JP2014173031A - Stampable molded article, and method for producing the same - Google Patents

Stampable molded article, and method for producing the same Download PDF

Info

Publication number
JP2014173031A
JP2014173031A JP2013048017A JP2013048017A JP2014173031A JP 2014173031 A JP2014173031 A JP 2014173031A JP 2013048017 A JP2013048017 A JP 2013048017A JP 2013048017 A JP2013048017 A JP 2013048017A JP 2014173031 A JP2014173031 A JP 2014173031A
Authority
JP
Japan
Prior art keywords
stampable
prepreg
base material
fiber
cut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013048017A
Other languages
Japanese (ja)
Inventor
Hayato Ogasawara
隼人 小笠原
Yasuhiko Nabeshima
泰彦 鍋島
Akinobu Sasaki
章亘 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2013048017A priority Critical patent/JP2014173031A/en
Publication of JP2014173031A publication Critical patent/JP2014173031A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/20Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres
    • B29C70/205Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres the structure being shaped to form a three-dimensional configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/0036Slitting

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a stampable molded article which is obtained by using a material, that has excellent shapability when molded into a complicated shape by stamping molding, which can be molded in a short time and has excellent external appearance quality.SOLUTION: The stampable molded article comprises a laminated base material formed by stacking two or more prepregs, each of which contains one-way arrayed reinforcing fibers and a thermoplastic resin. The prepreg has incisions which are formed on the front surface thereof in such a direction that the incision has a crossing with the reinforcing fiber and each of which has the depth enough to cut the reinforcing fiber. The stampable molded article has smooth front and back surfaces. The method for producing the stampable molded article is also provided.

Description

本発明は、スタンピング成形時に複雑な形状への賦形性に優れ、短時間で成形可能であり、かつ成形品の外観品位に優れたスタンパブル成形品の製造方法に関する。   The present invention relates to a method for manufacturing a stampable molded product that is excellent in shaping into a complicated shape during stamping molding, can be molded in a short time, and has excellent appearance quality of a molded product.

繊維強化熱可塑性プラスチックの成形方法としては、プリプレグと称される連続した強化繊維に熱可塑性樹脂を含浸せしめた基材を積層したり、さらにそれらをプレス等で加熱加圧や冷却加圧等により積層・一体化せしめた成形基材を、プレス等で加熱加圧や冷却加圧したりすることにより目的の形状に賦形するスタンピング成形が最も一般的に行われている。これにより得られた繊維強化プラスチックは、連続した強化繊維を用いているので優れた力学物性を有する。また連続した強化繊維は規則的に配列することで、必要とする力学物性に設計することが可能であり、力学物性のばらつきも小さい。しかしながら、連続した強化繊維であるゆえに3次元形状等の複雑な形状を形成することは難しく、主として平面形状に近い部材に限られる。   As a method for molding fiber-reinforced thermoplastics, continuous reinforcing fibers called prepregs are laminated with a base material impregnated with a thermoplastic resin, and further, they are heated or pressed with a press or the like. Most commonly, stamping molding is performed in which a laminated and integrated molding base material is shaped into a target shape by heating and pressing or cooling and pressing with a press or the like. The fiber reinforced plastic obtained in this way has excellent mechanical properties because it uses continuous reinforcing fibers. Further, by arranging the continuous reinforcing fibers regularly, it is possible to design the required mechanical properties, and the variation in the mechanical properties is small. However, since it is a continuous reinforcing fiber, it is difficult to form a complicated shape such as a three-dimensional shape, and it is mainly limited to members close to a planar shape.

この問題を解決するために、繊維長が5mmもしくは10mm〜100mmに切断し一定の繊維長及び繊維体積含有率であり、2次元ランダムに繊維を配向させることで繊維を等方的に維持させたランダムマットが提案されている。(例えば、特許文献1、2)   In order to solve this problem, the fiber length is cut to 5 mm or 10 mm to 100 mm, the fiber length and the fiber volume content are constant, and the fibers are isotropically maintained by orienting the fibers randomly in two dimensions. Random mats have been proposed. (For example, Patent Documents 1 and 2)

しかしながら、一定の繊維長と繊維体積含有率を維持し、且つ繊維を等方的に維持することは極めて難しく、場所や向きによって力学的な特性に斑が生じるなどの問題があった。さらに、スタンピング成形時に必要となる成型基材の予熱の際に、強化繊維の分散斑に起因する厚み斑や繊維体積含有率斑が生じ同一成形基材内で加熱過多・加熱不足が生じる。
加熱不足の部位は流動性に欠け、加熱過多の部位は熱可塑性樹脂の分解温度に達する場合も想定され、そのような状態でスタンピング成形を行った場合、成形体に表面凹凸が生じたり、白化・褐色化や表面外観の悪化したりする可能性がある。このような事例は、成形基材の予熱工程の操作範囲を狭くすることからも好ましくない。
However, it is extremely difficult to maintain a constant fiber length and fiber volume content and to keep the fibers isotropic, and there is a problem that mechanical characteristics are uneven depending on the location and orientation. Furthermore, during preheating of the molding base material required at the time of stamping molding, thickness spots and fiber volume content spots resulting from dispersion spots of reinforcing fibers are generated, resulting in excessive heating and insufficient heating in the same molding base material.
It is assumed that the part with insufficient heating lacks fluidity and the part with excessive heating reaches the decomposition temperature of the thermoplastic resin. When stamping molding is performed in such a state, surface irregularities may occur on the molded body or whitening may occur.・ It may cause browning or deterioration of surface appearance. Such a case is not preferable because the operation range of the preheating process of the molded base material is narrowed.

上述のような課題を解決するために、特許文献3では連続繊維と熱可塑性樹脂からなるプリプレグに切込を入れ、且つ切込形状を最適化することにより、短時間成形が可能で優れた賦形性を示し、さらに、力学特性は高くそのばらつきが小さい材料が提案されている。   In order to solve the above-mentioned problems, Patent Document 3 is capable of forming in a short time by cutting into a prepreg composed of continuous fibers and a thermoplastic resin and optimizing the cutting shape, thereby providing excellent loading. Materials that exhibit shape and have high mechanical properties and small variations have been proposed.

しかしながら、提案の方法では力学特性とばらつきの改良はみられるが、スタンピング成形において薄いリブやボス等の複雑な3次元形状への流動性は不十分である。さらに、チャージ率が低いため、成形体表裏面に生じる強化繊維がランダムに流動した部位の面積が大きく、さらに成形体表裏面の積層基材由来の繊維配向を維持した部位との切り替わり位置が視認性の高い部位になる傾向にあるため、外観良好な成形体を得るためには改造の必要があった。   However, although the proposed method shows improvement in mechanical characteristics and variation, the fluidity to a complicated three-dimensional shape such as a thin rib or boss is insufficient in stamping. Furthermore, because the charge rate is low, the area of the part where the reinforcing fibers generated on the front and back surfaces of the molded body randomly flow is large, and the switching position with the part that maintains the fiber orientation derived from the laminated substrate on the front and back surfaces of the molded body is visible. Since there is a tendency to become a highly sited part, it was necessary to remodel in order to obtain a molded article having a good appearance.

特開2013−010254号公報JP 2013-010254 A 特開2013−011736号公報JP 2013-011736 A 特開2009−286817号公報JP 2009-286817 A

本発明は、上記のような従来技術の抱える課題点を解消するものであって、リブ・ボス等の複雑形状に容易に追随し、成形体表裏面に生じる強化繊維がランダムに流動した部位の面積を小さくし、且つ成形体表裏面の積層基材由来の繊維配向を維持した部位との切り替わり位置の視認性を下げることで、スタンピング成形品の外観向上を課題とする。   The present invention solves the problems of the prior art as described above, easily follows complicated shapes such as ribs, bosses, etc., and the reinforcing fibers generated on the front and back surfaces of the molded body randomly flow. An object of the present invention is to improve the appearance of a stamped molded product by reducing the area and reducing the visibility of the switching position between the front and back surfaces of the molded body and the portion where the fiber orientation derived from the laminated base material is maintained.

本発明は、一方向に配向した強化繊維と熱可塑性樹脂とを含み、表面に強化繊維を横切る方向に強化繊維を切断する深さの切込を有するプリプレグを、複数枚積層して形成された積層基材からなるスタンパブル成型品で、表裏面が滑らかであるスタンパブル成形品である。   The present invention is formed by laminating a plurality of prepregs including a reinforcing fiber oriented in one direction and a thermoplastic resin, and having a depth of notch for cutting the reinforcing fiber in a direction crossing the reinforcing fiber on the surface. It is a stampable molded product made of a laminated base material, and is a stampable molded product with smooth front and back surfaces.

本発明は、上記のような従来技術の抱える課題点を解消するものであって、リブ・ボス等の複雑形状に容易に追随し、成形体表裏面に生じる強化繊維がランダムに流動した部位の面積を小さくし、且つ成形体表裏面の積層基材由来の繊維配向を維持した部位との切り替わり位置の視認性を下げることで、スタンピング成形品を得ることができる。   The present invention solves the problems of the prior art as described above, easily follows complicated shapes such as ribs, bosses, etc., and the reinforcing fibers generated on the front and back surfaces of the molded body randomly flow. A stamping molded product can be obtained by reducing the area and reducing the visibility of the switching position between the front and back surfaces of the molded body and the portion where the fiber orientation derived from the laminated base material is maintained.

本発明の実施例12,13以外で用いた切込を入れたプリプレグを示す図。The figure which shows the prepreg which gave the notch | incision used except Examples 12 and 13 of this invention. 本発明の実施例で得られたスタンピング成形体を示す図。The figure which shows the stamping molded object obtained in the Example of this invention.

本発明のスタンピング成形品は、一方向に配向した強化繊維と熱可塑性樹脂とを含み、表面に強化繊維を横切る方向に強化繊維を切断する深さの切込を有するプリプレグを、複数枚積層して形成された積層基材からなるスタンパブル成型品で、表裏面が滑らかであるスタンパブル成形品である。   The stamping molded article of the present invention comprises a laminate of a plurality of prepregs that include reinforcing fibers oriented in one direction and a thermoplastic resin, and that have a depth of cut that cuts the reinforcing fibers in a direction crossing the reinforcing fibers on the surface. A stampable molded product made of a laminated base material formed in the above manner, and a stampable molded product having smooth front and back surfaces.

(プリプレグ)
本発明のスタンパブル成形品に用いることができるプリプレグは、切込により強化繊維が切断されていることが必要である。切断された強化繊維の長さLは特に制限されるものではないが、力学特性と流動性の観点から、5mm以上、100mm以下であることが好ましい。特に十分な力学物性とスタンピング成形時のリブ等の薄肉部への流動を両立させるためには10mm以上50mm以下であることがさらに好ましい。
(Prepreg)
The prepreg that can be used in the stampable molded article of the present invention requires that the reinforcing fiber is cut by cutting. The length L of the cut reinforcing fiber is not particularly limited, but is preferably 5 mm or more and 100 mm or less from the viewpoint of mechanical properties and fluidity. In particular, in order to achieve both sufficient mechanical properties and flow to a thin portion such as a rib during stamping molding, the thickness is more preferably 10 mm or more and 50 mm or less.

また、スタンピング成形時の流動性は、強化繊維を切断する切込の方向と強化繊維のなす角度θのみならず、1mあたりの切込長の総和laに依存する。θが大きいほど強化繊維間のせん断力が小さくなるために流動性が高く、laが大きいほどプリプレグ中の切断部分が多いため流動性が高くなる。本発明のスタンパブル成形品に用いることができるプリプレグは、平板のスタンピング成形の場合、θは25°以上が好ましく、laは10m以上であることが好ましい。さらにリブなど複雑形状のスタンピング成形の場合、θは30°以上が好ましく、laは20m以上が好ましい。 Further, the fluidity at the time of stamping molding depends not only on the direction of cutting for cutting the reinforcing fiber and the angle θ formed by the reinforcing fiber, but also on the total length la of the cutting length per 1 m 2 . The larger θ is, the smaller the shear force between the reinforcing fibers is, so the fluidity is higher, and the larger la is, the more the cut portion in the prepreg is, the higher the fluidity is. When the prepreg that can be used in the stampable molded article of the present invention is flat plate stamping, θ is preferably 25 ° or more, and la is preferably 10 m or more. Furthermore, in the case of stamping molding of complicated shapes such as ribs, θ is preferably 30 ° or more, and la is preferably 20 m or more.

さらに、曲げ強度、曲げ弾性率に代表される力学物性は、強化繊維を切断する切込と強化繊維のなす角度θのみならず、1mあたりの切込長の総和laに依存する。切込と強化繊維のなす角度θが小さいほど機械物性が高いことが知られており(例えば特許文献3)、またlaが小さいほどプリプレグ中の切断部分が少ないために高い力学物性が得られる。例えば自動車の準構造部材に利用するためには、θが70°以下が好ましく、laは200m以下が好ましい。またさらに高い力学強度が求められる構造部材に用いるためには、θは60°以下が好ましく、laは150m以下が好ましい。 Furthermore, the mechanical properties represented by the bending strength and the flexural modulus depend not only on the angle θ between the notch for cutting the reinforcing fiber and the reinforcing fiber but also on the total length la of the notch length per 1 m 2 . It is known that the smaller the angle θ between the cut and the reinforcing fiber is, the higher the mechanical properties are (for example, Patent Document 3), and the smaller the la is, the fewer cut portions in the prepreg are, so that higher mechanical properties are obtained. For example, θ is preferably 70 ° or less and la is preferably 200 m or less in order to be used for a semi-structure member of an automobile. For use in structural members that require higher mechanical strength, θ is preferably 60 ° or less, and la is preferably 150 m or less.

本発明のスタンパブル成形品に用いることができるプリプレグに切込を施したプリプレグを用いる場合には、製造時間や製造コストは、強化繊維を切断する切込と強化繊維のなす角度θのみならず、1mあたりの切込長の総和laに大きく依存する。θが小さく、かつlaが大きい場合であって、例えばカッティングプロッタで切断する場合には切込加工に有する時間が長大になる。また打ち抜きで切込を加工する場合には、打ち抜き刃の製造コストが膨大になるだけでなく、打ち抜く際に強化繊維方向に裂け目が生じやすく、隣接する切込間でシートの欠落が生じる。このためθは15°以上が好ましく、laは200m以下が好ましい。さらに切込加工後の積層工程を考慮すると、θは30°以上が好ましく、laは150m以下がさらに好ましい。切込を有することが必要であるが、切込と強化繊維のなす角度θと1mあたりの切込長の総和laの範囲を満たすものであれば、切込の長さと切込の数の異なるプリプレグを積層しても良い。スタンピング成形時、ボスやリブなどの薄肉で三次元形状を有する部分にはθを大きく、かつlaを大きくすることが好ましい。逆に流動が二次元的で流動長が小さく、高い力学物性を必要とする部分には、θを小さく、かつlaを小さくすることが好ましい。 When using a prepreg that has been cut into a prepreg that can be used in the stampable molded article of the present invention, the manufacturing time and the manufacturing cost are not only the angle θ between the cut and the reinforcing fiber cutting the reinforcing fiber, This greatly depends on the total sum la of the cutting length per 1 m 2 . When θ is small and la is large, for example, when cutting with a cutting plotter, the time required for the cutting process becomes long. In addition, when the cut is processed by punching, not only the manufacturing cost of the punching blade is increased, but also a tear is easily generated in the direction of the reinforcing fiber when punching, and a sheet is lost between adjacent cuts. Therefore, θ is preferably 15 ° or more, and la is preferably 200 m or less. Further, in consideration of the lamination process after the cutting process, θ is preferably 30 ° or more, and la is more preferably 150 m or less. It is necessary to have a cut, but if it satisfies the range of the angle θ between the cut and the reinforcing fiber and the total length of the cut per 1 m 2 , the length of the cut and the number of cuts Different prepregs may be laminated. At the time of stamping molding, it is preferable to increase θ and increase la in a thin and three-dimensional portion such as a boss or rib. On the other hand, it is preferable that θ is small and la is small in a portion where the flow is two-dimensional and the flow length is small and high mechanical properties are required.

本発明のスタンパブル成形品に用いることができるプリプレグは、強化繊維の繊維体積含有率Vfが55%以下であれば、十分な流動性を得ることができるので好ましい。Vfの値が低いほど流動性は向上するが、Vfの値が20%未満では構造材に必要な力学特性は得られない。流動性と力学特性の関係を鑑みると、20%以上55%以下が好ましい。かかるVf値は、JIS K7075に基づき測定できる。   The prepreg that can be used in the stampable molded article of the present invention is preferably a fiber volume content Vf of the reinforcing fiber of 55% or less because sufficient fluidity can be obtained. The lower the value of Vf, the better the fluidity. However, if the value of Vf is less than 20%, the mechanical properties necessary for the structural material cannot be obtained. Considering the relationship between fluidity and mechanical properties, 20% to 55% is preferable. Such Vf value can be measured based on JIS K7075.

本発明のスタンパブル成形品に用いることができるプリプレグとして、切込を有するプリプレグを用いると、分断されるプリプレグの厚みが大きいほど強度が低下する傾向であり、構造材に適用することを前提とするならば、プリプレグの厚さは200μm以下とするのが良い。一方厚みが50μm未満ではプリプレグの取り扱いが難しく、また積層基材とするために積層するプリプレグの数が非常に多くなるので、生産性が著しく悪化する。よって生産性の観点から50μm以上200μm以下であることが好ましい。   As a prepreg that can be used in the stampable molded article of the present invention, when a prepreg having a cut is used, the strength tends to decrease as the thickness of the divided prepreg increases, and it is assumed that the prepreg is applied to a structural material. Therefore, the thickness of the prepreg is preferably 200 μm or less. On the other hand, if the thickness is less than 50 μm, it is difficult to handle the prepreg, and the number of prepregs to be laminated for making a laminated base material is very large, so the productivity is remarkably deteriorated. Therefore, it is preferable that it is 50 micrometers or more and 200 micrometers or less from a viewpoint of productivity.

本発明のスタンパブル成形品に用いることができる強化繊維としては、種類は特に限定されず、無機繊維、有機繊維、金属繊維、またはこれらを組み合わせたハイブリッド構成の強化繊維が使用できる。無機繊維としては、炭素繊維、黒鉛繊維、炭化珪素繊維、アルミナ繊維、タングステンカーバイド繊維、ボロン繊維、ガラス繊維などが挙げられる。有機繊維としては、アラミド繊維、高密度ポリエチレン繊維、その他一般のナイロン繊維、ポリエステルなどが挙げられる。金属繊維としては、ステンレス、鉄等の繊維を挙げられ、また金属を被覆した炭素繊維でもよい。これらの中では、最終成形物の強度等の機械特性を考慮すると、炭素繊維が好ましい。また、強化繊維の平均繊維直径は、1〜50μmであることが好ましく、5〜20μmであることがさらに好ましい。   The type of reinforcing fiber that can be used in the stampable molded article of the present invention is not particularly limited, and inorganic fiber, organic fiber, metal fiber, or a hybrid fiber that combines these can be used. Examples of the inorganic fiber include carbon fiber, graphite fiber, silicon carbide fiber, alumina fiber, tungsten carbide fiber, boron fiber, and glass fiber. Examples of organic fibers include aramid fibers, high density polyethylene fibers, other general nylon fibers, and polyesters. Examples of the metal fibers include fibers such as stainless steel and iron, and may be carbon fibers coated with metal. Among these, carbon fibers are preferable in consideration of mechanical properties such as strength of the final molded product. Moreover, it is preferable that the average fiber diameter of a reinforced fiber is 1-50 micrometers, and it is more preferable that it is 5-20 micrometers.

本発明のスタンパブル成形品は、熱可塑性樹脂を用いることが必要である。すなわち、不連続な強化繊維を用いた繊維強化プラスチックの場合、強化繊維端部どうしを連結するように破壊するため、一般的に熱硬化性樹脂よりも靱性値が高い熱可塑性樹脂を用いることで、強度、特に衝撃性が向上する。さらに熱可塑性樹脂は化学反応を伴うことなく冷却固化して形状を決定するので、短時間成形が可能であり、生産性に優れる。このような熱可塑性樹脂としては、ポリアミド(ナイロン6、ナイロン66等)、ポリオレフィン(ポリエチレン、ポリプロピレン等)、変性ポリオレフィン、ポリエステル(ポリエチレンテレフタレート、ポリブチレンテレフタレート等)、ポリカーボネート、ポリアミドイミド、ポリフェニレンオキシド、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリスチレン、ABS、ポリフェニレンサルファイド、液晶ポリエステルや、アクリロニトリルとスチレンの共重合体等を用いることができる。また、これらの混合物を用いてもよい。さらに、ナイロン6とナイロン66との共重合ナイロンのように共重合したものであってもよい。また、得たい成形品の要求特性に応じて、難燃剤、耐候性改良剤、その他酸化防止剤、熱安定剤、紫外線吸収剤、可塑剤、滑剤、着色剤、相溶化剤、導電性フィラー等を添加しておくこともできる。   The stampable molded article of the present invention needs to use a thermoplastic resin. That is, in the case of a fiber reinforced plastic using discontinuous reinforcing fibers, in order to break so as to connect the ends of the reinforcing fibers, it is generally possible to use a thermoplastic resin having a higher toughness value than a thermosetting resin. , Strength, especially impact properties are improved. Furthermore, since the thermoplastic resin is cooled and solidified without a chemical reaction to determine the shape, it can be molded in a short time and has excellent productivity. Examples of such thermoplastic resins include polyamide (nylon 6, nylon 66, etc.), polyolefin (polyethylene, polypropylene, etc.), modified polyolefin, polyester (polyethylene terephthalate, polybutylene terephthalate, etc.), polycarbonate, polyamideimide, polyphenylene oxide, polysulfone. , Polyethersulfone, polyetheretherketone, polyetherimide, polystyrene, ABS, polyphenylene sulfide, liquid crystal polyester, a copolymer of acrylonitrile and styrene, and the like can be used. Moreover, you may use these mixtures. Further, it may be a copolymer of nylon 6 and nylon 66 such as copolymerized nylon. In addition, depending on the required characteristics of the molded product to be obtained, flame retardants, weather resistance improvers, other antioxidants, heat stabilizers, ultraviolet absorbers, plasticizers, lubricants, colorants, compatibilizers, conductive fillers, etc. Can also be added.

本発明に含まれるプリプレグは、プリプレグどうしが接着されていることが、取扱いを容易にする点で好ましい。   In the prepreg included in the present invention, it is preferable that the prepregs are bonded to each other in terms of easy handling.

本発明に用いられる積層基材は、複数のプリプレグを強化繊維の方向が擬似等方となるように積層されていることが、プレス時の流動の異方性を小さくする点で好ましい。   The laminated base material used in the present invention is preferably laminated with a plurality of prepregs so that the directions of the reinforcing fibers are pseudo-isotropic from the viewpoint of reducing the flow anisotropy during pressing.

以下に本発明のスタンパブル成形品に用いることができるプリプレグに用いることができる製造方法の一態様を説明するが、本発明はこれによって特に制限されるものではない。   One embodiment of a production method that can be used for a prepreg that can be used for the stampable molded article of the present invention will be described below, but the present invention is not particularly limited thereby.

本発明のスタンパブル成形品に用いることができるプリプレグは、例えばフィルム状とした熱可塑性樹脂を二枚準備し、その二枚の間に強化繊維をシート状に並べた強化繊維シートを挟み込み、加熱及び加圧を行うことにより得ることができる。より具体的には、2枚の熱可塑性樹脂からなるフィルムを送り出す、2つのロールから二枚のフィルムを送り出すとともに、強化繊維シートのロールから供給される強化繊維シートを二枚のフィルムの間に挟み込ませた後に、加熱及び加圧する。加熱及び加圧する手段としては、公知のものを用いることができ、二個以上の熱ロールを利用したり、予熱装置と熱ロールの対を複数使用したりするなどの多段階の工程を要するものであってもよい。ここで、フィルムを構成する熱可塑性樹脂は一種類ある必要はなく、別の種類の熱可塑性樹脂からなるフィルムを、上記のような装置を用いてさらに積層させてもよい。   The prepreg that can be used in the stampable molded product of the present invention is prepared, for example, by preparing two sheets of thermoplastic resin in the form of a film, sandwiching a reinforcing fiber sheet in which reinforcing fibers are arranged in a sheet shape, and heating and It can be obtained by applying pressure. More specifically, two films are sent out from two rolls of a film made of thermoplastic resin, and a reinforcing fiber sheet supplied from a roll of reinforcing fiber sheets is placed between the two films. After sandwiching, heat and pressurize. As a means for heating and pressurizing, known means can be used, which requires a multi-step process such as using two or more heat rolls or using multiple pairs of preheating devices and heat rolls. It may be. Here, the thermoplastic resin constituting the film does not have to be one type, and a film made of another type of thermoplastic resin may be further laminated using the apparatus as described above.

上記加熱温度は、熱可塑性樹脂の種類にもよるが、通常、100〜400℃であることが好ましい。一方、加圧時の圧力は、通常0.1〜10MPaであることが好ましい。この範囲であれば、プリプレグに含まれる強化繊維の間に、熱可塑性樹脂を含浸させることができるので好ましい。また、本発明の積層基材に用いることができるプリプレグは、市販されているプリプレグを用いることもできる。   Although the said heating temperature is based also on the kind of thermoplastic resin, it is preferable that it is 100-400 degreeC normally. On the other hand, the pressure during pressurization is preferably 0.1 to 10 MPa. If it is this range, since it can be made to impregnate a thermoplastic resin between the reinforced fiber contained in a prepreg, it is preferable. Moreover, the prepreg which can be used for the laminated base material of this invention can also use the prepreg marketed.

本発明に含まれるプリプレグは、レーザーマーカー、カッティングプロッタや抜型等を利用して切込を入れることにより得ることができるが、レーザーマーカーを用いると、曲線やジグザグ線など複雑な切込を高速に加工できるという効果があるので好ましく、また、カッティングプロッタを用いると、2m以上の大判のプリプレグを加工できるので好ましい。さらに、前記切込が抜型を用いて施されたものであると、高速に加工が可能であるという効果があるので好ましい。   The prepreg included in the present invention can be obtained by making a cut using a laser marker, a cutting plotter, a cutting die, or the like. However, when a laser marker is used, a complicated cut such as a curve or a zigzag line can be made at high speed. It is preferable because it can be processed, and a cutting plotter is preferable because a large prepreg of 2 m or more can be processed. Furthermore, it is preferable that the cut is made by using a punching die because there is an effect that processing can be performed at high speed.

次工程では、上記のようにして得られたプリプレグを強化繊維の方向が疑似等方などの所望の構成に積層して積層基材を作成する。この際取扱いの容易さから超音波溶着機で、プリプレグ同士をスポット溶接することもできる。また、本発明のスタンパブル成形品に用いることができる積層基材は、プリプレグを8〜96層となるように積層することが好ましい。   In the next step, the prepreg obtained as described above is laminated in a desired configuration such that the direction of the reinforcing fibers is pseudo-isotropic to create a laminated base material. At this time, prepregs can be spot-welded with an ultrasonic welder because of easy handling. Moreover, it is preferable to laminate | stack the prepreg so that the lamination base material which can be used for the stampable molded article of this invention will be 8 to 96 layers.

次工程では、上記のようにして得られた積層基材を加熱加圧及び冷却加圧プレス工程を経由して一体化した積層基材を成形する。この工程は、通常の装置、例えば加熱プレス機及び冷却プレス機、加熱冷却多段プレス機等を用いて行うことができる。   In the next step, a laminated base material obtained by integrating the laminated base material obtained as described above through a heating and pressurizing and cooling and pressing process is formed. This process can be performed using a normal apparatus, for example, a heating press machine, a cooling press machine, and a heating / cooling multistage press machine.

前記加熱加圧工程における加熱については、積層基材に含まれる熱可塑性樹脂の種類にもよるが、100〜400℃で加熱することが好ましく、さらに好ましくは150〜350℃で加熱することが好ましい。また、前記加熱に先立って、予備加熱を行ってもよい。   About the heating in the said heating-pressing process, although depending also on the kind of thermoplastic resin contained in a laminated base material, it is preferable to heat at 100-400 degreeC, More preferably, it is preferable to heat at 150-350 degreeC. . Prior to the heating, preliminary heating may be performed.

前記加熱加圧工程における加圧については、積層基材にかける加熱圧力や加熱加圧時の圧力としては、好ましくは0.1〜10MPaであり、より好ましくは0.2〜2MPaである。この圧力については、プレス力を積層基材の面積で除した値とする。   About the pressurization in the said heat pressurization process, as a heating pressure applied to a laminated base material or a pressure at the time of heat pressurization, Preferably it is 0.1-10 MPa, More preferably, it is 0.2-2 MPa. The pressure is a value obtained by dividing the pressing force by the area of the laminated base material.

前記加熱加圧工程における加圧時間については、0.1〜30分間であることが好ましく、さらに好ましくは0.5〜15分間である。また、加熱及び加圧の後に設ける冷却時間は、0.5〜30分間であることが好ましい。   About the pressurization time in the said heating-pressing process, it is preferable that it is 0.1 to 30 minutes, More preferably, it is 0.5 to 15 minutes. Moreover, it is preferable that the cooling time provided after a heating and pressurization is 0.5 to 30 minutes.

さらに、前記冷却加圧工程における加熱については、積層基材に含まれる熱可塑性樹脂の種類にもよるが、30〜200℃で加熱することが好ましく、さらに好ましくは50〜150℃で加熱することが好ましい。また、前記加熱に先立って、予備加熱を行ってもよい。   Furthermore, about the heating in the said cooling pressurization process, although depending also on the kind of thermoplastic resin contained in a laminated base material, it is preferable to heat at 30-200 degreeC, More preferably, it heats at 50-150 degreeC. Is preferred. Prior to the heating, preliminary heating may be performed.

前記冷却加圧工程における加圧については、積層基材にかける加熱圧力や加熱加圧時の圧力としては、好ましくは0.5〜10MPaであり、より好ましくは0.8〜2MPaである。この圧力については、プレス力を積層基材の面積で除した値とする。   About the pressurization in the cooling and pressurizing step, the heating pressure applied to the laminated base material and the pressure at the time of heating and pressing are preferably 0.5 to 10 MPa, more preferably 0.8 to 2 MPa. The pressure is a value obtained by dividing the pressing force by the area of the laminated base material.

前記冷却加圧工程における加圧時間については、0.1〜30分間であることが好ましく、さらに好ましくは0.5〜15分間である。これらの工程を経て一体化した積層基材の厚さは、0.5〜10mmであることが好ましい。   About the pressurization time in the said cooling pressurization process, it is preferable that it is 0.1 to 30 minutes, More preferably, it is 0.5 to 15 minutes. The thickness of the laminated base material integrated through these steps is preferably 0.5 to 10 mm.

なお、前記加熱加圧工程及び冷却加圧工程は、型と上記積層基材との間に潤滑剤が存在する条件下で行ってもよい。潤滑剤の作用により、前記加熱及び加圧時に上記積層基材を構成するプリプレグに含まれる強化繊維の流動性が高まるため、強化繊維の間への熱可塑性樹脂の含浸を高まるとともに、得られる積層基材において強化繊維の間及び強化繊維と熱可塑性樹脂の間におけるボイドを低減させることができるからである。   In addition, you may perform the said heating-pressing process and a cooling pressurization process on the conditions where a lubricant exists between a type | mold and the said laminated base material. Due to the action of the lubricant, the fluidity of the reinforcing fibers contained in the prepreg constituting the laminated base material during the heating and pressurization is increased, so that the impregnation of the thermoplastic resin between the reinforcing fibers is increased and the obtained lamination is obtained. This is because voids between the reinforcing fibers and between the reinforcing fibers and the thermoplastic resin can be reduced in the substrate.

前記潤滑剤としては、例えばシリコーン系潤滑剤やフッ素系潤滑剤を用いることができる。また、これらの混合物を用いてもよい。シリコーン系潤滑剤としては、高温環境で用いることができる耐熱性のものが好ましく用いられる。より具体的には、メチルフェニルシリコーンオイルやジメチルシリコーンオイルのようなシリコーンオイルを挙げることができ、市販されているものを好ましく用いることができる。フッ素系潤滑剤としては、高温環境で用いることができる耐熱性のものが好ましく用いられる。そのようなものの具体例としては、パーフルオロポリエーテルオイルや三フッ化塩化エチレンの低重合物(重量平均分子量500〜1300)のようなフッ素オイルを用いることができる。   As the lubricant, for example, a silicone-based lubricant or a fluorine-based lubricant can be used. Moreover, you may use these mixtures. As the silicone-based lubricant, a heat-resistant one that can be used in a high-temperature environment is preferably used. More specifically, silicone oils such as methylphenyl silicone oil and dimethyl silicone oil can be exemplified, and commercially available ones can be preferably used. As the fluorine-based lubricant, a heat-resistant one that can be used in a high temperature environment is preferably used. As specific examples of such a material, fluorine oil such as perfluoropolyether oil or a low polymer of ethylene trifluoride chloride (weight average molecular weight 500 to 1300) can be used.

上記潤滑剤は、上記積層基材の片側若しくは両側の表面上、前記型の片側もしくは両側の表面上または上記積層基材及び型の双方の片側若しくは両側の表面上に、潤滑剤塗布装置などの適当な手段によって供給されてもよいし、予め型の表面上に塗布しておいてもよい。中でも積層基材の両側の表面に潤滑剤が供給される態様が好ましい。   The lubricant is applied to the surface of one side or both sides of the laminated base material, the surface of one side or both sides of the mold, or the surface of one side or both sides of the laminated base material and the mold. It may be supplied by appropriate means, or may be previously applied on the surface of the mold. Among these, a mode in which the lubricant is supplied to the surfaces on both sides of the laminated base material is preferable.

本発明のスタンパブル成形体の製造方法は、予熱工程とスタンピング成形工程の2工程を経由して、スタンパブル成形体とする必要がある。   The manufacturing method of the stampable molded body of the present invention needs to be a stampable molded body through two steps of a preheating process and a stamping molding process.

本発明のスタンパブル成形体の製造方法の予熱工程は、従来公知の方法により行うことができる。例えば、熱風式乾燥方式、蒸気乾燥方式、赤外線ヒーター方式適宜選択して使用することができる。中でも、均一照射と昇温効果の高い赤外線ヒーター方式が好ましい。また、積層基材の厚み等により、適宜乾燥機を同種・異種1つ以上組み合わせてもよい。予熱時の予熱温度は、用いる熱可塑性樹脂にもよるが、下限温度は150℃以上加熱することが必要であり、好ましくは180以上である。上限温度は、400℃以下で加熱することが必要であり、好ましくは350℃以下である。予熱温度をあげることで、スタンピング成形時に、より複雑な形状への追従が可能となるが、用いる熱可塑性樹脂の種類によっては分解が生じる可能性があるので適切な温度範囲で成形することが好ましい。また、空気中では熱分解が促進され、空気遮断することで熱分解が低減される熱可塑性樹脂もあるので、適宜耐熱のフィルムやシートで積層基材を覆ってもよい。   The preheating step of the method for producing a stampable molded body of the present invention can be performed by a conventionally known method. For example, a hot air drying method, a steam drying method, or an infrared heater method can be appropriately selected and used. Among them, an infrared heater method having high uniform irradiation and a high temperature rising effect is preferable. Further, depending on the thickness of the laminated base material, etc., one or more dryers may be appropriately combined. The preheating temperature at the time of preheating depends on the thermoplastic resin to be used, but the lower limit temperature needs to be heated to 150 ° C. or more, and preferably 180 or more. The upper limit temperature needs to be heated at 400 ° C. or lower, and preferably 350 ° C. or lower. By increasing the preheating temperature, it becomes possible to follow a more complicated shape at the time of stamping molding, but it may be decomposed depending on the type of thermoplastic resin used, so it is preferable to mold at an appropriate temperature range. . In addition, since there is a thermoplastic resin in which thermal decomposition is accelerated in the air and thermal decomposition is reduced by blocking the air, the laminated base material may be appropriately covered with a heat-resistant film or sheet.

本発明のスタンパブル成形体の製造方法のスタンピング成形工程は、S1/S2が0.85〜0.95となるように圧縮成形することが必要である。S1/S2が0.85未満であると、スタンパブル成形体の表裏面に占める強化繊維がランダムに流動した部位が大きくなり、積層基材由来の繊維配向を維持した部位との切り替わり位置が視認性の高い部位にくる傾向があり好ましくない。さらには、強化繊維がランダムに配向している部位は、積層基材由来の繊維配向を維持している部位と比べて表面凹凸が大きくなる傾向にあり、塗装などを行う際に障害となる可能性がある。一方、S1/S2が0.95を超えると強化繊維がランダムで配向している部位が減る傾向になるが、チャージの際に型の端部に積層基材が噛みこむ懸念がある。リブやボスに代表される複雑形状に成形するための型は、多くは端部が食切り形状になっているため、S1/S2の値を大きくした結果、材料を噛み込み、型を破損する可能性があるため好ましくない。また、積層基材のチャージの際、型開口部にチャージするのが難しく、皺やたるみを誘発した結果、外観不良が起こる可能性もある。   The stamping molding step of the stampable molded body manufacturing method of the present invention requires compression molding so that S1 / S2 is 0.85 to 0.95. When S1 / S2 is less than 0.85, the part where the reinforcing fibers occupying the front and back surfaces of the stampable molded body randomly flowed increases, and the switching position with the part maintaining the fiber orientation derived from the laminated base material is visible. It tends to come to a high part, which is not preferable. Furthermore, the part where the reinforcing fibers are randomly oriented tends to have larger surface irregularities than the part maintaining the fiber orientation derived from the laminated base material, which may be an obstacle when performing painting or the like. There is sex. On the other hand, when S1 / S2 exceeds 0.95, the number of randomly oriented reinforcing fibers tends to decrease, but there is a concern that the laminated base material bites into the end of the mold during charging. Many molds for forming into complicated shapes typified by ribs and bosses have a cut-off shape at the ends, and as a result of increasing the value of S1 / S2, the material is bitten and the mold is damaged. This is not preferable because there is a possibility. In addition, when the laminated base material is charged, it is difficult to charge the mold opening, and appearance defects may occur as a result of inducing wrinkles and sagging.

スタンピング成型時の型温度は、用いる熱可塑性樹脂にもよるが、下限温度は40℃以上であることが好ましく、より好ましくは50℃以上である。上限温度は、300℃以下であることが好ましく、より好ましくは200℃以下である。型温度の下限温度が低すぎると、積層基材をチャージした際に急激に冷却されてしまい、リブ・ボスへの複雑形状への追従性を著しく欠く可能性がある。一方、型温度が高すぎると、リブ・ボスへの複雑形状への追従性に富むが、使用する熱可塑性樹脂にもよるが結晶化時間が長くなりすぎて成型外観の悪化や場合によっては未硬化になる可能性がある。   The mold temperature during stamping molding depends on the thermoplastic resin used, but the lower limit temperature is preferably 40 ° C. or higher, more preferably 50 ° C. or higher. The upper limit temperature is preferably 300 ° C. or lower, more preferably 200 ° C. or lower. If the lower limit temperature of the mold temperature is too low, the laminated base material is rapidly cooled when charged, and there is a possibility that the ability to follow the complex shape of the ribs and bosses may be remarkably lacking. On the other hand, if the mold temperature is too high, the ribs and bosses have excellent conformability to complex shapes, but depending on the thermoplastic resin used, the crystallization time becomes too long and the molded appearance deteriorates and in some cases it has not been. There is a possibility of hardening.

以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではない。以降の実施例および比較例においては、原材料として下記のものを用いた。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited at all by these Examples. In the following examples and comparative examples, the following were used as raw materials.

(製造例1)
炭素繊維(三菱レイヨン株式会社製、製品名:TR50S15L、12000本、密度1.82g/cm2)を一方向平面状に目付けが72.0g/mになるように配列させた炭素繊維シートとした。この炭素繊維シートの両面に、目付け36.4g/mの樹脂フィルム(三菱化学株式会社製、製品名:モディック(登録商標)P958)を積層させて積層体を得た。この積層体を200〜260℃に加熱したカレンダーロールに複数回と通して、樹脂を炭素繊維シートに溶融含浸させプリプレグを得た。得られたプリプレグの厚みは120μm、目付けは145.0g/m2、繊維堆積含有率(Vf)は33.0%であった。
(Production Example 1)
A carbon fiber sheet in which carbon fibers (manufactured by Mitsubishi Rayon Co., Ltd., product name: TR50S15L, 12,000, density 1.82 g / cm 2 ) are arranged in a unidirectional plane so that the basis weight is 72.0 g / m 2 did. A laminate was obtained by laminating a resin film having a basis weight of 36.4 g / m 2 (product name: Modic (registered trademark) P958, manufactured by Mitsubishi Chemical Corporation) on both surfaces of the carbon fiber sheet. This laminate was passed through a calender roll heated to 200 to 260 ° C. multiple times to melt and impregnate the resin into a carbon fiber sheet to obtain a prepreg. The thickness of the obtained prepreg was 120 μm, the basis weight was 145.0 g / m 2 , and the fiber deposition content (Vf) was 33.0%.

(製造例2)
製造例1で得られたプリプレグを、1240mm×940mmに切り出し、カッティングプロッタ(レザック社製、製品名:L−2500)を用いて、図1に示すように一定間隔で切込を入れた。その際、シートの端部より10mm内側部分を除き、強化繊維の長さL=25.0mm一定、平均切込長l=42.4mmになるよう、強化繊維を切断する切込と強化繊維のなす角度θ=45°の切込加工を施した。この際1mあたりの切込長の総和la=56.6mであった。
(Production Example 2)
The prepreg obtained in Production Example 1 was cut into 1240 mm × 940 mm, and cut using a cutting plotter (product name: L-2500, manufactured by Rezac) at regular intervals as shown in FIG. At that time, except for the inner portion of 10 mm from the end of the sheet, the length of the reinforcing fiber L = 25.0 mm is constant, and the notch and the reinforcing fiber are cut so that the average cutting length l = 42.4 mm. Cutting was performed at an angle θ = 45 °. At this time, the total length of cuts per 1 m 2 was la = 56.6 m.

前記切込みプリプレグを16層、繊維軸方向が[0/45/90/−45]s2であり、切込みの方向が[−45/0/45/90]s2となる様に積層した後、超音波溶着機(日本エマソン社製、製品名:2000LPt)で部分的に溶接して積層体を得た。   After laminating so that the cut prepreg has 16 layers, the fiber axis direction is [0/45/90 / −45] s2, and the cut direction is [−45/0/45/90] s2, ultrasonic waves A laminate was obtained by partial welding with a welder (manufactured by Nippon Emerson, product name: 2000LPt).

得られた積層体を深さ1.5mmの印籠型内に配置して、加熱盤を200℃に予熱した多段プレス機に投入し、圧力0.30MPaで10分間加熱・加圧を行い、続いて圧力1.0MPaで3分間冷却・加圧プレスを行い、複合シート1を得た。得られた複合シート1は、繊維蛇行がなく、その端部まで強化繊維が均等に流動しており、反りなく、良好な外観と平滑性を保っていた。   The obtained laminate was placed in a stamping mold with a depth of 1.5 mm, the heating panel was put into a multi-stage press machine preheated to 200 ° C., heated and pressurized at a pressure of 0.30 MPa for 10 minutes, The composite sheet 1 was obtained by cooling and pressurizing at a pressure of 1.0 MPa for 3 minutes. The obtained composite sheet 1 was free from fiber meandering, and the reinforcing fibers were evenly flowing to the end thereof, and was not warped and maintained good appearance and smoothness.

(製造例3)
製造例1で得られたプリプレグを、幅15.0mmにスリットした後、ギロチン方式の裁断機を用いて長さ25.0mmに裁断することで小片プリプレグを得た。
得られた小片プリプレグを3kg計量し、繊維配向がランダムになるように高さ30cmのところから一枚一枚自由落下させて、内寸1240mm×940mmで深さ20.0mmの印籠型内に配置した後、加熱盤を200℃に予熱した多段プレス機に投入し、圧力0.30MPaで10分間加熱・加圧を行い、続いて圧力1.0MPaで3分間冷却・加圧プレスを行い、複合シート2を得た。得られた複合シート2は、その端部まで強化繊維が均等に流動しており、反りなく、均一な外観と平滑性を保っていた。
(Production Example 3)
The prepreg obtained in Production Example 1 was slit into a width of 15.0 mm, and then cut into a length of 25.0 mm using a guillotine type cutting machine to obtain a small piece prepreg.
3 kg of the obtained small piece prepreg is weighed and dropped one by one from a height of 30 cm so that the fiber orientation is random, and placed in a stamping mold with an inner size of 1240 mm x 940 mm and a depth of 20.0 mm After that, the heating panel is put into a multi-stage press machine preheated to 200 ° C., heated and pressurized at a pressure of 0.30 MPa for 10 minutes, and then cooled and pressurized at a pressure of 1.0 MPa for 3 minutes, and combined. Sheet 2 was obtained. In the obtained composite sheet 2, the reinforcing fibers flowed evenly to the end portions, and the uniform appearance and smoothness were maintained without warping.

(製造例4)
製造例1で得られた複合シート1を、チップソーを搭載した乾式切断機(田中機械工業株式会社製、製品名:田中式フラッシュパネルソー)を用いて、前記複合シートの最外層の繊維軸方向と平行な方向の長さ(長さと略す)を500mm、前記繊維軸方向と直交する方向の長さ(幅と略す)が455mmに切断して、研磨紙(光陽社製、製品名:エメリー#400)で端面を研磨して中間材11とした。同様に、長さ450mm×幅450mm、長さ60mm×幅15mm、長さ90mm×幅15mmに切断し、中間材21、中間材12、中間材13とした。
(Production Example 4)
Using the dry cutting machine (manufactured by Tanaka Kikai Kogyo Co., Ltd., product name: Tanaka Flash Panel Saw) equipped with a chip saw, the composite sheet 1 obtained in Production Example 1 is used as the fiber axis direction of the outermost layer of the composite sheet. The length in the parallel direction (abbreviated as length) is cut to 500 mm, and the length in the direction orthogonal to the fiber axis direction (abbreviated as width) is cut to 455 mm, and polished paper (product name: Emery # 400, manufactured by Koyo) Then, the end face was polished to obtain an intermediate material 11. Similarly, it was cut into length 450 mm × width 450 mm, length 60 mm × width 15 mm, length 90 mm × width 15 mm to obtain an intermediate material 21, an intermediate material 12, and an intermediate material 13.

(製造例5)
得られた複合シート2を、乾式切断機を用いて、前記複合シートの最外層の繊維軸方向と平行な方向の長さ(長さと略す)を500mm、前記繊維軸方向と直交する方向の長さ(幅と略す)が455mmに切断して、研磨紙で端面を研磨して中間材22とした。
(Production Example 5)
Using the dry cutting machine, the obtained composite sheet 2 is 500 mm in length in a direction parallel to the fiber axis direction of the outermost layer of the composite sheet (length is abbreviated as length), and the length in the direction perpendicular to the fiber axis direction. The thickness (abbreviated as width) was cut to 455 mm, and the end face was polished with abrasive paper to obtain an intermediate material 22.

(実施例1)
ヒーター温度を280℃に、装置付属の内部温度が200℃〜230℃になるように調整した遠赤外線ヒーター式加熱装置(NGKキルンテック株式会社製、製品名:H7GS−71289)を用いて後、2枚重ねにした中間材11を、6分30秒間加熱を行い軟化させた。さらに、裏面に、屈曲部に沿った投影長70mm、深さ15mmのリブを4本備え、直径25〜30mm、深さ15mmのボスを1個備えた型投影面積が500×500mmの成形型を使用した500tプレス機(川崎油工株式会社製、製品名:FMP2−500)を用いて、4本のリブが並んでいる方向を幅方向とし、幅方向と直交する方向を奥行き方向とした場合、中間材の再表面の繊維軸方向が奥行き方向と平行になるように成型型の起伏に沿ってチャージし、チャージ時間25s、型温度130℃、成形圧力20MPa、成形時間3分で圧縮成形を行い、スタンパブル成形体11を得た。なお、S1/S2は、0.91であった。得られたスタンパブル成形体11は、繊維蛇行も生じず、裏面のリブ及びボスは良好に導入されていた。後述する評価に則り、成形体の外観品位は◎、リブ導入率は○、ボス導入率は◎とした。
Example 1
After using a far-infrared heater type heating device (product name: H7GS-71289, manufactured by NGK Kiln Tech Co., Ltd.) adjusted so that the heater temperature is 280 ° C. and the internal temperature attached to the device is 200 ° C. to 230 ° C. The laminated intermediate material 11 was softened by heating for 6 minutes and 30 seconds. Furthermore, a mold having a projection area of 500 × 500 mm, comprising four ribs with a projection length of 70 mm and a depth of 15 mm along the bent portion on the back surface, and one boss with a diameter of 25 to 30 mm and a depth of 15 mm. Using the 500t press machine (Kawasaki Yoko Co., Ltd., product name: FMP2-500) used, the direction in which the four ribs are aligned is the width direction, and the direction perpendicular to the width direction is the depth direction. Then, charge along the undulation of the mold so that the fiber axis direction on the resurface of the intermediate material is parallel to the depth direction, and compression molding is performed with a charge time of 25 s, a mold temperature of 130 ° C., a molding pressure of 20 MPa, and a molding time of 3 minutes. A stampable molded body 11 was obtained. S1 / S2 was 0.91. The obtained stampable molded body 11 did not cause fiber meandering, and the ribs and bosses on the back surface were well introduced. In accordance with the evaluation described later, the appearance quality of the molded body was ◎, the rib introduction rate was ◯, and the boss introduction rate was ◎.

(実施例2)
中間材11と、2本の中間材12とテフロン(登録商標)製シート(日東電工株式会社製、製品名:ニトフロン No.UL900)を、3層構成(中間材12/シート/中間材12)とした積層物を2組、実施例1に記載の方法で加熱を行い軟化させた。続いて、成形型の4本のリブに中間材12を直接チャージした後、連続して中間材11をチャージした点を除き、実施例1記載の方法で圧縮成形を行い、スタンパブル成形体12を得た。なお、S1/S2の値は0.91であった。得られたスタンパブル成形体12は、繊維蛇行も生じず、裏面のリブ及びボスは良好に導入されていた。後述する評価に則り、スタンパブル成形体の外観品位は◎、リブ導入率は◎、ボス導入率は◎とした。
(Example 2)
Intermediate material 11, two intermediate materials 12, and a sheet made of Teflon (registered trademark) (manufactured by Nitto Denko Corporation, product name: NITOFLON No. UL900) are composed of three layers (intermediate material 12 / sheet / intermediate material 12) Two sets of the above laminates were softened by heating by the method described in Example 1. Subsequently, after the intermediate material 12 was directly charged to the four ribs of the mold, the intermediate material 11 was continuously charged, except that the compression molding was performed by the method described in Example 1, and the stampable molded body 12 was formed. Obtained. The value of S1 / S2 was 0.91. The obtained stampable molded body 12 did not cause fiber meandering, and the ribs and bosses on the back surface were well introduced. In accordance with the evaluation described later, the appearance quality of the stampable molded body was ◎, the rib introduction rate was ◎, and the boss introduction rate was ◎.

(実施例3)
中間材12の代わりに、中間材13を用いた以外、実施例2と同様の操作を行い、スタンパブル成形体13を得た。S1/S2の値は0.91であった。得られたスタンパブル成形体13は、繊維蛇行も生じず、裏面のリブ及びボスは良好に導入されていた。後述する評価に則り、成形体の外観品位は◎、リブ導入率は◎、ボス導入率は◎とした。
(Example 3)
A stampable molded body 13 was obtained in the same manner as in Example 2 except that the intermediate material 13 was used instead of the intermediate material 12. The value of S1 / S2 was 0.91. The obtained stampable molded body 13 did not cause fiber meandering, and the ribs and bosses on the back surface were well introduced. In accordance with the evaluation described later, the appearance quality of the molded body was ◎, the rib introduction rate was ◎, and the boss introduction rate was ◎.

(比較例1〜3)
中間材11の代わりに、中間材21を用いた以外実施例1〜3と同様の操作を行い、スタンパブル成形体21〜23を得た。なお、S1/S2の値は、いずれも0.81であった。得られたスタンパブル成形体21〜23は、繊維の蛇行も生じず良好であったが部分的に繊維蛇行が発生したが、裏面のリブ及びボスは良好に導入されていた。後述する評価に則り、スタンパブル成形体21の外観品位は○、リブ導入率は○、ボス導入率は◎とし、成形体22〜23の外観品位は○、リブの導入率は◎、ボスの導入率は◎とした。
(Comparative Examples 1-3)
The stampable molded bodies 21 to 23 were obtained in the same manner as in Examples 1 to 3 except that the intermediate material 21 was used instead of the intermediate material 11. Note that the values of S1 / S2 were both 0.81. The obtained stampable molded bodies 21 to 23 were good with no meandering of fibers, but partly caused meandering of the fibers, but the ribs and bosses on the back were well introduced. In accordance with the evaluation described later, the appearance quality of the stampable molded body 21 is ○, the rib introduction rate is ○, the boss introduction rate is ◎, the appearance quality of the molded bodies 22 to 23 is ○, the rib introduction rate is ◎, and the introduction of the boss The rate was ◎.

(比較例4)
中間材11の代わりに、中間材22を用いた以外実施例1と同様の操作を行い、スタンパブル成形体24を得た。なお、S1/S2の値は0.91であった。得られたスタンパブル成形体24は、所々に樹脂の分解に起因する白化が発生しているが、裏面のリブ及びボスは良好に導入されていた。後述する評価に則り、成形体24の外観品位は△、リブ導入率は○、ボス導入率は◎とした。
(Comparative Example 4)
A stampable molded body 24 was obtained in the same manner as in Example 1 except that the intermediate material 22 was used instead of the intermediate material 11. The value of S1 / S2 was 0.91. The obtained stampable molded body 24 was whitened due to decomposition of the resin in some places, but the ribs and bosses on the back surface were well introduced. In accordance with the evaluation described later, the appearance quality of the molded body 24 was Δ, the rib introduction rate was ◯, and the boss introduction rate was ◎.

(外観品位)
得られたスタンパブル成形体の表裏面の外観品位は、作業者が感応評価により以下の通り評価を行った。
「◎」:成型体表面の主幹部に流動部・未流動部の切り替え部がなく外観良好
「○」:成型体表面の主幹部に流動部・未流動部の切り替え部があり外観が劣る
「△」:成型体表面に、樹脂の変色や微小な凹凸が散見される
「×」:成型体表面に、明らかな凹凸や欠陥や繊維由来の毛羽が散見される
(Appearance grade)
The appearance quality of the front and back surfaces of the obtained stampable molded body was evaluated by the operator as follows according to the sensitivity evaluation.
“◎”: Good appearance with no fluid / non-flowing part switching on the main surface of the molded body. “○”: Poor appearance with fluid / non-flowing switching part on the main surface of the molding. △ ”: Discoloration of resin and minute irregularities are scattered on the surface of the molded body“ × ”: Obvious irregularities, defects and fluff derived from fibers are scattered on the surface of the molded body

(リブ導入率)
以下の式より算出されるリブ導入率に応じて判定した。
(得られた成形体のリブ部の体積の総和)/(型形状から算出されるリブ部の体積の総和)[%]
「◎」:90%以上100%以下
「○」:80%以上90%未満
「△」:70%以上80%未満
「×」:70%未満。
(Rib introduction rate)
The determination was made according to the rib introduction rate calculated from the following equation.
(Total of the volume of the rib part of the obtained molded body) / (Total of the volume of the rib part calculated from the mold shape) [%]
“◎”: 90% or more and 100% or less “◯”: 80% or more and less than 90% “Δ”: 70% or more and less than 80% “X”: less than 70%.

(ボスへの導入率)
以下の式より算出されるボス導入率に応じて判定した。
(得られた成形体のボス部の体積)/(型形状から算出されるボス部の体積)[%]
「◎」:90%以上100%以下
「○」:80%以上〜90%未満
「△」:70%以上80%未満
「×」:70%未満
(Boss introduction rate)
The determination was made according to the boss introduction rate calculated from the following equation.
(Volume of boss part of the obtained molded body) / (Volume of boss part calculated from mold shape) [%]
“◎”: 90% to 100% “◯”: 80% to less than 90% “△”: 70% to less than 80% “X”: less than 70%


1・・・・切込
2・・・・強化繊維
3・・・・切込の長さ
4・・・・切断された強化繊維の長さ
5・・・・スタンパブル成形品
1 ... Cut 2 ... Reinforcement fiber 3 ... Cut length 4 ... Cut reinforcing fiber length 5 ... Stampable molded product

Claims (8)

一方向に配向した強化繊維と熱可塑性樹脂とを含み、表面に強化繊維を横切る方向に強化繊維を切断する深さの切込を有するプリプレグを、複数枚積層して形成された積層基材からなるスタンパブル成型品で、表裏面が滑らかであるスタンパブル成形品。   From a laminated base material formed by laminating a plurality of prepregs, each of which includes a reinforced fiber oriented in one direction and a thermoplastic resin, and has a notch of a depth that cuts the reinforced fiber in a direction crossing the reinforced fiber on the surface. A stampable molded product with a smooth front and back. 一方向に配向した強化繊維と熱可塑性樹脂とを含むプリプレグの表面に強化繊維を横切る方向に強化繊維を切断する深さの切込を有するプリプレグを、
複数枚積層して積層基材とし、積層基材を150〜400℃で予熱する工程と、
型内(型投影面積S2)に、積層基材(積層基材面積S1)をいれる工程と、
型を締めて、型の内部のすべてを成形材料で満たす工程と、
S1/S2が0.85〜0.95となるように圧縮成形する工程とを有するスタンパブル成形品の製造方法。
A prepreg having a depth of notch that cuts the reinforcing fiber in a direction transverse to the reinforcing fiber on the surface of the prepreg including the reinforcing fiber oriented in one direction and the thermoplastic resin.
A step of laminating a plurality of sheets to form a laminated base material, and preheating the laminated base material at 150 to 400 ° C;
In the mold (mold projected area S2), a step of putting a laminated base material (laminated base material area S1);
The process of tightening the mold and filling the entire interior of the mold with molding material;
A method for manufacturing a stampable molded product, comprising a step of compression molding so that S1 / S2 is 0.85 to 0.95.
前記切込が直線状で、切込と強化繊維のなす角度が30°以上、60°以下、前記プリプレグ1mあたりの切込長の総和が20m以上150m以下であるプリプレグを用いる請求項2に記載のスタンパブル成形品の製造方法。 The prepreg in which the cut is linear, the angle formed by the cut and the reinforcing fiber is 30 ° or more and 60 ° or less, and the total length of the cut per 1 m 2 of the prepreg is 20 m or more and 150 m or less is used. The manufacturing method of the stampable molded article of description. 前記切込によって切断された強化繊維の長さが、10mm以上50mm以下であるプリプレグを用いる請求項2または3に記載のあるスタンパブル成形品の製造方法。   The method for producing a stampable molded article according to claim 2 or 3, wherein a prepreg in which the length of the reinforcing fiber cut by the cutting is 10 mm or more and 50 mm or less is used. 前記強化繊維が炭素繊維である、請求項2〜4のいずれかに一項に記載のあるスタンパブル成形品の製造方法。   The manufacturing method of the stampable molded product according to any one of claims 2 to 4, wherein the reinforcing fibers are carbon fibers. 前記積層基材を構成する複数のプリプレグが、プリプレグに含まれる強化繊維の方向が疑似等方となるように積層された、請求項2〜5のいずれかに一項に記載のあるスタンパブル成形品の製造方法。   The stampable molded product according to any one of claims 2 to 5, wherein a plurality of prepregs constituting the laminated base material are laminated so that directions of reinforcing fibers contained in the prepreg are pseudo-isotropic. Manufacturing method. 前記プリプレグに含まれる強化繊維の体積含有率が20体積%以上、55体積%以下である請求項2〜6のいずれかに一項に記載のあるスタンパブル成形品の製造方法。   The method for producing a stampable molded article according to any one of claims 2 to 6, wherein the volume content of the reinforcing fibers contained in the prepreg is 20 vol% or more and 55 vol% or less. 前記プリプレグの厚さが50μm以上、200μm以下である請求項2〜7のいずれかに一項に記載のあるスタンパブル成形品の製造方法。   The method for producing a stampable molded article according to any one of claims 2 to 7, wherein a thickness of the prepreg is 50 µm or more and 200 µm or less.
JP2013048017A 2013-03-11 2013-03-11 Stampable molded article, and method for producing the same Pending JP2014173031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013048017A JP2014173031A (en) 2013-03-11 2013-03-11 Stampable molded article, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013048017A JP2014173031A (en) 2013-03-11 2013-03-11 Stampable molded article, and method for producing the same

Publications (1)

Publication Number Publication Date
JP2014173031A true JP2014173031A (en) 2014-09-22

Family

ID=51694612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013048017A Pending JP2014173031A (en) 2013-03-11 2013-03-11 Stampable molded article, and method for producing the same

Country Status (1)

Country Link
JP (1) JP2014173031A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018203907A (en) * 2017-06-06 2018-12-27 サンコロナ小田株式会社 Manufacturing method of fiber-reinforced thermoplastic resin sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018203907A (en) * 2017-06-06 2018-12-27 サンコロナ小田株式会社 Manufacturing method of fiber-reinforced thermoplastic resin sheet
JP2021185034A (en) * 2017-06-06 2021-12-09 サンコロナ小田株式会社 Method of manufacturing fiber-reinforced thermoplastic resin sheet
JP7054499B2 (en) 2017-06-06 2022-04-14 サンコロナ小田株式会社 Manufacturing method of fiber reinforced thermoplastic resin sheet
JP7083544B2 (en) 2017-06-06 2022-06-13 サンコロナ小田株式会社 Manufacturing method of fiber reinforced thermoplastic resin sheet

Similar Documents

Publication Publication Date Title
JP5858171B2 (en) Thermoplastic prepreg, laminated substrate and molded product
JP5696812B2 (en) Laminated substrate and method for producing the same
JP4789940B2 (en) Isotropic fiber reinforced thermoplastic resin sheet, method for producing the same and molded plate
JP6464602B2 (en) LAMINATED SUBSTRATE MANUFACTURING METHOD AND LAMINATED SUBSTRATE
JP5668874B2 (en) Preform manufacturing method and fiber reinforced resin molded product manufacturing method
JP5915780B2 (en) Laminated substrate using fiber reinforced thermoplastics
JP2014198838A (en) Method for producing fiber-reinforced thermoplastic resin molded plate
JP5603048B2 (en) Manufacturing method of fiber reinforced composite material
JP6883527B2 (en) Manufacturing method of fiber reinforced resin molded product
JP6435696B2 (en) Method for producing laminated substrate
JP2014004797A (en) Composite material for molding and method for producing the same
WO2014112644A1 (en) Manufacturing method for fibre-reinforced resin substrate or resin molded article, and plasticizing exhauster used in manufacturing method
JP2016199008A (en) Method for producing integrated laminated product and method for producing molded body
JP2014172267A (en) Laminate substrate
JP2014189722A (en) Laminated base material of fiber-reinforced plastic and method for producing the same
JP2014104641A (en) Laminate substrate and fiber-reinforced composite material
JP6786826B2 (en) Fiber reinforced composite and its manufacturing method
JP2016108348A (en) Laminated base material and method for manufacturing the same
JP2014173031A (en) Stampable molded article, and method for producing the same
JP5982946B2 (en) Fiber-reinforced thermoplastic resin random sheet and method for producing the same
JP2016190355A (en) Laminated base material
JP2017001371A (en) Manufacturing method of fiber reinforced plastic molded sheet
JP2016011367A (en) Laminate substrate
JP6066174B2 (en) Laminated substrate of fiber reinforced plastic and method for producing the same
JP2015160349A (en) Method for producing fiber-reinforced plastic