JP2007146151A - Prepreg substrate material, laminated substrate material and fiber-reinforced plastic - Google Patents

Prepreg substrate material, laminated substrate material and fiber-reinforced plastic Download PDF

Info

Publication number
JP2007146151A
JP2007146151A JP2006295396A JP2006295396A JP2007146151A JP 2007146151 A JP2007146151 A JP 2007146151A JP 2006295396 A JP2006295396 A JP 2006295396A JP 2006295396 A JP2006295396 A JP 2006295396A JP 2007146151 A JP2007146151 A JP 2007146151A
Authority
JP
Japan
Prior art keywords
fiber
base material
prepreg base
prepreg
cuts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006295396A
Other languages
Japanese (ja)
Inventor
Masahiro Yamauchi
雅浩 山内
Ichiro Takeda
一朗 武田
Akihiko Kitano
彰彦 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2006295396A priority Critical patent/JP2007146151A/en
Publication of JP2007146151A publication Critical patent/JP2007146151A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/20Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres
    • B29C70/205Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres the structure being shaped to form a three-dimensional configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/0036Slitting

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a prepreg substrate material having good flowability and following property to a complex form, and exhibiting an excellent dynamic property, a low unevenness of the same and an excellent dimensional stability on making it as a fiber-reinforced plastic, and a laminated substrate material of the prepreg substrate material. <P>SOLUTION: This prepreg substrate material constituted with carbon fibers drawn/arranged in one direction and a thermosetting resin, and closely bonded with a tape-formed supporting body is characterized in that a multiple number of rows consisting of notches having 2-50 mm length W are installed in the crossing direction to the fibers over the whole surface of the prepreg substrate material, the interval of the row and the first row overlapping on moving the row in parallel in the longitudinal direction of the fiber is 10 to 100 mm, each of the adjacent rows are shifted in the direction crossing with the fibers at right angle and also the notches of the adjacent rows are cutting-in with each other. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、良好な流動性、成形追従性を有し、繊維強化プラスチックとした場合、優れた力学物性、その低バラツキ性、優れた寸法安定性を発現するプリプレグ基材、ならびに該プリプレグ基材の積層基材に関する。さらに詳しくは、例えば自動車部材、スポーツ用具等に好適に用いられる繊維強化プラスチックの中間基材であるプリプレグ基材、ならびに該プリプレグ基材の積層基材に関する。   The present invention provides a prepreg base material that has good fluidity and molding followability, and exhibits excellent mechanical properties, its low variation, and excellent dimensional stability when used as a fiber-reinforced plastic, and the prepreg base material The present invention relates to a laminated substrate. More specifically, for example, the present invention relates to a prepreg base material that is an intermediate base material of fiber reinforced plastic that is suitably used for automobile members, sports equipment, and the like, and a laminated base material of the prepreg base material.

強化繊維とマトリックス樹脂からなる繊維強化プラスチックは、比強度、比弾性率が高く、力学特性に優れること、耐候性、耐薬品性などの高機能特性を有することなどから産業用途においても注目され、その需要は年々高まりつつある。   Fiber reinforced plastic consisting of reinforced fiber and matrix resin is attracting attention in industrial applications because it has high specific properties, high specific modulus, excellent mechanical properties, weather resistance, chemical resistance, etc. The demand is increasing year by year.

高機能特性を有する繊維強化プラスチックの成形方法としては、プリプレグと称される連続した強化繊維にマトリックス樹脂を含浸せしめた半硬化状態の中間基材を積層し、高温高圧釜で加熱加圧することによりマトリックス樹脂を硬化させ繊維強化プラスチックを成形するオートクレーブ成形が最も一般的に行われている。また、近年では生産効率の向上を目的として、あらかじめ部材形状に賦形した連続繊維基材にマトリックス樹脂を含浸および硬化させるRTM(レジントランスファーモールディング)成形等も行われている。これらの成形法により得られた繊維強化プラスチックは、連続繊維である所以優れた力学物性を有する。また、連続繊維は規則的な配列であるため、基材の配置により必要とする力学物性に設計することが可能であり、力学物性のバラツキも小さい。しかしながら、一方で連続繊維である所以3次元形状等の複雑な形状を形成することは難しく、主として平面形状に近い部材に限られる。   As a molding method of fiber reinforced plastic having high functional properties, a semi-cured intermediate base material impregnated with matrix resin is laminated on continuous reinforcing fiber called prepreg, and heated and pressurized in a high temperature and high pressure kettle. Autoclave molding in which a matrix resin is cured and a fiber reinforced plastic is molded is most commonly performed. In recent years, for the purpose of improving production efficiency, RTM (resin transfer molding) molding in which a continuous fiber base material previously shaped into a member shape is impregnated with a matrix resin and cured has been performed. The fiber reinforced plastics obtained by these molding methods have excellent mechanical properties because they are continuous fibers. Further, since the continuous fibers are regularly arranged, it is possible to design the mechanical properties required by the arrangement of the base material, and the variation in the mechanical properties is small. However, on the other hand, it is difficult to form a complicated shape such as a three-dimensional shape because it is a continuous fiber, and it is mainly limited to members close to a planar shape.

3次元形状等の複雑な形状に適した成形方法として、SMC(シートモールディングコンパウンド)成形等がある。SMC成形は、通常25mm程度に切断したチョップドストランドに熱硬化性樹脂であるマトリックス樹脂を含浸せしめ半硬化状態としたSMCシートを、加熱型プレス機を用いて加熱加圧することにより成形を行う。多くの場合、加圧前にSMCシートを成形体の形状より小さく切断して成形型上に配置し、加圧により成形体の形状に引き伸ばして(流動させて)成形を行う。そのため、その流動により3次元形状等の複雑な形状にも追従可能となる。しかしながら、SMCはそのシート化工程において、チョップドストランドの分布ムラ、配向ムラが必然的に生じてしまうため、力学物性が低下し、あるいはその値のバラツキが大きくなってしまう。さらには、そのチョップドストランドの分布ムラ、配向ムラにより、特に薄物の部材ではソリ、ヒケ等が発生しやすくなり、構造材としては不適な場合がある。   As a molding method suitable for a complicated shape such as a three-dimensional shape, there is SMC (sheet molding compound) molding. SMC molding is performed by heating and pressurizing a semi-cured SMC sheet obtained by impregnating a chopped strand cut to about 25 mm with a matrix resin, which is a thermosetting resin, using a heating press. In many cases, before pressing, the SMC sheet is cut smaller than the shape of the molded body, placed on a mold, and stretched (flowed) into the shape of the molded body by pressing to perform molding. Therefore, it is possible to follow a complicated shape such as a three-dimensional shape by the flow. However, since SMC inevitably causes distribution unevenness and orientation unevenness of chopped strands in the sheeting process, the mechanical properties deteriorate or the variation of the values increases. Furthermore, due to uneven distribution and alignment unevenness of the chopped strands, warpage, sink marks and the like are likely to occur particularly in a thin member, which may be unsuitable as a structural material.

上述のような材料の欠点を埋めるべく、連続繊維と熱可塑性樹脂からなるプリプレグに切り込みを入れることにより、流動性可能で力学物性のバラツキも小さくなるとされる基材が開示されている(例えば特許文献1)。しかしながら、特許文献1では熱可塑性樹脂をマトリックス樹脂として用いているため、タック性(粘着性)がないという理由により、積層時に基材同士が滑り積層構成がずれるという問題や、ドレープ性(変形性)を有しないという理由により、凹凸部を有する部材においては賦形が困難であるという問題を有している。   In order to fill in the drawbacks of the above-described materials, a base material is disclosed that can be made fluid and small in variation in mechanical properties by cutting into a prepreg composed of continuous fibers and a thermoplastic resin (for example, patents). Reference 1). However, in Patent Document 1, since a thermoplastic resin is used as a matrix resin, there is a problem that the base material is slipped and laminated structure is not suitable for drape (deformability) due to lack of tackiness (adhesiveness). ) Has a problem that it is difficult to shape a member having an uneven portion.

さらに、特許文献1記載の方法では一部に切り込みにより切断されない連続繊維が存在する可能性があり、その場合流動性は著しく阻害され、期待する効果を得ることはできない。また、仮に全ての繊維が切り込みにより切断されたとしても、熱可塑性樹脂はタック性がないため横方向への繊維同士の繋がりを保持できず、離型紙等のテープ状支持体による形態保持もできないため、賦形時に繊維が脱落してしまい設計どおりの成形が不可能となる。
特開昭63−247012号公報
Furthermore, in the method described in Patent Document 1, there is a possibility that some continuous fibers that are not cut by cutting are present, in which case the fluidity is remarkably inhibited, and the expected effect cannot be obtained. Moreover, even if all the fibers are cut by cutting, the thermoplastic resin is not tacky, so the fibers cannot be connected to each other in the horizontal direction, and the shape cannot be maintained by a tape-like support such as a release paper. For this reason, the fibers fall off during shaping, making it impossible to mold as designed.
Japanese Unexamined Patent Publication No. 63-247010

本発明は、かかる従来技術の背景に鑑み、良好な流動性、複雑形状追従性を有し、繊維強化プラスチックとした場合、優れた力学物性、その低バラツキ性、優れた寸法安定性を発現するプリプレグ基材、ならびに該プリプレグ基材の積層基材を提供する。   In view of the background of such prior art, the present invention has excellent fluidity, complicated shape followability, and exhibits excellent mechanical properties, low variation, and excellent dimensional stability when used as a fiber reinforced plastic. A prepreg base material and a laminated base material of the prepreg base material are provided.

本発明は、かかる課題を解決するために、次のような手段を採用するものである。すなわち、
(1)一方向に引き揃えられた炭素繊維と熱硬化性樹脂から構成され、テープ状支持体に密着されたプリプレグ基材であって、該プリプレグ基材の全面に繊維を横切る方向への断続的な2〜50mmの長さWの切り込みからなる列が複数列設けられており、該列と該列を繊維長手方向に平行移動した際に最初に重なる列との間隔Lが10〜100mmであり、各隣り合う該列は繊維直交方向にずれており、かつ、隣り合う該列の切り込みが互いに切り込んでいることを特徴とするプリプレグ基材。
The present invention employs the following means in order to solve such problems. That is,
(1) A prepreg base material composed of carbon fibers and a thermosetting resin aligned in one direction and in close contact with a tape-like support, and intermittent in the direction across the fiber across the entire surface of the prepreg base material A plurality of rows each having a notch with a length W of 2 to 50 mm are provided, and an interval L between the row and the first overlapping row when the row is translated in the fiber longitudinal direction is 10 to 100 mm. A prepreg base material, wherein each adjacent row is shifted in a fiber orthogonal direction, and the cuts in the adjacent row are cut into each other.

(2)隣り合う前記列の切り込みが互いに切り込んでいる幅が0.1mm以上、かつ、隣り合う切り込みのうち短い方の0.1倍以下である前記(1)に記載のプリプレグ基材。   (2) The prepreg base material according to (1), wherein the width of the adjacent cuts in the row is 0.1 mm or more and 0.1 times or less of the shorter one of the adjacent cuts.

(3)前記切り込みの形状、寸法および方向が同一である前記(1)または(2)記載のプリプレグ基材。   (3) The prepreg base material according to (1) or (2), wherein the shape, size, and direction of the cut are the same.

(4)前記切り込みが、繊維を横切る方向に沿って等間隔で連続して分布してなる前記(1)〜(3)のいずれかに記載のプリプレグ基材。   (4) The prepreg base material according to any one of (1) to (3), wherein the cuts are continuously distributed at equal intervals along a direction across the fiber.

(5)前記切り込みの方向が、全て繊維直交方向である前記(1)〜(4)のいずれかに記載のプリプレグ基材。   (5) The prepreg base material according to any one of (1) to (4), wherein all the cutting directions are orthogonal to the fiber.

(6)任意の1つの切り込みにより切断される繊維本数が5000〜50000本である前記(1)〜(5)のいずれかに記載のプリプレグ基材。   (6) The prepreg base material according to any one of (1) to (5), wherein the number of fibers cut by any one incision is 5000 to 50000.

(7)前記熱硬化性樹脂のDSCに拠る発熱ピーク温度をTpとしたとき、前記熱硬化性樹脂が10分以内で硬化し得る温度Tが(Tp−60)〜(Tp+20)の範囲内にある前記(1)〜(6)のいずれかに記載のプリプレグ基材。   (7) When the exothermic peak temperature due to DSC of the thermosetting resin is Tp, the temperature T at which the thermosetting resin can be cured within 10 minutes is within the range of (Tp-60) to (Tp + 20). The prepreg base material according to any one of (1) to (6).

(8)前記熱硬化性樹脂が硬化剤としてアミン系硬化剤、硬化促進剤として1分子中にウレア結合を2個以上有する化合物を含有するエポキシ樹脂である前記(1)〜(7)のいずれかに記載のプリプレグ基材。   (8) Any of the above (1) to (7), wherein the thermosetting resin is an epoxy resin containing an amine curing agent as a curing agent and a compound having two or more urea bonds in one molecule as a curing accelerator. The prepreg base material according to any one of the above.

(9)前記硬化促進剤が2,4−トルエンビス(ジメチルウレア)および/または4,4−メチレンビス(フェニルジメチルウレア)である前記(1)〜(8)のいずれかに記載のプリプレグ基材。   (9) The prepreg base material according to any one of (1) to (8), wherein the curing accelerator is 2,4-toluenebis (dimethylurea) and / or 4,4-methylenebis (phenyldimethylurea). .

(10)前記(1)〜(9)のいずれかに記載のプリプレグ基材を積層し、一体化させた積層基材。   (10) A laminated substrate obtained by laminating and integrating the prepreg substrates according to any one of (1) to (9).

(11)繊維方向が実質的に同一方向である隣接する層において、両層のプリプレグ基材の前記長さWの断続的な切り込みからなる列が等間隔であり、一方の層のプリプレグ基材の前記切り込みからなる列が、他方の層のプリプレグ基材の前記切り込みからなる列に対し繊維長手方向にずれて配置されている前記(10)に記載の積層基材。   (11) In adjacent layers in which the fiber directions are substantially the same, rows of intermittent cuts of the length W of both layers of the prepreg base material are equally spaced, and the prepreg base material of one layer The laminated base material according to (10), wherein the row of the cuts is arranged so as to be shifted in the fiber longitudinal direction with respect to the row of the cuts of the prepreg base material of the other layer.

(12)前記各層のプリプレグ基材の切り込みからなる列が、前記間隔Lの0.1〜0.5倍の範囲内で繊維長手方向にずれて配置されている前記(11)に記載の積層基材。   (12) The lamination according to (11), wherein the rows formed by the cuts of the prepreg base material of each layer are arranged shifted in the fiber longitudinal direction within a range of 0.1 to 0.5 times the interval L. Base material.

(13)繊維方向が実質的に同一方向である隣接する層において、両層のプリプレグ基材前記切り込みが繊維を横切る方向に沿って等間隔で分布した列となっており、一方の層のプリプレグ基材の前記切り込みからなる列が、他方の層のプリプレグ基材の前記切り込みからなる列に対し繊維直交方向にずれて配置されている前記(10)または(11)記載の積層基材。   (13) In adjacent layers in which the fiber directions are substantially the same direction, the prepreg base material of both layers is a row in which the cuts are distributed at equal intervals along the direction across the fiber, and the prepreg of one layer The laminated base material according to (10) or (11), wherein the row of the cuts of the base material is arranged in a fiber orthogonal direction with respect to the row of the cuts of the prepreg base material of the other layer.

(14)前記各層のプリプレグ基材の切り込みからなる列が、前記長さWの0.1〜0.5倍の範囲内で繊維直交方向にずれて配置されている前記(13)に記載の積層基材。   (14) The row formed by cutting the prepreg base material of each layer is arranged so as to be shifted in the fiber orthogonal direction within a range of 0.1 to 0.5 times the length W. Laminated substrate.

(15)前記(10)〜(14)のいずれかに記載の積層基材を硬化せしめた繊維強化プラスチック。   (15) A fiber reinforced plastic obtained by curing the laminated substrate according to any one of (10) to (14).

(16)面状のスキン部と、前記スキン部の少なくとも片面に突起部とを有し、前記突起部の積層構造を構成する層の少なくとも1つが、前記突起部の形状に沿った形状であることを特徴とする前記(15)に記載の繊維強化プラスチック。   (16) It has a planar skin portion and a protrusion on at least one surface of the skin portion, and at least one of the layers constituting the stacked structure of the protrusion has a shape along the shape of the protrusion. The fiber-reinforced plastic as described in (15) above.

(17)前記突起部の形状が、板状、棒状、半球状、多角柱状、円柱状、多角錐状、円錐状およびそれらの組み合わせの中から選ばれる少なくとも1つである前記(15)または(16)に記載の繊維強化プラスチック。   (17) The shape of the protrusion is at least one selected from a plate shape, a rod shape, a hemispherical shape, a polygonal column shape, a columnar shape, a polygonal pyramid shape, a conical shape, and combinations thereof (15) or ( The fiber-reinforced plastic according to 16).

(18)前記突起部の高さが、スキン部の厚みの0.5〜50倍である前記(15)〜(17)のいずれかに記載の繊維強化プラスチック。   (18) The fiber-reinforced plastic according to any one of (15) to (17), wherein the height of the protruding portion is 0.5 to 50 times the thickness of the skin portion.

本発明によれば、良好な流動性、複雑形状追従性を有し、繊維強化プラスチックとした場合、優れた力学物性、その低バラツキ性、優れた寸法安定性を発現するプリプレグ基材、ならびに該プリプレグ基材の積層基材を得ることができる。   According to the present invention, when a fiber reinforced plastic has good fluidity and complex shape followability, it has excellent mechanical properties, low variability, and excellent dimensional stability. A laminated base material of a prepreg base material can be obtained.

本発明は、前記課題、つまり良好な流動性、複雑形状追従性を有し、繊維強化プラスチックとした場合、優れた力学物性、その低バラツキ性、優れた寸法安定性を発現するプリプレグ基材、ならびに該プリプレグ基材の積層基材について、鋭意検討し、プリプレグ基材として、一方向に引き揃えられた炭素繊維と熱硬化性樹脂から構成されるプリプレグ基材という特定基材に特定な切り込みパターンを挿入し、該プリプレグ基材を積層し、加圧成形したところ、かかる課題を一挙に解決することを究明したものである。   The present invention has the above problems, that is, a prepreg base material that has excellent fluidity and complex shape followability, and exhibits excellent mechanical properties, its low variation, and excellent dimensional stability when used as a fiber reinforced plastic, In addition, the laminated base material of the prepreg base material has been studied earnestly, and the prepreg base material has a notch pattern specific to a specific base material called a prepreg base material composed of carbon fibers and a thermosetting resin aligned in one direction. Was inserted, and the prepreg base material was laminated and pressure-molded, and it was found that this problem could be solved all at once.

本発明のプリプレグ基材は、強化繊維として一方向に引き揃えられた炭素繊維、マトリックス樹脂として熱硬化性樹脂から構成され、テープ状支持体に密着されたプリプレグ基材である。   The prepreg base material of the present invention is a prepreg base material composed of carbon fibers aligned in one direction as reinforcing fibers and a thermosetting resin as a matrix resin, and is in close contact with a tape-like support.

炭素繊維が一方向に引き揃えられていることにより、繊維方向の配向制御により任意の力学物性を有する成形体の設計が可能となる。なお、本明細書では、特に断らない限り、繊維あるいは繊維を含む用語(例えば“繊維方向”等)において、繊維とは強化繊維を表すものとする。   By arranging the carbon fibers in one direction, it becomes possible to design a molded body having arbitrary mechanical properties by controlling the orientation in the fiber direction. In the present specification, unless otherwise specified, in the term including fiber or fiber (for example, “fiber direction” or the like), the fiber represents a reinforcing fiber.

マトリックス樹脂が熱硬化性樹脂であることにより、本発明のプリプレグ基材は室温においてタック性を有しているため、該基材を積層した際に上下の該基材と粘着により一体化され、意図したとおりの積層構成を保ったままで成形することができる。一方、室温においてタック性のない熱可塑性樹脂プリプレグ基材では、プリプレグ基材を積層した際に該基材同士が滑るため、成形時に積層構成がずれてしまい、結果として繊維の配向ムラの大きい繊維強化プラスチックとなる。特に、凹凸部を有する型で成形する際は、その差異が顕著に現れる。   Since the matrix resin is a thermosetting resin, the prepreg base material of the present invention has tackiness at room temperature, so when the base material is laminated, it is integrated with the upper and lower base materials by adhesion, It can be molded while maintaining the intended laminated structure. On the other hand, in the case of a thermoplastic resin prepreg base material that does not have tack at room temperature, the base materials slip when the prepreg base materials are laminated. It becomes reinforced plastic. In particular, when molding with a mold having an uneven portion, the difference appears remarkably.

さらに、熱硬化性樹脂から構成される本発明のプリプレグ基材は、室温において優れたドレープ性を有するため、例えば、凹凸部を有する型を用いて成形する場合、予めその凹凸に沿わした予備賦形を容易に行うことが出来る。この予備賦形により成形性は向上し、流動の制御も容易になる。一方、熱可塑性樹脂から構成されるプリプレグ基材では、室温において予備賦形することは極めて困難である。   Furthermore, since the prepreg base material of the present invention composed of a thermosetting resin has excellent drapability at room temperature, for example, when molding using a mold having a concavo-convex part, pre-applying along the concavo-convex part in advance. The shape can be easily done. This pre-shaping improves moldability and facilitates flow control. On the other hand, with a prepreg base material composed of a thermoplastic resin, it is extremely difficult to pre-shape at room temperature.

また、本発明のプリプレグ基材はテープ状支持体に密着されていることにより、切り込みが挿入された基材は、全ての繊維が切り込みにより切断されてもその形態を保持することが可能となり、賦形時に繊維が脱落してバラバラになってしまうという問題はない。この密着は、マトリックス樹脂がタック性を有する熱硬化性樹脂であることによって初めて可能になることであり、タック性を持たない熱可塑性樹脂から構成されるプリプレグ基材では実現不可能である。ここで、テープ状支持体とは、クラフト紙などの紙類やポリエチレン・ポリプロピレンなどのポリマーフィルム類、アルミなどの金属箔類などが挙げられ、さらに樹脂との離型性を得るために、シリコーン系や“テフロン(登録商標)”系の離型剤や金属蒸着等を表面に付与しても構わない。   In addition, since the prepreg base material of the present invention is in close contact with the tape-like support, the base material into which the cut is inserted can maintain its form even if all the fibers are cut by the cut, There is no problem that the fibers fall off and fall apart during shaping. This adhesion is possible only when the matrix resin is a thermosetting resin having tackiness, and cannot be realized with a prepreg base material composed of a thermoplastic resin having no tackiness. Here, the tape-like support includes papers such as kraft paper, polymer films such as polyethylene / polypropylene, metal foils such as aluminum and the like, and in order to obtain releasability from the resin, silicone. A surface or “Teflon (registered trademark)” type release agent, metal vapor deposition, or the like may be applied to the surface.

さらに、本発明のプリプレグ基材は、該プリプレグ基材の全面に繊維を横切る方向への断続的な2〜50mmの長さWの切り込み4からなる列(7、8、9)が複数列設けられており、該列と該列を繊維長手方向に平行移動した際に最初に重なる列との間隔L(図中の6)が10〜100mmであり、各隣り合う該列は繊維直交方向にずれており、かつ、隣り合う該列の切り込みが互いに切り込んでいることが必須の要件である。該プリプレグ基材の全面に上記の条件を満たす切り込みが挿入されることにより、該プリプレグ基材は全ての繊維が連続繊維ではなく、少なくとも2種以上の異なる長さの短繊維により構成される。本発明でいう短繊維とは、長さが100mm以下のものとする。プリプレグ基材の全面に上記の条件を満たす切り込みが挿入されることにより、成形時に繊維は流動可能、特に繊維長手方向にも流動可能となり、複雑形状追従性にも優れる。該切り込みがない場合、すなわち連続繊維のみの場合、繊維長手方向には流動しないため、複雑形状を形成することは出来ない。   Furthermore, the prepreg base material of the present invention is provided with a plurality of rows (7, 8, 9) of rows of notches 4 having a length W of 2 to 50 mm intermittently extending across the fiber on the entire surface of the prepreg base material. The distance L (6 in the figure) between the row and the first overlapping row when the row is translated in the fiber longitudinal direction is 10 to 100 mm, and the adjacent rows are in the fiber orthogonal direction. It is an indispensable requirement that the notches in the adjacent rows are displaced from each other. By inserting cuts that satisfy the above-described conditions on the entire surface of the prepreg base material, the prepreg base material is not composed of continuous fibers but is composed of at least two types of short fibers having different lengths. The short fiber referred to in the present invention has a length of 100 mm or less. By inserting cuts that satisfy the above conditions on the entire surface of the prepreg base material, the fibers can flow during molding, in particular in the longitudinal direction of the fibers, and have excellent complex shape followability. When there is no notch, that is, when only continuous fibers are used, a complicated shape cannot be formed because they do not flow in the fiber longitudinal direction.

切り込みの長さについては、2mmより小さい場合は、ひとまとまりの繊維の集合体が小さくなるため、成形時の流動により繊維がうねりを生じやすく力学物性が低下し、50mmより大きい場合は、ひとまとまりの繊維の集合体が大きくなるため、繊維の流動性が悪くなり力学物性のバラツキも大きくなる。より好ましい切り込みの長さは5〜30mmである。   When the length of the cut is less than 2 mm, a group of fibers becomes smaller, so the fibers tend to swell due to the flow during molding, and the mechanical properties deteriorate. Since the aggregate of the fibers becomes large, the fluidity of the fibers deteriorates and the variation in mechanical properties also increases. A more preferable incision length is 5 to 30 mm.

一方、該列と該列を繊維長手方向に平行移動した際に最初に重なる列との間隔Lについては、10mmより小さい場合は、繊維の長さも短くなるため、繊維による補強効果が低下し、繊維強化プラスチックとしたときに十分な力学物性を得ることができず、100mmより大きい場合は、成形時の流動性が悪くなり複雑形状を形成するのは難しい。より好ましい該間隔Lは10〜50mmである。このように、成形性と物性の両特性を鑑みると、上記の範囲を満たす必要がある。ここで、該間隔Lは図1に示すように、所望の短繊維の長さに相当するため、以下、所望繊維長さと称することもある。   On the other hand, when the distance L between the row and the row that overlaps first when the row is translated in the fiber longitudinal direction is smaller than 10 mm, the length of the fiber is also shortened, so that the reinforcing effect by the fiber is reduced. When a fiber reinforced plastic is used, sufficient mechanical properties cannot be obtained, and when it is larger than 100 mm, fluidity at the time of molding deteriorates and it is difficult to form a complicated shape. The distance L is more preferably 10 to 50 mm. Thus, when both the properties of formability and physical properties are taken into consideration, it is necessary to satisfy the above range. Here, as shown in FIG. 1, the distance L corresponds to the length of a desired short fiber, and hence may be hereinafter referred to as a desired fiber length.

また、各隣り合う該列が繊維直交方向にずれていない場合は、切り込みにより切断されない繊維が存在し、繊維の流動性が著しく低下する。   In addition, when the adjacent rows are not displaced in the fiber orthogonal direction, there are fibers that are not cut by the cutting, and the fluidity of the fibers is significantly lowered.

さらに、本発明では、隣り合う該列の切り込みが互いに切り込むことによって、所望繊維長さと所望繊維長さより短い繊維により構成され、繊維の流動性は良好となる。一方、隣り合う該列の切り込みが互いに切り込んでいない場合、切り込みにより切断されず所望繊維長さより長い繊維が発生し、その繊維が流動性を著しく阻害する。これは、一方向に引き揃えられた連続繊維を強化繊維とするプリプレグにおいて、繊維はその繊維自体の特性上、およびプリプレグ化の工程上の理由により厳密には一方向に真直にはなっておらず、うねり・ヨレを伴っていることに起因する。そのため、隣り合う列の切り込みが互いに切り込むことにより、所望繊維長さより長い繊維が発生することを防ぐことが非常に重要なのである。   Furthermore, in this invention, when the notch | incision of this adjacent row | line | column cuts into each other, it is comprised by the fiber shorter than desired fiber length and desired fiber length, and the fluidity | liquidity of a fiber becomes favorable. On the other hand, when the adjacent row of cuts do not cut each other, fibers that are longer than the desired fiber length are generated without being cut by the cuts, and the fibers significantly impair the fluidity. This is because, in a prepreg having a continuous fiber aligned in one direction as a reinforcing fiber, the fiber is strictly straight in one direction due to the characteristics of the fiber itself and the reason for the prepreg process. This is due to undulation and twisting. For this reason, it is very important to prevent the generation of fibers longer than the desired fiber length by cutting adjacent rows into each other.

本発明のプリプレグ基材は、隣り合う列の切り込みが互いに切り込んでいる幅5が0.1以上、かつ、隣り合う切り込みのうち短い方の0.1倍以下であることが好ましい。0.1mmより小さい場合、切り込みにより切断されず所望繊維長さより長い繊維が発生する場合があり、その繊維が流動性を著しく阻害するため好ましくない。隣り合う切り込みのうち短い方の0.1倍より大きい場合、任意の1つの切り込みにより切断される繊維本数に対する互いに切り込んでいる繊維本数の割合、すなわち所望繊維長さより短い繊維の割合が多くなり、繊維強化プラスチックとした時の力学物性の低下が顕著に表れるため好ましくない。ここでいう、隣り合う切り込みのうち短い方とはプリプレグ基材の端部で切り込みが途切れているような場合は含めないものとし、このような場合には、端部にかからない一つ内側の切り込みを基準として判断するものとする。   In the prepreg base material of the present invention, it is preferable that the width 5 in which the cuts in the adjacent rows are cut from each other is 0.1 or more and 0.1 times or less of the shorter one of the adjacent cuts. If it is smaller than 0.1 mm, fibers that are longer than the desired fiber length may be generated without being cut by cutting, and this is not preferable because the fibers significantly impair the fluidity. When it is larger than 0.1 times of the shorter one of the adjacent cuts, the ratio of the number of fibers cut into each other relative to the number of fibers cut by any one cut, that is, the ratio of fibers shorter than the desired fiber length is increased. This is not preferable because the mechanical properties of the fiber-reinforced plastic are significantly reduced. The shorter one of the adjacent cuts here does not include the case where the cut is interrupted at the end of the prepreg base material. In such a case, the inner cut that does not cover the end is not included. Shall be judged on the basis of

本発明のプリプレグ基材は、該切り込みの形状、寸法および方向が同一であることが好ましい。切り込みの形状、寸法および方向が2種以上であっても本発明の効果は得られるが、全て同一であることにより、繊維の流動が均等となるため繊維の流動性の制御が容易になり、ソリの発生も抑制され、かつ繊維方向の配向制御により任意の力学物性を有する成形体の設計も容易になるため好ましい。   The prepreg base material of the present invention preferably has the same shape, size and direction of the cut. The effect of the present invention can be obtained even if the shape, size, and direction of the cut are two or more, but by making all the same, the flow of the fiber becomes uniform, so that the fluidity of the fiber can be easily controlled. The generation of warp is also suppressed, and the design of a molded product having arbitrary mechanical properties is facilitated by controlling the orientation in the fiber direction, which is preferable.

本発明のプリプレグ基材は、該切り込みが、繊維を横切る方向に沿って等間隔で連続して分布してなることが好ましい。等間隔の場合、上記の切り込みの形状、寸法および方向と同様に、繊維の流動が均等となるため繊維の流動性の制御が容易になり、ソリの発生も抑制され、かつ繊維方向の配向制御により任意の力学物性を有する成形体の設計も容易になるため好ましい。   In the prepreg base material of the present invention, it is preferable that the cuts are continuously distributed at equal intervals along the direction across the fiber. In the case of equal intervals, the flow of the fibers becomes uniform as in the shape, size and direction of the incision described above, so that the fluidity of the fibers can be easily controlled, the generation of warpage is suppressed, and the orientation control in the fiber direction is also performed. Therefore, it is preferable because it becomes easy to design a molded body having arbitrary mechanical properties.

本発明のプリプレグ基材は、前記切り込みからなる列のパターンが2〜5パターンであることが好ましい。前記切り込みからなる列のパターンが1つだけの場合、切り込みにより切断されない繊維が存在し、繊維の流動性が著しく低下する。一方、該切り込みからなる列のパターンが6以上ある場合、繊維の流動制御が困難になり、設計どおりの成形体の成形が困難となる。   In the prepreg base material of the present invention, it is preferable that the pattern of the rows formed of the cuts is 2 to 5 patterns. When there is only one pattern of rows formed of the cuts, there are fibers that are not cut by the cuts, and the fluidity of the fibers is significantly reduced. On the other hand, when there are 6 or more patterns of rows formed of the notches, it becomes difficult to control the flow of fibers, and it becomes difficult to form a molded body as designed.

本発明のプリプレグ基材は、該切り込みの方向が、全て繊維直交方向であることが好ましい。切り込みの方向が全て繊維直交方向であると、特定の本数の繊維を切断するのに要する切り込みの長さが最小となり、力学物性の低下を最小限に抑えることが可能となる。さらには、等方性に流動させるためには、切り込みの方向が全て繊維直交方向であることが好ましい。   As for the prepreg base material of this invention, it is preferable that the direction of this notch | incision is all fiber orthogonal directions. When all the cutting directions are orthogonal to the fibers, the length of the cutting required to cut a specific number of fibers is minimized, and the deterioration of mechanical properties can be minimized. Furthermore, in order to make it flow isotropic, it is preferable that all the cutting directions are fiber orthogonal directions.

本発明のプリプレグ基材は、任意の1つの切り込みにより切断される繊維本数が、5000〜50000本の範囲内であることが好ましい。上記の切り込みの長さと同様に、繊維の本数が5000本より少ない場合、成形時の流動により繊維がうねりを生じやすく、力学物性が低下することがある。繊維の本数が50000本より多い場合、繊維長手方向に隣り合う切り込みに囲まれたひとまとまりの繊維の集合体が大きくなるため、繊維の流動性が悪くなり、力学物性のバラツキも大きくなるので好ましくない。   In the prepreg base material of the present invention, the number of fibers cut by any one incision is preferably in the range of 5000 to 50000. When the number of fibers is less than 5000 as in the case of the above-mentioned notch length, the fibers are likely to swell due to the flow during molding, and the mechanical properties may be lowered. When the number of fibers is more than 50000, a group of fibers surrounded by notches adjacent to each other in the longitudinal direction of the fiber becomes large, so that the fluidity of the fiber is deteriorated and the variation in mechanical properties is increased. Absent.

本発明の積層基材は、前記プリプレグ基材を積層し、一体化させることにより得ることが好ましい。積層構成としては、使用用途に応じてそれぞれに適した積層構成とすれば良く特に制限はないが、なかでも、[+45/0/−45/90]、[0/±60]といった等方積層が、均等な物性とし、ソリの発生を抑制する場合には好ましい。さらに、一体化させることにより、成形時の取扱い性が向上し、さらに設計どおりの積層構成を保ったままで成形することができる。本発明のプリプレグ基材のマトリックス樹脂は熱硬化性樹脂であるため、タック性を有し、該基材同士は粘着により容易に一体化させることが可能となる。 The laminated substrate of the present invention is preferably obtained by laminating and integrating the prepreg substrates. The laminated structure is not particularly limited as long as it is a laminated structure suitable for each application, but [+ 45/0 / −45 / 90] S , [0 / ± 60] S , etc. This method is preferable when uniform physical properties are used and generation of warpage is suppressed. Furthermore, by integrating, the handleability at the time of shaping | molding improves, Furthermore, it can shape | mold, maintaining the laminated structure as designed. Since the matrix resin of the prepreg base material of the present invention is a thermosetting resin, it has tackiness, and the base materials can be easily integrated by adhesion.

本発明の積層基材は、繊維方向が実質的に同一方向である隣接する層において、両層のプリプレグ基材の前記長さWの断続的な切り込みからなる列が等間隔であり、一方の層の前記切り込みからなる列が、他方の層の前記切り込みからなる列に対し繊維長手方向にずれて配置されていることが好ましい。また、両層のプリプレグ基材同士において、前記切り込みからなる列が繊維を横切る方向に沿って等間隔で分布した列となっており、一方の層の前記切り込みからなる列が、他方の層の前記切り込みからなる列に対し繊維直交方向にずれて配置されていることが好ましい。   In the laminated base material of the present invention, in adjacent layers in which the fiber directions are substantially the same direction, rows of intermittent cuts of the length W of both layers of the prepreg base material are equally spaced, It is preferable that the row | line | column which consists of the said cut | notch of a layer is shifted | deviated to the fiber longitudinal direction with respect to the row | line | column which consists of the said notch of the other layer. Moreover, in the prepreg base materials of both layers, the row of the cuts is a row distributed at equal intervals along the direction across the fiber, and the row of the cuts of one layer is the row of the other layer It is preferable that they are arranged so as to be shifted in the direction perpendicular to the fibers with respect to the row of cuts.

ここで、繊維方向が実質的に同一方向である隣接する層とは、図2を用いて説明すると、(A)[0/90]2Sのように繊維方向が2方向の場合は、a層とc層、c層とf層、f層とh層、b層とd層、d層とe層、e層とg層の計6組がそれにあたり、(B)[0/±60]2Sのように繊維方向が3方向の場合は、a層とd層、d層とi層、i層とl層、b層とe層、e層とh層、h層とk層、c層とf層、f層とg層、g層とj層の計9組がそれにあたる。なお、図示はしないが[+45/0/−45/90]nSのような積層構成においても同様に定義できる。繊維方向が実質的に同一方向であるというように定義したのは、積層時の多少の角度のズレは許容するためであり、実質的に同一方向でであるとは、通常その角度のズレが、±10°以内であることを言う。 Here, the adjacent layers having substantially the same fiber direction are described with reference to FIG. 2. When the fiber direction is two directions as in (A) [0/90] 2S , layer a is used. And c layer, c layer and f layer, f layer and h layer, b layer and d layer, d layer and e layer, e layer and g layer, total 6 pairs, (B) [0 / ± 60] When the fiber direction is 3 directions like 2S , a layer and d layer, d layer and i layer, i layer and l layer, b layer and e layer, e layer and h layer, h layer and k layer, c A total of nine sets of layers, the f layer, the f layer and the g layer, and the g layer and the j layer correspond to it. Although not shown in the figure, the same definition can be applied to a stacked structure such as [+ 45/0 / −45 / 90] nS . The fiber direction is defined to be substantially the same direction in order to allow a slight angle deviation at the time of lamination, and the fact that the fiber direction is substantially the same usually means that the angle deviation is the same. , Within ± 10 °.

本発明のプリプレグ基材を積層して繊維強化プラスチックとした場合、切り込み箇所では繊維が切断されているため、その部分では応力伝達が極度に低下する。そこで、繊維方向が同一である隣接するプリプレグ基材同士の切り込み位置をずらすことにより、応力伝達が効率的に作用される。   When the prepreg base material of the present invention is laminated to obtain a fiber reinforced plastic, since the fiber is cut at the cut portion, the stress transmission is extremely reduced at that portion. Therefore, stress transmission is effectively performed by shifting the cutting positions of adjacent prepreg base materials having the same fiber direction.

切り込みをずらす長さとしては、切り込みの長さWおよび切り込みの間隔Lに対して、繊維長手方向に0.1L〜0.5Lの範囲内、あるいは繊維直交方向に0.1W〜0.5Wの範囲内であることが好ましい。ずらす長さは長い方が応力伝達が向上するため好ましく、最も効果的な形態は、繊維長手方向に前記間隔Lの0.5倍ずれた場合である。   The length for shifting the cut is within a range of 0.1 L to 0.5 L in the longitudinal direction of the fiber or 0.1 W to 0.5 W in the direction perpendicular to the fiber with respect to the cut length W and the cut interval L. It is preferable to be within the range. A longer shifting length is preferable because stress transmission is improved, and the most effective form is when the distance L is shifted 0.5 times in the fiber longitudinal direction.

本発明の繊維強化プラスチックは、前記積層基材を硬化せしめることにより得ることが好ましい。硬化せしめる方法、すなわち繊維強化プラスチックを成形する方法としては、プレス成形、オートクレーブ成形、シートワインディング成形等が挙げられる。なかでも、生産効率を考慮するとプレス成形が好ましい。   The fiber-reinforced plastic of the present invention is preferably obtained by curing the laminated base material. Examples of the curing method, that is, the method of molding the fiber reinforced plastic include press molding, autoclave molding, sheet winding molding and the like. Of these, press molding is preferable in consideration of production efficiency.

本発明の繊維強化プラスチックは、面状のスキン部と、前記スキン部の少なくとも片面に突起部とを有し、前記突起部の積層構造を構成する層の少なくとも1つが、前記突起部の形状に沿った形状であるのが好ましい。積層構造が突起部の形状に沿った形状であるとは、積層構造を構成する層の少なくとも1つが、突起部を構成する各面のそれぞれと対応する層を有していることを表す。なお、強化繊維がランダムに配列されたSMC(シートモールディングコンパウンド)やBMC(バルクモールディングコンパウンド)を数枚重ね合わせてプレス成形した場合、その側面では有限長の強化繊維がそれぞれ独立してランダムに配向されて積み重なっているため、繊維強化プラスチックの厚み方向に明確な層を形成しておらず、本発明でいう積層構造には含まれない。   The fiber-reinforced plastic of the present invention has a planar skin portion and a protrusion on at least one side of the skin portion, and at least one of the layers constituting the stacked structure of the protrusion has the shape of the protrusion. It is preferred that the shape be along. That the laminated structure has a shape along the shape of the protrusion means that at least one of the layers constituting the laminated structure has a layer corresponding to each of the surfaces constituting the protrusion. In addition, when several SMC (sheet molding compound) or BMC (bulk molding compound) in which reinforcing fibers are randomly arranged are stacked and press-molded, finite length reinforcing fibers are independently oriented randomly on the side. Therefore, a clear layer is not formed in the thickness direction of the fiber reinforced plastic and is not included in the laminated structure referred to in the present invention.

ここで、特に断らない限りスキン部とは、平面、1/100以下の曲率を有する一次曲面、二次曲面または球面等の面状の板状物を表すものとする。また、突起部とは、スキン部から突出したリブやボス等の部分を表すものとする。また、繊維あるいは繊維を含む用語(例えば“繊維方向”等)において、繊維とは強化繊維を表すものとする。   Here, unless otherwise specified, the skin portion represents a planar plate-like object such as a flat surface, a primary curved surface having a curvature of 1/100 or less, a secondary curved surface, or a spherical surface. Further, the protruding portion represents a portion such as a rib or a boss protruding from the skin portion. Further, in terms of fiber or a term including fiber (for example, “fiber direction”), the fiber represents a reinforcing fiber.

突起部を形成するための方法としては、プリプレグ基材を積層した積層基材を、少なくとも片側の型に突起部を形成する凹形状を有する両面型の中で加圧することにより形成される。上記の方法により突起部が形成されるメカニズムは明らかでないが、次のように考えられる。まず、両面型の中で加圧することにより有限長の強化繊維からなる積層基材は積層構造を保ったまま面内方向に流動しようとする。そして、面内方向への流動が飽和した時、片側の型に凹形状の空間部があると、積層基材は積層構造を保ったまま凹形状の空間部、すなわち面外方向にも流動し、突起部を形成するのである。なお、上記の過程で意図的に繊維を切断することはないので、中間基材も繊維強化プラスチックと同様に10〜100mmの有限長の強化繊維からなる。   As a method for forming the projecting portion, it is formed by pressing a laminated base material on which a prepreg base material is laminated in a double-sided die having a concave shape that forms a projecting portion on at least one mold. Although the mechanism by which the protrusions are formed by the above method is not clear, it is considered as follows. First, by pressing in a double-sided mold, the laminated substrate made of finite-length reinforcing fibers tends to flow in the in-plane direction while maintaining the laminated structure. And when the flow in the in-plane direction is saturated, if there is a concave space in the mold on one side, the laminated base material also flows in the concave space, that is, in the out-of-plane direction while maintaining the laminated structure. The protrusion is formed. In addition, since the fiber is not intentionally cut in the above process, the intermediate base material is made of a reinforced fiber having a finite length of 10 to 100 mm, like the fiber reinforced plastic.

本発明の繊維強化プラスチックは、突起部に強化繊維の配向を異にする少なくとも2層以上の積層構造を有することが好ましい。強化繊維の配向方向を異にする層が複数層あることにより、突起部は寸法安定性に優れるものとなる。強化繊維の配向方向が一方向のみの場合、突起部は線膨張係数の異方性によってソリなどを生じやすく、寸法精度が悪くなる場合がある。さらに、突起部の中でもリブにおいては、リブに対して2方向への力が作用した場合、あるいはねじれの力が作用した場合、強化繊維の配向方向が一方向のみでは力の作用方向によりリブとしての強度や剛性が不足してしまう可能性がある。そのため、強化繊維の配向方向を異にする少なくとも2層以上の積層構造を有するのが必要なのである。なかでも、[0/90]nSや[0/±60]nS、[+45/0/−45/90]nSといった等方積層で、かつ、対称積層であることが、繊維強化プラスチック自体のソリ低減等を考慮すると好ましい。 The fiber-reinforced plastic of the present invention preferably has a laminated structure of at least two layers in which the orientation of the reinforcing fibers is different in the protrusion. Since there are a plurality of layers in which the orientation directions of the reinforcing fibers are different, the protrusions have excellent dimensional stability. When the orientation direction of the reinforcing fiber is only one direction, the protrusion is likely to warp due to the anisotropy of the linear expansion coefficient, and the dimensional accuracy may deteriorate. Further, in the rib among the protrusions, when a force in two directions is applied to the rib, or when a twisting force is applied, if the orientation direction of the reinforcing fibers is only one direction, There is a possibility that the strength and rigidity of the material will be insufficient. Therefore, it is necessary to have a laminated structure of at least two layers in which the orientation directions of the reinforcing fibers are different. Among them, the isotropic lamination such as [0/90] nS , [0 / ± 60] nS , and [+ 45/0 / −45 / 90] nS , and the symmetrical lamination is that the fiber reinforced plastic itself has a sled. It is preferable in consideration of reduction or the like.

本発明の繊維強化プラスチックは、突起部の形状が、板状、棒状、半球状、多角柱状、円柱状、多角錐状、円錐状およびそれらの組み合わせの中から選ばれる少なくとも1つであることが好ましい。例えば、リブでは板状または棒状となり、ボスでは半球状、多角柱状、円柱状、多角錐状、円錐状となるのが一般的である。   In the fiber reinforced plastic of the present invention, the shape of the protrusions may be at least one selected from a plate shape, a rod shape, a hemispherical shape, a polygonal column shape, a columnar shape, a polygonal pyramid shape, a conical shape, and combinations thereof. preferable. For example, the rib is generally plate-shaped or rod-shaped, and the boss is generally hemispherical, polygonal columnar, cylindrical, polygonal pyramid, or conical.

本発明の繊維強化プラスチックは、突起部の高さが、スキン部の厚みの0.5〜50倍であることが好ましい。1〜25倍がより好ましい。突起部の高さが上記範囲内であれば、突起部としての効果が発現しやすい。突起部の高さがスキン部の厚みの0.5倍より小さい場合、例えば、突起部がリブであると、リブによる剛性向上の効果は小さくなってしまうことがある。一方、高さが50倍よりも大きい場合、特に突起部が層構造を形成するのが難しくなる場合がある。   In the fiber reinforced plastic of the present invention, the height of the protrusion is preferably 0.5 to 50 times the thickness of the skin. 1 to 25 times is more preferable. If the height of the protrusion is within the above range, the effect as the protrusion is likely to be manifested. When the height of the protruding portion is smaller than 0.5 times the thickness of the skin portion, for example, if the protruding portion is a rib, the effect of improving the rigidity by the rib may be reduced. On the other hand, if the height is greater than 50 times, it may be difficult for the protrusions to form a layered structure.

本発明の繊維強化プラスチックは、突起部の形状が板状および棒状である場合、突起部の厚みがスキン部の厚みの0.1〜4倍であることが好ましい。0.5〜3倍がより好ましい。突起部の厚みが上記範囲内であれば、突起部としての効果が発現しやすい。突起部の厚みがスキン部の厚みの0.1倍より小さい場合、例えば、突起部がリブであるとリブによる剛性向上の効果は小さくなってしまうことがあり、突起部がボスであると嵌め合い部の寸法精度が出ない場合がある。一方、厚みが4倍よりも大きい場合、スキン部と突起部とのマテリアルバランス(材料収支)が取りにくくなり、スキン部および突起部が同様の層構造となることが難しくなる可能性がある。   In the fiber reinforced plastic of the present invention, when the shape of the protrusion is plate-like or rod-like, the thickness of the protrusion is preferably 0.1 to 4 times the thickness of the skin part. 0.5-3 times is more preferable. If the thickness of the protrusion is within the above range, the effect as the protrusion is likely to be manifested. If the thickness of the protrusion is less than 0.1 times the thickness of the skin, for example, if the protrusion is a rib, the effect of improving the rigidity by the rib may be reduced, and if the protrusion is a boss, The dimensional accuracy of the mating part may not be achieved. On the other hand, when the thickness is larger than 4 times, it is difficult to obtain a material balance (material balance) between the skin portion and the protrusion portion, and it may be difficult for the skin portion and the protrusion portion to have a similar layer structure.

本発明のプリプレグ基材の厚みは、0.02〜1mmの範囲であることが好ましい。0.02mmより薄い場合、必然的に任意の1つの切り込みにより切断される繊維本数が少なくなり、成形時の流動により繊維がうねりを生じやすくなる。また、例えば、厚み2mmの繊維強化プラスチック部材を得るためには100層以上のプリプレグの積層が必要となり、生産効率の面からも好ましくない。一方、1mmより厚い場合、積層した時に1つの層が受け持つ割合が大きくなり、異方性が顕著に表れ、部材にソリ等が生じてしまう可能性がある。   The thickness of the prepreg substrate of the present invention is preferably in the range of 0.02 to 1 mm. When the thickness is less than 0.02 mm, the number of fibers cut by any one incision is inevitably reduced, and the fibers tend to swell due to flow during molding. Further, for example, in order to obtain a fiber reinforced plastic member having a thickness of 2 mm, it is necessary to laminate 100 or more prepregs, which is not preferable from the viewpoint of production efficiency. On the other hand, if it is thicker than 1 mm, the proportion of one layer when it is laminated increases, anisotropy appears remarkably, and the member may be warped.

本発明のプリプレグ基材の強化繊維である炭素繊維は、軽量であり、しかも比強度および比弾性率において特に優れた性質を有しており、さらに耐熱性や耐薬品性にも優れていることから、軽量化が望まれる自動車パネルなどの部材に好適である。なかでも、高強度の炭素繊維が得られやすいPAN系炭素繊維が好ましい。   The carbon fiber that is the reinforcing fiber of the prepreg base material of the present invention is lightweight, has particularly excellent properties in specific strength and specific elastic modulus, and is also excellent in heat resistance and chemical resistance. Therefore, it is suitable for a member such as an automobile panel for which weight reduction is desired. Among these, PAN-based carbon fibers that can easily obtain high-strength carbon fibers are preferable.

本発明のプリプレグ基材を得るためにプリプレグに切り込みを入れる方法としては、まず一方向に引き揃えられた連続繊維のプリプレグを作製し、その後カッターを用いての手作業や裁断機により切り込みを入れる方法、あるいは一方向に引き揃えられた連続繊維のプリプレグ製造工程において所定の位置に刃を配置した回転ローラ等を介して連続的に切り込みを入れる方法がある。簡易にプリプレグに切り込みを入れる場合には前者が、生産効率を考慮し大量に作製する場合には後者が適している。また、本発明のプリプレグ基材は繊維を切断する方向のみに切り込みを入れることにより期待される効果は発現するが、横方向への繊維同士の繋がりを除きたい場合は、加えて繊維長手方向に切り込みを入れても差し支えない。   In order to obtain the prepreg base material of the present invention, as a method of cutting into the prepreg, first, a prepreg of continuous fibers aligned in one direction is prepared, and then the cutting is performed by a manual operation or a cutter using a cutter. There is a method, or a method of continuously incising through a rotating roller or the like in which a blade is arranged at a predetermined position in a prepreg manufacturing process of continuous fibers aligned in one direction. The former is suitable when the prepreg is simply cut, and the latter is suitable when producing a large amount in consideration of production efficiency. In addition, the prepreg base material of the present invention expresses the effect expected by making a cut only in the fiber cutting direction, but in the case where it is desired to remove the connection between fibers in the lateral direction, in addition to the longitudinal direction of the fiber You can make cuts.

なお、本発明のプリプレグ基材のマトリックス樹脂として使われる熱硬化性樹脂としては、エポキシ樹脂や不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂、アクリル樹脂等が挙げられ、それらの混合樹脂であっても差し支えない。これらの樹脂の常温(25℃)における樹脂粘度としては、1×10Pa・s以下であることが好ましく、この範囲内であれば本発明を満たすタック性およびドレープ性を有するプリプレグ基材を得ることができる。 Examples of the thermosetting resin used as the matrix resin for the prepreg base material of the present invention include epoxy resins, unsaturated polyester resins, vinyl ester resins, phenol resins, acrylic resins, and the like. There is no problem. The resin viscosity at normal temperature (25 ° C.) of these resins is preferably 1 × 10 6 Pa · s or less, and if within this range, a prepreg base material having tackiness and draping properties satisfying the present invention is used. Obtainable.

かかるマトリックス樹脂は、熱硬化性樹脂のDSCに拠る発熱ピーク温度をTpとしたとき、前記熱硬化性樹脂が10分以内で硬化し得る温度Tが(Tp−60)〜(Tp+20)の範囲内にあることが好ましい。ここで、硬化し得るとは、熱硬化性樹脂を含む成形前駆体をある温度下で一定時間保持した後に成形前駆体の形状を保持した状態で取り出すことが可能であることをいい、具体的な評価法としては、加熱したプレス上に置いた内径31.7mm、厚さ3.3mmのポリテトラフルオロエチレン製Oリング中に熱硬化性樹脂を1.5ml注入し、10分間加熱加圧し架橋反応を進めた後に、樹脂試験片を変形させることなく取り出せることをいう。前記熱硬化性樹脂が10分以内で硬化し得る温度Tが、(Tp−60)℃より低い場合、樹脂の急激な反応により樹脂内部でのボイドの生成、硬化不良を引き起こすおそれがあり、(Tp+20)℃より高い場合、成形時に昇温に時間を要することから、成形条件に制約が加わるため、上記範囲であることが好ましい。なお、本発明におけるDSCに拠る発熱ピーク温度Tpは、昇温速度10℃/分の条件にて測定した値とする。   In such a matrix resin, the temperature T at which the thermosetting resin can be cured within 10 minutes is within the range of (Tp-60) to (Tp + 20), where Tp is an exothermic peak temperature due to DSC of the thermosetting resin. It is preferable that it exists in. Here, being able to cure means that the molding precursor containing the thermosetting resin can be taken out in a state in which the shape of the molding precursor is maintained after being held for a certain time at a certain temperature. As an evaluation method, 1.5 ml of a thermosetting resin was injected into a polytetrafluoroethylene O-ring having an inner diameter of 31.7 mm and a thickness of 3.3 mm placed on a heated press, and heated and pressurized for 10 minutes for crosslinking. This means that the resin test piece can be taken out without being deformed after the reaction has proceeded. When the temperature T at which the thermosetting resin can be cured within 10 minutes is lower than (Tp-60) ° C., there is a possibility that voids are generated inside the resin due to an abrupt reaction of the resin, resulting in poor curing. When the temperature is higher than Tp + 20) ° C., it takes time to raise the temperature at the time of molding. In addition, exothermic peak temperature Tp based on DSC in this invention is taken as the value measured on temperature rising conditions 10 degree-C / min conditions.

以上の硬化特性を発現する熱硬化性樹脂としては、少なくともエポキシ樹脂であり、硬化剤がアミン系硬化剤であり、硬化促進剤が1分子中にウレア結合を2個以上有する化合物が挙げられる。硬化促進剤としては、具体的に、2,4−トルエンビス(ジメチルウレア)または4,4−メチレンビス(フェニルジメチルウレア)が好ましい。   Examples of the thermosetting resin exhibiting the above curing characteristics include compounds having at least an epoxy resin, a curing agent being an amine curing agent, and a curing accelerator having two or more urea bonds in one molecule. Specifically, 2,4-toluenebis (dimethylurea) or 4,4-methylenebis (phenyldimethylurea) is preferable as the curing accelerator.

また、本発明のプリプレグ基材およびこれを用いた繊維強化プラスチックの用途としては、強度、剛性、軽量性が要求される、自転車のクランクやフレームなどの部材、ゴルフ等のスポーツ部材のシャフトやヘッド、ドアやシートフレームなどの自動車部材、ロボットアームなどの機械部品がある。中でも、強度、軽量に加え、部材形状が複雑で、本材料のように形状追従性が要求される、クランクなどの自転車部材、シートパネルやシートフレーム等の自動車部品に好ましく適用できる。   The prepreg base material of the present invention and fiber reinforced plastic using the same are used for members such as bicycle cranks and frames, shafts and heads of sports members such as golf, which require strength, rigidity and lightness. There are automotive parts such as doors and seat frames, and mechanical parts such as robot arms. Among them, in addition to strength and light weight, the shape of the member is complicated, and it can be preferably applied to a bicycle member such as a crank, an automobile part such as a seat panel or a seat frame, which requires shape followability like this material.

ここで、本発明のプリプレグ基材を図面を用いて説明する。図3〜7は、本発明のプリプレグ基材の切り込みパターンの一例を示す平面図である。図3は、プリプレグ基材の全面に繊維を横切る方向への断続的な切り込みからなる列が複数列設けられており、かつ、各隣り合う該列は繊維直交方向にずれており、かつ、隣り合う該列の切り込みが互いに切り込んでいる。さらに、切り込みからなる列が2パターンで、切り込みの形状、寸法および方向が同一で、切り込みの方向が繊維直交方向である。   Here, the prepreg base material of this invention is demonstrated using drawing. 3-7 is a top view which shows an example of the cutting pattern of the prepreg base material of this invention. FIG. 3 shows that the entire surface of the prepreg base material is provided with a plurality of rows of intermittent cuts in the direction crossing the fibers, and the adjacent rows are shifted in the direction perpendicular to the fibers, and adjacent to each other. The matching cuts in the row cut into each other. Furthermore, there are two rows of cuts, the cuts have the same shape, size, and direction, and the cut direction is the fiber orthogonal direction.

図4は、図3と同様であるが、切り込みからなる列が3パターンである。図5は、図3と同様であるが、切り込みの方向が繊維傾斜方向である。図6は、図3と同様であるが、切り込みの形状、寸法が異なる。図7は、図3と同様であるが、切り込みの方向が異なり、切り込みの方向が繊維傾斜方向である。   FIG. 4 is the same as FIG. 3, but there are three rows of cuts. FIG. 5 is the same as FIG. 3, but the cutting direction is the fiber inclination direction. FIG. 6 is the same as FIG. 3 except for the shape and dimensions of the cuts. FIG. 7 is the same as FIG. 3 except that the cutting direction is different, and the cutting direction is the fiber tilt direction.

一方、図8は、本発明を満たさないプリプレグ基材の切り込みパターンの一例を示す平面図である。図8のように、隣り合う該列の切り込みが互いに切り込んでいない場合、切り込みによって切断されない連続繊維10が存在する。   On the other hand, FIG. 8 is a top view which shows an example of the cutting pattern of the prepreg base material which does not satisfy | fill this invention. As shown in FIG. 8, when the adjacent cuts are not cut from each other, there are continuous fibers 10 that are not cut by the cut.

以下、実施例により本発明をさらに具体的に説明するが、本発明は、特にこれに限定されるというものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not particularly limited thereto.

<平板成形方法>
プリプレグ基材から、繊維長手方向と、繊維長手方向から45度ずらした方向に、それぞれ250×250mmの大きさに切り出した。切り出したプリプレグ基材を16層疑似等方([45/0/−45/90]2S)に積層し、300×300mmの金型上に配置した後、加熱型プレス成型機により、6MPaの加圧下、150℃×30分間の条件により硬化せしめ、300×300×1.7mmの平板状の成形体を得た。
<Flat plate forming method>
From the prepreg base material, it cut | disconnected to the magnitude | size of 250x250 mm in the direction shifted 45 degree | times from the fiber longitudinal direction and the fiber longitudinal direction, respectively. The cut prepreg base material is laminated in a 16-layer pseudo-isotropic ([45/0 / −45 / 90] 2S ), placed on a 300 × 300 mm mold, and then heated by a 6 MPa Curing was performed under the conditions of 150 ° C. × 30 minutes under pressure to obtain a plate-like molded body of 300 × 300 × 1.7 mm.

<機械特性評価方法>
得られた平板状の成形体より、長さ250±1mm、幅25±0.2mmの引張強度試験片を切り出した。JIS K−7073に規定する試験方法に従い、標点間距離を150mmとし、クロスヘッド速度2.0mm/分で引張強度を測定した。なお、本実施例においては、試験機としてインストロン(登録商標)万能試験機4208型を用いた。測定した試験片の数はn=10とし、平均値を引張強度とした。
さらに、測定値より標準偏差を算出し、その標準偏差を平均値で除することにより、バラツキの指標である変動係数(CV値(%))を算出した。
<Mechanical property evaluation method>
A tensile strength test piece having a length of 250 ± 1 mm and a width of 25 ± 0.2 mm was cut out from the obtained flat molded body. In accordance with the test method specified in JIS K-7073, the tensile strength was measured at a crosshead speed of 2.0 mm / min with a distance between the gauge points of 150 mm. In this example, an Instron (registered trademark) universal testing machine 4208 type was used as a testing machine. The number of test pieces measured was n = 10, and the average value was the tensile strength.
Further, a standard deviation was calculated from the measured value, and the standard deviation was divided by an average value, thereby calculating a variation coefficient (CV value (%)) as an index of variation.

(実施例1)
エポキシ樹脂(ジャパンエポキシレジン(株)製“エピコート(登録商標)”828:30重量部、“エピコート(登録商標)”1001:35重量部、“エピコート(登録商標)”154:35重量部)に、熱可塑性樹脂ポリビニルホルマール(チッソ(株)製“ビニレック(登録商標)”K)5重量部をニーダーで加熱混練してポリビニルホルマールを均一に溶解させた後、硬化剤ジシアンジアミド(ジャパンエポキシレジン(株)製DICY7)3.5重量部と、硬化促進剤3−(3,4−ジクロロフェニル)−1,1−ジメチルウレア(保土谷化学工業(株)製DCMU99)4重量部を、ニーダーで混練して未硬化のエポキシ樹脂組成物1を調整した。このエポキシ樹脂組成物1を、リバースロールコーターを用いてシリコーンコーティング処理された厚さ100μmの離型紙上に塗布して37g/mの樹脂フィルム1を作製した。次に、一方向に配列させた炭素繊維(引張強度4,900MPa、引張弾性率235GPa)の両面に樹脂フィルム1をそれぞれ重ね、加熱・加圧することによって樹脂を含浸させ、炭素繊維重さ150g/m、樹脂含有率33wt%、厚み0.15mmのプリプレグ1を作製した。
Example 1
Epoxy resin ("Epicoat (registered trademark)" 828: 30 parts by weight, "Epicoat (registered trademark)" 1001: 35 parts by weight, "Epicoat (registered trademark)" 154: 35 parts by weight, manufactured by Japan Epoxy Resin Co., Ltd. Then, 5 parts by weight of a thermoplastic resin polyvinyl formal (“Vinylec (registered trademark)” K manufactured by Chisso Corporation) was heated and kneaded with a kneader to uniformly dissolve the polyvinyl formal, and then a curing agent dicyandiamide (Japan Epoxy Resin Co., Ltd.) ) DICY7) 3.5 parts by weight and 4 parts by weight of curing accelerator 3- (3,4-dichlorophenyl) -1,1-dimethylurea (Hodogaya Chemical Co., Ltd. DCMU99) were kneaded in a kneader. Thus, an uncured epoxy resin composition 1 was prepared. The epoxy resin composition 1 was applied onto a release paper having a thickness of 100 μm that had been subjected to silicone coating using a reverse roll coater to produce a resin film 1 having a thickness of 37 g / m 2 . Next, the resin film 1 is overlapped on both sides of carbon fibers (tensile strength 4,900 MPa, tensile elastic modulus 235 GPa) arranged in one direction, and the resin is impregnated by heating and pressurizing, and the carbon fiber weight is 150 g / A prepreg 1 having m 2 , a resin content of 33 wt% and a thickness of 0.15 mm was produced.

このプリプレグ1に、自動裁断機を用いて図3に示すような切り込みを連続的に挿入することにより、等間隔で規則的な切り込みを有するプリプレグ基材を得た。切り込みの方向は繊維直交方向で、切り込みの長さWは10.5mmであり、間隔L(所望繊維長さ)は30mmである。隣り合う切り込みの列は繊維直交方向に10mmずれている。すなわち、切り込みの列のパターンは2パターンである。さらに、隣り合う列の切り込みが互いに0.5mm切り込んでいる。また、任意の1つの切り込みにより切断された繊維本数は23625本である。エポキシ樹脂の25℃雰囲気下における粘度は2×10Pa・sであり、該基材はタック性を有していた。 A prepreg base material having regular cuts at equal intervals was obtained by continuously inserting cuts as shown in FIG. 3 into the prepreg 1 using an automatic cutting machine. The incision direction is the fiber orthogonal direction, the incision length W is 10.5 mm, and the interval L (desired fiber length) is 30 mm. Adjacent cut rows are offset by 10 mm in the direction perpendicular to the fiber. That is, there are two patterns of the cut row. Furthermore, the cuts in adjacent rows are cut by 0.5 mm from each other. In addition, the number of fibers cut by any one incision is 23625. The viscosity of the epoxy resin in an atmosphere at 25 ° C. was 2 × 10 4 Pa · s, and the substrate had tackiness.

上記のプリプレグ基材を用いて、炭素繊維の配向方向(0°方向)と、炭素繊維の配向方向から右に45度ずらした方向(45°方向)に、それぞれ250×250mmの大きさのサイズに切り出した。切り出したプリプレグ基材を、炭素繊維の配向方向が同一である隣接する層において、一方の層のプリプレグ基材の切り込みからなる列が、他方の層のプリプレグ基材の切り込みからなる列に対し繊維方向に前記間隔Lの0.5倍の15mmずれるように、16層で疑似等方に積層して([−45/0/+45/90]2S)、積層基材を得た。 Using the above prepreg base material, the size of 250 × 250 mm in each of the carbon fiber orientation direction (0 ° direction) and the direction shifted 45 degrees to the right from the carbon fiber orientation direction (45 ° direction) Cut out. In the adjacent layers where the orientation directions of the carbon fibers are the same in the cut prepreg base material, the row made of the cuts of the prepreg base material of one layer is the fiber with respect to the row made of the cuts of the prepreg base material of the other layer A laminated base material was obtained by stacking 16 layers in a pseudo isotropic manner so as to be displaced by 15 mm, which is 0.5 times the interval L in the direction ([−45 / 0 / + 45/90] 2S ).

更に、上記の積層基材を用いて、300×300mmの平板金型上に配置した後、加熱型プレス成形機により、6MPaの加圧のもと、150℃×30分間の条件により硬化せしめ、300×300mmの平板状の繊維強化プラスチックを得た。得られた繊維強化プラスチックは繊維のうねりを伴うことなく、その端部まで繊維が均等かつ充分に流動していた。また、ソリもなく良好な平面平滑性であった。   Furthermore, using the above-mentioned laminated base material, after placing it on a 300 × 300 mm flat plate mold, it was cured under conditions of 150 ° C. × 30 minutes under a pressure of 6 MPa by a heating press molding machine, A 300 × 300 mm flat fiber-reinforced plastic was obtained. The obtained fiber reinforced plastic was not even accompanied by fiber undulations, and the fibers were flowing evenly and sufficiently to the ends thereof. Moreover, there was no warp and it was favorable plane smoothness.

引張強度は410MPaと高い値であり、CV値は4.5%とバラツキの小さい結果であった。   The tensile strength was as high as 410 MPa, and the CV value was 4.5%, which was a small variation.

(実施例2)
実施例1のプリプレグ基材を用いて、繊維方向が同一である隣接する層において、一方の層のプリプレグ基材切り込みからなる列が、他方の層のプリプレグ基材の切り込みからなる列に対し繊維方向に前記間隔Lの0.25倍の7.5mmずれており、かつ、繊維直交方向に前記長さWの0.25倍の2.6mmずれているように積層し、積層基材を得た点以外は、実施例1と同様にして平板状の繊維強化プラスチックを得た。
(Example 2)
Using the prepreg base material of Example 1, in the adjacent layers having the same fiber direction, the row composed of the prepreg base material cuts in one layer is the fiber relative to the row composed of the prepreg base material cuts in the other layer. Lamination is carried out so that the gap is 7.5 mm, which is 0.25 times the distance L in the direction, and 2.6 mm, which is 0.25 times the length W in the direction perpendicular to the fiber. Except for these points, a flat fiber-reinforced plastic was obtained in the same manner as in Example 1.

引張強度は390MPaと若干実施例1に劣るものの高い値であり、CV値は5.0%とバラツキの小さい結果であった。   The tensile strength was 390 MPa, which was slightly higher than that of Example 1, but the CV value was 5.0%, which was a small variation.

(実施例3)
形状および方向が実施例1と同一である切り込みの列を図4に示すような3パターンとし、間隔L(所望繊維長さ)を30mmとし、隣り合う切り込みの列を繊維直交方向に10mmずつずらした。実施例1と同様にしてプリプレグ基材を作製し、平板状の繊維強化プラスチックを得た。得られた繊維強化プラスチックは繊維のうねりを伴うことなく、その端部まで繊維が均等かつ充分に流動していた。また、ソリもなく良好な平面平滑性であった。
(Example 3)
The incision rows having the same shape and direction as in Example 1 are made into three patterns as shown in FIG. 4, the interval L (desired fiber length) is 30 mm, and the adjacent incision rows are shifted by 10 mm in the fiber orthogonal direction. It was. A prepreg base material was produced in the same manner as in Example 1 to obtain a flat fiber-reinforced plastic. The obtained fiber reinforced plastic was not even accompanied by fiber undulations, and the fibers were flowing evenly and sufficiently to the ends thereof. Moreover, there was no warp and it was favorable plane smoothness.

引張強度は400MPaと高い値であり、CV値は5.0%とバラツキの小さい結果であった。   The tensile strength was a high value of 400 MPa, and the CV value was 5.0%, which was a small variation.

(実施例4)
それぞれの切り込みの長さWを12mmにした以外は、実施例1と同様にしてプリプレグ基材を作製し、平板状の繊維強化プラスチックを得た。隣り合う列の切り込みが互いに2mm切り込んでいる。また、任意の1つの切り込みにより切断された繊維本数は27000本である。得られた繊維強化プラスチックは繊維のうねりを伴うことなく、端部まで繊維が均等かつ充分に流動していた。また、ソリもなく良好な平面平滑性であった。
Example 4
A prepreg base material was produced in the same manner as in Example 1 except that the length W of each cut was 12 mm, and a flat fiber-reinforced plastic was obtained. The adjacent row cuts are cut 2 mm from each other. Further, the number of fibers cut by any one cut is 27000. In the obtained fiber reinforced plastic, the fibers flowed evenly and sufficiently to the ends without causing the fibers to swell. Moreover, there was no warp and it was favorable plane smoothness.

引張強度は380MPaと実施例1に比べるとやや劣るものの高い値であり、CV値は5.0%とバラツキの小さい結果であった。   The tensile strength was 380 MPa, which was slightly inferior to that of Example 1, but a high value, and the CV value was 5.0%, which was a small variation.

(実施例5)
硬化促進剤を2,4−トルエンビス(ジメチルウレア)(ピイ・ティ・アイジャパン(株)製“オミキュア(登録商標)”24)5重量部に替えた以外は実施例1と同様の方法で未硬化のエポキシ樹脂組成物2を作製し、実施例1と同様の方法でプリプレグ基材、それを用いた積層基材を作製した。
(Example 5)
In the same manner as in Example 1, except that the curing accelerator was changed to 5 parts by weight of 2,4-toluenebis (dimethylurea) (“OMICURE (registered trademark)” 24) manufactured by PTI Japan Ltd. An uncured epoxy resin composition 2 was prepared, and a prepreg base material and a laminated base material using the prepreg base material were prepared in the same manner as in Example 1.

かかる積層基材を、加熱型プレス成形機の加圧時間(硬化時間)だけを3分に替えた以外は実施例1と同様の方法で繊維強化プラスチックを得た。加圧時間が実施例1の1/10であるにもかかわらず、ほぼ同等のガラス転移温度を示し、未硬化のエポキシ樹脂組成物2は、速硬化性に優れることがわかった。   A fiber-reinforced plastic was obtained in the same manner as in Example 1 except that only the pressing time (curing time) of the heating press molding machine was changed to 3 minutes. Despite the pressurization time being 1/10 that of Example 1, it was found that the glass transition temperature was almost the same, and the uncured epoxy resin composition 2 was excellent in fast curability.

引張強度は420MPaと高い値であり、CV値は4.0%とバラツキの小さい結果であった。これら値は実施例1と遜色ないものであった。   The tensile strength was as high as 420 MPa, and the CV value was 4.0%, which was a small variation. These values were comparable to those in Example 1.

(実施例6)
硬化促進剤を4,4−メチレンビス(フェニルジメチルウレア)(ピイ・ティ・アイジャパン(株)製“オミキュア(登録商標)”52)7重量部に替えた以外は実施例1と同様の方法で未硬化のエポキシ樹脂組成物3を作製し、実施例1と同様の方法でプリプレグ基材、それを用いた積層基材を作製した。
(Example 6)
In the same manner as in Example 1, except that the curing accelerator was changed to 7 parts by weight of 4,4-methylenebis (phenyldimethylurea) (“OMICURE (registered trademark)” 52) manufactured by PTI Japan Ltd. An uncured epoxy resin composition 3 was prepared, and a prepreg base material and a laminated base material using the prepreg base material were prepared in the same manner as in Example 1.

かかる積層基材を、加熱型プレス成形機の加圧時間(硬化時間)だけを3分に替えた以外は実施例1と同様の方法で繊維強化プラスチックを得た。加圧時間が実施例1の1/10であるにもかかわらず、ほぼ同等のガラス転移温度を示し、未硬化のエポキシ樹脂組成物2は、速硬化性に優れることがわかった。
引張強度は415MPaと高い値であり、CV値は4.0%とバラツキの小さい結果であった。これら値は実施例1と遜色ないものであった。
A fiber-reinforced plastic was obtained in the same manner as in Example 1 except that only the pressing time (curing time) of the heating press molding machine was changed to 3 minutes. Despite the pressurization time being 1/10 that of Example 1, it was found that the glass transition temperature was almost the same, and the uncured epoxy resin composition 2 was excellent in fast curability.
The tensile strength was as high as 415 MPa, and the CV value was 4.0%, which was a small variation. These values were comparable to those in Example 1.

(比較例1)
プリプレグに切り込みを入れないこと以外は、実施例1と同様にして平板状の繊維強化プラスチックを得た。繊維強化プラスチックは、300×300×1.7mmの形状になっていたが、その端部は樹脂により形成され、繊維はプレス前の位置にとどまりほとんど流動していなかった。また、その中央部の繊維過多部と成形体端部の樹脂過多部との線膨張係数の差異によりソリを生じた。
(Comparative Example 1)
A flat fiber reinforced plastic was obtained in the same manner as in Example 1 except that the prepreg was not cut. The fiber reinforced plastic had a shape of 300 × 300 × 1.7 mm, but its end was formed of resin, and the fiber stayed at the position before pressing and hardly flowed. Further, warping was caused by the difference in linear expansion coefficient between the excessive fiber portion at the center and the excessive resin portion at the end of the molded body.

繊維が切断されていないため、引張強度は700MPaと非常に高く、CV値は4.5%とバラツキの小さい結果であったが、上記のように流動性は極めて悪かった。   Since the fibers were not cut, the tensile strength was very high at 700 MPa and the CV value was 4.5%, which was a small variation, but the fluidity was extremely poor as described above.

(比較例2)
切り込みの長さWを10mmとし、隣り合う該列の切り込みが互いに切り込んでいない以外は、実施例1と同様にしてプリプレグ基材を作製し、平板状の繊維強化プラスチックを得た。切り込みによって切断されず30mmより長い繊維が一部存在しており、該部分では繊維の流動が乱れ、一部繊維強化プラスチックの端部まで繊維が流動していなかった。さらに、流動状態が均一でないため線膨張係数の差異によりソリを生じた。
(Comparative Example 2)
A prepreg base material was produced in the same manner as in Example 1 except that the length W of the cut was 10 mm and the notches in the adjacent rows were not cut into each other to obtain a flat fiber-reinforced plastic. There were some fibers longer than 30 mm that were not cut by the incision, and the flow of the fibers was disturbed in this portion, and the fibers did not flow to the end of the fiber reinforced plastic. Furthermore, since the flow state was not uniform, warping was caused by the difference in linear expansion coefficient.

引張強度は360MPaと実施例1に比べ低い値であった。流動状態が均一ではないため、CV値は10.0%と高い値、すなわちバラツキが大きくなった。   The tensile strength was 360 MPa, a value lower than that of Example 1. Since the flow state was not uniform, the CV value was as high as 10.0%, that is, the variation was large.

(比較例3)
間隔L(所望繊維長さ)を6mmとし、繊維方向が同一である隣接する層において、一方の層のプリプレグ基材切り込みからなる列が、他方の層のプリプレグ基材の切り込みからなる列に対し繊維方向に前記間隔Lの0.5倍の3mmずれているように積層した以外は、実施例1と同様にしてプリプレグ基材を作製し、平板状の繊維強化プラスチックを得た。得られた繊維強化プラスチックは繊維のうねりを伴うことなく、その端部まで繊維が均等かつ充分に流動していた。また、ソリもなく良好な平面平滑性であった。
(Comparative Example 3)
In an adjacent layer where the distance L (desired fiber length) is 6 mm and the fiber direction is the same, a row made of the prepreg base material cuts of one layer is a row made of the prepreg base material cuts of the other layer A prepreg base material was produced in the same manner as in Example 1 except that lamination was carried out so that the distance L was shifted by 3 mm, which was 0.5 times the distance L in the fiber direction, to obtain a flat fiber-reinforced plastic. The obtained fiber reinforced plastic was not even accompanied by fiber undulations, and the fibers were flowing evenly and sufficiently to the ends thereof. Moreover, there was no warp and it was favorable plane smoothness.

しなかしがら、繊維の長さが短いため、繊維による補強効果が低下し、引張強度は250MPaと非常に低い値であった。CV値は5.0%とバラツキの小さい結果であった。   However, since the fiber length was short, the reinforcing effect by the fiber was lowered, and the tensile strength was a very low value of 250 MPa. The CV value was 5.0%, which was a small variation.

(比較例4)
切り込みの長さWを10mmとし、隣り合う該列の切り込みが互いに切り込んでいないプリプレグ基材を作製し、繊維方向が同一である隣接する層において、一方の層のプリプレグ基材切り込みからなる列が、他方の層のプリプレグ基材の切り込みからなる列に対し、繊維方向に重なっており、かつ、繊維直交方向に重なっているように積層し、積層基材を得た点以外は、実施例1と同様にして平板状の繊維強化プラスチックを得た。切り込みによって切断されず30mmより長い繊維が一部存在しており、該部分では繊維の流動が乱れ、一部繊維強化プラスチックの端部まで繊維が流動していなかった。さらに、流動状態が均一でないため線膨張係数の差異によりソリを生じた。
(Comparative Example 4)
A prepreg base material in which the notch length W is 10 mm and the notches in the adjacent rows are not cut into each other is prepared, and in an adjacent layer having the same fiber direction, a row of prepreg base material notches in one layer is Example 1 except that the other layer was formed so as to overlap the fiber direction and the fiber orthogonal direction with respect to the row of the prepreg substrate cuts of the other layer, and to obtain a laminated substrate. In the same manner, a flat fiber-reinforced plastic was obtained. There were some fibers longer than 30 mm that were not cut by the incision, and the flow of the fibers was disturbed in this portion, and the fibers did not flow to the end of the fiber reinforced plastic. Furthermore, since the flow state was not uniform, warping was caused by the difference in linear expansion coefficient.

引張強度は180MPaと実施例1に比べ非常に低い値でなった。流動状態が均一ではないため、CV値は11.5%と高い値、すなわちバラツキが大きくなった。   The tensile strength was 180 MPa, which was a very low value compared to Example 1. Since the flow state was not uniform, the CV value was as high as 11.5%, that is, the variation was large.

(比較例5)
マトリックス樹脂をナイロン6樹脂とし、離型紙を用いなかった以外は、実施例1と同様にしてプリプレグ基材を作製した。ナイロン6樹脂の25℃雰囲気下における粘度は固体であるため測定不可能であり、該基材はタック性がなかった。さらに、該基材は小断片状にバラバラに分離しており、シートとしての形態を保持できず、成形は勿論のこと、積層すら不可能であった。
(Comparative Example 5)
A prepreg base material was produced in the same manner as in Example 1 except that the matrix resin was nylon 6 resin and the release paper was not used. The viscosity of the nylon 6 resin in an atmosphere at 25 ° C. was a solid and could not be measured, and the substrate had no tackiness. Furthermore, the base material was separated into small pieces, and the form as a sheet could not be maintained, and it was impossible to form and of course to laminate.

Figure 2007146151
Figure 2007146151

本発明のプリプレグ基材の切り込みパターンの一例を示す拡大平面図である。It is an enlarged plan view which shows an example of the cutting pattern of the prepreg base material of this invention. 積層断面の模式図である。It is a schematic diagram of a lamination | stacking cross section. 本発明のプリプレグ基材の切り込みパターンの一例を示す平面図である。It is a top view which shows an example of the cutting pattern of the prepreg base material of this invention. 本発明のプリプレグ基材の切り込みパターンの別の一例を示す平面図である。It is a top view which shows another example of the cutting pattern of the prepreg base material of this invention. 本発明のプリプレグ基材の切り込みパターンの別の一例を示す平面図である。It is a top view which shows another example of the cutting pattern of the prepreg base material of this invention. 本発明のプリプレグ基材の切り込みパターンの別の一例を示す平面図である。It is a top view which shows another example of the cutting pattern of the prepreg base material of this invention. 本発明のプリプレグ基材の切り込みパターンの別の一例を示す平面図である。It is a top view which shows another example of the cutting pattern of the prepreg base material of this invention. 本発明を満たさないプリプレグ基材の切り込みパターンの一例を示す平面図である。It is a top view which shows an example of the cutting pattern of the prepreg base material which does not satisfy | fill this invention.

符号の説明Explanation of symbols

1:繊維長手方向
2:繊維直交方向
3:プリプレグ基材
4:切り込み
5:互いに切り込んでいる幅
6:所望繊維長さ
7:第1の切り込みからなる列
8:第2の切り込みからなる列
9:第3の切り込みからなる列
10:切り込みによって切断されない連続繊維
1: Fiber longitudinal direction 2: Fiber orthogonal direction 3: Pre-preg base material 4: Notch 5: Width cut into each other 6: Desired fiber length 7: Row made of the first cut 8: Row made of the second cut 9 : Row 10 consisting of third cuts: Continuous fiber not cut by the cuts

Claims (18)

一方向に引き揃えられた炭素繊維と熱硬化性樹脂から構成され、テープ状支持体に密着されたプリプレグ基材であって、該プリプレグ基材の全面に繊維を横切る方向への断続的な2〜50mmの長さWの切り込みからなる列が複数列設けられており、該列と該列を繊維長手方向に平行移動した際に最初に重なる列との間隔Lが10〜100mmであり、各隣り合う該列は繊維直交方向にずれており、かつ、隣り合う該列の切り込みが互いに切り込んでいることを特徴とするプリプレグ基材。 A prepreg base material composed of carbon fibers and thermosetting resin aligned in one direction and in close contact with a tape-like support, and intermittently extending in the direction across the fiber across the entire surface of the prepreg base material. A plurality of rows of incisions having a length W of ˜50 mm are provided, and the interval L between the rows and the first overlapping row when the rows are translated in the fiber longitudinal direction is 10 to 100 mm, The prepreg base material, wherein the adjacent rows are shifted in the direction perpendicular to the fibers, and the cuts of the adjacent rows are cut into each other. 隣り合う前記列の切り込みが互いに切り込んでいる幅が0.1mm以上、かつ、隣り合う切り込みのうち短い方の0.1倍以下である請求項1に記載のプリプレグ基材。 2. The prepreg base material according to claim 1, wherein the adjacent cuts of the row have a width of 0.1 mm or more and 0.1 times or less of the shorter one of the adjacent cuts. 前記切り込みの形状、寸法および方向が同一である請求項1または2記載のプリプレグ基材。 The prepreg base material according to claim 1 or 2, wherein the cuts have the same shape, size, and direction. 前記切り込みが、繊維を横切る方向に沿って等間隔で連続して分布してなる請求項1〜3のいずれかに記載のプリプレグ基材。 The prepreg base material according to any one of claims 1 to 3, wherein the cuts are continuously distributed at equal intervals along a direction crossing the fiber. 前記切り込みの方向が、全て繊維直交方向である請求項1〜4のいずれかに記載のプリプレグ基材。 The prepreg base material according to any one of claims 1 to 4, wherein all the cutting directions are fiber orthogonal directions. 任意の1つの切り込みにより切断される繊維本数が5000〜50000本である請求項1〜5のいずれかに記載のプリプレグ基材。 The prepreg base material according to any one of claims 1 to 5, wherein the number of fibers cut by any one incision is 5000 to 50000. 前記熱硬化性樹脂のDSCに拠る発熱ピーク温度をTpとしたとき、前記熱硬化性樹脂が10分以内で硬化し得る温度Tが(Tp−60)〜(Tp+20)の範囲内にある請求項1〜6のいずれかに記載のプリプレグ基材。 The temperature T at which the thermosetting resin can be cured within 10 minutes is in the range of (Tp-60) to (Tp + 20), where Tp is an exothermic peak temperature due to DSC of the thermosetting resin. The prepreg base material in any one of 1-6. 前記熱硬化性樹脂が硬化剤としてアミン系硬化剤、硬化促進剤として1分子中にウレア結合を2個以上有する化合物を含有するエポキシ樹脂である請求項1〜7のいずれかに記載のプリプレグ基材。 The prepreg group according to any one of claims 1 to 7, wherein the thermosetting resin is an epoxy resin containing an amine-based curing agent as a curing agent and a compound having two or more urea bonds in one molecule as a curing accelerator. Wood. 前記硬化促進剤が2,4−トルエンビス(ジメチルウレア)および/または4,4−メチレンビス(フェニルジメチルウレア)である請求項1〜8のいずれかに記載のプリプレグ基材。 The prepreg base material according to any one of claims 1 to 8, wherein the curing accelerator is 2,4-toluenebis (dimethylurea) and / or 4,4-methylenebis (phenyldimethylurea). 請求項1〜9のいずれかに記載のプリプレグ基材を積層し、一体化させた積層基材。 A laminated base material obtained by laminating and integrating the prepreg base material according to claim 1. 繊維方向が実質的に同一方向である隣接する層において、両層のプリプレグ基材の前記長さWの断続的な切り込みからなる列が等間隔であり、一方の層のプリプレグ基材の前記切り込みからなる列が、他方の層のプリプレグ基材の前記切り込みからなる列に対し繊維長手方向にずれて配置されている請求項10に記載の積層基材。 In adjacent layers in which the fiber directions are substantially the same direction, rows of intermittent cuts of the length W of both layers of the prepreg base are equally spaced, and the cuts of the prepreg base of one layer The laminated base material according to claim 10, wherein the row made of is displaced in the fiber longitudinal direction with respect to the row made of the notches of the prepreg base material of the other layer. 前記各層のプリプレグ基材の切り込みからなる列が、前記間隔Lの0.1〜0.5倍の範囲内で繊維長手方向にずれて配置されている請求項11に記載の積層基材。 The laminated base material according to claim 11, wherein the rows formed by cutting the prepreg base materials of each layer are arranged so as to be shifted in the fiber longitudinal direction within a range of 0.1 to 0.5 times the distance L. 繊維方向が実質的に同一方向である隣接する層において、両層のプリプレグ基材前記切り込みが繊維を横切る方向に沿って等間隔で分布した列となっており、一方の層のプリプレグ基材の前記切り込みからなる列が、他方の層のプリプレグ基材の前記切り込みからなる列に対し繊維直交方向にずれて配置されている請求項10または11に記載の積層基材。 In adjacent layers in which the fiber direction is substantially the same direction, the prepreg base material of both layers is a row distributed at equal intervals along the direction across the fiber, and the prepreg base material of one layer The laminated substrate according to claim 10 or 11, wherein the row of cuts is arranged in a fiber orthogonal direction with respect to the row of cuts of the prepreg substrate of the other layer. 前記各層のプリプレグ基材の切り込みからなる列が、前記長さWの0.1〜0.5倍の範囲内で繊維直交方向にずれて配置されている請求項13に記載の積層基材。 The laminated base material according to claim 13, wherein the rows of cuts of the prepreg base material of each layer are arranged so as to be shifted in the fiber orthogonal direction within a range of 0.1 to 0.5 times the length W. 請求項10〜14のいずれかに記載の積層基材を硬化せしめた繊維強化プラスチック。 A fiber reinforced plastic obtained by curing the laminated base material according to claim 10. 面状のスキン部と、前記スキン部の少なくとも片面に突起部とを有し、前記突起部の積層構造を構成する層の少なくとも1つが、前記突起部の形状に沿った形状であることを特徴とする請求項15に記載の繊維強化プラスチック。 It has a planar skin part and a protrusion on at least one surface of the skin part, and at least one of the layers constituting the laminated structure of the protrusion has a shape along the shape of the protrusion. The fiber-reinforced plastic according to claim 15. 前記突起部の形状が、板状、棒状、半球状、多角柱状、円柱状、多角錐状、円錐状およびそれらの組み合わせの中から選ばれる少なくとも1つである請求項15または16に記載の繊維強化プラスチック。 The fiber according to claim 15 or 16, wherein the shape of the protrusion is at least one selected from a plate shape, a rod shape, a hemispherical shape, a polygonal column shape, a columnar shape, a polygonal pyramid shape, a conical shape, and combinations thereof. Reinforced plastic. 前記突起部の高さが、スキン部の厚みの0.5〜50倍である請求項15〜17のいずれかに記載の繊維強化プラスチック。 The fiber-reinforced plastic according to any one of claims 15 to 17, wherein the height of the protruding portion is 0.5 to 50 times the thickness of the skin portion.
JP2006295396A 2005-10-31 2006-10-31 Prepreg substrate material, laminated substrate material and fiber-reinforced plastic Pending JP2007146151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006295396A JP2007146151A (en) 2005-10-31 2006-10-31 Prepreg substrate material, laminated substrate material and fiber-reinforced plastic

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005315926 2005-10-31
JP2006295396A JP2007146151A (en) 2005-10-31 2006-10-31 Prepreg substrate material, laminated substrate material and fiber-reinforced plastic

Publications (1)

Publication Number Publication Date
JP2007146151A true JP2007146151A (en) 2007-06-14

Family

ID=38207926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006295396A Pending JP2007146151A (en) 2005-10-31 2006-10-31 Prepreg substrate material, laminated substrate material and fiber-reinforced plastic

Country Status (1)

Country Link
JP (1) JP2007146151A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010013645A1 (en) 2008-07-31 2010-02-04 東レ株式会社 Prepreg, preform, molded product, and method for manufacturing prepreg
JP2011168009A (en) * 2010-02-22 2011-09-01 Toray Ind Inc Process of producing preform
JP2014088487A (en) * 2012-10-30 2014-05-15 Mitsubishi Rayon Co Ltd Method for producing fiber-reinforced plastic
JP5915780B2 (en) * 2013-12-06 2016-05-11 三菱レイヨン株式会社 Laminated substrate using fiber reinforced thermoplastics
US9341476B2 (en) 2010-05-17 2016-05-17 Silicon Sensing Systems Limited Rate sensor with quadrature rejection
KR20180097499A (en) 2015-12-25 2018-08-31 도레이 카부시키가이샤 Base laminate and method for manufacturing fiber-reinforced plastic
WO2021024971A1 (en) 2019-08-06 2021-02-11 東レ株式会社 Notched prepreg and fiber-reinforced plastic

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2803694A2 (en) 2008-07-31 2014-11-19 Toray Industries, Inc. Prepreg, preform, molded product, and method for manufacturing prepreg
WO2010013645A1 (en) 2008-07-31 2010-02-04 東レ株式会社 Prepreg, preform, molded product, and method for manufacturing prepreg
JP2011168009A (en) * 2010-02-22 2011-09-01 Toray Ind Inc Process of producing preform
US9341476B2 (en) 2010-05-17 2016-05-17 Silicon Sensing Systems Limited Rate sensor with quadrature rejection
JP2014088487A (en) * 2012-10-30 2014-05-15 Mitsubishi Rayon Co Ltd Method for producing fiber-reinforced plastic
JPWO2015083820A1 (en) * 2013-12-06 2017-03-16 三菱レイヨン株式会社 Laminated substrate using fiber reinforced thermoplastics
JP5915780B2 (en) * 2013-12-06 2016-05-11 三菱レイヨン株式会社 Laminated substrate using fiber reinforced thermoplastics
US10919259B2 (en) 2013-12-06 2021-02-16 Mitsubishi Chemical Corporation Laminated substrate using fiber-reinforced thermoplastic plastic, and molded product manufacturing method using same
US11752728B2 (en) 2013-12-06 2023-09-12 Mitsubishi Chemical Corporation Laminated substrate using fiber-reinforced thermoplastic plastic, and molded product manufacturing method using same
KR20180097499A (en) 2015-12-25 2018-08-31 도레이 카부시키가이샤 Base laminate and method for manufacturing fiber-reinforced plastic
US11279097B2 (en) 2015-12-25 2022-03-22 Toray Industries, Inc. Laminated base material and method of manufacturing fiber-reinforced plastic
WO2021024971A1 (en) 2019-08-06 2021-02-11 東レ株式会社 Notched prepreg and fiber-reinforced plastic
KR20220041086A (en) 2019-08-06 2022-03-31 도레이 카부시키가이샤 Infeed prepregs and fiber-reinforced plastics
JP7447791B2 (en) 2019-08-06 2024-03-12 東レ株式会社 Notch prepreg and fiber reinforced plastic

Similar Documents

Publication Publication Date Title
TWI415738B (en) Fiber reinforced plastic and method for producing the same
JP5223354B2 (en) Cut prepreg base material, laminated base material, fiber reinforced plastic, and method for producing cut prepreg base material
JP4779754B2 (en) Prepreg laminate and fiber reinforced plastic
JP5320742B2 (en) Method for producing composite prepreg substrate, laminated substrate and fiber reinforced plastic
KR101435967B1 (en) Prepreg base material, layered base material, fiber-reinforced plastic, process for producing prepreg base material, and process for producing fiber-reinforced plastic
JP5272418B2 (en) Cut prepreg base material, composite cut prepreg base material, laminated base material, fiber reinforced plastic, and method for producing cut prepreg base material
JP2008207544A5 (en)
JP5167953B2 (en) Laminated substrate, fiber reinforced plastic, and production method thereof
JP5353099B2 (en) Manufacturing method of fiber reinforced plastic
JP5292972B2 (en) Manufacturing method of fiber reinforced plastic
JP2007146151A (en) Prepreg substrate material, laminated substrate material and fiber-reinforced plastic
JP4732103B2 (en) Manufacturing method of tubular member made of fiber reinforced resin
JP2008279753A (en) Manufacturing method of fiber-reinforced plastics
JP6988812B2 (en) A method for manufacturing a fiber-reinforced plastic using a prepreg laminate and a prepreg laminate.
JP6947034B2 (en) Notch prepreg and method of manufacturing notch prepreg
JP2010023359A (en) Method of manufacturing laminate
JP2010018724A (en) Prepreg layered substrate and fiber-reinforced plastic
JP2010018723A (en) Incised prepreg substrate, prepreg layered product, and fiber-reinforced plastic
JP2008260793A (en) Laminated substrate and fiber-reinforced plastic
JP2009220480A (en) Manufacturing method of notched sheet base material
JP2008208343A (en) Cut prepreg substrate, laminated substrate, fiber reinforced plastics and preparation method of cut prepreg substrate
JP2008238809A (en) Method of manufacturing laminate
JP2016179647A (en) Method for producing fiber-reinforced plastic
KR101603492B1 (en) Method for Processing DCPD Matrix Composites
KR20090119431A (en) Prepreg sheet having many axes and the manufacturing method