JP2015051630A - Method for producing laminate substrate and laminate substrate - Google Patents

Method for producing laminate substrate and laminate substrate Download PDF

Info

Publication number
JP2015051630A
JP2015051630A JP2014160475A JP2014160475A JP2015051630A JP 2015051630 A JP2015051630 A JP 2015051630A JP 2014160475 A JP2014160475 A JP 2014160475A JP 2014160475 A JP2014160475 A JP 2014160475A JP 2015051630 A JP2015051630 A JP 2015051630A
Authority
JP
Japan
Prior art keywords
base material
laminated base
prepreg
laminated
reinforcing fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014160475A
Other languages
Japanese (ja)
Other versions
JP6435696B2 (en
Inventor
章亘 佐々木
Akinobu Sasaki
章亘 佐々木
肇 奥津
Hajime Okutsu
肇 奥津
理沙 荒井
Risa Arai
理沙 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2014160475A priority Critical patent/JP6435696B2/en
Publication of JP2015051630A publication Critical patent/JP2015051630A/en
Application granted granted Critical
Publication of JP6435696B2 publication Critical patent/JP6435696B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for stably producing a laminate substrate which has low variation in dynamic characteristics and excellent shapability into a complicated shape and can be formed in a short time while maintaining excellent dynamic characteristics such as flexural strength or tensile elasticity applicable to a structural material and to provide a laminate substrate.SOLUTION: There is provided a method for producing a laminate substrate in which two or more prepregs containing a reinforced fiber and a thermoplastic resin are laminated and the laminate is heated at a boiling point of the thermoplastic resin or the glass transition temperature or more while pressurizing the laminate by sandwiching between plates to heat and then integrated by cooling at the boiling point of the thermoplastic resin or the glass transition temperature or less while pressurizing at a pressure during heating or more, wherein the ratio between the area of the laminate substrate after the integration and the area of the laminate substrate before the integration is 1.01 to 1.10.

Description

本発明は、スタンピング成形時の複雑な形状への賦形性に優れ、短時間で成形可能であり、かつ成形後の部品が構造材に適用可能な優れた力学物性、低ばらつき性を有することを特徴とする積層基材、およびその製造方法に関する。さらに詳しくは、リブ,ボス等の3次元形状の成形に容易に追随し、構造部材として機械強度を維持し、例えば航空機部材、自動車部材、スポーツ用具等に好適に用いられる繊維強化プラスチックの中間基材である積層基材の製造方法、および積層基材に関する。   The present invention is excellent in shaping into a complicated shape at the time of stamping molding, can be molded in a short time, and has excellent mechanical properties and low variability in which the molded part can be applied to a structural material And a manufacturing method thereof. More specifically, an intermediate base of fiber reinforced plastic that easily follows the molding of three-dimensional shapes such as ribs and bosses, maintains mechanical strength as a structural member, and is suitably used for, for example, aircraft members, automobile members, sports equipment, and the like. The present invention relates to a method for producing a laminated base material and a laminated base material.

繊維強化熱可塑性プラスチックの成形方法としては、プリプレグと称される連続した強化繊維に熱可塑性樹脂を含浸せしめた基材を積層し、プレス等で加熱加圧することにより目的の形状に賦形するスタンピング成形が最も一般的に行われている。これにより得られた繊維強化プラスチックは、連続した強化繊維を用いているので優れた力学物性を有する。また連続した強化繊維は規則的に配列することで、必要とする力学物性に設計することが可能であり、力学物性のばらつきも小さい。しかしながら、連続した強化繊維であるゆえに3次元形状等の複雑な形状を形成することは難しく、主として平面形状に近い部材に限られる。   As a method for molding fiber-reinforced thermoplastics, stamping is performed by laminating a base material impregnated with a thermoplastic resin into continuous reinforcing fibers called prepregs, and shaping into the desired shape by heating and pressing with a press or the like Molding is most commonly performed. The fiber reinforced plastic obtained in this way has excellent mechanical properties because it uses continuous reinforcing fibers. Further, by arranging the continuous reinforcing fibers regularly, it is possible to design the required mechanical properties, and the variation in the mechanical properties is small. However, since it is a continuous reinforcing fiber, it is difficult to form a complicated shape such as a three-dimensional shape, and it is mainly limited to members close to a planar shape.

上述のような材料の欠点を埋めるべく、連続繊維と熱可塑性樹脂からなるプリプレグに切込を入れることにより、短時間成形が可能であり、成形時には優れた賦形性を示し、繊維強化プラスチックとしたときに優れた力学物性を発現するとされる積層基材が開示されている(特許文献1)。特許文献1は、積層基材の製造において、切込プリプレグを複数枚積層し、積層した切込プリプレグ基材を加熱し、所定のボイド率となるまで、加圧及び減圧を繰り返すのが良いと記載している。また、該特許文献1は、積層基材の製造に使用する機器としてダブルベルトプレスを例示している。該特許文献1は、プリプレグ層間のボイドを除去し、且つ、積層基材の積層構造を保つ方法を開示していない。   In order to fill the drawbacks of the above materials, by cutting into a prepreg made of continuous fibers and thermoplastic resin, it can be molded in a short time, and exhibits excellent formability at the time of molding. A laminated base material that is said to exhibit excellent mechanical properties when disclosed (Patent Document 1). Patent Document 1 describes that in the production of a laminated base material, it is preferable to laminate a plurality of cut prepregs, heat the laminated cut prepreg base material, and repeat the pressurization and decompression until a predetermined void ratio is obtained. It is described. Moreover, this patent document 1 has illustrated the double belt press as an apparatus used for manufacture of a laminated base material. The Patent Document 1 does not disclose a method for removing voids between prepreg layers and maintaining the laminated structure of the laminated base material.

また、非連続繊維と熱可塑性樹脂からなる基材として、強化繊維100重量%の内、繊維長10mmを超える強化繊維の比率が0〜50重量%、繊維長2〜10mmの強化繊維の比率が50〜100重量%、繊維長2mm未満の強化繊維の比率が0〜50重量%である強化繊維と熱可塑性樹脂を含むプリプレグからなる基材が知られている(特許文献2)。この基材においても、プリプレグ層間のボイドを除去し、且つ、積層基材の積層構造を保つ方法を開示していない。   Moreover, as a base material composed of discontinuous fibers and a thermoplastic resin, the ratio of reinforcing fibers having a fiber length of 10 mm out of 100% by weight of reinforcing fibers is 0 to 50% by weight, and the ratio of reinforcing fibers having a fiber length of 2 to 10 mm is A base material made of a prepreg containing reinforcing fibers and a thermoplastic resin, in which the ratio of reinforcing fibers having a fiber length of 50 to 100% by weight and a fiber length of less than 2 mm is 0 to 50% by weight is known (Patent Document 2). This base material also does not disclose a method for removing voids between prepreg layers and maintaining the laminated structure of the laminated base material.

特許第5167953号公報Japanese Patent No. 5167953 特許第4862913号公報Japanese Patent No. 4862913

本発明は、上記のような従来技術に伴う問題点を解決しようとするものであって、構造材に適用可能な曲げ強度や引張弾性率など優れた力学物性を有しながら、力学特性のばらつきが低く、さらに複雑な形状への賦形性に優れて、短時間で成形可能である積層基材を安定的に製造する方法、及び積層基材を提供することを課題とする。   The present invention is intended to solve the problems associated with the prior art as described above, and has excellent mechanical properties such as bending strength and tensile elastic modulus applicable to a structural material, and variations in mechanical properties. It is an object of the present invention to provide a method for stably producing a laminated base material that is low, has excellent shapeability into a complicated shape, and can be molded in a short time, and a laminated base material.

本発明等は、上記課題を解決すべく鋭意検討した結果、プリプレグ積層体の一体化後の積層基材の面積/一体化前の積層基材の面積の比が、1.01〜1.10となるようにコントロールすればよいことを見出し、本発明を完成するに至った。即ち、本発明の要旨は以下の(1)〜(18)に存する。   As a result of intensive studies to solve the above problems, the present invention has a ratio of the area of the laminated base material after the integration of the prepreg laminate / the area of the laminated base material before the integration of 1.01 to 1.10. As a result, the inventors have found that it is sufficient to control so that the present invention is completed. That is, the gist of the present invention resides in the following (1) to (18).

(1) 強化繊維と熱可塑性樹脂とを含むプリプレグを2枚以上積層して、その積層物をプレートに挟んで加圧しながら熱可塑性樹脂の融点あるいはガラス転移温度以上に加熱した後、加熱時の圧力以上に加圧しながら熱可塑性樹脂の融点あるいはガラス転移温度以下に冷却することにより一体化する方法であって、一体化後の積層基材の面積/一体化前の積層基材の面積の比が、1.01〜1.10であることを特徴とする積層基材の製造方法。   (1) Two or more prepregs containing reinforcing fibers and a thermoplastic resin are laminated, heated while being heated above the melting point or glass transition temperature of the thermoplastic resin while pressing the laminate sandwiched between the plates, It is a method of integration by cooling below the melting point or glass transition temperature of the thermoplastic resin while pressurizing above the pressure, and the ratio of the area of the laminated base material after integration / the area of the laminated base material before integration Is 1.01-1.10, The manufacturing method of the laminated base material characterized by the above-mentioned.

(2) プリプレグの強化繊維が一方向に配向していることを特徴とする上記(1)に記載の製造方法。   (2) The production method according to (1), wherein the reinforcing fibers of the prepreg are oriented in one direction.

(3) 積層基材が、一方向に配向した強化繊維と熱可塑性樹脂とを含むプリプレグを複数枚積層した積層基材であって、前記プリプレグは、強化繊維を横切る方向に強化繊維を切断する深さの切込を有し、前記切込が直線状であって、切込と強化繊維のなす角度が30°以上、60°以下であり、前記プリプレグ1mあたりの切込長の総和が20m以上、150m以下であるプリプレグを含むことを特徴とする上記(2)に記載の積層基材の製造方法。 (3) The laminated base material is a laminated base material obtained by laminating a plurality of prepregs including reinforcing fibers oriented in one direction and a thermoplastic resin, and the prepreg cuts the reinforcing fibers in a direction crossing the reinforcing fibers. It has a depth of cut, the cut is straight, the angle between the cut and the reinforcing fiber is 30 ° or more and 60 ° or less, and the sum of the cut lengths per 1 m 2 of the prepreg is The method for producing a laminated base material as described in (2) above, comprising a prepreg of 20 m or more and 150 m or less.

(4) 積層基材が、一方向に配向した強化繊維と熱可塑性樹脂とを含むプリプレグを複数枚積層した積層基材であって、前記プリプレグは、強化繊維を横切る方向に強化繊維を切断する深さの切込を有し、前記切込が直線状の中心線に沿った曲線であって、かつ曲線を中心線に投影した際に重なりがなく、該中心線と強化繊維のなす角度が30°以上、60°以下であり、前記プリプレグ1mあたりの切込長の総和が20m以上、150m以下であるプリプレグを含むことを特徴とする上記(2)に記載の積層基材の製造方法。 (4) The laminated base material is a laminated base material in which a plurality of prepregs including reinforcing fibers oriented in one direction and a thermoplastic resin are laminated, and the prepreg cuts the reinforcing fibers in a direction crossing the reinforcing fibers. A notch having a depth, wherein the notch is a curve along a straight center line, and when the curve is projected onto the center line, there is no overlap, and the angle formed by the center line and the reinforcing fiber is The method for producing a laminated base material according to (2) above, comprising a prepreg that is 30 ° or more and 60 ° or less and that has a total cutting depth per 1 m 2 of the prepreg of 20 m or more and 150 m or less. .

(5) 積層基材が、切込によって切断された強化繊維の長さが10mm以上50mm以下であるプリプレグを含むことを特徴とする上記(3)または(4)に記載の積層基材の製造方法。   (5) The production of a laminated base material according to (3) or (4) above, wherein the laminated base material contains a prepreg having a length of reinforcing fibers cut by cutting of 10 mm or more and 50 mm or less. Method.

(6) プリプレグを構成する強化繊維が、強化繊維100重量%の内、繊維長2mm〜10mmの比率が50〜100重量%であることを特徴とする上記(1)に記載の積層基材の製造方法。   (6) The laminated base material according to the above (1), wherein the reinforcing fiber constituting the prepreg is 50% to 100% by weight in a fiber length of 2 mm to 10 mm among 100% by weight of the reinforcing fiber. Production method.

(7) 強化繊維100重量%の内、繊維長10mm超の強化繊維の比率が0〜50重量%、繊維長2mm未満の強化繊維の比率が0〜50重量であることを特徴とする上記(6)に記載の積層基材の製造方法。   (7) Of the above-mentioned 100% by weight of reinforcing fibers, the ratio of reinforcing fibers having a fiber length of more than 10 mm is 0 to 50% by weight, and the ratio of reinforcing fibers having a fiber length of less than 2 mm is 0 to 50%. The manufacturing method of the laminated base material as described in 6).

(8) 前記積層基材を構成する複数のプリプレグが、プリプレグに含まれる強化繊維の方向が疑似等方となるように積層されることを特徴とする上記(1)から(5)のいずれかに記載の積層基材の製造方法。   (8) Any of (1) to (5) above, wherein the plurality of prepregs constituting the laminated base material are laminated so that the directions of the reinforcing fibers contained in the prepreg are pseudo-isotropic. The manufacturing method of the laminated base material of description.

(9) 前記積層基材を構成する複数のプリプレグが、プリプレグに含まれる強化繊維の方向が0°であるプリプレグと90°であるプリプレグが交互に積層されることを特徴とする上記(1)から(5)のいずれかに記載の積層基材の製造方法。   (9) The above (1), wherein the plurality of prepregs constituting the laminated base material are alternately laminated with prepregs in which the direction of reinforcing fibers contained in the prepreg is 0 ° and 90 °. The manufacturing method of the laminated base material in any one of (5).

(10) 前記強化繊維が、平均単繊維繊度が0.5dtex以上、2.4dtex以下である炭素繊維であることを特徴とする上記(1)から(9)のいずれかに記載の積層基材の製造方法。   (10) The laminated substrate according to any one of (1) to (9), wherein the reinforcing fiber is a carbon fiber having an average single fiber fineness of 0.5 dtex or more and 2.4 dtex or less. Manufacturing method.

(11) 前記積層基材が、熱可塑性樹脂のみからなる層をさらに含むことを特徴とする上記(1)から(10)のいずれかに記載の積層基材の製造方法。   (11) The method for producing a laminated base material according to any one of (1) to (10), wherein the laminated base material further includes a layer made of only a thermoplastic resin.

(12) 前記積層基材を構成するプリプレグに含まれる強化繊維の体積含有率が20体積%以上、55体積%以下であることを特徴とする上記(1)から(11)のいずれかに記載の積層基材の製造方法。   (12) The volume content of the reinforcing fibers contained in the prepreg constituting the laminated base material is 20% by volume or more and 55% by volume or less, according to any one of (1) to (11) above The manufacturing method of the laminated base material of this.

(13) 前記積層基材を構成するプリプレグの厚さが50μm以上、200μm以下であることを特徴とする上記(1)から(12)のいずれかに記載の積層基材の製造方法。   (13) The method for producing a laminated base material according to any one of (1) to (12) above, wherein the thickness of the prepreg constituting the laminated base material is 50 μm or more and 200 μm or less.

(14) 前記積層基材を構成するプリプレグどうしが接着されていることを特徴とする上記(1)から(13)のいずれかに記載の積層基材の製造方法。   (14) The method for producing a laminated base material according to any one of (1) to (13), wherein prepregs constituting the laminated base material are adhered to each other.

(15) 接着方法が、熱溶着を用いて施されたものであることを特徴とする上記(14)に記載の積層基材の製造方法。   (15) The method for producing a laminated base material as described in (14) above, wherein the bonding method is performed using thermal welding.

(16) 接着方法が、振動溶着を用いて施されたものであることを特徴とする上記(14)に記載の積層基材の製造方法。   (16) The method for producing a laminated base material as described in (14) above, wherein the bonding method is performed by vibration welding.

(17) 接着方法が、熱プレスを用いて施されたものであることを特徴とする上記(14)に記載の積層基材の製造方法。   (17) The method for producing a laminated base material as described in (14) above, wherein the adhesion method is performed using a hot press.

(18) 上記(1)〜(17)のいずれかの方法で製造された積層基材。   (18) A laminated substrate produced by any one of the methods (1) to (17).

本発明によれば、複雑な形状への賦形性に優れて短時間成形可能であり、かつ構造材に適用可能な曲げ強度や引張弾性率など優れた力学物性、その低ばらつき性を持つ積層基材を、プリプレグ間のボイドを除去し、且つ、積層基材の積層構造を保ちながら、安定的に得ることができる。   According to the present invention, it is excellent in formability to a complicated shape and can be formed in a short time, and has excellent mechanical properties such as bending strength and tensile elastic modulus applicable to a structural material, and a laminate having low variability thereof. The substrate can be stably obtained while removing voids between the prepregs and maintaining the laminated structure of the laminated substrate.

本発明のプリプレグの切込の第一例。The 1st example of the cutting of the prepreg of this invention. 本発明のプリプレグの切込の第二例。The 2nd example of the cutting of the prepreg of this invention. 積層基材の製造方法の第一例First example of manufacturing method of laminated substrate 積層基材の製造方法の第二例Second example of laminated substrate manufacturing method

本発明は、強化繊維と熱可塑性樹脂とを含むプリプレグを2枚以上積層して、その積層物をプレートに挟んで加圧しながら熱可塑性樹脂の融点あるいはガラス転移温度以上に加熱した後、加熱時の圧力以上に加圧しながら熱可塑性樹脂の融点あるいはガラス転移温度以下に冷却することにより積層物を一体化させる積層基材の製造方法に関する。   In the present invention, two or more prepregs containing reinforcing fibers and a thermoplastic resin are laminated, and the laminate is heated between the melting point of the thermoplastic resin or the glass transition temperature while being pressed between the plates, and then heated. It is related with the manufacturing method of the laminated base material which integrates a laminated body by cooling to below melting | fusing point or glass transition temperature of a thermoplastic resin, pressurizing more than this pressure.

本発明が開示する第一の方法では、一体化後の積層基材の面積/一体化前の積層基材の面積の比を1.01〜1.10することにより機械的物性に優れ強化繊維の乱れのない基材を得ることができる。具体的には、一体化後の積層基材の面積/一体化前の積層基材の面積の比を1.01以上にすることにより、プリプレグ間のボイドを減少させることができ機械的物性を高めることができる。また、一体化後の積層基材の面積/一体化前の積層基材の面積の比を1.1以下にすることにより、強化繊維の乱れを抑制することができ、外観が良好でプリプレグの積層構造を保つことができる。   In the first method disclosed by the present invention, the ratio of the area of the laminated base material after the integration / the area of the laminated base material before the integration is 1.01 to 1.10, which is excellent in mechanical properties and is a reinforcing fiber. A substrate without any disturbance can be obtained. Specifically, by setting the ratio of the area of the laminated base material after integration / the area of the laminated base material before integration to 1.01 or more, voids between prepregs can be reduced and mechanical properties can be reduced. Can be increased. Moreover, by making the ratio of the area of the laminated base material after integration / the area of the laminated base material before integration 1.1 or less, the disturbance of the reinforcing fibers can be suppressed, the appearance is good, and the prepreg A laminated structure can be maintained.

本発明が開示する第二の方法では、プリプレグの強化繊維が一方向に配向していることが必須となる。プリプレグとして、強化繊維を横切る方向に強化繊維を切断する深さの切込を有し、前記切込が直線状であって、切込と強化繊維のなす角度(図1および図2におけるθ)が30°以上、60°以下であり、前記プリプレグ1mあたりの切込長の総和が20m以上、150m以下であるプリプレグを使用する。 In the second method disclosed in the present invention, it is essential that the reinforcing fibers of the prepreg are oriented in one direction. As a prepreg, it has a notch of the depth which cuts a reinforcing fiber in the direction which crosses a reinforcing fiber, and the said notch is a straight line, Comprising: The angle which a notch and a reinforcing fiber make (theta in Drawing 1 and Drawing 2) Is 30 ° or more and 60 ° or less, and a prepreg having a total cutting length per 1 m 2 of the prepreg of 20 m or more and 150 m or less is used.

本発明が開示する第三の方法では、プリプレグの強化繊維が一方向に配向していることが必須となる。プリプレグとして、強化繊維を横切る方向に強化繊維を切断する深さの切込を有し、前記切込が直線状の中心線に沿った曲線であって、かつ曲線を中心線に投影した際に重なりがなく、該中心線と強化繊維のなす角度(図1および図2におけるθ)が30°以上、60°以下であり、前記プリプレグ1mあたりの切込長の総和が20m以上、150m以下であるプリプレグを使用する。 In the third method disclosed by the present invention, it is essential that the reinforcing fibers of the prepreg are oriented in one direction. As a prepreg, it has a depth of cut that cuts the reinforcing fiber in a direction crossing the reinforcing fiber, and the notch is a curve along a straight center line, and when the curve is projected onto the center line There is no overlap, the angle between the center line and the reinforcing fiber (θ in FIGS. 1 and 2) is 30 ° or more and 60 ° or less, and the total cutting length per 1 m 2 of the prepreg is 20 m or more and 150 m or less. Use a prepreg that is

一般に積層基材に含まれる強化繊維の長さは、長いほど力学特性に優れるものの、スタンピング成形時の流動性は低下する。スタンピング成形時の流動性向上のためには、強化繊維をある長さに切断することが効果的であり、このことによりリブやボスといった複雑な3次元形状にも流動する積層基材を得ることができる。しかしながら一般にランダム材とよばれる切断された強化繊維と樹脂組成物からなるスタンピング成形用の基材は力学特性にばらつきを生じるため、部品設計が困難であった。この解決策として切込を有したプリプレグを複数枚、積層し、力学特性が良好でそのばらつきが小さく、スタンピング成形時の流動性に優れる積層基材が提案されている。   In general, the longer the length of the reinforcing fiber contained in the laminated substrate, the better the mechanical properties, but the fluidity during stamping molding decreases. In order to improve the fluidity during stamping molding, it is effective to cut the reinforcing fiber to a certain length, thereby obtaining a laminated base material that can flow even in complicated three-dimensional shapes such as ribs and bosses. Can do. However, a stamping molding base material made of a cut reinforcing fiber and a resin composition, which is generally called a random material, has a variation in mechanical properties, so that it is difficult to design a part. As a solution to this problem, there has been proposed a laminated base material in which a plurality of prepregs having cuts are laminated, the mechanical properties are good, the variation is small, and the fluidity during stamping molding is excellent.

スタンピング成形時の流動性は、繊維を切断する切込と強化繊維のなす角度θのみならず、1mあたりの切込長の総和laに依存する。θが大きいほど繊維間のせん断力が小さくなるために流動性が高く、laが大きいほどプリプレグ中の切断部分が多いため流動性が高くなる。平板のスタンピング成形の場合、θは25°以上が好ましく、laは10m以上が好ましい。さらにリブなど複雑形状のスタンピング成形の場合、θは30°以上が好ましく、laは20m以上が好ましい。 The fluidity at the time of stamping molding depends not only on the angle θ formed by the notches for cutting the fibers and the reinforcing fibers, but also on the total length la of the notches per 1 m 2 . The larger θ is, the smaller the shear force between the fibers is, and thus the higher the fluidity is. The larger la is, the more the cut portion in the prepreg is, the higher the fluidity is. In the case of flat stamping, θ is preferably 25 ° or more, and la is preferably 10 m or more. Furthermore, in the case of stamping molding having a complicated shape such as a rib, θ is preferably 30 ° or more, and la is preferably 20 m or more.

曲げ強度、曲げ弾性率に代表される力学物性は、繊維を切断する切込と強化繊維のなす角度θのみならず、1mあたりの切込長の総和laに依存する。切込と強化繊維のなす角度θが小さいほど機械物性が高いことが知られており、またlaが小さいほどプリプレグ中の切断部分が少ないために高い力学物性が得られる。例えば自動車の準構造部材に利用するためには、θが70°以下が好ましく、laは200m以下が好ましい。またさらに高い力学強度が求められる構造部材に用いるためには、θは60°以下が好ましく、laは150m以下が好ましい。 Mechanical properties represented by bending strength and flexural modulus depend not only on the angle θ formed by the notch for cutting the fiber and the reinforcing fiber but also on the total length la of the notch length per 1 m 2 . It is known that the smaller the angle θ between the cut and the reinforcing fiber is, the higher the mechanical properties are, and the smaller la is, the smaller the number of cut parts in the prepreg, the higher the mechanical properties. For example, θ is preferably 70 ° or less and la is preferably 200 m or less in order to be used for a semi-structure member of an automobile. For use in structural members that require higher mechanical strength, θ is preferably 60 ° or less, and la is preferably 150 m or less.

切込を施したプリプレグを製造する時間や製造コストは、繊維を切断する切込と強化繊維のなす角度θのみならず、1mあたりの切込長の総和laに大きく依存する。θが小さく、かつlaが大きい場合であって、カッティングプロッタで切断する場合には切込加工に有する時間が長大になる。また打ち抜きで切込を加工する場合には、打ち抜き刃の製造コストが膨大になるだけでなく、打ち抜く際に強化繊維方向に裂け目が生じやすく、隣接する切込間でシートの欠落が生じる。このためθは15°以上が好ましく、laは200m以下が好ましい。さらに切込加工後の積層工程を考慮すると、θは30°以上が好ましく、laは150m以下がさらに好ましい。 The time and manufacturing cost for manufacturing the prepreg with the cut greatly depend not only on the angle θ between the cut for cutting the fiber and the reinforcing fiber but also on the total length la of the cut length per 1 m 2 . When θ is small and la is large, and when cutting with a cutting plotter, the time required for the cutting process becomes long. In addition, when the cut is processed by punching, not only the manufacturing cost of the punching blade is increased, but also a tear is easily generated in the direction of the reinforcing fiber when punching, and a sheet is lost between adjacent cuts. Therefore, θ is preferably 15 ° or more, and la is preferably 200 m or less. Further, in consideration of the lamination process after the cutting process, θ is preferably 30 ° or more, and la is more preferably 150 m or less.

前記切込の形状は直線状である必要はない。曲線を用いることで、同一切込角度と同一繊維長でありながら、1mあたりの切込長の総和laを大きくすることができる。この場合高い力学物性を維持しつつスタンピング成形性の向上が期待できる。 The shape of the notch need not be linear. By using the curve, it is possible to increase the total sum la of the cut length per 1 m 2 while maintaining the same cut angle and the same fiber length. In this case, an improvement in stamping moldability can be expected while maintaining high mechanical properties.

本発明が開示する第四の方法では、プリプレグを構成する強化繊維が、強化繊維100重量%の内、繊維長2〜10mmの強化繊維の比率が50〜100重量%であるプリプレグを使用する。当該プリプレグは、繊維長10mmを超える強化繊維と繊維長2mm未満の強化繊維の合計が0〜50重量%であるが、より好ましくは、強化繊維100重量%の内、繊維長10mmを超える強化繊維の比率が0〜50重量%、繊維長2mm未満の強化繊維の比率が0〜50重量%であるプリプレグを使用する。10mmより長い強化繊維が50重量%を超えると積層工程や成形工程での厚みの膨張が大きくなる問題がある。また、2mm未満の強化繊維が50重量%を超えるとそのプリプレグや積層体は十分な強度を有さず取扱性に問題があるし、その積層体から得られる成形品の物性が低下する問題がある。   In the fourth method disclosed by the present invention, the reinforcing fiber constituting the prepreg uses a prepreg in which the ratio of reinforcing fibers having a fiber length of 2 to 10 mm is 50 to 100% by weight among 100% by weight of the reinforcing fibers. In the prepreg, the total of the reinforcing fiber having a fiber length of more than 10 mm and the reinforcing fiber having a fiber length of less than 2 mm is 0 to 50% by weight, and more preferably, the reinforcing fiber having a fiber length of more than 10 mm out of 100% by weight of the reinforcing fiber. A prepreg having a ratio of 0 to 50% by weight and a ratio of reinforcing fibers having a fiber length of less than 2 mm is 0 to 50% by weight. When the reinforcing fiber longer than 10 mm exceeds 50% by weight, there is a problem that the expansion of the thickness in the laminating process or the molding process becomes large. Moreover, when the reinforcing fiber of less than 2 mm exceeds 50% by weight, the prepreg or the laminate does not have sufficient strength, and there is a problem in handleability, and the physical properties of a molded product obtained from the laminate are deteriorated. is there.

本発明の積層基材に含まれるプリプレグに用いることができる強化繊維としては、強化繊維の種類は特に限定されず、無機繊維、有機繊維、金属繊維、またはこれらを組み合わせたハイブリッド構成の強化繊維が使用できる。無機繊維としては、炭素繊維、黒鉛繊維、炭化珪素繊維、アルミナ繊維、タングステンカーバイド繊維、ボロン繊維、ガラス繊維などが挙げられる。有機繊維としては、アラミド繊維、高密度ポリエチレン繊維、その他一般のナイロン繊維、ポリエステルなどが挙げられる。金属繊維としては、ステンレス、鉄等の繊維を挙げられ、また金属を被覆した炭素繊維でもよい。これらの中では、最終成形物の強度等の機械特性を考慮すると、炭素繊維が好ましい。また、強化繊維の平均繊維直径は、1〜50μmであることが好ましく、5〜20μmであることがさらに好ましい。   As the reinforcing fiber that can be used for the prepreg included in the laminated base material of the present invention, the type of the reinforcing fiber is not particularly limited, and inorganic fiber, organic fiber, metal fiber, or a hybrid fiber that combines these is used. Can be used. Examples of the inorganic fiber include carbon fiber, graphite fiber, silicon carbide fiber, alumina fiber, tungsten carbide fiber, boron fiber, and glass fiber. Examples of organic fibers include aramid fibers, high density polyethylene fibers, other general nylon fibers, and polyesters. Examples of the metal fibers include fibers such as stainless steel and iron, and may be carbon fibers coated with metal. Among these, carbon fibers are preferable in consideration of mechanical properties such as strength of the final molded product. Moreover, it is preferable that the average fiber diameter of a reinforced fiber is 1-50 micrometers, and it is more preferable that it is 5-20 micrometers.

強化繊維が炭素繊維である場合、その平均単繊維繊度は、0.5dtex以上、2.4dtex以下である炭素繊維であることが好ましい。平均単繊維繊度が低すぎると炭素繊維への樹脂含浸が困難になるおそれがあるし、高すぎると炭素繊維と樹脂の界面積が減少するおそれがある。強化繊維の平均単繊維繊度は、より好ましくは0.55〜2.0dtex以上、更に好ましくは0.6〜1.5dtex以上である。   When the reinforcing fiber is a carbon fiber, the average single fiber fineness is preferably a carbon fiber that is 0.5 dtex or more and 2.4 dtex or less. If the average single fiber fineness is too low, it may be difficult to impregnate the carbon fiber with the resin, and if it is too high, the interface area between the carbon fiber and the resin may be reduced. The average single fiber fineness of the reinforcing fibers is more preferably 0.55 to 2.0 dtex or more, and further preferably 0.6 to 1.5 dtex or more.

本発明の積層基材に含まれるプリプレグには熱可塑性樹脂を用いることが必要である。すなわち、不連続な強化繊維を用いた繊維強化プラスチックの場合、強化繊維端部どうしを連結するように破壊するため、一般的に熱硬化性樹脂よりも靱性値が高い熱可塑性樹脂を用いることで、強度、特に衝撃性が向上する。さらに熱可塑性樹脂は化学反応を伴うことなく冷却固化して形状を決定するので、短時間成形が可能であり、生産性に優れる。このような熱可塑性樹脂としては、ポリアミド(ナイロン6、ナイロン66、芳香族ナイロン等)、ポリオレフィン(ポリエチレン、ポリプロピレン等)、変性ポリオレフィン、ポリエステル(ポリエチレンテレフタレート、ポリブチレンテレフタレート等)、ポリカーボネート、ポリアミドイミド、ポリフェニレンオキシド、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリスチレン、ABS、ポリフェニレンサルファイド、液晶ポリエステルや、アクリロニトリルとスチレンの共重合体等を用いることができる。また、これらの混合物を用いてもよい。さらに、ナイロン6とナイロン66との共重合ナイロンのように共重合したものであってもよい。また、得たい成形品の要求特性に応じて、難燃剤、耐候性改良剤、その他酸化防止剤、熱安定剤、紫外線吸収剤、可塑剤、滑剤、着色剤、相溶化剤、導電性フィラー等を添加しておくこともできる。   It is necessary to use a thermoplastic resin for the prepreg contained in the laminated base material of the present invention. That is, in the case of a fiber reinforced plastic using discontinuous reinforcing fibers, in order to break so as to connect the ends of the reinforcing fibers, it is generally possible to use a thermoplastic resin having a higher toughness value than a thermosetting resin. , Strength, especially impact properties are improved. Furthermore, since the thermoplastic resin is cooled and solidified without a chemical reaction to determine the shape, it can be molded in a short time and has excellent productivity. Examples of such thermoplastic resins include polyamide (nylon 6, nylon 66, aromatic nylon, etc.), polyolefin (polyethylene, polypropylene, etc.), modified polyolefin, polyester (polyethylene terephthalate, polybutylene terephthalate, etc.), polycarbonate, polyamideimide, Polyphenylene oxide, polysulfone, polyether sulfone, polyether ether ketone, polyether imide, polystyrene, ABS, polyphenylene sulfide, liquid crystal polyester, a copolymer of acrylonitrile and styrene, and the like can be used. Moreover, you may use these mixtures. Further, it may be a copolymer of nylon 6 and nylon 66 such as copolymerized nylon. In addition, depending on the required characteristics of the molded product to be obtained, flame retardants, weather resistance improvers, other antioxidants, heat stabilizers, ultraviolet absorbers, plasticizers, lubricants, colorants, compatibilizers, conductive fillers, etc. Can also be added.

本発明が開示する第一〜第三の方法では、積層基材に含まれるプリプレグは、切込により強化繊維が切断されていることが必要である。切断された強化繊維の長さLは特に制限されるものではないが、力学特性と流動性の観点から、5mm以上、100mm以下が好ましい。特に十分な力学物性とスタンピング成形時のリブ等の薄肉部への流動を両立させるためには10mm以上50mm以下がさらに好ましい。   In the first to third methods disclosed by the present invention, the prepreg contained in the laminated base material needs to have the reinforcing fibers cut by cutting. The length L of the cut reinforcing fiber is not particularly limited, but is preferably 5 mm or more and 100 mm or less from the viewpoint of mechanical properties and fluidity. In particular, 10 mm or more and 50 mm or less is more preferable in order to achieve both sufficient mechanical properties and flow to a thin portion such as a rib during stamping molding.

本発明の積層基材は、積層基材を構成するプリプレグは、前記の繊維を切断する切込と強化繊維のなす角度θと1mあたりの切込長の総和laの範囲を満たすものであれば、切込の長さと切込の数の異なるプリプレグを積層しても良い。スタンピング成形時、ボスやリブなどの薄肉で三次元形状を有する部分にはθを大きく、かつlaを大きくすることが好ましい。逆に流動が二次元的で流動長が小さく、高い力学物性を必要とする部分には、θを小さく、かつlaを小さくすることが好ましい。 In the laminated base material of the present invention, the prepreg constituting the laminated base material satisfies the range of the sum la of the angle θ formed by the cuts for cutting the fibers and the reinforcing fibers and the cut length per 1 m 2. For example, prepregs having different lengths of cuts and different numbers of cuts may be laminated. At the time of stamping molding, it is preferable to increase θ and increase la in a thin and three-dimensional portion such as a boss or rib. On the other hand, it is preferable that θ is small and la is small in a portion where the flow is two-dimensional and the flow length is small and high mechanical properties are required.

本発明の積層基材は、積層基材を構成する複数のプリプレグの間に、熱可塑性樹脂のみからなる層を積層することが、プレス時の流動性をさらに向上する点で好ましい。このような、熱可塑性樹脂のみからなる層としては、プリプレグに含まれる樹脂組成物と同一の樹脂組成物であるかもしくは、ポリアミド(ナイロン6、ナイロン66、芳香族ナイロン等)、ポリオレフィン(ポリエチレン、ポリプロピレン等)、変性ポリオレフィン、ポリエステル(ポリエチレンテレフタレート、ポリブチレンテレフタレート等)、ポリカーボネート、ポリアミドイミド、ポリフェニレンオキシド、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリスチレン、ABS、ポリフェニレンサルファイド、液晶ポリエステルや、アクリロニトリルとスチレンの共重合体等などが好ましく用いることができる。   In the laminated base material of the present invention, it is preferable that a layer made of only a thermoplastic resin is laminated between a plurality of prepregs constituting the laminated base material in terms of further improving the fluidity during pressing. Such a layer consisting of only a thermoplastic resin is the same resin composition as the resin composition contained in the prepreg, or polyamide (nylon 6, nylon 66, aromatic nylon, etc.), polyolefin (polyethylene, Polypropylene, etc.), modified polyolefin, polyester (polyethylene terephthalate, polybutylene terephthalate, etc.), polycarbonate, polyamideimide, polyphenylene oxide, polysulfone, polyethersulfone, polyetheretherketone, polyetherimide, polystyrene, ABS, polyphenylene sulfide, liquid crystal polyester Or a copolymer of acrylonitrile and styrene can be preferably used.

本発明の積層基材は、複数のプリプレグを強化繊維の方向が擬似等方となるように積層されていることが、プレス時の流動の異方性を小さくする点で好ましい。   In the laminated base material of the present invention, it is preferable that a plurality of prepregs are laminated so that the directions of the reinforcing fibers are pseudo-isotropic from the viewpoint of reducing flow anisotropy during pressing.

本発明の積層基材は、プリプレグに含まれる強化繊維の方向が0°であるプリプレグと90°であるプリプレグが交互に積層されていることが、積層基材の強度の異方性を小さくする点で好ましい。   In the laminated substrate of the present invention, the strength anisotropy of the laminated substrate is reduced by alternately laminating the prepregs in which the directions of the reinforcing fibers contained in the prepreg are 0 ° and 90 °. This is preferable.

本発明の積層基材に含まれるプリプレグは、繊維体積含有率Vfが55%以下であれば、十分な流動性を得ることができるので好ましい。Vfの値が低いほど流動性は向上するが、Vfの値が20%未満では構造材に必要な力学特性は得られない。流動性と力学特性の関係を鑑みると、20%以上55%以下が好ましい。かかるVf値は、JIS K7075に基づき測定できる。   If the fiber volume content Vf is 55% or less, the prepreg contained in the laminated base material of the present invention is preferable because sufficient fluidity can be obtained. The lower the value of Vf, the better the fluidity. However, if the value of Vf is less than 20%, the mechanical properties necessary for the structural material cannot be obtained. Considering the relationship between fluidity and mechanical properties, 20% to 55% is preferable. Such Vf value can be measured based on JIS K7075.

本発明の積層基材に含まれるプリプレグは、切込を有するため、分断されるプリプレグの厚みが大きいほど強度が低下する傾向であり、構造材に適用することを前提とするならば、プリプレグの厚さは200μm以下とするのが良い。一方厚みが50μm未満ではプリプレグの取り扱いが難しく積層基材とするために積層するプリプレグの数が非常に多くなるので、生産性が著しく悪化する。よって生産性の観点から50μm以上200μm以下であることが好ましい。   Since the prepreg contained in the laminated base material of the present invention has a cut, the strength tends to decrease as the thickness of the prepreg to be divided increases, and if it is assumed to be applied to a structural material, The thickness is preferably 200 μm or less. On the other hand, if the thickness is less than 50 μm, it is difficult to handle the prepreg, and the number of prepregs to be laminated becomes extremely large in order to obtain a laminated base material. Therefore, it is preferable that it is 50 micrometers or more and 200 micrometers or less from a viewpoint of productivity.

本発明の積層基材に用いることができるプリプレグは、プリプレグどうしが接着されていることが、取扱いを容易にする点で好ましい。接着方法として、接着剤を用いる方法や、プリプレグに含まれる樹脂を溶融させる方法が例示される。特に、プリプレグに含まれる樹脂が熱可塑性樹脂の場合、後者に記載の方法が好ましい。後者の方法として、熱溶着法、振動溶着法、熱プレス法が例示される。熱溶着法とは接着させたい場所を加熱板等で加熱する方法であるし、振動溶着法とは溶着させたい場所を振動摩擦する方法で樹脂を溶融する方法であるし、熱プレス法とは接着させたい部分を加熱して荷重をかける方法である。   The prepreg that can be used for the laminated base material of the present invention is preferably such that the prepregs are bonded to each other in terms of easy handling. Examples of the bonding method include a method using an adhesive and a method of melting a resin contained in a prepreg. In particular, when the resin contained in the prepreg is a thermoplastic resin, the method described in the latter is preferable. Examples of the latter method include a thermal welding method, a vibration welding method, and a hot pressing method. The heat welding method is a method of heating a place to be bonded with a heating plate or the like, and the vibration welding method is a method of melting resin by vibrating and rubbing the place to be welded. This is a method of applying a load by heating the part to be bonded.

以下に本発明の積層基材に用いることができるプリプレグの製造方法の一態様を説明するが、本発明はこれによって特に制限されるものではない。   Hereinafter, an embodiment of a method for producing a prepreg that can be used for the laminated base material of the present invention will be described, but the present invention is not particularly limited thereto.

本発明の積層基材に用いることができるプリプレグは、例えばフィルム状とした熱可塑性樹脂を二枚準備し、その二枚の間に強化繊維をシート状に並べた強化繊維シート、または強化繊維をカットして抄紙法等により作成するマット状物を挟み込み、加熱及び加圧を行うことにより得ることができる。より具体的には、2枚の熱可塑性樹脂からなるフィルムを送り出す、2つのロールから二枚のフィルムを送り出すとともに、強化繊維シートや強化繊維マットのロールから供給される強化繊維シートや強化繊維マットを二枚のフィルムの間に挟み込ませた後に、加熱及び加圧する。加熱及び加圧する手段としては、公知のものを用いることができ、二個以上の熱ロールを利用したり、予熱装置と熱ロールの対を複数使用したりするなどの多段階の工程を要するものであってもよい。ここで、フィルムを構成する熱可塑性樹脂は一種類ある必要はなく、別の種類の熱可塑性樹脂からなるフィルムを、上記のような装置を用いてさらに積層させてもよい。   The prepreg that can be used for the laminated base material of the present invention is prepared by, for example, preparing two sheets of thermoplastic resin in the form of a film, and reinforcing fiber sheets or reinforcing fibers in which reinforcing fibers are arranged in a sheet shape between the two sheets. It can be obtained by sandwiching a mat-like material that is cut and made by a papermaking method, etc., and heating and pressing. More specifically, two sheets of thermoplastic resin are sent out from two rolls, and two sheets of film are sent out from two rolls, and a reinforcing fiber sheet and a reinforcing fiber mat supplied from a roll of a reinforcing fiber sheet and a reinforcing fiber mat. Is sandwiched between two films, and then heated and pressurized. As a means for heating and pressurizing, known means can be used, which requires a multi-step process such as using two or more heat rolls or using multiple pairs of preheating devices and heat rolls. It may be. Here, the thermoplastic resin constituting the film does not have to be one type, and a film made of another type of thermoplastic resin may be further laminated using the apparatus as described above.

上記加熱温度は、熱可塑性樹脂の種類にもよるが、通常、100〜400℃であることが好ましい。一方、加圧時の圧力は、通常0.1〜10MPaであることが好ましい。この範囲であれば、プリプレグに含まれる強化繊維の間に、熱可塑性樹脂を含浸させることができるので好ましい。また、本発明の積層基材に用いることができるプリプレグは、市販されているプリプレグを用いることもできる。   Although the said heating temperature is based also on the kind of thermoplastic resin, it is preferable that it is 100-400 degreeC normally. On the other hand, the pressure during pressurization is preferably 0.1 to 10 MPa. If it is this range, since it can be made to impregnate a thermoplastic resin between the reinforced fiber contained in a prepreg, it is preferable. Moreover, the prepreg which can be used for the laminated base material of this invention can also use the prepreg marketed.

本発明の積層基材に用いることができるプリプレグは、レーザーマーカー、カッティングプロッタや抜型等を利用して切込を入れることにより得ることができるが、前記切込がレーザーマーカーを用いて施されたものであると、曲線やジグザグ線など複雑な切込を高速に加工できるという効果があるので好ましく、また、前記切込がカッティングプロッタを用いて施されたものであると、2m以上の大判のプリプレグ層を加工できるという効果があるので好ましい。さらに、前記切込が抜型を用いて施されたものであると、高速に加工が可能であるという効果があるので好ましい。   The prepreg that can be used for the laminated substrate of the present invention can be obtained by making a cut using a laser marker, a cutting plotter, a cutting die, or the like, but the cut was made using a laser marker. It is preferable because it has an effect of processing a complex cut such as a curve or a zigzag line at a high speed, and when the cut is made using a cutting plotter, it is large in size of 2 m or more. This is preferable because the prepreg layer can be processed. Furthermore, it is preferable that the cut is made by using a punching die because there is an effect that processing can be performed at high speed.

次工程では、上記のようにして得られたプリプレグを強化繊維の方向が疑似等方、または交互積層になるよう積層して積層基材を作成する。この際取扱いの容易さから超音波溶着機でスポット溶接した積層基材とすることもできる。また、本発明の積層基材は、プリプレグを4〜96層となるように積層することが好ましい。   In the next step, the prepreg obtained as described above is laminated so that the direction of the reinforcing fibers is pseudo-isotropic or alternately laminated to create a laminated base material. At this time, a laminated base material spot-welded with an ultrasonic welder can be used for ease of handling. Moreover, it is preferable that the laminated base material of this invention laminate | stacks a prepreg so that it may become 4 ~ 96 layers.

次工程では、上記のようにして得られた積層基材を加熱及び加圧して一体化した積層基材を成形する。この工程は、積層基材をプレートに挟みこんで、圧力をかけながら加熱することからなる。プレートの形状は平板状であっても良いし、印籠型のような金型であっても良い。プレートの材質は特に限定されないが、金属、樹脂、セラミクス等が例示される。プレートまたは金型は、枚様式のプリプレグを一体化させるための物でであっても良いし、ダブルベルトプレス機のように連続式であっても良い。   In the next step, the laminated substrate obtained as described above is heated and pressurized to form an integrated laminated substrate. This process consists of sandwiching the laminated base material between plates and heating while applying pressure. The shape of the plate may be a flat plate or a mold such as a stamping die. Although the material of a plate is not specifically limited, A metal, resin, ceramics, etc. are illustrated. The plate or the mold may be an object for integrating the sheet-type prepreg, or may be a continuous type like a double belt press.

前記加熱においては、積層基材に含まれる熱可塑性樹脂の融点あるいはガラス転移温度以上に加熱する。具体的には、積層基材に含まれる熱可塑性樹脂にもよるが、(融点あるいはガラス転移温度+5℃)〜(融点あるいはガラス転移温度+200℃)で加熱することが好ましく、さらに好ましくは(融点あるいはガラス転移温度+10℃)〜(融点あるいはガラス転移温度+150℃)で加熱することが好ましい。また、前記加熱に先立って、予備加熱を行ってもよい。予備加熱については(融点あるいはガラス転移温度−100℃)〜(融点あるいはガラス転移温度+100℃)が好ましい。予備加熱の時に加圧しても良いし、加圧しなくても良い。   In the said heating, it heats more than melting | fusing point or glass transition temperature of the thermoplastic resin contained in a laminated base material. Specifically, although it depends on the thermoplastic resin contained in the laminated substrate, it is preferably heated at (melting point or glass transition temperature + 5 ° C.) to (melting point or glass transition temperature + 200 ° C.), more preferably (melting point Or it is preferable to heat at (glass transition temperature +10 degreeC)-(melting | fusing point or glass transition temperature +150 degreeC). Prior to the heating, preliminary heating may be performed. The preheating is preferably from (melting point or glass transition temperature−100 ° C.) to (melting point or glass transition temperature + 100 ° C.). Pressurization may be performed at the time of preheating or may not be performed.

前記加圧において積層基材にかける圧力としては、好ましくは0.1〜10MPaであり、より好ましくは0.2〜2MPaである。この圧力については、プレス力を積層基材の面積で除した値とする。   The pressure applied to the laminated substrate in the pressurization is preferably 0.1 to 10 MPa, and more preferably 0.2 to 2 MPa. The pressure is a value obtained by dividing the pressing force by the area of the laminated base material.

上記加熱及び加圧する時間は、0.1〜30分間であることが好ましく、さらに好ましくは0.5〜10分間である。   The heating and pressurizing time is preferably 0.1 to 30 minutes, more preferably 0.5 to 10 minutes.

加熱工程の後に冷却工程を実施する。冷却をおこなうことにより、熱可塑性樹脂が固化するので積層基材を一体化することができる。   A cooling process is implemented after a heating process. By performing the cooling, the thermoplastic resin is solidified, so that the laminated base material can be integrated.

前記冷却においては、積層基材に含まれる熱可塑性樹脂の融点あるいはガラス転移温度以下に冷却する。具体的には、積層基材に含まれる熱可塑性樹脂にもよるが、(融点あるいはガラス転移温度−250℃)〜(融点あるいはガラス転移温度−5℃)で冷却することが好ましく、さらに好ましくは(融点あるいはガラス転移温度−200℃)〜(融点あるいはガラス転移温度−10℃)で冷却することが好ましい。   In the said cooling, it cools below to melting | fusing point or glass transition temperature of the thermoplastic resin contained in a laminated base material. Specifically, although it depends on the thermoplastic resin contained in the laminated substrate, it is preferable to cool at (melting point or glass transition temperature−250 ° C.) to (melting point or glass transition temperature−5 ° C.), more preferably. It is preferable to cool at (melting point or glass transition temperature−200 ° C.) to (melting point or glass transition temperature−10 ° C.).

前記冷却において積層基材にかける圧力としては、加熱時の圧力以上とする。冷却時の圧力を加熱時の圧力以上とすることで、プリプレグ間のボイドを減少させることができ機械的物性を高めることができる。冷却時の圧力を加熱時の圧力以上としても、熱可塑性樹脂の融点あるいはガラス転移温度以下であるので、強化繊維の乱れを抑制することができる。加熱時の温度を熱可塑性樹脂の融点あるいはガラス転移温度以上、冷却時の温度を熱可塑性樹脂の融点あるいはガラス転移温度以下、かつ冷却時の圧力を加熱時の圧力以上とし、一体化後の積層基材の面積/一体化前の積層基材の面積の比が、1.01〜1.10とすることによる、機械的物性に優れ、外観が良好でプリプレグの積層構造が保たれた積層基材を得ることができる。   The pressure applied to the laminated substrate in the cooling is not less than the pressure during heating. By setting the pressure during cooling to be equal to or higher than the pressure during heating, voids between prepregs can be reduced and mechanical properties can be enhanced. Even if the pressure at the time of cooling is higher than the pressure at the time of heating, since it is lower than the melting point or glass transition temperature of the thermoplastic resin, disturbance of the reinforcing fibers can be suppressed. Lamination after integration with heating temperature above the melting point or glass transition temperature of the thermoplastic resin, cooling temperature below the melting point or glass transition temperature of the thermoplastic resin, and cooling pressure above the heating pressure The ratio of the area of the base material / the area of the laminated base material before integration is 1.01 to 1.10, thereby providing a laminated base having excellent mechanical properties, good appearance, and maintaining a prepreg laminated structure. A material can be obtained.

上記冷却及び加圧する時間は、0.1〜30分間であることが好ましく、さらに好ましくは0.5〜10分間である。   The cooling and pressurizing time is preferably 0.1 to 30 minutes, more preferably 0.5 to 10 minutes.

上記成形を経た本発明にかかる一体化した積層基材の厚さは、0.3〜10mmであることが好ましい。   The thickness of the integrated laminated base material according to the present invention that has undergone the above molding is preferably 0.3 to 10 mm.

以下、実施例により本発明をさらに具体的に説明するが、本発明は、実施例に記載の発明に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited to the invention as described in an Example.

(実施例1)
炭素繊維(三菱レイヨン製、製品名:パイロフィルTR−50S15L、平均単繊維直径 約7μm、平均単繊維繊度 約0.6dtex)を、強化繊維の方向が一方向となるように平面状に引き揃えて目付が72.0g/mである連続した強化繊維シートとした。この強化繊維シートの両面を、酸変性ポリプロピレン樹脂製のフィルム(酸変性ポリプロピレン樹脂:三菱化学製、製品名:モディックP958、融点165℃、目付:36.4g/m)で挟み、カレンダロールを通して、熱可塑性樹脂を強化繊維シートに含浸し、繊維体積含有率(Vf)が33%、厚さが、0.12mmの幅50cm、長さ500mの連続プリプレグを得た。
Example 1
Carbon fibers (Mitsubishi Rayon, product name: Pyrofil TR-50S15L, average single fiber diameter of about 7 μm, average single fiber fineness of about 0.6 dtex) are aligned in a plane so that the direction of the reinforcing fibers is one direction. A continuous reinforcing fiber sheet having a basis weight of 72.0 g / m 2 was obtained. The both sides of this reinforcing fiber sheet are sandwiched between films made of acid-modified polypropylene resin (acid-modified polypropylene resin: manufactured by Mitsubishi Chemical, product name: Modic P958, melting point 165 ° C., basis weight: 36.4 g / m 2 ), and passed through a calendar roll. Then, a reinforcing fiber sheet was impregnated with a thermoplastic resin to obtain a continuous prepreg having a fiber volume content (Vf) of 33%, a thickness of 0.12 mm, a width of 50 cm, and a length of 500 m.

得られた連続プリプレグを、ロールに埋め込んだ打ち抜き刃を有する打ち抜き型により連続的に、シートの端部より5mm内側部分を除き、強化繊維の長さL=25.0mm一定、平均切込長l=20.0mmになるよう、繊維を切断する切込と強化繊維のなす角度θ=30°の切込加工を施した。この際1mあたりの切込長の総和la=80.0mであった。 The obtained continuous prepreg is continuously removed by a punching die having a punching blade embedded in a roll, except for the inner portion 5 mm from the end of the sheet, and the length L of the reinforcing fiber is constant 25.0 mm, the average cutting length l = The cutting which cut | disconnects a fiber and the angle theta which a reinforcement fiber makes | forms = 30 degree was performed so that it might be set to 20.0 mm. At this time, the total length of cuts per 1 m 2 was la = 80.0 m.

上記のように切込加工したプリプレグより、縦30cm、横30cmの非連続プリプレグ16層を切り出し、強化繊維方向が疑似等方([0°/45°/90°/−45°]s2)になるように重ね、超音波溶着機(日本エマソン社製、製品名:2000LPt)でスポット溶接して積層基材を作成した。   From the prepreg cut as described above, 16 layers of non-continuous prepreg of 30 cm in length and 30 cm in width are cut out, and the reinforcing fiber direction is pseudo-isotropic ([0 ° / 45 ° / 90 ° / −45 °] s2). The laminated base material was created by spot welding with an ultrasonic welder (manufactured by Emerson Japan, product name: 2000LPt).

このようにして得た積層基材を、内寸法30.5cm角の金属金型(材質、SUS304)間に設置して、1MPaの圧力で220℃で5分間プレスした後、1MPaの圧力で50℃で3分間プレスすることにより積層基材を得た。積層基材は、金型内部の全域を占めており、その面積は30.5cm×30.5cm=930.25cmであった。一体化後の積層基材の面積/一体化前の積層基材の面積の比は、1.03であった。 The laminated base material thus obtained was placed between metal molds (material, SUS304) having an internal size of 30.5 cm square, pressed at 220 ° C. for 5 minutes at a pressure of 1 MPa, and then 50 at a pressure of 1 MPa. A laminated substrate was obtained by pressing at 3 ° C. for 3 minutes. The laminated base material occupies the whole area inside the mold, and the area was 30.5 cm × 30.5 cm = 930.25 cm 2 . The ratio of the area of the laminated base material after integration / the area of the laminated base material before integration was 1.03.

得られた積層基材から、長さ100mm,幅25mmの曲げ強度試験片を、その試験片の表面と裏面の繊維方向が試験片の長さ方向と平行となるように切り出した。JIS K−7074に規定する試験方法に従い、万能試験機(インストロン社製、製品名:4465型)を用いて、標点間距離を80mmとし、クロスヘッド速度5.0mm/分で3点曲げ試験を行った。測定した試験片の数はn=6とし、曲げ強度の平均は325MPa、曲げ弾性率の平均は28.1GPaであった。   A bending strength test piece having a length of 100 mm and a width of 25 mm was cut out from the obtained laminated base material so that the fiber directions of the front and back surfaces of the test piece were parallel to the length direction of the test piece. According to the test method specified in JIS K-7074, using a universal testing machine (Instron, product name: Model 4465), the distance between the gauge points is 80 mm, and the crosshead speed is 5.0 mm / min. A test was conducted. The number of test pieces measured was n = 6, the average bending strength was 325 MPa, and the average bending elastic modulus was 28.1 GPa.

(実施例2)
内寸法が31cm角である金型を使用した以外は、実施例1と同様な操作を実施した。積層基材は、金型内部の全域を占めており、その面積は31cm×31cm=961cmであった。一体化後の積層基材の面積/一体化前の積層基材の面積の比は、1.07であった。実施例1と同様に実施した試験結果では、曲げ強度の平均は320MPa、曲げ弾性率の平均は27.5GPaであった。
(Example 2)
The same operation as in Example 1 was performed except that a mold having an inner dimension of 31 cm square was used. The laminated base material occupies the whole area inside the mold, and the area was 31 cm × 31 cm = 961 cm 2 . The ratio of the area of the laminated base material after integration / the area of the laminated base material before integration was 1.07. In the test results carried out in the same manner as in Example 1, the average bending strength was 320 MPa, and the average bending elastic modulus was 27.5 GPa.

(比較例1)
内寸法が30.1cm角である金型を使用した以外は、実施例1と同様な操作を実施した。積層基材は、金型内部の全域を占めており、その面積は30.1cm×30.1cm=906cmであった。一体化後の積層基材の面積/一体化前の積層基材の面積の比は、1.007であった。積層基材の断面を観察したところ、プリプレグの層間にボイドが観察された。実施例1と同様に実施した試験結果では、曲げ強度の平均は300MPa、曲げ弾性率の平均は25.8GPaであった。
(Comparative Example 1)
The same operation as in Example 1 was performed except that a mold having an inner dimension of 30.1 cm square was used. The laminated base material occupies the whole area inside the mold, and the area was 30.1 cm × 30.1 cm = 906 cm 2 . The ratio of the area of the laminated base material after integration / the area of the laminated base material before integration was 1.007. When the cross section of the laminated substrate was observed, voids were observed between the layers of the prepreg. In the test results carried out in the same manner as in Example 1, the average bending strength was 300 MPa, and the average bending elastic modulus was 25.8 GPa.

(比較例2)
内寸法が32cm角である金型を使用した以外は、実施例1と同様な操作を実施した。積層基材は、金型内部の全域を占めており、その面積は32cm×32cm=1024cmであった。一体化後の積層基材の面積/一体化前の積層基材の面積の比は、1.14であった。積層基材の断面を観察したところ、プリプレグ層間にボイドは観察されなかったが、各プリプレグにおいて炭素繊維が蛇行していた。
(Comparative Example 2)
The same operation as in Example 1 was performed except that a mold having an inner dimension of 32 cm square was used. The laminated base material occupies the whole area inside the mold, and the area was 32 cm × 32 cm = 1024 cm 2 . The ratio of the area of the laminated base material after integration / the area of the laminated base material before integration was 1.14. When the cross section of the laminated substrate was observed, no void was observed between the prepreg layers, but the carbon fibers meandered in each prepreg.

(比較例3)
冷却時の圧力を0.9MPaとした以外は、実施例1と同様な操作を実施した。積層基材のプリプレグ層間にボイドが観察された。
(Comparative Example 3)
The same operation as in Example 1 was performed except that the pressure during cooling was 0.9 MPa. Voids were observed between the prepreg layers of the laminated substrate.

(実施例4)
金型の代わりに、図4に示すようなダブルベルトプレス機を用いた。ダブルベルトプレス機の前半部を220℃とし、その加熱ゾーン長さは1.5m、また、後半部を50℃とし、その冷却ゾーン長さは1.5mであった。また、加熱ゾーンと冷却ゾーンには、積層基材に同じ圧力がかかるように設定した。使用したベルトの材質は鉄であり、その厚みは1.5mm、幅350mmであった。上下のベルト間の距離を1.8mmとして、16層からなる30cm角の積層基材を10cm間隔で連続的にダブルベルトプレス機の下ベルトの上に投入し、上下のベルトを0.5m/分で駆動することにより、連続的に積層基材を得た。一体化前の積層物の厚みは0.12×16により1.92mmと算出され、一体化の後の積層物の厚みは1.8mmであった。従って、一体化後の積層基材の面積/一体化前の積層基材の面積の比=一体化前の厚み/一体化後の厚み=1.92/1.8で算出され1.067であった。積層基材の断面を観察したところ、プリプレグ層間にボイドが観察されなかった。実施例1と同様に実施した試験結果では、曲げ強度の平均は323MPa、曲げ弾性率の平均は27.8GPaであった。
Example 4
A double belt press as shown in FIG. 4 was used instead of the mold. The first half of the double belt press was 220 ° C., the heating zone length was 1.5 m, the second half was 50 ° C., and the cooling zone length was 1.5 m. Moreover, it set so that the same pressure might be applied to a laminated base material in a heating zone and a cooling zone. The belt used was made of iron and had a thickness of 1.5 mm and a width of 350 mm. The distance between the upper and lower belts is set to 1.8 mm, and a 30 cm square laminated substrate consisting of 16 layers is continuously put on the lower belt of the double belt press machine at intervals of 10 cm. A laminated base material was obtained continuously by driving in minutes. The thickness of the laminate before integration was calculated to be 1.92 mm by 0.12 × 16, and the thickness of the laminate after integration was 1.8 mm. Therefore, the ratio of the area of the laminated base material after integration / the area of the laminated base material before integration = thickness before integration / thickness after integration = 1.92 / 1.8 is calculated as 1.067. there were. When the cross section of the laminated substrate was observed, no voids were observed between the prepreg layers. In the test results carried out in the same manner as in Example 1, the average bending strength was 323 MPa, and the average bending elastic modulus was 27.8 GPa.

(実施例5、6)
上下のベルト間距離を表1に示すようにした以外は、実施例4と同様な操作を実施した。
(Examples 5 and 6)
The same operation as in Example 4 was performed except that the distance between the upper and lower belts was as shown in Table 1.

(比較例4,5)
上下のベルト間距離を表1に示すようにした以外は、実施例4と同様な操作を実施した。
(Comparative Examples 4 and 5)
The same operation as in Example 4 was performed except that the distance between the upper and lower belts was as shown in Table 1.

(実施例7)
炭素繊維(三菱レイヨン製、製品名:パイロフィルTR−50S15L)を全量6mmにカットして、抄紙法により目付が72.0g/mであるマット状の強化繊維シートとした。この強化繊維シートの両面を、酸変性ポリプロピレン樹脂製のフィルム(酸変性ポリプロピレン樹脂:三菱化学製、製品名:モディックP958、目付:36.4g/m)で挟み、カレンダロールを通して、熱可塑性樹脂を強化繊維シートに含浸し、繊維体積含有率(Vf)が33%、厚さが0.2mm、縦30cm、横30cmのプリプレグを得た。この縦30cm、横30cmのプリプレグ10層を重ね、超音波溶着機(日本エマソン社製、製品名:2000LPt)でスポット溶接して積層物を作成した。
(Example 7)
Carbon fiber (manufactured by Mitsubishi Rayon, product name: Pyrofil TR-50S15L) was cut into a total amount of 6 mm to obtain a mat-like reinforcing fiber sheet having a basis weight of 72.0 g / m 2 by a papermaking method. Both sides of this reinforcing fiber sheet are sandwiched between films made of acid-modified polypropylene resin (acid-modified polypropylene resin: manufactured by Mitsubishi Chemical, product name: Modic P958, basis weight: 36.4 g / m 2 ), and are passed through a calender roll to be a thermoplastic resin. Was impregnated into a reinforcing fiber sheet to obtain a prepreg having a fiber volume content (Vf) of 33%, a thickness of 0.2 mm, a length of 30 cm, and a width of 30 cm. 10 layers of prepregs 30 cm long and 30 cm wide were stacked and spot welded with an ultrasonic welding machine (manufactured by Emerson Japan, product name: 2000LPt) to prepare a laminate.

そして、上下のベルト間の距離を1.85mmとした以外は、実施例4と同様な方法で積層基材を作成した。   And the laminated base material was created by the method similar to Example 4 except the distance between upper and lower belts having been 1.85 mm.

(実施例8、実施例9)
上下のベルト間距離を表2に示すようにした以外は、実施例7と同様な操作を実施した。
(Example 8, Example 9)
The same operation as in Example 7 was performed except that the distance between the upper and lower belts was as shown in Table 2.

(比較例6,7)
上下のベルト間距離を表2に示すようにした以外は、実施例7と同様な操作を実施した。
(Comparative Examples 6 and 7)
The same operation as in Example 7 was performed except that the distance between the upper and lower belts was as shown in Table 2.



1、11:積層基材
2:下金型
3:上金型
12:下ベルト
13:上ベルト
DESCRIPTION OF SYMBOLS 1, 11: Laminating base material 2: Lower die 3: Upper die 12: Lower belt 13: Upper belt

Claims (18)

強化繊維と熱可塑性樹脂とを含むプリプレグを2枚以上積層して、その積層物をプレートに挟んで加圧しながら熱可塑性樹脂の融点あるいはガラス転移温度以上に加熱した後、加熱時の圧力以上に加圧しながら熱可塑性樹脂の融点あるいはガラス転移温度以下に冷却することにより一体化する方法であって、一体化後の積層基材の面積/一体化前の積層基材の面積の比が、1.01〜1.10であることを特徴とする積層基材の製造方法。   Two or more prepregs containing reinforcing fibers and a thermoplastic resin are laminated, and the laminate is heated between the melting point of the thermoplastic resin or the glass transition temperature while pressing between the plates, and then the pressure exceeds the pressure at the time of heating. It is a method of integrating by cooling below the melting point or glass transition temperature of the thermoplastic resin while applying pressure, and the ratio of the area of the laminated base material after integration / the area of the laminated base material before integration is 1 A method for producing a laminated base material, characterized by being from 0.01 to 1.10. プリプレグの強化繊維が一方向に配向していることを特徴とする請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein the reinforcing fibers of the prepreg are oriented in one direction. 積層基材が、一方向に配向した強化繊維と熱可塑性樹脂とを含むプリプレグを複数枚積層した積層基材であって、前記プリプレグは、強化繊維を横切る方向に強化繊維を切断する深さの切込を有し、前記切込が直線状であって、切込と強化繊維のなす角度が30°以上、60°以下であり、前記プリプレグ1mあたりの切込長の総和が20m以上、150m以下であるプリプレグを含むことを特徴とする請求項2に記載の積層基材の製造方法。 The laminated base material is a laminated base material in which a plurality of prepregs including reinforcing fibers oriented in one direction and a thermoplastic resin are laminated, and the prepreg has a depth of cutting the reinforcing fibers in a direction crossing the reinforcing fibers. Having a notch, the notch is linear, the angle between the notch and the reinforcing fiber is not less than 30 ° and not more than 60 °, and the sum of the notch lengths per 1 m 2 of the prepreg is not less than 20 m, The method for producing a laminated base material according to claim 2, comprising a prepreg having a length of 150 m or less. 積層基材が、一方向に配向した強化繊維と熱可塑性樹脂とを含むプリプレグを複数枚積層した積層基材であって、前記プリプレグは、強化繊維を横切る方向に強化繊維を切断する深さの切込を有し、前記切込が直線状の中心線に沿った曲線であって、かつ曲線を中心線に投影した際に重なりがなく、該中心線と強化繊維のなす角度が30°以上、60°以下であり、前記プリプレグ1mあたりの切込長の総和が20m以上、150m以下であるプリプレグを含むことを特徴とする請求項2に記載の積層基材の製造方法。 The laminated base material is a laminated base material in which a plurality of prepregs including reinforcing fibers oriented in one direction and a thermoplastic resin are laminated, and the prepreg has a depth of cutting the reinforcing fibers in a direction crossing the reinforcing fibers. A notch, the notch is a curve along a straight center line, and there is no overlap when the curve is projected onto the center line, and the angle between the center line and the reinforcing fiber is 30 ° or more The method for producing a laminated base material according to claim 2, comprising a prepreg that is 60 ° or less and a total of the cut lengths per 1 m 2 of the prepreg is 20 m or more and 150 m or less. 積層基材が、切込によって切断された強化繊維の長さが10mm以上50mm以下であるプリプレグを含むことを特徴とする請求項3または4に記載の積層基材の製造方法。   5. The method for producing a laminated base material according to claim 3, wherein the laminated base material includes a prepreg having a length of reinforcing fibers cut by cutting of 10 mm or more and 50 mm or less. プリプレグを構成する強化繊維が、強化繊維100重量%の内、繊維長2mm〜10mmの強化繊維の比率が50〜100重量%であることを特徴とする請求項1に記載の積層基材の製造方法。   2. The laminated base material according to claim 1, wherein the reinforcing fiber constituting the prepreg is 50% to 100% by weight of a reinforcing fiber having a fiber length of 2 mm to 10 mm out of 100% by weight of the reinforcing fiber. Method. 強化繊維100重量%の内、繊維長10mm超の強化繊維の比率が0〜50重量%、繊維長2mm未満の強化繊維の比率が0〜50重量であることを特徴とする請求項6に記載の積層基材の製造方法。   The ratio of reinforcing fibers having a fiber length of more than 10 mm out of 100% by weight of reinforcing fibers is 0 to 50% by weight, and the ratio of reinforcing fibers having a fiber length of less than 2 mm is 0 to 50%. The manufacturing method of the laminated base material of this. 前記積層基材を構成する複数のプリプレグが、プリプレグに含まれる強化繊維の方向が疑似等方となるように積層されることを特徴とする請求項1から5のいずれかに記載の積層基材の製造方法。   The laminated base material according to any one of claims 1 to 5, wherein a plurality of prepregs constituting the laminated base material are laminated so that directions of reinforcing fibers contained in the prepreg are pseudo-isotropic. Manufacturing method. 前記積層基材を構成する複数のプリプレグが、プリプレグに含まれる強化繊維の方向が0°であるプリプレグと90°であるプリプレグが交互に積層されることを特徴とする請求項1から5のいずれかに記載の積層基材の製造方法。   The plurality of prepregs constituting the laminated base material, wherein the prepregs whose directions of reinforcing fibers contained in the prepreg are 0 ° and prepregs of 90 ° are alternately laminated. The manufacturing method of the laminated base material of crab. 前記強化繊維が、平均単繊維繊度が0.5dtex以上、2.4dtex以下である炭素繊維であることを特徴とする請求項1から9のいずれかに記載の積層基材の製造方法。   The method for producing a laminated base material according to any one of claims 1 to 9, wherein the reinforcing fibers are carbon fibers having an average single fiber fineness of 0.5 dtex or more and 2.4 dtex or less. 前記積層基材が、熱可塑性樹脂のみからなる層をさらに含むことを特徴とする請求項1から10のいずれかに記載の積層基材の製造方法。   The method for producing a laminated base material according to any one of claims 1 to 10, wherein the laminated base material further includes a layer made of only a thermoplastic resin. 前記積層基材を構成するプリプレグに含まれる強化繊維の体積含有率が20体積%以上、55体積%以下であることを特徴とする請求項1から11のいずれかに記載の積層基材の製造方法。   The volume content of the reinforcing fibers contained in the prepreg constituting the laminated base material is 20% by volume or more and 55% by volume or less, and the production of the laminated base material according to any one of claims 1 to 11, Method. 前記積層基材を構成するプリプレグの厚さが50μm以上、200μm以下であることを特徴とする請求項1から12のいずれかに記載の積層基材の製造方法。   The method for producing a laminated base material according to any one of claims 1 to 12, wherein a thickness of a prepreg constituting the laminated base material is 50 µm or more and 200 µm or less. 前記積層基材を構成するプリプレグどうしが接着されていることを特徴とする請求項1から13のいずれかに記載の積層基材の製造方法。   The method for producing a laminated base material according to any one of claims 1 to 13, wherein the prepregs constituting the laminated base material are adhered to each other. 接着方法が、熱溶着を用いて施されたものであることを特徴とする請求項14に記載の積層基材の製造方法。   The method for producing a laminated base material according to claim 14, wherein the bonding method is performed using heat welding. 接着方法が、振動溶着を用いて施されたものであることを特徴とする請求項14に記載の積層基材の製造方法。   The method for producing a laminated base material according to claim 14, wherein the adhesion method is performed using vibration welding. 接着方法が、熱プレスを用いて施されたものであることを特徴とする請求項14に記載の積層基材の製造方法。   The method for producing a laminated base material according to claim 14, wherein the bonding method is performed using a hot press. 請求項1〜17のいずれかの方法で製造された積層基材。   The laminated base material manufactured by the method in any one of Claims 1-17.
JP2014160475A 2013-08-06 2014-08-06 Method for producing laminated substrate Active JP6435696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014160475A JP6435696B2 (en) 2013-08-06 2014-08-06 Method for producing laminated substrate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013163102 2013-08-06
JP2013163102 2013-08-06
JP2014160475A JP6435696B2 (en) 2013-08-06 2014-08-06 Method for producing laminated substrate

Publications (2)

Publication Number Publication Date
JP2015051630A true JP2015051630A (en) 2015-03-19
JP6435696B2 JP6435696B2 (en) 2018-12-12

Family

ID=52701024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014160475A Active JP6435696B2 (en) 2013-08-06 2014-08-06 Method for producing laminated substrate

Country Status (1)

Country Link
JP (1) JP6435696B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016179627A (en) * 2015-03-25 2016-10-13 三菱レイヨン株式会社 Fiber-reinforced thermoplastic resin laminate
JP2017128036A (en) * 2016-01-20 2017-07-27 株式会社Ihi Molding apparatus and molding method of fiber-reinforced composite member
WO2018142962A1 (en) * 2017-02-02 2018-08-09 東レ株式会社 Method for producing fiber-reinforced plastic
WO2018142963A1 (en) * 2017-02-02 2018-08-09 東レ株式会社 Method for producing fiber-reinforced plastic
KR20190021751A (en) * 2017-08-23 2019-03-06 국방과학연구소 Manufacuring method of thermoplastic bulletproof material and thermoplastic bulletproof material using the same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02115236A (en) * 1988-10-25 1990-04-27 Sumitomo Chem Co Ltd Fiber-reinforced resin sheet for molding, its production and production of fiber-reinforced resin molding
JPH09277387A (en) * 1996-04-16 1997-10-28 Toyobo Co Ltd Manufacture of fiber reinforced thermoplastic resin sheet
WO2008099670A1 (en) * 2007-02-02 2008-08-21 Toray Industries, Inc. Prepreg base material, layered base material, fiber-reinforced plastic, process for producing prepreg base material, and process for producing fiber-reinforced plastic
JP2008207545A (en) * 2007-02-02 2008-09-11 Toray Ind Inc Notched prepreg substrate, composite notched prepreg substrate, laminated substrate, fiber-reinforced plastic, and method for manufacturing notched prepreg substrate
JP2008308626A (en) * 2007-06-16 2008-12-25 Teijin Techno Products Ltd Sheet-like fiber-reinforced composite material and production method therefor
JP2009523083A (en) * 2006-09-06 2009-06-18 ポリストランド インコーポレイティッド Composite laminate and its manufacturing method
JP2009286817A (en) * 2008-05-27 2009-12-10 Toray Ind Inc Laminated substrate, fiber-reinforced plastic, and methods for producing them
WO2012117593A1 (en) * 2011-02-28 2012-09-07 帝人株式会社 Molded body comprising fiber-reinforcing composite material
WO2012165418A1 (en) * 2011-05-31 2012-12-06 帝人株式会社 Method for manufacturing compact with sustained isotropy
JP2012246442A (en) * 2011-05-30 2012-12-13 Fukui Prefecture Prepreg sheet material and method for producing the same
WO2013035705A1 (en) * 2011-09-06 2013-03-14 帝人株式会社 Molded body with excellent surface designability and composed of fiber-reinforced composite material

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02115236A (en) * 1988-10-25 1990-04-27 Sumitomo Chem Co Ltd Fiber-reinforced resin sheet for molding, its production and production of fiber-reinforced resin molding
JPH09277387A (en) * 1996-04-16 1997-10-28 Toyobo Co Ltd Manufacture of fiber reinforced thermoplastic resin sheet
JP2009523083A (en) * 2006-09-06 2009-06-18 ポリストランド インコーポレイティッド Composite laminate and its manufacturing method
WO2008099670A1 (en) * 2007-02-02 2008-08-21 Toray Industries, Inc. Prepreg base material, layered base material, fiber-reinforced plastic, process for producing prepreg base material, and process for producing fiber-reinforced plastic
JP2008207545A (en) * 2007-02-02 2008-09-11 Toray Ind Inc Notched prepreg substrate, composite notched prepreg substrate, laminated substrate, fiber-reinforced plastic, and method for manufacturing notched prepreg substrate
JP2008308626A (en) * 2007-06-16 2008-12-25 Teijin Techno Products Ltd Sheet-like fiber-reinforced composite material and production method therefor
JP2009286817A (en) * 2008-05-27 2009-12-10 Toray Ind Inc Laminated substrate, fiber-reinforced plastic, and methods for producing them
WO2012117593A1 (en) * 2011-02-28 2012-09-07 帝人株式会社 Molded body comprising fiber-reinforcing composite material
JP2012246442A (en) * 2011-05-30 2012-12-13 Fukui Prefecture Prepreg sheet material and method for producing the same
WO2012165418A1 (en) * 2011-05-31 2012-12-06 帝人株式会社 Method for manufacturing compact with sustained isotropy
WO2013035705A1 (en) * 2011-09-06 2013-03-14 帝人株式会社 Molded body with excellent surface designability and composed of fiber-reinforced composite material

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016179627A (en) * 2015-03-25 2016-10-13 三菱レイヨン株式会社 Fiber-reinforced thermoplastic resin laminate
JP2017128036A (en) * 2016-01-20 2017-07-27 株式会社Ihi Molding apparatus and molding method of fiber-reinforced composite member
WO2017126159A1 (en) * 2016-01-20 2017-07-27 株式会社Ihi Fiber-reinforced composite member molding device and fiber-reinforced composite member molding method
RU2691340C1 (en) * 2016-01-20 2019-06-11 АйЭйчАй КОРПОРЕЙШН Device for molding fiber-reinforced composite element and method of molding fiber-reinforced composite element
WO2018142962A1 (en) * 2017-02-02 2018-08-09 東レ株式会社 Method for producing fiber-reinforced plastic
WO2018142963A1 (en) * 2017-02-02 2018-08-09 東レ株式会社 Method for producing fiber-reinforced plastic
JPWO2018142962A1 (en) * 2017-02-02 2019-11-21 東レ株式会社 Manufacturing method of fiber reinforced plastic
JPWO2018142963A1 (en) * 2017-02-02 2019-11-21 東レ株式会社 Manufacturing method of fiber reinforced plastic
US11872773B2 (en) 2017-02-02 2024-01-16 Toray Industries, Inc. Method for producing fiber-reinforced plastic
US11951695B2 (en) 2017-02-02 2024-04-09 Toray Industries, Inc. Method for producing fiber-reinforced plastic
KR20190021751A (en) * 2017-08-23 2019-03-06 국방과학연구소 Manufacuring method of thermoplastic bulletproof material and thermoplastic bulletproof material using the same
KR101982259B1 (en) * 2017-08-23 2019-08-30 국방과학연구소 Manufacuring method of thermoplastic bulletproof material and thermoplastic bulletproof material using the same

Also Published As

Publication number Publication date
JP6435696B2 (en) 2018-12-12

Similar Documents

Publication Publication Date Title
KR101643114B1 (en) Layered substrate and method for manufacturing same
JP6464602B2 (en) LAMINATED SUBSTRATE MANUFACTURING METHOD AND LAMINATED SUBSTRATE
JP5858171B2 (en) Thermoplastic prepreg, laminated substrate and molded product
JP5920690B2 (en) Pre-preg sheet material and manufacturing method thereof
JP5915780B2 (en) Laminated substrate using fiber reinforced thermoplastics
JP6435696B2 (en) Method for producing laminated substrate
JP4789940B2 (en) Isotropic fiber reinforced thermoplastic resin sheet, method for producing the same and molded plate
JP6085798B2 (en) COMPOSITE MATERIAL FOR 3D SHAPE FORMING AND ITS MANUFACTURING METHOD
JP2014198838A (en) Method for producing fiber-reinforced thermoplastic resin molded plate
JP6883527B2 (en) Manufacturing method of fiber reinforced resin molded product
JPWO2008038591A1 (en) Method for producing composite prepreg substrate, laminated substrate and fiber reinforced plastic
JP2013221114A (en) Resin sheet made of carbon fiber composite resin material, resin molded product and method for manufacturing the same
JP2014189722A (en) Laminated base material of fiber-reinforced plastic and method for producing the same
JP2014172267A (en) Laminate substrate
JP2007262360A (en) Fiber-reinforced thermoplastic resin sheet and method for producing the same
JP2014104641A (en) Laminate substrate and fiber-reinforced composite material
JP2016108348A (en) Laminated base material and method for manufacturing the same
JP2014169411A (en) Prepreg, and production method thereof
JP2016011367A (en) Laminate substrate
JP2017001371A (en) Manufacturing method of fiber reinforced plastic molded sheet
JP6477114B2 (en) Fiber reinforced thermoplastic resin laminate and method for producing the same
JP6066174B2 (en) Laminated substrate of fiber reinforced plastic and method for producing the same
CN114761213A (en) Fiber-reinforced composite material and sandwich structure
JP2016190355A (en) Laminated base material
JP2014173031A (en) Stampable molded article, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181029

R151 Written notification of patent or utility model registration

Ref document number: 6435696

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151