous fiber reinforced plastic. The epoch-making effect of filling the notch opening with the flow in the direction perpendicular to the fiber to obtain a fiber-reinforced plastic without layer waviness is that the absolute value of the notch angle Θ is 25 ° or less and the notch is made of the reinforcing fiber It can be obtained for the first time when the projection length Ws projected in the vertical direction is 1.5 mm or less. More preferably, when Ws is 1 mm or less, higher strength and higher quality can be achieved.

本発明において、繊維体積含有率Vfは45〜65%の範囲内であることが好ましい。繊維体積含有率Vfが65%以下で十分な流動性を得ることができる。Vfが低いほど流動性は向上するが、Vfが45%より小さくなると、構造材に必要な高力学特性は得られない場合がある。流動性と力学特性との関係を鑑みると、さらに好ましくは55〜60%の範囲内である。   In the present invention, the fiber volume content Vf is preferably in the range of 45 to 65%. Sufficient fluidity can be obtained when the fiber volume content Vf is 65% or less. The lower the Vf, the better the fluidity, but if Vf is less than 45%, the high mechanical properties required for the structural material may not be obtained. Considering the relationship between fluidity and mechanical properties, it is more preferably in the range of 55-60%.

さらに本発明におけるプリプレグ基材を構成する強化繊維としては、例えば、アラミド繊維、ポリエチレン繊維、ポリパラフェニレンベンズオキサドール(PBO)繊維などの有機繊維、ガラス繊維、炭素繊維、炭化ケイ素繊維、アルミナ繊維、チラノ繊維、玄武岩繊維、セラミックス繊維などの無機繊維、ステンレス繊維やスチール繊維などの金属繊維、その他、ボロン繊維、天然繊維、変性した天然繊維などを繊維として用いた強化繊維などが挙げられる。その中でも特に炭素繊維はこれら強化繊維の中でも軽量であり、しかも比強度および比弾性率において特に優れた性質を有しており、さらに耐熱性や耐薬品性にも優れていることから、軽量化が望まれる自動車パネルなどの部材に好適である。なかでも、高強度の炭素繊維が得られやすいPAN系炭素繊維が好ましい。   Furthermore, examples of the reinforcing fibers constituting the prepreg base material in the present invention include organic fibers such as aramid fibers, polyethylene fibers, polyparaphenylene benzoxador (PBO) fibers, glass fibers, carbon fibers, silicon carbide fibers, and alumina fibers. In addition, inorganic fibers such as Tyranno fiber, basalt fiber, and ceramic fiber, metal fibers such as stainless steel fiber and steel fiber, and other reinforcing fibers using boron fiber, natural fiber, modified natural fiber, and the like as fibers. Among them, carbon fiber is particularly lightweight among these reinforced fibers, and has particularly excellent properties in specific strength and specific modulus, and is also excellent in heat resistance and chemical resistance. Is suitable for a member such as an automobile panel. Among these, PAN-based carbon fibers that can easily obtain high-strength carbon fibers are preferable.

また、本発明におけるプリプレグ基材に用いられるマトリックス樹脂としては、エポキシ樹脂、ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂等の熱硬化性樹脂であっても、ポリアミド、ポリプロピレン、ポリエチレンなどの熱可塑性樹脂であっても、それらの混合樹脂であっても構わない。ただし、積層時にプリプレグ基材を圧着する必要があることから、タック性に優れる半硬化状態の熱硬化性樹脂の方が適している。なかでも、かかる熱硬化性樹脂としては、貼り重ねる工程でのタック性、および繊維強化プラスチックとした時の力学特性を考慮するとエポキシ樹脂が好ましい。熱可塑性樹脂を用いる場合はタック性を確保するために、予熱してから積層するのが好ましい。この場合の加熱温度は用いる熱可塑樹脂が一連の積層工程の中で半硬化状態を保てる温度にするのが好ましい。   In addition, the matrix resin used for the prepreg substrate in the present invention is a thermoplastic resin such as polyamide, polypropylene, or polyethylene, even if it is a thermosetting resin such as epoxy resin, polyester resin, vinyl ester resin, or phenol resin. Or a mixed resin thereof. However, since it is necessary to pressure-bond the prepreg base material at the time of lamination, a semi-cured thermosetting resin excellent in tackiness is more suitable. Among these, as such a thermosetting resin, an epoxy resin is preferable in consideration of tackiness in a process of pasting and mechanical characteristics when a fiber reinforced plastic is used. When a thermoplastic resin is used, it is preferable to preheat and laminate in order to ensure tackiness. In this case, the heating temperature is preferably set to a temperature at which the thermoplastic resin used can maintain a semi-cured state in a series of lamination steps.

本発明において、前記積層体の端部の薄肉部の厚みが、前記成形型のキャビティの厚みの80%以下となるように積層体を作製するのが好ましい。繊維の流動性を考慮すると、より好ましくは前記積層体の端部の薄肉部の厚みが、前記成形型のキャビティの厚みの65〜75%である。薄肉部の厚みが80%より大きいと、前述の薄肉部を形成せず、前述の積層体全体の厚みを均一にした場合と同様、前記積層体の厚みが前記積層体のキャビティ寸法の影響を受けることとなり、その影響の効果は80%を超えて大きくなるにつれて大きくなる。それに従い、成形型に沿わせて配置するのが困難であったり、型締めの際に加圧するもう一方の成形型が積層体端部に当たってしまうなどして、所望の形状が得られない、積層体の層構造が崩れて力学的物性が低下する、表面品位が著しく低下するといった問題が生じる。また、繊維を流動させても成形品の端部で繊維が充填されていない箇所が生じる可能性を考慮すると、薄肉部の厚みが65%以上であることが好ましい。なお、積層体を配置する際、型に沿わせる薄肉部の長さについては特に制限はないが、プレス方向への長さは、目的の成形品の形状が深絞り形状である場合、繊維をかさ高い位置まで流動させる必要があることから、成形品の深絞り形状部の寸法の少なくとも20%の長さにするのが好ましい。   In the present invention, it is preferable to produce the laminate so that the thickness of the thin portion at the end of the laminate is 80% or less of the thickness of the cavity of the mold. Considering the fluidity of the fibers, the thickness of the thin wall portion at the end of the laminate is more preferably 65 to 75% of the thickness of the cavity of the mold. If the thickness of the thin portion is larger than 80%, the thickness of the laminate does not affect the cavity size of the laminate as in the case where the thickness of the entire laminate is uniform without forming the thin portion. The effect of the effect will increase as it increases beyond 80%. Accordingly, it is difficult to arrange along the mold, or the other mold that is pressed during mold clamping hits the end of the laminate, and the desired shape cannot be obtained. There are problems that the layer structure of the body collapses and the mechanical properties deteriorate, and the surface quality deteriorates significantly. In consideration of the possibility that a portion where the fiber is not filled at the end of the molded product is generated even if the fiber is flowed, the thickness of the thin portion is preferably 65% or more. In addition, when placing the laminate, there is no particular limitation on the length of the thin portion along the mold, but the length in the pressing direction is determined when the shape of the target molded product is a deep-drawn shape. Since it is necessary to flow to a bulky position, the length is preferably at least 20% of the dimension of the deep-drawn shape portion of the molded product.

本発明において、前記薄肉部を有する積層体を作製する手段は以下に示すいずれかの方法により行われるのが好ましい。   In the present invention, the means for producing the laminate having the thin-walled portion is preferably performed by any of the following methods.

まず方法[1]としては、図3に示すように、1つのカットパターンの端部の少なくとも一部において外縁に向かってオフセットした複数のカットパターンに従って前記切込プリプレグ基材2を裁断し、得た数種の形状の切込プリプレグ基材2を積層して薄肉部10を有する積層体31を得るのが好ましい。ここで、“1つのカットパターンの端部の外縁に向かってオフセットしたカットパターン”とは、ある基準となるカットパターンに対して、薄肉部10を形成しようとする積層体端部に対応する箇所の寸法を変え、プリプレグ基材の層によって積層体端部にテーパー形状や、段が形成されるようにしたカットパターンのことである。ここでは、この領域Aが前記薄肉部10に相当し、積層体31を成形型に配置する際に型に沿わせる部位となる。ここで、前述の通り、この領域Aにおける積層体薄肉部10の厚み32は、前記成形型のキャビティの厚み8の80%以下であるのが好ましい。   First, as the method [1], as shown in FIG. 3, the cut prepreg base material 2 is cut according to a plurality of cut patterns offset toward the outer edge in at least a part of one end of the cut pattern. It is preferable to obtain the laminated body 31 having the thin portion 10 by laminating the cut prepreg base materials 2 of several shapes. Here, “the cut pattern offset toward the outer edge of the end portion of one cut pattern” means a portion corresponding to the end portion of the laminated body where the thin portion 10 is to be formed with respect to a certain cut pattern. This is a cut pattern in which a taper shape or a step is formed at the end of the laminated body by the layer of the prepreg base material. Here, this region A corresponds to the thin-walled portion 10 and is a portion along the mold when the laminated body 31 is arranged in the mold. Here, as described above, it is preferable that the thickness 32 of the thin laminate portion 10 in this region A is 80% or less of the thickness 8 of the cavity of the mold.

この方法[1]で得られる積層体31の好ましい形状の一例としては、前記成形型の凹部5と接する層11の面積が、該凹部の開口部9の投影面積以上の面積を有し、かつ、前記積層体31を構成する前記切込プリプレグ基材2の中で最大であり、一方の前記成形型の凸部4と接する層の面積が最小であるのがよい。ここで図3a)に示すように、積層体を構成する各層の面積を最大面積から最小面積まで各層ごとに徐変化させて薄肉部10を形成してもよいし、図3b)に示すように、数層が同一のカットパターン、すなわち同一の面積の切込プリプレグ基材2が積層されて積層体前駆体33を形成し、ある積層体前駆体33に対してオフセットした数種の積層体前駆体を積層して1つの薄肉部10を有する積層体を形成してもよい。また、図3に示す領域Aの幅Wa(34)については得に制限はないが、前述の通り、深絞り形状の成形を行う際には型に沿わせる薄肉部の寸法が成形品の深絞り形状部の寸法の少なくとも20%の長さにするのが好ましく、それにしたがって領域Aの幅Waも深絞り形状部の寸法の20%を超える長さにするのが好ましい。   As an example of a preferable shape of the laminate 31 obtained by this method [1], the area of the layer 11 in contact with the concave portion 5 of the mold has an area larger than the projected area of the opening 9 of the concave portion, and It is preferable that the area of the layer in contact with the convex portion 4 of one of the molding dies is the largest among the cut prepreg base materials 2 constituting the laminated body 31. Here, as shown in FIG. 3a), the thin portion 10 may be formed by gradually changing the area of each layer constituting the laminate from the maximum area to the minimum area for each layer, or as shown in FIG. 3b). The several layers of precursors having the same cut pattern, that is, the cut prepreg base material 2 having the same area are laminated to form a laminate precursor 33 and offset with respect to a certain laminate precursor 33. You may form a laminated body which has the one thin part 10 by laminating | stacking a body. Further, the width Wa (34) of the region A shown in FIG. 3 is not limited, but as described above, when forming a deep-drawn shape, the dimension of the thin portion along the mold is the depth of the molded product. It is preferable that the length is at least 20% of the size of the drawn shape portion, and accordingly, the width Wa of the region A is preferably longer than 20% of the size of the deep drawn shape portion.

次に方法[2]としては、図15に示すように、前記積層体の最外層を構成する前記プリプレグ基材のカットパターンより、前記積層体の最外層以外の中央層を構成する前記プリプレグ基材のカットパターンを小さくして、前記プリプレグ基材を一体化して薄肉部を有する積層体31を得るのが好ましい。ここで、“積層体の両表層”とはプレス成形時に前記成形型と接する層37のことを指し、“両表層以外の中央層”とは、プレス成形時に成形型と接しない、積層体を構成する切込プリプレグ基材38すべてを指す。この方法[2]では、両表層のカットパターンに対して、中央層のカットパターンを小さくすることで、積層体31の端部の少なくとも一部において、図15に示した領域B(10”)のような薄肉部10を形成するものである。本手法では、この領域Bが積層体31を成形型に配置する際に型に沿わせる部位となる。ここで、前述の通り、この領域Bにおける積層体薄肉部の厚みは、前記成形型のキャビティの厚みの80%以下であるのが好ましい。なお、本手法によって得られる形状において、薄肉部の厚みは、図15に示すように、領域Bにおいて、両表層に向かって徐変化する箇所の最厚部の厚み(36’、36”)の和(36)とする。本手法によって得られる薄肉部を有する積層体31は、両表層37が中央層38の流動経路のガイドの役割を果たすため、方法[1]のような、片表層が成形型と接している形状とは異なり、成形型と流動する繊維との間に摩擦が存在せず、より高い流動性を確保することができる。   Next, as the method [2], as shown in FIG. 15, the prepreg base constituting the central layer other than the outermost layer of the laminate from the cut pattern of the prepreg base material constituting the outermost layer of the laminate. It is preferable to obtain a laminate 31 having a thin portion by reducing the cut pattern of the material and integrating the prepreg base material. Here, “both surface layers of the laminate” refers to the layer 37 that contacts the mold during press molding, and “a central layer other than both surface layers” refers to a laminate that does not contact the mold during press molding. It refers to all the cut prepreg base materials 38 to be constructed. In this method [2], the cut pattern of the central layer is made smaller than the cut pattern of both surface layers, so that the region B (10 ″) shown in FIG. In this method, this region B becomes a portion along the mold when the laminated body 31 is placed in the mold, where the region B is as described above. It is preferable that the thickness of the thin-walled portion of the laminated body is 80% or less of the thickness of the cavity of the mold.In the shape obtained by this method, the thickness of the thin-walled portion is a region as shown in FIG. In B, it is set as the sum (36) of the thickness (36 ', 36 ") of the thickest part of the part which changes gradually toward both surface layers. The laminated body 31 having a thin part obtained by this method has a shape in which one surface layer is in contact with the mold as in the method [1] because both surface layers 37 serve as guides for the flow path of the central layer 38. Unlike this, there is no friction between the mold and the flowing fibers, and higher fluidity can be ensured.

この方法[2]で得られる積層体の好ましい形状の一例としては、成形型と接する積層体の両表層37が該積層体の凹部の開口部9の投影面積以上の面積を有し、かつ、前記積層体31を構成する前記切込プリプレグ基材の中で最大であり、積層体の両表層以外の層、すなわち中央層38が両表層の面積に対して小さいのがよい。ここで、図15a)に示すように、中央層38の面積が、両表層37に対して徐々に小さくなるようにして薄肉部10を形成してもよいし、各表層から数層の中央層が表層と等しい形状・面積を有する、つまり同一のカットパターンで積層体前駆体33を形成し、他の中央層が両表層より小さなカットパターンで前記積層体前駆体33よりも面積の小さな積層体前駆体33’を形成し、図15b)に示すようなサンドイッチ形状を形成することで薄肉部を形成してもよい。また、図15に示す領域Bの幅Wb(35)について得に制限はないが、前述の通り、深絞り形状の成形を行う際にはキャビティとなる領域に折り込む薄肉部の寸法が成形品の深絞り形状部の寸法の少なくとも20%の長さにするのが好ましく、それにしたがって領域Bの幅Wbも深絞り形状部の寸法の20%を超える長さにするのが好ましい。   As an example of a preferable shape of the laminate obtained by this method [2], both surface layers 37 of the laminate in contact with the mold have an area equal to or larger than the projected area of the opening 9 of the concave portion of the laminate, and It is the largest among the cut prepreg base materials constituting the laminate 31, and the layers other than both surface layers of the laminate, that is, the central layer 38 is preferably small with respect to the areas of both surface layers. Here, as shown in FIG. 15a), the thin portion 10 may be formed such that the area of the central layer 38 gradually decreases with respect to both surface layers 37, or several layers from each surface layer. Has the same shape and area as the surface layer, that is, the laminated body precursor 33 is formed with the same cut pattern, and the other central layer has a cut pattern smaller than both surface layers and has a smaller area than the laminated body precursor 33. The thin portion may be formed by forming the precursor 33 ′ and forming a sandwich shape as shown in FIG. Further, although there is no limit on the width Wb (35) of the region B shown in FIG. 15, as described above, when forming a deep drawing shape, the dimension of the thin portion to be folded into the region that becomes a cavity is the size of the molded product. It is preferable that the length is at least 20% of the dimension of the deep-drawn shape portion, and accordingly, the width Wb of the region B is preferably longer than 20% of the dimension of the deep-drawn shape portion.

本発明において、プレス工程において前記積層体の外縁の少なくとも一部を伸張させ、立ち壁を有する繊維強化プラスチックを成形することが出来る。ここで“立ち壁”とは、凹凸形状と区別して用いられる概念であり、形状がある面に対して90°±10°の範囲内で変化し、ある面からの高さが20mm以上であるものを指す。ここで、立ち壁を成形する際の高さは特に制限はないが、高さが高すぎると、立ち壁の先端まで十分に繊維が流動せず、形状が出ないことがあるため、50mm以下であるのが好ましい。更に好ましくは40mm以下である。   In the present invention, in the pressing step, at least a part of the outer edge of the laminate can be stretched to form a fiber reinforced plastic having a standing wall. Here, the “standing wall” is a concept that is used in distinction from the concavo-convex shape, the shape changes within a range of 90 ° ± 10 ° with respect to a certain surface, and the height from a certain surface is 20 mm or more. Refers to things. Here, the height when forming the standing wall is not particularly limited, but if the height is too high, the fiber may not flow sufficiently to the tip of the standing wall, and the shape may not be obtained, so that it is 50 mm or less. Is preferred. More preferably, it is 40 mm or less.

以下、実施例により本発明をさらに具体的に説明するが、本発明は、特にこれに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not particularly limited thereto.

<繊維強化プラスチック成形、および成形性の評価>
本成形に用いる金型39は、図16に示すように、200×150mmの平板上に3箇所の凹凸40を備えており、金型周囲4面には高さ40mmの立ち壁を成形するためのキャビティ41が設けられている。なお、立ち壁となるキャビティの厚み寸法は2mmである。本金型凹部の中央に切込プリプレグ基材によって構成される積層体を、凹部の周囲壁面に薄肉部を沿わせるようにして配置し、加熱型プレス成形機により、もう一方の金型凸部を押し当て6MPaの加圧の元、150℃×30分間の条件により硬化させた。これにより、繊維強化プラスチックの成形体を得た。
<Fiber-reinforced plastic molding and evaluation of moldability>
As shown in FIG. 16, the mold 39 used in the main molding includes three uneven portions 40 on a 200 × 150 mm flat plate, and a standing wall having a height of 40 mm is formed on four surfaces around the mold. The cavity 41 is provided. In addition, the thickness dimension of the cavity used as a standing wall is 2 mm. A laminate composed of a cut prepreg base material is placed in the center of the concave part of the mold so that the thin part is along the peripheral wall surface of the concave part. Was cured under conditions of 150 ° C. × 30 minutes under a pressure of 6 MPa. This obtained the molded object of the fiber reinforced plastic.

流動性に関しては、基材を伸長して成形するにあたり、金型キャビティ内に繊維強化プラスチックが充填されており、所望の立ち壁が形成されるまで伸長している場合には流動性○、金型キャビティ内に繊維強化プラスチックが充填されているものの、最表層に配された基材がほとんど伸長していない場合には流動性△、金型キャビティ内に繊維強化プラスチックが充填されていない部位がある場合には流動性×、として評価した。   As for fluidity, when the base material is stretched and molded, fiber reinforced plastic is filled in the mold cavity, and when it is stretched until a desired standing wall is formed, fluidity ○, gold Although the fiber cavity is filled with fiber reinforced plastic, but the base material placed on the outermost layer is not stretched, the fluidity is Δ, and the mold cavity is not filled with fiber reinforced plastic. In some cases, it was evaluated as fluidity x.

ソリに関しては、成形体を平らな試験台上に置いただけで成形体が試験台と全面で接触している場合にはソリ○、成形体を平らな試験台上に置いただけで成形体が試験台とが全面で接触しておらず、指で成形体上面から試験台に成形体を押し付けた際、成形体が試験台と全面で接触する場合にはソリ△、指で成形体上面から試験台に成形体を押し付けた際、成形体が試験台と接触していない部分がある場合にはソリ×と評価した。   For sleds, if the molded body is placed on a flat test bench and the molded body is in contact with the entire surface of the test bench, the sled ○, and the molded body can be tested by placing the molded body on a flat test bench. When the molded body is not in contact with the entire surface and the molded body is in contact with the entire surface of the test table with the finger when the molded body is pressed against the entire surface of the test table, warping is required. When the molded body was pressed against the table, if there was a portion where the molded body was not in contact with the test table, it was evaluated as a sled x.

さらに、立ち壁角部の断面観察を行い、層構造が保たれているかを確認し、層構造が保たれていれば層構造○、繊維の突っ張りや樹脂溜りが生じ、層構造の一部が保たれていない場合は層構造△、全く保たれていない場合には層構造×と評価した。   Furthermore, cross-sectional observation of the standing wall corner is performed to confirm whether the layer structure is maintained. If the layer structure is maintained, the layer structure ○, fiber tension and resin accumulation occur, and part of the layer structure When it was not kept, it was evaluated as a layer structure Δ, and when it was not kept at all, it was evaluated as a layer structure ×.

<機械特性評価>
前記手順により得られた繊維強化プラスチックの平板部より、長さ180±1mm、幅25±0.2mmに切り出し引張強度試験片を得た。試験は、掴み具間距離を100mmとし、クロスヘッド速度2.0mm/分で引張強度を測定した。なお、本実施例においては、試験機としてインストロン(登録商標)万能試験機4208型を用いた。測定した試験片の数はn=5とし、平均値を引張強度とした。さらに、測定値より標準偏差を算出し、その標準偏差を平均値で除することにより、バラツキの指標である変動係数(CV値(%))を算出した。
<Mechanical property evaluation>
A tensile strength test piece was obtained by cutting into a length of 180 ± 1 mm and a width of 25 ± 0.2 mm from the flat plate portion of the fiber reinforced plastic obtained by the above procedure. In the test, the tensile strength was measured at a crosshead speed of 2.0 mm / min with the distance between the grippers set to 100 mm. In this example, an Instron (registered trademark) universal testing machine 4208 type was used as a testing machine. The number of test pieces measured was n = 5, and the average value was the tensile strength. Further, a standard deviation was calculated from the measured value, and the standard deviation was divided by an average value, thereby calculating a variation coefficient (CV value (%)) as an index of variation.

(実施例1)[積層体形状:前記方法[1]式、切込形態:連続]
エポキシ樹脂(ジャパンエポキシレジン(株)製“エピコート(登録商標)”828:30重量部、“エピコート(登録商標)”1001:35重量部、“エピコート(登録商標)”154:35重量部)に、熱可塑性樹脂ポリビニルホルマール(チッソ(株)製“ビニレック(登録商標)”K)5重量部をニーダーで加熱混練してポリビニルホルマールを均一に溶解させた後、硬化剤ジシアンジアミド(ジャパンエポキシレジン(株)製DICY7)3.5重量部と、硬化促進剤3−(3,4−ジクロロフェニル)−1,1−ジメチルウレア(保土谷化学工業(株)製DCMU99)4重量部を、ニーダーで混練して未硬化のエポキシ樹脂組成物を調整した。このエポキシ樹脂組成物を、リバースロールコーターを用いてシリコーンコーティング処理された厚さ100μmの離型紙上に塗布して樹脂フィルムを作製した。次に、一方向に配列させた炭素繊維(引張強度4,900MPa、引張弾性率235GPa)の両面に樹脂フィルムをそれぞれ重ね、加熱・加圧することによって樹脂を含浸させ、単位面積あたりの炭素繊維重さ125g/m、繊維体積含有率Vf55%、厚み0.125mmのプリプレグ基材を作製した
このプリプレグ基材に、自動裁断機を用いて、図17に示すように、切込3と繊維方向とのなす角度が10°の方向の直線的な切り込み3bを連続的に挿入し、強化繊維1が繊維方向への長さが30mmになるように切断した。この切込プリプレグ基材2を繊維配向方向(0°方向)と、繊維配向方向から右に45度ずらした方向(45°方向)に、それぞれ224×174mm、216×166mm、208×158mm、195×145mmの4種類の大きさに切り出し、等間隔で規則的な切り込みを有するプリプレグ基材を得た。ここで、各切込プリプレグ基材の周囲5mmには切込を入れず、連続的な切込によりばらばらとならないようにした。なお、切込プリプレグ基材の切込の長さが長いため、積層工程において、基材の目ずれが起きるなどプリプレグ基材のハンドリング性に若干の難があった。
(Example 1) [Laminated body shape: method [1] formula, cutting form: continuous]
Epoxy resin ("Epicoat (registered trademark)" 828: 30 parts by weight, "Epicoat (registered trademark)" 1001: 35 parts by weight, "Epicoat (registered trademark)" 154: 35 parts by weight, manufactured by Japan Epoxy Resin Co., Ltd. Then, 5 parts by weight of a thermoplastic resin polyvinyl formal (“Vinylec (registered trademark)” K manufactured by Chisso Corporation) was heated and kneaded with a kneader to uniformly dissolve the polyvinyl formal, and then a curing agent dicyandiamide (Japan Epoxy Resin Co., Ltd.) ) DICY7) 3.5 parts by weight and 4 parts by weight of curing accelerator 3- (3,4-dichlorophenyl) -1,1-dimethylurea (Hodogaya Chemical Co., Ltd. DCMU99) were kneaded in a kneader. Thus, an uncured epoxy resin composition was prepared. This epoxy resin composition was applied onto a release paper having a thickness of 100 μm that had been subjected to silicone coating using a reverse roll coater to prepare a resin film. Next, a resin film is laminated on both sides of carbon fibers arranged in one direction (tensile strength 4,900 MPa, tensile elastic modulus 235 GPa), and the resin is impregnated by heating and pressing, so that the carbon fiber weight per unit area is increased. A prepreg base material having a thickness of 125 g / m 2 , a fiber volume content Vf of 55%, and a thickness of 0.125 mm was prepared. As shown in FIG. A straight cut 3b having a direction of 10 ° with respect to the direction was continuously inserted, and the reinforcing fiber 1 was cut so that the length in the fiber direction was 30 mm. The cut prepreg base material 2 is 224 × 174 mm, 216 × 166 mm, 208 × 158 mm, 195 in the fiber orientation direction (0 ° direction) and in the direction shifted 45 degrees to the right from the fiber orientation direction (45 ° direction), respectively. A prepreg base material having four types of sizes of 145 mm and having regular cuts at equal intervals was obtained. Here, no incision was made in 5 mm around each incision prepreg base material, so that it was not separated by continuous incision. In addition, since the cut length of the cut prepreg base material was long, there was some difficulty in handling of the prepreg base material such as misalignment of the base material in the lamination process.

前記4種の大きさに切断した切込プリプレグ基材をそれぞれ4層ずつ積層して積層体前駆体33を作製した後、得られた4種の積層体前駆体を面積の大きい順に積層して、図3b)に示すような薄肉部を有する積層体31を得た。この時、積層体の積層構成は[−45/0/+45/90]2Sとなるように16層疑似等方に積層した。なお、本積層体の薄肉部の幅Waは12mm(立ち壁の高さの30%分)であり、金型に沿わせる薄肉部10の最も厚い部分の厚み32は1.5mm(キャビティの厚みの75%)である。 After laminating four layers of the cut prepreg base materials cut into the above four types to produce a laminate precursor 33, the four types of obtained laminate precursors were laminated in order of increasing area. A laminate 31 having a thin portion as shown in FIG. At this time, 16 layers were laminated in a pseudo isotropic manner so that the layered structure of the laminate was [−45 / 0 / + 45/90] 2S . The width Wa of the thin portion of the laminate is 12 mm (30% of the height of the standing wall), and the thickness 32 of the thickest portion 10 along the mold is 1.5 mm (the thickness of the cavity). 75%).

得られた切込プリプレグ基材2によって構成される積層体31を、前記手法により成型し、凹凸部と立ち壁とを有する繊維強化プラスチックを得た。ここで、積層体31を金型に設置する際、薄肉部が成形型凹部の壁面に沿って変形し、容易に配置・位置決めすることができた。   The laminated body 31 comprised by the obtained cut prepreg base material 2 was shape | molded with the said method, and the fiber reinforced plastic which has an uneven | corrugated | grooved part and a standing wall was obtained. Here, when installing the laminated body 31 in a metal mold | die, the thin part deform | transformed along the wall surface of a shaping | molding die recessed part, and it was able to arrange | position and position easily.

得られた繊維強化プラスチックは良好な表面平滑性を呈し、凹凸部の形状に繊維が沿っており、皺の発生もなかった。また、立ち壁部のキャビティの先端まで繊維が充填しており、所望の高さの立ち壁が形成されていた。繊維強化プラスチックの立ち壁部を切り出して断面を観察したところ、立ち壁角部においても層構造が維持されており、繊維の突っ張りなどは見られなかった。また、立ち壁先端までの層構造は連続しており、かつ、伸張方向と同方向に配列した繊維から構成される層も途切れることなく、均一の厚みを保っていた。得られた繊維強化プラスチックより切り出した平板部の引張弾性率は46GPaとほぼ理論値通り発現し、また、引張強度に関しても590MPaと高い値が発現し、そのCV値も5%ときわめてバラツキの小さい結果となった。これらの結果から構造材としての適用、外板部材への適用が可能な力学特性と品位が得られたことがわかった。   The obtained fiber reinforced plastic exhibited good surface smoothness, the fibers were along the shape of the concavo-convex portion, and no wrinkles were generated. Further, the fiber was filled up to the tip of the cavity of the standing wall portion, and the standing wall having a desired height was formed. When the standing wall portion of the fiber reinforced plastic was cut out and the cross section was observed, the layer structure was maintained even at the corner portion of the standing wall, and no fiber tension was observed. In addition, the layer structure up to the leading end of the standing wall was continuous, and the layer composed of fibers arranged in the same direction as the stretching direction was not interrupted and maintained a uniform thickness. The tensile modulus of the flat plate section cut out from the obtained fiber reinforced plastic is expressed as 46 GPa almost as the theoretical value, and the tensile strength is as high as 590 MPa, and the CV value is also very small as 5%. As a result. From these results, it was found that mechanical properties and quality that can be applied to structural materials and outer plate members were obtained.

(実施例2)[積層体形状:前記方法[1]式、切込形態:断続]
図18に示すように、切込の挿入の仕方を断続的にした以外は実施例1と同様にして凹凸部と立ち壁形状を有する繊維強化プラスチックを得た。切込プリプレグ基材2の繊維長さL、切込と繊維方向とのなす角度Θ、切込を強化繊維の垂直方向に投影した投影長さWsは、それぞれL=30mm、Θ=10°、Ws=0.51mmであった。なお、本手法によって得られた切込プリプレグ基材2は、実施例1に比べて切込の長さが短く、積層工程において基材が変形することもなく、容易に積層体を得ることが出来た。
(Example 2) [Laminated body shape: method [1] formula, cutting form: intermittent]
As shown in FIG. 18, a fiber reinforced plastic having a concavo-convex portion and a standing wall shape was obtained in the same manner as in Example 1 except that the way of inserting the cuts was intermittent. The fiber length L of the notched prepreg base material 2, the angle Θ between the notch and the fiber direction, and the projected length Ws obtained by projecting the notch in the vertical direction of the reinforcing fibers are L = 30 mm, Θ = 10 °, Ws = 0.51 mm. In addition, the cut prepreg base material 2 obtained by this method has a shorter cut length than the first embodiment, and the base material is not deformed in the stacking step, and a laminate can be easily obtained. done.

得られた繊維強化プラスチックは実施例1と同等に良好な表面平滑性を呈し、凹凸部の形状に繊維が沿っており、皺の発生もなかった。また、立ち壁部のキャビティの先端まで繊維が充填しており、所望の高さの立ち壁が形成されていた。繊維強化プラスチックの立ち壁部を切り出して断面を観察したところ、立ち壁角部においても層構造が維持されており、繊維の突っ張りなどは見られなかった。また、立ち壁先端までの層構造は連続しており、かつ、伸張方向と同方向に配列した繊維から構成される層も途切れることなく、均一の厚みを保っていた。得られた繊維強化プラスチックより切り出した平板部の引張強度については、650MPaと実施例1よりもさらに高い値が発現した。   The obtained fiber reinforced plastic exhibited good surface smoothness equivalent to that of Example 1, the fibers were along the shape of the concavo-convex portion, and no wrinkles were generated. Further, the fiber was filled up to the tip of the cavity of the standing wall portion, and the standing wall having a desired height was formed. When the standing wall portion of the fiber reinforced plastic was cut out and the cross section was observed, the layer structure was maintained even at the corner portion of the standing wall, and no fiber tension was observed. In addition, the layer structure up to the leading end of the standing wall was continuous, and the layer composed of fibers arranged in the same direction as the stretching direction was not interrupted and maintained a uniform thickness. About the tensile strength of the flat plate part cut out from the obtained fiber reinforced plastic, a value higher than 650 MPa and Example 1 was expressed.

(実施例3〜7)[繊維長さの比較(表1)]
切込の間隔を変えることにより繊維長さLを変えた以外は、実施例1と同様にして凹凸部と立ち壁形状を有する繊維強化プラスチックを得た。それぞれLは、実施例3では7.5mm、実施例4では10mm、実施例5では60mm、実施例6では100mm、実施例7では120mmとした。
(Examples 3 to 7) [Comparison of fiber length (Table 1)]
A fiber reinforced plastic having a concavo-convex portion and a standing wall shape was obtained in the same manner as in Example 1 except that the fiber length L was changed by changing the notch interval. L was 7.5 mm in Example 3, 10 mm in Example 4, 60 mm in Example 5, 100 mm in Example 6, and 120 mm in Example 7.

得られた繊維強化プラスチックは実施例6、7を除いて良好な表面平滑性を呈し、凹凸部の形状に繊維が沿っており、皺の発生もなかった。また、立ち壁部のキャビティの先端まで繊維が充填しており、所望の高さの立ち壁が形成されていた。繊維強化プラスチックの立ち壁部を切り出して断面を観察したところ、立ち壁角部においても層構造が維持されており、繊維の突っ張りなどは見られなかった。また、立ち壁先端までの層構造は連続しており、かつ、伸張方向と同方向に配列した繊維から構成される層も途切れることなく、均一の厚みを保っていた。実施例6、7については若干の繊維のうねりと金型との摩擦を受ける表面部で端部まで繊維が十分流動してない部位があった。また、立ち壁部の先端表層で繊維が充填されていない箇所が一部見られ、角部の層構造も一部乱れていた。実施例3を除いて、引張弾性率は46〜47GPa、引張強度は520〜660MPaと高い値であり、引張強度のCV値も4〜6%とバラツキの小さい結果であった。一方、実施例3については、実施例4、5と同様、良好な表面平滑性を呈し、凹凸部の形状に繊維が沿っており、皺の発生もなく、立ち壁部のキャビティの先端まで繊維が充填しており、所望の高さの立ち壁が形成されていた。また、立ち壁角部についても層構造が維持されており、繊維の突っ張りなどは見られなかった。しかし、引張強度が440MPaと実施例1や実施例4〜7と比較して低い値であった。   The obtained fiber reinforced plastics exhibited good surface smoothness except for Examples 6 and 7, the fibers were along the shape of the concavo-convex portions, and no wrinkles were generated. Further, the fiber was filled up to the tip of the cavity of the standing wall portion, and the standing wall having a desired height was formed. When the standing wall portion of the fiber reinforced plastic was cut out and the cross section was observed, the layer structure was maintained even at the corner portion of the standing wall, and no fiber tension was observed. In addition, the layer structure up to the leading end of the standing wall was continuous, and the layer composed of fibers arranged in the same direction as the stretching direction was not interrupted and maintained a uniform thickness. In Examples 6 and 7, there was a portion where the fiber did not sufficiently flow to the end portion at the surface portion where the undulation of the fiber and the friction between the mold and the die were received. Moreover, a part where the fiber was not filled with the front end surface layer of the standing wall part was seen, and the layer structure of the corner part was also disordered. Except for Example 3, the tensile modulus was 46 to 47 GPa, the tensile strength was a high value of 520 to 660 MPa, and the CV value of the tensile strength was 4 to 6%, which was a small variation. On the other hand, in Example 3, as in Examples 4 and 5, the fiber exhibited good surface smoothness, the fibers were in the shape of the concavo-convex part, no wrinkles occurred, and the fiber reached the tip of the cavity of the standing wall part. And a standing wall having a desired height was formed. Also, the layer structure was maintained at the corners of the standing wall, and no fiber tension was observed. However, the tensile strength was 440 MPa, which was a low value compared to Example 1 and Examples 4-7.

(実施例8〜13)[切込角度の比較(表2)]
切込と繊維方向とのなす角度を変えた以外は実施例1と同様にして凹凸部と立ち壁形状を有する繊維強化プラスチックを得た。実施例8は切込角度Θが1°、実施例9は2°、実施例10は5°、実施例11は15°、実施例12は25°、実施例13は45°の方向に連続的な切込を設けた。
(Examples 8 to 13) [Comparison of cutting angles (Table 2)]
A fiber reinforced plastic having a concavo-convex portion and a standing wall shape was obtained in the same manner as in Example 1 except that the angle formed by the notch and the fiber direction was changed. In Example 8, the cutting angle Θ is 1 °, Example 9 is 2 °, Example 10 is 5 °, Example 11 is 15 °, Example 12 is 25 °, and Example 13 is continuous in the direction of 45 °. Cuts were made.

得られた繊維強化プラスチックは実施例9〜12については良好な表面平滑性を呈し、凹凸部の形状に繊維が沿っており、皺の発生もなかった。また、立ち壁部のキャビティの先端まで繊維が充填しており、所望の高さの立ち壁が形成されていた。繊維強化プラスチックの立ち壁部を切り出して断面を観察したところ、立ち壁角部においても層構造が維持されており、繊維の突っ張りなどは見られなかった。また、立ち壁先端までの層構造は連続しており、かつ、伸張方向と同方向に配列した繊維から構成される層も途切れることなく、均一の厚みを保っていた。引張弾性率は46〜47GPa、引張強度は480〜660MPaと高い値であり、引張強度のCV値は3〜6%とバラツキの小さい結果であった。特に切込角度の小さな実施例9、10では600MPa以上の引張強度を発現した。実施例8については、切込角度が小さいため、切込同士の間隔が0.5mm程度と小さく、安定的に基材の裁断を行うことが困難であり、引張強度のCV値も10%とばらつきも大きかったが、張弾性率は46GPa、引張強度は650MPaと高い値を示した。また、実施例13は引張強度が360MPaと少々低かったものの、引張弾性率は45GPaと他の実施例とほぼ同等の値を示し、繊維のうねりもなく、その端部まで繊維が均等に流動していた。   The obtained fiber reinforced plastic exhibited good surface smoothness in Examples 9 to 12, and the fibers were in the shape of the concavo-convex portion, and no wrinkles were generated. Further, the fiber was filled up to the tip of the cavity of the standing wall portion, and the standing wall having a desired height was formed. When the standing wall portion of the fiber reinforced plastic was cut out and the cross section was observed, the layer structure was maintained even at the corner portion of the standing wall, and no fiber tension was observed. In addition, the layer structure up to the leading end of the standing wall was continuous, and the layer composed of fibers arranged in the same direction as the stretching direction was not interrupted and maintained a uniform thickness. The tensile modulus was 46 to 47 GPa, the tensile strength was as high as 480 to 660 MPa, and the CV value of the tensile strength was as small as 3 to 6%. Particularly, in Examples 9 and 10 having a small cutting angle, a tensile strength of 600 MPa or more was expressed. About Example 8, since the cut angle is small, the interval between the cuts is as small as about 0.5 mm, it is difficult to stably cut the base material, and the CV value of the tensile strength is also 10%. Although the variation was large, the tensile modulus was 46 GPa and the tensile strength was 650 MPa. In Example 13, although the tensile strength was a little low at 360 MPa, the tensile modulus was 45 GPa, which was almost the same as that in the other examples, there was no fiber undulation, and the fiber flowed evenly to its end. It was.

(実施例14〜18)[投影長さWsの比較(表3)]
実施例2の切込パターンにおいて、切込の長さと切込の間隔を変えた以外は、実施例2と同様にして凹凸部と立ち壁形状を有する繊維強化プラスチックを得た。実施例14では投影長さWsと切込の間隔を共に0.02mm、実施例15では0.17mm、実施例16では1mm、実施例17では2mm、実施例18では10mmとした。なお実際の切込の長さはそれぞれ、実施例14では0.12mm、実施例15では1mm、実施例16では5.8mm、実施例17では11.5mm、実施例18では58mmである。
Examples 14 to 18 [Comparison of Projection Length Ws (Table 3)]
In the cutting pattern of Example 2, a fiber reinforced plastic having an uneven portion and a standing wall shape was obtained in the same manner as in Example 2 except that the length of the cutting and the interval between the cuttings were changed. In Example 14, the projection length Ws and the notch interval were both 0.02 mm, Example 15 was 0.17 mm, Example 16 was 1 mm, Example 17 was 2 mm, and Example 18 was 10 mm. The actual cut lengths are 0.12 mm in Example 14, 1 mm in Example 15, 5.8 mm in Example 16, 11.5 mm in Example 17, and 58 mm in Example 18.

得られた繊維強化プラスチックは実施例14を除いていずれも良好な表面平滑性を呈し、凹凸部の形状に繊維が沿っており、皺の発生もなかった。また、立ち壁部のキャビティの先端まで繊維が充填しており、所望の高さの立ち壁が形成されていた。繊維強化プラスチックの立ち壁部を切り出して断面を観察したところ、立ち壁角部においても層構造が維持されており、繊維の突っ張りなどは見られなかった。また、立ち壁先端までの層構造は連続しており、かつ、伸張方向と同方向に配列した繊維から構成される層も途切れることなく、均一の厚みを保っていた。また、引張強度も550〜680MPaと非常に高強度であった。また、特に投影長さWs(切込長さ)が小さければ小さいほど高強度となるが、その傾向はWsが1.5mm以下の場合に顕著に現れることが確認できた。なお、実施例14については、凹凸部の形状に繊維が沿っており、立ち壁角部の層構造も維持されていたものの、最表面の繊維の一部が繊維逃げによって切断されておらず、繊維がうねり、また立ち壁の先端部の一部に繊維が充填されていない箇所があった。また、CV値が11%と若干高く、ばらつきが大きかったが、引張強度は690MPaと最も高い値を示した。   The obtained fiber reinforced plastics all exhibited good surface smoothness except for Example 14, the fibers were in the shape of the concavo-convex portions, and no wrinkles were generated. Further, the fiber was filled up to the tip of the cavity of the standing wall portion, and the standing wall having a desired height was formed. When the standing wall portion of the fiber reinforced plastic was cut out and the cross section was observed, the layer structure was maintained even at the corner portion of the standing wall, and no fiber tension was observed. In addition, the layer structure up to the leading end of the standing wall was continuous, and the layer composed of fibers arranged in the same direction as the stretching direction was not interrupted and maintained a uniform thickness. Also, the tensile strength was very high at 550 to 680 MPa. In particular, the smaller the projection length Ws (cutting length), the higher the strength, but it was confirmed that this tendency appears remarkably when Ws is 1.5 mm or less. For Example 14, the fibers were in the shape of the concavo-convex part, and the layer structure of the standing wall corners was maintained, but some of the outermost fibers were not cut by fiber escape, There was a portion where the fibers swelled and a part of the tip of the standing wall was not filled with the fibers. Further, although the CV value was slightly high as 11% and the variation was large, the tensile strength showed the highest value of 690 MPa.

(実施例19〜22)[繊維体積含有率の比較(表4)]
実施例1のプリプレグ基材の単位面積あたりの炭素繊維重さを変えることにより炭素繊維の体積含有率Vfを変えた以外は、実施例1と同様にして凹凸部と立ち壁形状を有する繊維強化プラスチックを得た。それぞれ実施例19が単位面積あたりの炭素繊維重さが158g/m、Vfが70%、実施例20が146g/m、Vfが65%、実施例21が101g/m、Vfが45%、実施例22が90g/m、Vfが40%とした。
(Examples 19 to 22) [Comparison of fiber volume content (Table 4)]
The fiber reinforcement which has an uneven | corrugated | grooved part and a standing wall shape similarly to Example 1 except having changed the volume content Vf of the carbon fiber by changing the carbon fiber weight per unit area of the prepreg base material of Example 1. Got plastic. Respectively, in Examples 19 carbon fiber is per unit area weight is 158 g / m 2, Vf is 70%, Example 20 is 146 g / m 2, Vf is 65%, Example 21 is 101g / m 2, Vf 45 %, Example 22 was 90 g / m 2 , and Vf was 40%.

実施例20では得られた繊維強化プラスチックは若干の繊維のうねりと金型との摩擦を受ける表面部で端部まで繊維が十分流動してない部位があった。また、立ち壁角部の層構造が、一部乱れていた。一方、実施例21では得られた繊維強化プラスチックは繊維のうねりなく、その端部まで繊維が充分に流動していた。その他、どちらの繊維強化プラスチックもソリがなく、最外層の切り込み部においても、強化繊維が存在せずに樹脂リッチまたは隣接層の強化繊維がのぞいている部位はほとんどなく、良好な外観品位、平滑性を保っていた。また、立ち壁部のキャビティの先端まで繊維が充填しており、所望の高さの立ち壁が形成されていた。引張弾性率は40〜53GPa、引張強度は480〜620MPaと高い値であり、引張強度のCV値も6〜7%とバラツキの小さい結果であった。一方、実施例19で得られた繊維強化プラスチックは繊維がうねり、金型との摩擦を受ける表面部で端部まで繊維が流動していなかった。表面部には樹脂欠けがあり、外観品位は悪く、ソリも発生した。また立ち壁の先端で繊維が充填されていない箇所が存在し、角部の層構造も表層付近で一部乱れていた。ただし、引張強度は640MPa、弾性率は54GPaと非常に良好な物性を発現していた。また、実施例22では、引張弾性率37GPa、引張強度450MPaと実施例1や実施例20と比較してかなり低い値であったが、得られた繊維強化プラスチックはソリがなく、良好な外観品位、平滑性を保っていた。Vfが大きくなるほど、引張弾性率も強度も向上するという結果となったが、あまりVfが大きいと流動性が落ちるという難点があった。   In Example 20, the obtained fiber reinforced plastic had a portion where the fiber did not sufficiently flow to the end at the surface portion where the undulation of the fiber and the friction between the mold and the die were received. In addition, the layer structure at the corner of the standing wall was partially disturbed. On the other hand, in the fiber reinforced plastic obtained in Example 21, the fibers did not swell, and the fibers sufficiently flowed to the ends. In addition, both fiber reinforced plastics have no warp, and there is almost no portion where the reinforcing fibers are not present and the reinforcing fibers in the adjacent layer are not present in the cut portion of the outermost layer, and the appearance quality is smooth and smooth. I kept the sex. Further, the fiber was filled up to the tip of the cavity of the standing wall portion, and the standing wall having a desired height was formed. The tensile modulus was 40 to 53 GPa, the tensile strength was as high as 480 to 620 MPa, and the CV value of the tensile strength was also as small as 6 to 7%. On the other hand, in the fiber reinforced plastic obtained in Example 19, the fibers swelled, and the fibers did not flow to the end at the surface portion that received friction with the mold. The surface portion had resin chipping, the appearance quality was poor, and warping occurred. Further, there was a portion where the fiber was not filled at the tip of the standing wall, and the layer structure of the corner portion was partially disturbed near the surface layer. However, the tensile strength was 640 MPa, the elastic modulus was 54 GPa, and very good physical properties were expressed. In Example 22, the tensile modulus of elasticity was 37 GPa and the tensile strength was 450 MPa, which was considerably lower than those in Examples 1 and 20, but the obtained fiber-reinforced plastic had no warp and had good appearance quality. , Kept smoothness. As Vf increased, the tensile modulus and strength were improved. However, when Vf was too large, there was a problem that the fluidity decreased.

(実施例23〜25)[薄肉部厚みの比較(表5)]
4種類の大きさで切り出した切込プリプレグ基材の各寸法の積層数を変えることによって、積層体の薄肉部の厚みを変えた以外は、実施例1と同様にして凹凸部と立ち壁形状を有する繊維強化プラスチックを得た。それぞれ実施例27が224×174mmの大きさの基材を3層、216×166mmの大きさの基材を3層、208×158mmの大きさの基材を2層、195×145mmの大きさの基材を8層、実施例28が224×174mmを4層、216×166mmを4層、208×158mmを3層、195×145mmの大きさの基材を5層、実施例29が224×174mmの大きさの基材を5層、216×166mmの大きさの基材を4層、208×158mmの大きさの基材を4層、195×145mmの大きさの基材を3層とした。なお、薄肉部の厚みにすると、前述の通り、積層体の厚みが徐変化して薄肉部が形成されている場合は、薄肉部において、最も厚い部分の厚みを薄肉部の厚みとするので、実施例27が1mm(キャビティ厚みの50%)、実施例28が1.38mm(キャビティ厚みの68.8%)、実施例29が1.625mm(キャビティ厚みの81.3%)である。
(Examples 23 to 25) [Comparison of thickness of thin portion (Table 5)]
The uneven portion and the standing wall shape are the same as in Example 1 except that the thickness of the thin portion of the laminate is changed by changing the number of layers of each dimension of the cut prepreg base material cut out in four sizes. A fiber reinforced plastic having was obtained. In Example 27, three layers of a substrate having a size of 224 × 174 mm, three layers of a substrate having a size of 216 × 166 mm, two layers of a substrate having a size of 208 × 158 mm, and a size of 195 × 145 mm 8 layers, Example 28 has 4 layers of 224 × 174 mm, 216 × 166 mm has 4 layers, 208 × 158 mm has 3 layers, 195 × 145 mm has 5 layers of substrate, Example 29 has 224 5 layers of base material with a size of 174 mm, 4 layers of base material with a size of 216 x 166 mm, 4 layers of base material with a size of 208 x 158 mm, 3 layers of base material with a size of 195 x 145 mm It was. In addition, when the thickness of the thin portion is formed as described above, when the thickness of the laminate is gradually changed and the thin portion is formed, the thickness of the thickest portion is the thickness of the thin portion, as described above. Example 27 is 1 mm (50% of cavity thickness), Example 28 is 1.38 mm (68.8% of cavity thickness), and Example 29 is 1.625 mm (81.3% of cavity thickness).

実施例28では得られた繊維強化プラスチックは良好な表面平滑性を呈し、凹凸部の形状に繊維が沿っており、皺の発生もなかった。また、立ち壁部のキャビティの先端まで繊維が充填しており、所望の高さの立ち壁が形成されていた。繊維強化プラスチックの立ち壁部を切り出して断面を観察したところ、立ち壁角部においても層構造が維持されており、繊維の突っ張りなどは見られなかった。また、立ち壁先端までの層構造は連続しており、かつ、伸張方向と同方向に配列した繊維から構成される層も途切れることなく、均一の厚みを保っていた。一方実施例27では、立ち壁角部の層構造は維持されていたものの、立ち壁先端部の表層において、一部繊維が充填されていない箇所が存在した。また、実施例29では、金型に配置する際、薄肉部を曲げて金型に沿わせようとしたところ、金型凸部と接する側の表層の角部に皺が入り、立ち壁角部の層構造が一部乱れていた。また、成形時には同箇所で金型凸部と基材がこすれて表面の繊維配向が乱れた。しかしながらいずれも引張弾性率は46〜47GPa、引張強度は570〜590MPaと実施例1とほぼ同等の値を示し、CV値も5〜6%と、ばらつきが小さかった。   In Example 28, the obtained fiber reinforced plastic exhibited good surface smoothness, the fibers were along the shape of the uneven portion, and no wrinkles were generated. Further, the fiber was filled up to the tip of the cavity of the standing wall portion, and the standing wall having a desired height was formed. When the standing wall portion of the fiber reinforced plastic was cut out and the cross section was observed, the layer structure was maintained even at the corner portion of the standing wall, and no fiber tension was observed. In addition, the layer structure up to the leading end of the standing wall was continuous, and the layer composed of fibers arranged in the same direction as the stretching direction was not interrupted and maintained a uniform thickness. On the other hand, in Example 27, although the layer structure at the corner of the standing wall was maintained, there was a portion that was not filled with fibers in the surface layer at the tip of the standing wall. Further, in Example 29, when placing in the mold, the thin wall portion was bent so as to be along the mold. The layer structure was partially disturbed. Moreover, the mold convex part and the base material were rubbed at the same place at the time of molding, and the fiber orientation on the surface was disturbed. However, in all cases, the tensile modulus was 46 to 47 GPa, the tensile strength was 570 to 590 MPa, which was almost the same value as in Example 1, and the CV value was also 5 to 6%, showing little variation.

(実施例26)[薄肉部形成法の比較]
切り出した切込プリプレグ基材の寸法を224×174mm、195×145mmの2種類とし、224×174mmの寸法の基材を6層積層した積層体前駆体を2つ、195×145mmの寸法の基材を4層積層した積層体前駆体33を1つ作製し、図15b)に示すように、195×145mmの寸法の基材を4層積層した積層体前駆体を224×174mmの寸法の基材を6層積層した積層体前駆体で挟み込むようにして薄肉部を有する積層体を作製した以外は、実施例1と同様にして凹凸部と立ち壁形状を有する繊維強化プラスチックを得た。なお、本積層体の薄肉部の幅Wbは12mm(立ち壁他高さの30%分)であり、キャビティとなる領域に織り込む薄肉部の最も厚い部分の厚みは1.5mm(キャビティの厚みの75%)である。
(Example 26) [Comparison of thin wall forming method]
The cut prepreg base material was cut into two types of 224 x 174 mm and 195 x 145 mm, and two laminate precursors were prepared by laminating six layers of the base material with a size of 224 x 174 mm. A base with a size of 195 x 145 mm One laminate precursor 33 in which four layers of materials are laminated is prepared, and as shown in FIG. 15b), a laminate precursor in which four layers of a substrate having a size of 195 × 145 mm are laminated is a base having a size of 224 × 174 mm. A fiber reinforced plastic having a concavo-convex portion and a standing wall shape was obtained in the same manner as in Example 1 except that a laminate having a thin portion was prepared by sandwiching a laminate of six layers of materials. The width Wb of the thin-walled portion of this laminate is 12 mm (30% of the height of other standing walls), and the thickness of the thickest portion of the thin-walled portion woven into the cavity region is 1.5 mm (of the thickness of the cavity). 75%).

得られた繊維強化プラスチックは良好な表面平滑性を呈し、凹凸部の形状に繊維が沿っており、皺の発生もなかった。また、立ち壁部のキャビティの先端まで繊維が充填しており、所望の高さの立ち壁が形成されていた。繊維強化プラスチックの立ち壁部を切り出して断面を観察したところ、立ち壁角部においても層構造が維持されており、繊維の突っ張りなどは見られなかった。また、立ち壁先端までの層構造は連続しており、かつ、伸張方向と同方向に配列した繊維から構成される層も途切れることなく、均一の厚みを保っていた。また引張弾性率は46%、引張強度は580MPaと実施例1とほぼ同等の値を示した。   The obtained fiber reinforced plastic exhibited good surface smoothness, the fibers were along the shape of the concavo-convex portion, and no wrinkles were generated. Further, the fiber was filled up to the tip of the cavity of the standing wall portion, and the standing wall having a desired height was formed. When the standing wall portion of the fiber reinforced plastic was cut out and the cross section was observed, the layer structure was maintained even at the corner portion of the standing wall, and no fiber tension was observed. In addition, the layer structure up to the leading end of the standing wall was continuous, and the layer composed of fibers arranged in the same direction as the stretching direction was not interrupted and maintained a uniform thickness. Further, the tensile elastic modulus was 46%, and the tensile strength was 580 MPa, which was almost the same value as in Example 1.

(比較例1)[連続繊維プリプレグ基材との比較]
プリプレグ基材に切込を入れなかった以外は実施例1と同様にして凹凸部と立ち壁形状を有する繊維強化プラスチックを得た。
(Comparative Example 1) [Comparison with continuous fiber prepreg base material]
A fiber reinforced plastic having a concavo-convex portion and a standing wall shape was obtained in the same manner as in Example 1 except that the prepreg base material was not cut.

得られた繊維強化プラスチックは、凹凸部は形成しているものの、凹凸部に強化繊維およびマトリックス樹脂が引き込まれたため繊維強化プラスチックの端部が欠けており、凹凸部のエッジで繊維がブリッジングしたため該箇所では樹脂リッチとなっていた。さらに、平面部では皺が発生し、立ち壁部ではほとんど繊維が充填していなかったため、製品としての適用は不可能と思われた。   The resulting fiber reinforced plastic has irregularities formed, but because the reinforced fibers and matrix resin were drawn into the irregularities, the ends of the fiber reinforced plastic were missing, and the fibers bridged at the edges of the irregularities. The part was resin-rich. In addition, wrinkles occurred in the flat part and almost no fiber was filled in the standing wall part, so it seemed impossible to apply as a product.

(比較例2)[SMCとの比較]
一方向プリプレグ基材を繊維長25mm、幅5mmに裁断してチョップド原料プリプレグとし、そのチョップド原料プリプレグをランダムに配向させながらニップロールで加圧してそれぞれを接着したものを用いた以外は実施例1と同様にして凹凸部と立ち壁形状を有する繊維強化プラスチックを得た。
(Comparative Example 2) [Comparison with SMC]
Example 1 except that a unidirectional prepreg base material was cut into a fiber length of 25 mm and a width of 5 mm to obtain a chopped raw material prepreg, and the chopped raw material prepreg was pressed with a nip roll while being randomly oriented and bonded to each other. Similarly, a fiber reinforced plastic having an uneven portion and a standing wall shape was obtained.

得られた繊維強化プラスチックは、凹凸部の形状に繊維が沿っており、皺の発生もなく、リブ部の先端まで繊維が充填していたが、流動状態が均一でないため線膨張係数の差異によりソリを生じた。また、引張強度は190MPaと各実施例と比べて大幅に低く、CV値も13%という値であり、バラツキが大きかった。   The obtained fiber reinforced plastic had fibers along the shape of the concavo-convex part, no wrinkles, and the fiber was filled up to the tip of the rib part, but because the flow state was not uniform, the difference in linear expansion coefficient Sled. Further, the tensile strength was 190 MPa, which was significantly lower than in each example, and the CV value was also 13%, showing a large variation.

(比較例3)[薄肉部を有さない積層体との比較]
積層体作製の際に、224×174mmの切込プリプレグ基材を[−45/0/+45/90]2Sとなるように16層疑似等方に積層し、積層する切込プリプレグ基材を1種類として、厚みの均一な薄肉部を有さない積層体を用いた以外は、実施例1と同様にして凹凸部と立ち壁形状を有する繊維強化プラスチックを得た。
(Comparative Example 3) [Comparison with a laminate having no thin portion]
When producing a laminate, a 224 × 174 mm cut prepreg base material is laminated in a 16-layer pseudo-isotropic manner to be [−45 / 0 / + 45/90] 2S, and the cut prepreg base material to be laminated is 1 A fiber reinforced plastic having a concavo-convex part and a standing wall shape was obtained in the same manner as in Example 1 except that a laminate having no thin part having a uniform thickness was used.

積層体を金型に配置する際、金型に沿わせようとしたが、積層体を折り曲げるのが困難であり、完全に沿わせることは出来なかった。また、折り曲げた際に金型凸部と接する側の表層の角部に皺が入り、成形時には同箇所で金型凸部と基材がこすれて表面の繊維配向が乱れた。更に型締め時に積層体端部に金型凸部が当たり、表層が若干剥がれたような状態になったため、製品としての適用は不可能と思われた。   When placing the laminated body in the mold, it was attempted to follow the mold, but it was difficult to bend the laminated body and could not be completely applied. In addition, wrinkles entered the corners of the surface layer on the side in contact with the mold protrusions when bent, and the mold protrusions and the substrate were rubbed at the same location during molding, thereby disturbing the fiber orientation on the surface. Further, when the mold was clamped, the mold convex part hit the end of the laminate and the surface layer was slightly peeled off, so it seemed impossible to apply as a product.

(比較例4、5)[成形型凹部の開口部の投影面積以下の積層体との比較]
成形型凹部と接する層の面積が成形型凹部の開口部の投影面積以下である積層体を用いた以外は、実施例1と同様にして凹凸部と立ち壁形状を有する繊維強化プラスチックを得た。比較例4では実施例1と同じ積層体を金型に配置する際、195×145mmの表層が金型凹部に接するように配置した。この時端部の薄肉部は金型凹部に沿わせるように配置した。比較例5では195×145mmの切込プリプレグ基材を[−45/0/+45/90]2Sとなるように16層疑似等方に積層し、積層する切込プリプレグ基材を1種類として、厚みの均一な薄肉部を有さない積層体を配置した。
(Comparative Examples 4 and 5) [Comparison with a laminate having a projected area of the opening of the mold recess or less]
A fiber reinforced plastic having a concavo-convex portion and a standing wall shape was obtained in the same manner as in Example 1 except that a laminate in which the area of the layer in contact with the mold recess was less than the projected area of the opening of the mold recess was used. . In Comparative Example 4, when the same laminate as in Example 1 was placed in the mold, the surface layer of 195 × 145 mm was placed in contact with the mold recess. At this time, the thin wall portion at the end portion was arranged so as to be along the mold recess. In Comparative Example 5, a 195 × 145 mm cut prepreg base material was laminated in a 16-layer pseudo-isotropic manner to be [−45 / 0 / + 45/90] 2S, and the cut prepreg base material to be laminated was one type, The laminated body which does not have a thin part with uniform thickness was arrange | positioned.

比較例4では、金型の平板部では良好な表面平滑性を呈し、凹凸部の形状に繊維が沿っており、皺の発生もなかった。しかしながら、立ち壁部については、キャビティの先端まで繊維が充填していたものの、立ち壁角部周辺については繊維の流動が乱れ、層構造が崩れており、表層の繊維配向も乱れていた。また、比較例5では、金型の平板上では良好な表面平滑性を有し、凹凸部の形状に繊維が沿っており、皺の発生もなかったが、立ち壁部のキャビティの先端で一部繊維が充填していない箇所が存在し、立ち壁角部については繊維の流動が乱れ、層構造が崩れており、表層の繊維配向も乱れていた。   In Comparative Example 4, the flat plate portion of the mold exhibited good surface smoothness, the fibers were along the shape of the concavo-convex portion, and no wrinkles were generated. However, for the standing wall portion, the fiber was filled up to the tip of the cavity, but the flow of the fiber was disturbed around the corner portion of the standing wall, the layer structure was broken, and the fiber orientation of the surface layer was also disturbed. Further, in Comparative Example 5, the surface of the mold has good surface smoothness, the fibers are along the shape of the concavo-convex portion, and no wrinkles are generated, but the cavities are not flat at the tip of the cavity of the standing wall portion. There were places where the partial fibers were not filled, the fiber flow was disturbed at the corners of the standing wall, the layer structure was broken, and the fiber orientation of the surface layer was also disturbed.

(比較例6)[積層体を成形型に配置時、薄肉部を沿わせない場合との比較]
金型に積層体を配置する際、型に沿わせて配置せず、金型凹部の開口部を塞ぐように積層体を配置した以外は、実施例1と同様にして凹凸部と立ち壁形状を有する繊維強化プラスチックを得た。
(Comparative Example 6) [Comparison with the case where the thin-walled portion is not aligned when the laminate is placed in the mold]
When arranging the laminated body in the mold, the concave and convex portions and the standing wall shape are the same as in Example 1 except that the laminated body is arranged so as not to be arranged along the mold and close the opening of the concave portion of the mold. A fiber reinforced plastic having was obtained.

得られた繊維強化プラスチックは、金型の平板部では良好な表面平滑性を呈し、凹凸部の形状に繊維が沿っており、皺の発生もなかった。しかしながら、立ち壁部については、プレス時に積層体に金型凸部が接触した際に若干位置がずれたため、一部キャビティの先端に繊維が充填されていない箇所が見られた。また、立ち壁の積層体の金型凹部と接する表層がプレス時に金型凹部にこすれて、表面の繊維配向が乱れていた。   The obtained fiber reinforced plastic exhibited good surface smoothness at the flat plate portion of the mold, the fibers were along the shape of the concavo-convex portion, and no wrinkles were generated. However, with respect to the standing wall portion, the position was slightly shifted when the mold convex portion contacted the laminate during pressing, and a portion where the fiber was not filled at the tip of the cavity was observed. Further, the surface layer in contact with the mold recess of the laminate of the standing walls was rubbed into the mold recess during pressing, and the fiber orientation on the surface was disturbed.

Figure 0005292972
Figure 0005292972

Figure 0005292972
Figure 0005292972

Figure 0005292972
Figure 0005292972

Figure 0005292972
Figure 0005292972

Figure 0005292972
Figure 0005292972

本発明の製造方法にて得られた積層体を用いて成形された繊維強化プラスチックの用途としては、強度、剛性、軽量性が要求される、自転車用品、ゴルフのシャフトやヘッド等のスポーツ部材、ドアやシートフレームなどの自動車部材、ロボットアームなどの機械部品、スチフナ部品などの航空機部材がある。なかでも、強度、軽量に加え、複雑な形状の成形追従性が要求されるシートパネルやシートフレーム等の自動車部品に好ましく適用できる。   As a use of the fiber reinforced plastic molded using the laminate obtained by the production method of the present invention, strength, rigidity, light weight is required, sports equipment such as bicycle equipment, golf shaft and head, There are automotive parts such as doors and seat frames, mechanical parts such as robot arms, and aircraft parts such as stiffener parts. In particular, the present invention can be preferably applied to automobile parts such as a seat panel and a seat frame that require a molding followability of a complicated shape in addition to strength and light weight.

本発明における積層体平面の概略拡大図である。It is a schematic enlarged view of the laminated body plane in this invention. 本発明における凹部と該凹部に対応する凸部を有し、前記凹部と前記凸部との間にキャビティが構成される成形型の概略図である。It is the schematic of the shaping | molding die which has a recessed part and the convex part corresponding to this recessed part in this invention, and a cavity is comprised between the said recessed part and the said convex part. 本発明における薄肉部を有する積層体の一例を示す概略図、及びその断面図である。It is the schematic which shows an example of the laminated body which has a thin part in this invention, and its sectional drawing. 本発明における積層体の成形型への配置方法の一例を示す概略図である。It is the schematic which shows an example of the arrangement | positioning method to the shaping | molding die of the laminated body in this invention. 本発明における繊維の流動の様子を示す概略図である。It is the schematic which shows the mode of the flow of the fiber in this invention. 本発明における積層体の成形型への配置方法の一例(a)及び繊維の流動の様子(b)を示す概略図である。It is the schematic which shows an example (a) of the arrangement | positioning method to the shaping | molding die of the laminated body in this invention, and the mode (b) of the flow of a fiber. 本発明における樹脂溜まりの様子(a)とプレス時の層構造の乱れ(b)を示す概略図である。It is the schematic which shows the mode (a) of the resin reservoir in this invention, and disorder (b) of the layer structure at the time of a press. 本発明のプリプレグ積層基材に用いる切込プリプレグ基材の切込パターンの一例を示す概略平面図であるIt is a schematic plan view which shows an example of the cutting pattern of the cutting prepreg base material used for the prepreg laminated base material of this invention. 本発明のプリプレグ積層基材に用いる切込プリプレグ基材の切込パターンの一例を示す拡大平面図である。It is an enlarged plan view which shows an example of the cutting pattern of the cutting prepreg base material used for the prepreg laminated base material of this invention. 本発明のプリプレグ積層基材に用いる切込プリプレグ基材の切込パターンの一例を示す概略平面図であるIt is a schematic plan view which shows an example of the cutting pattern of the cutting prepreg base material used for the prepreg laminated base material of this invention. 本発明のプリプレグ積層基材に用いる切込プリプレグ基材の切込パターンの一例を示す概略平面図であるIt is a schematic plan view which shows an example of the cutting pattern of the cutting prepreg base material used for the prepreg laminated base material of this invention. 比較用の積層体、繊維強化プラスチックの一例を示す平面図および断面図である。It is a top view and a sectional view showing an example of a layered product for comparison and fiber reinforced plastic. 本発明の積層基材、繊維強化プラスチックの一例を示す平面図および断面図である。It is the top view and sectional view which show an example of the lamination substrate of the present invention, and fiber reinforced plastics. 本発明の積層基材、繊維強化プラスチックの一例を示す平面図である。It is a top view which shows an example of the laminated base material of this invention, and a fiber reinforced plastic. 本発明における薄肉部を有する積層体の一例を示す概略図、及びその断面図である。It is the schematic which shows an example of the laminated body which has a thin part in this invention, and its sectional drawing. 本発明の一実施態様に係る金型の平面図(a)および断面図(b)である。It is the top view (a) and sectional drawing (b) of the metal mold | die which concern on one embodiment of this invention. 本発明における切込プリプレグ基材の製造方法の一例を示す概略図である。It is the schematic which shows an example of the manufacturing method of the cutting prepreg base material in this invention. 本発明における切込プリプレグ基材の製造方法の一例を示す概略図である。It is the schematic which shows an example of the manufacturing method of the cutting prepreg base material in this invention.

符号の説明Explanation of symbols

1:強化繊維
2:切込プリプレグ基材
3(3a、3b):切込
4:成型型凸部
5:成型型凹部
6:成型型の凸部と凹部の間に構成されるキャビティ
7:成型型端部で形成される形状(立ち壁)
8:キャビティの厚み
9:成型型凹部の開口部
9’:成型型凹部の開口部の投影面積
10:薄肉部
10’:領域A(薄肉部)
10”:領域B(薄肉部)
11:積層体の成型型凹部と接する層
12:層構造
13:層構造の乱れ
14:成型型の端部
15:樹脂溜まり
16:積層体の端部
17:繊維配向方向
18:繊維直交方向
19:切込角度Θ
20:切込を強化繊維の垂直方向に投影した投影長さWs
21:繊維長さL(切込同士の間隔)
22:切込プリプレグ基材の積層体
23:繊維強化プラスチック
24:短繊維層
25:切込開口部
26:繊維束端部
27:隣接層
28:樹脂リッチ部
29:層うねり
30:強化繊維の回転
31:薄肉部を有する積層体
32:薄肉部の厚み
33:積層体前駆体
34:領域Aの幅Wa
35:領域Bの幅Wb
36:領域Bにおける最厚部の和
36’、36”:両表層に向かって徐変化する箇所の最厚部の厚み
37:積層体の成形型と接する層(積層体両表層)
38:積層体の中央層
39:繊維強化プラスチック成形金型
40:凹凸部
41:立ち壁部
42:上金型
43:下金型
44:回転刃ローラー
1: Reinforcing fiber 2: Notched prepreg base material 3 (3a, 3b): Notched 4: Mold mold convex part 5: Mold mold concave part 6: Cavity formed between convex part and concave part of mold 7: Molding Shape formed by mold end (standing wall)
8: Thickness of cavity 9: Opening portion of molding die recess 9 ': Projected area of opening of molding die recess 10: Thin portion 10': Region A (thin portion)
10 ": Region B (thin portion)
11: Layer in contact with mold recess of laminate 12: Layer structure 13: Disorder of layer structure 14: End of mold 15: Resin reservoir 16: End of laminate 17: Fiber orientation direction 18: Fiber orthogonal direction 19 : Cutting angle Θ
20: Projection length Ws obtained by projecting the cut in the vertical direction of the reinforcing fiber
21: Fiber length L (interval between cuts)
22: Laminate of cut prepreg base material 23: Fiber reinforced plastic 24: Short fiber layer 25: Cut opening 26: Fiber bundle end portion 27: Adjacent layer 28: Resin rich portion 29: Layer waviness 30: Reinforced fiber Rotation 31: Laminate having thin portion 32: Thickness of thin portion 33: Laminate precursor 34: Width Wa of region A
35: width Wb of region B
36: Sum of the thickest portions in the region B 36 ', 36 ": Thickness of the thickest portion of the portion gradually changing toward both surface layers 37: Layer in contact with the mold of the laminate (laminate both surfaces)
38: Central layer of laminated body 39: Fiber reinforced plastic molding die 40: Concavity and convexity 41: Standing wall portion 42: Upper die 43: Lower die 44: Rotating blade roller

Claims (6)

一方向に配向した強化繊維とマトリックス樹脂とからなるプリプレグ基材を、所定の形状に裁断した後、前記プリプレグ基材の繊維方向が少なくとも2方向以上に配向して一体化して積層体を作製し、さらに該積層体を、凹部と該凹部に対応する凸部を有し、前記凹部と前記凸部との間にキャビティが構成される成形型に配置してプレス成形し、繊維強化プラスチックを得る繊維強化プラスチックの製造方法であって、少なくとも下記(1)〜(3)の工程を有する繊維強化プラスチックの製造方法。
(1)前記プリプレグ基材の全面に切込を有し、実質的に全ての強化繊維が前記切込により切断されている切込プリプレグ基材を、少なくとも前記凹部と接する層が、前記凹部の開口部の投影面積以上の面積を有するように裁断し、かつ、前記積層体の端部の少なくとも一部において前記積層体の最厚部における前記切込プリプレグ基材の積層数に対して、積層数が少なくとも1層以上少なくなることにより形成される、最厚部の厚みよりも薄い薄肉部を形成するように前記切込プリプレグ基材を積層して前記積層体を作製する積層工程
(2)前記積層体を、前記積層体の薄肉部の少なくとも一部を、前記成形型の端部の少なくとも一部において、型に沿わせて配置するセット工程
(3)前記成形型の一方の型上に配置した積層体を前記成形型のもう一方の型を押し当て加圧し、前記積層体を流動させてプレス成形するプレス工程
After a prepreg base material composed of reinforced fibers and matrix resin oriented in one direction is cut into a predetermined shape, the fiber direction of the prepreg base material is aligned in at least two directions to produce a laminate. Further, the laminate is placed in a mold having a concave portion and a convex portion corresponding to the concave portion, and a cavity is formed between the concave portion and the convex portion, and press-molded to obtain a fiber reinforced plastic. A method for producing a fiber reinforced plastic, the method comprising producing at least the following steps (1) to (3).
(1) A notch prepreg base material that has a notch on the entire surface of the prepreg base material and substantially all of the reinforcing fibers are cut by the notch, and at least a layer that is in contact with the concave part is formed of the concave part. Cut to have an area equal to or larger than the projected area of the opening, and at least part of the end of the laminate is laminated with respect to the number of laminations of the cut prepreg base material in the thickest portion of the laminate. Lamination process (2) for laminating the cut prepreg base material so as to form a thin part thinner than the thickness of the thickest part, formed by reducing the number by at least one layer or more. A step of placing the laminated body along at least part of the thin-walled portion of the laminated body along at least part of the end of the molding die; The formed laminate is molded The other type of pressing pressurizing Press-said laminate is fluidized to press molding
前記(1)の積層工程で用いられる切込プリプレグ基材が、前記切込により分断された強化繊維の繊維長さLが10〜100mmの範囲内であり、繊維体積含有率Vfが45〜65%の範囲内であり、かつ、前記切込が強化繊維となす角度Θの絶対値が2〜25°の範囲内であり、強化繊維の垂直方向に投影した投影長さWsが0.1〜1.5mmの範囲内である、請求項1に記載の繊維強化プラスチックの製造方法。 The cut prepreg base material used in the laminating step (1) has a fiber length L of the reinforcing fibers cut by the cut of 10 to 100 mm, and a fiber volume content Vf of 45 to 65. %, The absolute value of the angle Θ formed by the cut with the reinforcing fiber is in the range of 2 to 25 °, and the projected length Ws projected in the vertical direction of the reinforcing fiber is 0.1 to The manufacturing method of the fiber reinforced plastics of Claim 1 which exists in the range of 1.5 mm. 前記(1)の積層工程で得られる積層体の端部の薄肉部の厚みが、前記成形型のキャビティの厚みの80%以下となるように前記切込プリプレグ基材を積層して前記積層体を得る、請求項1または2に記載の繊維強化プラスチックの製造方法。 The cut prepreg base material is laminated so that the thickness of the thin portion at the end of the laminated body obtained in the laminating step (1) is 80% or less of the thickness of the cavity of the mold. The method for producing a fiber-reinforced plastic according to claim 1 or 2, wherein: 前記(1)の積層工程において、前記積層体を作製する手段が、1つのカットパターンの端部の少なくとも一部において外縁に向かってオフセットした複数のカットパターンに従って前記プリプレグ基材を裁断し、得た複数の前記プリプレグ基材を積層して薄肉部を有する前記積層体を得る、請求項1〜3いずれかに記載の繊維強化プラスチックの製造方法。 In the laminating step of (1), the means for producing the laminated body cuts the prepreg base material according to a plurality of cut patterns offset toward the outer edge at at least a part of one end portion of the cut pattern. The manufacturing method of the fiber reinforced plastics in any one of Claims 1-3 which laminates the said some prepreg base material and obtains the said laminated body which has a thin part. 前記(1)の積層工程において、前記積層体の両表層を構成する前記プリプレグ基材のカットパターンより、前記積層体の両表層以外の中央層を構成する前記プリプレグ基材のカットパターンを小さくして、前記プリプレグ基材を一体化して薄肉部を有する前記積層体を得る、請求項1〜3のいずれかに記載の繊維強化プラスチックの製造方法。 In the laminating step (1), the cut pattern of the prepreg base material constituting the central layer other than both surface layers of the laminate is made smaller than the cut pattern of the prepreg base material constituting both surface layers of the laminate. And the manufacturing method of the fiber reinforced plastics in any one of Claims 1-3 which integrates the said prepreg base material and obtains the said laminated body which has a thin part. 前記(3)のプレス工程において、前記積層体の外縁の少なくとも一部を伸張させ、立ち壁を有する繊維強化プラスチックを成形する、請求項1〜5のいずれかに記載の繊維強化プラスチックの製造方法。 The method for producing a fiber reinforced plastic according to any one of claims 1 to 5, wherein in the pressing step (3), at least a part of an outer edge of the laminate is stretched to form a fiber reinforced plastic having a standing wall. .
JP2008195913A 2008-07-30 2008-07-30 Manufacturing method of fiber reinforced plastic Active JP5292972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008195913A JP5292972B2 (en) 2008-07-30 2008-07-30 Manufacturing method of fiber reinforced plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008195913A JP5292972B2 (en) 2008-07-30 2008-07-30 Manufacturing method of fiber reinforced plastic

Publications (2)

Publication Number Publication Date
JP2010030193A JP2010030193A (en) 2010-02-12
JP5292972B2 true JP5292972B2 (en) 2013-09-18

Family

ID=41735276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008195913A Active JP5292972B2 (en) 2008-07-30 2008-07-30 Manufacturing method of fiber reinforced plastic

Country Status (1)

Country Link
JP (1) JP5292972B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11872773B2 (en) * 2017-02-02 2024-01-16 Toray Industries, Inc. Method for producing fiber-reinforced plastic
US11951695B2 (en) * 2017-02-02 2024-04-09 Toray Industries, Inc. Method for producing fiber-reinforced plastic

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6389223B2 (en) * 2016-11-11 2018-09-12 本田技研工業株式会社 Preform manufacturing method
EP3581354A4 (en) * 2017-02-09 2020-03-25 Toray Industries, Inc. Preform element, preform using same, and method for producing same
CN110612196B (en) * 2017-06-19 2022-04-22 东丽株式会社 Fiber reinforced plastic
CN108705786B (en) * 2018-05-25 2023-10-13 Oppo广东移动通信有限公司 Housing, electronic device, and manufacturing method of housing
JP7149151B2 (en) * 2018-10-03 2022-10-06 川崎重工業株式会社 Composite aircraft part and manufacturing method thereof
WO2020157894A1 (en) * 2019-01-31 2020-08-06 Pcj株式会社 Method for manufacturing laminated composite material, method for manufacturing bag, three dimensional structure, and bag
JP7472480B2 (en) * 2019-12-10 2024-04-23 東レ株式会社 Manufacturing method of fiber reinforced plastic
WO2021157424A1 (en) * 2020-02-06 2021-08-12 東レ株式会社 Preform
EP4129601A4 (en) * 2020-03-24 2024-04-17 Toray Industries, Inc. Preform and method for producing same
CN114770801A (en) * 2022-04-11 2022-07-22 浙江理工大学绍兴柯桥研究院有限公司 Equipment and process for continuously producing carbon fiber composite material laminated plate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085080B2 (en) * 1987-04-27 1996-01-24 三井東圧化学株式会社 Method for producing fiber-reinforced thermoplastics
JPH085079B2 (en) * 1987-04-02 1996-01-24 三井東圧化学株式会社 Method for producing fiber-reinforced thermoplastics
JPH01289837A (en) * 1988-05-17 1989-11-21 Mitsui Toatsu Chem Inc Production of fiber-reinforced theromoplastic resin by using slit continuous fiber prepreg
JP4718694B2 (en) * 2001-02-22 2011-07-06 三菱レイヨン株式会社 Manufacturing method of fiber reinforced composite material molded article
JP4779754B2 (en) * 2006-03-29 2011-09-28 東レ株式会社 Prepreg laminate and fiber reinforced plastic

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11872773B2 (en) * 2017-02-02 2024-01-16 Toray Industries, Inc. Method for producing fiber-reinforced plastic
US11951695B2 (en) * 2017-02-02 2024-04-09 Toray Industries, Inc. Method for producing fiber-reinforced plastic

Also Published As

Publication number Publication date
JP2010030193A (en) 2010-02-12

Similar Documents

Publication Publication Date Title
JP5292972B2 (en) Manufacturing method of fiber reinforced plastic
JP5167953B2 (en) Laminated substrate, fiber reinforced plastic, and production method thereof
JP5315692B2 (en) Manufacturing method of fiber reinforced plastic
JP5272418B2 (en) Cut prepreg base material, composite cut prepreg base material, laminated base material, fiber reinforced plastic, and method for producing cut prepreg base material
JP5223354B2 (en) Cut prepreg base material, laminated base material, fiber reinforced plastic, and method for producing cut prepreg base material
JP5353099B2 (en) Manufacturing method of fiber reinforced plastic
US8354156B2 (en) Prepreg base material, layered base material, fiber-reinforced plastic, process for producing prepreg base material, and process for producing fiber-reinforced plastic
JP5572947B2 (en) Molding material, fiber reinforced plastic, and production method thereof
JP4779754B2 (en) Prepreg laminate and fiber reinforced plastic
JP2008207544A5 (en)
JP2010023359A (en) Method of manufacturing laminate
JP6988812B2 (en) A method for manufacturing a fiber-reinforced plastic using a prepreg laminate and a prepreg laminate.
JP2008279753A (en) Manufacturing method of fiber-reinforced plastics
JP2010018724A (en) Prepreg layered substrate and fiber-reinforced plastic
US11746200B2 (en) Fiber-reinforced resin molding material and molded article
JP2009292002A (en) Method of manufacturing fiber-reinforced plastics
JP7259229B2 (en) chopped fiber bundle mat
WO2019188195A1 (en) Method for producing fiber-reinforced resin
JP2010018723A (en) Incised prepreg substrate, prepreg layered product, and fiber-reinforced plastic
US20220040935A1 (en) Method for manufacturing molded article of fiber-reinforced composite material, reinforcing fiber substrate and molded article of fiber-reinforced composite material
JP2007146151A (en) Prepreg substrate material, laminated substrate material and fiber-reinforced plastic
JP2009220480A (en) Manufacturing method of notched sheet base material
JP2008238809A (en) Method of manufacturing laminate
JP2008260793A (en) Laminated substrate and fiber-reinforced plastic
JP2008208343A (en) Cut prepreg substrate, laminated substrate, fiber reinforced plastics and preparation method of cut prepreg substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130527

R151 Written notification of patent or utility model registration

Ref document number: 5292972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151