JP5353099B2 - Manufacturing method of fiber reinforced plastic - Google Patents

Manufacturing method of fiber reinforced plastic Download PDF

Info

Publication number
JP5353099B2
JP5353099B2 JP2008190765A JP2008190765A JP5353099B2 JP 5353099 B2 JP5353099 B2 JP 5353099B2 JP 2008190765 A JP2008190765 A JP 2008190765A JP 2008190765 A JP2008190765 A JP 2008190765A JP 5353099 B2 JP5353099 B2 JP 5353099B2
Authority
JP
Japan
Prior art keywords
fiber
base material
cut
cutting
reinforced plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008190765A
Other languages
Japanese (ja)
Other versions
JP2010023449A (en
Inventor
成道 佐藤
一朗 武田
英輔 和田原
哲也 本橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2008190765A priority Critical patent/JP5353099B2/en
Publication of JP2010023449A publication Critical patent/JP2010023449A/en
Application granted granted Critical
Publication of JP5353099B2 publication Critical patent/JP5353099B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/0081Shaping techniques involving a cutting or machining operation before shaping

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a fiber reinforced resin, which has favorable fluidity and molding following-up properties to a complicated shape and reveals excellent mechanical characteristics and its low scattering characteristics and an excellent dimensional stability when being employed as the fiber reinforced resin. <P>SOLUTION: This method for manufacturing the fiber reinforced resin comprises at least (a) an incision inserting process for producing a short fiber group 4 by inserting a plurality of intermittent incisions 2 in a prepreg base material 1 by thrusting a blanking die arranged with blades, (b) a cutting process for cutting simultaneously with or continuously to the incision inserting process the prepreg base material 1 including the short fiber group 4 into a predetermined shape, (c) a laminating process for laminating a plurality of sheets of the prepreg base materials 1 and (d) a molding process, in which the short fiber group 4 is applied to at least some part of he bent part 8 of a molding die so as to be molded along the bent part 8 of the molding die in order to mold the fiber reinforced resin 9. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、成形時には良好な流動性、成形追従性を有し、繊維強化プラスチックとした場合には、構造材に適用可能な優れた力学物性、その低バラツキ性、優れた寸法安定性を発現する繊維強化プラスチックの製造方法に関する。さらに詳しくは、例えば自動車部材、スポーツ用具、航空機部材等に好適に用いられる繊維強化プラスチックの製造方法に関する。   The present invention has good fluidity and molding followability at the time of molding, and when made into fiber reinforced plastic, it exhibits excellent mechanical properties applicable to structural materials, its low variation, and excellent dimensional stability. The present invention relates to a method for manufacturing fiber reinforced plastic. More specifically, for example, the present invention relates to a method for producing a fiber reinforced plastic suitably used for automobile members, sports equipment, aircraft members and the like.

強化繊維とマトリックス樹脂からなる繊維強化プラスチックは、比強度、比弾性率が高く、力学特性に優れること、耐候性、耐薬品性などの高機能特性を有することなどから産業用途においても注目され、その需要は年々高まりつつある。   Fiber reinforced plastic consisting of reinforced fiber and matrix resin is attracting attention in industrial applications because it has high specific properties, high specific modulus, excellent mechanical properties, weather resistance, chemical resistance, etc. The demand is increasing year by year.

繊維強化プラスチックの成形方法としては、プリプレグ基材と称される連続した強化繊維に熱硬化性樹脂を含浸せしめた半硬化状態の中間基材を積層し、高温高圧釜で加熱加圧することにより熱硬化性樹脂を硬化させ繊維強化プラスチックを成形するオートクレーブ成形が最も一般的に行われている。また、近年では生産効率の向上を目的として、あらかじめ部材形状に賦形した連続繊維基材に熱硬化性樹脂を含浸および硬化させるRTM(レジントランスファーモールディング)成形なども行われている。これらの成形法により得られた繊維強化プラスチックは、連続繊維である所以優れた力学物性を有する。また、連続繊維は規則的な配列であるため、基材の配置により必要とする力学物性に設計することが可能であり、力学物性のバラツキも小さい。しかしながら、一方で連続繊維である所以3次元形状を形成することは難しい、という問題があった。   As a method for molding fiber reinforced plastic, a semi-cured intermediate base material impregnated with a thermosetting resin is laminated on a continuous reinforcing fiber called a prepreg base material, and heat is applied by heating and pressurizing with a high-temperature high-pressure kettle. Autoclave molding in which a curable resin is cured and a fiber-reinforced plastic is molded is most commonly performed. In recent years, for the purpose of improving production efficiency, RTM (resin transfer molding) molding in which a continuous fiber base previously shaped into a member shape is impregnated with a thermosetting resin and cured has been performed. The fiber reinforced plastics obtained by these molding methods have excellent mechanical properties because they are continuous fibers. Further, since the continuous fibers are regularly arranged, it is possible to design the mechanical properties required by the arrangement of the base material, and the variation in the mechanical properties is small. However, there is a problem that it is difficult to form a three-dimensional shape because it is a continuous fiber.

特に複雑な3次元形状の場合、さらにこの問題は深刻であった。複雑な3次元形状に、例えば紙など面内でせん断変形を起こしにくいシートを想像すると分かりやすいが、このような連続繊維基材を賦形した場合には、形状表面を覆いきれない箇所で突っ張りが、基材が余った箇所でシワが発生するため、高品位な賦形が難しい。連続繊維基材であっても、織物基材のように面内でせん断変形が可能な場合は、紙などに比べるとかなり賦形しやすいものの、形状が複雑になれば、やはり繊維の突っ張りやシワが発生してしまう、という問題があった。   This problem was more serious especially in the case of complex three-dimensional shapes. If you imagine a sheet that is difficult to cause shear deformation in a plane, such as paper, in a complicated three-dimensional shape, it is easy to understand. However, when such a continuous fiber substrate is shaped, the surface of the shape cannot be covered. However, since wrinkles are generated at the place where the base material is left, high-quality shaping is difficult. Even if it is a continuous fiber base material, if it can be sheared in-plane like a woven base material, it is much easier to shape than paper etc., but if the shape becomes complicated, fiber tension and There was a problem that wrinkles would occur.

例えば、BMC(バルクモールディングコンパウンド)、SMC(シートモールディングコンパウンド)やスタンパブルシートのように束状の不連続繊維を熱硬化性樹脂や熱可塑性樹脂と混合して分散したプリプレグ基材を用いれば、を有する3次元形状にも成形追従することが分かっているものの、力学的特性が低いため、構造部材には適用できないという問題があった。   For example, if a prepreg base material in which bundled discontinuous fibers are mixed and dispersed with a thermosetting resin or a thermoplastic resin such as BMC (bulk molding compound), SMC (sheet molding compound) or stampable sheet, Although it has been found that the three-dimensional shape having a shape follows the molding, it has a problem that it cannot be applied to a structural member because of its low mechanical characteristics.

上述のような材料の欠点を埋めるべく、連続繊維と熱可塑性樹脂からなるプリプレグに切込を入れることにより、流動可能で力学物性のバラツキも小さくなるとされる基材が開示されている(例えば、特許文献1,2)。しかしながら、SMCと比較すると力学特性が大きく向上し、バラツキが小さくなるものの、構造材として適用するには十分な強度とは言えない。さらには、連続繊維基材と比較すると切込という欠陥を内包した構成であるために、応力集中点である切込が破壊の起点となり、特に引張強度、引張疲労強度が低下する、という問題があった。
特開昭63−247012号公報 特開平9−254227号公報
In order to fill the drawbacks of the above-described materials, a base material that can flow and reduce variations in mechanical properties by cutting into a prepreg composed of continuous fibers and a thermoplastic resin is disclosed (for example, Patent Documents 1 and 2). However, compared with SMC, the mechanical properties are greatly improved and the variation is small, but it cannot be said that the strength is sufficient for application as a structural material. Furthermore, since it has a structure including a notch defect compared to a continuous fiber base material, the notch that is a stress concentration point becomes a starting point of fracture, and in particular, there is a problem that tensile strength and tensile fatigue strength are lowered. there were.
Japanese Unexamined Patent Publication No. 63-247010 Japanese Patent Laid-Open No. 9-254227

本発明は、かかる従来技術の背景に鑑み、良好な流動性、複雑な形状の成形追従性を有し、繊維強化プラスチックとした場合、構造材に適用可能な優れた力学物性、その低バラツキ性、優れた寸法安定性を発現する繊維強化プラスチックの製造方法を提供することにある。   In view of the background of such prior art, the present invention has good fluidity, molding followability of complex shapes, and excellent mechanical properties applicable to structural materials when it is used as a fiber reinforced plastic, and its low variability. Another object of the present invention is to provide a method for producing a fiber reinforced plastic that exhibits excellent dimensional stability.

本発明は、かかる課題を解決するために、次のような手段を採用するものである。すなわち、一方向に引き揃えられた強化繊維とマトリックス樹脂から構成されるプリプレグ基材の積層体をプレス成形し、3次元曲面を有する繊維強化プラスチックを得る繊維強化プラスチックの製造方法であって、少なくとも次の(1)〜(4)の工程を経て繊維強化プラスチックを成形する、繊維強化プラスチックの製造方法である。   The present invention employs the following means in order to solve such problems. That is, a method for producing a fiber-reinforced plastic by press-molding a laminate of a prepreg base material composed of reinforcing fibers and a matrix resin aligned in one direction, and obtaining a fiber-reinforced plastic having a three-dimensional curved surface, It is a manufacturing method of fiber reinforced plastic which forms fiber reinforced plastic through the following processes (1) to (4).

(1)プリプレグ基材に、刃を配置した抜き型を押し当てて複数の断続的または連続的な切込を挿入し、少なくとも一部の強化繊維を10〜100mmの長さに分断して短繊維群を形成する切込挿入工程であって、前記切込と前記強化繊維とのなす角をΘとしたとき、Θの絶対値が2〜25°の範囲内である、切込挿入工程
(2)前記(1)の切込挿入工程と同時または連続して、前記短繊維群を含むプリプレグ基材を所定形状に切り抜き、切抜プリプレグ基材とする切抜工程
(3)前記切抜プリプレグ基材を複数枚積層し、プリプレグ積層体を得る積層工程
(4)成形型上に前記積層体を配置し、前記積層体を前記成形型に押し付けて硬化または固化させ、繊維強化プラスチックを成形するに際し、前記成形型の屈曲部の少なくとも一部に前記短繊維群をあてがい、前記成形型の屈曲部に沿わせる成形工程。
(1) A plurality of intermittent or continuous cuts are inserted into a prepreg base material by pressing a die having a blade disposed thereon, and at least some of the reinforcing fibers are cut into a length of 10 to 100 mm and short. Incision insertion step for forming a fiber group, where the angle between the incision and the reinforcing fiber is Θ, the absolute value of Θ is in the range of 2 to 25 ° ( incision insertion step ( 2) A cutting step of cutting out the prepreg base material including the short fiber group into a predetermined shape at the same time as or in succession to the cutting insertion step of (1) above, and using the cut prepreg base material as the cut prepreg base material. (3) Lamination step of laminating a plurality of sheets to obtain a prepreg laminate (4) When the laminate is placed on a mold, the laminate is pressed against the mold and cured or solidified, and a fiber-reinforced plastic is molded, At least part of the bending part of the mold Serial Ategai short fiber group, the molding step be along the bent portion of the mold.

本発明によれば、良好な流動性、複雑な形状の成形追従性を有し、繊維強化プラスチックとした場合、構造材に適用可能な優れた力学物性、その低バラツキ性、優れた寸法安定性を発現する繊維教科プラスチックを得ることができる。   According to the present invention, it has good fluidity, molding conformability of complex shapes, and when it is made of fiber reinforced plastic, it has excellent mechanical properties applicable to structural materials, its low variation, and excellent dimensional stability. Can be obtained.

本発明者らは、良好な流動性、複雑な形状の成形追従性を有し、繊維強化プラスチックとした場合、優れた力学特性、その低バラツキ性、優れた寸法安定性を発現する、繊維強化プラスチックの製造方法について、鋭意検討し、一方向に引き揃えられた炭素繊維とマトリックス樹脂から構成されるプリプレグ基材という特定の基材に特定の切込パターンを挿入した切込プリプレグ基材を用い、該切込プリプレグ基材を平板状に積層した積層体において切込により特定の範囲内の繊維長さの強化繊維のみから構成される領域を押し付け伸張させて繊維強化プラスチックを成形することにより、かかる課題を一挙に解決することを究明したのである。   The present inventors have good fluidity, molding conformability of complex shapes, and when made into fiber reinforced plastic, exhibit excellent mechanical properties, its low variation, and excellent dimensional stability, fiber reinforced For the plastic manufacturing method, we studied diligently and used a prepreg base material with a specific notch pattern inserted into a specific base material called a prepreg base material composed of carbon fibers and matrix resin aligned in one direction. In the laminate in which the cut prepreg base material is laminated in a flat plate shape, by pressing and stretching a region composed only of reinforcing fibers having a fiber length within a specific range by cutting, a fiber reinforced plastic is molded, They sought to solve this problem all at once.

なお、本発明の製造方法は3次元曲面を有する繊維強化プラスチックを対象とする。繊維強化プラスチックの一部にリブやボスなどがあってもよい。また、本明細書では、特に断らない限り、繊維あるいは繊維を含む用語(例えば“繊維方向”など)において、繊維とは強化繊維を表すものとする。また、本明細書では連続繊維とは100mm以上の繊維長さを持つ強化繊維を指す。本発明で用いられるプリプレグ基材には、一方向に引き揃えられた強化繊維や強化繊維基材に樹脂が完全に含浸した基材に加え、樹脂シートが繊維間に完全に含浸していない状態で一体化した樹脂半含浸基材(セミプレグ:以下、半含浸プリプレグと称することもある。)を含むものとする。   In addition, the manufacturing method of this invention makes object the fiber reinforced plastic which has a three-dimensional curved surface. A part of the fiber reinforced plastic may have ribs or bosses. In the present specification, unless otherwise specified, in the term including fibers or fibers (for example, “fiber direction”), the fibers represent reinforcing fibers. In the present specification, the continuous fiber refers to a reinforcing fiber having a fiber length of 100 mm or more. The prepreg base material used in the present invention is a state in which the resin sheet is not completely impregnated between the fibers, in addition to the reinforcing fiber aligned in one direction and the base material in which the reinforcing fiber base material is completely impregnated with resin. And a resin semi-impregnated base material (semi-preg: hereinafter also referred to as semi-impregnated prepreg).

本発明の成形方法を、図16を用いて説明する。3次元曲面を有する繊維強化プラスチックを成形するにあたり、連続繊維基材を用いて成形する場合は、繊維強化プラスチックの表面形状を展開した平面状のカットパターンを作成し、該カットパターンで裁断した連続繊維基材を成形型に厳密に沿わせて賦形し、積層数分だけそれを繰り返して積層体を作製する必要がある。仮にこのような手順を踏まず、単純なプリプレグ積層体を成形型に配置し成形を行おうとすれば、図16(a)に示すように、繊維が突っ張り、基材が伸張しないために成形型端部に基材未充填部が形成される、あるいは成形物のR部にしわや樹脂リッチ部25が形成される、といった問題が生じる。一方、本発明に係る切込プリプレグ基材を用いて成形する場合には、不連続部が伸張して複雑形状に沿うため、複雑なカットパターンとしなくてもよく、また成形型(すなわち成形後の繊維強化プラスチック)の形状に完全に沿わせて賦形しなくても(すなわち成形後の繊維強化プラスチックの略形状に賦形しても)よいため、一気に平板状に積層した後に成形型上に配置できるので、極めて高効率に繊維強化プラスチックを製造できる。その結果、図16(b)のように、基材未充填部、樹脂リッチ部のない繊維強化プラスチックを得ることができる。   The molding method of the present invention will be described with reference to FIG. In forming a fiber reinforced plastic having a three-dimensional curved surface, when forming using a continuous fiber base material, a flat cut pattern in which the surface shape of the fiber reinforced plastic is developed is created, and continuous cut by the cut pattern. It is necessary to shape the fiber base material along the mold and repeat it for the number of layers to produce a laminate. If a simple prepreg laminate is placed in a mold and molding is performed without following such a procedure, as shown in FIG. 16 (a), the fibers are stretched and the base material does not stretch. There arises a problem that the base material unfilled portion is formed at the end portion, or that the wrinkles and the resin rich portion 25 are formed in the R portion of the molded product. On the other hand, in the case of molding using the cut prepreg base material according to the present invention, the discontinuous portion extends and follows a complicated shape, so that it is not necessary to form a complicated cut pattern. Because it is not necessary to form it in line with the shape of the fiber reinforced plastic) (that is, it may be shaped to the approximate shape of the fiber reinforced plastic after molding), Therefore, fiber-reinforced plastic can be manufactured with extremely high efficiency. As a result, as shown in FIG. 16B, it is possible to obtain a fiber reinforced plastic having no base material unfilled portion and resin rich portion.

本発明の繊維強化プラスチックの製造方法では、(a)プリプレグ基材に切込を挿入することで切込プリプレグ基材を得る切込挿入工程、(b)切込プリプレグ基材を目的の形状に切り抜く切抜工程、(c)切抜後の切込プリプレグ基材を複数枚積層し、プリプレグ積層体を得る積層工程、(d)プリプレグ積層体を成形型内に配置し、マトリックス樹脂を固化する成型工程、といった(a)〜(d)の少なくとも4つの工程を経る。本発明における4つの工程のフローを図1に示す。   In the fiber reinforced plastic manufacturing method of the present invention, (a) a cutting insertion step of obtaining a cutting prepreg base material by inserting a cut into the prepreg base material, and (b) a cutting prepreg base material into a target shape. Cutting process for cutting out, (c) Laminating process for stacking a plurality of cut prepreg substrates after cutting, and obtaining a prepreg laminated body, (d) Molding process for placing the prepreg laminated body in a mold and solidifying the matrix resin , Through at least four steps (a) to (d). The flow of the four steps in the present invention is shown in FIG.

切込挿入工程(a)では、一方向に引き揃えられた強化繊維とマトリックス樹脂(熱硬化性樹脂、あるいは熱可塑性樹脂)から構成されるプリプレグ基材に、刃を配置した抜き型を押し当てることによって複数の断続的または連続的な切込を挿入し、少なくとも一部の強化繊維を10〜100mmの長さ繊維からなる短繊維群に分断する。プリプレグ基材に含まれる強化繊維は長い程、力学特性に優れるものの、成形時には強化繊維が突っ張り、繊維配向方向に伸張することが難しい。そこで、プリプレグ基材であって、伸張させたい方向に繊維が配向している場合、切込を挿入し前記プリプレグ基材中の一部の強化繊維を短繊維とすることで繊維配向方向にも伸張することが可能となる。(以下、前記短繊維群を含むプリプレグ基材を切込プリプレグ基材と称する。)
プリプレグ基材に断続的な切込を挿入する代表的な方法としては、次の3つが考えられる。1つ目は、カッターナイフのような一枚刃を用いて手作業で切込を挿入したり、自動裁断機(指定したCAD図面に沿って前記一枚刃や丸刃を移動させ、基材を裁断する装置)を用いてプリプレグ基材に切込を挿入したりするカッター法である。カッター法は、後述の打抜法、回転刃法と異なり抜き型を作製する必要もなく、パターン変更などには柔軟に対応できる。また、汎用的に使用されている自動裁断機は盤面が数m角級の大型のものが多いため、大型部材成形用の基材を作成するための手段として有効である。ただし、切込の数が多くなればなるほど切込の挿入にかかる時間が長くなるため、量産的な手法とは言い難い。2つ目は、プレス機(昇降機)を用いて、プリプレグ基材に刃を配置した抜き型を間欠的に押し当てることによって、プリプレグ基材に切込を挿入する打抜法である。
In the cutting insertion step (a), a die having a blade is pressed against a prepreg base material composed of reinforcing fibers and a matrix resin (thermosetting resin or thermoplastic resin) aligned in one direction. Thus, a plurality of intermittent or continuous cuts are inserted, and at least some of the reinforcing fibers are divided into short fiber groups each having a length of 10 to 100 mm. The longer the reinforcing fiber contained in the prepreg base material, the better the mechanical properties. However, the reinforcing fiber is stretched at the time of molding, and it is difficult to stretch in the fiber orientation direction. Therefore, in the case of a prepreg base material, when the fibers are oriented in the direction to be stretched, by inserting a cut and making some reinforcing fibers in the prepreg base material into short fibers, the fiber orientation direction is also obtained. It becomes possible to expand. (Hereinafter, the prepreg base material including the short fiber group is referred to as a cut prepreg base material.)
As typical methods for inserting intermittent cuts in the prepreg substrate, the following three methods are conceivable. The first is to insert a cut manually using a single blade such as a cutter knife, or an automatic cutting machine (moving the single blade or round blade according to the specified CAD drawing, Is a cutter method in which a notch is inserted into a prepreg base material using a cutting device. Unlike the punching method and rotary blade method described later, the cutter method does not require a punching die and can flexibly cope with pattern changes. Further, since many automatic cutters used for general purposes have a large size of several m square, the board is effective as a means for preparing a base material for forming a large member. However, as the number of cuts increases, the time taken to insert the cuts becomes longer, so it is difficult to say that this is a mass production method. The second is a punching method in which a cut is inserted into the prepreg base material by intermittently pressing a punching die having a blade disposed on the prepreg base material using a press machine (elevator).

図2には、打抜法による切込プリプレグ基材の製造方法の一例を示す。打抜法は、1回のプレスにより多量の切込を一度にプリプレグ基材に挿入することができるなど生産効率もよく、抜き型の加工も容易である。3つ目は、予め刃を配置した回転刃に連続的にプリプレグ基材を押し当てることにより、プリプレグ基材に切込を挿入する回転刃法である。   In FIG. 2, an example of the manufacturing method of the cut prepreg base material by the punching method is shown. The punching method has a high production efficiency such that a large amount of cuts can be inserted into the prepreg substrate at a time by a single press, and punching is easy. The third is a rotary blade method that inserts a cut into a prepreg base material by continuously pressing the prepreg base material against a rotary blade in which a blade is previously arranged.

図3には、回転刃法による切込プリプレグ基材の製造方法の一例を示す。回転刃法では、前述のカッター法、打抜法と比較しても連続的に切込を挿入することが可能であり、切込の挿入速度を速く設定できるため有利である。本発明においては、切込を挿入する手段として、上記のいずれの手法を用いてもよいが、量産性を鑑みると打抜法あるいは回転刃法のいずれかの手段を用いるのがよい。   In FIG. 3, an example of the manufacturing method of the cutting prepreg base material by a rotary blade method is shown. The rotary blade method is advantageous in that it is possible to insert a cut continuously even when compared with the cutter method and the punching method described above, and the cutting insertion speed can be set faster. In the present invention, any of the above-described methods may be used as means for inserting the incision, but in view of mass productivity, it is preferable to use either the punching method or the rotary blade method.

切抜工程(b)では、前記切込挿入工程と同時または連続して、前記切込プリプレグプリプレグ基材を切り抜く(以後、前記切抜後のプリプレグ基材を切抜プリプレグ基材と称することもある)。本発明の製造方法では、切込の位置精度が得られる繊維強化プラスチックの強度・外観品位のバラツキを支配する。従来の技術では、切込挿入工程と切抜工程とが独立していたために、切抜プリプレグ基材の外縁と切込との相対位置がまちまちとなり、繊維強化プラスチックとした際の強度・外観品位のバラツキが大きくなっていた。本発明では、切込挿入工程と切抜工程とを同時または連続して実施することにより、プリプレグ基材に挿入されている切込に対して、精度よく切抜プリプレグ基材を作製することが可能となる。なお、本発明における“前記切込挿入工程と連続して“とは、プリプレグ基材を送る装置が切込挿入工程と切抜工程とで同一であることを意味する。   In the cutting step (b), the cut prepreg prepreg base material is cut out simultaneously or continuously with the cutting insertion step (hereinafter, the cut prepreg base material may be referred to as a cut prepreg base material). In the manufacturing method of the present invention, the variation in strength and appearance quality of the fiber reinforced plastic that can obtain the positional accuracy of the cut is controlled. In the conventional technology, since the cutting insertion process and the cutting process are independent, the relative position between the outer edge of the cut prepreg base material and the cut varies, resulting in variations in strength and appearance when using fiber reinforced plastic. Was getting bigger. In the present invention, by performing the cutting insertion step and the cutting step simultaneously or sequentially, it is possible to produce a cut prepreg base material with high accuracy with respect to the cut inserted in the prepreg base material. Become. In the present invention, “continuously with the cutting insertion process” means that the apparatus for feeding the prepreg base material is the same in the cutting insertion process and the cutting process.

切抜を具体的に行う手段としては、前述のカッター法、打抜法、回転刃法のいずれを用いてもよい。図2には切込挿入工程と切抜工程において、共に打抜法を採用した例を、また図3には、切込挿入工程と切抜工程において、共に回転刃法を採用した例を示している。また、切抜工程は切込挿入工程の後に行うことが好ましい。もし順序が逆の場合、切抜プリプレグ基材は周囲を把持されていないため、切込挿入時に基材が動き、意図した位置に切込を挿入するのが難しくなる。   Any of the above-described cutter method, punching method, and rotary blade method may be used as means for specifically performing the cutting. FIG. 2 shows an example in which the punching method is used in both the cutting insertion process and the cutting process, and FIG. 3 shows an example in which the rotary blade method is used in both the cutting insertion process and the cutting process. . Moreover, it is preferable to perform a cutting process after a cutting insertion process. If the order is reversed, the cut prepreg base material is not gripped around, and the base material moves during insertion of the cut, making it difficult to insert the cut at the intended position.

本発明に係る切抜プリプレグ基材に含まれる前記短繊維群の繊維長さLは10〜100mmの範囲内とするのがよい。短繊維群の繊維長さLを100mm以下とすることにより、成形時に該箇所は流動可能、特に繊維配向方向にも流動可能となり、複雑な形状への形状追従性にも優れる。前記短繊維群がない場合、すなわち連続繊維のみの場合、繊維配向方向には流動しないため、複雑形状を形成することは出来ない。また、繊維長さLを10mm未満にすると、さらに流動性が向上するが、他の用件を満たしても構造材として必要な高力学特性は得られない。流動性と力学特性との関係を鑑みると、さらに好ましくは20〜60mmの範囲内である。切込のパターンによっては、一部に繊維長さが10mm以下の繊維が形成されてしまうこともあるが、繊維長さが10mmとなる繊維が少なければ少ないほどよい。さらに好ましくは、10mm以下の繊維が配向している面積が、短繊維群の面積に占める割合の20%より小さいのがよい。   The fiber length L of the short fiber group included in the cut-out prepreg substrate according to the present invention is preferably in the range of 10 to 100 mm. By setting the fiber length L of the short fiber group to 100 mm or less, the portion can flow at the time of molding, in particular, it can also flow in the fiber orientation direction, and has excellent shape followability to a complicated shape. When there is no short fiber group, that is, when only continuous fibers are used, a complicated shape cannot be formed because the fibers do not flow in the fiber orientation direction. In addition, when the fiber length L is less than 10 mm, the fluidity is further improved, but high mechanical properties necessary as a structural material cannot be obtained even if other requirements are satisfied. Considering the relationship between fluidity and mechanical properties, it is more preferably in the range of 20 to 60 mm. Depending on the cutting pattern, fibers with a fiber length of 10 mm or less may be formed in part, but the fewer the fibers with a fiber length of 10 mm, the better. More preferably, the area in which fibers of 10 mm or less are oriented is smaller than 20% of the proportion of the short fiber group.

積層工程(c)では、複数の前記切抜プリプレグ基材を積層し、プリプレグ積層体を得る。このとき、前記短繊維群を含む切抜プリプレグ基材を少なくとも一部に有するように、切抜プリプレグ基材をその繊維方向が少なくとも2方向以上に配向して一体化されているように複数枚積層するのが好ましい。2方向以上に配向させることにより、流動性・力学物性の異方性の小さい繊維強化プラスチックを得ることができる。また、例えば前記短繊維群を含むプリプレグ基材と切込のない一方向基材や織物基材であるプリプレグ基材を用いてハイブリッド積層してもよい。   In the lamination step (c), a plurality of the cut prepreg base materials are laminated to obtain a prepreg laminate. At this time, a plurality of cut prepreg base materials are laminated so that the fiber directions are aligned in at least two directions and integrated so that at least a part of the cut prepreg base material including the short fiber group is included. Is preferred. By orienting in two or more directions, a fiber reinforced plastic having low anisotropy of fluidity and mechanical properties can be obtained. Further, for example, hybrid lamination may be performed by using a prepreg base material including the short fiber group and a prepreg base material that is a unidirectional base material or a woven base material without cutting.

成形工程(d)では、前記プリプレグ積層体を、加熱した成形型に配置し加圧加熱する(熱可塑性樹脂の場合)、あるいは加熱した成形型に配置し加圧冷却する(熱可塑性樹脂の場合)ことで樹脂を固化させ、繊維強化プラスチックとする。樹脂を硬化あるいは固化し、繊維強化プラスチックとすることによりはじめて、軽量でありながら高強度かつ高剛性な部材として使用することが可能となる。樹脂を固化させる方法、すなわち繊維強化プラスチックを成形する方法としては、プレス成形、VaRTM成形、オートクレーブ成形、シートワインディング成形等が挙げられる。中でも、生産効率を考慮するとプレス成形が好ましい。   In the molding step (d), the prepreg laminate is placed in a heated mold and heated under pressure (in the case of a thermoplastic resin), or placed in a heated mold and cooled under pressure (in the case of a thermoplastic resin). ) To solidify the resin into fiber-reinforced plastic. Only when the resin is cured or solidified to obtain a fiber-reinforced plastic can it be used as a member that is lightweight but has high strength and high rigidity. Examples of the method for solidifying the resin, that is, the method for molding the fiber reinforced plastic include press molding, VaRTM molding, autoclave molding, sheet winding molding, and the like. Among these, press molding is preferable in consideration of production efficiency.

本発明は、成形工程(d)において、成形型上に前記積層体を配置し、前記積層体を前記成形型に押し付けて硬化または固化させ、繊維強化プラスチックを成形するに際し、前記成形型の屈曲部の少なくとも一部に前記短繊維群をあてがうことを特徴とする。前記短繊維群を成形型の屈曲部にあてがい、成形型に押し付けることで、積層体を3次元曲面に沿わせることができる。なお、本発明の製造方法は、その形状が平滑面であったり、ゆるやかな曲面であったりした場合に適用可能であるが、さらにその形状の一部にリブあるいは立ち面を有する3次元的に複雑な部材を成形する場合は、本発明の製造方法を用いるメリットが大きい。仮に連続繊維プリプレグ基材の積層体を加熱加圧し、立ち面、あるいはリブ形状を含む部材を単純にプレス成形しようとすれば、繊維が成形型の形状に沿うことができず、あるいは成形型のキャビティの端部まで繊維が充填されず、良好な品位の成形体を得るのが非常に困難である。本発明のように、短繊維群を含むプリプレグ基材を使用すれば、立ち面、あるいはリブ形状を含む部材であっても、プレス成形時に基材が高い流動性を発揮するために容易に良好な品位の成形体を得ることが可能である。   In the molding step (d), the laminate is placed on a mold, and the laminate is pressed against the mold to be cured or solidified, and the fiber-reinforced plastic is bent. The short fiber group is assigned to at least a part of the portion. By applying the short fiber group to the bent portion of the mold and pressing it against the mold, the laminate can be made to follow a three-dimensional curved surface. The manufacturing method of the present invention can be applied when the shape is a smooth surface or a gently curved surface, but in addition, a three-dimensionally having a rib or a standing surface in a part of the shape. When molding a complicated member, the merit of using the manufacturing method of the present invention is great. If the laminated body of continuous fiber prepreg base material is heated and pressed and a member including a standing surface or a rib shape is simply press-molded, the fibers cannot conform to the shape of the mold, or the mold Fibers are not filled up to the end of the cavity, and it is very difficult to obtain a molded article of good quality. As in the present invention, if a prepreg base material containing a short fiber group is used, even if it is a member including a standing surface or a rib shape, the base material easily exhibits good fluidity during press molding. It is possible to obtain a molded article of a high quality.

本発明に係る成形方法としては、前記積層体よりも前記成形型を高温にして、前記成形型に前記積層体を押し付けて樹脂を硬化または固化させるのがよい。このとき、積層体を成形型に配置し、成形型の温度を適切な温度に上昇させた後、積層体を成形型に押し当てても構わない。積層体の温度が上昇すると共に樹脂の粘度が一時的に低下し、基材が流動性を増す。このときに積層体を成形型に押し当てることで、積層体を所定の形状に沿わせることが可能となる。熱硬化性樹脂の場合は、その後さらに積層体に熱を加えると樹脂が硬化し、所望の繊維強化プラスチックを得ることができる。一方、熱可塑性樹脂の場合は、その後成形型の温度を下げ、積層体の温度を下げることにより樹脂が固化し、所望の繊維強化プラスチックを得ることができる。   As a molding method according to the present invention, it is preferable that the mold is heated to a temperature higher than that of the laminate, and the laminate is pressed against the mold to cure or solidify the resin. At this time, the laminated body may be placed in a mold, and the temperature of the mold may be raised to an appropriate temperature, and then the laminated body may be pressed against the mold. As the temperature of the laminate rises, the viscosity of the resin decreases temporarily, and the base material increases the fluidity. At this time, the laminated body can be made to conform to a predetermined shape by pressing the laminated body against the mold. In the case of a thermosetting resin, when the laminate is further heated thereafter, the resin is cured and a desired fiber-reinforced plastic can be obtained. On the other hand, in the case of a thermoplastic resin, the resin is solidified by lowering the temperature of the mold and then lowering the temperature of the laminate, and a desired fiber-reinforced plastic can be obtained.

さらに前記樹脂が熱可塑性樹脂の場合は、前記積層体を加熱した後に、前記積層体よりも前記成形型を低温にして、前記積層体を前記成形型に押し付けて固化させるのがよい。加熱した積層体を低温の成形型に配置し、積層体の温度が高く樹脂の粘度が低いうちに成形型に基材を押し付けることで、積層体を所定の形状に沿わせることができる。また、積層体の温度をさらに低下させることで、樹脂を固化させ所望の繊維強化プラスチックを得ることができる。この場合、成形型の温度を昇温させる必要がないため、成形時間をさらに短縮することができる。   Further, when the resin is a thermoplastic resin, after heating the laminated body, it is preferable that the molding die is cooled to a temperature lower than that of the laminated body, and the laminated body is pressed against the molding die to be solidified. By placing the heated laminate in a low-temperature mold and pressing the substrate against the mold while the temperature of the laminate is high and the viscosity of the resin is low, the laminate can be made to conform to a predetermined shape. Further, by further lowering the temperature of the laminate, the resin can be solidified and a desired fiber-reinforced plastic can be obtained. In this case, since it is not necessary to raise the temperature of the mold, the molding time can be further shortened.

本発明に用いられる強化繊維としては、例えば、アラミド繊維、ポリエチレン繊維、ポリパラフェニレンベンズオキサドール(PBO)繊維などの有機繊維、ガラス繊維、炭素繊維、炭化ケイ素繊維、アルミナ繊維、チラノ繊維、玄武岩繊維、セラミックス繊維などの無機繊維、ステンレス繊維やスチール繊維などの金属繊維、その他、ボロン繊維、天然繊維、変性した天然繊維などを繊維として用いた強化繊維などが挙げられる。その中でも特に炭素繊維は、これら強化繊維の中でも軽量であり、しかも比強度および比弾性率において特に優れた性質を有しており、さらに耐熱性や耐薬品性にも優れていることから、軽量化が望まれる自動車パネルなどの部材に好適である。なかでも、高強度の炭素繊維が得られやすいPAN系炭素繊維が好ましい。   Examples of reinforcing fibers used in the present invention include organic fibers such as aramid fibers, polyethylene fibers, polyparaphenylene benzoxador (PBO) fibers, glass fibers, carbon fibers, silicon carbide fibers, alumina fibers, tyrano fibers, and basalts. Examples thereof include inorganic fibers such as fibers and ceramic fibers, metal fibers such as stainless fibers and steel fibers, and other reinforcing fibers using boron fibers, natural fibers, modified natural fibers and the like as fibers. Among them, carbon fiber is particularly lightweight among these reinforcing fibers, and has particularly excellent properties in specific strength and specific modulus, and is also excellent in heat resistance and chemical resistance. It is suitable for members such as automobile panels that are desired to be made. Among these, PAN-based carbon fibers that can easily obtain high-strength carbon fibers are preferable.

前述のように、本発明に係るプリプレグ基材に用いられるマトリックス樹脂としては、熱硬化性樹脂・熱可塑性樹脂のいずれを用いてもよい。   As described above, as the matrix resin used for the prepreg base material according to the present invention, either a thermosetting resin or a thermoplastic resin may be used.

一般にマトリックス樹脂が熱硬化性樹脂である場合、プリプレグ基材は室温においてタック性を有している。そのため該基材を単純に重ねるのみで該基材が粘着により一体化され、容易に積層体を作製することが可能である。さらに、熱硬化性樹脂から構成されるプリプレグ積層体は、室温において優れたドレープ性を有するため、例えば、凹凸部を有する型を用いて成形する場合、予めその凹凸に沿わした予備賦形を容易に行うことが出来る。この予備賦形により成形性は向上し、流動の制御も容易になる。熱硬化性樹脂の候補としては、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂、エポキシアクリレート樹脂、ウレタンアクリレート樹脂、フェノキシ樹脂、アルキド樹脂、ウレタン樹脂、マレイミド樹脂、シアネート樹脂などが挙げられる。さらに好ましくは熱硬化性樹脂の中でも、エポキシ樹脂や不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂、アクリル樹脂等や、それらの混合樹脂がよい。これらの樹脂の常温(25℃)における樹脂粘度としては、1×106Pa・s以下であることが好ましく、この範囲内であれば本発明を満たすタック性およびドレープ性を有するプリプレグ基材を得ることができる。中でもエポキシ樹脂は炭素繊維と組み合わせて得られる強化繊維複合材料としての力学特性に最も優れている。   In general, when the matrix resin is a thermosetting resin, the prepreg base material has tackiness at room temperature. Therefore, it is possible to easily produce a laminate by simply stacking the base materials and integrating the base materials by adhesion. Furthermore, since a prepreg laminate composed of a thermosetting resin has excellent drapeability at room temperature, for example, when forming using a mold having a concavo-convex part, preliminary shaping along the concavo-convex part in advance is easy. Can be done. This pre-shaping improves moldability and facilitates flow control. Candidates for thermosetting resins include, for example, epoxy resins, unsaturated polyester resins, vinyl ester resins, phenol resins, epoxy acrylate resins, urethane acrylate resins, phenoxy resins, alkyd resins, urethane resins, maleimide resins, and cyanate resins. Can be mentioned. More preferably, among the thermosetting resins, an epoxy resin, an unsaturated polyester resin, a vinyl ester resin, a phenol resin, an acrylic resin, or a mixed resin thereof is preferable. The resin viscosity at normal temperature (25 ° C.) of these resins is preferably 1 × 10 6 Pa · s or less, and within this range, a prepreg base material having tackiness and draping properties satisfying the present invention is obtained. Can do. Among them, the epoxy resin is most excellent in mechanical properties as a reinforced fiber composite material obtained in combination with carbon fiber.

一方、マトリックス樹脂を熱可塑性樹脂とすれば、一般に熱硬化性樹脂よりも成形に要する時間を短くすることができ、量産性は熱硬化性樹脂よりも優れている。ただし、熱可塑性樹脂を用いたプリプレグ基材は室温においてタック性を有してらず、単純にこれらを重ねたのみの基材を成形型に投入すれば、該基材同士が滑るため積層構成がずれてしまい、結果として繊維の配向ムラの大きい繊維強化プラスチックとなる。特に、凹凸部を有する型で成形する際は、その差異が顕著に現れる。そのため、基材を投入する前に予め複数のプリプレグ基材を加熱・冷却処理などして連結し積層体とすることで、基材の取り扱い性も良好となり、繊維強化プラスチックとした場合には、繊維の配向ムラも小さくすることが可能となる。本発明に用いる熱可塑性樹脂の候補としては、ポリアミド、ポリアセタール、ポリアクリレート、ポリスルフォン、ABS、ポリエステル、アクリル、ポリブチレンテレフタラート(PBT)、ポリエチレンテレフタレート(PET)、ポリエチレン、ポリプロピレン、ポリフェニレンスルフィド(PPS)、ポリエーテルエーテルケトン(PEEK)、液晶ポリマー、塩ビ、ポリテトラフルオロエチレンなどのフッ素系樹脂、シリコーンなどが挙げられる。   On the other hand, if the matrix resin is a thermoplastic resin, generally, the time required for molding can be shortened as compared with the thermosetting resin, and the mass productivity is superior to the thermosetting resin. However, a prepreg base material using a thermoplastic resin does not have a tack property at room temperature. As a result, it becomes a fiber reinforced plastic having a large fiber orientation unevenness. In particular, when molding with a mold having an uneven portion, the difference appears remarkably. Therefore, by connecting a plurality of prepreg base materials in advance by heating / cooling treatment, etc. before putting the base material into a laminate, the base material also has good handleability. It is also possible to reduce the fiber orientation unevenness. Candidates for the thermoplastic resin used in the present invention include polyamide, polyacetal, polyacrylate, polysulfone, ABS, polyester, acrylic, polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polyethylene, polypropylene, polyphenylene sulfide (PPS). ), Polyether ether ketone (PEEK), liquid crystal polymer, vinyl chloride, polytetrafluoroethylene and other fluororesins, and silicone.

さらに、図4のように切込挿入工程と切抜工程との2つの工程を同一の成形型で行われることが好ましい。これにより、切抜プリプレグ基材の外縁と切込との相対位置がさらに精度よいものとなり、より強度・外観品位のバラツキの少ない繊維強化プラスチックを量産することができる。また、前記2つの工程を同一の抜き型を用いて行うことで、基材を裁断する機構を2つ設ける必要がなくなり、設備費を大幅に軽減することもできる。   Furthermore, it is preferable that the two steps of the cutting insertion step and the cutting step are performed in the same mold as shown in FIG. Thereby, the relative position between the outer edge of the cut prepreg substrate and the cut becomes more accurate, and fiber-reinforced plastic with less variation in strength and appearance quality can be mass-produced. Further, by performing the two steps using the same punching die, it is not necessary to provide two mechanisms for cutting the base material, and the equipment cost can be greatly reduced.

また、前記切込挿入工程において、切込と強化繊維となす角度Θ(以下、切込角度と称することもある)の絶対値は2〜25°の範囲内である必要がある。このときの切込パターンの一例を図5に示す。Θの絶対値が25°より大きくても流動性は得ることができ、従来のSMC等と比較して高い力学特性は得ることができるが、特にΘの絶対値が25°以下であることで力学特性の向上が著しい。一方、Θの絶対値は2°より小さいと流動性も力学特性も十分得ることが出来るが、切込を安定して入れることが難しくなる。すなわち、繊維に対して切込が寝てくると、切込を入れる際、繊維が刃から逃げやすく、また、短繊維群の繊維長さLを100mm以下とするためには、Θの絶対値が2°より小さいと少なくとも切込同士の最短距離が0.9mmより小さくなるなど、生産安定性に欠ける。また、このように切込同士の距離が小さいと積層時の取り扱い性が難しくなるという問題がある。切込の制御のしやすさと力学特性との関係を鑑みると、さらに好ましくは5〜15°の範囲内である。なお、本発明におけるΘとは、切込上の任意の点を点Xとしたとき、点Xにおける繊維配向方向と切込とのなす角をθ(X)とすれば、Θはθ(X)の切込上の平均値、すなわち(式1)によって与えられる値とする。ここで、図6に示すように、切込の端点をそれぞれ点A、点Bとし、点Aと点Bを結び、切込に沿った曲線をCとしており、また点Xにおける曲線Cの微小線分をdsとしている。 In the notch insertion step, the absolute value of the angle Θ (hereinafter also referred to as the notch angle) between the notch and the reinforcing fiber needs to be in the range of 2 to 25 °. An example of the cutting pattern at this time is shown in FIG. Even if the absolute value of Θ is larger than 25 °, fluidity can be obtained, and higher mechanical properties can be obtained as compared with conventional SMC, etc., but in particular, when the absolute value of Θ is 25 ° or less. Significant improvement in mechanical properties. On the other hand, if the absolute value of Θ is smaller than 2 °, sufficient fluidity and mechanical properties can be obtained, but it is difficult to make a stable cut. That is, when the incision lies on the fiber, when the incision is made, the fiber easily escapes from the blade, and in order to set the fiber length L of the short fiber group to 100 mm or less, the absolute value of Θ If it is smaller than 2 °, production stability is lacking, such as at least the shortest distance between notches being smaller than 0.9 mm. In addition, when the distance between the cuts is small as described above, there is a problem that handling at the time of stacking becomes difficult. In view of the relationship between the ease of controlling the cutting and the mechanical characteristics, it is more preferably in the range of 5 to 15 °. Note that Θ in the present invention means that when an arbitrary point on the cut is a point X, if the angle formed by the fiber orientation direction at the point X and the cut is θ (X), Θ is θ (X ) Is the average value on the cut, that is, the value given by (Equation 1). Here, as shown in FIG. 6, the end points of the incision are point A and point B, the points A and B are connected, the curve along the incision is C, and the curve C at the point X is very small. The line segment is ds.

Figure 0005353099
Figure 0005353099

以下、本発明において、プリプレグ基材に挿入する切込パターンの好ましい例を、図7〜10を用いて説明する。   Hereinafter, the preferable example of the cutting pattern inserted in a prepreg base material in this invention is demonstrated using FIGS.

強化繊維が一方向に引き揃えられたプリプレグ基材上に制御されて整列した切込2を複数入れる。繊維配向方向の対になる切込2同士で繊維が分断され、その間隔31を10〜100mmとすることで、実質的にプリプレグ基材の短繊維群に含まれる強化繊維すべてを繊維長さLが10〜100mmにすることができる。また、図5に示すように、切込と強化繊維となす角度17をΘとするとΘの絶対値は全面で2〜25°の範囲内である。図7a)ではΘの絶対値が90°、b)では25°より大きい例を示しているが、これらの例では本発明により得られうる高強度を発現することは出来ない。   A plurality of controlled and aligned cuts 2 are made on a prepreg base material in which reinforcing fibers are aligned in one direction. The fibers are divided between the cuts 2 that form pairs in the fiber orientation direction, and the interval 31 is set to 10 to 100 mm, so that substantially all of the reinforcing fibers included in the short fiber group of the prepreg base material have a fiber length L. Can be 10 to 100 mm. As shown in FIG. 5, if the angle 17 between the cut and the reinforcing fiber is Θ, the absolute value of Θ is in the range of 2 to 25 ° over the entire surface. FIG. 7a) shows an example where the absolute value of Θ is greater than 90 ° and b) is greater than 25 °. However, in these examples, the high strength that can be obtained by the present invention cannot be expressed.

図8には、5つの異なる切込パターンを有するプリプレグ基材が示されている。図8a)の切込プリプレグ基材3は、等間隔をもって配列された斜行した連続、直線状の切込2を有する。図8b)の切込プリプレグ基材3は、2種類の間隔をもって配列された斜行した連続、直線状の切込を有する。図8c)の切込プリプレグ基材3は、等間隔をもって配列された連続、曲線(蛇行線)の切込2を有する。図8d)の切込プリプレグ基材3は、等間隔をもって配列され、かつ、2種類の異なる方向に斜行した断続的な直線状の切込2を有する。図8e)の切込プリプレグ基材3は、等間隔をもって配列された斜行した断続的な直線状の切込2を有する。切込は図8c)のように曲線でも構わないが図8a)、b)、d)、e)のように直線状である方が流動性をコントロールしやすく好ましい。また、切込により分断される強化繊維の長さLは、図8b)のように一定でなくてもよいが、繊維長さLが全面で一定であると流動性をコントロールしやすく、強度ばらつきをさらに押さえることができるため好ましい。なお、ここで規定の直線状とは、幾何学上の直線の一部をなしている状態を意味するが、前記流動性のコントロールを容易にするという効果を損なわない限り、前記幾何学上の直線の一部をなしていない箇所があっても差支えが無く、その結果、繊維長さLが全面で一定とはならない箇所があっても(この場合、繊維長さLが実質的に全面で一定であると言えるので)差支えが無い。   FIG. 8 shows a prepreg substrate having five different cutting patterns. The cut prepreg substrate 3 in FIG. 8 a) has skewed continuous, straight cuts 2 arranged at equal intervals. The cut prepreg substrate 3 in FIG. 8b) has skewed continuous, straight cuts arranged at two different intervals. The cut prepreg substrate 3 in FIG. 8c) has continuous, curved (meandering) cuts 2 arranged at equal intervals. The cut prepreg base material 3 of FIG. 8d) has intermittent linear cuts 2 arranged at equal intervals and skewed in two different directions. The cut prepreg substrate 3 in FIG. 8e) has skewed intermittent linear cuts 2 arranged at equal intervals. The incision may be a curved line as shown in FIG. 8c), but a straight line as shown in FIGS. 8a), b), d), and e) is preferable because the flowability is easily controlled. Further, the length L of the reinforcing fiber divided by the cut may not be constant as shown in FIG. 8b), but if the fiber length L is constant over the entire surface, the fluidity can be easily controlled and the strength varies. Can be further suppressed, which is preferable. Here, the prescribed linear shape means a state in which a part of a geometrical straight line is formed. However, as long as the effect of facilitating the fluidity control is not impaired, Even if there is a portion that does not form a part of the straight line, there is no problem. As a result, even if there is a portion where the fiber length L is not constant over the entire surface (in this case, the fiber length L is substantially over the entire surface). It can be said that it is constant).

さらに好ましい例[1]としては、図8a)〜c)のように、切込2aが連続して入れられているのがよい。例[1]のパターンでは、切込2aが断続的でないため、切込端部付近での流動乱れが起きず、切込2aを入れた領域では、すべての繊維長さLを一定とすることができ、流動が安定している。切込2aが連続的に入れられているため、切込プリプレグ基材3がばらばらになってしまうのを防ぐ目的で、切込プリプレグ基材の周辺部に切込がつながっていない領域を設けたり、切込の入っていないシート状の離型紙やフィルムなどの支持体で把持したりすることで、取り扱い性を向上させることができる。   As a more preferable example [1], it is preferable that the cuts 2a are continuously made as shown in FIGS. 8a) to 8c). In the pattern of Example [1], since the cut 2a is not intermittent, flow disturbance does not occur in the vicinity of the cut end, and all the fiber lengths L are constant in the region where the cut 2a is inserted. The flow is stable. Since the cuts 2a are continuously made, in order to prevent the cut prepreg base material 3 from falling apart, an area where the cuts are not connected to the periphery of the cut prepreg base material is provided. The handleability can be improved by gripping with a support such as a sheet-like release paper or film without a cut.

また、他の好ましい例[2]としては、図5のように、切込を強化繊維の垂直方向に投影した長さ18をWsとしたとき、Wsが30μm〜100mmの範囲内である断続的な切込2bが切込プリプレグ基材3全面に設けられており、切込2b1と前記切込2b1を繊維配向方向に隣接した切込2b2の幾何形状が同一であるとよい。ここで、“切込が、強化繊維の垂直方向に投影した投影長さWs”とは図5に示すとおり、プリプレグ層の面内において、切込を強化繊維の垂直方向(繊維直交方向14)を投影面として、切込から該投影面に垂直(繊維配向方向13)に投影した際の長さ18を指す。Wsが30μm以下となると、切込の制御が難しく、切込プリプレグ基材全面に渡ってLが10〜100mmとなるよう、保障することが難しい。すなわち、切込により切断されていない繊維が存在すると基材の流動性は著しく低下するが、多めに切込を入れるとLが10mmを下回る部位が出てきてしまう、という問題点がある。逆にWsが10mmより大きいときにはほぼ強度が一定に落ち着く。すなわち、繊維束端部がある一定以上に大きくなると、破壊が始まる荷重がほぼ同等となる。図5では、LとWsがいずれも一種類である例を示している。いずれの切込2b(例えば4b1)も繊維方向に平行移動することで重なる他の切込2b(例えば4b2)がある。前記繊維方向の対になる切込2b同士により分断される繊維長さLよりさらに短い繊維長さで隣接する切込により分断され繊維が分断される幅19が存在することによって、安定的に繊維長さを100mm以下で切込プリプレグ基材3を製造できる。例[2]のパターンでは、得られた切込プリプレグ基材3を積層する際、切込が断続的なため取り扱い性に優れる。図8d)、e)にはその他のパターンも例示したが、上記条件を満たせばどのようなパターンでも構わない。 Further, as another preferable example [2], as shown in FIG. 5, when Ws is a length 18 obtained by projecting the cut in the vertical direction of the reinforcing fiber, Ws is intermittent within a range of 30 μm to 100 mm. The notch 2b is provided on the entire surface of the notched prepreg base 3, and the notch 2b1 and the notch 2b2 adjacent to the notch 2b1 in the fiber orientation direction may have the same geometric shape. Here, the “projection length Ws projected by the cut in the vertical direction of the reinforcing fiber” is the vertical direction of the reinforcing fiber (fiber orthogonal direction 14) in the plane of the prepreg layer as shown in FIG. Is the projection plane, and refers to the length 18 when projected perpendicularly to the projection plane (fiber orientation direction 13). When Ws is 30 μm or less, it is difficult to control the cutting, and it is difficult to ensure that L is 10 to 100 mm over the entire surface of the cut prepreg substrate. That is, if there is a fiber that is not cut by cutting, the fluidity of the base material is remarkably lowered. However, if a large amount of cutting is made, there is a problem that a portion where L is less than 10 mm appears. Conversely, when Ws is greater than 10 mm, the strength is almost constant. That is, when the fiber bundle end becomes larger than a certain value, the load at which breakage starts becomes substantially equal. FIG. 5 shows an example in which both L and Ws are one type. Any of the cuts 2b (for example, 4b1) has another cut 2b (for example, 4b2) that overlaps by translating in the fiber direction. By having a width 19 where the fiber is divided by adjacent cuts and having a fiber length L that is shorter than the fiber length L divided by the cuts 2b that form a pair in the fiber direction, the fibers are stably The cut prepreg base material 3 can be manufactured with a length of 100 mm or less. In the pattern of Example [2], when the obtained cut prepreg base material 3 is laminated, the cut is intermittent, and thus the handleability is excellent. Although other patterns are illustrated in FIGS. 8D and 8E, any pattern may be used as long as the above conditions are satisfied.

好ましい例[2]において、力学特性の観点から好ましくは、強化繊維の垂直方向に投影した長さWsが0.1mm〜1.5mmの範囲内であるのがよい。Wsを小さくすることにより、一つ一つの切込により分断される繊維量が減り、強度向上が見込まれる。特に、Wsが1.5mm以下とすることで、大きな強度向上が見込まれる。また、切込長さが長ければ長いほど、積層作業時に基材の切込が開口し易くなり、基材の取り扱い性が大幅に低下する。切込が1.5mm以下であれば、積層作業時に切込が開口しにくく、基材の取り扱い性の良い切込プリプレグ基材となる。なお、本発明において、切込角度Θの絶対値が2〜25°であることにより、切込長さに対して投影長さWsを小さくすることができる。そのため、Wsが1.5mm以下という極小の切込であっても、工業的に安定して設けることが可能となる。また、プリプレグ基材に刃を押し当てることによって切込を挿入しようとする場合、裁断時に炭素繊維が繊維直交方向に蛇行し刃から逃げるために、繊維をうまく裁断できないことがある。このような繊維逃げの影響を小さくするためには、Wsは0.1mm以上であることが好ましい。より好ましくはWsを0.2mm以上とすることで、より連続繊維を残すことなくプリプレグ基材に切込を挿入することが可能となる。   In the preferred example [2], the length Ws projected in the vertical direction of the reinforcing fiber is preferably in the range of 0.1 mm to 1.5 mm from the viewpoint of mechanical properties. By reducing Ws, the amount of fibers cut by each cutting is reduced, and strength improvement is expected. In particular, when Ws is 1.5 mm or less, a great improvement in strength is expected. In addition, the longer the cut length, the easier it is for the base material notches to open during the laminating operation, and the handleability of the base material is greatly reduced. If the cut is 1.5 mm or less, the cut is less likely to open during the laminating operation, and a cut prepreg base material with good substrate handling properties is obtained. In the present invention, when the absolute value of the cutting angle Θ is 2 to 25 °, the projection length Ws can be reduced with respect to the cutting length. Therefore, even if it is the minimum notch | incision whose Ws is 1.5 mm or less, it becomes possible to provide industrially stably. In addition, when trying to insert a cut by pressing the blade against the prepreg base material, the carbon fiber may meander in the direction perpendicular to the fiber at the time of cutting and escape from the blade, so that the fiber may not be cut well. In order to reduce the influence of such fiber escape, Ws is preferably 0.1 mm or more. More preferably, by setting Ws to 0.2 mm or more, it becomes possible to insert the cut into the prepreg base material without leaving more continuous fibers.

本発明に用いる切込プリプレグ基材の特徴を図9、10、11を用いて説明する。本発明の比較として図9には、切込2が繊維16となす角度Θの絶対値が90°である切込プリプレグ基材3を積層したプリプレグ積層体6をa)、その積層体6を成形した繊維強化プラスチック9をb)に、それぞれ切込プリプレグ基材3由来の層をクローズアップした平面図と平面図のA−A断面を切り出した断面図を示した。a)に示すとおり、切込プリプレグ基材3は、繊維に垂直な切込を全面に設けられており、切込2は層の厚み方向を貫いている。繊維長さLを100mm以下とすることで、流動性が確保され、プレス成形などにより、容易に積層体6より面積が伸長した繊維強化プラスチック13を得ることができる(ただし、厚みは減る)。b)のように、伸長した繊維強化プラスチック13を得た際、切込プリプレグ基材3由来の短繊維層21は、繊維直交方向に伸長すると共に、繊維が存在しない領域(切込開口部)22が生成される。これは一般的に強化繊維が成形程度の圧力では伸長しないためであり、図9のケースでは、伸張した長さ分だけ切込開口部22が生成され、例えば250×250mmのプリプレグ積層体6から300×300mmの繊維強化プラスチック9を得た際には、300×300mmの繊維強化プラスチック9の表面積に対して、切込開口部22の総面積は50×300mm、すなわち1/6(約16.7%)が切込開口部となる計算である。この領域22は断面図に示すとおり、隣接層23が侵入してきて、略三角形の樹脂リッチ部25と隣接層が侵入している領域とで占められる。従って、切込プリプレグ基材3を用いたプリプレグ積層体6を伸長して成形した場合、繊維束端部24では層のうねり26や樹脂リッチ部25が発生し、これが力学特性の低下や表面品位の低下に影響を与える。また、繊維がある部位とない部位で剛性が異なるため、面内異方性の繊維強化プラスチック9となり、ソリなどの問題から設計が難しい。また、強度の面では、荷重方向から±10°以下程度に向いている繊維が大部分の荷重を伝達しているが、その繊維束端部24では隣接層23に荷重を再分配しなければならない。その際、図9b)のように、繊維束端部24が荷重方向に垂直となっていると、応力集中が起きやすく、剥離も起こりやすい。そのため、強度向上はあまり期待できない。   The features of the cut prepreg base material used in the present invention will be described with reference to FIGS. As a comparison of the present invention, FIG. 9 shows a prepreg laminate 6 in which a cut prepreg base material 3 having an absolute value of an angle Θ between the cut 2 and the fiber 16 of 90 ° is laminated, a), and the laminate 6 The molded fiber reinforced plastic 9 is shown in b) as a plan view in which the layers derived from the cut prepreg base material 3 are respectively close-up and a cross-sectional view taken along the line AA in the plan view. As shown in a), the cut prepreg base material 3 is provided with a cut perpendicular to the fiber on the entire surface, and the cut 2 penetrates the thickness direction of the layer. By setting the fiber length L to 100 mm or less, the fluidity is ensured, and the fiber reinforced plastic 13 whose area is easily extended from the laminate 6 can be obtained by press molding or the like (however, the thickness is reduced). As shown in b), when the elongated fiber reinforced plastic 13 is obtained, the short fiber layer 21 derived from the cut prepreg base material 3 extends in the direction perpendicular to the fiber and has no fiber (cut opening). 22 is generated. This is because the reinforcing fibers generally do not expand at a pressure of the molding level. In the case of FIG. 9, the cut opening 22 is generated for the extended length, for example, from the prepreg laminate 6 of 250 × 250 mm. When the fiber reinforced plastic 9 having a size of 300 × 300 mm is obtained, the total area of the cut openings 22 is 50 × 300 mm, that is, 1/6 (about 16. 7%) is a cut opening. As shown in the cross-sectional view, this region 22 is occupied by the substantially triangular resin-rich portion 25 and the region where the adjacent layer has intruded, as the adjacent layer 23 has intruded. Therefore, when the prepreg laminate 6 using the cut prepreg base material 3 is stretched and formed, the undulation 26 of the layer and the resin rich portion 25 are generated at the fiber bundle end portion 24, which causes deterioration of mechanical properties and surface quality. Will affect the decline. In addition, since the rigidity is different between a portion where the fiber is present and a portion where the fiber is not present, the fiber-reinforced plastic 9 is in-plane anisotropic, and design is difficult due to problems such as warping. Further, in terms of strength, the fiber oriented to about ± 10 ° or less from the load direction transmits most of the load, but the fiber bundle end 24 must redistribute the load to the adjacent layer 23. Don't be. At that time, as shown in FIG. 9b), when the fiber bundle end 24 is perpendicular to the load direction, stress concentration is likely to occur, and peeling is also likely to occur. Therefore, the strength improvement cannot be expected so much.

一方で図10には、本発明の好ましい例[1]の切込プリプレグ基材3を積層した積層体6をa)、その積層体6を成形した繊維強化プラスチック9をb)に、それぞれ切込プリプレグ基材3由来の層をクローズアップした平面図と平面図のA−A断面を切り出した断面図を示した。a)に示すとおり、切込プリプレグ基材3は、繊維16となす角度Θの絶対値が25°以下の連続した切込2aが全面に設けられており、切込2aは層の厚み方向を貫いている。繊維長さLを100mm以下とすることで、流動性が確保され、プレス成形などにより、容易に積層体6より面積が伸長した繊維強化プラスチック9を得ることが出来る。b)のように、伸長した繊維強化プラスチック9を得た際、切込プリプレグ基材3由来の短繊維層21は、繊維直交方向に伸長すると共に、繊維16自体が回転27して伸長領域の面積を稼ぐため、図9のように繊維が存在しない領域(切込開口部)22が実質的に生成せず、切込開口部の層の表面における面積が層の表面積と比較して0.1〜10%の範囲内である。従って、断面図を見ても分かるとおり、隣接層23が侵入することもなく、層のうねりや樹脂リッチ部のない高強度で品位の高い繊維強化プラスチック9を得ることが出来る。面内全体にくまなく繊維16が配されているため、面内での剛性差がなく、設計も従来の連続繊維強化プラスチックと同様、簡易に適用できる。この繊維が回転して伸長し、層うねりのない繊維強化プラスチックを得るという画期的効果は、切込と強化繊維とのなす角度Θの絶対値が25°以下であり、かつ、切込が連続して入れられていることで初めて得ることができる。また、強度の面では、前述と同様に荷重方向から±10°以下程度に向いている繊維に注目すると、図10b)のように、繊維束端部24が荷重方向に対して寝てきている様子がわかる。繊維束端部24が層厚み方向に斜めとなっているため、荷重の伝達がスムーズであり、繊維束端部24からの剥離も起こりにくい。従って、図9に比べ格段の強度向上が見込まれる。この繊維束端部24が層厚み方向に斜めとなるのは上述の繊維が回転する際、上面と下面の摩擦により上面から下面で繊維16の回転27になだらかな分布があるためで、そのため、層厚み方向に繊維16の存在分布が発生し、繊維束端部24が層厚み方向に斜めとなったと考えられる。このような繊維強化プラスチック9の層内で層厚み方向に斜めの繊維束端部を形成し、強度を著しく向上する画期的効果は切込2aの繊維16となす角度Θの絶対値が25°以下であることで初めて得ることができる。   On the other hand, FIG. 10 shows a laminate 6 in which the cut prepreg base material 3 of the preferred example [1] of the present invention is laminated in a), and a fiber reinforced plastic 9 in which the laminate 6 is molded in b). The top view which closed the layer derived from the embedded prepreg base material 3, and the sectional view which cut out the AA cross section of the top view were shown. As shown in a), the incision prepreg base material 3 is provided with continuous incisions 2a having an absolute value of an angle Θ between the fibers 16 of 25 ° or less on the entire surface, and the incisions 2a indicate the thickness direction of the layers. It has penetrated. By setting the fiber length L to 100 mm or less, the fluidity is ensured, and the fiber reinforced plastic 9 whose area is easily extended from the laminate 6 can be obtained by press molding or the like. When the stretched fiber reinforced plastic 9 is obtained as in b), the short fiber layer 21 derived from the cut prepreg base material 3 stretches in the direction perpendicular to the fiber, and the fiber 16 itself rotates 27 to expand the stretched region. In order to increase the area, a region (cut opening) 22 in which no fiber exists as shown in FIG. 9 is not substantially generated, and the area on the surface of the layer of the cut opening is 0. 0 compared to the surface area of the layer. It is in the range of 1 to 10%. Therefore, as can be seen from the cross-sectional view, the adjacent layer 23 does not enter, and a high-strength and high-quality fiber-reinforced plastic 9 having no layer waviness or resin-rich portion can be obtained. Since the fibers 16 are arranged all over the surface, there is no difference in rigidity in the surface, and the design can be easily applied as in the conventional continuous fiber reinforced plastic. The revolutionary effect that this fiber rotates and stretches to obtain a fiber-reinforced plastic having no layer waviness is that the absolute value of the angle Θ between the cut and the reinforcing fiber is 25 ° or less, and the cut is It can be obtained for the first time by being put continuously. Further, in terms of strength, when attention is paid to the fibers oriented to about ± 10 ° or less from the load direction in the same manner as described above, the fiber bundle end portion 24 lies down with respect to the load direction as shown in FIG. I can see the situation. Since the fiber bundle end portion 24 is slanted in the layer thickness direction, the load is smoothly transmitted, and peeling from the fiber bundle end portion 24 hardly occurs. Therefore, a marked improvement in strength is expected compared to FIG. The fiber bundle end 24 is inclined in the layer thickness direction because when the above-mentioned fiber rotates, there is a gentle distribution in the rotation 27 of the fiber 16 from the upper surface to the lower surface due to friction between the upper surface and the lower surface. It is considered that the existence distribution of the fibers 16 occurs in the layer thickness direction, and the fiber bundle end portion 24 is inclined in the layer thickness direction. In such a layer of the fiber reinforced plastic 9, a fiber bundle end portion which is slanted in the layer thickness direction is formed, and the epoch-making effect of remarkably improving the strength is that the absolute value of the angle Θ formed with the fiber 16 of the cut 2a is 25 It can be obtained for the first time when it is below °.

図11には、本発明の好ましい例[2]の切込プリプレグ基材3を積層した積層体6をa)、その積層体6を成形した繊維強化プラスチック9をb)に、それぞれ切込プリプレグ基材3由来の層をクローズアップした平面図を示した。a)に示すとおり、切込プリプレグ基材3は、繊維16となす角度Θの絶対値が25°以下の断続的な切込2が全面に設けられており、切込2は層の厚み方向を貫いている。切込2により繊維長さLを切込プリプレグ基材3の全面で100mm以下とすることで、流動性が確保され、プレス成形などにより、容易に積層体6より面積が伸長した繊維強化プラスチック9を得ることができる。切込長さ、切込角度を小さくすることにより、切込を強化繊維の垂直方向に投影した投影長さWsを1.5mm以下とすることができる。b)のように、伸長した繊維強化プラスチック9を得た際、切込プリプレグ基材3由来の短繊維層21は、繊維直交方向に伸長する際、繊維方向に繊維が伸張しないため、繊維が存在しない領域(切込開口部)22が生成されるが、隣接する短繊維群が繊維直交方向に流動することで、切込開口部22を埋め、切込開口部22の面積が小さくなる。この傾向は特に、切込を強化繊維の垂直方向に投影した投影長さWsを1.5mm以下とすることで顕著となり、実質的に切込開口部22が生成せず、切込開口部の層の表面における面積が層の表面積と比較して0.1〜10%の範囲内とすることができる。従って、厚み方向に隣接層が侵入することもなく、層のうねりや樹脂リッチ部のない高強度で品位の高い繊維強化プラスチック9を得ることが出来る。面内全体にくまなく繊維16が配されているため、面内での剛性差がなく、設計も従来の連続繊維強化プラスチックと同様、簡易に適用できる。この切込開口部を繊維直交方向の流動により埋め、層うねりのない繊維強化プラスチックを得るという画期的効果は切込角度Θの絶対値が25°以下であり、かつ切込を強化繊維の垂直方向に投影した投影長さWsを1.5mm以下とすることで初めて得ることができる。さらに好ましくはWsが1mm以下であることにより、より高強度、高品位とすることができる。   In FIG. 11, the laminated body 6 in which the cut prepreg base material 3 of the preferred example [2] of the present invention is laminated is shown in a), and the fiber reinforced plastic 9 in which the laminated body 6 is molded is shown in b). The top view which closed up the layer derived from the base material 3 was shown. As shown in a), the cut prepreg base material 3 is provided with intermittent cuts 2 having an absolute value of the angle Θ between the fibers 16 of 25 ° or less and the cuts 2 are in the layer thickness direction. Through. The fiber length L is set to 100 mm or less over the entire surface of the cut prepreg base material 3 by the cuts 2 to ensure fluidity, and the fiber reinforced plastic 9 whose area is easily extended from the laminate 6 by press molding or the like. Can be obtained. By reducing the cut length and the cut angle, the projection length Ws obtained by projecting the cut in the vertical direction of the reinforcing fiber can be made 1.5 mm or less. When the stretched fiber reinforced plastic 9 is obtained as in b), the short fiber layer 21 derived from the cut prepreg base material 3 does not stretch in the fiber direction when stretched in the fiber orthogonal direction. A non-existing region (cut opening) 22 is generated, but the adjacent short fiber group flows in the direction perpendicular to the fiber, thereby filling the cut opening 22 and reducing the area of the cut opening 22. This tendency is particularly remarkable when the projected length Ws obtained by projecting the cut in the vertical direction of the reinforcing fiber is 1.5 mm or less, and the cut opening 22 is not substantially generated, and the cut opening The area on the surface of the layer can be in the range of 0.1 to 10% compared to the surface area of the layer. Therefore, the adjacent layer does not penetrate in the thickness direction, and a high-strength and high-quality fiber reinforced plastic 9 without layer undulation or resin-rich portion can be obtained. Since the fibers 16 are arranged all over the surface, there is no difference in rigidity in the surface, and the design can be easily applied as in the conventional continuous fiber reinforced plastic. The epoch-making effect of filling the cut opening with the flow in the direction perpendicular to the fiber to obtain a fiber reinforced plastic without layer undulation has an absolute value of the cut angle Θ of 25 ° or less, and the cut is made of the reinforcing fiber. It can be obtained for the first time when the projection length Ws projected in the vertical direction is 1.5 mm or less. More preferably, when Ws is 1 mm or less, higher strength and higher quality can be achieved.

本発明に係るプリプレグ積層体は、全層が切込プリプレグ基材で構成されており、実質的にすべての強化繊維の繊維長さが10〜100mmの範囲内とするのがよい。前記プリプレグ積層体の全層を切込プリプレグ基材とし、実質的にすべての強化繊維を短繊維とすることで、伸張方向に寄らず、均一的に基材を伸張させることができる。特に、成形対象とする形状が複雑であり基材の流動過程が容易に想定できない場合は、全層を切込プリプレグ基材とすることで容易に良好な品位の成形体を得ることができるため好ましい。なお、“実質的に強化繊維のすべてが前記切込により分断され”ているとは、プリプレグ積層体に含まれる強化繊維本数のうち95%以上が10〜100mmに分断されていることを言う。   As for the prepreg laminated body which concerns on this invention, all the layers are comprised with the cut prepreg base material, and it is good for the fiber length of all the reinforcement fibers to be in the range of 10-100 mm. By making all layers of the prepreg laminate a notched prepreg base material and substantially all reinforcing fibers short fibers, the base material can be uniformly stretched regardless of the stretching direction. In particular, when the shape to be molded is complex and the flow process of the base material cannot be easily assumed, it is possible to easily obtain a molded article of good quality by making the entire layer a cut prepreg base material. preferable. Note that “substantially all of the reinforcing fibers are divided by the incision” means that 95% or more of the number of reinforcing fibers contained in the prepreg laminate is divided to 10 to 100 mm.

本発明に係る切込プリプレグ基材は、切込が多くなればなるほど、また切込が長ければ長いほど、切込プリプレグ基材の剛性が低下し、基材が変形し易くなる。これによって、積層作業時に切込プリプレグ基材を持ち上げた際、切込プリプレグ基材の形状が崩れるなど、取り扱いが難しくなる。そのような問題を回避するために、図12に示すように、前記プリプレグ基材において抜き型10を押し当てる側とは反対側をテープ状支持体30によって把持し、テープ状支持体30を残したままプリプレグ基材1のみを裁断する、いわゆるハーフカットを実施するのがよい。これにより、切込の量が多くても、テープ状支持体が切込プリプレグ基材の変形を抑制するため、基材の取り扱い性が大幅に向上する。ここで、テープ状支持体とは、クラフト紙などの紙類やポリエチレン・ポリプロピレンなどのポリマーフィルム類、アルミなどの金属箔類などが挙げられ、さらに樹脂との離型性を得るために、シリコーン系や“テフロン(登録商標)”系の離型剤や金属蒸着等を表面に付与しても構わない。このとき、刃の先端28がプリプレグ基材1に進入する量としては、刃の先端28の進入する量がプリプレグ基材1をちょうど切断する深さであってもよいが、この場合、幾多の裁断によって刃11が磨耗すると、切り残しが多発する可能性がある。そのため、刃がプリプレグ基材1を貫通し、テープ状支持体30の一部にのみ侵入するのがよい。さらに、テープ状支持体30の厚みとしては、厚みが大きいと材料コストが増し経済的ではない。しかし、厚みが薄すぎると、プリプレグ基材1に抜き型10を押し当てた際に、刃の先端28をテープ状支持体30の内部に留めることが難しくなる。その結果、刃の先端28がテープ状支持体30を完全に貫通した場合には、切込プリプレグ基材の取り扱い性が低下し、カット部の先端がテープ状支持体に到達しなかった場合には、繊維を切断することができず、切込プリプレグ基材中に連続繊維が残り、成形時の流動性が低下する。そのため、テープ状支持体30の厚みは30〜300μmが好ましく、さらに好ましくは50〜200μmである。   In the cut prepreg base material according to the present invention, the greater the number of cuts and the longer the cut, the lower the rigidity of the cut prepreg base material, and the easier the base material deforms. Accordingly, when the cut prepreg base material is lifted during the laminating operation, handling becomes difficult, for example, the shape of the cut prepreg base material is broken. In order to avoid such a problem, as shown in FIG. 12, the side of the prepreg base material opposite to the side against which the punching die 10 is pressed is gripped by the tape-like support 30, leaving the tape-like support 30. It is preferable to carry out a so-called half cut in which only the prepreg substrate 1 is cut as it is. Thereby, even if there is much amount of cutting, since a tape-shaped support body suppresses a deformation | transformation of a cutting prepreg base material, the handleability of a base material improves significantly. Here, the tape-like support includes papers such as kraft paper, polymer films such as polyethylene / polypropylene, metal foils such as aluminum and the like, and in order to obtain releasability from the resin, silicone. A surface or “Teflon (registered trademark)” type release agent, metal vapor deposition, or the like may be applied to the surface. At this time, the amount of the blade tip 28 entering the prepreg base material 1 may be the depth at which the blade tip 28 enters just the depth at which the prepreg base material 1 is cut. When the blade 11 is worn by cutting, there is a possibility that uncut portions frequently occur. Therefore, it is preferable that the blade penetrates the prepreg base material 1 and enters only a part of the tape-shaped support 30. Furthermore, as the thickness of the tape-shaped support body 30, if the thickness is large, the material cost increases, which is not economical. However, if the thickness is too thin, it becomes difficult to keep the tip 28 of the blade inside the tape-shaped support 30 when the punching die 10 is pressed against the prepreg substrate 1. As a result, when the tip 28 of the blade completely penetrates the tape-like support 30, the handleability of the cut prepreg base material is lowered, and the tip of the cut portion does not reach the tape-like support. The fiber cannot be cut, continuous fibers remain in the cut prepreg base material, and the fluidity at the time of molding decreases. Therefore, the thickness of the tape-like support 30 is preferably 30 to 300 μm, and more preferably 50 to 200 μm.

前記(1)の切込挿入工程、あるいは前記(2)の切抜工程において、前記プリプレグ基材を冷却する冷却機構を設けて、前記強化繊維の分断の前もしくは前記プリプレグ基材の切り抜きの前に、または、前記強化繊維の分断時もしくは前記プリプレグ基材の切り抜き時に、前記プリプレグ基材を冷却するのがよい。特に熱硬化性樹脂を使用したプリプレグ基材では、温度が高くなると樹脂の粘度が低下し、強化繊維が刃から逃げやすくなる。プリプレグの温度を低下させることで、樹脂粘度を高く保ち、カットミスを防ぐことが出来る。プリプレグ基材を冷却する手法としては、例えばチルドプレートと呼ばれる冷却した金属プレートにプリプレグ基材を直接接触させたり、また、冷却したローラーにプリプレグ基材を直接接触させたりする手法が有効である。   In the cutting insertion step of (1) or the cutting step of (2), a cooling mechanism for cooling the prepreg base material is provided, and before the reinforcing fiber is divided or before the prepreg base material is cut out. Alternatively, the prepreg base material may be cooled when the reinforcing fiber is divided or when the prepreg base material is cut out. In particular, in a prepreg base material using a thermosetting resin, when the temperature increases, the viscosity of the resin decreases, and the reinforcing fibers easily escape from the blade. By reducing the temperature of the prepreg, the resin viscosity can be kept high and cut errors can be prevented. As a method for cooling the prepreg substrate, for example, a method in which the prepreg substrate is brought into direct contact with a cooled metal plate called a chilled plate, or a method in which the prepreg substrate is brought into direct contact with a cooled roller is effective.

前述のように、前記切込挿入工程あるいは前記基材切抜工程において、平板状の土台に複数の刃が取り付けられた打抜刃を抜き型として使用するのがよい。例えば、刃を土台となる金属板、ベニヤ板などに埋め込み、これを抜き型としてプレス機に取り付けるのが好ましい。この手法を用いれば、抜き型の作製が容易であり、また刃の突出量などを簡単に調整することもできる。さらに刃を金属から直接削りだす必要がないため、より耐久性のある刃を抜き型に使用することができ、安定的にプリプレグ基材の裁断を行うことができる。   As described above, in the cutting insertion process or the base material cutting process, it is preferable to use a punching blade in which a plurality of blades are attached to a flat base as a punching die. For example, it is preferable to embed the blade in a base metal plate, veneer plate or the like and attach it to a press as a die. If this method is used, it is easy to produce a punching die, and the amount of protrusion of the blade can be easily adjusted. Furthermore, since it is not necessary to cut the blade directly from the metal, a more durable blade can be used for the punching die, and the prepreg base material can be cut stably.

さらに、前記切込挿入工程あるいは前記基材切抜工程において、ローラーに複数の刃が設けられた回転刃を抜き型として使用するのがよい。回転刃を基材の送り速度にあわせて回転刃を基材に押し当てながら回転するのみで切込を挿入することができるため、生産性もよく好ましい。   Furthermore, in the cutting insertion process or the base material cutting process, it is preferable to use a rotary blade provided with a plurality of blades as a cutting die. Since the cutting can be inserted only by rotating the rotary blade while pressing the rotary blade against the base material in accordance with the feed rate of the base material, productivity is good and preferable.

なお、回転刃を用いる場合には、直接ローラーを削りだして所定の刃を設けてもよいが、平板を削りだして所定の位置に刃を配置したシート状の型を巻きつける機構をとれば、刃の取りかえが容易で好ましい。このような回転刃を用いることで、Wsの小さな(具体的には1mm以下であっても)切込プリプレグ基材でも良好に切込を挿入することができる。なお、シート状の型をローラーに固定する際には、接着剤などを用いて直接ローラー表面に貼り付けてもよいが、真空吸引して前記型をローラーに固定する、あるいは前記型を金属製とし、マグネットなどにより磁力で固定するなどの方法を取れば、型が着脱可能となり、刃劣化時の交換作業などを円滑に進めることができる。   In the case of using a rotary blade, the roller may be directly cut out to provide a predetermined blade. The replacement of the blade is easy and preferable. By using such a rotary blade, it is possible to insert a cut well even with a cut prepreg base material having a small Ws (specifically, 1 mm or less). When fixing the sheet-shaped mold to the roller, it may be attached directly to the roller surface using an adhesive or the like. However, the mold is fixed to the roller by vacuum suction, or the mold is made of metal. If a method such as fixing with a magnetic force by a magnet or the like is used, the mold can be attached and detached, and the replacement work when the blade is deteriorated can be smoothly advanced.

ただし、前記板状の刃を使用して、例えば図8(a)のような切込を挿入する場合、刃の継ぎ目において切込パターンを回転刃の周方向に連結させることが難しくなる。その場合は、図13(a)のように切込の方向に沿った帯状の刃を、図13(b)のように螺旋状にローラーに巻きつけることにより回転刃を作製すれば、回転刃の周方向に切込パターンを連続させることができる。   However, when using the plate-shaped blade to insert a cut as shown in FIG. 8A, for example, it becomes difficult to connect the cut pattern in the circumferential direction of the rotary blade at the joint of the blade. In that case, if a rotary blade is produced by winding a belt-like blade along the cutting direction as shown in FIG. 13A around a roller spirally as shown in FIG. The cutting pattern can be continued in the circumferential direction.

本発明の製造方法により成形された繊維強化プラスチックの用途としては、強度、剛性、軽量性が要求される、自転車用品、ゴルフ等のスポーツ部材のシャフトやヘッド、ドアやシートフレームなどの自動車部材、ロボットアームなどの機械部品がある。中でも、強度、軽量に加え、複雑な形状の成形追従性が要求されるシートパネルやシートフレーム等の自動車部品に好ましく適用できる。   As the use of the fiber reinforced plastic molded by the production method of the present invention, strength, rigidity and light weight are required, such as bicycle parts, shafts and heads of sports parts such as golf, automobile parts such as doors and seat frames, There are mechanical parts such as robot arms. In particular, the present invention can be preferably applied to automobile parts such as seat panels and seat frames that require molding followability of complicated shapes in addition to strength and light weight.

以下、実施例により本発明をさらに具体的に説明するが、本発明は、実施例に記載の発明に限定されるというものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the inventions described in the examples.

<プリプレグ基材の作製方法>
エポキシ樹脂(ジャパンエポキシレジン(株)製“エピコート(登録商標)”828:30重量部、“エピコート(登録商標)”1001:35重量部、“エピコート(登録商標)”154:35重量部)に、熱可塑性樹脂ポリビニルホルマール(チッソ(株)製“ビニレック(登録商標)”K)5重量部をニーダーで加熱混練してポリビニルホルマールを均一に溶解させた後、硬化剤ジシアンジアミド(ジャパンエポキシレジン(株)製DICY7)3.5重量部と、硬化促進剤3−(3,4−ジクロロフェニル)−1,1−ジメチルウレア(保土谷化学工業(株)製DCMU99)4重量部を、ニーダーで混練して未硬化のエポキシ樹脂組成物を調整した。このエポキシ樹脂組成物を、リバースロールコーターを用いてシリコーンコーティング処理された厚さ100μmの離型紙上に塗布して樹脂フィルムを作製した。
<Preparation method of prepreg base material>
Epoxy resin ("Epicoat (registered trademark)" 828: 30 parts by weight, "Epicoat (registered trademark)" 1001: 35 parts by weight, "Epicoat (registered trademark)" 154: 35 parts by weight, manufactured by Japan Epoxy Resin Co., Ltd. Then, 5 parts by weight of a thermoplastic resin polyvinyl formal (“Vinylec (registered trademark)” K manufactured by Chisso Corporation) was heated and kneaded with a kneader to uniformly dissolve the polyvinyl formal, and then a curing agent dicyandiamide (Japan Epoxy Resin Co., Ltd.) ) DICY7) 3.5 parts by weight and 4 parts by weight of curing accelerator 3- (3,4-dichlorophenyl) -1,1-dimethylurea (Hodogaya Chemical Co., Ltd. DCMU99) were kneaded in a kneader. Thus, an uncured epoxy resin composition was prepared. This epoxy resin composition was applied onto a release paper having a thickness of 100 μm that had been subjected to silicone coating using a reverse roll coater to prepare a resin film.

一方向に配列させた炭素繊維(引張強度4,900MPa、引張弾性率235GPa)の両面に前記手順により得られた樹脂フィルムをそれぞれ重ね、加熱・加圧することによって樹脂を含浸させ、単位面積あたりの炭素繊維重さ125g/m、繊維体積含有率Vf55%、厚み0.125mmのプリプレグ基材を作製した。 The resin films obtained by the above procedure are overlapped on both sides of carbon fibers arranged in one direction (tensile strength 4,900 MPa, tensile modulus 235 GPa), respectively, and impregnated with resin by heating and pressurizing. A prepreg base material having a carbon fiber weight of 125 g / m 2 , a fiber volume content Vf of 55%, and a thickness of 0.125 mm was produced.

<凸形の繊維強化プラスチックの成形方法>
図15に示す成形型を用いて、凸形の繊維強化プラスチックを成形した。150℃に熱した金型の空隙部に積層基材を配置し、成形温度150℃、保持時間30分、成形圧力5MPaの条件下で成形を行った。
<Method of forming convex fiber-reinforced plastic>
A convex fiber-reinforced plastic was molded using the mold shown in FIG. The laminated base material was placed in a void portion of a mold heated to 150 ° C., and molding was performed under conditions of a molding temperature of 150 ° C., a holding time of 30 minutes, and a molding pressure of 5 MPa.

また、得られた凸形の繊維強化プラスチックの成形体の性状より、その表面品位を以下のように評価した。端部まで基材が充填しておらず、かつR部が黄色がかって見え樹脂リッチ部が観察されたものを×、前者あるいは後者のどちらか片方のみが確認できたものを△、いずれも確認されなかったものを○とした。   Moreover, the surface quality was evaluated as follows from the properties of the molded product of the obtained convex fiber-reinforced plastic. The base material is not filled up to the end and the R part appears yellowish and the resin rich part is observed x, and the former or the latter can be confirmed only △, both confirmed The ones that were not done were marked with ○.

<平板成形方法>
250×250mmのキャビティを有する平板金型上の概中央部にプリプレグ積層体を配置した後、加熱型プレス成形機により、5MPaの加圧のもと、150℃×30分間の条件により硬化させた。これにより、250×250mmの平板状の繊維強化プラスチックを得た。
<Flat plate forming method>
After the prepreg laminate was placed at the approximate center on a flat plate mold having a 250 × 250 mm cavity, it was cured by a heating type press molding machine under conditions of 150 ° C. × 30 minutes under a pressure of 5 MPa. . As a result, a flat fiber-reinforced plastic having a size of 250 × 250 mm was obtained.

<機械物性評価方法>
前記手順により、得られた平板状の繊維強化プラスチックから、長さ250±1mm、幅25±0.2mmの引張強度試験片を切り出した。JIS K−7073(1998)に規定する試験方法に従い、標点間距離を150mmとし、クロスヘッド速度2.0mm/分で引張強度を測定した。なお、本実施例においては、試験機としてインストロン(登録商標)万能試験機4208型を用いた。測定した試験片の数はn=5とし、平均値を引張強度とした。さらに、測定値より標準偏差を算出し、その標準偏差を平均値で除することにより、バラツキの指標である変動係数(CV値(%))を算出した。
<Mechanical property evaluation method>
By the above procedure, a tensile strength test piece having a length of 250 ± 1 mm and a width of 25 ± 0.2 mm was cut out from the obtained flat fiber reinforced plastic. According to the test method prescribed in JIS K-7073 (1998), the tensile strength was measured at a crosshead speed of 2.0 mm / min with a distance between the gauge points of 150 mm. In this example, an Instron (registered trademark) universal testing machine 4208 type was used as a testing machine. The number of test pieces measured was n = 5, and the average value was the tensile strength. Further, a standard deviation was calculated from the measured value, and the standard deviation was divided by an average value, thereby calculating a variation coefficient (CV value (%)) as an index of variation.

比較実施例1)[切込角度90°、切込全面]
前記手順により得られた一方向プリプレグ基材に切込を挿入し、切込プリプレグ基材を得た。まず、500mm×500mm、厚さ5mmの金属板から、刃を多数削り出し、プリプレグ基材に切込を挿入するための抜き型を作製した。図14に抜き型の刃の配置図を示す。抜き型10の中央部、直径300mmの領域に、長さWが10mmの刃11が間隔10mmで複数並んでおり、刃からなる列34を形成している。この刃からなる列と抜き型の基準方向35とのなす角α(36)は90°である。さらに、隣接する刃からなる列は、抜き型の基準方向に15mmの間隔37で配置されており、隣接する刃からなる列は互いに基準方向と垂直な方向38に半位相ずれている。さらに、同じく500mm×500mm、厚さ5mmの金属板から、直径300mmの円状の刃を削り出し、これを切抜工程に用いる抜き型とした。
( Comparative Example 1) [Cut angle 90 °, full cut]
A cut was inserted into the unidirectional prepreg substrate obtained by the above procedure to obtain a cut prepreg substrate. First, a number of blades were cut out from a metal plate having a size of 500 mm × 500 mm and a thickness of 5 mm, and a punching die for inserting a cut into a prepreg base material was produced. FIG. 14 shows the layout of the cutting blades. A plurality of blades 11 having a length W of 10 mm are arranged at an interval of 10 mm in the central portion of the punching die 10 and a region having a diameter of 300 mm, thereby forming a row 34 of blades. An angle α (36) formed by the row of blades and the reference direction 35 of the punching die is 90 °. Further, the rows of adjacent blades are arranged at a spacing 37 of 15 mm in the reference direction of the punching die, and the rows of adjacent blades are shifted from each other by a half phase in a direction 38 perpendicular to the reference direction. Furthermore, a circular blade having a diameter of 300 mm was cut out from a metal plate having a thickness of 500 mm × 500 mm and a thickness of 5 mm, and this was used as a punching die used in the cutting process.

次に、図2に示すように、前記2つの抜き型をプレス機に取り付け、抜き型の基準方向と基材の送り方向(プリプレグ基材の繊維長手方向)が一致するようにプリプレグ基材を送りつつ、抜き型をプリプレグ基材に押し当て、プリプレグ基材に切込を挿入した。このとき、得られた切込プリプレグ基材の切込パターンは、図14の刃の配置図がそのまま転写されたパターンとなった。得られた切込プリプレグ基材の表面を、デジタルマイクロスコープを用いて撮影し、倍率が100倍となるようにプリントアウトし、曲線定規を用いて切込長さW、繊維長さL、投影長さWsを計測したところ、それぞれ、W=10mm、L=30mm、Ws=10mmであった。また、切込の中心線を20等分し、各微小線分と繊維長手方向とのなす角を分度器で計測し、その平均値を切込と炭素繊維とのなす角度の絶対値Θとすると、Θは90°であった。前記切抜プリプレグ基材を16層疑似等方([−45/0/+45/90]2S)に積層し、直径300mmの円板状のプリプレグ積層体を得た。 Next, as shown in FIG. 2, the two punching dies are attached to a press machine, and the prepreg base material is placed so that the reference direction of the punching die and the feed direction of the base material (fiber longitudinal direction of the prepreg base material) coincide. While feeding, the die was pressed against the prepreg base material, and a cut was inserted into the prepreg base material. At this time, the cutting pattern of the obtained cutting prepreg base material was a pattern in which the blade layout of FIG. 14 was transferred as it was. The surface of the obtained cut prepreg base material is photographed using a digital microscope, printed out so that the magnification becomes 100 times, and the cut length W, the fiber length L, and the projection using a curve ruler. When the length Ws was measured, W = 10 mm, L = 30 mm, and Ws = 10 mm, respectively. Further, the center line of the cut is divided into 20 equal parts, the angle formed by each minute line segment and the fiber longitudinal direction is measured with a protractor, and the average value is defined as the absolute value Θ of the angle formed by the cut and the carbon fiber. , Θ was 90 °. The cut-out prepreg base material was laminated in 16-layer pseudo-isotropic ([−45 / 0 / + 45/90] 2S ) to obtain a disc-shaped prepreg laminate having a diameter of 300 mm.

前記積層体を前記手順により凸形の繊維強化プラスチックを成形した。得られた繊維強化プラスチックは図9(b)のように切込部の開口が観察されたが、ソリもなく、金型の端部まで基材が充填しており、良好な表面品位を保っていた。   The laminate was molded into a convex fiber reinforced plastic by the above procedure. In the obtained fiber reinforced plastic, the opening of the cut portion was observed as shown in FIG. 9B, but there was no warp, and the base material was filled up to the end of the mold, maintaining a good surface quality. It was.

また、前記積層体の端部を切り落とし、200mm×200mmの矩形状のプリプレグ積層体を作製した。さらに前記手順に従い、250mm×250mmの平板形の繊維強化プラスチックを成形し、引張試験を実施した。その結果、引張強度は380MPa、CV値は4%となり、後述する比較例2のSMCに比べて大幅に高強度であり、かつバラツキの小さい結果となり、十分に製品に適用できるレベルにあることが確認できた。   Moreover, the edge part of the said laminated body was cut off and the rectangular prepreg laminated body of 200 mm x 200 mm was produced. Furthermore, according to the said procedure, the flat fiber reinforced plastic of 250 mm x 250 mm was shape | molded, and the tension test was implemented. As a result, the tensile strength is 380 MPa and the CV value is 4%, which is significantly higher than the SMC of Comparative Example 2 to be described later, with less variation, and can be sufficiently applied to the product. It could be confirmed.

比較実施例2、実施例3〜6、比較実施例7)[切込角度の比較(表1)]
切込の角度を変えた他は比較実施例1と同様にして、平板形、凸形の繊維強化プラスチックを得た。比較実施例2は切込角度Θが1°、実施例3は切込角度Θが2°、実施例4は5°、実施例5は10°、実施例6は25°、比較実施例7は45°の方向に連続的な切込を設けた。
( Comparative Example 2, Examples 3-6, Comparative Example 7 ) [Comparison of cutting angles (Table 1)]
Except that the angle of cut was changed, flat and convex fiber-reinforced plastics were obtained in the same manner as in Comparative Example 1. Comparative Example 2 has a cutting angle Θ of 1 °, Example 3 has a cutting angle Θ of 2 °, Example 4 has 5 °, Example 5 has 10 °, Example 6 has 25 °, and Comparative Example 7 Provided a continuous cut in the direction of 45 °.

得られた平板形の繊維強化プラスチックはいずれも繊維のうねりがなく、その端部まで繊維が均等に流動していた。また、切込の角度が小さくなればなるほど、切込部の開口が小さくなる傾向にあった。また、凸形の繊維強化プラスチックにおいても同様の傾向が見られた。引張弾性率は46〜47GPa、引張強度は350〜680MPaと高い値であり、引張強度のCV値は4〜6%とバラツキの小さい結果であった。切込の角度が小さくなればなるほど、力学強度も向上することが確認できた。一方、比較実施例2では切込角度が小さいため、切込が非常に密に挿入されているため、積層時の取り扱い性に若干難があった。 None of the obtained flat fiber reinforced plastics had fiber undulations, and the fibers were flowing evenly to the ends. In addition, the smaller the cut angle, the smaller the opening of the cut portion. The same tendency was also observed in convex fiber reinforced plastics. The tensile modulus was 46 to 47 GPa, the tensile strength was as high as 350 to 680 MPa, and the CV value of the tensile strength was as small as 4 to 6%. It was confirmed that the mechanical strength was improved as the cutting angle became smaller. On the other hand, in Comparative Example 2, since the cutting angle was small, the cutting was inserted very densely, so that there was some difficulty in handling at the time of stacking.

(実施例8〜12)[投影長さWsの比較(表2)]
切込の長さを変えた以外は実施例5と同様にして、平板形、凸形繊維強化プラスチックを得た。それぞれ切込の繊維の垂直方向に投影した投影長さWsは、実施例8では0.07mm、実施例9では0.17mm、実施例10では0.26mm、実施例11では1.5mm、実施例12では2.0mmとした。このとき、実際の切込の長さはそれぞれ、実施例8では0.40mm、実施例9では1.0mm、実施例10では1.5mm、実施例11では8.6mm、実施例12では11.5mmであった。
(Examples 8 to 12) [Comparison of projection length Ws (Table 2)]
A flat plate-like and convex fiber-reinforced plastic were obtained in the same manner as in Example 5 except that the length of the cut was changed. The projected length Ws projected in the vertical direction of each cut fiber was 0.07 mm in Example 8, 0.17 mm in Example 9, 0.26 mm in Example 10, 1.5 mm in Example 11, and In Example 12, it was set to 2.0 mm. At this time, the actual cut lengths were 0.40 mm in Example 8, 1.0 mm in Example 9, 1.5 mm in Example 10, 8.6 mm in Example 11, and 11 in Example 12, respectively. 0.5 mm.

得られた繊維強化プラスチックは実施例8を除いて繊維のうねりがなかった。一方、実施例8では、Wsがあまりに小さいと繊維が蛇行して切り残しが多発するためか、やや流動性が低下することも確認できた。その他、いずれの繊維強化プラスチックもその端部まで繊維が充分に流動しており、ソリもなく、良好な外観品位を保っていた。特に、実施例8〜11においては、最外層の切込部においても、強化繊維が存在せずに樹脂リッチまたは隣接層の強化繊維がのぞいている部位はほとんどなく、非常に良好な表面品位であった。また、引張強度は590MPa〜730GPaと非常に高い水準であった。また、Wsが小さければ小さいほど高強度となり、その傾向はWsが1.5mm以下で特に強くなることが確認できた。   The obtained fiber reinforced plastic had no fiber swell except in Example 8. On the other hand, in Example 8, it was also confirmed that if Ws was too small, the fibers meandered and many uncut parts were left, or the fluidity was slightly lowered. In addition, in all of the fiber reinforced plastics, the fibers sufficiently flowed to the end portions thereof, and there was no warp and good appearance quality was maintained. In particular, in Examples 8 to 11, even in the outermost layer cut portion, there is almost no portion where the reinforcing fibers are not present and the reinforcing fibers in the adjacent layer are not present, and the surface quality is very good. there were. Moreover, the tensile strength was a very high level of 590 MPa to 730 GPa. Further, it was confirmed that the smaller Ws is, the higher the strength is, and the tendency is particularly strong when Ws is 1.5 mm or less.

(実施例13〜15)[繊維長さの比較(表3)]
繊維長さを変えた以外は実施例5と同様にして、平板形、凸形繊維強化プラスチックを得た。繊維長さLを、実施例13では10mm、実施例14では60mm、実施例15では100mmとした。
(Examples 13 to 15) [Fiber length comparison (Table 3)]
A flat and convex fiber reinforced plastic was obtained in the same manner as in Example 5 except that the fiber length was changed. The fiber length L was 10 mm in Example 13, 60 mm in Example 14, and 100 mm in Example 15.

得られた凸形の繊維強化プラスチックは、いずれも成形型の端部まで基材が充填しており、概ね実施例5と比較しても遜色ない良好な品位であった。ただし、実施例15のR部に若干黄色がかってみえる箇所があり、樹脂リッチ部が形成されていると考えられた。繊維長が長くなればなるほど流動性が低下する傾向にあることが確認できた。   Each of the obtained convex fiber reinforced plastics was filled with the base material up to the end of the mold, and was of a good quality that was almost inferior to Example 5. However, it was considered that there was a portion that looked slightly yellow in the R portion of Example 15, and a resin rich portion was formed. It was confirmed that the longer the fiber length, the lower the fluidity.

引張強度に関しては、520MPa〜650MPaと非常に高強度であった。また、繊維長が長くなればなるほど、高強度となる傾向があることを確認できた。   Regarding the tensile strength, the strength was very high at 520 MPa to 650 MPa. Moreover, it has confirmed that there exists a tendency for it to become high strength, so that fiber length becomes long.

(実施例16)[切込挿入工程のみハーフカット]
切込挿入工程において、刃の先端が離型紙を貫通しないようにする以外は、実施例5と同様にして繊維強化プラスチックを得た。このとき、刃の刃先が離型紙に進入する深さは、離型紙の半分の深さとした。
(Example 16) [Half cut only for cutting insertion process]
A fiber reinforced plastic was obtained in the same manner as in Example 5 except that in the cutting insertion process, the tip of the blade did not penetrate the release paper. At this time, the depth at which the blade edge entered the release paper was half the depth of the release paper.

得られた切抜プリプレグ基材は、離型紙によって支持されているため、積層作業時に基材が変形することもなく、安易にプリプレグ積層体を作製することができた。本技術は、作業効率の大幅な向上に繋がる技術であると考えられた。   Since the obtained cut-out prepreg base material was supported by release paper, the base material was not deformed during the laminating operation, and a prepreg laminate could be easily produced. This technology was considered to be a technology that led to a significant improvement in work efficiency.

また、得られた凸形の繊維強化プラスチックは、金型の端部まで基材が充填しており、またR部においても樹脂リッチ部は観察されず、実施例5と比較しても遜色ない良好な品位であった。   In addition, the obtained convex fiber reinforced plastic is filled with the base material up to the end of the mold, and no resin rich portion is observed in the R portion, which is comparable to Example 5. The quality was good.

(実施例17)[切込が凸部のみの場合]
切込挿入工程に使用する抜き型の刃を配置する領域を直径150mmの円内とする以外は、実施例5と同様の手段により凸形の繊維強化プラスチックを得た。このとき、切抜プリプレグ基材は、直径300mmの円状のプリプレグ基材であって、その中心の直径150mmの円内のみに切込が多数挿入されていた。
(Example 17) [When cutting is only convex part]
A convex fiber-reinforced plastic was obtained by the same means as in Example 5, except that the area where the cutting blade used for the cutting insertion process was arranged was within a circle having a diameter of 150 mm. At this time, the cut-out prepreg base material was a circular prepreg base material having a diameter of 300 mm, and many cuts were inserted only in a circle having a diameter of 150 mm at the center.

得られた凸形の繊維強化プラスチックは、金型の端部まで基材が充填しており、またR部においても樹脂リッチ部は観察されず、実施例5と比べて遜色のない良好な品位であった。切込の量を屈曲部のみとすることで、切込の量を抑えつつも、高い流動性が得られることが確認できた。(なお、切込の量を少なくすることは、力学強度の面からも、加工費の面からも好ましい。)
(実施例18)[熱可塑性樹脂]
使用するマトリックス樹脂を熱可塑性樹脂とする以外は、実施例5と同様にして繊維強化プラスチックを得た。
The obtained convex fiber reinforced plastic is filled with the base material up to the end of the mold, and no resin-rich part is observed in the R part, which is excellent in quality compared with Example 5. Met. It was confirmed that high fluidity was obtained while suppressing the amount of cutting by making the amount of cutting only the bent portion. (In addition, reducing the amount of cutting is preferable from the standpoint of mechanical strength and processing costs.)
Example 18 [Thermoplastic Resin]
A fiber reinforced plastic was obtained in the same manner as in Example 5 except that the matrix resin used was a thermoplastic resin.

共重合ポリアミド樹脂(東レ(株)製“アミラン”(登録商標)CM4000、ポリアミド6/66/610共重合体、融点155℃)のペレットを、200℃で加熱したプレス機で34μm厚みのフィルム状に加工した。離型紙を用いなかった他は実施例5と同様に切抜プリプレグ基材を得た後、16層を疑似等方([−45/0/+45/90]2S)に重ね、170°に加熱したプレス機で1MPaの条件で間欠的に数回加圧し、プリプレグ積層体とした。 Pellets of copolymerized polyamide resin (“Amilan” (registered trademark) CM4000 manufactured by Toray Industries, Inc., polyamide 6/66/610 copolymer, melting point 155 ° C.) with a press machine heated at 200 ° C. to form a film having a thickness of 34 μm It was processed into. A cut prepreg base material was obtained in the same manner as in Example 5 except that the release paper was not used, and then 16 layers were stacked in a pseudo isotropic manner ([−45 / 0 / + 45/90] 2S ) and heated to 170 °. A press machine was intermittently pressurized several times under the condition of 1 MPa to obtain a prepreg laminate.

さらに、実施例5と同様の金型を用いて凸形の繊維強化プラスチックを成形した。予め200°に加熱した金型内に前記プリプレグ積層体を配置し、6MPaの加圧のもと、1分間の条件で流動せしめ、型を開けることなく、冷却した後、脱型して、凸形の繊維強化プラスチックを得た。   Further, a convex fiber-reinforced plastic was molded using the same mold as in Example 5. The prepreg laminate is placed in a mold heated to 200 ° in advance, and is allowed to flow under a pressure of 6 MPa for 1 minute. After cooling without opening the mold, the mold is removed and the convex A shaped fiber reinforced plastic was obtained.

得られた凸形の繊維強化プラスチックは、得られた凸形の繊維強化プラスチックは、金型の端部まで基材が充填しており、またR部においても樹脂リッチ部は観察されず、実施例5と比べて遜色のない良好な品位であった。マトリックス樹脂を熱可塑樹脂とした場合であっても、良好な品位の成形体が得られることが確認できた。   The obtained convex fiber reinforced plastic was filled with the base material up to the end of the mold, and the resin rich part was not observed even in the R part. Compared with Example 5, the quality was inferior. Even when the matrix resin was a thermoplastic resin, it was confirmed that a molded article of good quality could be obtained.

(実施例19)[切込挿入・切抜工程の抜き型を同一とする]
切込挿入工程と切抜工程に用いる抜き型を同一とする以外は、実施例5と同様にして平板形ないしは凸形の繊維強化プラスチックを得た。
(Embodiment 19) [The cutting die for cutting insertion / cutting process is the same]
A flat or convex fiber-reinforced plastic was obtained in the same manner as in Example 5 except that the same cutting die was used for the cutting insertion step and the cutting step.

500mm×500mm、厚さ5mmの金属板から、切込挿入工程に用いた刃と同様の刃を削り出し、その後、切抜工程に用いた直径300mmの円状の刃を削り出し、これを抜き型とした。前記抜き型を実施例5の切込挿入工程用のプレス機に取り付け、前記プレス機を稼動させ(切抜工程のプレス機は停止)、切抜プリプレグ基材を得た。   A blade similar to the blade used in the cutting insertion process is cut out from a metal plate having a size of 500 mm × 500 mm and a thickness of 5 mm, and then a circular blade having a diameter of 300 mm used in the cutting process is cut out. It was. The punching die was attached to the press machine for the cutting insertion process of Example 5, the press machine was operated (the pressing machine in the cutting process was stopped), and a cut prepreg base material was obtained.

得られた凸形の繊維強化プラスチックは、金型の端部まで基材が充填しており、またR部においても樹脂リッチ部は観察されず、実施例5と比べて遜色ない良好な品位であった。また、切込挿入工程と切抜工程を同時に行うことで、基材裁断に費やしていた設備費、加工費などを大幅に削減できた。   In the obtained convex fiber reinforced plastic, the base material is filled up to the end of the mold, and the resin rich portion is not observed even in the R portion, and the quality is inferior to that of Example 5. there were. Moreover, by performing the cutting insertion process and the cutting process at the same time, it was possible to greatly reduce the equipment cost, processing cost, etc. that were spent on the base material cutting.

(実施例20)[回転刃]
使用する抜き型を回転刃とする以外は実施例19と同様にして、平板形ないしは凸形の繊維強化プラスチックを得た。
(Example 20) [Rotating blade]
A flat or convex fiber-reinforced plastic was obtained in the same manner as in Example 19 except that the punching die used was a rotary blade.

実施例19の切込パターンにおいて、平板状の金属を削りだす代わりに、円柱状の金属を削りだし円周上に複数の刃を設けて回転刃ローラーとし、該回転刃ローラーをプリプレグ基材に押し当てることによって切抜プリプレグ基材を得た。使用した金属ローラーは、軸方向長さ40cm、直径180mmの円柱状のローラーである。このローラーから実施例19と同様の切込パターンとなるように多数の刃を削りだし、回転刃ローラーを作製した。この回転刃ローラーと、これに対となるゴムローラーを、互いのローラーの軸が平行となるように、かつ互いに接するように配置した。さらに、両ローラーを回転させつつ、両ローラーの間に基材を送り込むことによって、切込挿入工程、切抜工程を実施した。   In the cutting pattern of Example 19, instead of cutting out the flat metal, the cylindrical metal was cut out to provide a plurality of blades on the circumference to form a rotary blade roller, and the rotary blade roller was used as a prepreg base material. A cut-out prepreg base material was obtained by pressing. The used metal roller is a cylindrical roller having an axial length of 40 cm and a diameter of 180 mm. A number of blades were cut out from this roller so as to have the same cutting pattern as in Example 19, and a rotary blade roller was produced. The rotary blade roller and the rubber roller paired with the rotary blade roller were arranged so that the axes of the rollers were parallel and in contact with each other. Furthermore, the cutting insertion process and the cutting process were implemented by sending a base material between both rollers, rotating both rollers.

得られた凸形の繊維強化プラスチックは、金型の端部まで基材が充填しており、またR部においても樹脂リッチ部は観察されず、実施例19と比べて遜色のない良好な品位であった。   The obtained convex fiber reinforced plastic is filled with the base material up to the end of the mold, and the resin rich portion is not observed even in the R portion, and is excellent in quality compared with Example 19. Met.

以下、比較例を示す。   Hereinafter, a comparative example is shown.

(比較例1) [連続繊維プリプレグ基材との比較]
プリプレグ基材に切込を入れなかった他は、比較実施例1と同様とした。
(Comparative Example 1) [Comparison with a continuous fiber prepreg base material]
It was the same as Comparative Example 1 except that the prepreg base material was not cut.

得られた凸形の繊維強化プラスチックは、金型の端部まで基材が充填しておらず、樹脂だまりができていた。また、中央のR部近傍では、金型にプリプレグ積層体が強く押し付けられたため、樹脂が搾取され、樹脂表面ががさがさしており、製品には適用できなさそうだった。   The obtained convex fiber reinforced plastic was not filled with the base material up to the end of the mold, and had a resin pool. Further, in the vicinity of the central R portion, the prepreg laminate was strongly pressed against the mold, so that the resin was squeezed out and the resin surface was scratched, so it seemed that it could not be applied to the product.

(比較例2) [SMCとの比較]
比較実施例1の一方向プリプレグ基材を繊維長30mm、幅5mmに裁断してチョップド原料プリプレグとし、そのチョップド原料プリプレグをランダムに配向させながらニップロールで加圧してそれぞれを接着したものを用いる点以外は、比較実施例1と同様にしてプリプレグ基材および積層体を得て、平板状の繊維強化プラスチックを成形した。
(Comparative Example 2) [Comparison with SMC]
Except that the unidirectional prepreg base material of Comparative Example 1 was cut into a fiber length of 30 mm and a width of 5 mm to obtain a chopped raw material prepreg, and the chopped raw material prepreg was pressed with a nip roll while being randomly oriented and bonded to each other. Obtained the prepreg base material and the laminated body like the comparative example 1, and shape | molded the flat fiber reinforced plastic.

得られた平板状の繊維強化プラスチックは、炭素繊維がうねりを伴い、金型端部まで炭素繊維が均等かつ充分に流動したが、流動状態が均一でないため線膨張係数の差異によりソリを生じた。また、引張強度は210MPaと比較実施例1と比べて大幅に低く、流動状態が均一ではないため、CV値は12%と高く、バラツキが大きかった。 In the obtained flat fiber reinforced plastic, the carbon fibers were wavy and the carbon fibers were evenly and sufficiently flowed to the end of the mold, but the flow state was not uniform, so warpage was caused by the difference in linear expansion coefficient. . Moreover, since the tensile strength was 210 MPa, which was significantly lower than that of Comparative Example 1 and the flow state was not uniform, the CV value was as high as 12%, and the variation was large.

(比較例3)[切込挿入工程と切抜工程が別の場合]
切込挿入工程が終了後、切込プリプレグ基材を一度ロール状に巻き取り、再度切込プリプレグ基材を引き出して、切抜工程を実施したこと以外は実施例5と同様にして凸形の繊維強化プラスチックを得た。
(Comparative example 3) [When cutting insertion process and cutting process are different]
After the cutting insertion process is completed, the cut prepreg base material is once wound into a roll, and the cutting prepreg base material is pulled out again to perform the cutting process. A reinforced plastic was obtained.

プリプレグ基材をかけ直したことにより、抜き型の位置と切込プリプレグ基材内の切込との相互位置が
最大4mmほどずれることとなった。工程が増えるためのコスト増加という観点のみならず、品質保証という観点からも本手法は不適切であると考えられた。
By reapplying the prepreg base material, the mutual position of the cutting die position and the notch in the cut prepreg base material was shifted by about 4 mm at the maximum. This method is considered inappropriate from the viewpoint of quality assurance as well as the cost increase due to the increased number of processes.

(比較例4、5)[繊維長さの比較]
実施例5の切込パターンにおいて、切込の間隔を変えることにより繊維長さLを変えた以外は、実施例5と同様にして、平板形、凸形の繊維強化プラスチックを得た。それぞれLは、比較例4では7.5mm、比較例5では120mmとした。
(Comparative Examples 4 and 5) [Comparison of fiber length]
In the cutting pattern of Example 5, flat and convex fiber reinforced plastics were obtained in the same manner as in Example 5 except that the fiber length L was changed by changing the cutting interval. L was 7.5 mm in Comparative Example 4 and 120 mm in Comparative Example 5, respectively.

比較例4においては、繊維長さが短いために、基材に挿入した切込の量が多く、積層作業にはかなりの難があった。また、引張強度は450MPaと実施例5など比べても低く、またCV値も9%とバラツキの大きい結果であった。   In Comparative Example 4, since the fiber length was short, the amount of cuts inserted into the base material was large, and there was a considerable difficulty in the laminating operation. Further, the tensile strength was 450 MPa, which is lower than that of Example 5, and the CV value was 9%, which was a large variation.

比較例5においては、凸形の繊維強化プラスチックの端部に、樹脂リッチ部が形成されていることが確認できた。繊維長さが長すぎたために、十分な流動性を得ることができず、金型の端部まで繊維が充填しなかったものと考えられた。   In the comparative example 5, it has confirmed that the resin rich part was formed in the edge part of a convex fiber reinforced plastic. Since the fiber length was too long, sufficient fluidity could not be obtained, and it was considered that the fiber did not fill up to the end of the mold.

Figure 0005353099
Figure 0005353099

Figure 0005353099
Figure 0005353099

Figure 0005353099
Figure 0005353099

本発明の製造方法のフローを示す概略図である。It is the schematic which shows the flow of the manufacturing method of this invention. 本発明における切込挿入工程、切抜工程の一例を示す斜視図である。It is a perspective view which shows an example of the cutting insertion process in this invention, and a cutting process. 本発明における切込挿入工程、切抜工程の一例を示す斜視図である。It is a perspective view which shows an example of the cutting insertion process in this invention, and a cutting process. 本発明における切込挿入工程、切抜工程の一例を示す斜視図である。It is a perspective view which shows an example of the cutting insertion process in this invention, and a cutting process. 本発明の切込パターンの一例を示す平面図である。It is a top view which shows an example of the cutting pattern of this invention. 本発明の切込パターンの一例を示す平面拡大図である。It is a plane enlarged view which shows an example of the cutting pattern of this invention. 比較用の切込パターンの一例を示す平面図である。It is a top view which shows an example of the cutting pattern for a comparison. 本発明の切込パターンの一例を示す平面図である。It is a top view which shows an example of the cutting pattern of this invention. 比較用のプリプレグ積層体、ならびに繊維強化プラスチックの一例を示す平面図、および断面図である。It is the top view and sectional drawing which show an example of the prepreg laminated body for a comparison, and a fiber reinforced plastic. 本発明に係るプリプレグ積層体、ならびに繊維強化プラスチックの一例を示す平面図、および断面図である。It is the top view which shows an example of the prepreg laminated body which concerns on this invention, and a fiber reinforced plastic, and sectional drawing. 本発明に係るプリプレグ積層体、ならびに繊維強化プラスチックの一例を示す平面図である。It is a top view which shows an example of the prepreg laminated body which concerns on this invention, and a fiber reinforced plastic. 本発明における切込挿入工程、切抜工程の一例を示す断面図である。It is sectional drawing which shows an example of the cutting insertion process in this invention, and a cutting process. 本発明に使用する抜き型の一例を示す平面図および斜視図である。It is the top view and perspective view which show an example of the cutting die used for this invention. 本発明に使用する抜き型の一例を示す平面図である。It is a top view which shows an example of the cutting die used for this invention. 本発明における成形方法の一例を示す平面図および斜視図である。It is the top view and perspective view which show an example of the shaping | molding method in this invention. (a)は、比較用の成形方法ならびに繊維強化プラスチックの一例を示す斜視図、ならびに断面図であり、(b)は、本発明の成形方法ならびに繊維強化プラスチックの一例を示す斜視図、ならびに断面図である。(A) is a perspective view and a sectional view showing an example of a comparative molding method and fiber reinforced plastic, and (b) is a perspective view and a cross section showing an example of the molding method and fiber reinforced plastic of the present invention. FIG.

符号の説明Explanation of symbols

1:プリプレグ基材
2:切込
3:切込プリプレグ基材
4:短繊維群
5:切抜プリプレグ基材
6:プリプレグ積層体
7:成形型
8:屈曲部
9:繊維強化プラスチック
10:抜き型
11:刃
12:土台
13:繊維配向方向
14:繊維直交方向
15:回転刃
16:強化繊維
17:切込と繊維配向方向とのなす角Θ
18:切込を強化繊維の垂直方向に投影した長さWs
19:繊維が分断される幅
20:繊維長さ
21:短繊維層
22:強化繊維の存在しない領域(切込開口部)
23:隣接層
24:繊維束端部
25:樹脂リッチ部
26:層うねり
27:強化繊維の回転
28:刃先
29:フィルム
30:テープ状支持体
31:板状の型
32:型端部
33:ローラー
34:刃からなる列
35:抜き型の基準方向
36:角α
37:刃からなる列の間隔
38:抜き型の基準方向とは垂直な方向
39:成形型(上型)
40:成形型(下型)
41:基材未充填部
1: prepreg base material 2: notch 3: notched prepreg base material 4: short fiber group 5: cut prepreg base material 6: prepreg laminate 7: molding die 8: bent portion 9: fiber reinforced plastic 10: punching die 11 : Blade 12: Base 13: Fiber orientation direction 14: Fiber orthogonal direction 15: Rotary blade 16: Reinforcing fiber 17: Angle Θ formed by cutting and fiber orientation direction
18: Length Ws obtained by projecting the cut in the vertical direction of the reinforcing fiber
19: Width at which fibers are divided 20: Fiber length 21: Short fiber layer 22: Region where no reinforcing fiber exists (cut opening)
23: Adjacent layer 24: Fiber bundle end 25: Resin rich portion 26: Layer waviness 27: Reinforcement fiber rotation 28: Cutting edge 29: Film 30: Tape-shaped support 31: Plate-shaped mold 32: Mold end 33: Roller 34: Row of blades 35: Die reference direction 36: Angle α
37: Spacing between rows of blades 38: Direction perpendicular to the reference direction of the punching die 39: Molding die (upper die)
40: Mold (lower mold)
41: Substrate unfilled part

Claims (12)

一方向に引き揃えられた強化繊維とマトリックス樹脂から構成されるプリプレグ基材の積層体をプレス成形し、3次元曲面を有する繊維強化プラスチックを得る繊維強化プラスチックの製造方法であって、少なくとも次の(1)〜(4)の工程を経て繊維強化プラスチックを成形する、繊維強化プラスチックの製造方法。
(1)プリプレグ基材に、刃を配置した抜き型を押し当てて複数の断続的または連続的な切込を挿入し、少なくとも一部の強化繊維を10〜100mmの長さに分断して短繊維群を形成する切込挿入工程であって、前記切込と前記強化繊維とのなす角をΘとしたとき、Θの絶対値が2〜25°の範囲内である、切込挿入工程
(2)前記(1)の切込挿入工程と同時または連続して、前記短繊維群を含むプリプレグ基材を所定形状に切り抜き、切抜プリプレグ基材とする切抜工程
(3)前記切抜プリプレグ基材を複数枚積層し、プリプレグ積層体を得る積層工程
(4)成形型上に前記積層体を配置し、前記積層体を前記成形型に押し付けて硬化または固化させ、繊維強化プラスチックを成形するに際し、前記成形型の屈曲部の少なくとも一部に前記短繊維群をあてがい、前記成形型の屈曲部に沿わせる成形工程
A method for producing a fiber reinforced plastic by pressing a laminate of a prepreg base material composed of reinforced fibers and a matrix resin aligned in one direction to obtain a fiber reinforced plastic having a three-dimensional curved surface. A method for producing a fiber reinforced plastic, wherein the fiber reinforced plastic is molded through the steps (1) to (4).
(1) A plurality of intermittent or continuous cuts are inserted into a prepreg base material by pressing a die having a blade disposed thereon, and at least some of the reinforcing fibers are cut into a length of 10 to 100 mm and short. Incision insertion step for forming a fiber group, where the angle between the incision and the reinforcing fiber is Θ, the absolute value of Θ is in the range of 2 to 25 ° ( incision insertion step ( 2) At the same time as or in succession to the notch insertion step of (1), a prepreg base material including the short fiber group is cut into a predetermined shape, and a cutout step is made into a cut prepreg base material. (3) The cut prepreg base material is Lamination step (4) to obtain a prepreg laminate by stacking a plurality of sheets, placing the laminate on a mold, pressing the laminate against the mold and curing or solidifying the fiber-reinforced plastic, Before at least part of the bending part of the mold The short fiber group Ategai, molding step be along the bent portion of the mold
前記樹脂が熱硬化性樹脂または熱可塑性樹脂であり、かつ、前記(4)の成形工程において、前記積層体よりも前記成形型を高温にして、前記積層体を前記成形型に押し付けて硬化または固化させる、請求項1に記載の繊維強化プラスチックの製造方法。 The resin is a thermosetting resin or a thermoplastic resin, and in the molding step (4), the molding die is heated to a temperature higher than that of the laminate, and the laminate is pressed against the molding die to be cured or The manufacturing method of the fiber reinforced plastics of Claim 1 solidified. 前記樹脂が熱可塑性樹脂であり、かつ、前記(4)の成形工程において、前記積層体を加熱した後に、前記積層体よりも前記成形型を低温にして、前記積層体を前記成形型に押し付けて固化させる、請求項1に記載の繊維強化プラスチックの製造方法。 In the molding step (4), the resin is a thermoplastic resin, and after heating the laminated body, the molding die is cooled to a temperature lower than the laminated body, and the laminated body is pressed against the molding die. The method for producing a fiber-reinforced plastic according to claim 1, wherein the fiber-reinforced plastic is solidified. 前記(1)の切込挿入工程および前記(2)の切抜工程において、同一の抜き型を用いて、強化繊維の分断とプリプレグ基材の切り抜きとを同時に行う、請求項1〜3のいずれかに記載の繊維強化プラスチックの製造方法。 In the cutting insertion process of (1) and the cutting process of (2), the same cutting die is used to simultaneously cut the reinforcing fibers and cut the prepreg base material. The manufacturing method of the fiber reinforced plastic as described in 2 .. 実質的にすべての切込において、前記切込を強化繊維の垂直方向に投影した投影長さWsが0.1mm〜1.5mmの範囲内の断続的な切込である、請求項1〜のいずれかに記載の繊維強化プラスチックの製造方法。 In virtually all cuts, the projected length Ws projected in the vertical direction of the reinforcing fiber the cut is intermittent cuts in the range of 0.1 mm to 1.5 mm, according to claim 1-4 The manufacturing method of the fiber reinforced plastic in any one of. 前記切抜プリプレグ基材の全面に切込が挿入され、前記切抜プリプレグ基材に含まれる実質的にすべての強化繊維の繊維長さが10〜100mmの範囲内である、請求項1〜のいずれかに記載の繊維強化プラスチックの製造方法。 Wherein the entire surface cutting the insertion of cut prepreg base, the fiber length of substantially all of the reinforcing fibers contained in the cut prepreg base is in the range of 10 to 100 mm, more of claims 1-4 A method for producing the fiber-reinforced plastic according to claim 1. 前記(1)の切込挿入工程、あるいは前記(2)の切抜工程において、テープ状支持体によって把持した前記プリプレグ基材を用いて、前記抜き型をテープ状支持体の反対側から前記プリプレグ基材に押し当て、前記プリプレグ基材を貫通し、かつ、前記抜き型が前記テープ状支持体の一部にのみ侵入するように前記切込を挿入する、請求項1〜のいずれかに記載の繊維強化プラスチックの製造方法。 In the cutting insertion step of (1) or the cutting step of (2), the prepreg base is removed from the opposite side of the tape-shaped support using the prepreg base material gripped by the tape-shaped support. pressed against the wood, penetrate the prepreg base material, and said cutting die inserts the cut so as to penetrate only part of the tape-shaped support, according to any one of claims 1 to 6 Manufacturing method for fiber reinforced plastic. 前記(1)の切込挿入工程、あるいは前記(2)の切抜工程において、前記プリプレグ基材を冷却する冷却機構を設けて、前記強化繊維の分断の前もしくは前記プリプレグ基材の切り抜きの前に、または、前記強化繊維の分断時もしくは前記プリプレグ基材の切り抜き時に、前記プリプレグ基材を冷却する、請求項1〜のいずれかに記載の繊維強化プラスチックの製造方法。 In the cutting insertion step of (1) or the cutting step of (2), a cooling mechanism for cooling the prepreg base material is provided, and before the reinforcing fiber is divided or before the prepreg base material is cut out. or, when crop cutting time or the prepreg base material of the reinforcing fibers, cooling the prepreg base material, method for producing a fiber reinforced plastic according to any one of claims 1-7. 前記(1)の切込挿入工程、あるいは前記(2)の切抜工程において、ローラーに複数の刃が設けられた回転刃を抜き型として使用する、請求項1〜のいずれかに記載の繊維強化プラスチックの製造方法。 The fiber according to any one of claims 1 to 8 , wherein a rotary blade having a plurality of blades provided on a roller is used as a cutting die in the cutting insertion step of (1) or the cutting step of (2). A method of manufacturing reinforced plastics. 前記回転刃が、ローラー表面に板状の刃が円筒状に取り付けられたものであり、かつ、脱着可能である、請求項に記載の繊維強化プラスチックの製造方法。 The method for producing a fiber-reinforced plastic according to claim 9 , wherein the rotary blade has a plate-like blade attached to a roller surface in a cylindrical shape and is removable. 前記回転刃において、前記板状の刃がローラー表面に螺旋状に巻き付けられている、請求項10に記載の繊維強化プラスチックの製造方法。 The manufacturing method of the fiber reinforced plastics of Claim 10 with which the said plate-shaped blade is wound around the roller surface spirally in the said rotary blade. 前記(1)の切込挿入工程、あるいは前記(2)の切抜工程において、平板状の土台に複数の刃が取り付けられた打抜刃を抜き型として使用する、請求項1〜のいずれかに記載の繊維強化プラスチックの製造方法。 Cutting insert step (1) or in cutout step (2), is used as a cutting die tabular punching blade having a plurality of blades attached to the base of any of claims 1-8 The manufacturing method of the fiber reinforced plastic as described in 2 ..
JP2008190765A 2008-07-24 2008-07-24 Manufacturing method of fiber reinforced plastic Active JP5353099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008190765A JP5353099B2 (en) 2008-07-24 2008-07-24 Manufacturing method of fiber reinforced plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008190765A JP5353099B2 (en) 2008-07-24 2008-07-24 Manufacturing method of fiber reinforced plastic

Publications (2)

Publication Number Publication Date
JP2010023449A JP2010023449A (en) 2010-02-04
JP5353099B2 true JP5353099B2 (en) 2013-11-27

Family

ID=41729724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008190765A Active JP5353099B2 (en) 2008-07-24 2008-07-24 Manufacturing method of fiber reinforced plastic

Country Status (1)

Country Link
JP (1) JP5353099B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9969146B2 (en) * 2013-03-11 2018-05-15 Mitsubishi Chemical Corporation Layered substrate and method for manufacturing same
JP6613550B2 (en) * 2014-06-23 2019-12-04 株式会社Ihi Prepreg cutting and laminating equipment
JP6597309B2 (en) * 2014-09-19 2019-10-30 東レ株式会社 Cutting prepreg and cutting prepreg sheet
KR101659591B1 (en) * 2014-12-18 2016-09-23 한국세라믹기술원 Method for manufacturing hybrid ceramic fiber reinforced composite material and hybrid ceramic fiber reinforced composite material manufactured thereby
US10099445B2 (en) * 2015-05-14 2018-10-16 The Boeing Company Systems and methods for forming composite materials
WO2017073460A1 (en) * 2015-10-27 2017-05-04 東レ株式会社 Nicked prepreg, cross-ply laminate, and nicked prepreg production method
JP6930098B2 (en) * 2015-12-25 2021-09-01 東レ株式会社 How to make a notch prepreg
KR101857173B1 (en) * 2016-02-04 2018-05-16 주식회사 일진 Ball joint and Manufacturing method thereof
KR101815147B1 (en) * 2016-02-04 2018-01-31 주식회사 일진 Ball joint and Manufacturing method thereof
CN108602284B (en) * 2016-03-16 2021-03-23 东丽株式会社 Method for producing fiber-reinforced plastic and fiber-reinforced plastic
JP2020066168A (en) * 2018-10-24 2020-04-30 三菱重工業株式会社 Prepreg automatic stacking apparatus
JP7199940B2 (en) * 2018-12-03 2023-01-06 川崎重工業株式会社 Composite aircraft part and manufacturing method thereof
KR102169173B1 (en) * 2019-09-16 2020-10-22 재단법인 한국탄소융합기술원 Method and apparatus for making difficult preforming using preheating with prepreg

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01289837A (en) * 1988-05-17 1989-11-21 Mitsui Toatsu Chem Inc Production of fiber-reinforced theromoplastic resin by using slit continuous fiber prepreg
JPH02115236A (en) * 1988-10-25 1990-04-27 Sumitomo Chem Co Ltd Fiber-reinforced resin sheet for molding, its production and production of fiber-reinforced resin molding
JP3339143B2 (en) * 1993-11-09 2002-10-28 東レ株式会社 Method of manufacturing narrow prepreg material
JP3406570B2 (en) * 2000-05-29 2003-05-12 有限会社ホーペック Spiral structure of woven fabric and its manufacturing method
TWI447009B (en) * 2006-09-28 2014-08-01 東麗股份有限公司 Method for preparing composite pre-impregnated substrate, laminated substrate and fiber reinforced plastic

Also Published As

Publication number Publication date
JP2010023449A (en) 2010-02-04

Similar Documents

Publication Publication Date Title
JP5353099B2 (en) Manufacturing method of fiber reinforced plastic
JP5167953B2 (en) Laminated substrate, fiber reinforced plastic, and production method thereof
JP5272418B2 (en) Cut prepreg base material, composite cut prepreg base material, laminated base material, fiber reinforced plastic, and method for producing cut prepreg base material
JP5223354B2 (en) Cut prepreg base material, laminated base material, fiber reinforced plastic, and method for producing cut prepreg base material
US8758874B2 (en) Prepreg base material, layered base material, fiber-reinforced plastic, process for producing prepreg base material, and process for producing fiber-reinforced plastic
JP5315692B2 (en) Manufacturing method of fiber reinforced plastic
JP5292972B2 (en) Manufacturing method of fiber reinforced plastic
JP2010023359A (en) Method of manufacturing laminate
JP5572947B2 (en) Molding material, fiber reinforced plastic, and production method thereof
JP2008207544A5 (en)
JP2008279753A (en) Manufacturing method of fiber-reinforced plastics
JP4779754B2 (en) Prepreg laminate and fiber reinforced plastic
EP3517564B1 (en) Incised prepreg and method for producing incised prepreg
CN108350201B (en) Incision prepreg, orthogonal lay-up laminate, and method for producing incision prepreg
JP2010018723A (en) Incised prepreg substrate, prepreg layered product, and fiber-reinforced plastic
WO2019244994A1 (en) Prepreg sheet and manufacturing method therefor, fiber-reinforced composite material molded article and manufacturing method therefor, and method for manufacturing preform
JP7259229B2 (en) chopped fiber bundle mat
JP2009220480A (en) Manufacturing method of notched sheet base material
JP2009292002A (en) Method of manufacturing fiber-reinforced plastics
JP2008273176A (en) Manufacturing method for fiber-reinforced plastic
JP2007146151A (en) Prepreg substrate material, laminated substrate material and fiber-reinforced plastic
JP2008238809A (en) Method of manufacturing laminate
EP3960796A1 (en) Method for manufacturing molded article of fiber-reinforced composite material, reinforcing fiber substrate and molded article of fiber-reinforced composite material
JP2008208343A (en) Cut prepreg substrate, laminated substrate, fiber reinforced plastics and preparation method of cut prepreg substrate
JP2016179647A (en) Method for producing fiber-reinforced plastic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130812

R151 Written notification of patent or utility model registration

Ref document number: 5353099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151