JP2014104641A - Laminate substrate and fiber-reinforced composite material - Google Patents

Laminate substrate and fiber-reinforced composite material Download PDF

Info

Publication number
JP2014104641A
JP2014104641A JP2012258445A JP2012258445A JP2014104641A JP 2014104641 A JP2014104641 A JP 2014104641A JP 2012258445 A JP2012258445 A JP 2012258445A JP 2012258445 A JP2012258445 A JP 2012258445A JP 2014104641 A JP2014104641 A JP 2014104641A
Authority
JP
Japan
Prior art keywords
fiber
base material
prepreg
laminated
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012258445A
Other languages
Japanese (ja)
Inventor
Masao Tomioka
正雄 冨岡
Takeshi Ishikawa
健 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2012258445A priority Critical patent/JP2014104641A/en
Publication of JP2014104641A publication Critical patent/JP2014104641A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/20Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres
    • B29C70/205Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres the structure being shaped to form a three-dimensional configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/0036Slitting

Abstract

PROBLEM TO BE SOLVED: To provide a laminate substrate as an intermediate substrate for a fiber-reinforced plastic and a method for manufacturing the same.SOLUTION: The problem-solving laminate substrate is a laminate substrate obtained by laminating and integrating multiple members of a prepreg including unidirectionally oriented reinforcing fibers and a thermoplastic resin so as to orient the reinforcing fibers along at least three directions wherein each prepreg possesses a linear incision forming, in terms of absolute value, an angle θ of at least 30° in relation to the reinforcing fibers, wherein lengths L of the reinforcing fibers fragmented by the incision are confined to a range of 2 mm or above and 100 mm or below, and wherein the distance Ls between the terminal point of the incision and the terminal point of another incision adjacent thereto along the fiber direction is confined to a range of L/4 or above and L/2 or below.

Description

本発明は、成形後の部品が、構造材に適用可能な優れた力学物性、低バラツキ性を有し、スタンピング成形時の複雑な形状への賦形性に優れ、短時間で成形可能であることを特徴とする中間基材および成形体に関する。さらに詳しくは、リブ,ボス等の3次元形状の成形に容易に追随し、構造部材として機械強度を維持し、例えば航空機部材、自動車部材、スポーツ用具等に好適に用いられる繊維強化プラスチックの中間基材である積層基材、およびそれを3次元形状に賦形した繊維強化複合材料に関する。   In the present invention, the molded part has excellent mechanical properties applicable to structural materials and low variation, is excellent in shaping into a complex shape during stamping molding, and can be molded in a short time. The present invention relates to an intermediate substrate and a molded body. More specifically, an intermediate base of fiber reinforced plastic that easily follows the molding of three-dimensional shapes such as ribs and bosses, maintains mechanical strength as a structural member, and is suitably used for, for example, aircraft members, automobile members, sports equipment, and the like. The present invention relates to a laminated base material that is a material, and a fiber-reinforced composite material obtained by shaping the laminated base material into a three-dimensional shape.

繊維強化熱可塑性プラスチックの成形方法としては、プリプレグと称される連続した強化繊維に熱可塑性樹脂を含浸せしめた中間基材を積層し、プレス等で加熱加圧することにより目的の形状に賦形するスタンピング成形が最も一般的に行われている。これにより得られた繊維強化プラスチックは、連続繊維であるゆえに優れた力学物性を有する。また連続繊維は規則的な配列であるため、基材の配置により必要とする力学物性に設計することが可能であり、力学物性のバラツキも小さい。しかしながら、連続繊維であるゆえに3次元形状等の複雑な形状を形成することは難しく、主として平面形状に近い部材に限られる。   As a method for molding fiber-reinforced thermoplastics, an intermediate base material impregnated with a thermoplastic resin is laminated on continuous reinforcing fibers called prepregs, and shaped into a desired shape by heating and pressing with a press or the like. Stamping is most commonly performed. The fiber reinforced plastic obtained in this way is a continuous fiber and therefore has excellent mechanical properties. In addition, since the continuous fibers are regularly arranged, it is possible to design the mechanical properties required by the arrangement of the base material, and the variation in the mechanical properties is small. However, since it is a continuous fiber, it is difficult to form a complicated shape such as a three-dimensional shape, and it is mainly limited to members close to a planar shape.

また、近年では生産効率の向上を目的に強化繊維を直接成形機のスクリュー部に送り込み、繊維の切断と分散を同時に行い、その後連続して射出成形や押出成形を行うLFT−D成形も行われている。この方法によると強化繊維は適当な長さに切断されているため流動が容易であり3次元形状等の複雑な形状にも追従可能となる。しかしながら、LFT−Dはその切断および分散工程において繊維長のムラや繊維分布のムラを生じてしまうために、力学物性が低下し、あるいはその値のバラツキが大きくなってしまうという問題があった。   In recent years, for the purpose of improving production efficiency, LFT-D molding has also been carried out, in which reinforcing fibers are fed directly into the screw section of the molding machine, the fibers are cut and dispersed simultaneously, and then injection molding and extrusion molding are performed continuously. ing. According to this method, since the reinforcing fiber is cut to an appropriate length, it can easily flow and can follow a complicated shape such as a three-dimensional shape. However, since LFT-D causes unevenness in fiber length and unevenness in fiber distribution in the cutting and dispersing process, there is a problem that mechanical properties are deteriorated or the variation in value is increased.

上述のような材料の欠点を埋めるべく、連続繊維と熱可塑性樹脂からなるプリプレグに切込を入れることにより、短時間成形が可能であり、成形時には優れた賦形性を示し、繊維強化複合材料としたときに優れた力学物性を発現するとされる基材が開示されている(例えば、文献1,2)。しかしながらLFT−Dと比較すると力学物性は高く、かつそのバラツキが小さくなるものの、構造材として適用するには十分な強度とは言えなかった。   In order to fill the drawbacks of the above-mentioned materials, it is possible to form in a short time by cutting into a prepreg composed of continuous fibers and thermoplastic resin, and it exhibits excellent formability at the time of molding, and is a fiber-reinforced composite material A base material that is said to exhibit excellent mechanical properties when disclosed in Japanese Patent Application Laid-Open Nos. 2000-26883 and 2000-2015 is disclosed. However, compared with LFT-D, the mechanical properties are high and the variation is small, but it cannot be said that the strength is sufficient for application as a structural material.

また切込形状を最適化することにより上述の強度やそのバラツキを改良する方法が示されている(例えば,文献3,4,5)。しかしながらこの方法によると力学物性とバラツキ性の改良はみられるが、薄いリブやボス等の複雑な3次元形状への均一な流動性は不十分であった。   In addition, a method for improving the above-described strength and its variation by optimizing the cutting shape is disclosed (for example, Documents 3, 4, and 5). However, according to this method, improvement in mechanical properties and dispersion properties can be seen, but uniform fluidity to complicated three-dimensional shapes such as thin ribs and bosses has been insufficient.

特開昭63−247012号公報Japanese Unexamined Patent Publication No. 63-247010 特開昭63−267523号公報JP-A 63-267523 特開2008−207544号公報JP 2008-207544 A 特開2008−207545号公報JP 2008-207545 A 特開2009−286817号公報JP 2009-286817 A

本発明は、上記のような従来技術に伴う問題点を解決しようとするものであって、構造材に適用可能な曲げ強度や引張弾性率など優れた力学物性、その低バラツキ性を持ち、複雑な形状への賦形性に優れて短時間成形可能である中間基材、およびスタンピング成形等により目的の形状に賦形した繊維強化複合材料を提供することを課題とする。   The present invention is intended to solve the problems associated with the prior art as described above, and has excellent mechanical properties such as bending strength and tensile elastic modulus applicable to structural materials, and its low variation properties, and is complicated. It is an object of the present invention to provide an intermediate base material that is excellent in formability into a simple shape and can be molded in a short time, and a fiber-reinforced composite material shaped into a target shape by stamping molding or the like.

上記課題を解決するため、本発明では、以下の手段を用いる。すなわち、一方向に配向した強化繊維と熱可塑性樹脂を含むプリプレグを、少なくとも3方向に強化繊維が配向するように複数枚積層して、一体化した積層基材であって、
前記プリプレグは強化繊維となす角度θの絶対値が30°以上の直線状の切込みを有し、前記切込みにより分断された強化繊維の繊維長Lが2mm以上100mm以下の範囲内で、前記切込みの末端点と繊維方向に隣接する他の切込みの末端点との距離LsがL/4以上L/2以下の範囲である積層基材。
In order to solve the above problems, the present invention uses the following means. That is, a laminated base material obtained by laminating a plurality of prepregs containing reinforcing fibers oriented in one direction and a thermoplastic resin so that the reinforcing fibers are oriented in at least three directions,
The prepreg has a linear incision with an absolute value of an angle θ of 30 ° or more with the reinforcing fiber, and the fiber length L of the reinforcing fiber divided by the incision is in the range of 2 mm to 100 mm. A laminated base material in which the distance Ls between the terminal point and the terminal point of another incision adjacent in the fiber direction is in a range of L / 4 or more and L / 2 or less.

本発明によれば、構造材に適用可能な曲げ強度や引張弾性率など優れた力学物性、およびその低バラツキ性を持ち、複雑な形状への賦形性に優れて短時間成形可能である中間基材、およびスタンピング成形等により目的の形状に賦形した繊維強化複合材料を得ることができる。   According to the present invention, it has excellent mechanical properties such as bending strength and tensile elastic modulus applicable to a structural material, and its low dispersion property, and is excellent in formability to complex shapes and can be molded in a short time. A fiber-reinforced composite material shaped into a target shape by stamping molding or the like can be obtained.

本発明で用いる流動性の評価で使用するハットチャンネル型のリブ金型の一例を示す図である。It is a figure which shows an example of the hat channel type rib metal mold | die used by the fluidity | liquidity evaluation used by this invention. 本発明の実施例1で用いた切込を入れたプリプレグ基材を示す図。The figure which shows the prepreg base material which made the notch used in Example 1 of this invention.

以下、本発明について、詳細に説明する。
(積層基材)
一方向に配向した強化繊維と熱可塑性樹脂を含むプリプレグを、少なくとも3方向に強化繊維が配向するように複数枚積層して、一体化した積層基材であって、前記プリプレグは強化繊維となす角度θの絶対値が30°以上の直線状の切込みを有し、前記切込みにより分断された強化繊維の繊維長Lが2mm以上100mm以下の範囲内で、前記切込みの末端点と繊維方向に隣接する他の切込みの末端点との距離LsがL/4以上L/2以下の範囲である必要がある。積層構成が少なくとも3方向に強化繊維が配向していることにより、良好な流動性と力学物性が得られる。
Hereinafter, the present invention will be described in detail.
(Laminated substrate)
A laminated base material obtained by laminating a plurality of prepregs including reinforced fibers oriented in one direction and a thermoplastic resin so that the reinforced fibers are oriented in at least three directions. The prepreg is made into a reinforced fiber. An absolute value of the angle θ has a linear incision of 30 ° or more, and the fiber length L of the reinforcing fiber divided by the incision is within a range of 2 mm or more and 100 mm or less and is adjacent to the end point of the incision in the fiber direction. It is necessary that the distance Ls to the other cutting end point is in the range of not less than L / 4 and not more than L / 2. When the reinforcing fibers are oriented in at least three directions in the laminated structure, good fluidity and mechanical properties can be obtained.

積層構成は、0/45/90/−45の4層のn回繰り返しを対称積層したもの(〔0/45/90/−45〕ns)や0/60/−60の3層のn回繰り返しを対称積層したもの([0/60/−60]ns)で表記される擬似等方であることが好ましい(nは1以上の整数を表す)。擬似等方とすることで、積層基材のソリを抑制することができる。さらに、流動性については強化繊維の90°方向への樹脂の流動が強化繊維を動かす原動力であるため、積層時の隣接するプリプレグの繊維配向によって繊維の流れ具合が異なるが、擬似等方積層とすることで流動性が等方となり、流動性のバラツキが少なくロバスト性に優れた中間基材となる。また、本発明の積層基材は、成形して構造材として用いる繊維強化複合材料とする場合、多方向からの荷重に耐える必要がある。流動性、力学物性の観点からも、本発明の積層基材は汎用的な使用に耐えるよう、擬似等方に積層されていることが好ましい。   The stacking structure consists of 4 layers of 0/45/90 / -45 repeated n times symmetrically ([0/45/90 / -45] ns) and 3 layers of 0/60 / -60 n times. It is preferable to be pseudo-isotropic expressed by symmetrically stacking repetitions ([0/60 / −60] ns) (n represents an integer of 1 or more). By using pseudo isotropic, warping of the laminated base material can be suppressed. Furthermore, for fluidity, the flow of the resin in the 90 ° direction of the reinforcing fiber is the driving force for moving the reinforcing fiber, so the fiber flow varies depending on the fiber orientation of the adjacent prepreg at the time of lamination, By doing so, the fluidity becomes isotropic, and it becomes an intermediate base material with less fluidity variation and excellent robustness. Moreover, when the laminated base material of the present invention is formed into a fiber-reinforced composite material that is molded and used as a structural material, it is necessary to withstand loads from multiple directions. Also from the viewpoint of fluidity and mechanical properties, the laminated base material of the present invention is preferably laminated in a pseudo isotropic manner to withstand general-purpose use.

積層基材の繊維含有率Vfは20vol%以上40vol%以下であることが好ましい。流動性の原動力は樹脂の流動であるため、流動性の観点からはVfは低いほど好ましく、Vfを40vol%以下とすることで、スタンピング成形時のリブやボスといった部位への良好な3次元流動性が得られる。Vfが極端に低いと、構造材に必要とされる力学物性を得ることができないが、Vfを20vol%以上とすることで、良好な力学物性が得られる。また、Vfを25vol%以上とすることがより好ましく、構造材に必要とされる引張弾性率を得ることができる。なお、本発明にかかる繊維含有率VfはJIS K7075に基づき測定できる。   The fiber content Vf of the laminated base material is preferably 20 vol% or more and 40 vol% or less. Since the driving force of fluidity is resin flow, Vf is preferably as low as possible from the viewpoint of fluidity. By setting Vf to 40 vol% or less, good three-dimensional flow to the parts such as ribs and bosses during stamping molding Sex is obtained. If Vf is extremely low, mechanical properties required for the structural material cannot be obtained, but good mechanical properties can be obtained by setting Vf to 20 vol% or more. Moreover, it is more preferable to set Vf to 25 vol% or more, and the tensile elastic modulus required for the structural material can be obtained. In addition, the fiber content Vf concerning this invention can be measured based on JISK7075.

(切込み)
本発明に用いるプリプレグは、強化繊維となす角度θの絶対値が30°以上の直線状の切込みを有し、前記切込みにより分断された強化繊維の繊維長Lが2mm以上100mm以下の範囲内であり、切込みの末端点と繊維方向における隣接する他の切込みの末端点との距離LsがL/4以上L/2以下の範囲である必要がある。強化繊維となす角度θの絶対値が30°以上の直線状の切込みを有することにより、スタンピング成形時のリブやボスといった部位への3次元流動性と、スタンピング成形後の繊維強化複合材料とした際の、優れた力学物性を両立できる。強化繊維となす角度θの絶対値が30゜以上とすることで、スタンピング成形後の繊維強化複合材料において、繊維の折れ曲がりによる力学物性の低下を抑制でき、特に引張り弾性率の発現性に優れる。また、強化繊維となす角度θの絶対値が65゜以下とすることがより好ましく、スタンピング成形時のリブやボスといった部位への良好な3次元流動性が得られると共に、スタンピング成形後の繊維強化複合材料における、強化繊維の分布斑および配向斑を抑制でき、力学物性の低バラツキ性に優れる。
(Incision)
The prepreg used in the present invention has a linear incision in which the absolute value of the angle θ formed with the reinforcing fiber is 30 ° or more, and the fiber length L of the reinforcing fiber divided by the incision is in the range of 2 mm to 100 mm. Yes, the distance Ls between the end point of the cut and the other end point of the adjacent notch in the fiber direction needs to be in the range of L / 4 or more and L / 2 or less. By having a linear notch with an absolute value of the angle θ between the reinforcing fibers of 30 ° or more, a three-dimensional fluidity to the ribs and bosses during stamping molding and a fiber-reinforced composite material after stamping molding Excellent mechanical properties can be achieved at the same time. When the absolute value of the angle θ formed with the reinforcing fiber is 30 ° or more, in the fiber-reinforced composite material after stamping molding, it is possible to suppress a decrease in mechanical properties due to the bending of the fiber, and in particular, excellent tensile elasticity is exhibited. Further, the absolute value of the angle θ formed with the reinforcing fiber is more preferably 65 ° or less, and good three-dimensional fluidity to a portion such as a rib or boss at the time of stamping molding can be obtained, and the fiber reinforcement after stamping molding can be obtained. In the composite material, distribution spots and orientation spots of reinforcing fibers can be suppressed, and the mechanical properties are excellent in low variation.

切込みにより分断された強化繊維の繊維長Lが2mm以上100mm以下の範囲内あることにより、スタンピング成形時のリブやボスといった部位への3次元流動性と、スタンピング成形後の繊維強化複合材料とした際の、優れた力学物性を両立できる。流動性の観点からは繊維長Lが短いほど良いが、繊維長Lを100mm以下とすることにより、スタンピング成形時にリブやボスといった部位への良好な3次元流動性が得られる。繊維長Lは力学物性の観点からは長い方が好ましいが、2mm以上とすることで、スタンピング成形後の繊維強化複合材料において、構造部材に適応可能な曲げ強度が得られる。流動性と力学物性の関係を鑑みると、より好ましくは繊維長Lが15mm以上55mm以下である。   Since the fiber length L of the reinforcing fiber divided by the cutting is in the range of 2 mm to 100 mm, the three-dimensional fluidity to the parts such as ribs and bosses during stamping molding and the fiber reinforced composite material after stamping molding are obtained. Excellent mechanical properties can be achieved at the same time. From the viewpoint of fluidity, the shorter the fiber length L is, the better. However, by setting the fiber length L to 100 mm or less, good three-dimensional fluidity to parts such as ribs and bosses can be obtained during stamping molding. The fiber length L is preferably longer from the viewpoint of mechanical properties. However, by setting the length to 2 mm or more, the fiber-reinforced composite material after stamping can obtain bending strength applicable to the structural member. Considering the relationship between fluidity and mechanical properties, the fiber length L is more preferably 15 mm or greater and 55 mm or less.

本発明の切込みは切込みの末端点と繊維方向における隣接する他の切込みの末端点との距離LsがL/4以上L/2以下の範囲とする必要がある。LsをL/4以上とすることにより、スタンピング成形後の繊維強化複合材料において、切込み部が起点となる破壊を抑制することができて、曲げ強度の発現性に優れると共に、低バラツキ性に優れる。一方、Lsの長さが極端に長い場合は、プリプレグの切込み間で裂けや割れが生じて積層等の取り扱いが困難になるため、LsはL/2以下であることが必要である。   In the incision of the present invention, it is necessary that the distance Ls between the end point of the incision and the end point of another adjacent notch in the fiber direction is in the range of L / 4 or more and L / 2 or less. By setting Ls to L / 4 or more, in the fiber-reinforced composite material after stamping molding, it is possible to suppress the fracture starting from the cut portion, and it is excellent in the expression of bending strength and also in the low variation property. . On the other hand, when the length of Ls is extremely long, tearing or cracking occurs between the cuts of the prepreg, making it difficult to handle lamination and the like, so Ls needs to be L / 2 or less.

また、本発明の切込みの長さlは4mm以上300mm以下の範囲内であることが好ましい。切込みの長さlを300mm以下とすることで、スタンピング成形後の繊維強化複合材料において、切込み部が起点となる破壊を抑制することができて、曲げ強度の発現性に優れると共に、低バラツキ性に優れる。一方、切込みの長さlが極端に短い場合は、実質的にプリプレグに切込みを挿入することが困難になるため、4mm以上とすることが好ましい。   Moreover, it is preferable that the length l of the notch | incision of this invention exists in the range of 4 mm or more and 300 mm or less. By making the cut length l to 300 mm or less, in the fiber reinforced composite material after stamping molding, it is possible to suppress the break starting from the cut portion, and it has excellent bending strength and low variation. Excellent. On the other hand, when the cut length l is extremely short, it is difficult to substantially insert the cut into the prepreg.

なお、前記プリプレグの強化繊維は実質的にほとんどの繊維が切断されており、本発明の切込みにより分断されていない連続繊維が配向している面積が、プリプレグ層の面積に占める割合の5%より小さいことを意味する。   Note that the reinforcing fiber of the prepreg has substantially all of the fibers cut, and the area where the continuous fibers that are not divided by the incision of the present invention are oriented is more than 5% of the proportion of the area of the prepreg layer. Mean small.

(プリプレグ)
本発明で用いるプリプレグの厚みは50μm以上200μm以下であることが好ましい。本発明はプリプレグの厚みに依存せず、良好な流動性が得られるが、本発明に係るプリプレグは切込を有するため、分断される層厚みが大きければ大きいほど力学物性が低下する傾向があり、プリプレグの厚みは200μm以下とすることが好ましい。一方、プリプレグの厚みが50μmであっても、流動性と力学物性は良好であるが、極めて薄いプリプレグを安定的に製造することは困難であるため、プリプレグの厚みは50μm以上であることが好ましい。
(Prepreg)
The thickness of the prepreg used in the present invention is preferably 50 μm or more and 200 μm or less. The present invention does not depend on the thickness of the prepreg, and good fluidity can be obtained. However, since the prepreg according to the present invention has a cut, the larger the layer thickness is, the lower the mechanical properties tend to be. The thickness of the prepreg is preferably 200 μm or less. On the other hand, even if the thickness of the prepreg is 50 μm, the fluidity and mechanical properties are good, but it is difficult to stably produce an extremely thin prepreg, so the thickness of the prepreg is preferably 50 μm or more. .

本発明で用いるプリプレグの強化繊維は、特に限定されず、例えば、無機繊維、有機繊維、金属繊維、またはこれらを組み合わせたハイブリッド構成の繊維がある。無機繊維としては、炭素繊維、黒鉛繊維、炭化珪素繊維、アルミナ繊維、タングステンカーバイド繊維、ボロン繊維、ガラス繊維などが挙げられる。有機繊維としては、アラミド繊維、高密度ポリエチレン繊維、その他一般のナイロン繊維、ポリエステルなどが挙げられる。金属繊維としては、ステンレス、鉄等の繊維を挙げられ、また金属を被覆した炭素繊維でもよい。これらの中では、最終成形物の強度等の力学物性を考慮すると、炭素繊維が好ましく、PAN系炭素繊維がより好ましい。   The reinforcing fiber of the prepreg used in the present invention is not particularly limited, and examples thereof include inorganic fibers, organic fibers, metal fibers, or fibers having a hybrid configuration in which these are combined. Examples of the inorganic fiber include carbon fiber, graphite fiber, silicon carbide fiber, alumina fiber, tungsten carbide fiber, boron fiber, and glass fiber. Examples of organic fibers include aramid fibers, high density polyethylene fibers, other general nylon fibers, and polyesters. Examples of the metal fibers include fibers such as stainless steel and iron, and may be carbon fibers coated with metal. Among these, in consideration of mechanical properties such as strength of the final molded product, carbon fibers are preferable, and PAN-based carbon fibers are more preferable.

また本発明に用いるプリプレグのマトリックス樹脂は熱可塑性樹脂を用いる必要がある。すなわち、不連続な強化繊維を用いた繊維強化プラスチックの場合、繊維端部同士を連結するように破壊するため、一般的に熱硬化性樹脂よりも靱性値が高い熱可塑性樹脂をマトリックス樹脂として用いることで、強度、特に衝撃性が向上する。またさらに熱可塑性樹脂は化学反応を伴うことなく冷却固化して形状を決定するので、短時間成形が可能であり、生産性に優れる。   The matrix resin of the prepreg used in the present invention needs to use a thermoplastic resin. That is, in the case of a fiber reinforced plastic using discontinuous reinforcing fibers, a thermoplastic resin generally having a higher toughness value than a thermosetting resin is used as a matrix resin in order to break the fiber ends so as to connect each other. As a result, strength, particularly impact resistance is improved. Furthermore, since the thermoplastic resin is cooled and solidified without a chemical reaction to determine the shape, it can be molded in a short time and has excellent productivity.

本発明で用いる熱可塑性樹脂は、特に限定されず、例えば、ポリカーボネート樹脂、ポリエステル樹脂、ポリアミド樹脂、液晶ポリマー樹脂、ポリエーテルサルフォン樹脂、ポリエーテルエーテルケトン樹脂、ポリアリレート樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、ポリアセタール樹脂、ポリスルフォン樹脂、ポリイミド樹脂、ポリオレフィン樹脂、ポリスチレン樹脂、変性ポリスチレン樹脂、ABS樹脂、変性ABS樹脂、MBS樹脂、ポリメチルメタクリレート樹脂、及びこれらの変性樹脂、及びこれらのポリマーアロイ樹脂が挙げられる。これらはいずれか1種を単独で使用してもよく、2種類以上を併用してもよいが、好ましくはポリプロピレン樹脂および/またはポリアミド樹脂、もしくはポリプロピレン樹脂および/またはポリアミド樹脂の変性樹脂である。また、より好ましくは強化繊維との接着性の観点から酸変性ポリプロピレン樹脂である。   The thermoplastic resin used in the present invention is not particularly limited. For example, polycarbonate resin, polyester resin, polyamide resin, liquid crystal polymer resin, polyether sulfone resin, polyether ether ketone resin, polyarylate resin, polyphenylene ether resin, polyphenylene Sulfide resin, polyacetal resin, polysulfone resin, polyimide resin, polyolefin resin, polystyrene resin, modified polystyrene resin, ABS resin, modified ABS resin, MBS resin, polymethyl methacrylate resin, and modified resins thereof, and polymer alloy resins thereof Is mentioned. Any one of these may be used alone, or two or more may be used in combination, but a polypropylene resin and / or polyamide resin, or a modified resin of polypropylene resin and / or polyamide resin is preferable. More preferably, it is an acid-modified polypropylene resin from the viewpoint of adhesiveness with reinforcing fibers.

(プリプレグの製造方法)
熱可塑性樹脂を一方向に配向した強化繊維に含浸させてなるプリプレグを製造する方法は、溶融樹脂を押出機にて含浸させる方法、粉末樹脂を繊維層に分散し溶融させる方法、樹脂をフィルム化してラミネートする方法、樹脂を溶剤に溶かし溶液の状態で含浸させた後に溶剤を揮発させる方法、樹脂を繊維化して混合糸にする方法、熱可塑性樹脂のモノマーの状態で含浸させた後に重合させてポリマーにする方法などがある。溶融樹脂を押出機にて含浸させる方法は樹脂を加工する必要が無いという利点があるが、安定したプリプレグを製造するのが難しい。粉末樹脂を繊維層に分散する方法は含浸がしやすいという利点があるが、粉末を均一に繊維層に分散させるのが困難である。樹脂をフィルム化してラミネートする方法はフィルム加工する必要があるが、比較的品質の良いものが作られる傾向にある。溶融法にて熱可塑性樹脂を含浸させる工程は、前記押出機以外にも加熱プレスと冷却プレスの組合せにより溶融含浸後にプリプレグを固化させる方法、ダブルベルトプレスを使用して加熱ゾーンや冷却ゾーンを設ける方法がある。ダブルベルトプレスを使用する方法は連続的に生産できるため生産性に優れている。
(Manufacturing method of prepreg)
A prepreg made by impregnating a reinforced fiber oriented in one direction with a thermoplastic resin is a method of impregnating a molten resin with an extruder, a method of dispersing and melting a powder resin in a fiber layer, and forming a resin film. Laminating, dissolving the resin in a solvent and impregnating it in the form of a solution, then volatilizing the solvent, making the resin into a mixed yarn, impregnating it in the state of a thermoplastic resin monomer, and then polymerizing it. There is a method of making it into a polymer. The method of impregnating the molten resin with an extruder has the advantage that the resin does not need to be processed, but it is difficult to produce a stable prepreg. The method of dispersing the powder resin in the fiber layer has an advantage that it is easily impregnated, but it is difficult to uniformly disperse the powder in the fiber layer. The method of laminating the resin into a film requires film processing, but tends to produce a relatively good quality. The step of impregnating the thermoplastic resin by the melting method is not only the extruder, but also a method of solidifying the prepreg after melt impregnation by a combination of a heating press and a cooling press, and a heating zone and a cooling zone are provided using a double belt press. There is a way. The method using a double belt press is excellent in productivity because it can be produced continuously.

(切込みの挿入方法)
前記プリプレグの製造方法にて得られたプリプレグを、例えばレーザーマーカー、カッティングプロッター、抜型等を利用して切込を入れ、本発明にかかる切込みプリプレグを得ることができる。
(Insertion method of cutting)
The prepreg obtained by the prepreg manufacturing method can be cut using, for example, a laser marker, a cutting plotter, a cutting die, or the like to obtain the cut prepreg according to the present invention.

(積層基材の製造方法)
前記切込みの挿入方法にて得られた切込みプリプレグを少なくとも3方向に強化繊維が配向する様に積層し、積層体とする。この積層体を超音波溶着機(例えば、日本エマソン社製、製品名:2000LPt)でスポット溶接して、一体化して平板状の積層基材とする。
(Lamination substrate manufacturing method)
The cut prepreg obtained by the above insertion method is laminated so that the reinforcing fibers are oriented in at least three directions to obtain a laminate. This laminated body is spot welded with an ultrasonic welder (for example, product name: 2000LPt, manufactured by Nippon Emerson Co., Ltd.) and integrated into a flat laminated base material.

前記積層体を加熱及び加圧(ホットスタンピング)して一体化した積層基材とすることもできる。この工程は、通常の装置、例えば加熱プレス機を用いて行うことができ、その際に用いる金型については、所望の形状を有するものを用いることができる。金型の材質についても、繊維強化熱可塑性樹脂シートのホットスタンピング成形で通常用いられるものを採用することができ、金属製のいわゆる金型を用いることができる。具体的に本工程は、例えば前記積層体を金型内に配置して、加熱及び加圧することにより行うことができる。前記加熱においては、前記熱可塑性樹脂の種類にもよるが、通常100〜400℃、好ましくは150〜350℃で加熱する。加熱に関しては、予備加熱を行ってもよい。予備加熱については、前記プリプレグに用いられている熱可塑性樹脂の種類にもよるが、通常150〜400℃、好ましくは200〜380℃で加熱する。   It is also possible to obtain a laminated substrate in which the laminate is integrated by heating and pressing (hot stamping). This step can be performed using a normal apparatus, for example, a hot press machine, and a mold having a desired shape can be used as the mold used at that time. As for the material of the mold, those usually used in hot stamping molding of a fiber reinforced thermoplastic resin sheet can be adopted, and a so-called metal mold can be used. Specifically, this step can be performed, for example, by placing the laminate in a mold and heating and pressing. In the heating, although it depends on the kind of the thermoplastic resin, the heating is usually performed at 100 to 400 ° C, preferably 150 to 350 ° C. Regarding heating, preliminary heating may be performed. About preheating, although it is based also on the kind of thermoplastic resin used for the said prepreg, it heats at 150-400 degreeC normally, Preferably it is 200-380 degreeC.

前記加圧において積層物にかける圧力としては、好ましくは0.1〜10.0MPaであり、より好ましくは0.2〜2.0MPaである。この圧力については、プレス力を積層基材の初期面積で除した値とする。上記加熱及び加圧する時間は、通常0.1〜30分間、好ましくは0.5〜10分間である。また、加熱及び加圧の後に設ける冷却時間は、通常0.5〜30分間である。上記ホットスタンピング成形を経た本発明にかかる一体化した積層基材の厚さは、通常0.5〜10mmとなる。   The pressure applied to the laminate in the pressurization is preferably 0.1 to 10.0 MPa, more preferably 0.2 to 2.0 MPa. The pressure is a value obtained by dividing the pressing force by the initial area of the laminated base material. The heating and pressurizing time is usually 0.1 to 30 minutes, preferably 0.5 to 10 minutes. Moreover, the cooling time provided after a heating and pressurization is 0.5 to 30 minutes normally. The thickness of the integrated laminated base material according to the present invention that has undergone the hot stamping molding is usually 0.5 to 10 mm.

また、本発明の積層基材は、破壊強度(曲げ強度)に優れる。かかる曲げ強度は、JIS K7074に基づいて測定することができる。本発明の積層基材の曲げ強度は、通常200MPa以上が好ましく、より好ましくは300MPa以上である。
さらに、本発明の積層基材は、前記曲げ強度のばらつきが小さく、すなわち等方性を有する。ここで、CV値とは相対的な散らばりを表す指標(変動係数)であり、この値が小さいほど測定点間の物性のばらつきが小さい、すなわち等方性を有することを示す。かかるCV値は、例えばサンプルについて5点の曲げ強度を測定し、CV値(%)=(標準偏差/測定値の平均値)×100により算出することができる。本発明の繊維強化熱可塑性樹脂ランダムシートのCV値は、通常15%未満が好ましく、より好ましくは8%未満である。
Moreover, the laminated base material of this invention is excellent in fracture strength (bending strength). Such bending strength can be measured based on JIS K7074. The bending strength of the laminated base material of the present invention is usually preferably 200 MPa or more, more preferably 300 MPa or more.
Furthermore, the laminated base material of the present invention has a small variation in bending strength, that is, isotropic. Here, the CV value is an index (coefficient of variation) representing relative dispersion, and the smaller this value, the smaller the variation in physical properties between measurement points, that is, the isotropic property. Such a CV value can be calculated, for example, by measuring the bending strength at five points for a sample and CV value (%) = (standard deviation / average value of measured values) × 100. The CV value of the fiber-reinforced thermoplastic resin random sheet of the present invention is usually preferably less than 15%, more preferably less than 8%.

また、本発明の積層基材は、剛性(引張弾性率)に優れる。かかる引張弾性率は、JIS K7164に基づいて測定することができる。本発明の積層基材の引張弾性率は、通常20GPa以上が好ましく、より好ましくは25GPa以上である。   Moreover, the laminated base material of this invention is excellent in rigidity (tensile elastic modulus). Such tensile elastic modulus can be measured based on JIS K7164. The tensile modulus of the laminated base material of the present invention is usually preferably 20 GPa or more, more preferably 25 GPa or more.

また本発明の積層基材は、成形時の流動性が良好であるため、種々の複雑な形状に成形することができる。かかる流動性は、例えば、リブへの充填状態で評価することができる。
具体的には、例えば、300mm×50mmに切り出した厚み2mmの積層基材を4枚、280℃に設定した赤外線ヒーター(日本ガイシ製、製品名:QU−95469V−S01)内で3分間保持し、4枚の積層基材を重ねて、130℃に設定した格子状のリブ金型(図1)に配置し、100tプレス成形機(山本鉄工所製プレス社製、製品名:PPM1−100)を用いて、90tにて3分間プレスを行った。リブへの充填は85%以上が好ましく、さらには98%以上が好ましい。
In addition, the laminated base material of the present invention has good fluidity at the time of molding, and can be molded into various complicated shapes. Such fluidity can be evaluated by, for example, filling the ribs.
Specifically, for example, four laminated base materials having a thickness of 2 mm cut out to 300 mm × 50 mm are held for 3 minutes in an infrared heater (product name: QU-95469V-S01) set at 280 ° C. Four laminated base materials are stacked and placed in a grid-shaped rib mold (FIG. 1) set at 130 ° C., and a 100 t press molding machine (manufactured by Press, manufactured by Yamamoto Iron Works, product name: PPM1-100) Was used for 3 minutes at 90 t. The filling of the ribs is preferably 85% or more, and more preferably 98% or more.

(繊維強化複合材料の製造方法)
前記積層基材の製造方法にて得られた積層基材を加熱後、加圧冷却することによって繊維強化複合材料が得られる。本発明における繊維強化複合材料は公知の手法で製造することができる。例として、スタンピング成形により得られる。
(Manufacturing method of fiber reinforced composite material)
A fiber-reinforced composite material is obtained by heating and then cooling the laminated substrate obtained by the method for producing a laminated substrate. The fiber-reinforced composite material in the present invention can be produced by a known method. As an example, it is obtained by stamping.

以下、実施例により本発明をさらに具体的に説明するが、本発明は、実施例に記載の発明に限定されるものではない。
(実施例1)
一方向に炭素繊維(三菱レイヨン製、製品名:パイロフィルTR 50S)を平面状に引き揃えて目付が72g/mとなる繊維シートとし、繊維シートの両面から、酸変性ポリプロピレン樹脂(三菱化学製、製品名:モディック(登録商標)P958)からなる目付が27g/mのフィルムを挟み、カレンダロールを複数回通して加熱と加圧により、樹脂を繊維シートに含浸させ、繊維体積含有率Vf40vol%、厚み100μmmのプリプレグを作製した。
EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited to the invention as described in an Example.
Example 1
Carbon fiber (Mitsubishi Rayon, product name: Pyrofil TR 50S) is aligned in one direction to form a fiber sheet with a basis weight of 72 g / m 2. From both sides of the fiber sheet, acid-modified polypropylene resin (Mitsubishi Chemical) , Product name: Modic (registered trademark) P958) sandwiching a film with a basis weight of 27 g / m 2 , impregnating the resin into the fiber sheet by heating and pressurizing the calender roll several times, and the fiber volume content Vf40 vol. %, And a prepreg having a thickness of 100 μm was produced.

このプリプレグを295mm角に切り出し、カッティングプロッター(レザック社製、製品名:L−2500)を用いて、繊維となす角度θの絶対値が45゜、強化繊維の繊維長Lが25mm、切込みの末端点から繊維方向における隣接する切込みの末端点の距離Lsが12.5mm、切込み長さlが20mmになるように切込みを入れ、切込みプリプレグを得た。   This prepreg is cut into a 295 mm square, and using a cutting plotter (product name: L-2500), the absolute value of the angle θ formed with the fiber is 45 °, the fiber length L of the reinforcing fiber is 25 mm, and the end of the cut Cuts were made so that the distance Ls between the end points of adjacent cuts in the fiber direction from the point was 12.5 mm, and the cut length l was 20 mm to obtain a cut prepreg.

この切込みプリプレグを積層構成が[0/45/90/−45]3sであり、切込みの方向が[−45/0/45/90]3sとなる様に積層し、積層体を得た。
こうして得られた積層体を300mm角で深さ1.5mmの印籠金型内に配置して、200℃まで加熱した後、多段プレス機(神藤金属工業所製圧縮成形機、製品名:SFA−50HH0)で220℃の盤面で0.55MPaの圧力で7分間加熱・加圧後、同一の圧力で室温まで冷却し、積層基材を得た。
This cut prepreg was laminated so that the laminated configuration was [0/45/90 / −45] 3s and the cut direction was [−45/0/45/90] 3s to obtain a laminate.
The laminate thus obtained was placed in a stamping die having a size of 300 mm square and a depth of 1.5 mm, heated to 200 ° C., and then subjected to a multistage press (compression molding machine manufactured by Shinto Metal Industry, product name: SFA-). 50HH0) at 220 ° C. at a pressure of 0.55 MPa for 7 minutes, and then cooled to room temperature at the same pressure to obtain a laminated substrate.

得られた積層基材は、繊維のうねりがなく、その端部まで繊維が均等に流動しており、ソリもなく、良好な外観と平滑性を保っていた。   The obtained laminated base material had no fiber undulation, the fibers were flowing evenly to the end, no warpage, and good appearance and smoothness were maintained.

得られた積層基材より、長さ100mm、幅25mmの曲げ強度試験片を切り出した。JIS K−7074に規定する試験方法に従い、標点間距離を80mmとし、クロスヘッド速度5.0mm/分で3点曲げ試験を行った。試験機としてはインストロン万能試験機4465型を用いた。測定した試験片の数はn=6とし、その全平均値を曲げ強度とした。さらに、測定値より標準偏差を算出し、その標準偏差を平均値で除することにより、バラツキの指標である変動係数(CV値%)を算出した。   A bending strength test piece having a length of 100 mm and a width of 25 mm was cut out from the obtained laminated base material. According to the test method specified in JIS K-7074, the distance between the gauge points was 80 mm, and a three-point bending test was performed at a crosshead speed of 5.0 mm / min. As a testing machine, an Instron universal testing machine 4465 type was used. The number of the test pieces measured was n = 6, and the total average value was the bending strength. Further, the standard deviation was calculated from the measured value, and the standard deviation was divided by the average value, thereby calculating the coefficient of variation (CV value%) as an index of variation.

曲げ強度について、3段階(○:300MPa以上、△:200MPa以上300MPa未満、×:200MPa未満)で評価した。また、CV値について、3段階(○:8%未満、△:8%以上15%未満、×:15%以上)で評価した。結果を表1に記す。   The bending strength was evaluated in three stages (◯: 300 MPa or more, Δ: 200 MPa or more and less than 300 MPa, x: less than 200 MPa). Further, the CV value was evaluated in three stages (◯: less than 8%, Δ: 8% or more and less than 15%, x: 15% or more). The results are shown in Table 1.

また、得られた積層基材より、JIS K−7074に規定する試験方法に従い、タブ材に光陽社製エメリー研磨紙#400を用い、接着剤に東亜合成製アロンアルファGEL−10を用いて、タイプ3の引張試験片を作製し、標点間距離を50mm、クロスヘッド速度1.0mm/分で引張試験を行い、応力−ひずみ曲線においてひずみが0.0005〜0.0025の範囲で引張弾性率を算出した。試験機としてはインストロン万能試験機5882型を用いた。測定した試験片の数はn=6とし、その全平均値を引張弾性率とした。
引張弾性率について、3段階(○:30GPa以上、△:20GPa以上30GPa未満、×:20GPa未満)で評価した。結果を表1に記す。
In addition, according to the test method defined in JIS K-7074, from the obtained laminated base material, emery abrasive paper # 400 manufactured by Koyo Co., Ltd. was used as the tab material, and Aron Alpha GEL-10 manufactured by Toa Gosei Co., Ltd. was used as the adhesive. Tensile test pieces are prepared, a tensile test is performed at a distance between the gauge points of 50 mm and a crosshead speed of 1.0 mm / min, and a tensile elastic modulus is obtained in a stress-strain curve in a range of 0.0005 to 0.0025. Calculated. As a testing machine, an Instron universal testing machine 5882 type was used. The number of test pieces measured was n = 6, and the total average value was taken as the tensile modulus.
The tensile modulus was evaluated in three stages (◯: 30 GPa or more, Δ: 20 GPa or more and less than 30 GPa, x: less than 20 GPa). The results are shown in Table 1.

得られた積層基材より300mm×50mmの板状物を4枚切り出した。それを赤外ヒーター(日本ガイシ製、製品名:QU−95469−S01)を用いて、280℃にて3分間加熱し、130℃に設定したハトチャンネル型のリブ金型(図1)に配置し、100tプレス(山本鉄工所製、プレス成形機PPM1−100)を用いて、90tにて3分間プレスを行い、繊維強化複合材料を得た。リブへの充填状態を目視で、2段階(○:98%以上、△:85%以上98%未満、×:85%未満)で評価した。結果を表1に記す。   Four 300 mm × 50 mm plate-like objects were cut out from the obtained laminated base material. It was heated for 3 minutes at 280 ° C. using an infrared heater (manufactured by NGK, product name: QU-95469-S01) and placed in a pigeon channel rib mold (FIG. 1) set at 130 ° C. Then, using a 100 t press (manufactured by Yamamoto Iron Works, press molding machine PPM1-100), pressing was performed at 90 t for 3 minutes to obtain a fiber-reinforced composite material. The filling state into the ribs was visually evaluated in two stages (◯: 98% or more, Δ: 85% or more and less than 98%, ×: less than 85%). The results are shown in Table 1.

(実施例2、3、4)
切込み角度θを表1記載の通りに変更した以外は、実施例1と同様に行った。結果を表1に記す。
(Examples 2, 3, and 4)
The same operation as in Example 1 was performed except that the cutting angle θ was changed as shown in Table 1. The results are shown in Table 1.

(比較例1)
切込みの末端点から繊維方向における隣接する切込みの末端点の距離Lsを5mmに変更した以外は、実施例1と同様に行った。結果を表1に記す。
(Comparative Example 1)
This was performed in the same manner as in Example 1 except that the distance Ls between the cut end points and the adjacent cut end points in the fiber direction was changed to 5 mm. The results are shown in Table 1.

(実施例5)
切込み長さlを5mmに変更した以外は、実施例1と同様に行った。結果を表1に記す。
(Example 5)
The same operation as in Example 1 was performed except that the cutting length l was changed to 5 mm. The results are shown in Table 1.

(実施例6)
繊維シート目付を72g/m、樹脂フィルム目付を35g/mとし、繊維体積含有率Vf30vol%、厚み110μmmのプリプレグとした以外は、実施例1と同様に行った。結果を表1に記す。
(Example 6)
The same procedure as in Example 1 was performed except that the fiber sheet basis weight was 72 g / m 2 , the resin film basis weight was 35 g / m 2, and the prepreg had a fiber volume content Vf 30 vol% and a thickness 110 μmm. The results are shown in Table 1.

(比較例2)
切込み角度θを15゜に変更した以外は、実施例6と同様に行った。結果を表1に記す。
(Comparative Example 2)
The same operation as in Example 6 was performed except that the cutting angle θ was changed to 15 °. The results are shown in Table 1.

(実施例7および比較例3)
強化繊維の繊維長Lおよび切込みの末端点から繊維方向における隣接する切込みの末端点の距離Lsを表1記載の通りに変更した以外は、実施例6と同様に行った。結果を表1に記す。
(Example 7 and Comparative Example 3)
The same procedure as in Example 6 was performed except that the fiber length L of the reinforcing fiber and the distance Ls between the end points of the adjacent cuts in the fiber direction from the end points of the cut were changed as shown in Table 1. The results are shown in Table 1.

(実施例8)
切込みの末端点から繊維方向における隣接する切込みの末端点の距離Lsを8.3mm、切込み長さlを28.3mmに変更した以外は、実施例6と同様に行った。結果を表1に記す。
(Example 8)
The same operation as in Example 6 was performed except that the distance Ls between the cut end point and the adjacent cut end point in the fiber direction was changed to 8.3 mm and the cut length l was changed to 28.3 mm. The results are shown in Table 1.

(実施例9)
繊維シート目付を45g/m、樹脂フィルム目付を40g/mとし、繊維体積含有率Vf22vol%、厚み112μmmのプリプレグとした以外は、実施例1と同様に行った。結果を表1に記す。
Example 9
The same procedure as in Example 1 was performed except that the fiber sheet weight was 45 g / m 2 , the resin film weight was 40 g / m 2, and the prepreg had a fiber volume content Vf 22 vol% and a thickness 112 μmm. The results are shown in Table 1.


1・・・・リブ部
2・・・・ハット部
3・・・・プリプレグ
4・・・・切込み
5・・・・強化繊維
6・・・・切込みの末端点
DESCRIPTION OF SYMBOLS 1 ... Rib part 2 ... Hat part 3 ... Prepreg 4 ... Cutting 5 ... Reinforcing fiber 6 ... End point of cutting

Claims (7)

一方向に配向した強化繊維と熱可塑性樹脂を含むプリプレグを、少なくとも3方向に強化繊維が配向するように複数枚積層して、一体化した積層基材であって、
前記プリプレグは強化繊維となす角度θの絶対値が30°以上の直線状の切込みを有し、前記切込みにより分断された強化繊維の繊維長Lが2mm以上100mm以下の範囲内で、前記切込みの末端点と繊維方向に隣接する他の切込みの末端点との距離LsがL/4以上L/2以下の範囲である積層基材。
A laminated base material obtained by laminating a plurality of prepregs containing reinforcing fibers oriented in one direction and a thermoplastic resin so that the reinforcing fibers are oriented in at least three directions,
The prepreg has a linear incision with an absolute value of an angle θ of 30 ° or more with the reinforcing fiber, and the fiber length L of the reinforcing fiber divided by the incision is in the range of 2 mm to 100 mm. A laminated base material in which the distance Ls between the terminal point and the terminal point of another incision adjacent in the fiber direction is in a range of L / 4 or more and L / 2 or less.
前記角度θの絶対値が30°以上65°以下の範囲のである請求項1に記載の積層基材。   The laminated base material according to claim 1, wherein the absolute value of the angle θ is in the range of 30 ° to 65 °. 前記切込みの長さlが4mm以上300mm以下の範囲内である請求項1または2に記載の積層基材。   The laminated substrate according to claim 1 or 2, wherein the length l of the cut is within a range of 4 mm to 300 mm. 前記プリプレグの厚みが50μm以上200μm以下である請求項1〜3に記載の積層基材。   The thickness of the said prepreg is 50 micrometers or more and 200 micrometers or less, The laminated base material of Claims 1-3. 前記積層基材の積層構成が擬似等方である請求項1〜4のいずれかに記載の積層基材。   The laminated base material according to claim 1, wherein the laminated structure of the laminated base material is pseudo-isotropic. 前記積層基材の繊維含有率Vfが20vol%以上40vol%以下である請求項1〜5のいずれかに記載の積層基材。   The laminated substrate according to any one of claims 1 to 5, wherein a fiber content Vf of the laminated substrate is 20 vol% or more and 40 vol% or less. 請求項1〜6のいずれかに記載の積層基材を3次元形状に成形した繊維強化複合材料。   The fiber reinforced composite material which shape | molded the laminated base material in any one of Claims 1-6 in the three-dimensional shape.
JP2012258445A 2012-11-27 2012-11-27 Laminate substrate and fiber-reinforced composite material Pending JP2014104641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012258445A JP2014104641A (en) 2012-11-27 2012-11-27 Laminate substrate and fiber-reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012258445A JP2014104641A (en) 2012-11-27 2012-11-27 Laminate substrate and fiber-reinforced composite material

Publications (1)

Publication Number Publication Date
JP2014104641A true JP2014104641A (en) 2014-06-09

Family

ID=51026541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012258445A Pending JP2014104641A (en) 2012-11-27 2012-11-27 Laminate substrate and fiber-reinforced composite material

Country Status (1)

Country Link
JP (1) JP2014104641A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016043156A1 (en) * 2014-09-19 2017-06-29 東レ株式会社 Cutting prepreg and cutting prepreg sheet
JP2017144567A (en) * 2016-02-15 2017-08-24 東レ株式会社 Thermoplastic resin molded body
WO2019031478A1 (en) * 2017-08-09 2019-02-14 東レ株式会社 Fiber reinforced plastic and fiber reinforced plastic manufacturing method
CN113272118A (en) * 2019-01-10 2021-08-17 三菱电机株式会社 Carbon fiber reinforced plastic reinforcing plate, member with reinforcing plate, platform fence and manufacturing method of carbon fiber reinforced plastic reinforcing plate
CN113442466A (en) * 2015-10-27 2021-09-28 东丽株式会社 Incision prepreg

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016043156A1 (en) * 2014-09-19 2017-06-29 東レ株式会社 Cutting prepreg and cutting prepreg sheet
CN113442466A (en) * 2015-10-27 2021-09-28 东丽株式会社 Incision prepreg
CN113442466B (en) * 2015-10-27 2023-07-28 东丽株式会社 Incision prepreg
JP2017144567A (en) * 2016-02-15 2017-08-24 東レ株式会社 Thermoplastic resin molded body
WO2019031478A1 (en) * 2017-08-09 2019-02-14 東レ株式会社 Fiber reinforced plastic and fiber reinforced plastic manufacturing method
CN113272118A (en) * 2019-01-10 2021-08-17 三菱电机株式会社 Carbon fiber reinforced plastic reinforcing plate, member with reinforcing plate, platform fence and manufacturing method of carbon fiber reinforced plastic reinforcing plate
CN113272118B (en) * 2019-01-10 2023-01-17 三菱电机株式会社 Reinforcing plate made of carbon fiber reinforced plastic, member with reinforcing plate, platform fence and manufacturing method of reinforcing plate

Similar Documents

Publication Publication Date Title
JP4789940B2 (en) Isotropic fiber reinforced thermoplastic resin sheet, method for producing the same and molded plate
JP5644496B2 (en) Fiber reinforced thermoplastic resin molding
JP5858171B2 (en) Thermoplastic prepreg, laminated substrate and molded product
KR101643114B1 (en) Layered substrate and method for manufacturing same
JP5900663B2 (en) Fiber reinforced resin laminate
JP2014104641A (en) Laminate substrate and fiber-reinforced composite material
JP6883527B2 (en) Manufacturing method of fiber reinforced resin molded product
JP2017043095A (en) Fiber-reinforced composite material molding and manufacturing method of the same
EP3492233B1 (en) Press molding production method
JP2014198838A (en) Method for producing fiber-reinforced thermoplastic resin molded plate
JP7259229B2 (en) chopped fiber bundle mat
JP6435696B2 (en) Method for producing laminated substrate
Tatsuno et al. Production system to form, cut, and join by using a press machine for continuous carbon fiber‐reinforced thermoplastic sheets
JP4988230B2 (en) Fiber reinforced thermoplastic resin sheet and method for producing the same
JP2014189722A (en) Laminated base material of fiber-reinforced plastic and method for producing the same
JP2016108348A (en) Laminated base material and method for manufacturing the same
JP7039823B2 (en) Carbon fiber reinforced plastic laminate and its manufacturing method
JP5598931B2 (en) Fiber reinforced resin substrate, method for producing resin molded body, and resin processing machine for implementing the method
JP6066174B2 (en) Laminated substrate of fiber reinforced plastic and method for producing the same
JP6477114B2 (en) Fiber reinforced thermoplastic resin laminate and method for producing the same
JP2016087907A (en) Method for producing fiber-reinforced plastic
JP2016172346A (en) Method for producing fiber reinforced plastic and laminated sheet
JP2014173031A (en) Stampable molded article, and method for producing the same
JP2016172413A (en) Notched prepreg laminated substrate