JP2016087907A - Method for producing fiber-reinforced plastic - Google Patents

Method for producing fiber-reinforced plastic Download PDF

Info

Publication number
JP2016087907A
JP2016087907A JP2014223953A JP2014223953A JP2016087907A JP 2016087907 A JP2016087907 A JP 2016087907A JP 2014223953 A JP2014223953 A JP 2014223953A JP 2014223953 A JP2014223953 A JP 2014223953A JP 2016087907 A JP2016087907 A JP 2016087907A
Authority
JP
Japan
Prior art keywords
fiber
prepreg
base material
reinforced plastic
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014223953A
Other languages
Japanese (ja)
Inventor
正雄 冨岡
Masao Tomioka
正雄 冨岡
石川 健
Takeshi Ishikawa
健 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2014223953A priority Critical patent/JP2016087907A/en
Publication of JP2016087907A publication Critical patent/JP2016087907A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a fiber-reinforced plastic which has mechanical physical properties applicable to structural materials and isotropy, the temperature dependability of whose mechanical physical properties is lowered, which can be molded in a short time and is hardly warped.SOLUTION: The method for producing the fiber-reinforced plastic, which plastic is prepared by stacking up prepreg base materials, each of which has notches being through-holes so that each of the notches has a crossing with a reinforcing fiber by only one time and an angle formed by intersection of a line segment, which is obtained by connecting a start point of the notch to an end point thereof, with the fiber direction of the reinforcing fiber becomes 30-90°, comprises a step (1) of stacking up two or more pieces of prepreg base materials each having notches to obtain a notched prepreg-stacked base material and a step (2) of heating the notched prepreg-stacked base material to the temperature equal to or higher than the melting point of a matrix resin.SELECTED DRAWING: None

Description

本発明は、複雑な形状への賦形性に優れ、短時間で成形可能であり、かつ成形後の部品が構造材に適用可能な優れた機械物性、等方性を有することを特徴とする繊維強化プラスチックの製造方法に関する。さらに詳しくは、成形時に、リブ、ボス等の3次元形状に容易に追随し、構造部材として適応可能な機械物性を維持し、例えば、航空機部材、自動車部材、風力発電用風車部材、スポーツ用具等に好適に用いられる繊維強化プラスチックの製造方法に関する。   The present invention is characterized in that it has excellent formability into a complex shape, can be molded in a short time, and has excellent mechanical properties and isotropy in which a molded part can be applied to a structural material. The present invention relates to a method for producing fiber-reinforced plastic. More specifically, at the time of molding, it easily follows a three-dimensional shape such as a rib and a boss, and maintains mechanical properties that can be applied as a structural member. For example, an aircraft member, an automobile member, a wind turbine member for wind power generation, a sports equipment, etc. The present invention relates to a method for producing a fiber reinforced plastic suitably used for the above.

繊維強化熱可塑性プラスチックの成形方法としては、プリプレグと称される連続した強化繊維に熱可塑性樹脂を含浸せしめた基材を積層し、プレス等で加熱および加圧することにより目的の形状に賦形するスタンピング成形が最も一般的に行われている。これにより得られた繊維強化プラスチックは、連続した強化繊維を用いているので優れた機械物性を有する。また連続した強化繊維は規則的に配列することで、必要とする機械物性に設計することが可能である。しかしながら、連続した強化繊維であるゆえに3次元形状等の複雑な形状を形成することは難しく、主として平面形状に近い部材に限られる。   As a method for molding fiber-reinforced thermoplastics, a base material impregnated with a thermoplastic resin is laminated on continuous reinforcing fibers called prepregs, and shaped into a desired shape by heating and pressing with a press or the like. Stamping is most commonly performed. The fiber reinforced plastic thus obtained has excellent mechanical properties because it uses continuous reinforcing fibers. Moreover, it is possible to design the required mechanical properties by arranging the continuous reinforcing fibers regularly. However, since it is a continuous reinforcing fiber, it is difficult to form a complicated shape such as a three-dimensional shape, and it is mainly limited to members close to a planar shape.

この問題を解決するために狭い幅のテープ状のプリプレグを一定の長さに切断したチップ状のプリプレグを平面上に分散させることにより、スタンピング成形性にすぐれた流動性のよいシートを得る方法が開示されている(例えば、特許文献1)。しかしながら一定幅と長さをもったチップ状のプリプレグを完全にランダムな方向に平板上へ配置することは極めて難しく、そのため同一シート内においても場所や向きによって機械物性が異なりという問題があった。   In order to solve this problem, there is a method for obtaining a sheet having excellent fluidity and excellent stamping formability by dispersing a chip-like prepreg obtained by cutting a tape-like prepreg having a narrow width into a predetermined length on a flat surface. It is disclosed (for example, Patent Document 1). However, it is extremely difficult to dispose a chip-shaped prepreg having a certain width and length on a flat plate in a completely random direction, so that there is a problem that mechanical properties differ depending on the location and orientation even in the same sheet.

また、近年では生産効率の向上を目的に強化繊維を直接成形機のスクリュー部に送り込み、繊維の切断と分散を同時に行い、その後連続して射出成形や押出成形を行うD−LFT成形も行われている(例えば、非特許文献1)。この方法によると強化繊維は適当な長さに切断されているため流動が容易であり3次元形状等の複雑な形状にも追従可能となる。しかしながら、D−LFTはその切断および分散工程において繊維長の斑や繊維配向の斑が生じてしまうために、機械物性が低下し、あるいはその値のばらつきが大きくなってしまうという問題があった。   In recent years, D-LFT molding has also been performed in which reinforcing fibers are fed directly into the screw section of a molding machine for the purpose of improving production efficiency, and the fibers are cut and dispersed simultaneously, and then injection molding and extrusion molding are performed continuously. (For example, Non-Patent Document 1). According to this method, since the reinforcing fiber is cut to an appropriate length, it can easily flow and can follow a complicated shape such as a three-dimensional shape. However, D-LFT has a problem in that mechanical properties are deteriorated or a variation in the values is increased because fiber length spots and fiber orientation spots are generated in the cutting and dispersing steps.

上述のような材料の欠点を埋めるべく、連続繊維と熱可塑性樹脂からなるプリプレグに切込を入れることにより、短時間成形が可能であり、成形時には優れた賦形性を示し、繊維強化プラスチックとしたときに優れた機械物性を発現するとされる積層基材が開示されている(例えば、特許文献2、3)。しかしながらD−LFTと比較すると機械特性は高く、かつそのばらつきが小さくなるものの、構造材として適用するには十分な強度とは言えなかった。   In order to fill the drawbacks of the above materials, by cutting into a prepreg made of continuous fibers and thermoplastic resin, it can be molded in a short time, and exhibits excellent formability at the time of molding. Laminated substrates that are said to exhibit excellent mechanical properties when disclosed (for example, Patent Documents 2 and 3). However, compared with D-LFT, the mechanical properties are high and the variation is small, but it cannot be said that the strength is sufficient for application as a structural material.

また特定の切込形状により上述の強度やそのばらつきを改良する方法が示されている(例えば,特許文献4、5、6)。しかしながらこの方法によると機械特性とばらつきの改良はみられるが、薄いリブやボス等の複雑な3次元形状への均一な流動性は不十分であり、またマトリックス樹脂の物理的耐熱温度以上の環境下では著しく機械物性が低下する問題もあった。さらに特許文献5では、成形時に成形型よりも面積の小さな積層基材をチャージして、成形時に積層基材を流動させることで、強度の改良を図る製造方法が示されているが、この製造方法では、流動による繊維配向の斑が大きく発生し、ばらつき性が大きくなり、また成形物に大きな反りが発生するため、実用的なものではなかった。   Moreover, the method of improving the above-mentioned intensity | strength and its dispersion | variation by specific cutting shape is shown (for example, patent document 4, 5, 6). However, this method improves mechanical properties and dispersion, but the uniform fluidity to complex three-dimensional shapes such as thin ribs and bosses is insufficient, and the environment is above the physical heat resistance temperature of the matrix resin. There was also a problem that the mechanical properties deteriorated significantly below. Furthermore, Patent Document 5 discloses a manufacturing method for improving strength by charging a laminated base material having a smaller area than the mold during molding and causing the laminated base material to flow during molding. This method is not practical because it causes large fiber orientation spots due to flow, increases variability, and causes large warpage of the molded product.

特開平07−164439号公報JP 07-164439 A 特開昭63−247012号公報Japanese Unexamined Patent Publication No. 63-247010 特開昭63−267523号公報JP-A 63-267523 特開2008−207544号公報JP 2008-207544 A 特開2008−207545号公報JP 2008-207545 A 特開2009−286817号公報JP 2009-286817 A In−line compounding and molding of long−fiber reinforced thermoplastics(D−LFT):Insight into a rapid growing technology.ANTEC2004 Conference Proceedings p.3500In-line compounding and molding of long-fiber reinforced thermoplastics (D-LFT): Insight into a rapid growing technology. ANTEC 2004 Conference Processings p. 3500

本発明は、上記のような従来技術に伴う問題点を解決しようとするものであって、構造材に適用可能な機械物性と等方性を有しながら、また機械物性の温度依存性が低く、さらに複雑な形状への賦形性に優れるので、短時間で成形可能であり、かつ反りの少ない、繊維強化プラスチックの製造方法を提供することを課題とする。   The present invention is intended to solve the problems associated with the prior art as described above, and has mechanical properties and isotropic properties applicable to structural materials, and the temperature dependence of the mechanical properties is low. Another object of the present invention is to provide a method for producing a fiber-reinforced plastic that can be molded in a short time and has little warpage because it is excellent in formability to a more complicated shape.

本発明者等は上記課題を解決すべく鋭意検討した結果、一方向に配向した強化繊維と熱可塑性のマトリックス樹脂とから構成され、繊維方向に対して特定の角度で切込を有したプリプレグ基材を用い、積層、加熱することにより上記課題を解決できることを見出い、本発明を完成するに至った。即ち、本発明の要旨は下記の<1>から<4>に存する。   As a result of intensive studies to solve the above-mentioned problems, the present inventors are composed of reinforced fibers oriented in one direction and a thermoplastic matrix resin, and have a notch at a specific angle with respect to the fiber direction. It has been found that the above problems can be solved by using materials, laminating and heating, and the present invention has been completed. That is, the gist of the present invention resides in the following <1> to <4>.

<1> 一方向に配向した強化繊維と熱可塑性のマトリックス樹脂とから構成されるプリプレグ基材が2枚以上積層された繊維強化プラスチックの製造法であって、前記プリプレグ基材は、表面から裏面に貫通した切込を有し、各切込は各強化繊維と1回のみ交差するように設けられ、前記切込の開始点と終点を結ぶ線分と前記強化繊維の繊維方向との交差する角度が30°以上、90°以下であり、下記(1)および(2)の工程を有する繊維強化熱プラスチックの製造方法。   <1> A method for producing a fiber reinforced plastic in which two or more prepreg base materials composed of unidirectionally oriented reinforcing fibers and a thermoplastic matrix resin are laminated, wherein the prepreg base material is formed from the front surface to the back surface. Each cut is provided so as to intersect with each reinforcing fiber only once, and a line segment connecting the start point and the end point of the cut intersects with the fiber direction of the reinforcing fiber. A method for producing a fiber-reinforced thermoplastic having an angle of 30 ° or more and 90 ° or less and having the following steps (1) and (2).

(1)前記切込を有するプリプレグ基材を2枚以上積層し、切込入りプリプレグ積層基材とする工程
(2)前記切込入りプリプレグ積層基材をマトリックス樹脂の融点以上に加熱する工程
<2> (2)の工程の後に、下記(3)の工程を有する上記<1>に記載の繊維強化プラスチックの製造方法。
(3)加熱した前記切込入りプリプレグ積層基材を、プレス機にて加圧して金型内で押し広げ、投影面積を切込入りプリプレグ積層基材の面積の1.5倍以上から10倍以下とする工程
<3> 前記切込を有するプリプレグ基材の繊維含有体積率が20vol%以上から60vol%以下である上記<1>または<2>に記載の繊維強化プラスチックの製造方法。
(1) Step of laminating two or more prepreg base materials having the incisions to form a notched prepreg laminated base material (2) Step of heating the incised prepreg laminated base material to a melting point or higher of the matrix resin <2> The method for producing a fiber-reinforced plastic according to the above <1>, which has the following step (3) after the step (2).
(3) The heated notched prepreg laminated base material is pressed with a press and spread in a mold, and the projected area is 1.5 times or more to 10 times the area of the notched prepreg laminated base material. <3> The method for producing a fiber-reinforced plastic according to <1> or <2>, wherein the fiber-containing volume ratio of the prepreg base material having the cut is 20 vol% or more and 60 vol% or less.

<4> 前記切込入りプリプレグ積層基材の積層構成が擬似等方積層である上記<1>〜<3>のいずれかに記載の繊維強化プラスチックの製造方法。   <4> The method for producing a fiber-reinforced plastic according to any one of the above <1> to <3>, wherein the laminated configuration of the cut prepreg laminated base material is pseudo-isotropic lamination.

本発明によれば、構造材に適用可能な機械物性と等方性を有しながら、機械物性の温度依存性の低く、さらに複雑な形状への賦形性に優れ、短時間で成形可能であり、かつ反りの少ない、繊維強化プラスチックの製造方法を得ることができる。   According to the present invention, while having mechanical properties and isotropic properties applicable to structural materials, the temperature dependence of mechanical properties is low, and further, it is excellent in shaping into complex shapes and can be molded in a short time. It is possible to obtain a method for producing a fiber reinforced plastic that has little warpage.

実施例で用いたハトチャンネル型のリブ金型を示す図である。It is a figure which shows the pigeon channel type rib metal mold | die used in the Example.

本発明は、一方向に配向した強化繊維と熱可塑性のマトリックス樹脂とから構成されるプリプレグ基材が2枚以上積層された繊維強化プラスチックの製造法であって、前記プリプレグ基材は、表面から裏面に貫通した切込を有し、各切込は各強化繊維と1回のみ交差するように設けられ、前記切込の開始点と終点を結ぶ線分と前記強化繊維の繊維方向との交差する角度が30°以上、90°以下であり、下記(1)および(2)の工程を有する繊維強化熱プラスチックの製造方法である。   The present invention is a method for producing a fiber reinforced plastic in which two or more prepreg base materials composed of unidirectionally oriented reinforcing fibers and a thermoplastic matrix resin are laminated, wherein the prepreg base material is formed from the surface. It has a notch penetrating through the back surface, each notch is provided so as to intersect with each reinforcing fiber only once, and an intersection between a line segment connecting the start point and the end point of the notch and the fiber direction of the reinforcing fiber This is a method for producing a fiber-reinforced thermoplastic having an angle of 30 ° or more and 90 ° or less and having the following steps (1) and (2).

(1)前記切込を有するプリプレグ基材を2枚以上積層し、切込入りプリプレグ積層基材とする工程
(2)前記切込入りプリプレグ積層基材をマトリックス樹脂の融点以上に加熱する工程
上記(2)の工程の後に、下記(3)の工程を有することが好ましい。
(3)加熱した前記切込入りプリプレグ積層基材を、プレス機にて加圧して金型内で押し広げ、投影面積を切込入りプリプレグ積層基材の面積の1.5倍以上から10倍以下とする工程
(切込を有するプリプレグ基材)
本実施形態で用いるプリプレグ基材は、一方向に配向した強化繊維と熱可塑性のマトリックス樹脂とを含み、強化繊維と交差する方向に、表面から裏面に貫通する切込を有するシート状のプリプレグである。一方向に配向した強化繊維、及び熱可塑性マトリックス樹脂については後述する。「各切込は各強化繊維と1回のみ交差するように設けられ」とは、線状の切込の方向が強化繊維と並行でないことであり、切込と交差する部位においてプリプレグに含まれる強化繊維が切断されていることである。
(1) A step of laminating two or more prepreg base materials having the incisions to form a prepreg laminated base material with cuts (2) A step of heating the prepreg laminated base material with cuts to a melting point or higher of the matrix resin It is preferable to have the following process (3) after the process (2).
(3) The heated notched prepreg laminated base material is pressed with a press and spread in a mold, and the projected area is 1.5 times or more to 10 times the area of the notched prepreg laminated base material. The following steps (prepreg base material with notches)
The prepreg base material used in the present embodiment is a sheet-like prepreg that includes a reinforcing fiber oriented in one direction and a thermoplastic matrix resin, and has a notch penetrating from the front surface to the back surface in a direction crossing the reinforcing fiber. is there. The reinforcing fibers oriented in one direction and the thermoplastic matrix resin will be described later. “Each cut is provided so as to intersect with each reinforcing fiber only once” means that the direction of the linear cut is not parallel to the reinforcing fiber, and is included in the prepreg at the portion intersecting with the cut. That is, the reinforcing fiber is cut.

本発明で用いる切込を有するプリプレグ基材は、プリプレグ基材の全面には強化繊維となす角度θ(切込の開始点と終点を結ぶ線分と前記強化繊維の繊維方向との交差する角度)の絶対値が30゜以上から60゜以下の範囲内の切込を有する必要がある。θの絶対値が極端に小さな角度もしくは直角に近い場合、切込を有するプリプレグ基材の積層体を加熱および加圧して押し広げた際、繊維配向に斑が生じ、等方性が低く、また反りが発生する問題が生じるが、θの絶対値が30゜以上から60゜以下の範囲内であれば、切込を有するプリプレグ基材の積層体を加熱および加圧して押し広げても、繊維配向の斑は少なく、等方性が高く、反りも発生しない。またこれらに加え、θの絶対値が極端に小さな角度の場合は、流動性が低下するが、θの絶対値が30゜以上であれば、スタンピング成形時のリブやボスといった部位への良好な3次元流動性が得られる。また、θの絶対値が直角に近い場合、流動性は確保できるものの、流動により局所的な樹脂だまりが発生し、この樹脂だまりが破壊起点となって強度が低下する問題があるが、θの絶対値が60゜以下であれば、流動による局所的な樹脂だまりの発生を抑制でき、繊維強化プラスチックとした際の機械物性および等方性に優れる。   The prepreg base material having a notch used in the present invention has an angle θ that forms a reinforcing fiber on the entire surface of the prepreg base material (an angle at which the line segment connecting the start point and the end point of the incision intersects the fiber direction of the reinforcing fiber). ) Must have a cut in the range of 30 ° to 60 °. When the absolute value of θ is extremely small or close to a right angle, when the laminate of the prepreg base material having a cut is spread by heating and pressurization, the fiber orientation becomes uneven, and the isotropic property is low. There is a problem of warping, but if the absolute value of θ is in the range of 30 ° to 60 °, the fiber of the prepreg base material having notches may be spread by heating and pressurizing. There are few orientation spots, isotropic properties, and no warping. In addition to these, when the absolute value of θ is an extremely small angle, the fluidity is lowered. However, if the absolute value of θ is 30 ° or more, it is good for a portion such as a rib or a boss during stamping molding. Three-dimensional fluidity is obtained. In addition, when the absolute value of θ is close to a right angle, fluidity can be secured, but local resin accumulation occurs due to the flow. If the absolute value is 60 ° or less, the occurrence of local resin accumulation due to flow can be suppressed, and the mechanical properties and isotropy of the fiber-reinforced plastic are excellent.

切込みにより分断された強化繊維の繊維長Lが2mm以上100mm以下の範囲内あることがこのましい。の繊維長Lが2mm以上100mm以下の範囲内あることにより、スタンピング成形時のリブやボスといった部位への3次元流動性と、繊維強化プラスチックとした際の、優れた機械物性を両立できる。流動性の観点からは繊維長Lが短いほど良いが、繊維長Lを100mm以下とすることにより、スタンピング成形時にリブやボスといった部位への良好な3次元流動性が得られる。繊維長Lは機械物性の観点からは長い方が好ましいが、2mm以上とすることで、繊維強化プラスチックとした際、構造部材に適応可能な機会物性が得られる。流動性と機械物性の関係を鑑みると、より好ましくは繊維長Lが15mm以上55mm以下である。   It is preferable that the fiber length L of the reinforcing fiber divided by the cutting is in the range of 2 mm to 100 mm. When the fiber length L is in the range of 2 mm or more and 100 mm or less, the three-dimensional fluidity to the parts such as ribs and bosses during stamping molding and excellent mechanical properties when used as fiber reinforced plastic can be achieved. From the viewpoint of fluidity, the shorter the fiber length L is, the better. However, by setting the fiber length L to 100 mm or less, good three-dimensional fluidity to parts such as ribs and bosses can be obtained during stamping molding. The fiber length L is preferably longer from the viewpoint of mechanical properties, but by setting it to 2 mm or more, an opportunity physical property applicable to a structural member can be obtained when a fiber reinforced plastic is used. In view of the relationship between fluidity and mechanical properties, the fiber length L is more preferably 15 mm or greater and 55 mm or less.

本発明で用いる切込を有するプリプレグ基材の切込みの長さlは4mm以上300mm以下の範囲内であることが好ましい。切込みの長さlを300mm以下とすることで、繊維強化プラスチックとした際、切込み部が起点となる破壊を抑制することができて、機械物性に優れる。一方、切込みの長さlが極端に短い場合は、実質的にプリプレグに切込みを挿入することが困難になるため、4mm以上とすることが好ましい。   The cut length l of the prepreg base material having a cut used in the present invention is preferably in the range of 4 mm to 300 mm. When the cut length l is set to 300 mm or less, when the fiber reinforced plastic is used, the breakage starting from the cut portion can be suppressed, and the mechanical properties are excellent. On the other hand, when the cut length l is extremely short, it is difficult to substantially insert the cut into the prepreg.

本発明で用いる切込を有するプリプレグ基材の繊維含有体積率Vfは20vol%以上60vol%以下であることが好ましい。流動性の原動力は樹脂の流動であるため、流動性の観点からはVfは低いほど好ましく、Vfを60vol%以下とすることで、スタンピング成形時のリブやボスといった部位への良好な3次元流動性が得られる。流動性の観点から、より好ましくはVfが45vol%である。Vfが極端に低いと、構造材に必要とされる機械物性を得ることができないが、Vfを20vol%以上とすることで、良好な機械物性が得られる。また、Vfを25vol%以上とすることがより好ましく、構造材に必要とされる機会物性を得ることができる。なお、本発明にかかる繊維含有体積率VfはJIS K7075に基づき測定できる。   The fiber-containing volume fraction Vf of the prepreg base material having a cut used in the present invention is preferably 20 vol% or more and 60 vol% or less. Since the motive force of fluidity is resin flow, Vf is preferably as low as possible from the viewpoint of fluidity. By setting Vf to 60 vol% or less, good three-dimensional flow to the parts such as ribs and bosses during stamping molding Sex is obtained. From the viewpoint of fluidity, Vf is more preferably 45 vol%. When Vf is extremely low, the mechanical properties required for the structural material cannot be obtained, but by setting Vf to 20 vol% or more, good mechanical properties can be obtained. Moreover, it is more preferable to set Vf to 25 vol% or more, and the opportunity physical property required for a structural material can be obtained. The fiber-containing volume fraction Vf according to the present invention can be measured based on JIS K7075.

本発明で用いるプリプレグ基材の強化繊維は、特に限定されず、例えば、無機繊維、有機繊維、金属繊維、またはこれらを組み合わせたハイブリッド構成の繊維がある。無機繊維としては、炭素繊維、黒鉛繊維、炭化珪素繊維、アルミナ繊維、タングステンカーバイド繊維、ボロン繊維、ガラス繊維などが挙げられる。有機繊維としては、アラミド繊維、高密度ポリエチレン繊維、その他一般のナイロン繊維、ポリエステルなどが挙げられる。金属繊維としては、ステンレス、鉄等の繊維を挙げられ、また金属を被覆した炭素繊維でもよい。これらの中では、最終成形物の強度等の機械物性を考慮すると、炭素繊維が好ましく、PAN系炭素繊維がより好ましい。   The reinforcing fiber of the prepreg base material used in the present invention is not particularly limited, and examples thereof include inorganic fibers, organic fibers, metal fibers, or fibers having a hybrid configuration in which these are combined. Examples of the inorganic fiber include carbon fiber, graphite fiber, silicon carbide fiber, alumina fiber, tungsten carbide fiber, boron fiber, and glass fiber. Examples of organic fibers include aramid fibers, high density polyethylene fibers, other general nylon fibers, and polyesters. Examples of the metal fibers include fibers such as stainless steel and iron, and may be carbon fibers coated with metal. Among these, in consideration of mechanical properties such as strength of the final molded product, carbon fibers are preferable, and PAN-based carbon fibers are more preferable.

また本発明に用いるプリプレグ基材のマトリックス樹脂は熱可塑性樹脂を用いる必要がある。すなわち、不連続な強化繊維を用いた繊維強化プラスチックの場合、繊維端部同士を連結するように破壊するため、一般的に熱硬化性樹脂よりも靱性値が高い熱可塑性樹脂をマトリックス樹脂として用いることで、強度、特に衝撃性が向上する。またさらに熱可塑性樹脂は化学反応を伴うことなく冷却固化して形状を決定するので、短時間成形が可能であり、生産性に優れる上、加熱および加圧して押し広げた後でも、スタンピング成形により賦形することが可能である。   Moreover, it is necessary to use a thermoplastic resin for the matrix resin of the prepreg base material used in the present invention. That is, in the case of a fiber reinforced plastic using discontinuous reinforcing fibers, a thermoplastic resin generally having a higher toughness value than a thermosetting resin is used as a matrix resin in order to break the fiber ends so as to connect each other. As a result, strength, particularly impact resistance is improved. In addition, since the thermoplastic resin is cooled and solidified without chemical reaction to determine the shape, it can be molded in a short time, and it is excellent in productivity. It can be shaped.

本発明で用いる熱可塑性樹脂は、特に限定されず、例えば、ポリカーボネート樹脂、ポリエステル樹脂、ポリアミド樹脂、液晶ポリマー樹脂、ポリエーテルサルフォン樹脂、ポリエーテルエーテルケトン樹脂、ポリアリレート樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、ポリアセタール樹脂、ポリスルフォン樹脂、ポリイミド樹脂、ポリオレフィン樹脂、ポリスチレン樹脂、変性ポリスチレン樹脂、ABS樹脂、変性ABS樹脂、MBS樹脂、ポリメチルメタクリレート樹脂、及びこれらの変性樹脂、及びこれらのポリマーアロイ樹脂が挙げられる。これらはいずれか1種を単独で使用してもよく、2種類以上を併用してもよいが、好ましくはポリプロピレン樹脂および/またはポリアミド樹脂、もしくはポリプロピレン樹脂および/またはポリアミド樹脂の変性樹脂である。また、より好ましくは強化繊維との接着性の観点から酸変性ポリプロピレン樹脂である。   The thermoplastic resin used in the present invention is not particularly limited. For example, polycarbonate resin, polyester resin, polyamide resin, liquid crystal polymer resin, polyether sulfone resin, polyether ether ketone resin, polyarylate resin, polyphenylene ether resin, polyphenylene Sulfide resin, polyacetal resin, polysulfone resin, polyimide resin, polyolefin resin, polystyrene resin, modified polystyrene resin, ABS resin, modified ABS resin, MBS resin, polymethyl methacrylate resin, and modified resins thereof, and polymer alloy resins thereof Is mentioned. Any one of these may be used alone, or two or more may be used in combination, but a polypropylene resin and / or polyamide resin, or a modified resin of polypropylene resin and / or polyamide resin is preferable. More preferably, it is an acid-modified polypropylene resin from the viewpoint of adhesiveness with reinforcing fibers.

(プリプレグ基材の製造方法)
熱可塑性樹脂を一方向に配向した強化繊維に含浸させてなるプリプレグ基材を製造する方法は、溶融樹脂を押出機にて含浸させる方法、粉末樹脂を繊維層に分散し溶融させる方法、樹脂をフィルム化してラミネートする方法、樹脂を溶剤に溶かし溶液の状態で含浸させた後に溶剤を揮発させる方法、樹脂を繊維化して混合糸にする方法、熱可塑性樹脂のモノマーの状態で含浸させた後に重合させてポリマーにする方法などがある。溶融樹脂を押出機にて含浸させる方法は樹脂を加工する必要が無いという利点があるが、安定したプリプレグを製造するのが難しい。粉末樹脂を繊維層に分散する方法は含浸がしやすいという利点があるが、粉末を均一に繊維層に分散させるのが困難である。樹脂をフィルム化してラミネートする方法はフィルム加工する必要があるが、比較的品質の良いものが作られる傾向にある。溶融法にて熱可塑性樹脂を含浸させる工程は、前記押出機以外にも加熱プレスと冷却プレスの組合せにより溶融含浸後にプリプレグを固化させる方法、ダブルベルトプレスを使用して加熱ゾーンや冷却ゾーンを設ける方法がある。ダブルベルトプレスを使用する方法は連続的に生産できるため生産性に優れている。
(Preparation method of prepreg base material)
A method for producing a prepreg base material obtained by impregnating a reinforced fiber oriented in one direction with a thermoplastic resin is a method of impregnating a molten resin with an extruder, a method of dispersing and melting a powder resin in a fiber layer, a resin A method of laminating and filming, a method in which a resin is dissolved in a solvent and impregnated in the form of a solution, and then the solvent is volatilized. There is a method of making it into a polymer. The method of impregnating the molten resin with an extruder has the advantage that the resin does not need to be processed, but it is difficult to produce a stable prepreg. The method of dispersing the powder resin in the fiber layer has an advantage that it is easily impregnated, but it is difficult to uniformly disperse the powder in the fiber layer. The method of laminating the resin into a film requires film processing, but tends to produce a relatively good quality. The step of impregnating the thermoplastic resin by the melting method is not only the extruder, but also a method of solidifying the prepreg after melt impregnation by a combination of a heating press and a cooling press, and a heating zone and a cooling zone are provided using a double belt press. There is a way. The method using a double belt press is excellent in productivity because it can be produced continuously.

(切込を有するプリプレグ基材の製造方法)
本発明で用いる切込を有するプリプレグ基材の製造方法は、特に限定されず、公知の手法で、前記プリプレグ基材に切込を挿入することができる。例えばレーザーマーカー、カッティングプロッター、抜型等を利用して切込を入れる手法が挙げられる。
(Method for producing prepreg base material having notches)
The manufacturing method of the prepreg base material which has a notch used by this invention is not specifically limited, A notch can be inserted in the said prepreg base material by a well-known method. For example, there is a method of making a cut using a laser marker, a cutting plotter, a cutting die or the like.

(1)前記切込を有するプリプレグ基材を2枚以上積層し、切込入りプリプレグ積層基材とする工程
本発明は前記切込を有するプリプレグ基材を2枚以上積層し、切込入りプリプレグ積層基材とする工程を有する必要がある。高い流動性の観点から、切込を有するプリプレグ基材を4枚以上積層した切込入りプリプレグ積層基材が好ましく、特に好ましくは切込を有するプリプレグ基材を8枚以上積層した切込入りプリプレグ積層基材である。なお、製造コストの観点から、通常は切込を有するプリプレグを192枚以下積層した切込入りプリプレグ積層体であり、好ましくは切込を有するプリプレグを96枚以下積層した切込入りプリプレグ積層体である。
(1) Step of laminating two or more prepreg base materials having the incision to form a prepreg laminated base material with incision The present invention laminates two or more prepreg base materials having the incision to form a prepreg with incision. It is necessary to have a process of forming a laminated base material. From the viewpoint of high fluidity, a notched prepreg laminated base material in which four or more prepreg base materials having incisions are laminated is preferable, and particularly preferred is a notched prepreg in which eight or more prepreg base materials having incisions are laminated. It is a laminated substrate. In addition, from the viewpoint of production cost, it is usually a prepreg laminate with a cut obtained by laminating 192 or less prepregs having cuts, preferably a prepreg laminate with a cut obtained by laminating 96 or less prepregs having cuts. is there.

本発明の、前記切込を有するプリプレグ基材を2枚以上積層し、切込入りプリプレグ積層基材とする工程における積層手法は特に限定されず、公知の手法で積層して良い。   The lamination method in the step of laminating two or more prepreg base materials having the notches of the present invention to form the notched prepreg laminated base materials is not particularly limited, and may be laminated by a known method.

積層構成としては、少なくとも2方向に強化繊維が配向するように複数枚積層することが好ましい。より好ましい積層構成は、0/45/90/−45の4層のn回繰り返しを対称積層したもの(〔0/45/90/−45〕ns)や0/60/−60の3層のn回繰り返しを対称積層したもの([0/60/−60]ns)で表記される擬似等方である。2方向以上の繊維配向を有することで、繊維強化プラスチックのソリを抑制することができる。さらに、流動性については強化繊維の90°方向への樹脂の流動が強化繊維を動かす原動力であるため、積層時の隣接するプリプレグの繊維配向によって繊維の流れ具合が異なるが、繊維配向を擬似等方とすることで流動性が等方となり、流動性のバラツキが少なくロバスト性に優れた繊維強化プラスチックが得られる。   As a laminated structure, it is preferable to laminate a plurality of sheets so that the reinforcing fibers are oriented in at least two directions. A more preferable laminated structure is one in which four times of 0/45/90 / -45 are symmetrically laminated ([0/45/90 / -45] ns) or three layers of 0/60 / -60. This is a pseudo-isotropic method expressed by symmetrically stacking n repetitions ([0/60 / -60] ns). By having fiber orientations in two or more directions, warping of the fiber-reinforced plastic can be suppressed. Furthermore, with regard to fluidity, since the flow of the resin in the 90 ° direction of the reinforcing fiber is the driving force for moving the reinforcing fiber, the flow of the fiber differs depending on the fiber orientation of the adjacent prepreg at the time of lamination, but the fiber orientation is simulated, etc. In this way, the fluidity becomes isotropic, and a fiber-reinforced plastic having excellent fluidity with little variation in fluidity can be obtained.

切込入りプリプレグ積層基材は必要に応じて、取り扱いを用意にするため、超音波や加熱により、切込入りプリプレグ積層基材の層間の一部もしくは全体を溶着させても良い。   In order to prepare the cut prepreg laminated base material as needed, a part or the whole of the layers of the cut prepreg laminated base material may be welded by ultrasonic waves or heating.

(2)前記切込入りプリプレグ積層基材をマトリックス樹脂の融点以上に加熱する工程
本発明は、上記(1)で得られた切込入りプリプレグ積層基材を、プリプレグを構成するマトリックス樹脂の融点以上に加熱する工程を有する必要がある。この工程により、積層基材を一体化することができる。
(2) Step of heating the notched prepreg laminated base material to the melting point of the matrix resin or higher The present invention is the melting point of the matrix resin constituting the prepreg of the notched prepreg laminated base material obtained in (1) above. It is necessary to have the process of heating above. By this step, the laminated base material can be integrated.

本発明の、前記切込入りプリプレグ積層基材を加熱とする工程における加熱手法は特に限定されず、公知の手法で加熱すれば良く、IRヒーターや循環式熱風オーブン内で加熱する手法が上げられる。また、後述の(過熱した前記切込入りプリプレグ積層基材を金型内で、プレス機にて加圧して押し広げ、投影面積を切込入りプリプレグ積層基材の面積の1.5倍以上から10倍以下とする工程)に用いる金型に前記切込入りプリプレグ積層基材を投入した後に加熱プレスにって加熱しても良い。   The heating method in the step of heating the notched prepreg laminated substrate of the present invention is not particularly limited, and may be heated by a known method, and the method of heating in an IR heater or a circulating hot air oven is raised. . In addition, the above-mentioned (preheated notched prepreg laminated base material is pressed and spread with a press machine in a mold, and the projected area is 1.5 times or more the area of the notched prepreg laminated base material. The prepreg laminated base material with cuts may be put into a mold used for the step of 10 times or less, and then heated by a heating press.

加熱温度はマトリックス樹脂の融点以上であれば特に限定されないが、マトリックス樹脂の融点よりも15℃から60℃高い温度で加熱することが好ましい。   The heating temperature is not particularly limited as long as it is equal to or higher than the melting point of the matrix resin, but it is preferable to heat at a temperature 15 to 60 ° C. higher than the melting point of the matrix resin.

(3)過熱した前記切込入りプリプレグ積層基材をプレス機にて加圧して金型内で押し広げ、投影面積を切込入りプリプレグ積層基材の面積の1.5倍以上から10倍以下とする工程
本発明は前記切込入りプリプレグ積層基材を加熱および加圧して押し広げ、投影面積を切込入りプリプレグ積層基材の面積の1.5倍以上から10倍以下とする工程を有する必要がある。切込入りプリプレグ積層基材を金型内で、プレス機にて加圧して、投影面積を切込入りプリプレグ積層基材の面積の1.5倍以上まで押し広げることにより、繊維があらゆる方向に配向し、異方性が低く、また厚み方向における強化繊維とマトリックス樹脂の分散性が増し、機械特性に優れると共に、温度依存性も低い繊維強化プラスチックを得ることができる。一方、極端に積層基材を押し広げると、繊維同士の絡まりあいによって、スタンピング成形の際の流動性が低下する問題があるが、切込入りプリプレグ積層基材を加熱および加圧して押し広げた際の投影面積が切込入りプリプレグ積層基材の面積の10倍以下であれば、スタンピング成形時に良好な流動性を確保することができる。
(3) Pressurize the heated pre-cut laminated prepreg substrate with a press and spread it in the mold, and project the projected area from 1.5 times to 10 times the area of the cut prepreg laminated substrate. The present invention has a step of heating and pressurizing the notched prepreg laminated substrate to spread it, and setting the projected area to be 1.5 times to 10 times the area of the notched prepreg laminated substrate. There is a need. By pressing the cut prepreg laminated substrate in the mold with a press machine, the projected area is expanded to more than 1.5 times the area of the cut prepreg laminated substrate, so that the fiber is in all directions. It is possible to obtain a fiber reinforced plastic that is oriented, has low anisotropy, increases dispersibility of the reinforcing fibers and the matrix resin in the thickness direction, has excellent mechanical properties, and has low temperature dependency. On the other hand, when the laminated base material is extremely spread, there is a problem that fluidity at the time of stamping molding is lowered due to entanglement of fibers, but the notched prepreg laminated base material is heated and pressurized to be spread. If the projected area at that time is 10 times or less the area of the cut prepreg laminated base material, good fluidity can be ensured during stamping molding.

前記加圧する際の温度は、マトリックス樹脂の融点温度に対して−60℃以上から+60℃以下の範囲が好ましい。   The temperature at the time of pressurization is preferably in the range of −60 ° C. to + 60 ° C. with respect to the melting point temperature of the matrix resin.

前記加圧において切込入りプリプレグ積層基材にかける圧力としては、好ましくは0.1〜30MPaであり、より好ましくは0.2〜10MPaである。   The pressure applied to the cut prepreg laminated base material in the pressurization is preferably 0.1 to 30 MPa, more preferably 0.2 to 10 MPa.

上記加熱および加圧する時間は、0.1〜30分間であることが好ましく、さらに好ましくは0.5〜10分間である。また、加熱及び加圧の後に設ける冷却時間は、0.5〜30分間であることが好ましい。   The heating and pressurizing time is preferably 0.1 to 30 minutes, more preferably 0.5 to 10 minutes. Moreover, it is preferable that the cooling time provided after a heating and pressurization is 0.5 to 30 minutes.

次に、実施例により本発明をさらに具体的に説明する。本発明は、実施例に記載の発明に限定されるものではない。以下の各例で使用した原料、繊維強化プラスチックの製造方法、物性の評価方法を示す。   Next, the present invention will be described more specifically with reference to examples. The present invention is not limited to the invention described in the examples. The raw materials, fiber reinforced plastic manufacturing methods, and physical property evaluation methods used in the following examples are shown.

<原料>
炭素繊維:三菱レイヨン(株)社製 パイロフィルTR 50S15L AD
酸変性ポリプロピレン樹脂:三菱化学(株)社製 モディックP958
<物性評価>
(反り)
得られた300mm角の平板状の繊維強化プラスチックを水平面に置き、繊維強化プラスチックの四隅の水平面からの高さを測定し、四隅の水平面からの高さの和が4mm未満であれば○、4mm以上から6mm未満であれば△、6mm以上であれば×と記録した。結果を表1〜4に示す。
<Raw material>
Carbon fiber: Pyrofil TR 50S15L AD manufactured by Mitsubishi Rayon Co., Ltd.
Acid-modified polypropylene resin: Modic P958 manufactured by Mitsubishi Chemical Corporation
<Physical property evaluation>
(warp)
Place the obtained 300 mm square plate-like fiber reinforced plastic on a horizontal plane, measure the height of the fiber reinforced plastic from the four horizontal corners, and if the sum of the height from the four horizontal planes is less than 4 mm, From the above, it was recorded as Δ if it was less than 6 mm and x if it was 6 mm or more. The results are shown in Tables 1-4.

(曲げ試験物性の評価)
得られた300mm角の平板状の繊維強化プラスチックから、0゜、45゜、90゜、135゜の4方向にそれぞれ4体ずつ、計16体、長さ100mm、幅25mmの曲げ強度試験片を切り出した。切り出した曲げ試験片は、JIS K−7074に規定する試験方法に従い、室温環境下で、標点間距離を80mmとし、クロスヘッド速度5.0mm/分で3点曲げ試験を行って強度と弾性率を測定した。試験機としてはインストロン万能試験機4465型を用いた。得られた測定値のそれぞれn=16の平均値を曲げ強度および曲げ弾性率として記録し、また曲げ強度に関して、標準偏差を平均値で除した後に100倍した値を曲げ強度C.V.として記録した。結果を表1〜4に示す。なお、C.V.の値が小さいほど、等方性が高いことを意味する。
(Evaluation of bending test properties)
From the obtained 300 mm square flat fiber reinforced plastic, 4 pieces each in 4 directions of 0 °, 45 °, 90 ° and 135 °, a total of 16 pieces, a bending strength test piece having a length of 100 mm and a width of 25 mm. Cut out. The cut-out bending test piece was subjected to a three-point bending test at a crosshead speed of 5.0 mm / min under a room temperature environment in accordance with a test method specified in JIS K-7074. The rate was measured. As a testing machine, an Instron universal testing machine 4465 type was used. The average value of n = 16 of each of the obtained measured values was recorded as the bending strength and the bending elastic modulus, and the bending strength was obtained by dividing the standard deviation by the average value and multiplying it by 100. V. Recorded as. The results are shown in Tables 1-4. Note that C.I. V. The smaller the value, the higher the isotropic property.

(高温時の曲げ弾性率)
得られた300mm角の平板状の繊維強化プラスチックから、0゜、45゜、90゜、135゜の4方向にそれぞれ4体ずつ、計16体、長さ100mm、幅25mmの曲げ強度試験片を切り出した。切り出した曲げ試験片は、試験環境温度を80℃とした以外はJIS K−7074に規定する試験方法に従い、標点間距離を80mmとし、クロスヘッド速度5.0mm/分で3点曲げ試験を行って弾性率を測定した。試験機としてはインストロン万能試験機4465型を用いた。得られた測定値のn=16の平均値を80℃における曲げ弾性率とした。80℃における曲げ弾性率が、室温環境下での曲げ弾性率の95%以上であれば○、90%以上から95%未満であれば△、90%未満であれば×と記録した。結果を表1〜4に示す。
(Bending elastic modulus at high temperature)
From the obtained 300 mm square flat fiber reinforced plastic, 4 pieces each in 4 directions of 0 °, 45 °, 90 ° and 135 °, a total of 16 pieces, a bending strength test piece having a length of 100 mm and a width of 25 mm. Cut out. The cut bending test piece was subjected to a three-point bending test at a crosshead speed of 5.0 mm / min with a distance between the gauge points of 80 mm in accordance with the test method specified in JIS K-7074 except that the test environment temperature was 80 ° C. The elastic modulus was measured. As a testing machine, an Instron universal testing machine 4465 type was used. The average value of n = 16 of the obtained measured values was defined as the flexural modulus at 80 ° C. When the flexural modulus at 80 ° C. was 95% or more of the flexural modulus at room temperature, it was recorded as “◯”, from 90% to less than 95%, “Δ”, and when less than 90%, “x”. The results are shown in Tables 1-4.

(引張強度の評価)
得られた300mm角の平板状の繊維強化プラスチックから、0゜方向に、JIS K−7074に規定する試験方法に従い、タブ材に光陽社製エメリー研磨紙#400を用い、接着剤に東亜合成製アロンアルファGEL−10を用いて、タイプ3の引張試験片を6体、作製した。標点間距離を50mm、クロスヘッド速度1.0mm/分で引張試験を行い、張弾強度を測定した。試験機としてはインストロン万能試験機5882型を用いた。得られた測定値のn=6の平均値を引張強度として記録した。結果を表1〜4に示す。
(Evaluation of tensile strength)
From the obtained 300 mm square plate-like fiber reinforced plastic, according to the test method specified in JIS K-7074 in the 0 ° direction, emery abrasive paper # 400 manufactured by Koyo Co., Ltd. was used as the tab material, and Aron Alpha manufactured by Toa Gosei Co. Six type 3 tensile test pieces were prepared using GEL-10. A tensile test was performed at a distance between the gauge points of 50 mm and a crosshead speed of 1.0 mm / min to measure the tension strength. As a testing machine, an Instron universal testing machine 5882 type was used. The average value of n = 6 of the measured values obtained was recorded as the tensile strength. The results are shown in Tables 1-4.

(流動性の評価)
得られた300mm角の平板状の繊維強化プラスチックから、300mm×50mmの板状物を4枚切り出した。それを赤外ヒーター(日本ガイシ製、製品名:QU−95469−S01)を用いて、280℃にて3分間加熱し、130℃に設定したハトチャンネル型のリブ金型(図1)に配置し、100tプレス(山本鉄工所製、プレス成形機PPM1−100)を用いて、90tにて3分間プレスを行った。リブへの充填状態を目視で確認し、充填率が98%以上であれば○、85%以上から98%未満であれば△、85%未満であれば×と記録した。結果はを表1〜4に示す。
(Evaluation of liquidity)
Four 300 mm × 50 mm plate-like objects were cut out from the obtained 300 mm square flat fiber-reinforced plastic. It was heated for 3 minutes at 280 ° C. using an infrared heater (manufactured by NGK, product name: QU-95469-S01) and placed in a pigeon channel rib mold (FIG. 1) set at 130 ° C. Then, using a 100 t press (manufactured by Yamamoto Iron Works, press molding machine PPM1-100), pressing was performed at 90 t for 3 minutes. The state of filling into the ribs was confirmed visually, and recorded as ◯ if the filling rate was 98% or more, Δ if it was 85% or more and less than 98%, and x if it was less than 85%. The results are shown in Tables 1-4.

(実施例1)
一方向に原料の炭素繊維を平面状に引き揃えて目付が72g/mとなる繊維シートとし、繊維シートの両面から、原料の酸変性ポリプロピレン樹脂からなる目付が36g/mのフィルムを挟み、カレンダロールを複数回通して加熱と加圧により、樹脂を繊維シートに含浸させ、繊維体積含有率Vf33vol%、厚み0.12mmのプリプレグ基材を作製した。
Example 1
A fiber sheet with a basis weight of 72 g / m 2 is formed by aligning raw carbon fibers in one direction in a flat shape, and a film with a basis weight of 36 g / m 2 made of the raw acid-modified polypropylene resin is sandwiched from both sides of the fiber sheet. The resin sheet was impregnated into the fiber sheet by heating and pressurizing a plurality of calender rolls to prepare a prepreg base material having a fiber volume content Vf of 33 vol% and a thickness of 0.12 mm.

このプリプレグ基材をカッティングプロッター(レザック社製、製品名:L−2500)を用いて、繊維となす角度θの絶対値が45゜、強化繊維の繊維長Lが25mm、切込み長さlが42mmになるように切込みを入れ、212mm角に切り出して、切込を有するプリプレグ基材を得た。   Using a cutting plotter (product name: L-2500, manufactured by Rezac Co., Ltd.), this prepreg base material has an angle θ of 45 °, the fiber length L of the reinforcing fiber is 25 mm, and the cut length l is 42 mm. A cut was made so that the prepreg substrate was cut into 212 mm squares.

この切込を有するプリプレグ基材を積層構成が繰り返し回数n=4の[0/45/90/−45]nsであり、切込みの方向が[−45/0/45/90]nsとなる様に積層し、日本エマソン(株)社製超音波溶着機2000LPtを用いて四隅をスポット溶着させて、切込入りプリプレグ積層基材を得た。   The prepreg base material having this cut has a laminated structure of [0/45/90 / −45] ns with a repetition count n = 4, and the cut direction is [−45/0/45/90] ns. The four corners were spot welded using an ultrasonic welding machine 2000LPt manufactured by Nippon Emerson Co., Ltd. to obtain a prepreg laminated base material with cuts.

こうして得られた切込入りプリプレグ積層基材を300mm角で深さ1.5mmの印籠金型内に配置して、200℃まで加熱した後、多段プレス機(神藤金属工業所製圧縮成形機、製品名:SFA−50HH0)で220℃の盤面で0.55MPaの圧力で7分間加熱・加圧後、同一の圧力で室温まで冷却し、投影面積が切込入りプリプレグ積層基材の面積の2倍となる繊維強化プラスチックを得た。得られた繊維強化プラスチックの物性を評価した。   The thus obtained notched prepreg laminated base material was placed in a 300 mm square and 1.5 mm deep stamping mold, heated to 200 ° C., and then subjected to a multistage press (compression molding machine manufactured by Shinto Metal Industry, Product name: SFA-50HH0), heated and pressurized at a pressure of 0.55 MPa for 7 minutes on a 220 ° C. surface, cooled to room temperature at the same pressure, and the projected area was 2 of the area of the prepreg laminated substrate with slits. A doubled fiber reinforced plastic was obtained. The physical properties of the obtained fiber reinforced plastic were evaluated.

(実施例2、3、比較例1、2)
切込み角度θを表1記載の通りに変更した以外は、実施例1と同様に行った。結果を表1に示す。
(Examples 2 and 3, Comparative Examples 1 and 2)
The same operation as in Example 1 was performed except that the cutting angle θ was changed as shown in Table 1. The results are shown in Table 1.

(実施例4、5、6、7、比較例3、4)
切込を有するプリプレグ基材の切り出しサイズおよび積層構成の繰り返し回数nを変更して、切込入りプリプレグ積層基材の面積に対する繊維強化プラスチックの投影面積の倍数を表2記載の通りに変更し以外は、実施例2と同様に行った。結果を表2に示す。なお、比較例4については、反りと流動性の評価のみ行った。
(Examples 4, 5, 6, 7 and Comparative Examples 3 and 4)
Other than changing the cut size of the prepreg base material having a cut and the number of repetitions n of the laminated structure and changing the multiple of the projected area of the fiber reinforced plastic to the area of the cut prepreg laminated base material as shown in Table Was carried out in the same manner as in Example 2. The results are shown in Table 2. In Comparative Example 4, only warpage and fluidity were evaluated.

(実施例8)
積層構成を表3記載の通り変更した以外は、実施例6と同様に行った。結果を表3に示す。なお、引張強度の評価は行わなかった。
(Example 8)
The same procedure as in Example 6 was performed except that the laminated structure was changed as shown in Table 3. The results are shown in Table 3. The tensile strength was not evaluated.

(比較例5)
切込を有するプリプレグ基材の切り出しサイズおよび積層構成の繰り返し回数nを変更して、切込入りプリプレグ積層基材の面積に対する繊維強化プラスチックの投影面積の倍数を表2記載の通りに変更し以外は、実施例8と同様に行った。結果を表3に示す。なお、引張強度の評価は行わなかった。
(Comparative Example 5)
Other than changing the cut size of the prepreg base material having a cut and the number of repetitions n of the laminated structure and changing the multiple of the projected area of the fiber reinforced plastic to the area of the prepreg laminated base material with the cut as shown in Table 2. Was carried out in the same manner as in Example 8. The results are shown in Table 3. The tensile strength was not evaluated.

(実施例9)
炭素繊維の目付が108g/mとし、酸変性ポリプロピレン樹脂フィルムの目付を27g/mとして、繊維体積含有率Vf50vol%のプリプレグ基材を用いた以外は、実施例2と同様に行った。結果を表4に示す。
Example 9
The same procedure as in Example 2 was performed except that the basis weight of the carbon fiber was 108 g / m 2 , the basis weight of the acid-modified polypropylene resin film was 27 g / m 2 , and a prepreg base material having a fiber volume content Vf of 50 vol% was used. The results are shown in Table 4.




1:天面
2:リブ部
1: Top surface 2: Rib

Claims (4)

一方向に配向した強化繊維と熱可塑性のマトリックス樹脂とから構成されるプリプレグ基材が2枚以上積層された繊維強化プラスチックの製造法であって、前記プリプレグ基材は、表面から裏面に貫通した切込を有し、各切込は各強化繊維と1回のみ交差するように設けられ、前記切込の開始点と終点を結ぶ線分と前記強化繊維の繊維方向との交差する角度が30°以上、90°以下であり、下記(1)および(2)の工程を有する繊維強化熱プラスチックの製造方法。
(1)前記切込を有するプリプレグ基材を2枚以上積層し、切込入りプリプレグ積層基材とする工程
(2)前記切込入りプリプレグ積層基材をマトリックス樹脂の融点以上に加熱する工程
A method for producing a fiber reinforced plastic in which two or more prepreg base materials composed of unidirectionally oriented reinforcing fibers and a thermoplastic matrix resin are laminated, the prepreg base material penetrating from the front surface to the back surface. Each notch is provided so as to intersect with each reinforcing fiber only once, and an angle between the line segment connecting the start point and the end point of the notch and the fiber direction of the reinforcing fiber is 30. The manufacturing method of the fiber reinforced thermoplastic which is (degree) and 90 degrees or less and has the process of following (1) and (2).
(1) A step of laminating two or more prepreg base materials having the incision to form a prepreg laminated base material with notches (2) A step of heating the incised prepreg laminated base material to a melting point or higher of the matrix resin
(2)の工程の後に、下記(3)の工程を有する請求項1に記載の繊維強化プラスチックの製造方法。
(3)加熱した前記切込入りプリプレグ積層基材を、プレス機にて加圧して金型内で押し広げ、投影面積を切込入りプリプレグ積層基材の面積の1.5倍以上から10倍以下とする工程
The manufacturing method of the fiber reinforced plastics of Claim 1 which has the process of following (3) after the process of (2).
(3) The heated notched prepreg laminated base material is pressed with a press and spread in a mold, and the projected area is 1.5 times or more to 10 times the area of the notched prepreg laminated base material. The following process
前記切込を有するプリプレグ基材の繊維含有体積率が20vol%以上から60vol%以下である請求項1または2に記載の繊維強化プラスチックの製造方法。   The method for producing a fiber-reinforced plastic according to claim 1 or 2, wherein a fiber-containing volume ratio of the prepreg base material having the cut is 20 vol% or more and 60 vol% or less. 前記切込入りプリプレグ積層基材の積層構成が擬似等方積層である請求項1〜3のいずれかに記載の繊維強化プラスチックの製造方法。   The method for producing a fiber-reinforced plastic according to any one of claims 1 to 3, wherein the laminated structure of the prepreg laminated substrate with cuts is pseudo isotropic lamination.
JP2014223953A 2014-11-04 2014-11-04 Method for producing fiber-reinforced plastic Pending JP2016087907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014223953A JP2016087907A (en) 2014-11-04 2014-11-04 Method for producing fiber-reinforced plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014223953A JP2016087907A (en) 2014-11-04 2014-11-04 Method for producing fiber-reinforced plastic

Publications (1)

Publication Number Publication Date
JP2016087907A true JP2016087907A (en) 2016-05-23

Family

ID=56016910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014223953A Pending JP2016087907A (en) 2014-11-04 2014-11-04 Method for producing fiber-reinforced plastic

Country Status (1)

Country Link
JP (1) JP2016087907A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7145472B1 (en) 2022-03-08 2022-10-03 株式会社河村機械工業所 Method for manufacturing molded article using fiber-reinforced thermoplastic resin composite

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63247012A (en) * 1987-04-02 1988-10-13 Mitsui Toatsu Chem Inc Preparation of fiber reinforced thermoplastic
WO2014142061A1 (en) * 2013-03-11 2014-09-18 三菱レイヨン株式会社 Layered substrate and method for manufacturing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63247012A (en) * 1987-04-02 1988-10-13 Mitsui Toatsu Chem Inc Preparation of fiber reinforced thermoplastic
WO2014142061A1 (en) * 2013-03-11 2014-09-18 三菱レイヨン株式会社 Layered substrate and method for manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7145472B1 (en) 2022-03-08 2022-10-03 株式会社河村機械工業所 Method for manufacturing molded article using fiber-reinforced thermoplastic resin composite
JP2023130580A (en) * 2022-03-08 2023-09-21 株式会社河村機械工業所 Method for manufacturing molded products using fiber-reinforced thermoplastic resin composite material

Similar Documents

Publication Publication Date Title
JP4789940B2 (en) Isotropic fiber reinforced thermoplastic resin sheet, method for producing the same and molded plate
US10604633B2 (en) Thermoplastic prepreg and laminate
US8354156B2 (en) Prepreg base material, layered base material, fiber-reinforced plastic, process for producing prepreg base material, and process for producing fiber-reinforced plastic
JP5975171B2 (en) Fiber reinforced plastic and method for producing the same
US20100028616A1 (en) Fiber-reinforced plastic and process for production thereof
JP6988812B2 (en) A method for manufacturing a fiber-reinforced plastic using a prepreg laminate and a prepreg laminate.
JP5353099B2 (en) Manufacturing method of fiber reinforced plastic
JP6883527B2 (en) Manufacturing method of fiber reinforced resin molded product
JP5900663B2 (en) Fiber reinforced resin laminate
JPWO2013031860A1 (en) Molded body having standing surface and method for producing the same
JP2014198838A (en) Method for producing fiber-reinforced thermoplastic resin molded plate
JP2010018724A (en) Prepreg layered substrate and fiber-reinforced plastic
JP7259229B2 (en) chopped fiber bundle mat
JP2016210080A (en) Molding and method for producing the same
JP6435696B2 (en) Method for producing laminated substrate
JP2014104641A (en) Laminate substrate and fiber-reinforced composite material
JP2007262360A (en) Fiber-reinforced thermoplastic resin sheet and method for producing the same
JP2014189722A (en) Laminated base material of fiber-reinforced plastic and method for producing the same
JP2007146151A (en) Prepreg substrate material, laminated substrate material and fiber-reinforced plastic
JP6786826B2 (en) Fiber reinforced composite and its manufacturing method
JP2008260793A (en) Laminated substrate and fiber-reinforced plastic
JP2016179647A (en) Method for producing fiber-reinforced plastic
JP2016087907A (en) Method for producing fiber-reinforced plastic
JP5598931B2 (en) Fiber reinforced resin substrate, method for producing resin molded body, and resin processing machine for implementing the method
JP2014104624A (en) Method for producing fiber-reinforced thermoplastic resin random sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180516

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181122