JP2010018723A - Incised prepreg substrate, prepreg layered product, and fiber-reinforced plastic - Google Patents

Incised prepreg substrate, prepreg layered product, and fiber-reinforced plastic Download PDF

Info

Publication number
JP2010018723A
JP2010018723A JP2008181098A JP2008181098A JP2010018723A JP 2010018723 A JP2010018723 A JP 2010018723A JP 2008181098 A JP2008181098 A JP 2008181098A JP 2008181098 A JP2008181098 A JP 2008181098A JP 2010018723 A JP2010018723 A JP 2010018723A
Authority
JP
Japan
Prior art keywords
base material
fiber
cut
prepreg base
reinforced plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008181098A
Other languages
Japanese (ja)
Inventor
Shigemichi Sato
成道 佐藤
Ichiro Takeda
一朗 武田
Eisuke Wadahara
英輔 和田原
Tetsuya Motohashi
哲也 本橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2008181098A priority Critical patent/JP2010018723A/en
Publication of JP2010018723A publication Critical patent/JP2010018723A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/12Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of short length, e.g. in the form of a mat
    • B29C70/14Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of short length, e.g. in the form of a mat oriented
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/20Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres
    • B29C70/205Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres the structure being shaped to form a three-dimensional configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/0036Slitting

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a prepreg substrate having sufficient flowability and molding followability of a complex shape and exhibiting excellent dynamic physical property applicable to a structure material, low ununiformness property and excellent dimension stability when it is made to a fiber-reinforced plastic, a layered product of the prepreg substrate, and a fiber-reinforced plastic obtained by solidifying the layered product. <P>SOLUTION: A plurality of intermittent incised parts are inserted to the whole surface of the prepreg substrate comprising a carbon fiber aligned in one direction and a matrix resin containing a thermosetting resin as a main component with a predetermined angle and projection length in a direction crossing the carbon fiber. The incised prepreg substrate is divided such that all carbon fibers become substantially the predetermined carbon fiber length by the incised parts. The incised prepreg substrate is provided with the predetermined CAI strength, dent depth and tensile strength. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、良好な流動性、成形追従性を有し、繊維強化プラスチックとした場合、構造材に適用可能な優れた力学物性、その低バラツキ性、優れた寸法安定性を発現するプリプレグ基材、およびその積層体、ならびに該積層体を固化させた繊維強化プラスチックに関する。さらに詳しくは、例えば航空機部材等に好適に用いられる繊維強化プラスチックの中間基材であるプリプレグ基材、およびその積層体、ならびに該積層体を固化して得た繊維強化プラスチックに関する。   The present invention is a prepreg base material that has good fluidity and molding followability, and exhibits excellent mechanical properties applicable to structural materials, its low variation, and excellent dimensional stability when it is made into a fiber reinforced plastic. And a laminate thereof, and a fiber reinforced plastic obtained by solidifying the laminate. More specifically, for example, the present invention relates to a prepreg base material that is an intermediate base material of fiber reinforced plastic suitably used for aircraft members and the like, a laminate thereof, and a fiber reinforced plastic obtained by solidifying the laminate.

強化繊維とマトリックス樹脂からなる繊維強化プラスチックは、比強度、比弾性率が高く、力学特性に優れること、耐候性、耐薬品性などの高機能特性を有することなどから産業用途においても注目され、その需要は年々高まりつつある。   Fiber reinforced plastic consisting of reinforced fiber and matrix resin is attracting attention in industrial applications because it has high specific properties, high specific modulus, excellent mechanical properties, weather resistance, chemical resistance, etc. The demand is increasing year by year.

高機能特性を有する繊維強化プラスチックの成形方法としては、プリプレグ基材と称される連続した強化繊維にマトリックス樹脂を含浸せしめた半硬化状態の中間基材を積層し、オートクレーブ(高温高圧釜)で加熱加圧することによりマトリックス樹脂を固化させ繊維強化プラスチックを成形するオートクレーブ成形が最も一般的に行われている。また、近年では生産効率の向上を目的として、あらかじめ部材形状に賦形した連続繊維基材にマトリックス樹脂を含浸および固化させるRTM(レジントランスファーモールディング)成形等も行われている。これらの成形法により得られた繊維強化プラスチックは、連続繊維である所以優れた力学物性を有する。また、連続繊維は規則的な配列であるため、基材の配置により必要とする力学物性に設計することが可能であり、力学物性のバラツキも小さい。しかしながら、一方で連続繊維であるが故に3次元形状等の複雑な形状を形成することは難しく、主として平面形状に近い部材に限られる。また、異物が前記繊維強化プラスチックに衝突した場合、繊維強化プラスチック内部には損傷が生じるが、損傷箇所に凹みが生じにくく、目視で外観を検査するのみでは損傷箇所を発見しづらいという問題点があった。   As a method for molding fiber reinforced plastics with high functional properties, a semi-cured intermediate base material impregnated with a matrix resin is laminated on a continuous reinforcing fiber called a prepreg base material, and an autoclave (high temperature and high pressure kettle) is used. Autoclave molding in which a matrix resin is solidified by heating and pressurizing to form a fiber reinforced plastic is most commonly performed. In recent years, for the purpose of improving production efficiency, RTM (resin transfer molding) molding, in which a continuous fiber base previously shaped into a member shape is impregnated with a matrix resin and solidified, has been performed. The fiber reinforced plastics obtained by these molding methods have excellent mechanical properties because they are continuous fibers. Further, since the continuous fibers are regularly arranged, it is possible to design the mechanical properties required by the arrangement of the base material, and the variation in the mechanical properties is small. However, on the other hand, since it is a continuous fiber, it is difficult to form a complicated shape such as a three-dimensional shape, and it is mainly limited to members close to a planar shape. In addition, when a foreign object collides with the fiber reinforced plastic, the inside of the fiber reinforced plastic is damaged, but the dent is not easily generated in the damaged part, and it is difficult to find the damaged part only by visual inspection. there were.

一方、3次元形状等の複雑な形状に適した成形方法として、SMC(シートモールディングコンパウンド)成形等がある。SMC成形は、通常25mm程度に切断したチョップドストランドに熱硬化性樹脂であるマトリックス樹脂を含浸せしめ半硬化状態としたSMCシートを、加熱型プレス機を用いて加熱加圧することにより成形を行う。多くの場合、加圧前にSMCシートを成形体の形状より小さく切断して成形型上に配置し、加圧により成形体の形状に引き伸ばして(流動させて)成形を行う。そのため、その流動により3次元形状等の複雑な形状にも追従可能となる。また、短繊維とすることにより、連続繊維を用いた繊維強化プラスチックに比べ異物衝突箇所の凹み量は増加する。しかしながら、SMCはそのシート化工程において、チョップドストランドの分布ムラ、配向ムラが必然的に生じてしまうため、力学物性が低下し、あるいはその値のバラツキが大きくなってしまう。さらには、そのチョップドストランドの分布ムラ、配向ムラにより、特に薄物の部材ではソリ、ヒケ等が発生しやすくなり、構造材としては不適な場合がある。   On the other hand, as a molding method suitable for a complicated shape such as a three-dimensional shape, there is SMC (sheet molding compound) molding. SMC molding is performed by heating and pressurizing a semi-cured SMC sheet obtained by impregnating a chopped strand cut to about 25 mm with a matrix resin, which is a thermosetting resin, using a heating press. In many cases, before pressing, the SMC sheet is cut smaller than the shape of the molded body, placed on a mold, and stretched (flowed) into the shape of the molded body by pressing to perform molding. Therefore, it is possible to follow a complicated shape such as a three-dimensional shape by the flow. In addition, by using short fibers, the amount of dents at the foreign object collision portion is increased as compared with fiber reinforced plastic using continuous fibers. However, since SMC inevitably causes distribution unevenness and orientation unevenness of chopped strands in the sheeting process, the mechanical properties deteriorate or the variation of the values increases. Furthermore, due to uneven distribution and alignment unevenness of the chopped strands, warpage, sink marks and the like are likely to occur particularly in a thin member, which may be unsuitable as a structural material.

上述のような材料の欠点を埋めるべく、連続繊維と熱可塑性樹脂からなるプリプレグ基材に切込を入れることにより、流動可能で力学物性のバラツキも小さくなるとされる基材が開示されている(例えば、特許文献1,2)。しかしながら、SMCと比較すると力学特性が大きく向上し、バラツキが小さくなるものの、構造材として適用するには十分な強度とは言えない。連続繊維基材と比較すると切込という欠陥を内包した構成であるために、応力集中点である切込が破壊の起点となり、特に引張強度、引張疲労強度が低下する、という問題があった。
特開昭63−247012号公報 特開平9−254227号公報
In order to fill the drawbacks of the above-described materials, a base material that can flow and reduce the variation in mechanical properties by cutting into a prepreg base material composed of continuous fibers and a thermoplastic resin is disclosed ( For example, Patent Documents 1 and 2). However, compared with SMC, the mechanical properties are greatly improved and the variation is small, but it cannot be said that the strength is sufficient for application as a structural material. Compared with a continuous fiber base material, since it has a configuration including a defect called a notch, the notch which is a stress concentration point becomes a starting point of fracture, and in particular, there is a problem that tensile strength and tensile fatigue strength are lowered.
Japanese Unexamined Patent Publication No. 63-247010 Japanese Patent Laid-Open No. 9-254227

本発明は、かかる従来技術の背景に鑑み、良好な流動性、複雑な形状の成形追従性を有し、繊維強化プラスチックとした場合、異物衝突箇所が視覚的に確認し易く、構造材に適用可能な優れた力学物性、その低バラツキ性、優れた寸法安定性を発現するプリプレグ基材、およびその積層体、ならびに該積層体を固化した繊維強化プラスチックを提供することにある。   In view of the background of such prior art, the present invention has good fluidity and molding followability of a complicated shape, and when it is made of fiber reinforced plastic, it is easy to visually confirm the foreign matter collision point and is applied to a structural material. An object of the present invention is to provide a prepreg base material that exhibits possible excellent mechanical properties, low variation thereof, and excellent dimensional stability, a laminate thereof, and a fiber-reinforced plastic obtained by solidifying the laminate.

本発明は、かかる課題を解決するために、次のような手段を採用するものである。すなわち、一方向に引き揃えられた炭素繊維と、熱硬化性樹脂を主成分とするマトリックス樹脂とからなるプリプレグ基材において、該プリプレグ基材の全面に炭素繊維を横切る方向に複数の断続的な切込が挿入されており、前記切込と炭素繊維とのなす角度の絶対値Θが2〜25°の範囲内であり、前記切込を炭素繊維の垂直方向に投影した投影長さWsが0.1〜1.5mmの範囲内であり、実質的にすべての炭素繊維が前記切込により分断され、前記切込により分断された炭素繊維の繊維長さLが10〜100mmの範囲内であって、前記切込が挿入されたプリプレグ基材の厚みHが30〜300μmであり、繊維体積含有率Vfが45〜65%の範囲内あり、該切込が挿入されたプリプレグ基材をASTM D7137/D7137M−05に従う積層構成で、オートクレーブを用いて、圧力6kg/cm、昇温速度1.5℃/分で25℃から昇温して180℃に達してから2時間保持して樹脂を硬化させ、ASTM D7137/D7137M−05に記載される平板状の繊維強化プラスチックに成形された場合、ASTM D7137/D7137M−05に従い測定したCAI強度が200〜400MPa、かつ、デント深さが0.18〜2mmを発現し、さらにJIS−7073(1988)に従い測定した引張強度が450〜850MPaを発現する切込プリプレグ基材、である。 The present invention employs the following means in order to solve such problems. That is, in a prepreg base material composed of carbon fibers aligned in one direction and a matrix resin mainly composed of a thermosetting resin, a plurality of intermittently in a direction crossing the carbon fiber over the entire surface of the prepreg base material. A notch is inserted, the absolute value Θ of the angle between the notch and the carbon fiber is in the range of 2 to 25 °, and the projected length Ws obtained by projecting the notch in the vertical direction of the carbon fiber is Within the range of 0.1 to 1.5 mm, substantially all the carbon fibers are divided by the incision, and the fiber length L of the carbon fibers divided by the incision is in the range of 10 to 100 mm. The thickness H of the prepreg base material into which the cuts are inserted is 30 to 300 μm, the fiber volume content Vf is in the range of 45 to 65%, and the prepreg base material into which the cuts are inserted is designated as ASTM. D7137 / D7137M- In a laminated structure according to 05, using an autoclave, the pressure was 6 kg / cm 2 , the temperature was increased from 25 ° C. at a temperature increase rate of 1.5 ° C./min, and reached 180 ° C. and held for 2 hours to cure the resin, When molded into a flat fiber reinforced plastic described in ASTM D7137 / D7137M-05, the CAI strength measured according to ASTM D7137 / D7137M-05 is 200 to 400 MPa, and the dent depth is 0.18 to 2 mm. It is a cut prepreg base material that is expressed and further exhibits a tensile strength of 450 to 850 MPa measured according to JIS-7073 (1988).

また、かかる切込プリプレグ基材の少なくとも一部に有してなり、炭素繊維が一方向に引き揃えられたプリプレグ基材が複数枚積層され、前記炭素繊維が一方向に引き揃えられたプリプレグ基材が、該プリプレグ基材の繊維方向が少なくとも2方向以上に配向して一体化されているプリプレグ積層体、該切込プリプレグ基材または該プリプレグ積層体を用いて、所定の形状に成形し、繊維強化プラスチックとすることが好ましい。   Further, the prepreg base is formed by stacking a plurality of prepreg base materials in which carbon fibers are aligned in one direction, and the carbon fibers are aligned in one direction. The material is molded into a predetermined shape using the prepreg laminate in which the fiber directions of the prepreg base material are aligned and integrated in at least two directions, the cut prepreg base material, or the prepreg laminate, A fiber reinforced plastic is preferable.

本発明によれば、良好な流動性、複雑な形状の成形追従性を有し、繊維強化プラスチックとした場合、異物衝突箇所が視覚的に確認し易く、構造材に適用可能な優れた力学物性、その低バラツキ性、優れた寸法安定性を発現するプリプレグ基材、およびその積層体、ならびに該積層体を固化した繊維強化プラスチックを得ることができる。   According to the present invention, excellent fluid physical properties that can be applied to a structural material, having good fluidity, molding followability of complex shapes, and making it easy to visually confirm the location of a foreign object collision when used as a fiber reinforced plastic. In addition, a prepreg base material that exhibits low variation and excellent dimensional stability, a laminate thereof, and a fiber reinforced plastic obtained by solidifying the laminate can be obtained.

本発明者らは、良好な流動性、複雑な形状の成形追従性を有し、繊維強化プラスチックとした場合、優れた力学物性、その低バラツキ性、優れた寸法安定性を発現するプリプレグ基材を得るため、鋭意検討を重ねてきた。その結果、プリプレグ基材として、一方向に引き揃えられた強化繊維とマトリックス樹脂から構成されるプリプレグ基材という特定の基材に特定な切込パターンを挿入し、該プリプレグ基材を積層し、加圧成形することにより、構造材に適用可能な優れた力学物性を有し、そのバラツキも小さく、寸法精度も安定した繊維強化プラスチックが得られることを究明した。また、本発明の繊維強化プラスチックは、異物衝突箇所の凹み量が大きくなり易く、損傷箇所を視覚的に特定し易いという特徴があり、このような特徴が特に要求される航空機部材として適用可能であることを見出した。   The present inventors have excellent fluidity, molding followability of complicated shapes, and when used as a fiber reinforced plastic, a prepreg base material that exhibits excellent mechanical properties, low variation, and excellent dimensional stability. In order to obtain As a result, as a prepreg base material, a specific cutting pattern is inserted into a specific base material called a prepreg base material composed of reinforcing fibers and matrix resin aligned in one direction, and the prepreg base material is laminated, It has been clarified that a fiber-reinforced plastic having excellent mechanical properties applicable to structural materials, small variations, and stable dimensional accuracy can be obtained by pressure molding. Further, the fiber reinforced plastic of the present invention is characterized in that the amount of dents at the foreign object collision portion is likely to be large, and the damaged portion is easy to visually identify, and can be applied as an aircraft member that particularly requires such a feature. I found out.

本発明では、一方向に引き揃えられた炭素繊維と熱硬化性樹脂を主成分とするマトリックス樹脂からなるプリプレグ基材を用いる。なお、本発明で用いられるプリプレグ基材は、一方向に引き揃えられた強化繊維や強化繊維基材に樹脂が完全に含浸した基材に加え、樹脂シートが繊維内に完全に含浸していない状態で一体化した樹脂半含浸基材(セミプレグ:以下、半含浸プリプレグ基材を称することもある。)を含むものとする。本発明に係るプリプレグ基材は、強化繊維が一方向に引き揃えられているので、繊維方向の配向制御により任意の力学物性を有する成形体の設計が可能となる。   In this invention, the prepreg base material which consists of matrix resin which has as a main component the carbon fiber and thermosetting resin which were aligned in one direction is used. In addition, the prepreg base material used in the present invention is not completely impregnated in the fiber, in addition to the reinforcing fiber aligned in one direction and the base material in which the reinforcing fiber base material is completely impregnated with the resin. A resin semi-impregnated base material integrated in a state (semi-preg: hereinafter, sometimes referred to as a semi-impregnated prepreg base material) is included. In the prepreg base material according to the present invention, since the reinforcing fibers are aligned in one direction, it is possible to design a molded body having arbitrary mechanical properties by controlling the orientation in the fiber direction.

本発明の切込プリプレグ基材に用いられる強化繊維としては、例えば、アラミド繊維、ポリエチレン繊維、ポリパラフェニレンベンズオキサドール(PBO)繊維などの有機繊維、ガラス繊維、炭素繊維、炭化ケイ素繊維、アルミナ繊維、チラノ繊維、玄武岩繊維、セラミックス繊維などの無機繊維、ステンレス繊維やスチール繊維などの金属繊維、その他、ボロン繊維、天然繊維、変性した天然繊維などを繊維として用いた強化繊維などが挙げられる。その中でも特に炭素繊維は、これら強化繊維の中でも軽量であり、しかも比強度および比弾性率において特に優れた性質を有しており、さらに耐熱性や耐薬品性にも優れていることから、軽量化が望まれる航空機、自動車などの部材に好適である。なかでも、高強度の炭素繊維が得られやすいPAN系炭素繊維が好ましい。なお、本明細書では、特に断らない限り、繊維あるいは繊維を含む用語(例えば“繊維方向”等)において、繊維とは炭素繊維を表すものとする。   Examples of the reinforcing fiber used in the cut prepreg base material of the present invention include organic fibers such as aramid fiber, polyethylene fiber, polyparaphenylene benzoxador (PBO) fiber, glass fiber, carbon fiber, silicon carbide fiber, and alumina. Examples thereof include inorganic fibers such as fibers, Tyranno fibers, basalt fibers, and ceramic fibers, metal fibers such as stainless fibers and steel fibers, and reinforcing fibers that use boron fibers, natural fibers, modified natural fibers, and the like as fibers. Among them, carbon fiber is particularly lightweight among these reinforcing fibers, and has particularly excellent properties in specific strength and specific modulus, and is also excellent in heat resistance and chemical resistance. It is suitable for members such as aircraft and automobiles that are desired to be made. Among these, PAN-based carbon fibers that can easily obtain high-strength carbon fibers are preferable. In the present specification, unless otherwise specified, in terms of fibers or terms including fibers (for example, “fiber direction” and the like), the fibers represent carbon fibers.

本発明の切込プリプレグ基材に用いられるマトリックス樹脂としては、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂、エポキシアクリレート樹脂、ウレタンアクリレート樹脂、フェノキシ樹脂、アルキド樹脂、ウレタン樹脂、マレイミド樹脂、シアネート樹脂などの熱硬化性樹脂や、ポリアミド、ポリアセタール、ポリアクリレート、ポリスルフォン、ABS、ポリエステル、アクリル、ポリブチレンテレフタラート(PBT)、ポリエチレンテレフタレート(PET)、ポリエチレン、ポリプロピレン、ポリフェニレンスルフィド(PPS)、ポリエーテルエーテルケトン(PEEK)、液晶ポリマー、塩ビ、ポリテトラフルオロエチレンなどのフッ素系樹脂、シリコーンなどの熱可塑性樹脂が挙げられる。その中でも特に熱硬化性樹脂主成分とするマトリックス樹脂を用いるのが好ましい。マトリックス樹脂が熱硬化性樹脂を主成分とすることにより、切込プリプレグ基材は室温においてタック性を有し、該基材を積層した際に上下の該基材と粘着により一体化され、意図したとおりの積層構成を保ったままで成形することができる。一方、室温においてタック性のない熱可塑性樹脂プリプレグ基材では、プリプレグ基材を積層した際に該基材同士が滑るため、成形時に積層構成がずれてしまい、結果として繊維の配向ムラの大きい繊維強化プラスチックとなる。特に、凹凸部を有する型で成形する際は、その差異が顕著に現れる。   Examples of the matrix resin used for the notched prepreg base material of the present invention include, for example, epoxy resins, unsaturated polyester resins, vinyl ester resins, phenol resins, epoxy acrylate resins, urethane acrylate resins, phenoxy resins, alkyd resins, urethane resins, Thermosetting resins such as maleimide resin and cyanate resin, polyamide, polyacetal, polyacrylate, polysulfone, ABS, polyester, acrylic, polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polyethylene, polypropylene, polyphenylene sulfide ( PPS), polyetheretherketone (PEEK), liquid crystal polymer, vinyl chloride, polytetrafluoroethylene and other fluororesins, silicone and other thermoplastic resins It is below. Among these, it is particularly preferable to use a matrix resin whose main component is a thermosetting resin. Since the matrix resin is mainly composed of a thermosetting resin, the cut prepreg base material has tackiness at room temperature, and when the base material is laminated, it is integrated with the upper and lower base materials by adhesion, and is intended. It can shape | mold, keeping the laminated structure as it was. On the other hand, in the case of a thermoplastic resin prepreg base material that does not have tack at room temperature, the base materials slip when the prepreg base materials are laminated. It becomes reinforced plastic. In particular, when molding with a mold having an uneven portion, the difference appears remarkably.

さらに、熱硬化性樹脂から構成される本発明の切込プリプレグ基材は、室温において優れたドレープ性を有するため、例えば、凹凸部を有する型を用いて成形する場合、予めその凹凸に沿わした予備賦形を容易に行うことが出来る。この予備賦形により成形性は向上し、流動の制御も容易になる。   Furthermore, since the incised prepreg base material of the present invention composed of a thermosetting resin has excellent drapability at room temperature, for example, when molding using a mold having an uneven portion, the uneven portion is preliminarily aligned with the unevenness. Pre-shaping can be easily performed. This pre-shaping improves moldability and facilitates flow control.

さらに、本発明のプリプレグ基材は、前記プリプレグ基材の全面に炭素繊維を横切る方向に複数の断続的な切込が挿入されており、実質的にすべての炭素繊維が前記切込により分断され、前記切込により分断された炭素繊維の繊維長さLが10〜100mmの範囲内であって、前記切込と炭素繊維とのなす角度の絶対値Θが2〜25°の範囲内であり、前記切込を炭素繊維の垂直方向に投影した投影長さWsが0.1〜1.5mmの範囲内であり、前記切込が挿入されたプリプレグ基材の厚みHが30〜300μmであり、繊維体積含有率Vfが45〜65%の範囲内ある。なお、本発明において“実質的にすべての炭素繊維が切込により分断され”とは、本発明の切込により分断されていない連続繊維が引き揃えられている面積が、プリプレグ基材面積に占める割合の5%より小さいことを示す。以降、断らない限り、本発明の全面に切込を有するプリプレグ基材を切込プリプレグ基材と記す。   Furthermore, in the prepreg base material of the present invention, a plurality of intermittent cuts are inserted in the direction across the carbon fibers on the entire surface of the prepreg base material, and substantially all the carbon fibers are cut by the cuts. The fiber length L of the carbon fiber divided by the cut is in the range of 10 to 100 mm, and the absolute value Θ between the cut and the carbon fiber is in the range of 2 to 25 °. The projected length Ws obtained by projecting the cut in the vertical direction of the carbon fiber is in the range of 0.1 to 1.5 mm, and the thickness H of the prepreg base material into which the cut is inserted is 30 to 300 μm. The fiber volume content Vf is in the range of 45 to 65%. In the present invention, “substantially all of the carbon fibers are divided by the incision” means that the area where the continuous fibers not divided by the incision of the present invention are aligned occupies the prepreg base material area. Indicates less than 5% of the percentage. Hereinafter, unless otherwise specified, a prepreg base material having a cut on the entire surface of the present invention is referred to as a cut prepreg base material.

本発明において、繊維長さLとは、任意の切込と、任意の切込と同等の切込が、炭素繊維の垂直方向に投影した投影長さWsを有する繊維方向に最近接の切込(対になる切込)とにより分断される繊維の長さを指している。ここで、“切込が、炭素繊維の垂直方向に投影した投影長さWs”とは図1に示すとおり、切込を炭素繊維の垂直方向(炭素繊維の垂直方向2)を投影面として、切込から該投影面に垂直(繊維長手方向1)に投影した際の長さを指す。プリプレグ基材の全面に切込が挿入され、基材中の炭素繊維の繊維長さLをすべて100mm以下とすることにより、成形時に繊維は流動可能、特に繊維長手方向にも流動可能となり、複雑な形状の成形追従性にも優れる。該切込がない場合、すなわち連続繊維のみの場合、繊維長手方向には流動しないため、複雑形状を形成することは出来ない。繊維長さLを10mm未満にすると、さらに流動性が向上するが、他の用件を満たしても構造材として必要な高力学特性は得られない。流動性と力学特性との関係を鑑みると、さらに好ましくは20〜60mmの範囲内である。対になる切込以外に切り込まれて分断される繊維長さLより短い繊維も存在するが、10mm以下の繊維は少なければ少ないほどよい。さらに好ましくは、10mm以下の繊維が引き揃えられている面積が、プリプレグ基材面積に占める割合の5%より小さいのがよい。   In the present invention, the fiber length L is an incision closest to the fiber direction in which an arbitrary incision and an incision equivalent to the arbitrary incision have a projected length Ws projected in the vertical direction of the carbon fiber. It refers to the length of the fiber that is divided by (a pair of cuts). Here, “projection length Ws projected by the cut in the vertical direction of the carbon fiber” is, as shown in FIG. 1, with the cut as the projection plane in the vertical direction of the carbon fiber (vertical direction 2 of the carbon fiber). It refers to the length when projected perpendicularly to the projection plane from the cut (fiber longitudinal direction 1). By making cuts in the entire surface of the prepreg base material and making the fiber length L of the carbon fibers in the base material all 100 mm or less, the fiber can flow during molding, especially in the longitudinal direction of the fiber, making it complicated. Excellent shape following capability. When there is no notch, that is, when only continuous fibers are used, a complicated shape cannot be formed because the fibers do not flow in the fiber longitudinal direction. When the fiber length L is less than 10 mm, the fluidity is further improved. However, even if other requirements are satisfied, the high mechanical properties necessary as a structural material cannot be obtained. Considering the relationship between fluidity and mechanical properties, it is more preferably in the range of 20 to 60 mm. There are also fibers shorter than the fiber length L that is cut and divided other than the pair of cuts, but the fewer the fibers of 10 mm or less, the better. More preferably, the area where the fibers of 10 mm or less are aligned is smaller than 5% of the ratio of the prepreg base material area.

また、切込と炭素繊維とのなす角度Θの絶対値が2〜25°の範囲内であることが本発明の大きな特徴である。Θの絶対値が25°より大きくても流動性は得ることができ、従来のSMC等と比較して高い力学特性は得ることができるが、特にΘの絶対値が25°以下であることで力学特性の向上が著しい。一方、Θの絶対値は2°より小さいと流動性も力学特性も十分得ることが出来るが、切込を安定して入れることが難しくなる。すなわち、繊維に対して切込が寝てくると、切込を入れる際、繊維が刃から逃げやすく、また、繊維長さLを100mm以下とするためには、Θの絶対値が2°より小さいと少なくとも切込同士の最短距離が0.9mmより小さくなるなど、生産安定性に欠ける。また、このように切込同士の距離が小さいと積層時の取り扱い性が難しくなるという問題がある。切込の制御のしやすさと力学特性との関係を鑑みると、さらに好ましくは5〜15°の範囲内である。なお、本発明におけるΘとは、切込上の任意の点を点Xとしたとき、点Xにおける繊維長手方向と切込とのなす角をθ(X)とすれば、Θはθ(X)の切込上の平均値、すなわち(式1)によって与えられる値とする。ここで、図8に示すように、切込の端点をそれぞれ点A、点Bとし、点Aと点Bを結び、切込に沿った曲線をCとしており、また点Xにおける曲線Cの微小線分をdsとしている。   Further, it is a major feature of the present invention that the absolute value of the angle Θ formed by the notch and the carbon fiber is in the range of 2 to 25 °. Even if the absolute value of Θ is larger than 25 °, fluidity can be obtained, and higher mechanical properties can be obtained as compared with conventional SMC, etc., but in particular, when the absolute value of Θ is 25 ° or less. Significant improvement in mechanical properties. On the other hand, if the absolute value of Θ is smaller than 2 °, sufficient fluidity and mechanical properties can be obtained, but it is difficult to make a stable cut. That is, when the incision lies on the fiber, the fiber easily escapes from the blade when making the incision, and in order to make the fiber length L 100 mm or less, the absolute value of Θ is more than 2 ° If it is small, at least the shortest distance between the cuts will be less than 0.9 mm, resulting in poor production stability. In addition, when the distance between the cuts is small as described above, there is a problem that handling at the time of stacking becomes difficult. In view of the relationship between the ease of controlling the cutting and the mechanical characteristics, it is more preferably in the range of 5 to 15 °. Note that Θ in the present invention means that when an arbitrary point on the cut is a point X, if the angle formed by the fiber longitudinal direction and the cut at the point X is θ (X), Θ is θ (X ) Is the average value on the notch, that is, the value given by (Equation 1). Here, as shown in FIG. 8, the end points of the incision are point A and point B, the points A and B are connected, the curve along the incision is C, and the curve C at the point X is very small. The line segment is ds.

Figure 2010018723
Figure 2010018723

炭素繊維の垂直方向に投影した長さWsは30μm〜100mmの範囲内であるのがよい。Wsが30μm以下となると、切込の制御が難しく、プリプレグ基材層全面に渡ってLが10〜100mmとなるよう、保障することが難しい。すなわち、切込により切断されていない繊維が存在すると基材の流動性は著しく低下するが、多めに切込を入れるとLが10mmを下回る部位が出てきてしまう、という問題点がある。さらに、プリプレグ基材に刃を押し当てることによって切込を挿入しようとする場合、裁断時に炭素繊維が繊維垂直方向に蛇行し刃から逃げるために、繊維をうまく裁断できないことがある。このような繊維逃げの影響を小さくするためには、Wsは0.1mm以上であることが好ましい。より好ましくはWsを0.2mm以上とすることで、より連続繊維を残すことなくプリプレグ基材に切込を挿入することが可能となる。   The length Ws projected in the vertical direction of the carbon fiber is preferably in the range of 30 μm to 100 mm. When Ws is 30 μm or less, it is difficult to control the cutting, and it is difficult to ensure that L is 10 to 100 mm over the entire surface of the prepreg base material layer. That is, if there is a fiber that is not cut by cutting, the fluidity of the base material is remarkably lowered. However, if a large amount of cutting is made, there is a problem that a portion where L is less than 10 mm appears. Furthermore, when trying to insert a cut by pressing the blade against the prepreg base material, the carbon fiber may meander in the direction perpendicular to the fiber at the time of cutting and escape from the blade, so that the fiber may not be cut well. In order to reduce the influence of such fiber escape, Ws is preferably 0.1 mm or more. More preferably, by setting Ws to 0.2 mm or more, it becomes possible to insert the cut into the prepreg base material without leaving more continuous fibers.

一方、力学特性の観点から好ましくは、炭素繊維の垂直方向に投影した長さWsが1.5mm以下であることが好ましい。本発明においては、切込と炭素繊維とのなす角度の絶対値Θの絶対値が2〜25°であることにより、切込長さに対して投影長さWsを小さくすることができる。そのため、1.5mm以下という極小の切込であっても、工業的に安定して設けることが可能である。Wsを小さくすることにより、一つ一つの切込により分断される繊維量が減り、強度向上が見込まれる。特に、Wsが1.5mm以下とすることで、大きな強度向上が見込まれる。また、切込長さが長ければ長いほど、積層作業時に基材の切込が開口し易くなり、基材の取り扱い性が大幅に低下する。切込が1.5mm以下であれば、積層作業時に切込が開口しにくく、基材の取り扱い性の良い切込プリプレグ基材となる。   On the other hand, from the viewpoint of mechanical properties, the length Ws projected in the vertical direction of the carbon fiber is preferably 1.5 mm or less. In the present invention, since the absolute value of the absolute value Θ of the angle formed by the cut and the carbon fiber is 2 to 25 °, the projection length Ws can be reduced with respect to the cut length. Therefore, even a very small cut of 1.5 mm or less can be provided industrially stably. By reducing Ws, the amount of fibers cut by each cutting is reduced, and strength improvement is expected. In particular, when Ws is 1.5 mm or less, a great improvement in strength is expected. In addition, the longer the cut length, the easier it is for the base material notches to open during the laminating operation, and the handleability of the base material is greatly reduced. If the cut is 1.5 mm or less, the cut is less likely to open during the laminating operation, and a cut prepreg base material with good substrate handling properties is obtained.

また、本発明の切込プリプレグ基材はテープ状支持体に密着されていてもよい。テープ状支持体に密着された切込プリプレグ基材は、全ての繊維が切込により切断されてもその形態を保持することが可能となり、賦形時に繊維が脱落してバラバラになってしまうという問題はない。マトリックス樹脂がタック性を有する熱硬化性樹脂であるとさらに好ましい。ここで、テープ状支持体とは、クラフト紙などの紙類やポリエチレン・ポリプロピレンなどのポリマーフィルム類、アルミなどの金属箔類などが挙げられ、さらに樹脂との離型性を得るために、シリコーン系や“テフロン(登録商標)”系の離型剤や金属蒸着等を表面に付与しても構わない。   Moreover, the cut prepreg base material of the present invention may be in close contact with the tape-like support. The notched prepreg base material in close contact with the tape-like support can retain its form even if all the fibers are cut by the incision, and the fibers fall off and fall apart during shaping. No problem. More preferably, the matrix resin is a thermosetting resin having tackiness. Here, the tape-like support includes papers such as kraft paper, polymer films such as polyethylene / polypropylene, metal foils such as aluminum and the like, and in order to obtain releasability from the resin, silicone. A surface or “Teflon (registered trademark)” type release agent, metal vapor deposition, or the like may be applied to the surface.

本発明の切込プリプレグ基材を複数枚積層し、加圧しながら成形することによって得られた繊維強化プラスチックにおいては、切込開口部が非常に小さいか、または切込開口部が形成されない。この点が本発明の最大の特徴である。   In the fiber reinforced plastic obtained by laminating a plurality of the cut prepreg base materials of the present invention and molding them while pressing, the cut openings are very small or the cut openings are not formed. This is the greatest feature of the present invention.

本特徴を、図2、3を用いて説明する。本発明の比較として図2には、切込4と繊維3とのなす角度Θの絶対値が90°である切込プリプレグ基材7を積層した積層体10をa)、その積層体10を成形した繊維強化プラスチック11をb)に、それぞれ切込プリプレグ基材7由来の層をクローズアップした平面図と平面図のA−A断面を切り出した断面図を示した。a)に示すとおり、切込プリプレグ基材7は、繊維に垂直な切込を全面に設けられており、切込4は層の厚み方向を貫いている。繊維長さLを100mm以下とすることで、流動性が確保され、プレス成形などにより、容易に積層体10より面積が伸長した繊維強化プラスチック11を得ることができる(ただし、厚みは減る)。b)のように、伸長した繊維強化プラスチック11を得た際、切込プリプレグ基材7由来の短繊維層12は、繊維の垂直方向に伸長すると共に、繊維が存在しない領域(切込開口部)13が生成される。これは一般的に炭素繊維が成形程度の圧力では伸長しないためであり、図2のケースでは、伸張した長さ分だけ切込開口部13が生成され、例えば250×250mmの積層体10から300×300mmの繊維強化プラスチック11を得た際には、300×300mmの繊維強化プラスチック11の表面積に対して、切込開口部13の総面積は50×300mm、すなわち1/6(約16.7%)が切込開口部となる計算である。この領域13は断面図に示すとおり、隣接層14が侵入してきて、略三角形の樹脂リッチ部16と隣接層が侵入している領域とで占められる。従って、切込プリプレグ基材7を用いた積層体10を伸長して成形した場合、繊維束端部15では層のうねり17や樹脂リッチ部16が発生し、これが力学特性の低下や表面品位の低下に影響を与える。また、繊維がある部位とない部位で剛性が異なるため、面内異方性の繊維強化プラスチック11となり、ソリなどの問題から設計が難しい。また、強度の面では、荷重方向から±10°以下程度に向いている繊維が大部分の荷重を伝達しているが、その繊維束端部15では隣接層14に荷重を再分配しなければならない。その際、図2b)のように、繊維束端部15が荷重方向に垂直となっていると、応力集中が起きやすく、剥離も起こりやすい。そのため、強度向上はあまり期待できない。   This feature will be described with reference to FIGS. As a comparison of the present invention, FIG. 2 shows a laminate 10 in which a cut prepreg base material 7 having an absolute value of an angle Θ between the cut 4 and the fiber 3 of 90 ° is laminated a), and the laminate 10 is shown in FIG. The molded fiber reinforced plastic 11 is shown in b) in a plan view in which the layers derived from the cut prepreg base material 7 are respectively close-up and a cross-sectional view in which the AA cross section of the plan view is cut out. As shown in a), the cut prepreg base material 7 is provided with a cut perpendicular to the fiber on the entire surface, and the cut 4 penetrates the thickness direction of the layer. By setting the fiber length L to 100 mm or less, fluidity is ensured, and the fiber reinforced plastic 11 whose area is easily extended from the laminate 10 can be easily obtained by press molding or the like (however, the thickness is reduced). When the elongated fiber reinforced plastic 11 is obtained as in b), the short fiber layer 12 derived from the cut prepreg base material 7 extends in the vertical direction of the fiber, and the region where the fiber does not exist (cut opening) ) 13 is generated. This is because carbon fibers generally do not expand at a pressure of the molding level. In the case of FIG. 2, the cut openings 13 are generated for the extended length, for example, 250 × 250 mm laminates 10 to 300. When the fiber reinforced plastic 11 of × 300 mm was obtained, the total area of the cut openings 13 was 50 × 300 mm, that is, 1/6 (about 16.7 (about 16.7) with respect to the surface area of the fiber reinforced plastic 11 of 300 × 300 mm. %) Is the calculation for the cut opening. As shown in the cross-sectional view, the region 13 is occupied by the substantially triangular resin-rich portion 16 and the region in which the adjacent layer has intruded. Therefore, when the laminated body 10 using the cut prepreg base material 7 is stretched and formed, the undulation 17 of the layer and the resin rich portion 16 are generated at the fiber bundle end portion 15, which causes deterioration of mechanical properties and surface quality. Affects decline. In addition, since the rigidity is different between the part where the fiber is present and the part where the fiber is not present, the fiber-reinforced plastic 11 is in-plane anisotropic, and design is difficult due to problems such as warping. Further, in terms of strength, the fiber oriented to about ± 10 ° or less from the load direction transmits most of the load, but the fiber bundle end 15 must redistribute the load to the adjacent layer 14. Don't be. At that time, as shown in FIG. 2b), when the fiber bundle end 15 is perpendicular to the load direction, stress concentration is likely to occur, and peeling is also likely to occur. Therefore, the strength improvement cannot be expected so much.

図3には、本発明の切込プリプレグ基材の一例を積層した積層体10をa)、その積層体10を成形した繊維強化プラスチック11をb)に、それぞれ切込プリプレグ基材7由来の層をクローズアップした平面図を示した。a)に示すとおり、切込プリプレグ基材7は、繊維3となす角度Θの絶対値が25°以下の断続的な切込4が全面に設けられており、切込4は層の厚み方向を貫いている。切込4により繊維長さLを切込プリプレグ基材7の全面で100mm以下とすることで、流動性が確保され、プレス成形などにより、容易に積層体7より面積が伸長した繊維強化プラスチック11を得ることができる。切込長さ、切込と炭素繊維とのなす角度の絶対値を小さくすることにより、切込を炭素繊維の垂直方向に投影した投影長さWsを1.5mm以下とすることができる。b)のように、伸長した繊維強化プラスチック11を得た際、切込プリプレグ基材7由来の短繊維層12は、繊維の垂直方向に伸長する際、繊維方向に繊維が伸張しないため、繊維が存在しない領域(切込開口部)13が生成されるが、隣接する短繊維群が繊維の垂直方向に流動することで、切込開口部13を埋め、切込開口部13の面積が小さくなる。この傾向は特に、切込を炭素繊維の垂直方向に投影した投影長さWsを1.5mm以下とすることで顕著となり、実質的に切込開口部13が生成せず、切込開口部の層の表面における面積が層の表面積と比較して0.1〜10%の範囲内とすることができる。従って、厚み方向に隣接層が侵入することもなく、層のうねりや樹脂リッチ部のない高強度で品位の高い繊維強化プラスチック11を得ることが出来る。面内全体にくまなく繊維3が配されているため、面内での剛性差がなく、設計も従来の連続繊維強化プラスチックと同様、簡易に適用できる。この切込開口部を繊維の垂直方向の流動により埋め、層うねりのない繊維強化プラスチックを得るという画期的効果は切込と炭素繊維とのなす角度の絶対値Θの絶対値が25°以下であり、かつ切込を炭素繊維の垂直方向に投影した投影長さWsを1.5mm以下とすることで初めて得ることができる。さらに好ましくはWsが1mm以下であることにより、より高強度、高品位とすることができる。   In FIG. 3, the laminated body 10 which laminated | stacked an example of the cut prepreg base material of this invention is a), the fiber reinforced plastic 11 which shape | molded the laminated body 10 is b), respectively, and the cut prepreg base material 7 origin A top view of the layers close-up is shown. As shown in a), the cut prepreg base material 7 is provided with intermittent cuts 4 having an absolute value of the angle Θ between the fibers 3 of 25 ° or less and the cuts 4 are in the layer thickness direction. Through. By making the fiber length L to be 100 mm or less over the entire surface of the cut prepreg base material 7 by the cuts 4, the fiber reinforced plastic 11 whose area is easily extended from the laminate 7 by press molding or the like is secured. Can be obtained. By reducing the cut length and the absolute value of the angle between the cut and the carbon fiber, the projected length Ws obtained by projecting the cut in the vertical direction of the carbon fiber can be made 1.5 mm or less. When the stretched fiber reinforced plastic 11 is obtained as in b), the short fiber layer 12 derived from the cut prepreg base material 7 does not stretch in the fiber direction when stretched in the vertical direction of the fiber. Is generated, the adjacent short fiber group flows in the vertical direction of the fiber, thereby filling the cut opening 13 and reducing the area of the cut opening 13. Become. This tendency is particularly noticeable when the projection length Ws obtained by projecting the cut in the vertical direction of the carbon fiber is 1.5 mm or less, and the cut opening 13 is not substantially generated. The area on the surface of the layer can be in the range of 0.1 to 10% compared to the surface area of the layer. Therefore, it is possible to obtain a high-strength and high-quality fiber-reinforced plastic 11 without layer undulation or resin-rich portion without adjacent layers intruding in the thickness direction. Since the fibers 3 are arranged all over the surface, there is no difference in rigidity in the surface, and the design can be easily applied as in the conventional continuous fiber reinforced plastic. The epoch-making effect of filling the cut opening with the vertical flow of the fiber to obtain a fiber-reinforced plastic without layer undulations is that the absolute value of the absolute value Θ between the cut and the carbon fiber is 25 ° or less. In addition, the projection length Ws obtained by projecting the cut in the vertical direction of the carbon fiber can be obtained for the first time to 1.5 mm or less. More preferably, when Ws is 1 mm or less, higher strength and higher quality can be achieved.

さらに好ましくは、繊維強化プラスチックの最外層において、前記切込開口部の面積が実質的に0であるのがよい。なお、切込開口部の面積が“実質的に0”とは、開口部は存在しないことが望ましいが、最外層において切込開口部の面積が繊維強化プラスチックの表面積と比較して1%以下であれば差支えが無いことを意味する。Θの絶対値が25°よりも大きければ、樹脂リッチ部やその層における繊維がない領域、すなわち隣接層の炭素繊維がのぞいている領域が最外層に生成されるため、外板部材としては適用が難しい。一方で本発明では、樹脂リッチ部や繊維がない領域が生成されにくいため、外板部材としての適用も可能となる。   More preferably, in the outermost layer of the fiber reinforced plastic, the area of the cut opening is substantially zero. The area of the cut opening is “substantially 0”, but it is desirable that the opening does not exist, but the area of the cut opening in the outermost layer is 1% or less compared to the surface area of the fiber reinforced plastic. If so, it means that there is no problem. If the absolute value of Θ is larger than 25 °, a resin-rich part or a region where there is no fiber in the layer, that is, a region where the carbon fiber of the adjacent layer is viewed is generated in the outermost layer. Is difficult. On the other hand, in the present invention, it is difficult to generate a resin-rich portion or a region without fibers, so that it can be applied as an outer plate member.

プリプレグ基材の厚みHは300μmより大きくても変わらず良い流動性を得ることが出来るが、本発明は切込を有するため、分断される層厚みが大きければ大きいほど強度が低下する傾向があり、構造材に適用することを前提とするならば、300μm以下とする必要がある。一方、Hは30μmより小さくても流動性を保ち、高強度を得ることが出来るが、極めて薄いプリプレグ基材を安定的に製造するのは非常に困難であるため、低コストに本発明の効果を得るには30μm以上である必要がある。力学特性とコストとの関係を鑑みると、好ましくは50〜200μmである。   Even if the thickness H of the prepreg base material is larger than 300 μm, good fluidity can be obtained. However, since the present invention has a notch, the larger the layer thickness to be divided, the lower the strength. If it is assumed to be applied to a structural material, it is necessary to set it to 300 μm or less. On the other hand, even if H is smaller than 30 μm, fluidity can be maintained and high strength can be obtained. However, since it is very difficult to stably produce an extremely thin prepreg base material, the effect of the present invention can be reduced at a low cost. It is necessary that the thickness is 30 μm or more. In view of the relationship between mechanical properties and cost, the thickness is preferably 50 to 200 μm.

繊維体積含有率Vfは65%以下で十分な流動性を得ることができる。Vfが低いほど流動性は向上するが、Vfが45%より小さくなると、構造材に必要な高力学特性は得られない。流動性と力学特性との関係を鑑みると、さらに好ましくは55〜60%の範囲内である。   When the fiber volume content Vf is 65% or less, sufficient fluidity can be obtained. The lower the Vf, the better the fluidity. However, if Vf is less than 45%, the high mechanical properties required for the structural material cannot be obtained. Considering the relationship between fluidity and mechanical properties, it is more preferably in the range of 55-60%.

さらに本発明の切込プリプレグ基材の少なくとも一方の表面には、切込プリプレグ基材中のマトリックス樹脂より引張伸度が高い追加樹脂層を設けることが好ましい。図5に、切込プリプレグの両面に熱可塑性樹脂と熱硬化性樹脂からなる追加樹脂層を設けた例を示す。本発明の切込プリプレグ基材を積層、成形して得た繊維強化プラスチックは、層内から発生したクラックが層間剥離によりつながると最終破壊が起こるため、伸度の高い追加樹脂層を層間に設けることにより層間剥離が劇的に抑えられ、強度が向上する。   Furthermore, it is preferable to provide an additional resin layer having a higher tensile elongation than the matrix resin in the cut prepreg base material on at least one surface of the cut prepreg base material of the present invention. FIG. 5 shows an example in which an additional resin layer made of a thermoplastic resin and a thermosetting resin is provided on both sides of the cut prepreg. The fiber reinforced plastic obtained by laminating and molding the cut prepreg base material of the present invention has a final elongation when cracks generated from within the layers are connected by delamination, so an additional resin layer having a high elongation is provided between the layers. This dramatically reduces delamination and improves strength.

追加樹脂層を形成する追加樹脂としては、マトリックス樹脂として用いる熱硬化性樹脂より引張伸度の高いものなら何でもよいが、特に熱可塑性樹脂を用いるのがよい。熱可塑性樹脂は、伸度や破壊靱性値が一般的な熱硬化性樹脂に比べ高いことが知られており、効果的に本発明の強度向上効果を奏する。さらに、ポリアミド、ポリエステル、ポリオレフィン、ポリフェニレンスルフォンが樹脂特性とコストとのバランス、樹脂粘度の設計自由度の点で好ましい。追加樹脂はマトリックス樹脂との相溶性が高いほど、本発明の効果を奏するため、成形温度と同等以下の融点を持つものがよい。とりわけ、共重合等により100〜200℃程度に低融点化したポリアミドは熱硬化性樹脂との相溶性に優れており、かつ、伸引張度、引張強度、破壊靱性値も高く、好ましい。炭素繊維として炭素繊維を用い、マトリックス樹脂としてエポキシ樹脂、追加樹脂としてポリアミド樹脂を用いた際、最も軽量で高強度、高剛性な繊維強化プラスチックを得ることが出来る。   The additional resin for forming the additional resin layer may be anything as long as it has a higher tensile elongation than the thermosetting resin used as the matrix resin, but it is particularly preferable to use a thermoplastic resin. Thermoplastic resins are known to have higher elongation and fracture toughness values than general thermosetting resins, and effectively exhibit the strength improvement effect of the present invention. Furthermore, polyamide, polyester, polyolefin, and polyphenylene sulfone are preferable in terms of the balance between resin characteristics and cost and the degree of freedom in designing the resin viscosity. As the additional resin has higher compatibility with the matrix resin, the effect of the present invention is exhibited. Therefore, it is preferable that the additional resin has a melting point equal to or lower than the molding temperature. In particular, a polyamide having a low melting point of about 100 to 200 ° C. by copolymerization or the like is excellent in compatibility with a thermosetting resin, and has a high tensile tensile strength, tensile strength, and fracture toughness, and is preferable. When carbon fiber is used as the carbon fiber, epoxy resin is used as the matrix resin, and polyamide resin is used as the additional resin, the most lightweight, high-strength, high-rigidity fiber-reinforced plastic can be obtained.

追加樹脂層の配置については、炭素繊維が形成する層内に入り込まず切込プリプレグ基材表面上に層状に配置されているのがよい。炭素繊維が形成する層内とは、あらかじめマトリックス樹脂を一方向に引き揃えた炭素繊維中に含浸して得た切込プリプレグ基材を示す。層間に集中的に追加樹脂層を設けることにより、より層間剥離現象を抑えることができる。また、追加樹脂が炭素繊維により形成される層内に入りこまずに層状に配置されているとは、追加樹脂が炭素繊維により形成される層中にアンカー効果が得られるような態様で配置されていないことを意味するが、少量の追加樹脂(例えば、全追加樹脂の20体積%以下)が溶融等により炭素繊維により形成される層内に入り込んでいても(つまり、一部の炭素繊維の周りにマトリックス樹脂ではなく、全追加樹脂の20体積%以下の追加樹脂が存在していても)よいことを意味する。なお、追加樹脂層の形態は、フィルム状または不織布状などいずれの形態であってもよく、プリプレグ基材の全面に均一に追加樹脂層を設けてもよいし、切込を覆う領域に集中的に追加樹脂を配してもよい。また、樹脂層を含まないプリプレグ基材の表面に粒子状の追加樹脂を散布するのみでも追加樹脂層を配することが可能である。この際、追加樹脂の厚みは炭素繊維単糸より大きく層厚みHの半分より小さいのが好ましい。   About arrangement | positioning of an additional resin layer, it is good not to enter in the layer which a carbon fiber forms, but to arrange | position in layers on the cut prepreg base material surface. The inside of the layer formed by the carbon fibers refers to a cut prepreg base material obtained by impregnating carbon fibers preliminarily aligned with a matrix resin in one direction. By providing the additional resin layer intensively between the layers, the delamination phenomenon can be further suppressed. Further, the additional resin is arranged in a layered form without entering the layer formed by the carbon fiber means that the additional resin is arranged in a mode in which an anchor effect is obtained in the layer formed by the carbon fiber. Although a small amount of additional resin (for example, 20% by volume or less of the total additional resin) has entered the layer formed of carbon fibers by melting or the like (that is, some of the carbon fibers This means that there may be an additional resin of 20% or less by volume of the total additional resin instead of a matrix resin. The form of the additional resin layer may be any form such as a film or non-woven form, and the additional resin layer may be provided uniformly on the entire surface of the prepreg base material, or concentrated on the area covering the cut. Additional resin may be disposed on the surface. Further, it is possible to dispose the additional resin layer only by spraying the particulate additional resin on the surface of the prepreg base material not including the resin layer. At this time, the thickness of the additional resin is preferably larger than the carbon fiber single yarn and smaller than half of the layer thickness H.

前記切込プリプレグ基材をASTM D7137/D7137M−05に従う積層構成で、オートクレーブを用いて、圧力6kg/cm、昇温速度1.5℃/分で25℃から昇温して180℃に達してから2時間保持して樹脂を硬化させ、ASTM D7137/D7137M−05にて規定される平板状の繊維強化プラスチックに成形した場合、ASTM D7137/D7137M−05に従い測定したCAI強度が200〜400MPa、かつ、デント深さが0.18〜2mmを発現し、さらにJIS−7073(1988)に従い測定した引張強度が450〜850MPaを発現させることが可能となる。なお、CAI強度およびデント深さは、ASTM D7137/D7137M−05に従い測定し、引張強度はJIS−7073(1988)に従い測定する。切込を挿入せず、連続繊維からなる繊維強化プラスチックでは、CAI強度は高くなるが、デント深さが小さくなり易い。一方、短繊維強化プラスチックであるSMC成形品では、デント深さは大きくなるが、CAI強度は低く、構造部材として使用するのは難しい。本発明の切込プリプレグ基材を積層し、硬化させた繊維強化プラスチックは、CAI強度が高く、またデント深さも大きくなるといった両利点を兼ね備えており、従来材料には見られない特徴を有している。ここで、軽量化が求められる自動車や飛行機の部材として使用するためには、引張強度が450〜850MPa、CAI強度が200〜400MPaの範囲内であることが好ましい。さらに生産安定性を鑑みると、引張強度が500〜800MPa、CAI強度が220〜320MPaの範囲内である。 The notched prepreg base material is laminated according to ASTM D7137 / D7137M-05, and the temperature is increased from 25 ° C. to 180 ° C. using an autoclave at a pressure of 6 kg / cm 2 and a heating rate of 1.5 ° C./min. When the resin is cured by holding for 2 hours and molded into a flat fiber reinforced plastic as defined by ASTM D7137 / D7137M-05, the CAI strength measured according to ASTM D7137 / D7137M-05 is 200 to 400 MPa, And it becomes possible to express the dent depth 0.18-2mm, and also the tensile strength measured according to JIS-7073 (1988) 450-850MPa. The CAI strength and dent depth are measured according to ASTM D7137 / D7137M-05, and the tensile strength is measured according to JIS-7073 (1988). In a fiber reinforced plastic made of continuous fibers without inserting a notch, the CAI strength increases, but the dent depth tends to decrease. On the other hand, in the SMC molded product which is a short fiber reinforced plastic, the dent depth is large, but the CAI strength is low and it is difficult to use as a structural member. The fiber reinforced plastic obtained by laminating and curing the cut prepreg base material of the present invention has both the advantages of high CAI strength and large dent depth, and has characteristics not found in conventional materials. ing. Here, in order to use as a member for automobiles or airplanes that are required to be reduced in weight, it is preferable that the tensile strength is in the range of 450 to 850 MPa and the CAI strength is in the range of 200 to 400 MPa. Further, in view of production stability, the tensile strength is in the range of 500 to 800 MPa, and the CAI strength is in the range of 220 to 320 MPa.

CAI強度が高く、デント深さが大きくなる材料は、特に航空機部材としての需要が高い。例えば、部材を組立中の衝撃による損傷や、航空機の運用中に受ける衝撃による損傷を目視(非破壊)で認識するためには、衝撃を受けた箇所が目視で識別できるレベルに凹部が形成される必要がある。凹部が目視できるレベルに形成されており、その時の圧縮強度が予測でき、その圧縮強度が運用に耐えうるほど充分に高いものであると、組立中の検査や運用中のメンテナンスサービス時に衝撃を受けたか否か、運用に耐えうるか否かを判断することが可能となり、航空機の品質保証・メンテナンスに極めて大きな寄与を果たす。すなわち、落錘衝撃によりデント深さが深く発現し、かつ、その状態で衝撃後圧縮強度CAIが高く発現する材料は、航空機部材として極めて高い適合性を有するといえる。   A material having a high CAI strength and a large dent depth is particularly in demand as an aircraft member. For example, in order to visually recognize (nondestructive) damage caused by impact during assembly of a member or impact received during operation of an aircraft, a recess is formed at a level at which the impacted portion can be visually identified. It is necessary to If the recess is formed at a level where it can be visually observed, and the compressive strength at that time can be predicted and the compressive strength is high enough to withstand operation, it will be shocked during inspection during assembly and maintenance service during operation. It can be judged whether or not it can withstand operation, and it contributes greatly to quality assurance and maintenance of aircraft. That is, it can be said that a material that expresses a dent depth deeply due to a falling weight impact and has a high compressive strength CAI after impact in that state has extremely high suitability as an aircraft member.

本発明における切込プリプレグ基材を製造する手法としては、プリプレグ基材を刃で裁断する方法、レーザーカッター、あるいはウォーターカッターを用いる方法など幾つか考えられるが、安価かつ生産性よく切込プリプレグ基材を製造するのであれば、複数の刃が一体化した抜き型を作製し、それをプリプレグ基材に刃を押し当てることにより切込を挿入する手法が有力である。   As a method for producing the cut prepreg base material in the present invention, several methods such as a method of cutting the prepreg base material with a blade, a method using a laser cutter or a water cutter can be considered, but the cut prepreg base is inexpensive and has high productivity. If a material is manufactured, a method of inserting a notch by producing a punching die in which a plurality of blades are integrated and pressing the blade against the prepreg base material is effective.

また、切込プリプレグ基材に断続的な切込を挿入する具体的な手段としては、特に次の2つが有用であると考えられる。   Moreover, the following two are considered to be particularly useful as specific means for inserting intermittent cuts into the cut prepreg substrate.

1つ目は、プレス機(昇降機)を用いて、プリプレグ基材に刃を配置した抜き型を押し当てることによって、プリプレグ基材に切込を挿入する押し切り法である。図6に、押し切り法の模式図を示す。押し切り法は、1回のプレスにより多量の切込を一度にプリプレグ基材に挿入することができるなど生産効率もよい。また、抜き型の加工も容易であり、安価に抜き型を作製することも可能である。なお、押し切り法において抜き型をプレス機に取り付ける方法としては、例えば、刃を土台となる木型などに埋め込み、抜き型としてプレス機に取り付けるのが好ましい。この手法を用いれば、抜き型の作製が容易であり、また刃の突出量などを簡単に調整することもできる。   The first is a push cutting method in which a notch is inserted into a prepreg base material by pressing a punching die having a blade disposed on the prepreg base material using a press machine (elevator). FIG. 6 shows a schematic diagram of the push-off method. The push-cut method has good production efficiency, such as a large amount of cuts can be inserted into the prepreg substrate at one time by a single press. Further, the punching die can be easily processed, and the punching die can be produced at a low cost. In addition, as a method of attaching the punching die to the press machine in the press-cutting method, for example, it is preferable to embed the blade in a wooden mold or the like as a base and attach it to the press machine as a punching die. If this method is used, it is easy to produce a punching die, and the amount of protrusion of the blade can be easily adjusted.

2つ目は、予め刃を配置した回転ローラーを連続的にプリプレグ基材に押し当てることにより、プリプレグ基材に切込を挿入する回転刃法である。図7に、回転刃法の模式図を示す。回転刃法では、ローラーの回転速度を早く設定することができ、前述の押し切り法よりも速く切込プリプレグ基材を作製することができるため、有用である。   The second is a rotary blade method in which a cutting roller is inserted into a prepreg base material by continuously pressing a rotary roller on which a blade is previously arranged against the prepreg base material. FIG. 7 shows a schematic diagram of the rotary blade method. The rotating blade method is useful because the rotation speed of the roller can be set faster, and the cut prepreg base material can be produced faster than the aforementioned push-cut method.

なお、押し切り法と回転刃法のいずれの手法を用いたとしても、プリプレグ基材を作製しているラインと同一ライン上、すなわちオンラインで切込の挿入を行うことが可能である。そのため、本発明の切込プリプレグ基材を作製する場合は、例えば既存のプリプレグ基材生産ラインの最終工程に切込挿入装置を配置するのみでよく、少ない投資で切込プリプレグ基材を作製することが可能である。   In addition, even if it uses any method of a push cutting method and a rotary blade method, it is possible to insert a notch on the same line as the line which is producing the prepreg base material, ie, online. Therefore, when producing the incision prepreg base material of the present invention, for example, it is only necessary to arrange the incision insertion device in the final process of the existing prepreg base material production line, and the incision prepreg base material is produced with little investment. It is possible.

また、切込プリプレグ基材に挿入される切込の形状は直線状、かつ切込長さWは0.5mm〜1.5mmの範囲内であるのがよい。切込の形状を直線状とすることで、切込の挿入に必要な刃の形状が平面状となるため、抜き型の加工に要する手間が少なくなり、抜き型の製造コストが低下する。また、前述のように、切込長さを小さくすれば小さくするほど切込プリプレグ基材の力学強度も向上するが、同時に刃の長さも小さくなり、刃の耐久性が低下する。また、切込長さを0.5mm以下とすると、刃の加工費が高くなり、現実的ではない。刃の耐久性を鑑みると、切込長さは0.5mm以上であることが好ましい。一方、力学的に高強度であり、成形時に切込が開口しない程度に切込長さを小さくしようとすれば、切込長さは1.5mm以下であることが好ましい。刃の耐久性と力学強度の両側面を鑑みると、より好ましくは切込長さが0.8〜1.2mmの範囲内であるのがよい。   Further, the shape of the cut inserted into the cut prepreg base material is linear, and the cut length W is preferably in the range of 0.5 mm to 1.5 mm. By making the shape of the cut into a straight line, the shape of the blade necessary for the insertion of the cut becomes a flat shape, so that the labor required for the cutting die is reduced and the manufacturing cost of the die is reduced. Further, as described above, the smaller the cut length is, the more the mechanical strength of the cut prepreg base material is improved. At the same time, the blade length is also reduced, and the durability of the blade is lowered. Further, if the cutting length is 0.5 mm or less, the processing cost of the blade is increased, which is not realistic. In view of the durability of the blade, the cutting length is preferably 0.5 mm or more. On the other hand, if it is intended to reduce the cutting length to such an extent that it has high mechanical strength and does not open during molding, the cutting length is preferably 1.5 mm or less. In view of both side surfaces of the durability and mechanical strength of the blade, the cutting length is more preferably in the range of 0.8 to 1.2 mm.

本発明の切込プリプレグ基材においては、前記切込により分断されたすべての炭素繊維が実質的に同一の繊維長さLであることが好ましい。繊維長さが場所毎に異なっていたとしても本発明の効果は得られるが、繊維長さを一定とすることにより、さらに力学物性のバラツキを軽減し、均一な基材流動特性を発揮することが出来る。なお、本発明における“実質的に同一の繊維長さLである“とは、切込プリプレグ基材内に含まれる炭素繊維のうち、重量にして3/4以上の炭素繊維の繊維長さがLとなることを意味する。   In the cut prepreg base material of the present invention, it is preferable that all the carbon fibers divided by the cut have substantially the same fiber length L. Even if the fiber length varies from place to place, the effect of the present invention can be obtained, but by making the fiber length constant, the variation in mechanical properties can be further reduced and uniform substrate flow characteristics can be exhibited. I can do it. In the present invention, “substantially the same fiber length L” means that, among the carbon fibers contained in the cut prepreg base material, the fiber length of the carbon fiber is 3/4 or more by weight. Means L.

また、切込プリプレグ基材に連続繊維が残らないようにする工夫として、切込プリプレグ基材の切込パターンにおいて、図1に示すように切込同士で互いに切込んだ幅8を持たせることで、連続繊維が残らないようにするという手法も効果的である。このとき、切込プリプレグ基材の一部にその繊維長さがL以下となる炭素繊維が存在することになるが、切込プリプレグ基材内に含まれる炭素繊維のうち、その繊維長さがL以下となる炭素繊維が重量にして1/4以下であれば、力学物性のバラツキは小さくなり、均一な基材流動特性を発揮できると期待される。   In addition, as a device for preventing continuous fibers from remaining on the cut prepreg base material, in the cut pattern of the cut prepreg base material, as shown in FIG. Thus, a technique of preventing the continuous fibers from remaining is also effective. At this time, a carbon fiber having a fiber length of L or less is present in a part of the cut prepreg base material. Among the carbon fibers contained in the cut prepreg base material, the fiber length is If the carbon fiber of L or less is 1/4 or less in weight, it is expected that variation in mechanical properties will be small and uniform base material flow characteristics can be exhibited.

さらに、本発明の切込プリプレグ基材を少なくとも一部に有してなる積層体であって、炭素繊維が一方向に引き揃えられたプリプレグ基材が複数枚積層され、前記炭素繊維が一方向に引き揃えられたプリプレグ基材が、該プリプレグ基材の繊維方向が少なくとも2方向以上に配向して一体化させた積層体を作製し、これを成形用基材として用いるのがよい。プリプレグ基材を積層体とすることで、成形型に基材を配置するのが容易となる。なお、本発明の切込プリプレグ基材を繊維長手方向が同一となるように複数枚積層し、この積層体をプレス成形によって繊維強化プラスチックとした場合でも本発明の効果は期待できる。ただし、この繊維強化プラスチックにおいては、繊維長手方向の強度は高強度となる一方で、炭素繊維の垂直方向の強度は低強度となる。なぜなら本発明の繊維強化プラスチックにおいては、炭素繊維の引張強度に比べ、樹脂・繊維界面の接着強度のほうがはるかに低い。そのため、すべての層が同一方向に配向している繊維強化プラスチックに対して炭素繊維の垂直方向に荷重が負荷された場合、繊維・樹脂界面において両者を引き剥がす力が発生し、繊維強化プラスチックはより低荷重で破壊に至る。そこで、荷重の負荷方向に寄らず高強度を発現しようとすれば、前記プリプレグ基材の繊維方向が少なくとも2方向以上に配向して一体化されている積層体とするのがよい。好ましい積層体の具体例としては、まず各層のプリプレグ基材の繊維長手方向が、互いに直交する2方向に分類される積層体が考えられる。この積層体では、積層枚数が少ない場合であっても等方的な力学物性を発現できるため有用である。また、もうひとつの好ましい積層体の具体例としては、プリプレグ基材積層体に含まれる任意の層の繊維長手方向を0°としたとき、他層の含まれるプリプレグ基材の繊維長手方向が45°、−45°、90°のいずれかに含まれるプリプレグ基材積層体である。45°刻みで繊維長手方向を変化させることにより、より等方的な力学物性を発揮することができる。   Furthermore, it is a laminate comprising the cut prepreg base material of the present invention in at least a part, and a plurality of prepreg base materials in which carbon fibers are aligned in one direction are laminated, and the carbon fibers are unidirectional. It is preferable to prepare a laminated body in which the prepreg base materials aligned in the above are integrated with the fiber directions of the prepreg base materials oriented in at least two directions, and this is used as a base material for molding. By making a prepreg base material into a laminated body, it becomes easy to arrange | position a base material to a shaping | molding die. Note that the effect of the present invention can be expected even when a plurality of the cut prepreg base materials of the present invention are laminated so that the longitudinal direction of the fibers is the same, and the laminated body is made into fiber reinforced plastic by press molding. However, in this fiber reinforced plastic, the strength in the longitudinal direction of the fiber is high, while the strength in the vertical direction of the carbon fiber is low. This is because in the fiber-reinforced plastic of the present invention, the adhesive strength at the resin / fiber interface is much lower than the tensile strength of carbon fiber. Therefore, when a load is applied in the vertical direction of the carbon fiber to the fiber reinforced plastic in which all layers are oriented in the same direction, a force to peel off both at the fiber / resin interface is generated. Breaks at lower load. Therefore, if it is intended to develop high strength regardless of the load direction, it is preferable to make a laminate in which the fiber directions of the prepreg base material are aligned and integrated in at least two directions. As a specific example of a preferable laminate, a laminate in which the fiber longitudinal direction of the prepreg base material of each layer is classified into two directions orthogonal to each other can be considered. This laminated body is useful because isotropic mechanical properties can be expressed even when the number of laminated layers is small. As another specific example of the preferred laminate, when the fiber longitudinal direction of an arbitrary layer contained in the prepreg base laminate is 0 °, the fiber longitudinal direction of the prepreg base contained in the other layer is 45. It is a prepreg base material laminate included in any of °, -45 °, and 90 °. By changing the fiber longitudinal direction in increments of 45 °, more isotropic mechanical properties can be exhibited.

さらに、前述の積層体、あるいは本発明の切込プリプレグ基材を複数枚積層したものを、加熱した金型に配置し、加圧加熱することで樹脂を硬化させ、繊維強化プラスチックとするのがよい。樹脂を硬化し、繊維強化プラスチックとすることによりはじめて、軽量でありながら高強度かつ高剛性な部材として使用することが可能となる。   Furthermore, the laminate described above or a laminate of a plurality of the cut prepreg base materials of the present invention is placed in a heated mold, and the resin is cured by heating under pressure to obtain a fiber reinforced plastic. Good. Only when the resin is cured to obtain a fiber-reinforced plastic, it can be used as a member having high strength and high rigidity while being lightweight.

本発明の繊維強化プラスチックは、その形状が平滑面であったり、ゆるやかな曲面であったりした場合にも適用可能である。さらに、繊維強化プラスチックの一部に立ち面あるいはリブ形状を含む部材を成形する場合は、切込プリプレグ基材を使用するメリットが大きい。仮に連続繊維プリプレグ基材の積層体を加熱加圧し、立ち面、あるいはリブ形状を含む部材を単純にプレス成形しようとすれば、繊維が金型形状に沿うことができず、あるいは金型キャビティの端部まで繊維が充填されず、良好な品位の成形体を得るのが非常に困難である。本発明の切込プリプレグ基材を使用すれば、立ち面、あるいはリブ形状を含む部材であっても、プレス成形時に基材が高い流動性を発揮するために容易に良好な品位の成形体を得ることが可能である。   The fiber reinforced plastic of the present invention can be applied even when the shape is a smooth surface or a gently curved surface. Furthermore, when a member including a standing surface or a rib shape is formed on a part of the fiber reinforced plastic, the merit of using the cut prepreg base material is great. If the laminated body of continuous fiber prepreg base material is heated and pressed and a member including a standing surface or a rib shape is simply press-molded, the fibers cannot follow the mold shape, or the mold cavity It is very difficult to obtain a molded article of good quality because the fiber is not filled to the end. If the cut prepreg base material of the present invention is used, even if it is a member including a standing surface or a rib shape, it is easy to form a molded article of good quality because the base material exhibits high fluidity during press molding. It is possible to obtain.

前述の通り、本発明の繊維強化プラスチックは、航空機部材として極めて高い適合性を有すると考えられる。特に、その厚みが5mm以下である薄物の繊維強化プラスチックにおいては異物衝突箇所のCAI強度が低下し易く、いかにして異物衝突箇所を検出するかが非常に重要とされるため、本発明の繊維強化プラスチックが非常に有用であると期待される。航空機部材の中でも、比較的薄物であり、本発明の繊維強化プラスチックの適用が期待される航空機部材の一例としては、スキン、ストリンガー、スティフナー、スパー、フロアビーム、リブ、フレーム、さらにはダブラーなどが挙げられる。特にこれらの部材では、その形状の一部にリブ、立ち面形状を含む場合が多く、プリプレグ基材に切込を挿入することにより高流動化した効果が大きいと期待される。   As described above, the fiber-reinforced plastic of the present invention is considered to have extremely high compatibility as an aircraft member. In particular, in a thin fiber reinforced plastic having a thickness of 5 mm or less, the CAI strength at a foreign matter collision point is likely to be lowered, and it is very important how to detect the foreign matter collision point. Reinforced plastics are expected to be very useful. Examples of aircraft members that are relatively thin among aircraft members and for which the fiber-reinforced plastic of the present invention is expected to be applied include skins, stringers, stiffeners, spars, floor beams, ribs, frames, and even doublers. Can be mentioned. In particular, these members often include ribs and standing surface shapes as part of their shapes, and it is expected that the effect of increasing fluidity by inserting cuts into the prepreg base material is great.

以下、実施例により本発明をさらに具体的に説明するが、本発明は、実施例に記載の発明に限定されるというものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the inventions described in the examples.

<機械特性評価方法>
本実施例では、引張強度とCAI強度の2つの力学強度を測定し、本発明における繊維強化プラスチックの強度の指標としている。
<Mechanical property evaluation method>
In this example, two mechanical strengths, tensile strength and CAI strength, are measured and used as an index of the strength of the fiber reinforced plastic in the present invention.

(引張試験法)
平板状の繊維強化プラスチックより、長さ250±1mm、幅25±0.2mmの引張試験片を切り出した。JIS K−7073(1998)に規定する試験方法に従い、標点間距離を150mmとし、クロスヘッド速度2.0mm/分で引張強度を測定した。なお、本実施例においては、試験機としてインストロン(登録商標)万能試験機4208型を用いた。測定した試験片の数はn=5とし、平均値を引張強度とした。さらに、測定値より標準偏差を算出し、その標準偏差を平均値で除することにより、バラツキの指標である変動係数(CV値(%))を算出した。
(Tensile test method)
A tensile test piece having a length of 250 ± 1 mm and a width of 25 ± 0.2 mm was cut out from the flat fiber-reinforced plastic. According to the test method prescribed in JIS K-7073 (1998), the tensile strength was measured at a crosshead speed of 2.0 mm / min with a distance between the gauge points of 150 mm. In this example, an Instron (registered trademark) universal testing machine 4208 type was used as a testing machine. The number of test pieces measured was n = 5, and the average value was the tensile strength. Further, a standard deviation was calculated from the measured value, and the standard deviation was divided by an average value, thereby calculating a variation coefficient (CV value (%)) as an index of variation.

(CAI試験法)
平板状の繊維強化プラスチックより、長さ150±0.25mm、幅100±0.25mmのCAI試験片を切り出した。ASTM D7137/D7137M−05に規定する試験方法に従い、デント深さ、CAI強度を測定した。なお、パネルに与えたインパクトのエネルギーは270in・lbとし、デント深さの測定はインパクトを与えてから一日後に測定した。また、本実施例においては、試験機としてインストロン(登録商標)万能試験機4208型を用いた。測定した試験片の数はn=3とし、平均値をCAI強度とした。さらに、測定値より標準偏差を算出し、その標準偏差を平均値で除することにより、バラツキの指標である変動係数(CV値(%))を算出した。
(CAI test method)
A CAI test piece having a length of 150 ± 0.25 mm and a width of 100 ± 0.25 mm was cut out from the flat fiber-reinforced plastic. The dent depth and CAI intensity were measured according to the test method specified in ASTM D7137 / D7137M-05. The energy of impact given to the panel was 270 in · lb, and the dent depth was measured one day after the impact was given. In this example, an Instron (registered trademark) universal testing machine 4208 type was used as a testing machine. The number of test pieces measured was n = 3, and the average value was the CAI intensity. Further, a standard deviation was calculated from the measured value, and the standard deviation was divided by an average value, thereby calculating a variation coefficient (CV value (%)) as an index of variation.

<CFRPの評価の判断基準>
本実施例、比較例では、基材の取扱い性、表面品位(切込開口)、基材流動性の3つの指標を用いた。それぞれの判断基準は以下の通りとする。
<Criteria for CFRP evaluation>
In this example and comparative example, three indicators of substrate handling properties, surface quality (incision opening), and substrate fluidity were used. The criteria for each are as follows.

(基材の取り扱い性)
○:切込プリプレグ基材を両手で持ち上げ、さらにその基材を平らな面に置いたとき、基材端部がほぼ原形を保っているもの。
△:切込プリプレグ基材を両手で持ち上げ、さらにその基材を平らな面に置いたとき、基材端部の変形量が2%未満のもの。
×:切込プリプレグ基材を両手で持ち上げ、さらにその基材を平らな面に置いたとき、基材端部の変形量が2%以上のもの。
(Handling of substrate)
○: When the incised prepreg base material is lifted with both hands and the base material is further placed on a flat surface, the end of the base material is almost in its original shape.
Δ: When the cut prepreg base material is lifted with both hands and the base material is further placed on a flat surface, the deformation amount of the base material end is less than 2%.
X: When the cut prepreg base material is lifted with both hands and the base material is further placed on a flat surface, the deformation amount of the base material end is 2% or more.

(表面品位(切込開口))
○:切込の開口がほとんど観察されない、切込が確認できない、あるいは開口部の面積が5mm以下である。
△:平板表面に存在する全切込のうち、20%以下の切込が若干開口している、あるいは20%以上の切込の開口部の面積が5mm未満となる。
×:平板表面に存在する全切込のうち、20%以下の切込が若干開口している、あるいは20%以上の切込の開口部の面積が5mm以上となる。
(Surface quality (incision opening))
○: The opening of the cut is hardly observed, the cut cannot be confirmed, or the area of the opening is 5 mm 2 or less.
Δ: Of all the cuts existing on the flat plate surface, 20% or less of the cuts are slightly opened, or the area of the opening part of 20% or more of the cuts is less than 5 mm 2 .
X: Of all the cuts existing on the flat plate surface, 20% or less of the cuts are slightly opened, or the area of the opening of 20% or more of the cuts is 5 mm 2 or more.

(基材流動性)
○:金型のキャビティ端部まで基材が到達している。
△:金型のキャビティ端部において未充填部が存在しており、その体積は金型のキャビティの1%未満である。
×:金型のキャビティ端部において未充填部が存在しており、その体積は金型のキャビティの1%以上である。
(Substrate fluidity)
○: The base material reaches the cavity end of the mold.
(Triangle | delta): The unfilled part exists in the cavity edge part of a metal mold | die, The volume is less than 1% of the cavity of a metal mold | die.
X: An unfilled portion exists at the cavity end of the mold, and the volume thereof is 1% or more of the cavity of the mold.

(実施例1)
まず、プリプレグ基材の作製を行った。具体的には、テトラグリシジルジアミノジフェニルメタン(MY720、ハンツマン アドバンストマテリアル(株)製)100部、ポリエーテルスルホン(PES5003P、住友化学工業(株)製)15部、4,4’−ジアミノジフェニルスルホン(ハンツマン アドバンストマテリアル(株)製)45部を混練し、得られた樹脂組成物をマトリックス樹脂として使用した。まず、テトラグリシジルジアミノジフェニルメタンにポリエーテルスルホンを加熱後溶解し、70℃まで冷却後、3,3’−ジアミノジフェニルスルホンを分散させた。前記手段により調整した樹脂を、リバースロールコーターを用いて塗布量が45g/mとなるように離型紙上に塗布し、樹脂フィルムを作製した。さらに一方向に引き揃えた炭素繊維(引張弾性率290GPa、引張強度5900MPa)を両側から前記樹脂フィルムで挟み、加熱加圧して樹脂を含浸させ、炭素繊維目付(CF目付)が190g/m、炭素繊維の体積含有量が56%となるプリプレグ基材を作製した。
Example 1
First, a prepreg base material was prepared. Specifically, 100 parts of tetraglycidyl diaminodiphenylmethane (MY720, manufactured by Huntsman Advanced Material Co., Ltd.), 15 parts of polyethersulfone (PES5003P, manufactured by Sumitomo Chemical Co., Ltd.), 4,4′-diaminodiphenyl sulfone (Huntsman) 45 parts of Advanced Material Co., Ltd.) were kneaded, and the resulting resin composition was used as a matrix resin. First, polyethersulfone was heated and dissolved in tetraglycidyldiaminodiphenylmethane, cooled to 70 ° C., and 3,3′-diaminodiphenylsulfone was dispersed therein. The resin prepared by the above means was applied onto release paper using a reverse roll coater so that the coating amount was 45 g / m 2 , thereby producing a resin film. Furthermore, carbon fibers (tensile elastic modulus 290 GPa, tensile strength 5900 MPa) aligned in one direction are sandwiched between the resin films from both sides, heated and pressed to impregnate the resin, and the carbon fiber basis weight (CF basis weight) is 190 g / m 2 , A prepreg base material having a carbon fiber volume content of 56% was produced.

次にプリプレグ基材の表面に粒子状の熱可塑性樹脂を散布し、追加樹脂層を設けた。具体的には、4,4’−ジアミノ−3,3’ジメチルジシクロヘキシルメタンを含有するポリアミド(エムザベルケ社製“グリルアミド(登録商標、以下同じ)”−TR55)90重量部、エポキシ樹脂(ジャパンエポキシレジン(株)製“jER(登録商標、以下同じ)”828)8重量部およびジアミノジフェニルメタン(三井武田ケミカル(株)製“MDA−220”)2重量部をクロロホルム300重量部とメタノール100重量部の混合溶媒中に添加して均一溶液を得た。次に該溶液を塗装用のスプレーガンを用いて霧状にして、よく攪拌した3000重量部のn−ヘキサンの壁面に向かって吹き付けて溶質を析出させた。析出した固体を濾別し、n−ヘキサンでよく洗浄した後、100℃24時間の真空乾燥を行い、粒子状の熱可塑性樹脂(ポリアミドの粒子)を得た。この粒子状の熱可塑性樹脂を、前記プリプレグ基材の両側に7g/m散布した。このようにして、プリプレグ基材の両面に熱可塑性樹脂を含む追加樹脂層を設けた。得られたプリプレグ基材の厚みをデジタルマイクロノギスで測定したところ、0.19mmであった。 Next, a particulate thermoplastic resin was sprayed on the surface of the prepreg base material to provide an additional resin layer. Specifically, 90 parts by weight of a polyamide containing 4,4′-diamino-3,3′dimethyldicyclohexylmethane (“Milamide (registered trademark, the same applies hereinafter)”-TR55 manufactured by Mzavelke), epoxy resin (Japan Epoxy Resin) 8 parts by weight of “jER (registered trademark, the same shall apply hereinafter)” 828) and 2 parts by weight of diaminodiphenylmethane (“MDA-220” manufactured by Mitsui Takeda Chemical Co., Ltd.) of 300 parts by weight of chloroform and 100 parts by weight of methanol It added in the mixed solvent and obtained the uniform solution. Next, the solution was made into a mist using a spray gun for coating, and sprayed toward the wall surface of 3000 parts by weight of n-hexane, which was well stirred, to precipitate a solute. The precipitated solid was separated by filtration, washed well with n-hexane, and then vacuum-dried at 100 ° C. for 24 hours to obtain a particulate thermoplastic resin (polyamide particles). This particulate thermoplastic resin was sprayed at 7 g / m 2 on both sides of the prepreg substrate. In this way, an additional resin layer containing a thermoplastic resin was provided on both sides of the prepreg base material. It was 0.19 mm when the thickness of the obtained prepreg base material was measured with digital micro calipers.

さらに前記プリプレグ基材に切込を挿入した。まず、500mm×500mm、厚さ5mmの金属板から、刃を多数削り出し、プリプレグ基材に切込を挿入するための抜き型を作製した。図4に抜き型の刃の配置図を示す。抜き型18の中央部400×400の領域に、長さ1.5mmの刃19が間隔1.5mmで複数並んでおり、刃からなる列20を形成している。この刃からなる列と抜き型の基準方向21とのなす角α(23)は20°である。さらに、隣接する刃からなる列は、抜き型の基準方向に15mmの間隔24で配置されており、隣接する刃からなる列は互いに基準方向と垂直な方向22に半位相ずれている。次に、この抜き型をプレス機に取り付け、抜き型の基準方向と基材の送り方向(プリプレグ基材の繊維長手方向)が一致するようにプリプレグ基材を送りつつ、抜き型をプリプレグ基材に押し当て、プリプレグ基材に切込を挿入した。得られた切込プリプレグ基材の切込パターンは、図4の刃の配置図がそのまま転写されたパターンとなった。得られた切込プリプレグ基材の表面を、デジタルマイクロスコープを用いて撮影し、倍率が100倍となるようにプリントアウトし、曲線定規を用いて切込長さW、繊維長さL、投影長さWsを計測したところ、それぞれ、W=1.5mm、L=30mm、Ws=0.51mmであった。また、切込の中心線を20等分し、各微小線分と繊維長手方向とのなす角を分度器で計測し、その平均値を切込と炭素繊維とのなす角度の絶対値Θとすると、Θは20°であった。   Further, a notch was inserted into the prepreg base material. First, a number of blades were cut out from a metal plate having a size of 500 mm × 500 mm and a thickness of 5 mm, and a punching die for inserting a cut into a prepreg base material was produced. FIG. 4 shows the layout of the cutting blades. A plurality of blades 19 having a length of 1.5 mm are arranged at intervals of 1.5 mm in a region of the central portion 400 × 400 of the punching die 18 to form a row 20 of blades. An angle α (23) formed by the row of blades and the reference direction 21 of the punching die is 20 °. Furthermore, the rows of adjacent blades are arranged at intervals of 15 mm in the reference direction of the punching die, and the rows of adjacent blades are shifted from each other by a half phase in a direction 22 perpendicular to the reference direction. Next, this punching die is attached to a press machine, and the punching die is transferred to the prepreg base material while feeding the prepreg base material so that the reference direction of the punching die and the feed direction of the base material (fiber longitudinal direction of the prepreg base material) coincide. And a cut was inserted into the prepreg substrate. The cutting pattern of the obtained cutting prepreg base material was a pattern in which the blade layout of FIG. 4 was transferred as it was. The surface of the obtained cut prepreg base material is photographed using a digital microscope, printed out so that the magnification becomes 100 times, and the cut length W, the fiber length L, and the projection using a curve ruler. When the length Ws was measured, they were W = 1.5 mm, L = 30 mm, and Ws = 0.51 mm, respectively. Further, the center line of the cut is divided into 20 equal parts, the angle formed by each minute line segment and the fiber longitudinal direction is measured with a protractor, and the average value is defined as the absolute value Θ of the angle formed by the cut and the carbon fiber. , Θ was 20 °.

さらに、前述の切込プリプレグ基材を積層し、切込プリプレグ積層体を得た。まず、前述の手順により作製した切込プリプレグ基材に、繊維長手方向(0°方向)と、繊維長手方向から右に45度ずらした方向(45°方向)に、それぞれ250×250mmの大きさに切り出した。該基材はタック性を有していた。次に、切り出した切込プリプレグ基材を、16層疑似等方([−45/0/+45/90]2S)に積層し、250×250mmの切込プリプレグ積層体を得た。このとき、積層体の厚みを、デジタルノギスを用いて計測すると3.1mmであった
この切込プリプレグ積層体をプレス成形することにより、引張試験用平板を作製した。前記積層体を300×300mmのキャビティを有する平板金型上の中央部に配置した後、加熱型プレス成形機により、6MPaの加圧のもと、180℃×120分間の条件により硬化せしめ、300×300mmの平板状の繊維強化プラスチックを得た。金型を上から見たときの金型面積に対する基材の面積の割合をチャージ率と定義すると、チャージ率は70%に相当する。得られた繊維強化プラスチックは繊維のうねりがなく、その端部まで繊維が均等に流動していた。全体的にソリもなく、最外層の切込においても、炭素繊維が存在せずに樹脂リッチ部または隣接層の炭素繊維がのぞいている部位はほとんどなく、良好な外観品位、平滑性を保っていた。また、この平板の厚みを、デジタルノギスを用いて計測すると2.2mmであった。プレス成形により基材が伸張したために、積層体の厚みよりも成形板の厚みのほうが小さくなることが確認できた。
Furthermore, the above-mentioned cut prepreg base material was laminated | stacked and the cut prepreg laminated body was obtained. First, in the cut prepreg base material produced by the above-described procedure, the size is 250 × 250 mm in the fiber longitudinal direction (0 ° direction) and in the direction shifted 45 degrees to the right from the fiber longitudinal direction (45 ° direction). Cut out. The substrate had tackiness. Next, the cut prepreg base material cut out was laminated on a 16-layer pseudo-isotropic ([−45 / 0 / + 45/90] 2S ) to obtain a 250 × 250 mm cut prepreg laminate. At this time, when the thickness of the laminate was measured using a digital caliper, it was 3.1 mm. A flat plate for tensile testing was produced by press-molding this cut prepreg laminate. After the laminate was placed in the center of a flat plate mold having a 300 × 300 mm cavity, it was cured by a heating press molding machine under a condition of 180 ° C. × 120 minutes under a pressure of 6 MPa. A flat fiber-reinforced plastic with a size of 300 mm was obtained. When the ratio of the area of the base material to the mold area when the mold is viewed from above is defined as the charge rate, the charge rate corresponds to 70%. The obtained fiber reinforced plastic had no fiber undulation, and the fibers were flowing evenly to the end. There is no warpage as a whole, and even in the cut of the outermost layer, there is almost no part where no carbon fiber is present and the carbon fiber of the resin rich part or the adjacent layer is peeking, maintaining good appearance quality and smoothness. It was. Moreover, when the thickness of this flat plate was measured using a digital caliper, it was 2.2 mm. Since the base material extended | stretched by press molding, it has confirmed that the thickness of the shaping | molding board became smaller than the thickness of a laminated body.

さらに前述の手段に従い、プレス成形により得られた繊維強化プラスチックの引張試験を行った。引張弾性率は51GPaとほぼ理論値通り発現し、また、引張強度に関しても650MPaと高い値が発現し、そのCV値も5%ときわめてバラツキの小さい結果となった。これらの結果から構造材としての適用、外板部材への適用が可能な力学特性と品位が得られたことがわかった。また、得られた繊維強化プラスチックを切り出し、切り出し面が0°である層に注目すると、層うねりや繊維が存在しない部位がなく、樹脂リッチ部もほとんど存在しなかった。   Furthermore, according to the above-mentioned means, the tensile test of the fiber reinforced plastic obtained by press molding was conducted. The tensile modulus of elasticity was 51 GPa, which was almost the theoretical value, and the tensile strength was as high as 650 MPa. The CV value was 5%, which was very small. From these results, it was found that mechanical properties and quality that can be applied to structural materials and outer plate members were obtained. Further, when the obtained fiber-reinforced plastic was cut out and attention was paid to the layer having a cut-out surface of 0 °, there was no layer waviness or no fiber portion, and almost no resin-rich portion was present.

また、オートクレーブ成形によってCAI試験用平板を成形し、前述の手段に従いCAI試験を行った。前記積層体をオートクレーブ内にて、6kg/cmの加圧下で、昇温速度2℃/分でオートクレーブの内部温度を上昇させ、前記内部温度が180℃に達してから120分温度を保持し、樹脂を硬化させることにより、250×250mmの平板状の繊維強化プラスチックを得た。このときの板厚は、4.5mmであった。このようにして得られた平板に対してCAI強度、デント深さを測定したところ、デント深さは0.24mmと大きい値となり、数メートル離れた箇所から試験片表面を目視で観察するのみでも損傷箇所を特定することができた。衝撃部の断面観察を行うと、後述する比較例1の連続繊維プリプレグ基材を用いた繊維強化プラスチックでは、層間剥離が広域的に進展していたが、今回の繊維強化プラスチックでは層間剥離した領域は小さいが、面外方向に大きな変形を生じていることが確認できた。プリプレグ基材に切込を挿入することによって、衝撃によって吸収したエネルギーが層間剥離ではなく、面外方向の変形に使用されるようになり、層間剥離を抑制できたものと示唆される。また、CAI強度は270MPaと非常に高い値となり、後述する比較例1の切込を含まない繊維強化プラスチックと比較しても遜色のない強度を発揮した。したがって本発明の繊維強化プラスチックは、大きなデント深さを発生させながらも、高いCAI強度を発揮できるという特有な利点があることが確認でき、航空機部材として十分に適用可能であることが確認できた。 In addition, a CAI test flat plate was formed by autoclave molding, and the CAI test was performed according to the above-described means. In the autoclave, the internal temperature of the autoclave is increased at a heating rate of 2 ° C./min under a pressure of 6 kg / cm 2 in the autoclave, and the temperature is maintained for 120 minutes after the internal temperature reaches 180 ° C. By curing the resin, a flat fiber reinforced plastic of 250 × 250 mm was obtained. The plate thickness at this time was 4.5 mm. When the CAI strength and the dent depth were measured for the flat plate thus obtained, the dent depth was as large as 0.24 mm, and even by visually observing the surface of the test piece from a location several meters away. We were able to identify the damaged part. When the cross section of the impact portion was observed, delamination progressed widely in the fiber reinforced plastic using the continuous fiber prepreg base material of Comparative Example 1 to be described later, but in this fiber reinforced plastic, the delaminated region Although it was small, it was confirmed that large deformation occurred in the out-of-plane direction. By inserting a notch into the prepreg base material, it is suggested that the energy absorbed by the impact is not used for delamination but for deformation in the out-of-plane direction, and delamination can be suppressed. Moreover, the CAI strength was a very high value of 270 MPa, and even when compared with the fiber reinforced plastic not containing the notch of Comparative Example 1 described later, the strength comparable to that of the comparative example 1 was exhibited. Therefore, it can be confirmed that the fiber reinforced plastic of the present invention has a unique advantage that a high CAI strength can be exhibited while generating a large dent depth, and it can be confirmed that the fiber reinforced plastic is sufficiently applicable as an aircraft member. .

(実施例2〜4)[切込長さ(投影長さ)比較(表1)]
切込を挿入する際に使用した抜き型を変更する以外は、実施例1と同様にして繊維強化プラスチックを得た。具体的には、実施例1では、抜き型の刃の長さと刃の間隔を共に1.5mmとしたが、実施例2では共にW=1mm(Ws=0.34mm)、実施例3では共にW=3mm(Ws=1.0mm)、実施例4では共に4.4mm(Ws=1.5mm)とした。
(Examples 2 to 4) [Incision length (projection length) comparison (Table 1)]
A fiber-reinforced plastic was obtained in the same manner as in Example 1 except that the die used for inserting the cut was changed. Specifically, in Example 1, both the length of the cutting die blade and the interval between the blades were 1.5 mm, but in Example 2, both W = 1 mm (Ws = 0.34 mm), and in Example 3, both W = 3 mm (Ws = 1.0 mm), and in Example 4, both were 4.4 mm (Ws = 1.5 mm).

プレス成形によって得られた繊維強化プラスチックは、実施例2〜4のいずれにおいても繊維のうねりがなく、その端部まで繊維が均等に流動していた。全体的にソリもなく、最外層の切込においても、樹脂リッチ部または隣接層の炭素繊維がのぞいている部位はほとんどなく、良好な外観品位、平滑性を保っていた。引張弾性率は50〜51GPaとほぼ理論値通り発現し、また、引張強度に関しては、実施例2では660MPa、実施例3では610MPa、実施例4では580MPaといずれも高い値となり、引張強度のCV値も4〜6%ときわめてバラツキの小さい結果となった。この結果より、切込長さを小さくすれば小さくするほど、引張強度が向上することが確認できた。また、CAI強度、デント深さに関しては、実施例1とほぼ同等のレベルであった。   The fiber reinforced plastic obtained by press molding had no fiber undulation in any of Examples 2 to 4, and the fibers were flowing evenly to the end. There was no warpage as a whole, and even in the outermost layer incision, there was almost no portion where the resin rich portion or the carbon fiber of the adjacent layer was peeked out, and good appearance quality and smoothness were maintained. Tensile elastic modulus is expressed as 50 to 51 GPa almost as theoretical values. Regarding tensile strength, 660 MPa in Example 2, 610 MPa in Example 3, and 580 MPa in Example 4, both of which are high values, CV of tensile strength The value was 4 to 6%, which was a very small variation. From this result, it was confirmed that the tensile strength was improved as the cut length was reduced. The CAI strength and dent depth were almost the same as those in Example 1.

(実施例5〜7)[切込角度の比較(表2)]
切込を挿入する際に使用した抜き型を変更する以外は、実施例1と同様にして繊維強化プラスチックを得た。抜き型に配置された前記刃からなる列と抜き型の基準方向とのなす角αを、実施例5は角度が5°(Ws=0.13mm)、実施例6は10°(Ws=0.26mm)、実施例7は25°(Ws=0.63mm)とした。
(Examples 5 to 7) [Comparison of cutting angles (Table 2)]
A fiber-reinforced plastic was obtained in the same manner as in Example 1 except that the die used for inserting the cut was changed. The angle α formed by the row of the blades arranged in the punching die and the reference direction of the punching die is 5 ° (Ws = 0.13 mm) in Example 5 and 10 ° (Ws = 0) in Example 6. .26 mm) and Example 7 was 25 ° (Ws = 0.63 mm).

プレス成形により得られた繊維強化プラスチックはいずれも繊維のうねりがなく、その端部まで繊維が均等に流動していた。また、ソリもなく、最外層の切込においても、炭素繊維が存在せずに樹脂リッチ部または隣接層の炭素繊維がのぞいている部位はほとんどなく、良好な外観品位、平滑性を保っていた。いずれの水準においても、引張弾性率は50〜51GPa、引張強度は600〜700MPaと高い値であり、引張強度のCV値は5〜6%とバラツキの小さい結果であった。特に切込角度の小さな実施例5、6では650MPa以上の引張強度を発現した。また、CAI強度、デント深さに関しては、実施例1とほぼ同等のレベルであった。   All of the fiber reinforced plastics obtained by press molding had no fiber undulations, and the fibers flowed evenly to the ends. In addition, there was no warp, and even in the outermost layer cut, there was almost no part where no carbon fiber was present and the carbon fiber in the resin rich part or the adjacent layer was peeked, maintaining good appearance quality and smoothness. . At any level, the tensile modulus was 50 to 51 GPa, the tensile strength was as high as 600 to 700 MPa, and the CV value of the tensile strength was as small as 5 to 6%. In particular, in Examples 5 and 6 having a small cutting angle, a tensile strength of 650 MPa or more was expressed. The CAI strength and dent depth were almost the same as those in Example 1.

(実施例8〜10)[繊維長さの比較(表3)]
実施例1の切込パターンにおいて、切込の間隔を変えることにより繊維長さLを変えた以外は、実施例1と同様にして繊維強化プラスチックを得た。それぞれLは、実施例8では10mm、実施例9では60mm、実施例10では100mmとした。
(Examples 8 to 10) [Fiber length comparison (Table 3)]
A fiber reinforced plastic was obtained in the same manner as in Example 1 except that the fiber length L was changed by changing the interval of the cut in the cut pattern of Example 1. L was 10 mm in Example 8, 60 mm in Example 9, and 100 mm in Example 10, respectively.

プレス成形により得られた繊維強化プラスチックは実施例8を除いて繊維のうねりなく、その端部まで繊維が充分に流動していた。実施例8は若干の繊維のうねりと金型との摩擦を受ける表面部で端部まで繊維が十分流動してない部位があった。その他、いずれの繊維強化プラスチックもソリがなく、最外層の切込においても、炭素繊維が存在せずに樹脂リッチ部または隣接層の炭素繊維がのぞいている部位はほとんどなく、良好な外観品位、平滑性を保っていた。引張弾性率49〜50GPa、引張強度は600〜700MPaと高い値であり、引張強度のCV値も4〜6%とバラツキの小さい結果であった。また、CAI強度、デント深さに関しては、実施例1とほぼ同等のレベルであった。   The fiber reinforced plastic obtained by press molding had no fiber swell except in Example 8, and the fiber was sufficiently flowing to the end. In Example 8, there was a portion where the fiber did not sufficiently flow to the end at the surface portion where the undulation of the fiber and friction with the mold were received. In addition, none of the fiber reinforced plastic has a warp, and even in the cut of the outermost layer, there is almost no part where the carbon fiber does not exist and the carbon fiber of the resin rich part or the adjacent layer is peeked, and the appearance quality is good. The smoothness was maintained. The tensile elastic modulus was 49 to 50 GPa, the tensile strength was a high value of 600 to 700 MPa, and the CV value of the tensile strength was 4 to 6%, which was a small variation. The CAI strength and dent depth were almost the same as those in Example 1.

(実施例11、12)[基材厚みの比較(表4)]
実施例1のプリプレグ基材の炭素繊維目付、樹脂フィルム目付、熱可塑性樹脂の散布量を変えることにより切込プリプレグ基材厚みを変え、それ以外は実施例1と同様にして繊維強化プラスチックを得た。実施例11では炭素繊維目付を50g/m、樹脂フィルム目付を12g/m、熱可塑性樹脂の散布量を2g/mとすることにより、基材厚みがおよそ0.05mmとなる切込プリプレグ基材を得た。実施例12では単位面積あたりの炭素繊維重さを300g/m、樹脂フィルム目付を71g/m、熱可塑性樹脂の散布量を11g/mとすることにより、基材厚みがおよそ0.3mmとなる切込プリプレグ基材を得た。なお、実施例11、12において、炭素繊維目付、樹脂フィルム目付、熱可塑性樹脂の散布量の比は実施例1と同じとしている。
(Examples 11 and 12) [Comparison of substrate thickness (Table 4)]
The fiber reinforced plastic is obtained in the same manner as in Example 1 except that the thickness of the cut prepreg base material is changed by changing the carbon fiber basis weight, resin film basis weight, and thermoplastic resin application amount of the prepreg base material of Example 1. It was. In Example 11, the carbon fiber basis weight is 50 g / m 2 , the resin film basis weight is 12 g / m 2 , and the dispersion amount of the thermoplastic resin is 2 g / m 2 , so that the base material thickness is approximately 0.05 mm. A prepreg substrate was obtained. In Example 12, the weight of the carbon fiber per unit area is 300 g / m 2 , the basis weight of the resin film is 71 g / m 2 , and the spraying amount of the thermoplastic resin is 11 g / m 2 . A cut prepreg base material of 3 mm was obtained. In Examples 11 and 12, the ratio of the carbon fiber basis weight, the resin film basis weight, and the dispersion amount of the thermoplastic resin is the same as that in Example 1.

プレス成形により得られた繊維強化プラスチックはいずれも繊維のうねりなく、その端部まで繊維が充分に流動しており、ソリもなく、最外層の切込においても、炭素繊維が存在せずに樹脂リッチ部または隣接層の炭素繊維がのぞいている部位はほとんどなく、良好な外観品位、平滑性を保っていた。引張弾性率はいずれも50〜51GPaであり、引張強度は実施例11では790MPaと高く、引張強度のCV値は5%とバラツキの小さい結果であった。切込プリプレグ基材厚みを薄くすることで引張強度が向上することがわかった。一方、実施例12では引張強度は510MPaと他の実施例と比較すると若干低い値となったが、本来プリプレグ基材の厚みが厚ければ厚いほど引張強度は低くなる傾向にあり、基材厚みが0.3mmと厚いプリプレグ基材としては高強度である。厚みのある繊維強化プラスチックを少ない積層回数で作製しようと考えた場合、実施例12で作製した切込プリプレグ基材も有用である。   All of the fiber reinforced plastics obtained by press molding have no fiber undulation, the fibers are sufficiently flowing to the end, no warp, and no carbon fiber is present in the outermost incision. There were almost no portions where the carbon fibers of the rich part or the adjacent layer were peeked, and good appearance quality and smoothness were maintained. The tensile elastic modulus was 50 to 51 GPa in all cases, the tensile strength was as high as 790 MPa in Example 11, and the CV value of the tensile strength was as small as 5%. It was found that the tensile strength was improved by reducing the thickness of the cut prepreg substrate. On the other hand, in Example 12, the tensile strength was 510 MPa, which was slightly lower than the other examples, but the tensile strength tends to be lower as the thickness of the prepreg base material is thicker. Is as strong as a thick prepreg base material having a thickness of 0.3 mm. The cut prepreg base material produced in Example 12 is also useful when it is considered to produce a thick fiber-reinforced plastic with a small number of laminations.

(実施例13、14)[繊維含有率の比較(表5)]
実施例1のプリプレグ基材の単位面積あたりの炭素繊維重さを変えることにより繊維体積含有率Vfを変えた以外は実施例1と同様にして繊維強化プラスチックを得た。それぞれ実施例13が単位面積あたりの炭素繊維重さが221g/m、Vfが65%、実施例14が153g/m、Vfが45%とした。
(Examples 13 and 14) [Comparison of fiber content (Table 5)]
A fiber reinforced plastic was obtained in the same manner as in Example 1 except that the fiber volume content Vf was changed by changing the carbon fiber weight per unit area of the prepreg base material of Example 1. In Example 13, the carbon fiber weight per unit area was 221 g / m 2 , Vf was 65%, Example 14 was 153 g / m 2 , and Vf was 45%.

実施例13において、プレス成形により得られた繊維強化プラスチックは若干の繊維のうねりと金型との摩擦を受ける表面部で端部まで繊維が十分流動してない部位があった。一方、実施例14において、プレス成形により得られた繊維強化プラスチックは繊維のうねりなく、その端部まで繊維が充分に流動していた。その他、どちらの繊維強化プラスチックもソリがなく、最外層の切込においても、炭素繊維が存在せずに樹脂リッチ部または隣接層の炭素繊維がのぞいている部位はほとんどなく、良好な外観品位、平滑性を保っていた。引張弾性率に関しては、実施例13では59GPa、実施例14では41GPaであった。また、引張強度に関しては、実施例13では710MPa、実施例14では540MPaと高い値であり、CV値も6〜7%とバラツキの小さい結果であった。Vfが大きくなるほど、引張弾性率も強度も向上するという結果となったが、あまりVfが大きいと流動性が落ちるという難点があった。   In Example 13, the fiber reinforced plastic obtained by press molding had a portion where the fiber did not sufficiently flow to the end at the surface portion where the undulation of the fiber and friction between the mold and the mold were received. On the other hand, in Example 14, the fiber reinforced plastic obtained by press molding had no fiber undulation, and the fiber sufficiently flowed to the end. In addition, both fiber reinforced plastics have no warp, and even in the outermost layer incision, there is almost no part where the carbon fiber is absent and the carbon fiber of the resin rich part or the adjacent layer is peeking, and the appearance quality is good. The smoothness was maintained. Regarding the tensile elastic modulus, it was 59 GPa in Example 13 and 41 GPa in Example 14. Regarding the tensile strength, Example 13 was a high value of 710 MPa, Example 14 was a high value of 540 MPa, and the CV value was also 6 to 7%, showing a small variation. As Vf increased, the tensile modulus and strength were improved. However, when Vf was too large, there was a problem that the fluidity decreased.

(実施例15)[裁断方法の比較]
実施例1の切込パターンにおいて、平板状の金属を削りだす代わりに、円柱状の金属を削りだし円周上に複数の刃を設けて回転刃ローラーとし、該回転刃ローラーをプリプレグ基材に押し当てることによって切込プリプレグ基材を得た。使用した金属ローラーは、軸方向長さ40cm、直径150mmの円柱状のローラーである。このローラーから実施例1と同様の切込パターンとなるように多数の刃を削りだし、回転刃ローラーを作製した。この回転刃ローラーと、これに対となるゴムローラーを、互いのローラーの軸が平行となるように、かつ互いに接するように配置した。さらに、両ローラーを回転させつつ、両ローラーの間に基材を送り込むことによって、プリプレグ基材に切込を挿入した。
(Example 15) [Comparison of cutting methods]
In the cutting pattern of Example 1, instead of shaving the flat metal, the cylindrical metal is shaved and a plurality of blades are provided on the circumference to form a rotary blade roller, and the rotary blade roller is used as a prepreg base material. A cut prepreg base material was obtained by pressing. The used metal roller is a cylindrical roller having an axial length of 40 cm and a diameter of 150 mm. A number of blades were cut out from this roller so as to have the same cutting pattern as in Example 1, and a rotary blade roller was produced. The rotary blade roller and the rubber roller paired with the rotary blade roller were arranged so that the axes of the rollers were parallel and in contact with each other. Furthermore, the notch was inserted into the prepreg base material by feeding the base material between both rollers while rotating both rollers.

得られた切込プリプレグ基材は、実施例1の切込プリプレグ基材とほぼ同等であり、両者の間に明確な差異は観察されなかった。実施例1〜14にて実施した押し切り法と同様に、本実施例の回転刃法も、切込を挿入する手法として有用であることが確認できた。   The obtained cut prepreg base material was almost the same as the cut prepreg base material of Example 1, and no clear difference was observed between the two. It was confirmed that the rotary blade method of the present example was also useful as a method for inserting a cut, similar to the press cutting method performed in Examples 1-14.

(実施例16) [追加樹脂層の有無(表6)]
プリプレグ基材表面に熱可塑性の粒子を散布しないこと以外は、実施例1と同様にして繊維強化プラスチックを得た。
(Example 16) [Presence / absence of additional resin layer (Table 6)]
A fiber reinforced plastic was obtained in the same manner as in Example 1 except that the thermoplastic particles were not sprayed on the surface of the prepreg substrate.

オートクレーブを用いて成形された繊維強化プラスチックのCAI試験を実施すると、CAI強度は220MPaと、実施例1と比較して低強度となり、実施例1の方が航空機部材に適していることが確認できた。   When the CAI test of fiber reinforced plastics molded using an autoclave is performed, the CAI strength is 220 MPa, which is lower than that of Example 1, and it can be confirmed that Example 1 is more suitable for aircraft members. It was.

以下、比較例を示す。   Hereinafter, a comparative example is shown.

(比較例1)[切込なしプリプレグ基材との比較]
プリプレグ基材に切込を入れなかった他は、実施例1と同様とした。
(Comparative Example 1) [Comparison with a prepreg base material without cutting]
Example 1 was the same as Example 1 except that the prepreg base material was not cut.

プレス成形により得られた繊維強化プラスチックは、積層体の段階からほとんど流動することなく、ほぼ250×250mmの大きさであり、マトリックス樹脂が搾り出されて金型との隙間に樹脂バリが出来ていた。樹脂が搾り出されているため、表面ががさがさしており、製品には適用できなさそうだった。   The fiber-reinforced plastic obtained by press molding is almost 250 x 250 mm with little flow from the stage of the laminate, and the matrix resin is squeezed out to create resin burrs in the gap with the mold. It was. Because the resin was squeezed out, the surface was squeezed and it seemed impossible to apply it to the product.

オートクレーブ成形により得られた繊維強化プラスチックのCAI試験を実施した結果、CAI強度は300MPaと非常に高いものの、デント深さは0.15mmと小さかった。また、3メートルほど離れたところから試験片表面を目視で観察したところ、損傷箇所が確認しづらかった。   As a result of performing a CAI test on the fiber reinforced plastic obtained by autoclave molding, the CAI strength was as high as 300 MPa, but the dent depth was as small as 0.15 mm. In addition, when the surface of the test piece was visually observed from a distance of about 3 meters, it was difficult to confirm the damaged portion.

(比較例2、3)[切込長さ(投影長さ)比較(表1)]
切込を挿入する際に使用した抜き型を変更する以外は、実施例1と同様にして繊維強化プラスチックを得た。具体的には、実施例1では、抜き型の刃の長さと刃の間隔を共に1.5mmとしたが、比較例2では共にW=10mm(Ws=3.4mm)とし、比較例3では共にW=0.25mm(Ws=0.086mm)とした。
(Comparative Examples 2 and 3) [Incision length (projection length) comparison (Table 1)]
A fiber-reinforced plastic was obtained in the same manner as in Example 1 except that the die used for inserting the cut was changed. Specifically, in Example 1, both the length of the cutting die blade and the interval between the blades were 1.5 mm, but in Comparative Example 2, both W = 10 mm (Ws = 3.4 mm), and in Comparative Example 3, In both cases, W = 0.25 mm (Ws = 0.086 mm).

比較例2において、プレス成形により得られた繊維強化プラスチックは繊維のうねりがなく、その端部まで繊維が均等に流動しており、全体的にソリもなかった。ただし、繊維強化プラスチック表面を観察すると、切込が開口しており、開口部には樹脂だまり、あるいは下層の炭素繊維を観察することができるなど、表面品位が悪かった。   In Comparative Example 2, the fiber reinforced plastic obtained by press molding had no fiber undulation, the fibers were flowing evenly to the end, and there was no warpage as a whole. However, when the surface of the fiber reinforced plastic was observed, notches were opened, and the surface quality was poor, such as being able to observe the resin pool or the underlying carbon fiber in the opening.

また比較例3においては、プレス成形により得られた繊維強化プラスチックは、金型のキャビティ全面に繊維が流動しきっておらず、端部に樹脂リッチ部が見られた。そこで、切込プリプレグ基材を有機溶剤のN−メチル−2−ピロリドン(NMP)に浸漬し、樹脂部を溶解させ、残った繊維を観察すると、繊維長さが10cmを越える連続繊維が多く残っていた。繊維がうまく裁断されていなかったことが、流動性を悪化させた原因であると考えられた。   In Comparative Example 3, in the fiber reinforced plastic obtained by press molding, the fibers did not flow all over the cavity of the mold, and a resin rich portion was observed at the end. Therefore, when the cut prepreg base material is immersed in the organic solvent N-methyl-2-pyrrolidone (NMP), the resin part is dissolved, and the remaining fibers are observed, many continuous fibers with a fiber length exceeding 10 cm remain. It was. It was thought that the reason why the fluidity was deteriorated was that the fibers were not cut well.

(比較例4,5)[切込角度(投影長さ)比較(表2)]
切込を挿入する際に使用した抜き型を変更する以外は、実施例1と同様にして繊維強化プラスチックを得た。具体的には、実施例1では、抜き型の刃の長さと刃の間隔を共に1.5mmとしたが、比較例4では共にα=2°(Ws=0.05mm)、比較例5では45°(Ws=1.1mm)とした。
(Comparative Examples 4 and 5) [Cutting angle (projection length) comparison (Table 2)]
A fiber-reinforced plastic was obtained in the same manner as in Example 1 except that the die used for inserting the cut was changed. Specifically, in Example 1, both the length of the punch and the distance between the blades were 1.5 mm, but in Comparative Example 4, both α = 2 ° (Ws = 0.05 mm), and in Comparative Example 5, The angle was 45 ° (Ws = 1.1 mm).

比較例4については、切込角度が小さいため、切込同士の間隔が0.5mm程度と小さく、裁断や積層に難があった。プレス成形により得られた繊維強化プラスチックは、若干繊維がうねっていたが、端部まで繊維が流動していた。ソリはなく、最外層の切込においても、炭素繊維が存在せずに樹脂リッチ部または隣接層の炭素繊維がのぞいている部位はほとんどなく、良好な外観品位、平滑性を保っていた。引張弾性率は51GPa、引張強度は720MPaと高かったが、引張強度のCV値が10%と高く、生産安定性に欠けていた。   About the comparative example 4, since the cut angle was small, the space | interval of cuts was as small as about 0.5 mm, and there existed difficulty in cutting and lamination | stacking. The fiber reinforced plastic obtained by press molding had some fibers, but the fibers flowed to the end. There was no warp, and even in the cut of the outermost layer, there was almost no part where the carbon fiber was not present and the carbon fiber of the resin rich part or the adjacent layer was peeked, and good appearance quality and smoothness were maintained. The tensile modulus was as high as 51 GPa and the tensile strength was as high as 720 MPa, but the CV value of the tensile strength was as high as 10% and the production stability was lacking.

一方、比較例5おいて、プレス成形によって得られた繊維強化プラスチックは繊維のうねりがなく、その端部まで繊維が均等に流動しており、全体的にソリもなかった。ただし、繊維強化プラスチック表面を観察すると、切込が開口しており、開口部には樹脂だまり、あるいは下層の炭素繊維を観察することができた。引張弾性率は49GPaとほぼ理論値通りの値であったが、引張強度は570MPaと実施例1と比べると低い値であった。   On the other hand, in Comparative Example 5, the fiber reinforced plastic obtained by press molding had no fiber undulation, the fibers were flowing evenly to the end, and there was no warpage as a whole. However, when the fiber reinforced plastic surface was observed, the notch was opened, and the resin pool or the underlying carbon fiber could be observed in the opening. The tensile elastic modulus was 49 GPa, which was almost the theoretical value, but the tensile strength was 570 MPa, which was a low value compared to Example 1.

(比較例6,7)[繊維長さ比較(表3)]
隣接する刃からなる列の基準方向の間隔を変更する、すなわち切込プリプレグ基材の繊維長さLを変えた以外は、実施例1と同様にして繊維強化プラスチックを得た。それぞれLは、比較例6では7.5mm、比較例7では120mmとした。
(Comparative Examples 6 and 7) [Fiber length comparison (Table 3)]
A fiber-reinforced plastic was obtained in the same manner as in Example 1 except that the interval in the reference direction between the rows of adjacent blades was changed, that is, the fiber length L of the cut prepreg base material was changed. L was 7.5 mm in Comparative Example 6 and 120 mm in Comparative Example 7, respectively.

比較例6においては、プレス成形により得られた繊維強化プラスチックは、その端部まで繊維が十分に流動していたが、場所によっては繊維がうねっていたり、切込が開口していたりする箇所が観察できた。また、引張強度は550MPaと高い値であったが、そのCV値は10%となりバラツキが大きく、生産安定性に欠けていた。   In Comparative Example 6, the fiber reinforced plastic obtained by press molding had a sufficient flow of fibers to the end, but depending on the location, the fibers were wavy or where the cuts were open. I was able to observe. Further, the tensile strength was a high value of 550 MPa, but the CV value was 10%, the variation was large, and the production stability was lacking.

比較例7において、プレス成形により得られた繊維強化プラスチックは、金型のキャビティ全面に繊維が流動しきっておらず、端部に樹脂リッチ部が見られた。繊維長さが大きすぎたために十分な流動性が得られなかったものと考えられた。   In Comparative Example 7, in the fiber reinforced plastic obtained by press molding, the fibers did not flow all over the cavity of the mold, and a resin rich portion was observed at the end. It was considered that sufficient fluidity could not be obtained because the fiber length was too large.

(比較例8、9)[層厚みの比較(表4)]
実施例1のプリプレグ基材の炭素繊維目付、樹脂フィルム目付、熱可塑性樹脂の散布量を変えることにより切込プリプレグ基材厚みを変え、それ以外は実施例1と同様にして繊維強化プラスチックを得た。比較例8では炭素繊維目付を25g/m、樹脂フィルム目付を6g/m、熱可塑性樹脂の散布量を1g/mとすることにより、基材厚みがおよそ0.025mmとなる切込プリプレグ基材を得た。比較例9では単位面積あたりの炭素繊維重さを400g/m、樹脂フィルム目付を94g/m、熱可塑性樹脂の散布量を15g/mとすることにより、基材厚みがおよそ0.4mmとなる切込プリプレグ基材を得た。なお、比較例8、9において、炭素繊維目付、樹脂フィルム目付、熱可塑性樹脂の散布量の比は、実施例1と同じとしている。
(Comparative Examples 8 and 9) [Comparison of layer thickness (Table 4)]
The fiber reinforced plastic is obtained in the same manner as in Example 1 except that the thickness of the cut prepreg base material is changed by changing the carbon fiber basis weight, resin film basis weight, and thermoplastic resin application amount of the prepreg base material of Example 1. It was. In Comparative Example 8, the carbon fiber basis weight is 25 g / m 2 , the resin film basis weight is 6 g / m 2 , and the dispersion amount of the thermoplastic resin is 1 g / m 2 , so that the base material thickness is approximately 0.025 mm. A prepreg substrate was obtained. In Comparative Example 9, the weight of the carbon fiber per unit area is 400 g / m 2 , the basis weight of the resin film is 94 g / m 2 , and the spraying amount of the thermoplastic resin is 15 g / m 2 . A cut prepreg base material of 4 mm was obtained. In Comparative Examples 8 and 9, the ratio of the carbon fiber basis weight, the resin film basis weight, and the dispersion amount of the thermoplastic resin is the same as in Example 1.

比較例8において、プレス成形により得られた繊維強化プラスチックはいずれも繊維のうねりなく、その端部まで繊維が充分に流動しており、ソリもなかった。しかしながら、基材厚みが極めて薄いため、炭素繊維を均一に配置することが難しく所々に目すきのある切込プリプレグ基材となった。そのため、プレス成形により得られた繊維強化プラスチックも所々に目すきが生じており、外観品位が悪かった。   In Comparative Example 8, none of the fiber reinforced plastics obtained by press molding had swells of fibers, the fibers were sufficiently flowing to the end portions, and there was no warp. However, since the thickness of the base material is extremely thin, it is difficult to uniformly dispose the carbon fiber, and a cut prepreg base material with a clear opening is obtained. For this reason, the fiber-reinforced plastic obtained by press molding also has some spots, and the appearance quality is poor.

また、比較例9において、プレス成形により得られた繊維強化プラスチックは、繊維のうねりなく、その端部まで繊維が充分に流動しており、ソリもなく、良好な外観品位、平滑性を保っていた。しかしながら、引張強度は400MPaと実施例1や実施例11,12と比較してかなり低くなることがわかった。   Further, in Comparative Example 9, the fiber reinforced plastic obtained by press molding had no fiber undulation, the fiber sufficiently flowed to the end, no warp, and maintained good appearance quality and smoothness. It was. However, it was found that the tensile strength is 400 MPa, which is considerably lower than those of Example 1 and Examples 11 and 12.

(比較例10、11)[繊維含有率の比較(表5)]
実施例1の切込プリプレグ基材の単位面積あたりの炭素繊維重さを変えることにより繊維体積含有率Vfを変えた以外は実施例1と同様にして繊維強化プラスチックを得た。それぞれ比較例10が単位面積あたりの炭素繊維重さが237g/m、Vfが70%、比較例11が135g/m、Vfが40%とした。
(Comparative Examples 10 and 11) [Comparison of fiber content (Table 5)]
A fiber-reinforced plastic was obtained in the same manner as in Example 1 except that the fiber volume content Vf was changed by changing the carbon fiber weight per unit area of the cut prepreg base material of Example 1. Each Comparative Example 10 is a carbon fiber weight per unit area 237 g / m 2, Vf is 70%, Comparative Example 11 is 135 g / m 2, Vf was 40%.

比較例10において、プレス成形により得られた繊維強化プラスチックは繊維がうねり、金型との摩擦を受ける表面部で端部まで繊維が流動していなかった。表面部には樹脂リッチ部が存在し、外観品位は悪く、ソリも発生した。比較例11で得られた繊維強化プラスチックはソリがなく、良好な外観品位、平滑性を保っていた。しかしながら、引張弾性率36GPa、引張強度440MPaと実施例1や実施例13,14と比較してかなり低い値であった。   In Comparative Example 10, the fiber reinforced plastic obtained by press molding was swelled, and the fiber did not flow to the end at the surface portion that received friction with the mold. A resin rich portion was present on the surface portion, the appearance quality was poor, and warping occurred. The fiber reinforced plastic obtained in Comparative Example 11 had no warp and maintained good appearance quality and smoothness. However, the tensile elastic modulus was 36 GPa and the tensile strength was 440 MPa, which were considerably low values as compared with Example 1 and Examples 13 and 14.

(比較例12)[短繊維ランダム配向シート]
実施例1と同様のエポキシ樹脂組成物を厚めに塗布した樹脂フィルムを作成した。次に、長さ25mmにカットされた炭素繊維束(引張弾性率290GPa、引張強度5900MPa、12,000本)を単位面積あたりの重量が125g/mになるよう均一に樹脂フィルム上に落下、散布した。さらにもう一枚の樹脂フィルムを被せて、カットされた炭素繊維を挟んだ後、カレンダーロールを通過させ、繊維体積含有率Vf55%のSMCシートを作製した。このSMCシートを250×250mmに切り出し、16層積層して、積層体を得た後、実施例1と同様に成形し、繊維強化プラスチックを得た。
(Comparative example 12) [Short fiber random orientation sheet]
A resin film coated with a thick epoxy resin composition similar to that in Example 1 was prepared. Next, a carbon fiber bundle (tensile elastic modulus 290 GPa, tensile strength 5900 MPa, 12,000 pieces) cut to a length of 25 mm is uniformly dropped on the resin film so that the weight per unit area becomes 125 g / m 2 . Scattered. Further, after covering another cut carbon fiber, the cut carbon fiber was sandwiched, and then passed through a calender roll to prepare an SMC sheet having a fiber volume content Vf of 55%. This SMC sheet was cut out into 250 × 250 mm, and 16 layers were laminated to obtain a laminate, and then molded in the same manner as in Example 1 to obtain a fiber reinforced plastic.

得られた繊維強化プラスチックはその端部まで繊維が充分に流動していた。わずかながらソリが発生した一方、繊維分布の粗密から樹脂リッチ部でヒケが発生し、平滑性に劣った。引張弾性率は36GPaと繊維が真直でないためか理論値よりかなり低く、引張強度も250MPa、そのCV値は13%とバラツキが大きく、構造材には適用できそうになかった。   In the obtained fiber reinforced plastic, fibers sufficiently flowed to the end portion. On the other hand, warping occurred slightly, but sinking occurred in the resin-rich part due to the coarse and dense fiber distribution, and the smoothness was poor. The tensile elastic modulus was 36 GPa, which was considerably lower than the theoretical value because the fiber was not straight, the tensile strength was 250 MPa, and its CV value was 13%, which showed great variation.

Figure 2010018723
Figure 2010018723

Figure 2010018723
Figure 2010018723

Figure 2010018723
Figure 2010018723

Figure 2010018723
Figure 2010018723

Figure 2010018723
Figure 2010018723

Figure 2010018723
Figure 2010018723

本発明の切込プリプレグ基材の切込パターンの一例を示す拡大平面図である。It is an enlarged plan view which shows an example of the cutting pattern of the cutting prepreg base material of this invention. 比較用の積層体、繊維強化プラスチックの一例を示す平面図である。It is a top view which shows an example of the laminated body for a comparison, and fiber reinforced plastics. 本発明の積層体、繊維強化プラスチックの一例を示す平面図である。It is a top view which shows an example of the laminated body of this invention and a fiber reinforced plastic. プリプレグ基材に切込を挿入するための抜き型の一例を示す平面図である。It is a top view which shows an example of the cutting die for inserting a notch into a prepreg base material. 本発明の切込プリプレグ基材の一例を示す断面図である。It is sectional drawing which shows an example of the cutting prepreg base material of this invention. 本発明の切込プリプレグ基材の製造方法の一例を示す斜視図である。It is a perspective view which shows an example of the manufacturing method of the cutting prepreg base material of this invention. 本発明の切込プリプレグ基材の製造方法の一例を示す斜視図である。It is a perspective view which shows an example of the manufacturing method of the cutting prepreg base material of this invention. 本発明の切込プリプレグ基材の切込パターンの一例を示す拡大平面図である。It is an enlarged plan view which shows an example of the cutting pattern of the cutting prepreg base material of this invention.

符号の説明Explanation of symbols

1:繊維長手方向
2:繊維の垂直方向
3:炭素繊維
4:炭素繊維の不連続端(切込)
5:切込と繊維方向のなす角度Θ
6:繊維方向に対になる切込で分断された繊維長さL
7:プリプレグ基材
8:切込同士で互いに切込んだ幅
9:切込を炭素繊維の垂直方向に投影した投影長さWs
10:積層体
11:繊維強化プラスチック
12:短繊維層
13:炭素繊維の存在しない領域(切り込み開口部)
14:隣接層
15:繊維束端部
16:樹脂リッチ部
17:層うねり
18:抜き型
19:刃
20:刃からなる列
21:抜き型の基準方向
22:抜き型の基準方向に対して垂直な方向
23:角α
24:隣接する刃からなる列の抜き型の基準方向の間隔
25:追加樹脂層
26:切込プリプレグ基材
27:熱硬化性樹脂
28:熱可塑性樹脂
29:土台
30:回転ローラー
1: Fiber longitudinal direction 2: Vertical direction of fiber 3: Carbon fiber 4: Discontinuous end (cut) of carbon fiber
5: Angle Θ between cut and fiber direction
6: Fiber length L divided by a notch paired in the fiber direction
7: Pre-preg base material 8: Width cut into each other by the cuts 9: Projected length Ws obtained by projecting the cuts in the vertical direction of the carbon fiber
10: Laminate 11: Fiber reinforced plastic 12: Short fiber layer 13: Area without carbon fiber (cut opening)
14: Adjacent layer 15: Fiber bundle end portion 16: Resin rich portion 17: Layer waviness 18: Cutting die 19: Blade 20: Row of blades 21: Reference direction of cutting die 22: Perpendicular to reference direction of cutting die Direction 23: Angle α
24: Spacing in the reference direction of the cutting die of the row of adjacent blades 25: Additional resin layer 26: Cut prepreg base material 27: Thermosetting resin 28: Thermoplastic resin 29: Base 30: Rotating roller

Claims (9)

一方向に引き揃えられた炭素繊維と、熱硬化性樹脂を主成分とするマトリックス樹脂とからなるプリプレグ基材において、該プリプレグ基材の全面に炭素繊維を横切る方向に複数の断続的な切込が挿入されており、前記切込と炭素繊維とのなす角度の絶対値Θが2〜25°の範囲内であり、前記切込を炭素繊維の垂直方向に投影した投影長さWsが0.1〜1.5mmの範囲内であり、実質的にすべての炭素繊維が前記切込により分断され、前記切込により分断された炭素繊維の繊維長さLが10〜100mmの範囲内であって、前記切込が挿入されたプリプレグ基材の厚みHが30〜300μmであり、繊維体積含有率Vfが45〜65%の範囲内あり、該切込が挿入されたプリプレグ基材をASTM D7137/D7137M−05に従う積層構成で、オートクレーブを用いて、圧力6kg/cm、昇温速度1.5℃/分で25℃から昇温して180℃に達してから2時間保持して樹脂を硬化させ、ASTM D7137/D7137M−05に記載される平板状の繊維強化プラスチックに成形された場合、ASTM D7137/D7137M−05に従い測定したCAI強度が200〜400MPa、かつ、デント深さが0.18〜2mmを発現し、さらにJIS−7073(1988)に従い測定した引張強度が450〜850MPaを発現する切込プリプレグ基材。 In a prepreg base material composed of carbon fibers aligned in one direction and a matrix resin mainly composed of a thermosetting resin, a plurality of intermittent cuts in a direction crossing the carbon fibers on the entire surface of the prepreg base material Is inserted, the absolute value Θ of the angle between the cut and the carbon fiber is in the range of 2 to 25 °, and the projection length Ws obtained by projecting the cut in the vertical direction of the carbon fiber is 0. 1 to 1.5 mm, substantially all the carbon fibers are divided by the cut, and the fiber length L of the carbon fiber divided by the cut is in the range of 10 to 100 mm. The thickness H of the prepreg base material into which the notches are inserted is 30 to 300 μm, the fiber volume content Vf is in the range of 45 to 65%, and the prepreg base material into which the notches are inserted is ASTM D7137 / According to D7137M-05 In the laminated structure, using an autoclave, pressure 6 kg / cm 2, and held for two hours after reaching the temperature was raised to 180 ° C. from 25 ° C. at a heating rate of 1.5 ° C. / min to cure the resin, ASTM D7137 / D7137M-05 has a CAI strength of 200 to 400 MPa and a dent depth of 0.18 to 2 mm as measured according to ASTM D7137 / D7137M-05. Furthermore, the cut prepreg base material in which the tensile strength measured according to JIS-7073 (1988) expresses 450-850 MPa. 前記切込の幾何形状がすべて直線状であり、前記切込長さWが0.5〜1.5mmの範囲内であり、かつ、前記切込により分断されたすべての炭素繊維が実質的に同一の繊維長さLである、請求項1に記載の切込プリプレグ基材。 All the geometric shapes of the cuts are linear, the cut length W is in the range of 0.5 to 1.5 mm, and all the carbon fibers cut by the cut are substantially The cut prepreg base material according to claim 1, which has the same fiber length L. 前記切込プリプレグ基材の少なくとも一方の表面に熱可塑性樹脂を含む層状の追加樹脂層を有している、請求項1または2に記載の切込プリプレグ基材。 The cut prepreg base material according to claim 1, wherein the cut prepreg base material has a layered additional resin layer containing a thermoplastic resin on at least one surface of the cut prepreg base material. 前記切込プリプレグ基材に切込を挿入する手段が、一方向に引き揃えられた炭素繊維とマトリックス樹脂とからなるプリプレグ基材に、複数の刃が設けられた抜き型を押し当てることである、請求項1〜3のいずれかに記載の切込プリプレグ基材。 The means for inserting the cut into the cut prepreg base material is to press a die having a plurality of blades against the prepreg base material made of carbon fiber and matrix resin aligned in one direction. The cut prepreg base material according to any one of claims 1 to 3. 前記切込プリプレグ基材に切込を挿入する手段が、一方向に引き揃えられた炭素繊維とマトリックス樹脂とからなるプリプレグ基材に、回転ローラー上に刃が設けられた回転刃を押し当てることである、請求項1〜4のいずれかに記載の切込プリプレグ基材。 The means for inserting a notch into the notched prepreg base material presses a rotating blade provided with a blade on a rotating roller against a prepreg base material made of carbon fiber and matrix resin aligned in one direction. The cut prepreg base material according to any one of claims 1 to 4. 請求項1〜5のいずれか記載の切込プリプレグ基材を少なくとも一部に有してなる積層体であって、炭素繊維が一方向に引き揃えられたプリプレグ基材が複数枚積層され、前記炭素繊維が一方向に引き揃えられたプリプレグ基材が、該プリプレグ基材の繊維方向が少なくとも2方向以上に配向して一体化されているプリプレグ積層体。 A laminate comprising at least part of the cut prepreg base material according to any one of claims 1 to 5, wherein a plurality of prepreg base materials in which carbon fibers are aligned in one direction are laminated, A prepreg laminate in which a prepreg base material in which carbon fibers are aligned in one direction is integrated with the fiber direction of the prepreg base material oriented in at least two directions. 請求項1〜5に記載の切込プリプレグ基材を複数枚積層したもの、または、請求項6に記載の積層体を所定の形状に成形して得られた繊維強化プラスチック。 A fiber reinforced plastic obtained by laminating a plurality of the cut prepreg substrates according to claim 1 or 5 or molding the laminate according to claim 6 into a predetermined shape. 前記繊維強化プラスチックの一部に立ち面あるいはリブ形状を含む、請求項7に記載の繊維強化プラスチック。 The fiber reinforced plastic according to claim 7, wherein a part of the fiber reinforced plastic includes a standing surface or a rib shape. 前記繊維強化プラスチックが航空機用部材として使用される、請求項7または8に記載の繊維強化プラスチック。 The fiber reinforced plastic according to claim 7 or 8, wherein the fiber reinforced plastic is used as an aircraft member.
JP2008181098A 2008-07-11 2008-07-11 Incised prepreg substrate, prepreg layered product, and fiber-reinforced plastic Pending JP2010018723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008181098A JP2010018723A (en) 2008-07-11 2008-07-11 Incised prepreg substrate, prepreg layered product, and fiber-reinforced plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008181098A JP2010018723A (en) 2008-07-11 2008-07-11 Incised prepreg substrate, prepreg layered product, and fiber-reinforced plastic

Publications (1)

Publication Number Publication Date
JP2010018723A true JP2010018723A (en) 2010-01-28

Family

ID=41703946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008181098A Pending JP2010018723A (en) 2008-07-11 2008-07-11 Incised prepreg substrate, prepreg layered product, and fiber-reinforced plastic

Country Status (1)

Country Link
JP (1) JP2010018723A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012087190A (en) * 2010-10-18 2012-05-10 Mitsubishi Rayon Co Ltd Method for production of prepreg having discontinuous fiber
JP2014088487A (en) * 2012-10-30 2014-05-15 Mitsubishi Rayon Co Ltd Method for producing fiber-reinforced plastic
JP2014091824A (en) * 2012-11-07 2014-05-19 Mitsubishi Rayon Co Ltd Multilayer base material of fiber-reinforced plastic, and method for producing the material
JP2014189722A (en) * 2013-03-28 2014-10-06 Mitsubishi Chemicals Corp Laminated base material of fiber-reinforced plastic and method for producing the same
JP2014198756A (en) * 2013-03-29 2014-10-23 三菱レイヨン株式会社 Production method of carbon fiber resin composite material molding
JP2016065356A (en) * 2015-12-24 2016-04-28 三菱レイヨン株式会社 Method for producing unidirectional discontinuous fiber belt
WO2021024971A1 (en) * 2019-08-06 2021-02-11 東レ株式会社 Notched prepreg and fiber-reinforced plastic
EP3736203A4 (en) * 2018-10-03 2021-06-02 Kawasaki Jukogyo Kabushiki Kaisha Composite component for aircraft and manufacturing method therefor
CN113442466A (en) * 2015-10-27 2021-09-28 东丽株式会社 Incision prepreg

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012087190A (en) * 2010-10-18 2012-05-10 Mitsubishi Rayon Co Ltd Method for production of prepreg having discontinuous fiber
JP2014088487A (en) * 2012-10-30 2014-05-15 Mitsubishi Rayon Co Ltd Method for producing fiber-reinforced plastic
JP2014091824A (en) * 2012-11-07 2014-05-19 Mitsubishi Rayon Co Ltd Multilayer base material of fiber-reinforced plastic, and method for producing the material
JP2014189722A (en) * 2013-03-28 2014-10-06 Mitsubishi Chemicals Corp Laminated base material of fiber-reinforced plastic and method for producing the same
JP2014198756A (en) * 2013-03-29 2014-10-23 三菱レイヨン株式会社 Production method of carbon fiber resin composite material molding
CN113442466A (en) * 2015-10-27 2021-09-28 东丽株式会社 Incision prepreg
CN113442466B (en) * 2015-10-27 2023-07-28 东丽株式会社 Incision prepreg
JP2016065356A (en) * 2015-12-24 2016-04-28 三菱レイヨン株式会社 Method for producing unidirectional discontinuous fiber belt
EP3736203A4 (en) * 2018-10-03 2021-06-02 Kawasaki Jukogyo Kabushiki Kaisha Composite component for aircraft and manufacturing method therefor
WO2021024971A1 (en) * 2019-08-06 2021-02-11 東レ株式会社 Notched prepreg and fiber-reinforced plastic
JPWO2021024971A1 (en) * 2019-08-06 2021-02-11
JP7447791B2 (en) 2019-08-06 2024-03-12 東レ株式会社 Notch prepreg and fiber reinforced plastic

Similar Documents

Publication Publication Date Title
JP2010018723A (en) Incised prepreg substrate, prepreg layered product, and fiber-reinforced plastic
JP5272418B2 (en) Cut prepreg base material, composite cut prepreg base material, laminated base material, fiber reinforced plastic, and method for producing cut prepreg base material
JP6597309B2 (en) Cutting prepreg and cutting prepreg sheet
JP5353099B2 (en) Manufacturing method of fiber reinforced plastic
JP5320742B2 (en) Method for producing composite prepreg substrate, laminated substrate and fiber reinforced plastic
EP2127840B1 (en) Prepreg base material,laminated base material, process for producing prepreg base material, and process for producing fiberreinforced plastic
RU2622306C2 (en) Materials and equipment surface design thermoplastic
JP6947034B2 (en) Notch prepreg and method of manufacturing notch prepreg
JP5292972B2 (en) Manufacturing method of fiber reinforced plastic
JP2009286817A (en) Laminated substrate, fiber-reinforced plastic, and methods for producing them
JP2008207544A (en) Notched prepreg substrate, laminated substrate, fiber-reinforced plastic, and method for manufacturing notched prepreg substrate
JP2009062474A (en) Molding material, fiber-reinforced plastic, and manufacturing method for them
JP2010018724A (en) Prepreg layered substrate and fiber-reinforced plastic
JP2009062648A (en) Method for producing chopped fiber bundle, molded material, and fiber reinforced plastic
KR20200071072A (en) Method for manufacturing fiber reinforced plastic composite
JP2013202890A (en) Molding material and method of manufacturing the same
JP2008279753A (en) Manufacturing method of fiber-reinforced plastics
JP2010023359A (en) Method of manufacturing laminate
TW201920398A (en) Prepreg laminate, method for manufacturing fiber-reinforced plastic using prepreg laminate, and fiber-reinforced plastic
TW201725104A (en) Prepreg with cutting mark, angle-ply laminate and manufacturing method of prepreg with cutting mark having excellent property of following three-dimensions and showing high quality surface quality and high mechanical properties as manufacturing fiber reinforced plastics
CN111886125A (en) Molding device for fiber-reinforced composite material and method for producing molded article of fiber-reinforced composite material
JPWO2018147331A1 (en) Fiber reinforced resin sheet
JP2007146151A (en) Prepreg substrate material, laminated substrate material and fiber-reinforced plastic
WO2019078242A1 (en) Fiber-reinforced-plastic molded article
JP2008208343A (en) Cut prepreg substrate, laminated substrate, fiber reinforced plastics and preparation method of cut prepreg substrate