JP2008279753A - Manufacturing method of fiber-reinforced plastics - Google Patents

Manufacturing method of fiber-reinforced plastics Download PDF

Info

Publication number
JP2008279753A
JP2008279753A JP2008030022A JP2008030022A JP2008279753A JP 2008279753 A JP2008279753 A JP 2008279753A JP 2008030022 A JP2008030022 A JP 2008030022A JP 2008030022 A JP2008030022 A JP 2008030022A JP 2008279753 A JP2008279753 A JP 2008279753A
Authority
JP
Japan
Prior art keywords
fiber
base material
reinforced plastic
cut
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008030022A
Other languages
Japanese (ja)
Inventor
Ichiro Takeda
一朗 武田
Shigemichi Sato
成道 佐藤
Eisuke Wadahara
英輔 和田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2008030022A priority Critical patent/JP2008279753A/en
Publication of JP2008279753A publication Critical patent/JP2008279753A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/20Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres
    • B29C70/205Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres the structure being shaped to form a three-dimensional configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/0036Slitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/0081Shaping techniques involving a cutting or machining operation before shaping

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of fiber-reinforced plastics with advantages such as successful fluidity/molding follow-up properties of complicated shape, and excellent mechanical characteristics, low variability and dimensional stability, when the fiber-reinforced plastic products are manufactured. <P>SOLUTION: The fiber-reinforced plastic products are molded through the sequence of at least the following processes (1) to (3): (1) a lamination process to obtain a laminate by laminating a plurality of prepreg base materials in the way that an area where only the deeply cut prepreg base material with the reinforcing fiber split to the length of 10 to 100 mm, is formed on at least, a part of the laminate, (2) a molding process to arrange the above area in the double contour part of the molding die and mold the laminate with the above area stretched along the double contour part, and (3) a process to unload the fiber-reinforced plastic products from the molding die. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、良好な流動性、成形追従性を有し、繊維強化プラスチックとした場合、優れた力学特性、その低バラツキ性、優れた寸法安定性を発現する、繊維強化プラスチックの製造方法に関する。かかる繊維強化プラスチックは、例えば自動車などの輸送機器、自転車などのスポーツ用具などの構造部材に特に好適に用いられる。   The present invention relates to a method for producing a fiber reinforced plastic that has good fluidity and molding followability, and exhibits excellent mechanical properties, its low variation, and excellent dimensional stability when made into a fiber reinforced plastic. Such fiber reinforced plastics are particularly preferably used for structural members such as transport equipment such as automobiles and sports equipment such as bicycles.

強化繊維とマトリックス樹脂からなる繊維強化プラスチックは、比強度、比弾性率が高く、力学特性に優れること、耐候性、耐薬品性などの高機能特性を有することなどから産業用途においても注目され、その需要は年々高まりつつある。   Fiber reinforced plastic consisting of reinforced fiber and matrix resin is attracting attention in industrial applications because it has high specific properties, high specific modulus, excellent mechanical properties, weather resistance, chemical resistance, etc. The demand is increasing year by year.

繊維強化プラスチックの成形方法としては、プリプレグ基材と称される連続した強化繊維に熱硬化性樹脂を含浸せしめた半硬化状態の中間基材を積層し、高温高圧釜で加熱加圧することにより熱硬化性樹脂を硬化させ繊維強化プラスチックを成形するオートクレーブ成形が最も一般的に行われている。また、近年では生産効率の向上を目的として、あらかじめ部材形状に賦形した連続繊維基材に熱硬化性樹脂を含浸および硬化させるRTM(レジントランスファーモールディング)成形なども行われている。これらの成形法により得られた繊維強化プラスチックは、連続繊維である所以優れた力学物性を有する。また、連続繊維は規則的な配列であるため、基材の配置により必要とする力学物性に設計することが可能であり、力学物性のバラツキも小さい。しかしながら、一方で連続繊維である所以3次元形状を形成することは難しい、という問題があった。   As a method for molding fiber reinforced plastic, a semi-cured intermediate base material impregnated with a thermosetting resin is laminated on a continuous reinforcing fiber called a prepreg base material, and heat is applied by heating and pressurizing with a high-temperature and high-pressure kettle. Autoclave molding in which a curable resin is cured and a fiber-reinforced plastic is molded is most commonly performed. In recent years, for the purpose of improving production efficiency, RTM (resin transfer molding) molding in which a continuous fiber base previously shaped into a member shape is impregnated with a thermosetting resin and cured has been performed. The fiber reinforced plastics obtained by these molding methods have excellent mechanical properties because they are continuous fibers. Further, since the continuous fibers are regularly arranged, it is possible to design the mechanical properties required by the arrangement of the base material, and the variation in the mechanical properties is small. However, there is a problem that it is difficult to form a three-dimensional shape because it is a continuous fiber.

特に複雑な3次元形状の場合、さらにこの問題は深刻であった。複雑な3次元形状に、例えば紙など面内でせん断変形を起こしにくいシートを想像すると分かりやすいが、このような連続繊維基材を賦形した場合には、形状表面を覆いきれない箇所で突っ張りが、基材が余った箇所でシワが発生するため、高品位な賦形が難しい。連続繊維基材であっても、織物基材のように面内でせん断変形が可能な場合は、紙などに比べるとかなり賦形しやすいものの、形状が複雑になれば、やはり繊維の突っ張りやシワが発生してしまう、という問題があった。   This problem was more serious especially in the case of complex three-dimensional shapes. If you imagine a sheet that is difficult to cause shear deformation in a plane, such as paper, in a complicated three-dimensional shape, it is easy to understand. However, when such a continuous fiber substrate is shaped, the surface of the shape cannot be covered. However, since wrinkles are generated at the place where the base material is left, high-quality shaping is difficult. Even if it is a continuous fiber base material, if it can be sheared in-plane like a woven base material, it is much easier to shape than paper etc., but if the shape becomes complicated, fiber tension and There was a problem that wrinkles would occur.

例えば、BMC(バルクモールディングコンパウンド)(例えば、特許文献1)、SMC(シートモールディングコンパウンド)やスタンパブルシート(例えば、特許文献2)のように束状の不連続繊維を熱硬化性樹脂や熱可塑性樹脂と混合して分散したシート基材を用いれば上述のダブルコンター部を有する3次元形状にも成形追従することが分かっているものの、力学的特性が低いため、構造部材には適用できないという問題があった。
特開平8−118379号公報 特開平9−267344号公報
For example, bundled discontinuous fibers such as BMC (bulk molding compound) (for example, Patent Document 1), SMC (Sheet Molding Compound) and stampable sheet (for example, Patent Document 2) are made of thermosetting resin or thermoplastic resin. Although it is known that if the sheet base material mixed and dispersed with the resin is used, the three-dimensional shape having the above-mentioned double contour portion can be formed and followed, but the mechanical properties are low, so it cannot be applied to a structural member. was there.
JP-A-8-118379 JP-A-9-267344

本発明は、かかる従来技術の背景に鑑み、良好な流動性、複雑な形状の成形追従性を有し、繊維強化プラスチックとした場合、優れた力学特性、その低バラツキ性、優れた寸法安定性を発現する、繊維強化プラスチックおよびその製造方法を提供することにある。   In view of the background of such prior art, the present invention has excellent fluidity, molding followability of complicated shapes, and excellent mechanical properties, low variability, and excellent dimensional stability when used as a fiber reinforced plastic. Is to provide a fiber-reinforced plastic and a method for producing the same.

本発明は、かかる課題を解決するために、次のような手段を採用するものである。すなわち、
(I)一方向に引き揃えられた強化繊維と熱硬化性樹脂から構成されるプリプレグ基材の積層体をホットプレス成形し、ダブルコンター部を有する繊維強化プラスチックとする、繊維強化プラスチックの製造方法であって、前記プリプレグ基材として、該強化繊維を横切る方向に複数の切り込みによって少なくとも一部の強化繊維を10〜100mmの長さに分断した切込プリプレグ基材を用いて、少なくとも次の(1)〜(3)の工程を順次経て繊維強化プラスチックを成形する、繊維強化プラスチックの製造方法。
(1)前記切込プリプレグ基材を含む複数枚のプリプレグ基材を積層して積層体を得るに際し、少なくとも前記積層体の一部に、前記切り込みにより強化繊維が10〜100mmの長さに分断した切込プリプレグ基材のみが積層されている領域が形成されるように積層し、平板状の積層体を得る積層工程
(2)成形型上に前記積層体を配置し、加熱して軟化させ、前記積層体を前記成形型に押し付けて硬化させ、繊維強化プラスチックとするに際し、前記成形型のダブルコンター部に前記領域を配置し、前記領域を伸張させてダブルコンター部に沿わせて成形する成型工程
(3)前記成形型から前記繊維強化プラスチックを取り出す脱型工程。
The present invention employs the following means in order to solve such problems. That is,
(I) A method for producing a fiber reinforced plastic, wherein a laminate of a prepreg base material composed of reinforced fibers aligned in one direction and a thermosetting resin is hot-press molded to obtain a fiber reinforced plastic having a double contour portion. And, as the prepreg base material, using a cut prepreg base material in which at least a part of the reinforcing fibers is divided into a length of 10 to 100 mm by a plurality of incisions in a direction crossing the reinforcing fibers, at least the following ( A method for producing a fiber reinforced plastic, comprising sequentially molding the fiber reinforced plastic through steps 1) to (3).
(1) When a laminated body is obtained by laminating a plurality of prepreg base materials including the cut prepreg base material, at least a part of the laminated body is divided into 10 to 100 mm in length by reinforcing the cut. Lamination process (2) to obtain a flat laminate, placing the laminate on a mold and softening by heating so that a region where only the cut prepreg base material is laminated is formed. When the laminate is pressed against the mold and cured to form a fiber reinforced plastic, the region is disposed in the double contour portion of the mold, and the region is stretched and molded along the double contour portion. Molding step (3) A demolding step of taking out the fiber reinforced plastic from the mold.

(II)一方向に引き揃えられた強化繊維と熱可塑性樹脂から構成されるプリプレグ基材の積層体をコールドプレス成形し、ダブルコンター部を有する繊維強化プラスチックとする、繊維強化プラスチックの製造方法であって、前記プリプレグ基材として、該強化繊維を横切る方向に複数の切り込みによって少なくとも一部の強化繊維を10〜100mmの長さに分断した切込プリプレグ基材を用いて、少なくとも次の(4)〜(6)の工程を順次経て繊維強化プラスチックを成形する、繊維強化プラスチックの製造方法。
(4)前記切込プリプレグ基材を含む複数枚のプリプレグ基材を積層して積層体を得るに際し、少なくとも前記積層体の一部に、前記切り込みにより強化繊維が10〜100mmの長さに分断した切込プリプレグ基材のみが積層されている領域が形成されるように積層し、平板状の積層体を得る積層工程
(5)前記積層体を加熱して軟化させ、前記積層体よりも低温の成形型上に前記積層体を配置し、前記積層体を成形型に押し付けて固化させ、繊維強化プラスチックとするに際し、前記成型型のダブルコンター部に前記領域を配置し、前記領域を伸張させてダブルコンター部に沿わせて成形する成型工程
(6)前記成形型から前記繊維強化プラスチックを取り出す脱型工程。
(II) A method for producing a fiber reinforced plastic, in which a laminate of a prepreg base material composed of reinforced fibers and a thermoplastic resin aligned in one direction is cold-press formed into a fiber reinforced plastic having a double contour portion. Then, as the prepreg base material, at least the following (4), using a notched prepreg base material in which at least a part of the reinforcing fibers is divided into a length of 10 to 100 mm by a plurality of incisions in a direction crossing the reinforcing fibers. ) To (6), a method for producing a fiber reinforced plastic, wherein the fiber reinforced plastic is molded sequentially.
(4) When a laminated body is obtained by laminating a plurality of prepreg base materials including the cut prepreg base material, at least a part of the laminated body is cut into lengths of 10 to 100 mm by the cutting to provide reinforcing fibers. Lamination process (5) to obtain a flat laminate by heating so as to form a region in which only the cut prepreg base material is laminated. The laminate is heated and softened at a lower temperature than the laminate. When the laminate is placed on a mold, and the laminate is pressed against the mold and solidified to form a fiber reinforced plastic, the region is placed in the double contour portion of the mold, and the region is expanded. (6) Demolding step of taking out the fiber reinforced plastic from the mold.

(III)前記切込プリプレグ基材を構成する強化繊維の全てが前記切り込みにより分断されており、前記切り込みにより分断されている繊維長さLが10〜100mmの範囲内である、(I)または(II)に記載の繊維強化プラスチックの製造方法。   (III) All of the reinforcing fibers constituting the cut prepreg base material are cut by the cut, and the fiber length L cut by the cut is in the range of 10 to 100 mm, (I) or The manufacturing method of the fiber reinforced plastic as described in (II).

(IV)前記切込プリプレグ基材の切り込みが直線状であり、かつ、該切り込みの長さWが2〜100mmであり、断続的かつ周期的に全面にわたって配置されている、(I)〜(III)のいずれかに記載の繊維強化プラスチックの製造方法。   (IV) The incision of the notched prepreg base material is linear, and the length W of the incision is 2 to 100 mm, and is intermittently and periodically disposed over the entire surface. III) The method for producing a fiber-reinforced plastic according to any one of the above.

(V)前記切込プリプレグ基材が2層以上連続して隣接し、該2層以上の層のうち隣接する任意の2層について、一方の切込プリプレグ基材上の任意の切り込みの幾何中心と他方の切込プリプレグ基材上のいずれの切り込みの幾何中心とも5mm以上離れる様に積層する、(I)〜(IV)のいずれかに記載の繊維強化プラスチックの製造方法。   (V) The notch prepreg base material is continuously adjacent to two or more layers, and an arbitrary notch geometric center on one notch prepreg base material for any two adjacent layers among the two or more layers. And the other cut prepreg substrate, the fiber-reinforced plastic production method according to any one of (I) to (IV), wherein the layers are laminated so as to be separated from the geometric center of any cut by 5 mm or more.

(VI)前記切り込みが繊維直交方向から傾いている、請求項(I)〜(V)のいずれかに記載の繊維強化プラスチックの製造方法。   (VI) The manufacturing method of the fiber reinforced plastics in any one of Claims (I)-(V) in which the said notch inclines from the fiber orthogonal direction.

(VII)前記切り込みが強化繊維となす角度Θの絶対値が2〜25°の範囲内である、(I)〜(V)のいずれかに記載の繊維強化プラスチックの製造方法。   (VII) The method for producing a fiber-reinforced plastic according to any one of (I) to (V), wherein an absolute value of an angle Θ formed by the cut with the reinforcing fiber is in the range of 2 to 25 °.

(VIII)前記積層体が前記切込プリプレグ基材のみから構成される、(I)〜(VII)のいずれかに記載の繊維強化プラスチックの製造方法。   (VIII) The method for producing a fiber-reinforced plastic according to any one of (I) to (VII), wherein the laminate is composed only of the cut prepreg base material.

(IX)前記成形型が片面型であり、該片面型上に前記積層体を配し、前記積層体の上に伸縮性のフィルムを覆って前記積層体を密封し、該密封された空間と外気との差圧により前記積層体を前記片面型に押し付けて成形する、(I)〜(VIII)のいずれかに記載の繊維強化プラスチックの製造方法。   (IX) The mold is a single-sided mold, the laminated body is disposed on the single-sided mold, the stretchable film is sealed on the laminated body, and the sealed space is formed. The method for producing a fiber-reinforced plastic according to any one of (I) to (VIII), wherein the laminate is pressed against the single-sided mold by a pressure difference from outside air.

(X)前記成形型が2つ以上の型からなり、型締めにより前記積層体を前記成形型に押し付けるに際し、前記積層体が2つの型両方に最初に接触する領域に連続繊維が配されている、(I)〜(IX)のいずれかに記載の繊維強化プラスチックの製造方法。   (X) The mold is composed of two or more molds, and when the laminate is pressed against the mold by clamping, continuous fibers are arranged in a region where the laminate first contacts both of the two molds. A method for producing a fiber-reinforced plastic according to any one of (I) to (IX).

(XI)前記積層工程後、前記成形工程に先立って、前記積層体を成形後の繊維強化プラスチックの略形状に予備賦形した後、成形型上に前記積層体を配置する、(I)〜(X)のいずれかに記載の繊維強化プラスチックの製造方法。   (XI) After the laminating step, prior to the molding step, the laminated body is pre-shaped into a substantially shaped fiber-reinforced plastic after molding, and then the laminated body is placed on a mold (I) to (X) The manufacturing method of the fiber reinforced plastic in any one of.

(XII)前記積層体をシングルコンター形状に予備賦形する、(XI)に記載の繊維強化プラスチックの製造方法。   (XII) The method for producing a fiber-reinforced plastic according to (XI), wherein the laminate is preshaped into a single contour shape.

(XIII)繊維強化プラスチックの凹凸部において、前記凹凸部の最も形状変化の少ない方向から±10°以下の角度に強化繊維が配向した層を他層より厚く偏肉する、請求項(I)〜(XII)のいずれかに記載の繊維強化プラスチックの製造方法。   (XIII) In the concavo-convex portion of the fiber reinforced plastic, the layer in which the reinforced fibers are oriented at an angle of ± 10 ° or less from the direction in which the shape change of the concavo-convex portion is the smallest is thicker than the other layers. (XII) The manufacturing method of the fiber reinforced plastic in any one of.

本発明によれば、良好な流動性、複雑な形状の成形追従性を有し、繊維強化プラスチックとした場合、優れた力学特性、その低バラツキ性、優れた寸法安定性を発現する、繊維強化プラスチックを得ることが出来る。   According to the present invention, when it has good fluidity and molding followability of a complicated shape, and it is a fiber reinforced plastic, it exhibits excellent mechanical properties, its low variation, and excellent dimensional stability. Plastic can be obtained.

本発明者らは、良好な流動性、複雑な形状の成形追従性を有し、繊維強化プラスチックとした場合、優れた力学特性、その低バラツキ性、優れた寸法安定性を発現する、繊維強化プラスチックの製造方法について、鋭意検討し、一方向に引き揃えられた炭素繊維とマトリックス樹脂から構成されるプリプレグ基材という特定の基材に特定の切り込みパターンを挿入した切込プリプレグ基材を用い、該切込プリプレグ基材を平板状に積層した積層体において切り込みにより特定の範囲内の繊維長さの強化繊維のみから構成される領域を成形型のダブルコンター部に押し付け伸張させて繊維強化プラスチックを成形することにより、かかる課題を一挙に解決することを究明したのである。   The present inventors have good fluidity, molding conformability of complex shapes, and when made into fiber reinforced plastic, exhibit excellent mechanical properties, its low variation, and excellent dimensional stability, fiber reinforced About the manufacturing method of plastics, we studied diligently, using a cut prepreg base material in which a specific cut pattern was inserted into a specific base material called a prepreg base material composed of carbon fibers and a matrix resin aligned in one direction, In the laminated body in which the cut prepreg base material is laminated in a flat plate shape, a region composed only of reinforcing fibers having a fiber length within a specific range is cut by pressing and stretched to a double contour portion of a mold, and fiber reinforced plastic is obtained. It was clarified that this problem can be solved at once by molding.

なお、本発明の製造方法は3次元形状を有し、ダブルコンター部を有する繊維強化プラスチックを対象とする。繊維強化プラスチックの一部にリブやボスなどがあってもよい。本発明において、“ダブルコンター部を有する繊維強化プラスチック”とは、繊維強化プラスチックの表面を二次曲面として取り出してきた際、該二次曲面上の点であって、該点を通るどのような平面を参照しても、該平面と該二次曲面の交線のうち該点を通る交線が直線となることがない点がダブルコンター部に属し、これらダブルコンター部を少なくとも一部に含む繊維強化プラスチックを指す。具体的には鞍型、半球形状や凹凸部を有する平板などが該当するが凹凸部のない平板、円錐形状や円筒形状は該当しない。本明細書では、特に断らない限り、繊維あるいは繊維を含む用語(例えば“繊維方向”など)において、繊維とは強化繊維を表すものとする。また、本明細書では連続繊維とは100mm以上の繊維長さを持つ強化繊維を指す。本発明で用いられるプリプレグ基材には、一方向に引き揃えられた強化繊維や強化繊維基材に樹脂が完全に含浸した基材に加え、樹脂シートが繊維間に完全に含浸していない状態で一体化した樹脂半含浸基材(セミプレグ:以下、半含浸プリプレグと称することもある。)を含むものとする。   In addition, the manufacturing method of this invention makes object the fiber reinforced plastic which has a three-dimensional shape and has a double contour part. A part of the fiber reinforced plastic may have ribs or bosses. In the present invention, the “fiber reinforced plastic having a double contour portion” is a point on the quadratic curved surface when the surface of the fiber reinforced plastic is taken out as a quadric curved surface. Of the intersection lines of the plane and the quadric surface, a point where the intersection line passing through the point does not become a straight line belongs to the double contour portion even if the plane is referred to, and at least a part of the double contour portion is included. Refers to fiber reinforced plastic. Specifically, a saddle shape, a hemispherical shape, a flat plate having an uneven portion, and the like are applicable, but a flat plate without an uneven portion, a conical shape, and a cylindrical shape are not applicable. In the present specification, unless otherwise specified, in the term including fibers or fibers (for example, “fiber direction”, etc.), the fibers represent reinforcing fibers. In the present specification, the continuous fiber refers to a reinforcing fiber having a fiber length of 100 mm or more. The prepreg base material used in the present invention is a state in which the resin sheet is not completely impregnated between the fibers, in addition to the reinforcing fiber aligned in one direction and the base material in which the reinforcing fiber base material is completely impregnated with resin. And a resin semi-impregnated base material (semi-preg: hereinafter also referred to as semi-impregnated prepreg).

本発明で用いられる切込プリプレグ基材は、一方向に引き揃えられた強化繊維とマトリックス樹脂とから構成され、該強化繊維を横切る方向に複数の切り込みによって少なくとも一部の強化繊維を10〜100mmの長さに分断しているものを指す。切込プリプレグ基材上において強化繊維が10〜100mmの長さに分断されている領域は、成形時に基材が伸長することができる領域に対応している。したがって、複雑形状の繊維強化プラスチックを成形するにあたり、凹凸部に対応する領域の積層体は、切込プリプレグ基材上で切り込みによって強化繊維が10〜100mmの長さに分断されている領域が積層されていることを必須とする。   The cut prepreg base material used in the present invention is composed of a reinforcing fiber and a matrix resin that are aligned in one direction, and at least a part of the reinforcing fibers is cut in a direction crossing the reinforcing fiber by 10 to 100 mm. The one that is divided into the length of. The area | region where the reinforcing fiber is divided | segmented into the length of 10-100 mm on the cutting prepreg base material respond | corresponds to the area | region which a base material can expand | extend at the time of shaping | molding. Therefore, when molding a fiber reinforced plastic having a complicated shape, the laminated body in the region corresponding to the concavo-convex portion is laminated in a region where the reinforcing fibers are divided into lengths of 10 to 100 mm by cutting on the cut prepreg base material. It is essential that

本発明に用いる切込プリプレグ基材は強化繊維が一方向に引き揃えられているので、繊維方向の配向制御により任意の力学物性を有する成形体の設計が可能となる。加えて、繊維を横切る方向に複数の切り込みによって少なくとも一部の繊維を100mm以下の長さに分断していることによって、成形時に繊維が流動可能、特に繊維長手方向にも流動可能となり、複雑な形状の成形追従性にも優れる。該切り込みがない場合、すなわち連続繊維のみの場合、繊維長手方向には流動しないため、複雑形状を形成することは出来ない。一方、繊維長さを10mm未満にすると、さらに流動性が向上するが、他の要件を満たしても構造材として必要な高力学特性は得られない。流動性と力学特性との関係を鑑みると、繊維長さが10〜100mmである必要があり、さらに好ましくは20〜60mmの範囲内である。   Since the reinforced fibers are aligned in one direction in the cut prepreg base material used in the present invention, it is possible to design a molded body having arbitrary mechanical properties by controlling the orientation in the fiber direction. In addition, by dividing at least a part of the fibers into a length of 100 mm or less by a plurality of cuts in the direction crossing the fibers, the fibers can flow at the time of molding, particularly in the longitudinal direction of the fibers. Excellent shape conformability. When there is no notch, that is, when only continuous fibers are used, a complicated shape cannot be formed because they do not flow in the fiber longitudinal direction. On the other hand, when the fiber length is less than 10 mm, the fluidity is further improved. However, even if other requirements are satisfied, the high mechanical properties necessary for the structural material cannot be obtained. Considering the relationship between fluidity and mechanical properties, the fiber length needs to be 10 to 100 mm, and more preferably within the range of 20 to 60 mm.

図5に切込プリプレグ基材の流動のメカニズムの例を示した。図5a)のとおり、90°のプリプレグ基材に0°の切込プリプレグ基材が挟まれた積層体12の上から圧力13が加わり成形する際、図5b)のように、圧力で押し出された樹脂が90°方向に流れ14を作り、その流れに従って強化繊維の端部の開き15が起こる。すなわち、一方向に引き揃えられた繊維からなるプリプレグ基材に切り込みを設け、少なくとも一部の強化繊維が10〜100mmの長さである切込プリプレグ基材を積層することではじめて、繊維長手方向への流動が可能となり、複雑な形状の成形追従性が生まれる。   FIG. 5 shows an example of the flow mechanism of the cut prepreg base material. As shown in FIG. 5 a), when molding is performed by applying pressure 13 from above the laminate 12 in which the 90 ° prepreg base material is sandwiched between the 90 ° prepreg base material, as shown in FIG. The resin forms a flow 14 in the direction of 90 °, and the opening 15 of the end of the reinforcing fiber occurs according to the flow. That is, the longitudinal direction of the fiber is not provided until the prepreg base material made of fibers aligned in one direction is cut, and the cut prepreg base material in which at least some reinforcing fibers are 10 to 100 mm in length is laminated. It is possible to flow into a complex shape, resulting in molding conformability of complex shapes.

このように繊維の流動は樹脂の流動が駆動源であるため、適性のVf(繊維体積含有率)であることが好ましい。すなわち、Vfは65%以下で十分な流動性が得られるようになり好ましい。また、Vfが低いほど流動性は向上するが、Vfが45%を下回ると、構造材に必要な高力学特性が得られなくなる可能性があるので、Vfは45%以上であることが好ましい。流動性と力学特性との関係を鑑みると、さらに好ましくは55〜60%の範囲内である。   Thus, since the flow of the resin is the driving source, the flow of the fiber is preferably an appropriate Vf (fiber volume content). That is, Vf is preferably 65% or less because sufficient fluidity can be obtained. Moreover, although fluidity | liquidity improves, so that Vf is low, when Vf is less than 45%, since there exists a possibility that a high mechanical characteristic required for a structural material may not be acquired, it is preferable that Vf is 45% or more. Considering the relationship between fluidity and mechanical properties, it is more preferably in the range of 55-60%.

本発明では、上記切込プリプレグのマトリックス樹脂が熱硬化性樹脂である場合、繊維強化プラスチックを成形するにあたり、少なくとも次の(1)〜(3)の工程を順次経ることが必要である。
(1)切込プリプレグ基材を含む複数枚のプリプレグ基材を積層して積層体を得るに際し、少なくとも積層体の一部に、切り込みにより強化繊維が10〜100mmの長さに分断した切込プリプレグ基材のみが積層されている領域が形成されるように積層し、平板状の積層体を得る積層工程
(2)成形型上に積層体を配置し、加熱して軟化させ、積層体を成形型に押し付けて硬化させ、繊維強化プラスチックとするに際し、成形型のダブルコンター部に前記領域を配置し、前記領域を伸張させてダブルコンター部に沿わせて成形する成型工程
(3)成形型から繊維強化プラスチックを取り出す脱型工程。
In the present invention, when the matrix resin of the cut prepreg is a thermosetting resin, it is necessary to sequentially perform at least the following steps (1) to (3) when molding the fiber reinforced plastic.
(1) When a laminated body is obtained by laminating a plurality of prepreg base materials including a cut prepreg base material, at least a part of the laminated body is cut with a reinforcing fiber divided into lengths of 10 to 100 mm by cutting. Lamination is performed so that a region where only the prepreg base material is laminated is formed, and a laminating step for obtaining a flat laminate (2) The laminate is placed on a mold and softened by heating. (3) Molding step in which the region is arranged in the double contour part of the molding die, and the region is stretched and molded along the double contour part when being cured by pressing against the molding die Demolding process to take out fiber reinforced plastic from

例えば、図1c)のように平板上に半球状のダブルコンター部を有する繊維強化プラスチックを製造するにあたり、次のような工程を順次経る。   For example, as shown in FIG. 1c), the following steps are sequentially performed in manufacturing a fiber reinforced plastic having a hemispherical double contour portion on a flat plate.

まず、切込プリプレグ基材を少なくとも含む複数枚のプリプレグ基材を積層して平板状の積層体を作成する。プリプレグ基材を、成形型に沿って一枚一枚積層、賦形しながら積層体を作製したり、最終形状である成形後の繊維強化プラスチックの略形状(得られる繊維強化プラスチックの形状を単純にした形状であって、凹凸の数が少なくなったり、起伏が少なくなったりした形状)に沿って一枚一枚積層、賦形しながら積層体を作製したりする方法も考えられるが、本発明によればプリプレグ基材を一気に平板状に積層するだけで成形可能であり、低コストに積層体を作成することができる。さらに図4に示すように、少なくともこの積層体の一部が、切り込みにより繊維が10〜100mmの長さに分断された切込プリプレグ基材のみが積層されてなる領域37を形成することを必須とする。すなわち、領域37では積層体の厚み方向に、実質的に10〜100mmの繊維のみからなる、切込プリプレグ基材のみが積層されている。ここで”実質的に10〜100mmの繊維のみからなる”とは該領域に含まれる強化繊維本数のうち95%以上が10〜100mmに分断されていることを言う。該領域を以下、積層体の不連続部と称す。   First, a plurality of prepreg base materials including at least a cut prepreg base material are laminated to form a flat laminate. Laminate prepreg base materials one by one along the mold and shape the laminate, or form the final shape of fiber-reinforced plastic after molding (simple shape of the resulting fiber-reinforced plastic) It is also possible to create a laminated body while shaping one by one along the shape of the shape, which has a reduced number of irregularities and a shape with less undulations). According to the invention, it is possible to form the laminate by simply laminating the prepreg base material at a stretch, and it is possible to produce a laminate at a low cost. Further, as shown in FIG. 4, it is essential that at least a part of the laminated body forms a region 37 in which only the cut prepreg base material in which the fibers are cut into a length of 10 to 100 mm by the cut is laminated. And That is, in the region 37, only the cut prepreg base material, which is substantially made only of fibers of 10 to 100 mm, is laminated in the thickness direction of the laminated body. Here, “consisting essentially of fibers of 10 to 100 mm” means that 95% or more of the number of reinforcing fibers contained in the region is divided into 10 to 100 mm. Hereinafter, this region is referred to as a discontinuous portion of the laminate.

複雑形状を有する繊維強化プラスチックを成形するにあたり、複雑形状に対応する積層体の領域が不連続部であることで、成形時に容易に伸張することができ、複雑形状に沿わせることができる。図4a)、b)はそれぞれの積層体の一部に不連続部を有した例を示しており、それぞれ上図は平面図、下図はA−A断面の断面図を示す。図4a)は全面に切り込みを入れられた切込プリプレグ基材10aを5層積層した上に、切込プリプレグ基材10aより小さな連続繊維からなるプリプレグ基材11を1層表層に積層した例を示す。連続繊維からなるプリプレグ基材11に覆われていない領域37が不連続部にあたる。なお、連続繊維からなるプリプレグ基材としては、一方向に連続繊維を引き揃えたプリプレグ基材や織物のプリプレグ基材などが考えられる。図4b)は一部に切り込みを入れられた切込プリプレグ基材10bを5層積層した積層体12で、積層された切込プリプレグ基材10bはすべて図4b)の上図のように左端の領域にのみ切り込みが入れられている例を示す。各切込プリプレグ基材10bの切り込みが入れられている領域が重なって積層されている領域37が不連続部にあたる。   When the fiber reinforced plastic having a complicated shape is molded, the region of the laminated body corresponding to the complex shape is a discontinuous portion, so that it can be easily stretched at the time of molding and can follow the complex shape. 4A) and 4B show examples in which a discontinuous portion is provided in a part of each laminate, and the upper drawing shows a plan view and the lower drawing shows a cross-sectional view taken along the line AA. FIG. 4a) shows an example in which five layers of cut prepreg base material 10a cut into the entire surface are laminated and a prepreg base material 11 made of continuous fibers smaller than the cut prepreg base material 10a is laminated on the surface of one layer. Show. The area | region 37 which is not covered with the prepreg base material 11 which consists of continuous fibers corresponds to a discontinuous part. In addition, as a prepreg base material which consists of continuous fibers, the prepreg base material which aligned the continuous fiber in one direction, the prepreg base material of a textile fabric, etc. can be considered. FIG. 4b) is a laminate 12 in which five layers of cut prepreg base material 10b, in which a part of the cut is made, are laminated, and all of the laminated cut prepreg base materials 10b are at the left end as shown in the upper view of FIG. 4b). An example in which a cut is made only in the area is shown. A region 37 in which the regions where the cuts of the respective cut prepreg base materials 10b are cut overlap each other corresponds to the discontinuous portion.

ダブルコンター部を有する繊維強化プラスチックを成形するに当たり、連続繊維基材を用いて成形する場合は、繊維強化プラスチックの表面形状を展開した平面状のカットパターンを作成し、該カットパターンで裁断した連続繊維基材を成形型に厳密に沿わせて賦形し、積層数分だけそれを繰り返して積層体を作製する必要がある。一方、本発明に係る切込プリプレグ基材を用いて成形する場合には、不連続部が伸張して複雑形状に沿うため、複雑なカットパターンとしなくてもよく、また成形型(すなわち成形後の繊維強化プラスチック)の形状に完全に沿わせて賦形しなくても(すなわち成形後の繊維強化プラスチックの略形状に賦形しても)よいため、一気に平板状に積層した後に成形型上に配置できるので、極めて高効率に繊維強化プラスチックを製造できる。   In forming a fiber reinforced plastic having a double contour part, when forming using a continuous fiber base material, a flat cut pattern in which the surface shape of the fiber reinforced plastic is developed is created, and continuous cut by the cut pattern. It is necessary to shape the fiber base material along the mold and repeat it for the number of layers to produce a laminate. On the other hand, in the case of molding using the cut prepreg base material according to the present invention, the discontinuous portion extends and follows a complicated shape, so that it is not necessary to form a complicated cut pattern. Because it is not necessary to form it in line with the shape of the fiber reinforced plastic) (that is, it may be shaped to the approximate shape of the fiber reinforced plastic after molding), Therefore, fiber-reinforced plastic can be manufactured with extremely high efficiency.

次に、成形型もしくは成形型と積層体両方を加熱しておき、積層体を成形型上に配置し、積層体を加熱して軟化させ、積層体を成形型に押し付けて硬化させるホットプレス成形により繊維強化プラスチックを成形する。本発明におけるホットプレス成形は、加熱した両面型で機械的にプレスする圧縮成形だけでなく、加熱した片面型にバッグフィルム等で押し付けたり、加熱したローラーなどで加圧しながら形状に沿わせたりするホットドレープ成形も含む。図1b)のように、前記不連続部を成形型のダブルコンター部上に配置し、不連続部を伸張させてダブルコンター部に積層体を沿わせて成形することを必須とする。成形型としては、例えば片面型を用いフィルムなどで密封して真空引きし、大気圧との差圧で型に積層体を押し付けでもよいし、上型と下型からなる両面型や、さらに複雑形状に対応した3つ以上の型からなる分割型を用いて、プレス成形してもよい。   Next, hot press molding is performed in which the mold or both the mold and the laminate are heated, the laminate is placed on the mold, the laminate is heated and softened, and the laminate is pressed against the mold and cured. To form fiber reinforced plastic. Hot press molding in the present invention is not only compression molding that mechanically presses with a heated double-sided mold, but also presses the heated single-sided mold with a bag film or the like, or conforms to the shape while pressing with a heated roller or the like. Includes hot drape molding. As shown in FIG. 1b), it is essential to dispose the discontinuous part on the double contour part of the mold, and to stretch the discontinuous part and form the laminate along the double contour part. As the mold, for example, a single-sided mold is used and sealed with a film and evacuated, and the laminate may be pressed against the mold with a pressure difference from atmospheric pressure, a double-sided mold consisting of an upper mold and a lower mold, or a more complicated mold You may press-mold using the split type | mold which consists of 3 or more type | molds corresponding to a shape.

最後に、成形型から繊維強化プラスチックを取り出す。熱硬化性樹脂の硬化が終わった後、もしくは脱型可能な程度硬化した後、成形型から繊維強化プラスチックを取り出す。繊維強化プラスチックを取り出した後、別のオーブンに入れ、後硬化させてもよい。   Finally, the fiber reinforced plastic is taken out from the mold. After the thermosetting resin has been cured, or after being cured to such an extent that it can be removed, the fiber reinforced plastic is taken out of the mold. After taking out the fiber reinforced plastic, it may be put in another oven and post-cured.

また、本発明の別の一態様として、上記切込プリプレグ基材のマトリックス樹脂が熱可塑性樹脂である場合、繊維強化プラスチックを成形するにあたり、少なくとも次の(4)〜(6)の工程を順次経ることが必要である。
(4)切込プリプレグ基材を含む複数枚のプリプレグ基材を積層して積層体を得るに際し、少なくとも積層体の一部に、切り込みにより強化繊維が10〜100mmの長さに分断した切込プリプレグ基材のみが積層されている領域が形成されるように積層し、平板状の積層体を得る積層工程
(5)積層体を加熱して軟化させ、積層体よりも低温の成形型上に積層体を配置し、積層体を成形型に押し付けて固化させ、繊維強化プラスチックとするに際し、成型型のダブルコンター部に前記領域を配置し、前記領域を伸張させてダブルコンター部に沿わせて成形する成型工程
(6)成形型から繊維強化プラスチックを取り出す脱型工程。
As another embodiment of the present invention, when the matrix resin of the cut prepreg base material is a thermoplastic resin, at least the following steps (4) to (6) are sequentially performed when molding the fiber reinforced plastic. It is necessary to go through.
(4) When a laminated body is obtained by laminating a plurality of prepreg base materials including a cut prepreg base material, at least a part of the laminated body is cut with a reinforcing fiber cut into a length of 10 to 100 mm by cutting. Lamination process for obtaining a flat laminate by stacking so that a region where only the prepreg base material is laminated is formed (5) The laminate is heated and softened, and placed on a mold lower in temperature than the laminate. When the laminated body is placed and the laminated body is pressed against a mold and solidified to form a fiber reinforced plastic, the area is arranged in the double contour part of the mold, and the area is stretched to follow the double contour part. Molding step for molding (6) Demolding step of taking out the fiber reinforced plastic from the mold.

まず、切込プリプレグ基材を少なくとも含む複数枚のプリプレグ基材を積層して平板状に積層体を作成する。マトリックス樹脂として熱硬化性樹脂を用いた際と同様に、少なくとも一部に不連続部を有する積層体を作製する。プリプレグを積層する際、マトリックス樹脂である熱可塑性樹脂にタックがないため、単純に重ねるだけでもよいし、加熱して各層を融着させ一体化させておいてもよい。複雑なカットパターンが必要ないメリット、成形後の繊維強化プラスチックの形状に完全に沿わせて賦形しなくてもよいメリット、一気に平板状に積層できるメリットにより、極めて高効率に繊維強化プラスチックを製造できる。   First, a plurality of prepreg base materials including at least a cut prepreg base material are stacked to form a laminate in a flat plate shape. Similar to the case where a thermosetting resin is used as the matrix resin, a laminate having at least a discontinuous portion is produced. When the prepreg is laminated, since the thermoplastic resin as the matrix resin has no tack, the prepreg may be simply laminated or may be heated and fused to integrate the layers. Produces fiber-reinforced plastic with extremely high efficiency due to the advantage of not requiring complicated cut patterns, the advantage of not having to shape the fiber-reinforced plastic completely after molding, and the advantage of being able to be laminated in a flat plate at once. it can.

次に、積層体をマトリックス樹脂である熱可塑性樹脂のもしくは融点付近もしくはそれ以上にIRヒーターやオーブンなどで加熱しておき(ただし、融点よりも高い温度に加熱する際は、高温に暴露する時間を短くする)。軟化させ、室温、もしくは積層体よりも低温に温度制御された成形型上に積層体を配置し、積層体を成形型に押し付けて、積層体を冷却、固化させるコールドプレス成形により繊維強化プラスチックとする。この際、図1b)のように、前記不連続部を成形型のダブルコンター部上に配置し、不連続部を伸張させてダブルコンター部に積層体を沿わせて成形することを必須とする。成形型としては、いろいろな型が考えられる。例えば片面型を用いフィルムなどで密封して真空引きし、大気圧との差圧で型に積層体を押し付けでもよいが、中でも両面金型を用いるのが好ましい。両面金型でコールドプレスを行うことで、すばやく積層体から熱を奪うことができ、高効率に繊維強化プラスチックを製造することができる。   Next, the laminate is heated with an IR heater or an oven near or above the melting point of the thermoplastic resin as the matrix resin (however, when heating to a temperature higher than the melting point, the time for exposure to high temperature) ). Place the laminate on a mold that is softened and controlled at room temperature or at a temperature lower than the laminate, press the laminate against the mold, and cool and solidify the laminate. To do. At this time, as shown in FIG. 1b), it is essential to dispose the discontinuous portion on the double contour portion of the mold, and to form the discontinuous portion along the laminate along the double contour portion. . Various molds can be considered as the mold. For example, a single-sided mold may be sealed with a film and evacuated, and the laminate may be pressed against the mold with a pressure difference from atmospheric pressure, but it is preferable to use a double-sided mold. By performing cold pressing with a double-sided mold, heat can be quickly taken from the laminate, and fiber-reinforced plastic can be produced with high efficiency.

最後に、成形型から繊維強化プラスチックを取り出す。得られた繊維強化プラスチックにアニーリングなどの処理を加えてもよい。一般的に、熱可塑性樹脂を用いた成形は熱硬化性樹脂を用いた成形よりも成形サイクルタイムが早く、また脱型も容易である、というメリットがある。   Finally, the fiber reinforced plastic is taken out from the mold. You may add processes, such as annealing, to the obtained fiber reinforced plastic. In general, molding using a thermoplastic resin has an advantage that the molding cycle time is faster than that using a thermosetting resin, and demolding is easy.

このようにして、本発明によれば、繊維強化プラスチックの形状が複雑形状であっても、熱硬化性樹脂を用いても、熱可塑性樹脂を用いても、高力学特性を有する繊維強化プラスチックを容易に製造することが可能である。   Thus, according to the present invention, even if the shape of the fiber reinforced plastic is a complicated shape, whether it is a thermosetting resin or a thermoplastic resin, a fiber reinforced plastic having high mechanical properties can be obtained. It can be easily manufactured.

こうして得られた繊維強化プラスチックは、連続繊維基材のように成形時に繊維が突っ張ることがないため、積層体がしっかり成形型に押し付けられ、充分に型面が転写された高品位な表面を得ることができる。また、最終形状である繊維強化プラスチックよりも小さめに積層体を用意してもよいため、嵩高である積層体が成形型に収まりきれずバリやシワ、型間への繊維噛み込みが発生すること少ない。また、マッチドダイを用いることで、トリムレスの繊維強化プラスチックを得ることができる。繊維強化プラスチックの特徴としては、少なくとも繊維強化プラスチックの一部の領域(特にダブルコンター部)に含まれるすべての強化繊維の繊維長さLcが10〜100mmの範囲内である。   The fiber reinforced plastic thus obtained does not stretch during molding unlike a continuous fiber base material, so that the laminate is firmly pressed against the molding die to obtain a high-quality surface with a sufficiently transferred mold surface. be able to. In addition, since the laminate may be prepared smaller than the fiber reinforced plastic that is the final shape, the bulky laminate cannot be stored in the mold and burrs, wrinkles, and fiber biting between the molds occur. Few. Moreover, a trimless fiber-reinforced plastic can be obtained by using a matched die. As a feature of the fiber reinforced plastic, the fiber length Lc of all the reinforced fibers included in at least a part of the fiber reinforced plastic (particularly, the double contour portion) is in the range of 10 to 100 mm.

さらに好ましくは、切込プリプレグ基材を構成する強化繊維の全てが前記切り込みにより分断されており、前記切り込みにより分断されている繊維長さLが10〜100mmの範囲内である。切込プリプレグ基材の全ての繊維長さLを100mm以下とすることで、最終的に製造される繊維強化プラスチックの形状を考慮することなく、切込プリプレグ基材や積層体を製造することができるため、設計、作業効率の面で大きなメリットがある。また、積層時にトラップされた空気が厚み方向に切り込みを通じて脱気しやすく、ボイドが発生しにくく、高力学特性が期待できる。なお、本発明において“強化繊維の全てが前記切り込みにより分断され”ているとは、プリプレグ基材に含まれる強化繊維本数のうち95%以上が10〜100mmに分断されていることを言う。   More preferably, all of the reinforcing fibers constituting the cut prepreg base material are cut by the cut, and the fiber length L cut by the cut is in the range of 10 to 100 mm. By making all the fiber lengths L of the cut prepreg base material 100 mm or less, it is possible to manufacture a cut prepreg base material and a laminate without considering the shape of the fiber reinforced plastic to be finally produced. Because it can, there is a big merit in terms of design and work efficiency. In addition, air trapped at the time of lamination is easily degassed by cutting in the thickness direction, voids are not easily generated, and high mechanical properties can be expected. In the present invention, “all of the reinforcing fibers are divided by the incision” means that 95% or more of the number of reinforcing fibers contained in the prepreg base material is divided into 10 to 100 mm.

好ましい切込プリプレグ基材の切り込みの形態の一つとして、切り込みが直線状であり、かつ、切り込みを強化繊維の垂直方向に投影した投影長さWsが30μm〜100mmであり、断続的かつ周期的に全面にわたって配置されている切込プリプレグ基材が挙げられる。切り込みが連続的ではなく断続的に入っていることで、切込プリプレグ基材が切り込みによりばらばらになることなく、積層時などの取り扱い性に優れる。また、周期的に切り込みが配置することで、切り込みの位置を制御することができ、物性を制御することができる。ここで、“切り込みを強化繊維の垂直方向に投影した投影長さWs”とは図2に示すとおり、切り込み4を強化繊維3の垂直方向(繊維直交方向2)を投影面として、切り込み4から該投影面に垂直(繊維長手方向1)に投影した際の長さ9を指す。また、切り込みが“全面にわたって配置されている”とは、切込プリプレグ基材全面に含まれる強化繊維をすべて10〜100mmの長さに分断する切り込みを設けることを意味する。   As one of the preferred incision forms of the incision prepreg base material, the incision is linear, and the projected length Ws in which the incision is projected in the vertical direction of the reinforcing fiber is 30 μm to 100 mm, and is intermittent and periodic And a cut prepreg substrate disposed over the entire surface. Since the cuts are not continuous but intermittent, the cut prepreg base material does not become loose due to the cuts, and is excellent in handleability during lamination. In addition, when the cuts are periodically arranged, the position of the cut can be controlled, and the physical properties can be controlled. Here, the “projection length Ws obtained by projecting the notch in the vertical direction of the reinforcing fiber” is as shown in FIG. 2, from the notch 4 using the notch 4 as the projection plane in the vertical direction (fiber orthogonal direction 2) of the reinforcing fiber 3. The length 9 when projected perpendicularly to the projection plane (fiber longitudinal direction 1) is indicated. In addition, the expression “arranged over the entire surface” means that the incisions that divide all the reinforcing fibers contained in the entire surface of the incised prepreg base material into a length of 10 to 100 mm are provided.

切り込みにより生成された繊維束端部は、繊維強化プラスチックに荷重が加わったときに応力集中が起こり、破壊の起点となる可能性が高い。したがって、切り込みが小さい方が強度上有利である。Wsは分断する強化繊維の量を示す指標であり、Wsが100mm以下の場合には強度が大きく向上する。しかしながら、Wsが30μmより小さくとなると、切り込みの制御が難しくなる場合があり、強化繊維の不連続部全体に渡ってLが10〜100mmとなるよう、保障することが難しくなることがある。すなわち、切り込みにより切断されていない繊維が複雑形状に沿うことを期待されている不連続部中に存在すると、繊維が突っ張り流動性は著しく低下することがあるが、長めに切り込みを入れるとLが10mmを下回る領域が多くなってしまい設計値より低い強度となってしまうことがある、という問題点がある。逆にWsが100mmより大きいときにはほぼ強度が一定に落ち着く。すなわち、繊維束端部がある一定以上に大きくなると、破壊が始まる荷重がほぼ同等となる。さらに好ましくは、Wsが1.5mm以下であるときに、強度向上が著しい。すなわち、簡易な装置で切り込みを挿入することができるという観点からは、Wsは1〜100mmであることが好ましく、一方、切り込みの制御のしやすさと力学特性との関係を鑑みると、Wsは30μm〜1.5mmであることが好ましく、さらに好ましくは50μm〜1mmの範囲内である。   The fiber bundle end portion generated by the cutting is likely to become a starting point of fracture due to stress concentration when a load is applied to the fiber reinforced plastic. Therefore, a smaller notch is advantageous in strength. Ws is an index indicating the amount of reinforcing fiber to be divided, and when Ws is 100 mm or less, the strength is greatly improved. However, when Ws is smaller than 30 μm, it may be difficult to control the cutting, and it may be difficult to ensure that L is 10 to 100 mm over the entire discontinuous portion of the reinforcing fiber. That is, if fibers that are not cut by cutting are present in a discontinuous portion that is expected to follow a complicated shape, the fiber may be remarkably lowered in fluidity. There is a problem that the area below 10 mm increases and the strength may be lower than the design value. Conversely, when Ws is greater than 100 mm, the strength is almost constant. That is, when the fiber bundle end becomes larger than a certain value, the load at which breakage starts becomes substantially equal. More preferably, the strength is significantly improved when Ws is 1.5 mm or less. That is, Ws is preferably 1 to 100 mm from the viewpoint that a cut can be inserted with a simple device. On the other hand, in view of the relationship between the ease of cutting control and mechanical properties, Ws is 30 μm. It is preferable that it is -1.5mm, More preferably, it exists in the range of 50 micrometers-1 mm.

以下、好ましい切り込みパターンの一例を、図2を用いて説明する。   Hereinafter, an example of a preferable cutting pattern will be described with reference to FIG.

強化繊維が一方向に引き揃えられたプリプレグ基材上に制御されて整列した切り込み4を複数入れる。繊維長手方向1の対になる切り込み同士で繊維が分断され、その間隔6を10〜100mmとすることで、プリプレグ基材上の強化繊維の繊維長さLを実質的に10〜100mmにすることができる。   A plurality of controlledly aligned cuts 4 are made on a prepreg base material in which reinforcing fibers are aligned in one direction. The fibers are divided by the pair of cuts in the fiber longitudinal direction 1 and the fiber length L of the reinforcing fibers on the prepreg substrate is substantially 10 to 100 mm by setting the interval 6 to 10 to 100 mm. Can do.

図2では繊維長さLと切り込みを強化繊維の垂直方向に投影した投影長さWsがいずれも一種類である例を示している。第1の断続的な切り込みからなる列7aと、第3の断続的な切り込みからなる列7cは繊維長手方向1にL平行移動することで重ねることができ、また、第2の断続的な切り込みからなる列7bと、第4の断続的な切り込みからなる列7dは繊維長手方向1にL平行移動することで重ねることができる。また、第1、第2の切り込みの列と第3、第4の切り込みの列に互いに切り込まれた繊維があり、繊維長さL以下に切り込まれた幅5が存在することによって、安定的に繊維長さを100mm以下で切込プリプレグ基材を製造できる。切り込みのパターンとしては図3のa)〜f)にいくつか例示したが、上記条件を満たせばどのようなパターンでも構わない。図3において、強化繊維の配列の図示は省略されているが、強化繊維の配列方向は、図2において上下方向である。図3のa)、b)あるいはc)は、切り込みが繊維直交方向2に入っている態様、図2のd)、e)あるいはf)は、切り込みが繊維直交方向2から傾いている様態を示している。対になる切り込み以外の切り込みに分断される繊維の中には、前記繊維長さより短い繊維も存在するが、かかる繊維は本発明で規定する繊維長さLを有する繊維には含まない。そして、そのような10mm以下の繊維は少なければ少ないほどよい。   FIG. 2 shows an example in which both the fiber length L and the projected length Ws obtained by projecting the cut in the vertical direction of the reinforcing fiber are one kind. The row 7a consisting of the first intermittent cuts and the row 7c consisting of the third intermittent cuts can be overlapped by moving L in the fiber longitudinal direction 1 and the second intermittent cuts. The row 7b made of the above and the row 7d made of the fourth intermittent cut can be overlapped by moving in the fiber longitudinal direction 1 in the L direction. Further, there are fibers cut into the first and second cut rows and the third and fourth cut rows, and the presence of the width 5 cut to the fiber length L or less ensures stable In particular, a cut prepreg base material can be produced with a fiber length of 100 mm or less. Several examples of the cut pattern are illustrated in FIGS. 3A to 3F, but any pattern may be used as long as the above conditions are satisfied. In FIG. 3, the arrangement of the reinforcing fibers is not shown, but the arrangement direction of the reinforcing fibers is the vertical direction in FIG. 3 a), b) or c) is a mode in which the cut is in the fiber orthogonal direction 2, and d), e) or f) in FIG. 2 is a mode in which the cut is inclined from the fiber orthogonal direction 2. Show. Among the fibers that are divided into cuts other than the pair of cuts, there are also fibers that are shorter than the fiber length, but such fibers are not included in the fibers having the fiber length L defined in the present invention. And the fewer the fibers of 10 mm or less, the better.

図5でも説明したとおり、本発明で用いられる切込プリプレグ基材は、90°方向への樹脂の流動が繊維の流動の駆動力であるため、繊維が一方向に引き揃えられたプリプレグ基材を2層以上異なる繊維方向に積層すると、繊維長手方向への流動性が発現する。したがって、切込プリプレグ基材に隣接する層は一方向に強化繊維が配向したプリプレグ基材(本発明に係る切込プリプレグ基材を含む)であり、切込プリプレグ基材とは異なる繊維方向に積層されているのがよい。やむを得ず同一繊維方向の切込プリプレグ基材を隣接して積層する際には、切り込みが重ならないように積層するのがよい。またこれら切込プリプレグ基材の層間に樹脂フィルムなどを積層し、流動性を向上させてもよい。また流動しなくてもよい領域には連続繊維基材を配し、さらにその領域の力学特性を向上させることもできる。   As described in FIG. 5, the cut prepreg base material used in the present invention is a prepreg base material in which the fibers are aligned in one direction because the resin flow in the 90 ° direction is the driving force of the fiber flow. When two or more layers are laminated in different fiber directions, fluidity in the fiber longitudinal direction is expressed. Therefore, the layer adjacent to the cut prepreg base material is a prepreg base material (including the cut prepreg base material according to the present invention) in which reinforcing fibers are oriented in one direction, and in a fiber direction different from the cut prepreg base material. It is good to be laminated. When it is unavoidable to stack the cut prepreg base materials in the same fiber direction adjacent to each other, it is preferable to stack the cuts so that the cuts do not overlap. Moreover, a resin film etc. may be laminated | stacked between the layers of these cutting prepreg base materials, and fluidity | liquidity may be improved. In addition, a continuous fiber base material can be disposed in a region that does not need to flow, and the mechanical properties of the region can be further improved.

層同士で繊維方向が異なると、層ごとの流動方向、距離に違いが生じるが、層間が滑ることで変位差を吸収できる。すなわち、繊維体積含有率Vfが45〜65%と高くても、本発明に用いる積層体は層間に樹脂を偏在させることができる構成のため、高い流動性を発現することができる。SMCの場合、ランダムに分散したチョップドストランド同士で流動性が異なり、互いに違う方向に流動しようとするが、繊維同士が干渉して流動しにくく、最大でVfが40%程度までしか流動性を確保することができない。すなわち、本発明に用いる積層体は力学特性を向上することができる高Vfの構成であっても高い流動性を発現できる、という特徴を有する。また、本流動性の特長により、得られた繊維強化プラスチックは、複雑形状であっても積層構造を保つことができ、高い弾性率や強度が発現し、強度ばらつきが低減し、さらに衝撃特性も大きく向上する。   If the fiber direction is different between layers, a difference occurs in the flow direction and distance of each layer, but the displacement difference can be absorbed by sliding between the layers. That is, even if the fiber volume content Vf is as high as 45 to 65%, the laminate used in the present invention can exhibit high fluidity because the resin can be unevenly distributed between the layers. In the case of SMC, fluidity is different between randomly chopped strands, and they try to flow in different directions, but they are difficult to flow due to interference between fibers, and fluidity is ensured only up to about 40% Vf. Can not do it. That is, the laminate used in the present invention has a characteristic that high fluidity can be expressed even with a high Vf configuration capable of improving mechanical properties. In addition, due to the characteristics of this fluidity, the obtained fiber reinforced plastic can maintain a laminated structure even if it has a complex shape, expresses high elastic modulus and strength, reduces strength variation, and also has impact characteristics. Greatly improved.

さらに好ましくは、切込プリプレグ基材が2層以上連続して隣接し、該2層以上の層のうち隣接する任意の2層について、一方の切込プリプレグ基材上の任意の切り込みの幾何中心と他方の切込プリプレグ基材上のいずれの切り込みの幾何中心とも5mm以上離れる様に積層するのがよい。隣接する切込プリプレグ基材の切り込みの幾何中心同士が離れているのは、2つの意味で重要である。一つ目は、成形時に積層体が伸張される際、切り込み同士がつながっていると、そこから裂け易く、本発明の成形が失敗してしまうことがあるからである。また、成形時に裂けなくても、切り込みの幾何中心同士が近い領域では繊維含有率が低くなり、肉厚が減ってしまうなどの、品質に影響を与えてしまう可能性がある。二つ目は、繊維強化プラスチックとなった際、切り込みによって分断された強化繊維束端部は、いわゆる応力集中点のため、破壊の起点となりやすいが、切り込み同士がつながっていると、容易にクラックがつながりやすく、強度が低くなる場合がある。図6に、積層された切込プリプレグ基材の2層の関係を図示したが、1層目の切り込み4aと2層目の切り込み4bの内、最近接の切り込みの幾何中心8同士が図6b)〜d)のように離れており、好ましくは5mm以上離れていれば、成形時の懸念点も、物性面の懸念点も問題なくクリアできるが、図6a)のように、5mmより近づくと、問題が起こってくることがある。なお、ここで言う“幾何中心”とは、そのまわりで一次モーメントが0であるような点であり、切り込み上の点xに対して、幾何中心点gが次のような式が成り立つ。   More preferably, the notch prepreg base material is adjacent to two or more layers in succession, and for any two adjacent layers of the two or more layers, the geometric center of any incision on one incision prepreg base material And the other cut prepreg base material are preferably laminated so as to be separated from the geometric center of any cut by 5 mm or more. It is important in two ways that the geometric centers of the notches of adjacent notched prepreg base materials are separated from each other. The first reason is that, when the laminate is stretched during molding, if the cuts are connected to each other, it is easy to tear from there and the molding of the present invention may fail. Moreover, even if it is not torn at the time of molding, there is a possibility of affecting the quality such that the fiber content is lowered and the wall thickness is reduced in the region where the geometric centers of the cut are close to each other. Second, when the fiber reinforced plastic becomes a fiber reinforced plastic, the ends of the reinforced fiber bundles that are cut by the cuts are so-called stress concentration points, so they tend to break, but if the cuts are connected, cracks can easily occur. May be easily connected and the strength may be reduced. FIG. 6 illustrates the relationship between the two layers of the laminated cut prepreg base material, and the geometrical center 8 of the closest cuts among the cuts 4a and 4b in the first layer is shown in FIG. ) To d), preferably 5 mm or more away, both the concerns during molding and the physical properties can be cleared without problems, but when approaching 5 mm as shown in FIG. 6a) The problem may come up. The “geometric center” mentioned here is a point where the first moment is zero around the geometric center point g, and the geometrical center point g is expressed by the following equation for the point x on the notch.

Figure 2008279753
Figure 2008279753

本発明に係る切込プリプレグ基材を得るためにプリプレグ基材に切り込みを入れる方法としては、まず一方向に引き揃えられた連続繊維のプリプレグ基材を作製し、その後カッターを用いての手作業や裁断機により切り込みを入れる方法、あるいは一方向に引き揃えられた連続繊維のプリプレグ基材製造工程において所定の位置に刃を配置した回転ローラーを連続的に押し当てたり、多層にプリプレグ基材を重ねて所定の位置に刃を配置した型で押し切ったりするなどの方法がある。成形現場などで簡易にプリプレグ基材の一部に切り込みを入れる場合には前者が、生産効率を考慮し大量に切込プリプレグ基材を作製する場合、特に全面に切り込みを入れる場合には後者が適している。回転ローラーを用いる場合には、直接ローラーを削りだして所定の刃を設けてもよいが、マグネットローラーなどに平板を削りだして所定の位置に刃を配置したシート状の型を巻きつけることにより、刃の取りかえが容易で好ましい。このような回転ローラーを用いることで、Wsの小さな(具体的には1mm以下であっても)切込プリプレグ基材でも良好に切り込みを挿入することができる。切り込みを入れた後、さらに、切込プリプレグ基材をローラーなどで熱圧着することで、切り込み部に樹脂が充填、融着することにより、取り扱い性を向上させてもよい。   In order to obtain a cut prepreg base material according to the present invention, as a method of cutting into the prepreg base material, first, a prepreg base material of continuous fibers aligned in one direction is prepared, and then manual operation using a cutter is performed. A method of cutting with a cutting machine or a cutting machine, or a continuous roller prepreg base material manufacturing process that is aligned in one direction, continuously pressing a rotating roller with a blade placed at a predetermined position, or prepreg base material in multiple layers There is a method such as pressing and cutting with a mold in which blades are arranged at predetermined positions. The former is used when cutting a part of the prepreg substrate easily at the molding site, and the latter is used when making a large amount of the cut prepreg substrate in consideration of production efficiency. Is suitable. When a rotating roller is used, the roller may be directly cut out to provide a predetermined blade, but by cutting a flat plate around a magnet roller or the like and winding a sheet-shaped mold with the blade placed at a predetermined position The replacement of the blade is easy and preferable. By using such a rotating roller, it is possible to insert the cut well even with a cut prepreg base material having a small Ws (specifically, 1 mm or less). After making the cut, the cut prepreg base material may be further thermocompression-bonded with a roller or the like to fill and fuse the resin into the cut portion, thereby improving the handleability.

このようにして得られた切込プリプレグ基材の一例を用いて本発明により成形して得た繊維強化プラスチックの特徴を、図7を用いて説明する。切り込み4が繊維3を90°方向に横切っている切込プリプレグ基材10を積層した積層体12の一部をa)、その積層体12を本発明により成形して得た繊維強化プラスチック16の一部をb)に、それぞれ切込プリプレグ基材10由来の層をクローズアップした平面図と平面図のA−A断面を切り出した断面図を示した。図7a)の切込プリプレグ基材10は、図3a)〜c)のように、繊維に垂直な切り込みを全面に設けられており、切り込み4は層の厚み方向に貫いている。繊維長さLを100mm以下とすることで、流動性が確保され、容易に積層体12より面積が伸長した繊維強化プラスチック16を得ることができる(ただし、厚みは減る)。図7b)のように、伸長した繊維強化プラスチック16を得た際、切込プリプレグ基材10由来の短繊維層17は、繊維垂直方向に伸長すると共に、繊維が存在しない領域(切り込み開口部)18が生成される。これは一般的に強化繊維が成形程度の圧力では伸長しないためであり、図7のケースでは、伸張した長さ分だけ切り込み開口部18が生成される。この領域18は断面図に示すとおり、隣接層19が侵入してきて、略三角形の樹脂リッチ部20と隣接層19が侵入している領域とで占められる。例えば、繊維強化プラスチックの表層に、全面に切り込みを入れた切込プリプレグ基材が配されている場合、繊維が流動した領域では積層体切り込み開口部18が観察される、という特徴がある。さらに好ましくは、繊維強化プラスチックを構成する層すべてが、繊維長さLcが10〜100mmの範囲内であり、幅Wscが30μm〜150mmの短冊状の集合体から構成されることである。本発明において、図7の点線で囲まれた領域35に示したように、2つの対になる繊維束分断部22に囲まれた領域を短冊状と表現する。切込プリプレグ基材の切り込みを強化繊維の垂直方向に投影した投影長さWsに対して、成形後の繊維垂直方向の広がり幅である短冊状の幅Wscは、成形により最大50%程度まで伸張されることが予想されるため、Wscは30μm〜150mmの範囲となる。   The characteristics of the fiber reinforced plastic obtained by molding according to the present invention using an example of the cut prepreg base material thus obtained will be described with reference to FIG. A part of a laminate 12 in which a cut prepreg base material 10 in which a cut 4 crosses a fiber 3 in a 90 ° direction is laminated is a), and a fiber reinforced plastic 16 obtained by molding the laminate 12 according to the present invention. Part b) is a plan view showing a close-up of the layer derived from the cut prepreg substrate 10 and a cross-sectional view taken along the line AA of the plan view. The cut prepreg base material 10 in FIG. 7a) is provided with cuts perpendicular to the fibers as shown in FIGS. 3a) to 3c), and the cuts 4 penetrate in the thickness direction of the layers. By setting the fiber length L to 100 mm or less, fluidity is ensured, and the fiber reinforced plastic 16 whose area is easily extended from the laminate 12 can be obtained (however, the thickness is reduced). As shown in FIG. 7b), when the elongated fiber reinforced plastic 16 is obtained, the short fiber layer 17 derived from the cut prepreg base material 10 extends in the fiber vertical direction and has no fiber (cut opening). 18 is generated. This is because the reinforcing fiber generally does not expand at a pressure of the molding level. In the case of FIG. 7, the cut opening 18 is generated by the extended length. As shown in the cross-sectional view, the region 18 is occupied by the adjacent layer 19 that has entered, and the substantially triangular resin-rich portion 20 and the region in which the adjacent layer 19 has entered. For example, when a cut prepreg base material with cuts on the entire surface is arranged on the surface layer of fiber reinforced plastic, there is a feature that the laminate cut opening 18 is observed in the region where the fibers flow. More preferably, all the layers constituting the fiber reinforced plastic are made of a strip-shaped aggregate having a fiber length Lc in the range of 10 to 100 mm and a width Wsc of 30 μm to 150 mm. In the present invention, as shown in a region 35 surrounded by a dotted line in FIG. 7, a region surrounded by two pairs of fiber bundle dividing portions 22 is expressed as a strip shape. The strip-shaped width Wsc, which is the spread width in the vertical direction of the fiber after molding, is extended to a maximum of about 50% by molding with respect to the projected length Ws obtained by projecting the cut of the notched prepreg base material in the vertical direction of the reinforcing fiber. Therefore, Wsc is in the range of 30 μm to 150 mm.

図3a)〜c)のように切り込みが繊維に垂直な切込プリプレグ基材以外の本発明に好適に用いられる切込プリプレグ基材としては、図3d)〜f)に示すように、切り込みが繊維直交方向2から傾いているのがよい。工業的に回転ローラーなどで切り込みを入れる際、繊維方向に供給されたプリプレグ基材に繊維直交方向2に切り込みを入れようとすると、繊維を一気に分断する必要があり、大きな力が必要な他、刃の耐久性が低くなり、また繊維が直交方向2に逃げやすく、繊維の切り残りが増える。一方、切り込みが繊維直交方向2から傾いていることにより、刃の単位長さあたり裁断する繊維量が減少し、小さな力で繊維を裁断でき、刃の耐久性が高く、繊維の切り残り少なくできる。さらに、切り込みが繊維直交方向2から傾いていることにより、切り込み長さに対して、切り込みを強化繊維の垂直方向に投影した投影長さWsを小さくすることができ、一つ一つの切り込みにより分断される繊維量が減ることにより、強度向上が見込まれる。繊維直交方向2に切り込みを入れる場合には、Wsを小さくするために、小さな刃を用意するのが好ましいが、小さくし過ぎると耐久性、加工性に問題が生じる可能性がある。   As the cut prepreg base material suitably used in the present invention other than the cut prepreg base material whose incision is perpendicular to the fibers as shown in FIGS. 3a) to 3c), as shown in FIGS. It is good to incline from the fiber orthogonal direction 2. When making an incision with a rotating roller or the like industrially, if an attempt is made to make an incision in the fiber orthogonal direction 2 into the prepreg base material supplied in the fiber direction, it is necessary to divide the fiber at once, and a large force is required. The durability of the blade is reduced, and the fibers easily escape in the orthogonal direction 2, resulting in an increase in the amount of uncut fibers. On the other hand, since the incision is inclined from the fiber orthogonal direction 2, the amount of fibers to be cut per unit length of the blade is reduced, the fibers can be cut with a small force, the durability of the blade is high, and the uncut fibers can be reduced. Further, since the incision is inclined from the fiber orthogonal direction 2, the projection length Ws obtained by projecting the incision in the vertical direction of the reinforcing fiber can be made smaller than the incision length, and the cutting is divided by each incision. The strength is expected to be reduced by reducing the amount of fibers produced. When cutting in the fiber orthogonal direction 2, it is preferable to prepare a small blade in order to reduce Ws. However, if it is too small, there may be a problem in durability and workability.

さらに別の切込プリプレグ基材の好ましい形態としては、切り込みが強化繊維となす角度Θの絶対値が2〜25°の範囲内である切込プリプレグ基材が挙げられる。この切込プリプレグ基材の場合は、断続的な切り込みであって、かつ切り込みが強化繊維となす角度Θが小さい、図9のような切り込みでもよいし、図8に示すような連続的な切り込みでも良い。Θの絶対値が25°より大きくても流動性は得ることができ、従来のSMCなどと比較して高い力学特性は得ることができるが、特にΘの絶対値が25°以下であることで力学特性の向上が著しい。一方、Θの絶対値は2°より小さくても流動性も力学特性も十分得ることが出来るが、切り込みを安定して入れることが難しくなる。すなわち、繊維に対しする切り込みの角度が小さくなってくると、切り込みを入れる際、繊維が刃から逃げやすく、また、繊維長さLを100mm以下とするためには、Θの絶対値が2°より小さいと少なくとも切り込み同士の最短距離が0.9mmより小さくなるなど、生産安定性に欠ける場合がある。また、このように切り込み同士の距離が小さいと積層時の取り扱い性が難しくなるという問題が生じることがある。切り込みの制御のしやすさと力学特性との関係に鑑みると、さらに好ましくは5〜15°の範囲内である。   Still another preferred form of the cut prepreg base material is a cut prepreg base material in which the absolute value of the angle Θ formed by the cut with the reinforcing fiber is in the range of 2 to 25 °. In the case of this cut prepreg base material, the cuts are intermittent cuts, and the cuts made with the reinforcing fibers have a small angle Θ, which may be cuts as shown in FIG. 9 or continuous cuts as shown in FIG. But it ’s okay. Even if the absolute value of Θ is larger than 25 °, fluidity can be obtained, and higher mechanical properties can be obtained as compared with conventional SMC, etc., but in particular, when the absolute value of Θ is 25 ° or less. Significant improvement in mechanical properties. On the other hand, even if the absolute value of Θ is smaller than 2 °, sufficient fluidity and mechanical properties can be obtained, but it is difficult to make a stable cut. That is, when the angle of cut with respect to the fiber becomes smaller, the fiber easily escapes from the blade when making the cut, and in order to make the fiber length L 100 mm or less, the absolute value of Θ is 2 °. If it is smaller, at least the shortest distance between the cuts may be less than 0.9 mm, resulting in poor production stability. In addition, when the distance between the cuts is small as described above, there may be a problem that handling at the time of stacking becomes difficult. In view of the relationship between the ease of controlling the cutting and the mechanical characteristics, it is more preferably in the range of 5 to 15 °.

切り込みは図10c)のように曲線でも構わないが、直線状が流動性をコントロールしやすく好ましい。また、切り込みにより分断される強化繊維の長さLは図10b)のように一定でなくてもよいが、図10a)のように繊維長さLが全面で一定であると流動性をコントロールしやすく、強度ばらつきをさらに押さえることができるため好ましい。なお、ここで規定の直線状とは、幾何学上の直線の一部をなしている状態を意味するが、前記流動性のコントロールを容易とするという効果を損なわない限り、前記幾何学上の直線の一部をなしていない箇所があっても差支えが無く、その結果、繊維長さLが全面で一定とはならない箇所があっても(この場合、繊維長さLが実質的に全面で一定であると言えるので)差支えが無い。   The incision may be a curve as shown in FIG. 10c), but a straight line is preferable because the flowability is easily controlled. Further, the length L of the reinforcing fiber divided by the cut may not be constant as shown in FIG. 10b), but if the fiber length L is constant as shown in FIG. 10a), the fluidity is controlled. It is preferable because it is easy and can further suppress variation in strength. Here, the prescribed linear shape means a state in which a part of a geometrical straight line is formed, but unless the effect of facilitating the control of the fluidity is impaired, the geometrical Even if there is a portion that does not form a part of the straight line, there is no problem. As a result, even if there is a portion where the fiber length L is not constant over the entire surface (in this case, the fiber length L is substantially over the entire surface). It can be said that it is constant).

好ましい例[1]としては、図8や図10a)〜c)のように、切り込み4cが連続して入れられているのがよい。例[1]のパターンでは、切り込み4cが断続的でないため、切り込み端部付近での流動乱れが起きず、切り込み4cを入れた領域では、すべての繊維長さLを一定とすることができ、流動が安定している。切り込みをプリプレグ基材全面に設ける場合、切り込み4cが連続的に入れられているため、切込プリプレグ基材10がばらばらになってしまうのを防ぐ目的で、切込プリプレグ基材の周辺部に切り込みがつながっていない領域を設けたり、切り込みの入っていないシート状の離型紙やフィルムなどの支持体で把持することで、取り扱い性を向上させることができる。また、積層時の取り扱い性を向上するために、図17のようにあらかじめ切り込みを連続的に入れた上記切込プリプレグ基材を切り込みが重ならないように2枚重ねて積層した2層積層体としてもよい。   As a preferable example [1], as shown in FIG. 8 and FIGS. 10a) to 10c), the cuts 4c are preferably continuously formed. In the pattern of Example [1], since the cut 4c is not intermittent, flow disturbance does not occur in the vicinity of the cut end, and in the region where the cut 4c is made, all the fiber lengths L can be made constant, The flow is stable. When the cut is provided on the entire surface of the prepreg base material, since the cuts 4c are continuously formed, the cut prepreg base material 10 is cut into the peripheral portion of the cut prepreg base material in order to prevent the cut prepreg base material 10 from being separated. It is possible to improve the handleability by providing a region where no is connected, or by gripping it with a support such as a sheet-like release paper or film that is not cut. Moreover, in order to improve the handleability at the time of lamination | stacking, as a two-layer laminated body which laminated | stacked two sheets of the said cutting prepreg base material which cut | notched continuously beforehand like FIG. Also good.

また、他の好ましい例[2]としては、図9に示すように、強化繊維の垂直方向に投影した長さ9をWsとするとWsが30μm〜100mmの範囲内である断続的な切り込み4dが切込プリプレグ基材10全面に設けられており、切り込み4dと前記切り込み4dの繊維長手方向に隣接した切り込み4dの幾何形状が同一であるとよい。図9では、LとWsがいずれも一種類である例を示している。いずれの切り込み4d(例えば4d)も繊維方向に平行移動することで重なる他の切り込み4d(例えば4d)がある。前記繊維方向の対になる切り込み4d同士により分断される繊維長さLよりさらに短い繊維長さで隣接する切り込みにより分断され繊維が分断される幅5が存在することによって、安定的に繊維長さを100mm以下で切込プリプレグ基材10を製造できる。例[2]のパターンでは、得られた切込プリプレグ基材10を積層する際、切り込みが断続的なため取り扱い性に優れる。図10d)、e)にはその他のパターンも例示したが、上記条件を満たせばどのようなパターンでも構わない。 In addition, as another preferable example [2], as shown in FIG. 9, when the length 9 projected in the vertical direction of the reinforcing fiber is Ws, the intermittent cut 4d in which Ws is in the range of 30 μm to 100 mm is provided. The notch prepreg base material 10 is provided on the entire surface, and the notch 4d 1 and the notch 4d 2 adjacent in the fiber longitudinal direction of the notch 4d 1 may have the same geometric shape. FIG. 9 shows an example in which both L and Ws are one type. Any of the cuts 4d (for example, 4d 1 ) has another cut 4d (for example, 4d 2 ) that overlaps by translating in the fiber direction. The fiber length can be stably increased by the presence of the width 5 in which the fibers are divided by the adjacent incisions at a fiber length shorter than the fiber length L divided by the cuts 4d that form pairs in the fiber direction. The cut prepreg base material 10 can be manufactured at 100 mm or less. In the pattern of Example [2], when the obtained cut prepreg base material 10 is laminated, the cut is intermittent, and thus the handleability is excellent. Although other patterns are illustrated in FIGS. 10D) and 10E, any pattern may be used as long as the above conditions are satisfied.

このようにして得られた好ましい例[1]の切込プリプレグ基材を用いて本発明により成形して得られた繊維強化プラスチックの繊維強化プラスチック16の特徴を、図11を用いて説明する。本発明に係る切込プリプレグ基材10を積層した積層体12の一部をa)、その積層体12を本発明により成形して得た繊維強化プラスチックの繊維強化プラスチック16の一部をb)に、それぞれ切込プリプレグ基材10由来の層をクローズアップした平面図と平面図のA−A断面を切り出した断面図を示した。a)に示すとおり、切込プリプレグ基材10は、繊維3との角度が25°以下の切り込み4cを全面に設けられており、切り込み4cは層の厚み方向を貫いている。繊維長さLを100mm以下とすることで、流動性が確保され、容易に積層体12より面積が伸長した繊維強化プラスチック16を得ることが出来る。b)のように、伸長した繊維強化プラスチック16を得た際、切込プリプレグ基材10由来の短繊維層17は、繊維垂直方向に伸長すると共に、繊維3自体が回転24して伸長領域の面積を稼ぐため、図7のように繊維が存在しない領域(切り込み開口部)18が実質的に生成せず、切り込み開口部の層の表面における面積が層の表面積と比較して10%以下である。従って、断面図からも分かるとおり、隣接層19が侵入することもなく、層のうねりや樹脂リッチ部のない高剛性、高強度で品位の高い繊維強化プラスチック16を得ることが出来る。面内全体にくまなく繊維3が配されているため、面内での剛性差がなく、設計も従来の連続繊維強化プラスチックと同様、簡易に適用できる。この繊維が回転して伸長し、層うねりのない繊維強化プラスチックを得るというさらなる画期的効果は、切り込みの繊維となす角度Θの絶対値が25°以下であることで初めて得ることができる。また、強度の面では、前述と同様に荷重方向から±10°以下程度に向いている繊維に注目すると、図11b)のように、繊維束端部22が荷重方向に対して寝てきている様子がわかる。繊維束端部22が層厚み方向に斜めとなっているため、荷重の伝達がスムーズであり、繊維束端部22からの剥離も起こりにくい。従って、図7に比べさらなる強度向上が見込まれる。この繊維束端部22が層厚み方向に斜めとなるのは上述の繊維が回転する際、上面と下面の摩擦により上面から下面で繊維3の回転24になだらかな分布があるためで、そのため、層厚み方向に繊維3の存在分布が発生し、繊維束端部22が層厚み方向に斜めとなったと考えられる。このような繊維強化プラスチック16の層内で層厚み方向に斜めの繊維束端部を形成し、強度を著しく向上するというさらなる画期的効果は、切り込み4cの繊維3となす角度Θの絶対値が25°以下であることで初めて得ることができる。   The characteristics of the fiber reinforced plastic 16 of the fiber reinforced plastic obtained by molding according to the present invention using the cut prepreg base material of the preferable example [1] thus obtained will be described with reference to FIG. A) a part of the laminate 12 in which the cut prepreg base material 10 according to the present invention is laminated, and b) a part of the fiber reinforced plastic 16 of the fiber reinforced plastic obtained by molding the laminate 12 according to the present invention. The cross-sectional view which cut out the AA cross section of the top view which closed the layer derived from the cut prepreg base material 10, respectively, and the top view was shown. As shown to a), the notch prepreg base material 10 is provided with the notch 4c whose angle with the fiber 3 is 25 degrees or less over the entire surface, and the notch 4c penetrates the thickness direction of the layer. By setting the fiber length L to 100 mm or less, fluidity is ensured, and the fiber reinforced plastic 16 whose area is easily extended from the laminate 12 can be obtained. When the stretched fiber reinforced plastic 16 is obtained as in b), the short fiber layer 17 derived from the cut prepreg base material 10 stretches in the vertical direction of the fiber, and the fiber 3 itself rotates 24 to expand the stretched region. In order to increase the area, a region (incision opening) 18 in which no fiber exists as shown in FIG. 7 is not substantially generated, and the area on the surface of the layer of the incision opening is 10% or less compared to the surface area of the layer. is there. Therefore, as can be seen from the sectional view, the adjacent layer 19 does not enter, and the fiber-reinforced plastic 16 having high rigidity, high strength, and high quality without the undulation of the layer and the resin rich portion can be obtained. Since the fibers 3 are arranged all over the surface, there is no difference in rigidity in the surface, and the design can be easily applied as in the conventional continuous fiber reinforced plastic. A further epoch-making effect of obtaining a fiber-reinforced plastic having no layer waviness when the fiber rotates and stretches can be obtained only when the absolute value of the angle Θ formed with the cut fiber is 25 ° or less. Further, in terms of strength, when attention is paid to the fibers oriented to about ± 10 ° or less from the load direction as described above, the fiber bundle end portion 22 lies down with respect to the load direction as shown in FIG. I can see the situation. Since the fiber bundle end portion 22 is slanted in the layer thickness direction, load transmission is smooth, and peeling from the fiber bundle end portion 22 hardly occurs. Therefore, further improvement in strength is expected compared to FIG. The fiber bundle end 22 is inclined in the layer thickness direction because when the above-mentioned fiber rotates, there is a gentle distribution in the rotation 24 of the fiber 3 from the upper surface to the lower surface due to friction between the upper surface and the lower surface. It is considered that the presence distribution of the fibers 3 occurs in the layer thickness direction, and the fiber bundle end 22 is inclined in the layer thickness direction. In such a layer of fiber reinforced plastic 16, a fiber bundle end portion that is slanted in the layer thickness direction is formed, and a further breakthrough effect of remarkably improving the strength is the absolute value of the angle Θ formed with the fiber 3 of the cut 4c. Can be obtained for the first time when it is 25 ° or less.

一方、図12には、好ましい例[2]の切込プリプレグ基材10を積層した積層体12の一部をa)、その積層体12を成形した繊維強化プラスチック16の一部をb)に、それぞれ切込プリプレグ基材10由来の層をクローズアップした平面図を示した。a)に示すとおり、切込プリプレグ基材10は、繊維3となす角度Θの絶対値が25°以下の断続的な切り込み4dが全面に設けられており、切り込み4dは層の厚み方向を貫いている。切り込み4dにより繊維長さLを切込プリプレグ基材10の全面で100mm以下とすることで、流動性が確保され、容易に積層体12より面積が伸長した繊維強化プラスチック16とすることができる。切り込み長さ、切り込み角度を小さくすることにより、切り込みを強化繊維の垂直方向に投影した投影長さWsを1.5mm以下とすることができる。b)のように、伸長した繊維強化プラスチック16を得た際、切込プリプレグ基材10由来の短繊維層17は、繊維垂直方向に伸長する際、繊維方向に繊維が伸張しないため、繊維が存在しない領域(切り込み開口部)18が生成されるが、隣接する短繊維群が繊維垂直方向に流動することで、切り込み開口部18を埋め、切り込み開口部18の面積が小さくなる。この傾向は特に、切り込みを強化繊維の垂直方向に投影した投影長さWsを1.5mm以下とすることで顕著となり、実質的に切り込み開口部18が生成せず、切り込み開口部18の層の表面における面積が層の表面積と比較して0.1〜10%の範囲内とすることができる。従って、厚み方向に隣接層が侵入することもなく、層のうねりや樹脂リッチ部のない高剛性、高強度で品位の高い繊維強化プラスチック16を得ることが出来る。面内全体にくまなく繊維3が配されているため、面内での剛性差がなく、設計も従来の連続繊維強化プラスチックと同様、簡易に適用できる。この切り込み開口部18を繊維垂直方向の流動により埋め、層うねりのない繊維強化プラスチック16を得るという画期的効果は切り込み角度Θの絶対値が25°以下であり、かつ切り込みを強化繊維の垂直方向に投影した投影長さWsを1.5mm以下とすることで初めて得ることができる。さらに好ましくはWsが1mm以下であることにより、より高剛性、高強度、高品位とすることができ、外板部材としての適用も可能となる。   On the other hand, in FIG. 12, a part of the laminate 12 in which the cut prepreg base material 10 of the preferred example [2] is laminated is a), and a part of the fiber reinforced plastic 16 in which the laminate 12 is molded is b). The top view which each closes up the layer derived from the cutting prepreg base material 10 was shown. As shown in a), the cut prepreg substrate 10 is provided with intermittent cuts 4d having an absolute value of the angle Θ between the fibers 3 of 25 ° or less, and the cuts 4d penetrate the thickness direction of the layer. ing. By setting the fiber length L to 100 mm or less over the entire surface of the cut prepreg base material 10 by the cuts 4d, the fluidity can be secured and the fiber reinforced plastic 16 whose area is easily extended from the laminate 12 can be obtained. By reducing the cut length and the cut angle, the projected length Ws obtained by projecting the cut in the vertical direction of the reinforcing fiber can be made 1.5 mm or less. When the stretched fiber reinforced plastic 16 is obtained as in b), the short fiber layer 17 derived from the cut prepreg base material 10 does not stretch in the fiber direction when stretched in the fiber vertical direction. A non-existing region (cut opening) 18 is generated, but the adjacent short fiber group flows in the fiber vertical direction, thereby filling the cut opening 18 and reducing the area of the cut opening 18. This tendency is particularly remarkable when the projection length Ws obtained by projecting the cut in the vertical direction of the reinforcing fiber is 1.5 mm or less, and the cut opening 18 is not substantially generated, and the layer of the cut opening 18 is not formed. The area on the surface can be in the range of 0.1 to 10% compared to the surface area of the layer. Therefore, an adjacent layer does not penetrate in the thickness direction, and a fiber-reinforced plastic 16 having high rigidity, high strength, and high quality without layer waviness and resin-rich portion can be obtained. Since the fibers 3 are arranged all over the surface, there is no difference in rigidity in the surface, and the design can be easily applied as in the conventional continuous fiber reinforced plastic. The epoch-making effect of filling the cut opening 18 with the flow in the vertical direction of the fiber to obtain a fiber reinforced plastic 16 without layer undulation is that the absolute value of the cut angle Θ is 25 ° or less and the cut is perpendicular to the reinforcing fiber. It can be obtained for the first time by setting the projection length Ws projected in the direction to 1.5 mm or less. More preferably, when Ws is 1 mm or less, higher rigidity, higher strength, and higher quality can be obtained, and application as an outer plate member is also possible.

さらに、積層体が切込プリプレグ基材のみから構成されるのが、流動性向上のために好ましい。さらに好ましくは、積層体が切込プリプレグ基材のみから構成され、かつ、その切込プリプレグ基材を構成する強化繊維の全ての繊維長さLが10〜100mmの範囲内であるのが良い。形状に合わせて切り込みを入れるのは、設計、作業の面で非常に手間がかかりやすいため、品質安定性のためにも、全面に切り込みを入れ、積層体のどの領域が複雑形状にあたっても沿いやすくしておくことが好ましい。また、全面に切り込みを入れることで、積層体は平板状であっても、積層体が全体的に伸張し、隅々まで繊維が行き渡った繊維強化プラスチックとなるため、本発明を高効率に実施できる。また、成形型のキャビティより積層体を小さく用意することができ、型間に積層体が噛み込むことなく型締めが容易となる。   Furthermore, it is preferable for the fluidity improvement that the laminate is composed only of the cut prepreg base material. More preferably, the laminate is composed of only a cut prepreg base material, and all the fiber lengths L of the reinforcing fibers constituting the cut prepreg base material are within a range of 10 to 100 mm. Making the incision according to the shape is very time-consuming in terms of design and work. For quality stability, the entire surface is incised so that any area of the laminate can easily follow the complicated shape. It is preferable to keep it. In addition, by cutting the entire surface, even if the laminate has a flat plate shape, the laminate is stretched as a whole and becomes a fiber reinforced plastic in which fibers are spread all over. it can. Further, the laminate can be prepared smaller than the cavity of the mold, and the mold clamping can be easily performed without the laminate being caught between the molds.

本発明に係る切込プリプレグ基材に用いられる強化繊維としては、例えば、アラミド繊維、ポリエチレン繊維、ポリパラフェニレンベンズオキサドール(PBO)繊維などの有機繊維、ガラス繊維、炭素繊維、炭化ケイ素繊維、アルミナ繊維、チラノ繊維、玄武岩繊維、セラミックス繊維などの無機繊維、ステンレス繊維やスチール繊維などの金属繊維、その他、ボロン繊維、天然繊維、変性した天然繊維などを繊維として用いた強化繊維などが挙げられる。その中でも特に炭素繊維は、これら強化繊維の中でも軽量であり、しかも比強度および比弾性率において特に優れた性質を有しており、さらに耐熱性や耐薬品性にも優れていることから、軽量化が望まれる自動車パネルなどの部材に好適である。なかでも、高強度の炭素繊維が得られやすいPAN系炭素繊維が好ましい。   Examples of the reinforcing fibers used for the cut prepreg base material according to the present invention include, for example, organic fibers such as aramid fibers, polyethylene fibers, polyparaphenylene benzoxador (PBO) fibers, glass fibers, carbon fibers, silicon carbide fibers, Examples include inorganic fibers such as alumina fibers, Tyranno fibers, basalt fibers, ceramic fibers, metal fibers such as stainless steel fibers and steel fibers, and other reinforcing fibers using boron fibers, natural fibers, modified natural fibers, etc. . Among them, carbon fiber is particularly lightweight among these reinforcing fibers, and has particularly excellent properties in specific strength and specific modulus, and is also excellent in heat resistance and chemical resistance. It is suitable for members such as automobile panels that are desired to be made. Among these, PAN-based carbon fibers that can easily obtain high-strength carbon fibers are preferable.

本発明に係る切込プリプレグ基材に用いられるマトリックス樹脂としては、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂、エポキシアクリレート樹脂、ウレタンアクリレート樹脂、フェノキシ樹脂、アルキド樹脂、ウレタン樹脂、マレイミド樹脂、シアネート樹脂などの熱硬化性樹脂や、ポリアミド、ポリアセタール、ポリアクリレート、ポリスルフォン、ABS、ポリエステル、アクリル、ポリブチレンテレフタラート(PBT)、ポリエチレンテレフタレート(PET)、ポリエチレン、ポリプロピレン、ポリフェニレンスルフィド(PPS)、ポリエーテルエーテルケトン(PEEK)、液晶ポリマー、塩ビ、ポリテトラフルオロエチレンなどのフッ素系樹脂、シリコーンなどの熱可塑性樹脂が挙げられる。その中でも特に熱硬化性樹脂を用いるのが好ましい。マトリックス樹脂が熱硬化性樹脂であることにより、切込プリプレグ基材は室温においてタック性を有しているため、該基材を積層した際に上下の該基材と粘着により一体化され、意図したとおりの積層構成を保ったままで成形することができる。   Examples of the matrix resin used for the cut prepreg base material according to the present invention include an epoxy resin, an unsaturated polyester resin, a vinyl ester resin, a phenol resin, an epoxy acrylate resin, a urethane acrylate resin, a phenoxy resin, an alkyd resin, and a urethane resin. , Thermosetting resins such as maleimide resin and cyanate resin, polyamide, polyacetal, polyacrylate, polysulfone, ABS, polyester, acrylic, polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polyethylene, polypropylene, polyphenylene sulfide (PPS), polyetheretherketone (PEEK), liquid crystal polymer, vinyl chloride, thermoplastic resin such as polytetrafluoroethylene, thermoplastic resin such as silicone And the like. Among these, it is particularly preferable to use a thermosetting resin. Since the matrix resin is a thermosetting resin, the cut prepreg base material has tackiness at room temperature, so when the base material is laminated, it is integrated with the upper and lower base materials by adhesion, It can shape | mold, keeping the laminated structure as it was.

また、本発明に係る切込プリプレグ基材はテープ状支持体に密着されていてもよい。切り込みが挿入された基材は、全ての繊維が切り込みにより切断されてもその形態を保持することが可能となり、賦形時に繊維が脱落してバラバラになってしまうという問題はない。マトリックス樹脂がタック性を有する熱硬化性樹脂であるとさらに好ましい。ここで、テープ状支持体とは、クラフト紙などの紙類やポリエチレン・ポリプロピレンなどのポリマーフィルム類、アルミなどの金属箔類などが挙げられ、さらに樹脂との離型性を得るために、シリコーン系や“テフロン(登録商標)”系の離型剤や金属蒸着などを表面に付与しても構わない。   Moreover, the cut prepreg base material according to the present invention may be in close contact with the tape-like support. The base material into which the cut has been inserted can retain its shape even when all the fibers are cut by the cut, and there is no problem that the fibers fall off during shaping. More preferably, the matrix resin is a thermosetting resin having tackiness. Here, the tape-like support includes papers such as kraft paper, polymer films such as polyethylene / polypropylene, metal foils such as aluminum and the like, and in order to obtain releasability from the resin, silicone. A surface or a “Teflon (registered trademark)” release agent or metal deposition may be applied to the surface.

さらに好ましくは熱硬化性樹脂の中でも、エポキシ樹脂や不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂、アクリル樹脂などや、それらの混合樹脂がよい。これらの樹脂の常温(25℃)における樹脂粘度としては、1×10Pa・s以下であることが好ましく、この範囲内であれば本発明に好適なタック性およびドレープ性を有するプリプレグ基材を得ることができる。中でもエポキシ樹脂は炭素繊維と組み合わせて得られる強化繊維複合材料としての力学特性に最も優れている。 More preferably, among thermosetting resins, an epoxy resin, an unsaturated polyester resin, a vinyl ester resin, a phenol resin, an acrylic resin, or a mixed resin thereof is preferable. The resin viscosity at normal temperature (25 ° C.) of these resins is preferably 1 × 10 6 Pa · s or less, and within this range, a prepreg base material having tackiness and draping properties suitable for the present invention. Can be obtained. Among them, the epoxy resin is most excellent in mechanical properties as a reinforced fiber composite material obtained in combination with carbon fiber.

本発明に好適なマトリックス樹脂として熱硬化性樹脂を用いた場合の成形条件としては、成形工程における成形型の温度T1と、脱型工程における成形型の温度T2とを実質的に一定とするのがよい。なお、成形型の温度は積層体に触れるキャビティの表面を複数点(上下型ある場合には、少なくとも一点以上どちらの型も測定)、熱電対で測定した温度の平均で代表する。ここで、本発明における金型温度Tが実質的に一定とは、通常金型温度の変動が±10℃の範囲内であることを表す。また、T1、T2ともに経時的に変化しないのがよい。   As a molding condition when a thermosetting resin is used as a matrix resin suitable for the present invention, the mold temperature T1 in the molding process and the mold temperature T2 in the demolding process are made substantially constant. Is good. The temperature of the mold is represented by the average of the temperatures measured by a thermocouple at a plurality of points on the surface of the cavity that touches the laminate (when there are upper and lower molds, at least one point is measured). Here, that the mold temperature T in the present invention is substantially constant means that the variation of the mold temperature is usually within a range of ± 10 ° C. Further, both T1 and T2 should not change over time.

本発明において、繊維強化プラスチックは、金型温度Tが、プリプレグ基材に用いられる熱硬化性樹脂の示差走査熱量測定(DSC)に拠る発熱ピーク温度Tpに対して、
Tp−60≦T≦Tp+20・・・(I)
の範囲内で製造することが好ましい。さらに好ましくは、
Tp−30≦T≦Tp・・・(II)
の範囲内である。金型温度Tが、Tp−60より低い場合、樹脂の硬化に要する時間が非常に長くなり、また硬化が不十分である場合もある。一方、Tp+20より高い場合、樹脂の急激な反応により樹脂内部でのボイドの生成、硬化不良を引き起こすことがある。なお、本発明におけるDSCに拠る発熱ピーク温度Tpは、JIS K 7121(1987)に準じて行われ、温度30〜180℃で、昇温速度10℃/分の条件にて昇温させて得た発熱曲線のピークをとった値である。JIS K 7121(1987)に言う試験片は、本発明においてはペーストである。従って、「試験片の状態調節」、「試験片」はそれぞれ「ペーストの状態調節」、「ペースト」と言うことができる。ペーストの状態調節は、原則として、温度23±2℃及び相対湿度50±5%において6〜8時間静置して行い、熱処理などは一切行わない。また、ペーストはペースト状のまま測定するため、寸法に関する規定はない。
In the present invention, the fiber reinforced plastic has a mold temperature T with respect to an exothermic peak temperature Tp based on differential scanning calorimetry (DSC) of a thermosetting resin used for a prepreg substrate.
Tp−60 ≦ T ≦ Tp + 20 (I)
It is preferable to manufacture within the range. More preferably,
Tp-30 ≦ T ≦ Tp (II)
Is within the range. When the mold temperature T is lower than Tp-60, the time required for curing of the resin becomes very long, and the curing may be insufficient. On the other hand, when it is higher than Tp + 20, a rapid reaction of the resin may cause generation of voids inside the resin and poor curing. In addition, exothermic peak temperature Tp based on DSC in this invention was performed according to JISK7121 (1987), and it heated up on the conditions of the temperature increase rate of 10 degree-C / min at the temperature of 30-180 degreeC. This is a value obtained by taking the peak of the exothermic curve. The test piece referred to in JIS K 7121 (1987) is a paste in the present invention. Therefore, “condition adjustment of test piece” and “test piece” can be referred to as “condition adjustment of paste” and “paste”, respectively. In principle, the state of the paste is adjusted to stand for 6 to 8 hours at a temperature of 23 ± 2 ° C. and a relative humidity of 50 ± 5%, and no heat treatment is performed. In addition, since the paste is measured in the form of a paste, there is no regulation regarding the dimensions.

本発明において、プリプレグ基材に用いられる熱硬化性樹脂は、動的粘弾性測定(DMA)に拠る最低粘度が0.1〜100Pa・sで製造することが好ましい。さらに好ましくは0.1〜10Pa・sである。最低粘度が0.1Pa・sより小さい場合、加圧時に樹脂のみが流動し、突起部の先端まで十分に強化繊維が充填されない場合がある。一方、100Pa・sより大きい場合、樹脂の流動性が乏しいため、突起部の先端まで十分に強化繊維および樹脂が充填されない場合がある。なお、本発明におけるDMAに拠る最低粘度は、回転粘度計を使用して、半径20mmの平行平板を用い、平行平板間の距離1mm、測定開始温度40℃、昇温速度1.5℃/分、測定周波数0.5Hzの条件にて測定し、観測された最低粘度の値である。   In the present invention, the thermosetting resin used for the prepreg base material is preferably produced with a minimum viscosity of 0.1 to 100 Pa · s based on dynamic viscoelasticity measurement (DMA). More preferably, it is 0.1-10 Pa.s. When the minimum viscosity is less than 0.1 Pa · s, only the resin flows during pressurization, and the reinforcing fiber may not be sufficiently filled up to the tip of the protrusion. On the other hand, when the viscosity is higher than 100 Pa · s, the fluidity of the resin is poor, and thus the reinforcing fibers and the resin may not be sufficiently filled up to the tip of the protrusion. The minimum viscosity due to DMA in the present invention is a rotational viscometer, using parallel plates with a radius of 20 mm, a distance between parallel plates of 1 mm, a measurement start temperature of 40 ° C., and a temperature increase rate of 1.5 ° C./min. Measured under the condition of a measurement frequency of 0.5 Hz, the value of the lowest viscosity observed.

さらに好ましい製造方法の具体例を以下に説明していく。   Specific examples of more preferable production methods will be described below.

例えば、成形型が片面型であり、片面型上に積層体を配し、積層体の上に伸縮性のフィルムを覆って積層体を密封し、密封された空間と外気との差圧により積層体を片面型に押し付けて成形するのがよい。図13の例では、片面型28cの上に平板状の積層体12を配置し、片面型28cと伸縮性のフィルム32を脱気口26となるパイプを残してシーラント31などで密封し、真空ポンプなどを用いて密封された空間30を減圧し、大気圧との差圧により積層体12を片面型28cに押し付ける。さらにオートクレーブなどの圧力容器中にこのセットを入れ、圧力容器内の圧力と密封された空間30との差圧(0.1〜0.6MPa程度)で積層体12を片面型28cに押し当てるのもよい。片面型を用いた本発明の製造方法は、型代が両面型などに比べ低コストであり、型の昇降機など大型の施設を導入しなくても成形が可能となるため、好ましい。成形ごとにフィルムを使い捨てにしてもよいが、代わりに耐久性のあるシリコンラバーフィルムなどを開閉式の蓋として用いることで、量産にも対応することができる。伸縮性のフィルムは耐熱性に不安がある場合があるため、熱硬化性樹脂を用いた成形の場合には繊維強化プラスチックが脱型可能な硬度となったところで脱型し、オーブン等で後硬化してもよい。熱可塑性樹脂を用いた成形の場合には繊維強化プラスチックが脱型可能な硬度となったところで脱型し、別の冶具(大量に繊維強化プラスチックを矯正できる冶具など)で固定してアニーリングを行ってもよい。   For example, the mold is a single-sided mold, a laminated body is placed on the single-sided mold, a stretchable film is covered on the laminated body, the laminated body is sealed, and lamination is performed by the differential pressure between the sealed space and the outside air. The body is preferably pressed against a single-sided mold. In the example of FIG. 13, the flat laminated body 12 is disposed on the single-sided mold 28c, and the single-sided mold 28c and the stretchable film 32 are sealed with a sealant 31 or the like leaving a pipe serving as a deaeration port 26, and vacuumed. The sealed space 30 is depressurized using a pump or the like, and the laminate 12 is pressed against the single-sided mold 28c by a differential pressure from the atmospheric pressure. Furthermore, this set is put in a pressure vessel such as an autoclave, and the laminate 12 is pressed against the single-sided mold 28c with a differential pressure (about 0.1 to 0.6 MPa) between the pressure in the pressure vessel and the sealed space 30. Also good. The production method of the present invention using a single-sided mold is preferable because the mold cost is lower than that of a double-sided mold and the like, and molding is possible without introducing a large facility such as a mold elevator. The film may be disposable for each molding, but mass production can be handled by using a durable silicone rubber film or the like as an openable lid instead. Stretchable film may be uneasy about heat resistance, so when molding with thermosetting resin, it is demolded when the fiber reinforced plastic has a demoldable hardness and post-cured in an oven, etc. May be. In the case of molding using a thermoplastic resin, the mold is removed when the fiber reinforced plastic has a demoldable hardness, and is fixed by another jig (such as a jig that can correct a large amount of fiber reinforced plastic) and then annealed. May be.

例えば、成形型が2つ以上の型からなり、型締めにより積層体を成形型に押し付けるに際し、積層体が2つの型両方に最初に接触する領域に連続繊維が配されているのがよい。積層体のうち、連続繊維が配されている領域は流動しにくい。そのため、流動しない部分を最初に型と接触させ、固定して基準とすることで、流動を制御しやすい。具体的には、図14のような、上型28aと下型28b、下型28bがアクセスできる穴が設けられた平板状の型である分割型28dからなるような成形型において、積層体12をスプリング27で支えられた分割型28dに載せ、まず、上型28aと分割型28dを接触させる。この際、積層体12はキャビティいっぱいに配置されており、積層体12の周辺部には連続繊維が配されている。したがって、上型28aと最初に接触する積層体12の周辺部は流動せず、固定される。しかる後に、下型28bが積層体12に押してられ、積層体12の中央部が伸張されて繊維強化プラスチックを得ることができる。連続繊維を周辺部に配しそこから型締めすることで流動の起点を固定し、流動を制御することで、均一な繊維流動を実現して高品位な繊維強化プラスチックを不良品少なく製造できる。両面型を用いることで、熱容量が大きく品質が安定しやすい。また、脱型の機構を備えると量産性に優れる。   For example, the mold may be composed of two or more molds, and when the laminate is pressed against the mold by clamping, the continuous fibers may be arranged in a region where the laminate first contacts both the two molds. Of the laminate, the region where the continuous fibers are arranged is difficult to flow. Therefore, it is easy to control the flow by first bringing the non-flowing part into contact with the mold and fixing it as a reference. Specifically, as shown in FIG. 14, in a molding die including a split die 28 d that is a flat die having holes accessible to the upper die 28 a, the lower die 28 b, and the lower die 28 b, the laminated body 12. Is placed on the split mold 28d supported by the spring 27. First, the upper mold 28a and the split mold 28d are brought into contact with each other. At this time, the laminated body 12 is arranged to fill the cavity, and continuous fibers are arranged in the periphery of the laminated body 12. Accordingly, the peripheral portion of the laminate 12 that first contacts the upper mold 28a does not flow and is fixed. Thereafter, the lower mold 28b is pushed by the laminate 12, and the central portion of the laminate 12 is stretched to obtain a fiber reinforced plastic. By arranging continuous fibers in the periphery and clamping from there, the starting point of the flow is fixed, and by controlling the flow, a uniform fiber flow can be realized, and high-quality fiber-reinforced plastic can be produced with fewer defective products. By using a double-sided mold, the heat capacity is large and the quality is easy to stabilize. Moreover, if a demolding mechanism is provided, it is excellent in mass productivity.

例えば、積層工程後、成形工程に先立って、積層体を成形後の繊維強化プラスチックの略形状に予備賦型した後、成形型上に積層体を配置してもよい。複雑な形状を成形するに当たり、平板状に積層体を作成した後、成形型に配する前に、積極的に切込プリプレグ基材を伸張させることのない、折り曲げなどの簡単な操作で予備賦型することで、成形型へ配置する際の位置決めが楽になり、また伸張させる方向を明確にすることで品位の安定した繊維強化プラスチックを得ることができる。予備賦型の手段としては、室温でそのまま折り曲げ加工してもよいし、両面型でプレスしてもよいが、好ましくはマトリックス樹脂が熱硬化性樹脂でも熱可塑性樹脂であっても、平板状の積層体を片面型とシリコンラバーフィルムなどで密閉して、密閉空間を減圧することで片面型に押し付けるのがよい。この際、平板状の積層体を軟化させるため、積層体自体をマトリックス樹脂が硬化、劣化しないような比較的低温で加熱し、より低温の片面型に押し付けてもよいし、室温の平板状の積層体を、マトリックス樹脂が硬化、劣化しないような比較的低温で加熱した片面型に押し付け、予備賦型されたら成形型を急冷してもよい。   For example, after the lamination step, prior to the molding step, the laminate may be pre-shaped into a substantially fiber-reinforced plastic shape after molding, and then the laminate may be placed on the mold. When forming a complex shape, pre-apply by simple operations such as bending without actively stretching the cut prepreg base material after creating the laminate in a flat plate shape and before placing it in the mold. Molding facilitates positioning when placed in the mold and makes it possible to obtain a fiber-reinforced plastic having a stable quality by clarifying the extending direction. As a pre-molding means, it may be bent as it is at room temperature or may be pressed by a double-sided mold. Preferably, even if the matrix resin is a thermosetting resin or a thermoplastic resin, The laminated body is preferably sealed with a single-sided mold and a silicon rubber film, and pressed against the single-sided mold by decompressing the sealed space. At this time, in order to soften the flat laminate, the laminate itself may be heated at a relatively low temperature so that the matrix resin does not cure and deteriorate, and may be pressed against a lower temperature single-sided mold. The laminate may be pressed against a single-sided mold heated at a relatively low temperature so that the matrix resin does not harden or deteriorate, and once pre-molded, the mold may be quenched.

さらに好ましくは、積層工程後、成形工程に先立って、積層体をシングルコンター形状に予備賦形しておくのがよい。ここで、“シングルコンター形状”とは凹凸形状の種類を指し、積層体の表面を二次曲面として取り出してきた際、該二次曲面上の点であって、該点を通る任意の平面を参照した際、該平面と該二次曲面の交線のうち該点を通る交線が直線となる交線が1つだけ存在する点の集合を指し、具体的には円錐形状や円筒形状、それらの一部が該当する。シングルコンター形状であれば、切込プリプレグ基材の伸張を伴わなくてもある程度の形状であれば追従可能である。例えば、図18b)のような弁当箱の蓋のような形状の繊維強化プラスチック16を作成するに当たり、図18a)のように平板状に作成した積層体12をコの字型に予備賦型した後に成形型28bに配置すると、位置決めが容易であり、成形時積層体12が伸張する方向を制御することができ、好ましい。   More preferably, after the lamination step, the laminate is pre-shaped into a single contour shape prior to the molding step. Here, “single contour shape” refers to the type of uneven shape, and when the surface of the laminate is taken out as a quadric surface, it is a point on the quadric surface and an arbitrary plane passing through the point. When referring, it refers to a set of points where there is only one intersection line where the intersecting line passing through the point is a straight line among the intersecting lines of the plane and the quadric surface, specifically, a conical shape or a cylindrical shape, Some of them apply. If it is a single contour shape, even if it is not accompanied by the extension of the cut prepreg base material, it can be followed if it is a certain shape. For example, in producing the fiber reinforced plastic 16 shaped like a lunch box lid as shown in FIG. 18b), the laminate 12 made into a flat shape as shown in FIG. 18a) was pre-shaped into a U-shape. If it arrange | positions later in the shaping | molding die 28b, positioning is easy and the direction which the laminated body 12 expand | extends at the time of shaping | molding can be controlled, and it is preferable.

本発明に基づいて繊維強化プラスチックを製造するに当たり、繊維強化プラスチックの凹凸部において、凹凸部の最も曲率の小さな方向から±10°以下(−10°〜10°の範囲内)の角度に強化繊維が配向した層を他層より厚く偏肉するのがよい。図18b)の繊維強化プラスチック16の凹凸部に対応するR部の断面40に注目すると、図19のように奥行きが繊維配向方向の層41についてR部で層厚みが厚い領域42が見られる。R部などの凹凸部では外表面と内表面との曲率の差から、層厚みが均等にならず、本発明のような製造方法を用いることでより流動しやすい凹凸部の曲率の小さな方向(図19の場合は奥行き方向)から±10°以下の角度に繊維配向した層が厚く存在する。一般的に凹凸形状は立ち面によって曲げ剛性向上を意図して設計しており、凹凸部の最も曲率の小さな方向、すなわち立ち面に平行な方向に繊維配向することは目的に合致していて好ましい。   In producing fiber reinforced plastic according to the present invention, the reinforced fiber has an angle of ± 10 ° or less (within a range of −10 ° to 10 °) from the direction of the smallest curvature of the concavo-convex portion in the concavo-convex portion of the fiber reinforced plastic. It is preferable that the layer oriented is thicker than other layers. When attention is paid to the cross section 40 of the R portion corresponding to the concavo-convex portion of the fiber reinforced plastic 16 in FIG. 18b), as shown in FIG. 19, a region 42 having a thick layer thickness in the R portion is seen in the layer 41 whose depth is in the fiber orientation direction. In the uneven portion such as the R portion, the layer thickness is not uniform due to the difference in curvature between the outer surface and the inner surface, and the direction of small curvature of the uneven portion that is more easily flowable by using the manufacturing method of the present invention ( In the case of FIG. 19, there is a thick layer of fibers oriented at an angle of ± 10 ° or less from the depth direction). In general, the concavo-convex shape is designed with the intention of improving the bending rigidity by the standing surface, and it is preferable that the fiber is oriented in the direction with the smallest curvature of the concavo-convex portion, that is, in the direction parallel to the standing surface. .

また、図4に示した積層体12の不連続部37に、回転部などの機構を備える目的で金属インサートを埋め込み、硬化、一体化させることにより、アセンブリコストが低減することができる。その際、金属インサートの周囲に複数の凹部設けることにより、流動した繊維が凹部に進入し、容易に隙間を充填することができるとともに、成形温度から低下することで、金属と繊維の熱膨張差でかしめられ、強固に一体化させることができる。   Moreover, an assembly cost can be reduced by embedding, hardening, and integrating a metal insert in the discontinuous portion 37 of the laminate 12 shown in FIG. 4 for the purpose of providing a mechanism such as a rotating portion. At that time, by providing a plurality of recesses around the metal insert, the flowed fibers can enter the recesses, and can easily fill the gaps. And can be firmly integrated.

なお、本発明により製造された繊維強化プラスチックの用途としては、強度、剛性、軽量性が要求される、自転車用品、ゴルフなどのスポーツ部材のシャフトやヘッド、ドアやシートフレームなどの自動車部材、ロボットアームなどの機械部品がある。中でも、強度、軽量に加え、部材形状が複雑で、本材料のように形状追従性が要求されるシートパネルやシートフレームなどの自動車部品に好ましく適用できる。   The fiber-reinforced plastics manufactured according to the present invention are used for shafts and heads of sports parts such as bicycle equipment and golf, automobile parts such as doors and seat frames, and robots that require strength, rigidity and light weight. There are mechanical parts such as arms. In particular, in addition to strength and light weight, the member shape is complicated, and the present invention can be preferably applied to automobile parts such as seat panels and seat frames that require shape followability like this material.

以下、実施例により本発明をさらに具体的に説明するが、本発明は、実施例に記載の発明に限定されるというものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the inventions described in the examples.

(実施例1)
<プリプレグ基材の作製>
以下に示す手順にてエポキシ樹脂組成物を得た。
Example 1
<Preparation of prepreg base material>
An epoxy resin composition was obtained by the following procedure.

(a)エポキシ樹脂(ジャパンエポキシレジン(株)製“エピコート(登録商標)”828:30重量部、エピコート1001:35重量部、エピコート154:35重量部)と、熱可塑性樹脂ポリビニルホルマール(チッソ(株)製“ビニレック(登録商標)”K)5重量部とを、150〜190℃に加熱しながら1〜3時間攪拌し、ポリビニルホルマールを均一に溶解した。   (A) Epoxy resin (“Epicoat (registered trademark)” 828: 30 parts by weight, Epicoat 1001: 35 parts by weight, Epicoat 154: 35 parts by weight) manufactured by Japan Epoxy Resin Co., Ltd., and thermoplastic resin polyvinyl formal (Chisso ( "Vinylec (registered trademark)" K) 5 parts by weight was stirred for 1 to 3 hours while heating at 150 to 190 ° C to uniformly dissolve polyvinyl formal.

(b)樹脂温度を55〜65℃まで降温した後、硬化剤ジシアンジアミド(ジャパンエポキシレジン(株)製DICY7)3.5重量部と、硬化促進剤3−(3,4−ジクロロフェニル)−1,1−ジメチルウレア(保土谷化学工業(株)製DCMU99)4重量部とを加え、該温度で30〜40分間混練後、ニーダー中から取り出してエポキシ樹脂組成物を得た。   (B) After lowering the resin temperature to 55 to 65 ° C., 3.5 parts by weight of a curing agent dicyandiamide (DICY7 manufactured by Japan Epoxy Resin Co., Ltd.) and a curing accelerator 3- (3,4-dichlorophenyl) -1, 4 parts by weight of 1-dimethylurea (DCU99 manufactured by Hodogaya Chemical Co., Ltd.) was added, kneaded at the temperature for 30 to 40 minutes, and then taken out from the kneader to obtain an epoxy resin composition.

得られたエポキシ樹脂組成物を、リバースロールコーターを使用し離型紙上に塗布し、樹脂フィルムを作製した。   The obtained epoxy resin composition was apply | coated on the release paper using the reverse roll coater, and the resin film was produced.

次に、シート状に一方向に整列させた炭素繊維(引張強度4,900MPa、引張弾性率235GPa)に樹脂フィルム2枚を炭素繊維の両面から重ね、加熱し、加圧して樹脂組成物を含浸させ、炭素繊維目付150g/m、樹脂重量分率33%(繊維体積含有率Vf58%相当)の一方向プリプレグ基材を作製した。 Next, the carbon fiber (tensile strength 4,900 MPa, tensile elastic modulus 235 GPa) aligned in one direction in a sheet shape is laminated with two resin films from both sides of the carbon fiber, heated and pressurized to impregnate the resin composition. Thus, a unidirectional prepreg base material having a carbon fiber basis weight of 150 g / m 2 and a resin weight fraction of 33% (corresponding to a fiber volume content Vf of 58%) was produced.

得られたエポキシ樹脂組成物のDSCに拠る発熱ピーク温度Tpは152℃であった。測定装置としては、ティー・エイ・インスツルメンツ社製DSC2910(品番)を用いて、昇温速度10℃/分の条件にて測定した。   The exothermic peak temperature Tp according to DSC of the obtained epoxy resin composition was 152 ° C. As a measuring apparatus, DSC2910 (product number) manufactured by TA Instruments Inc. was used, and the measurement was performed under a temperature rising rate of 10 ° C./min.

DMAに拠る最低粘度は0.5Pa・sであった。測定装置としては、ティー・エイ・インスツルメンツ社製動的粘弾性測定装置“ARES”を用いて、昇温速度1.5℃/分、周波数0.5Hz、パラレルプレート(半径20mm)の条件にて、温度と粘度の関係曲線から最低粘度を求めた。   The minimum viscosity due to DMA was 0.5 Pa · s. As a measuring device, a dynamic viscoelasticity measuring device “ARES” manufactured by T.A. Instruments Co., Ltd. was used under the conditions of a temperature rising rate of 1.5 ° C./min, a frequency of 0.5 Hz, and a parallel plate (radius 20 mm). The minimum viscosity was determined from the temperature-viscosity relationship curve.

<プリプレグ基材への切り込みの導入>
上記プリプレグ基材に、自動裁断機を用いて図16に示すような切り込みを全面に挿入することにより、等間隔で規則的な切り込みを有する切込プリプレグ基材を得た。切り込みの方向は繊維直交方向2で、切り込みの長さWは10.1mm(すなわち、Ws=10.1mm)であり、間隔L(繊維長さ)は30mmである。図16に示すように、隣り合う切り込みの列7aと7bは繊維直交方向に10mm移動すると、幾何的に同等である。また、繊維長手方向に対になる切り込みの列には、7aと7c、7bと7dの組があり、切り込みの列のパターンは2パターン存在する。さらに、隣り合う列の切り込みが互いに切り込んでいる5の範囲は0.1mmである。
<Introduction of cut into prepreg base material>
A cut prepreg base material having regular cuts at regular intervals was obtained by inserting cuts as shown in FIG. 16 into the prepreg base material using an automatic cutter. The cutting direction is the fiber orthogonal direction 2, the cutting length W is 10.1 mm (that is, Ws = 10.1 mm), and the interval L (fiber length) is 30 mm. As shown in FIG. 16, adjacent cut rows 7a and 7b are geometrically equivalent when moved 10 mm in the direction perpendicular to the fiber. In addition, there are pairs of cuts 7a and 7c and 7b and 7d in the cut rows that are paired in the fiber longitudinal direction, and there are two patterns of cut rows. Furthermore, the range of 5 in which the cuts in the adjacent rows cut into each other is 0.1 mm.

<繊維強化プラスチックの成形>
図15に示すような、300×200mmの矩形の平板上にダブルコンター部25が2つ(それぞれ直径100mm、150mmの円を境界線として、R200mm、R300mmの球が頭を出した形状)設けられた繊維強化プラスチック16を成形した。
<Molding of fiber reinforced plastic>
As shown in FIG. 15, two double contour portions 25 (a shape in which R200 mm and R300 mm spheres protrude from the head, with circles having a diameter of 100 mm and a diameter of 150 mm as boundaries, respectively) are provided on a rectangular plate of 300 × 200 mm. Fiber reinforced plastic 16 was molded.

矩形の長手方向を0°として、炭素繊維の配向方向(0°方向)と、炭素繊維の配向方向から右に45度ずらした方向(45°方向)に切込プリプレグ基材を矩形(270×180mm)に切り出し、[45/0/−45/90]2Sの積層構成で16層積層し、270×180mmの平板状の積層体を得た。 When the longitudinal direction of the rectangle is 0 °, the cut prepreg substrate is rectangular (270 ×) in the orientation direction of the carbon fiber (0 ° direction) and the direction shifted 45 degrees to the right from the orientation direction of the carbon fiber (45 ° direction). 180 mm) and 16 layers were laminated in a [45/0 / −45 / 90] 2S laminate structure to obtain a 270 × 180 mm flat laminate.

成形型は上型、下型からなり、両型を合わせた際のキャビティは最終成形品の外形状を決定するよう設計した。成形型はプレス機に設置され、上型が昇降することで、型の開け締めを行った。成形工程における成形型の温度T1が、プリプレグ基材に用いたエポキシ樹脂組成物のDSCに拠る発熱ピーク温度Tpとほぼ同となるよう150℃に温度制御した。下型の上に積層体をキャビティの略中央に配置し、型を締めた。このときのプレス圧は、300×200mmの面積で割り返した圧力が6MPaとなるよう、調節した。積層体がキャビティより小さめに作成されているため、配置に手間と時間がかからないというメリットがあった。金型内で30分間放置した後、脱型工程における成形型の温度T2をT1から低下させることなく150℃のまま成形型を開け、繊維強化プラスチック16を脱型した。   The mold consists of an upper mold and a lower mold, and the cavity when both molds are combined is designed to determine the outer shape of the final molded product. The mold was placed in a press machine, and the upper mold was moved up and down to open and close the mold. The temperature was controlled at 150 ° C. so that the temperature T1 of the mold in the molding step was substantially the same as the exothermic peak temperature Tp due to DSC of the epoxy resin composition used for the prepreg substrate. The laminate was placed on the lower mold approximately at the center of the cavity, and the mold was clamped. The press pressure at this time was adjusted so that the pressure divided by an area of 300 × 200 mm was 6 MPa. Since the laminate was made smaller than the cavity, there was an advantage that it took less time and effort to arrange. After being left in the mold for 30 minutes, the mold was opened at 150 ° C. without lowering the temperature T2 of the mold in the demolding process from T1, and the fiber reinforced plastic 16 was demolded.

積層体はキャビティよりも小さかったものの隅々まで繊維が流動し、成形型の外形上に沿ったダブルコンター部を複数有する維強化プラスチックを得ることができた。3次元形状であることから、高剛性で軽量な繊維強化プラスチックとなった。ダブルコンター部だけでなく全体的に伸張され、切り込みにより分断された繊維束端部間に存在する切り込み開口部と、繊維長さLcが30mm、幅Wsが11〜15mm程度の分布を持つ短冊状の繊維束が全体的に分布していた。特にこのような2つ以上ダブルコンター部を有する形状では、連続繊維基材を用いた成形では繊維が必ず突っ張るため、賦形工程として成形前にあらかじめ成形型に忠実な積層体の賦形が必須であり、賦形工程を取り入れたとしてもシワや繊維突っ張りによる表面品位悪化をなくすこととは極めて困難である。本発明のように平板状の基材を高精度な位置決めなしで高品位な繊維強化プラスチックを得られる工数削減効果は非常に大きい。   Although the laminate was smaller than the cavity, the fiber flowed to every corner, and a fiber reinforced plastic having a plurality of double contour portions along the outer shape of the mold could be obtained. Because of its three-dimensional shape, it became a highly rigid and lightweight fiber-reinforced plastic. Not only a double contour part, but also a strip-shaped opening that is stretched as a whole and cut between the fiber bundle ends divided by cutting, and has a fiber length Lc of 30 mm and a width Ws of about 11 to 15 mm. Fiber bundles were distributed throughout. In particular, in the shape having two or more double contour parts, since the fiber always stretches in the molding using the continuous fiber base material, it is essential to shape the laminated body in advance to the molding die before molding as the shaping process. Even if a shaping process is adopted, it is extremely difficult to eliminate the deterioration of the surface quality due to wrinkles and fiber tension. As in the present invention, the man-hour reduction effect of obtaining a high-quality fiber-reinforced plastic without positioning a flat base material with high accuracy is very large.

(実施例2)
共重合ポリアミド樹脂(東レ(株)製“アミラン”(登録商標)CM4000、ポリアミド6/66/610共重合体、融点155℃)のペレットを、200℃で加熱した平板プレス機で34μm厚みのフィルム状に加工した。ポリアミド樹脂の25℃雰囲気下における粘度は固体であるため測定不可能であり、該基材はタック性がなかった。離型紙を用いなかった他は実施例1と同様にして、プリプレグ基材を作成した。実施例1と同様にプリプレグ基材へ切り込みを導入し、切込プリプレグ基材を得た後、実施例1と同様に積層体を得た。ただし、タックがないため、積層体は一体化しておらず、単純に16層重なった状態であった。実施例1と同様な両面型を70℃に温度制御しておく。一方、積層体を200℃に加熱したオーブン内に入れ、表面温度が160℃に達した時点で取り出し、下型の上に置き、一気に型締めを行った。このときのプレス圧は、300×200mmの面積で割り返した圧力が6MPaとなるよう、調節した。積層体がキャビティより小さめに作成されているため、簡単に配置でき、積層体の温度が下がりきる前にコールドプレスすることができた。金型内で90秒間放置した後、脱型した。コールドプレスであるので、脱型は非常に容易であった。
(Example 2)
A 34 μm-thick film using a flat plate press heated at 200 ° C. with pellets of a copolymerized polyamide resin (“Amilan” (registered trademark) CM4000 manufactured by Toray Industries, Inc., polyamide 6/66/610 copolymer, melting point 155 ° C.) Processed into a shape. The viscosity of the polyamide resin in an atmosphere at 25 ° C. was a solid and could not be measured, and the substrate had no tackiness. A prepreg base material was prepared in the same manner as in Example 1 except that the release paper was not used. A cut was introduced into the prepreg base material in the same manner as in Example 1 to obtain a cut prepreg base material, and then a laminate was obtained in the same manner as in Example 1. However, since there was no tack, the laminate was not integrated and was simply in a state of 16 layers. The temperature of a double-sided mold similar to that in Example 1 is controlled at 70 ° C. On the other hand, the laminate was placed in an oven heated to 200 ° C., taken out when the surface temperature reached 160 ° C., placed on the lower mold, and clamped at once. The press pressure at this time was adjusted so that the pressure divided by an area of 300 × 200 mm was 6 MPa. Since the laminate was made smaller than the cavity, it could be placed easily and cold-pressed before the temperature of the laminate fell. After leaving in the mold for 90 seconds, the mold was removed. Since it was a cold press, demolding was very easy.

積層体はキャビティより小さかったものの隅々まで繊維が流動し、成形型の外形上に沿ったダブルコンター部を複数有する繊維強化プラスチックを得ることができた。3次元形状であることから、高剛性で軽量な繊維強化プラスチックとなった。ダブルコンター部だけでなく全体的に伸張され、切り込みにより分断された繊維束端部間に存在する切り込み開口部と、繊維長さLcが30mm、幅Wsが11〜15mm程度の分布を持つ短冊状の繊維束が全体的に分布していた。若干、層間にボイドがみられたため、実施例1よりは力学特性に優れない可能性はあるものの、本発明を用いて極めてサイクルタイムの早い成形を実証することができた。   Although the laminate was smaller than the cavity, the fiber flowed to every corner, and a fiber reinforced plastic having a plurality of double contour portions along the outer shape of the mold could be obtained. Because of its three-dimensional shape, it became a highly rigid and lightweight fiber-reinforced plastic. Not only a double contour part, but also a strip-shaped opening that is stretched as a whole and cut between the fiber bundle ends divided by cutting, and has a fiber length Lc of 30 mm and a width Ws of about 11 to 15 mm. Fiber bundles were distributed throughout. Although some voids were observed between the layers, molding with extremely fast cycle time could be demonstrated using the present invention, although the mechanical properties may not be superior to those of Example 1.

(実施例3)
実施例1と同様にして、プリプレグ基材を作製した。このプリプレグ基材に、自動裁断機を用いて図8に示すような繊維から10°の方向の直線的な切り込みを連続的に挿入した。こうして得たプリプレグ基材を図17に示すように繊維方向が同一で切り込みが交差するように(10°と−10°方向に)2枚表裏に重ねて積層し、連続的な切り込みによりプリプレグ基材がばらばらになるのを防いだ。この2層積層体を8セットそれぞれの方向に矩形(270×180mm)に切り出し、疑似等方([45/45/0/0/−45/−45/90/90])に積層し、270×180mmの平板状の積層体を得た。次に、実施例1と同様にして成形を行い、繊維強化プラスチックを得た。
(Example 3)
In the same manner as in Example 1, a prepreg base material was produced. A linear notch in a direction of 10 ° was continuously inserted into the prepreg base material from the fiber as shown in FIG. 8 using an automatic cutter. As shown in FIG. 17, the prepreg base material thus obtained was laminated on the front and back so that the fiber directions were the same and the cuts intersected (in the directions of 10 ° and −10 °), and the prepreg base was formed by continuous cutting. Prevented the material from falling apart. This two-layer laminate was cut into rectangles (270 × 180 mm) in the direction of each of eight sets, and laminated in a pseudo isotropic manner ([45/45/0/0 / −45 / −45 / 90/90] S ). A flat laminate of 270 × 180 mm was obtained. Next, molding was performed in the same manner as in Example 1 to obtain a fiber reinforced plastic.

得られた繊維強化プラスチックは、実施例1と同様に、設計どおりの形状に成形された。表面の切り込み部においても、ほとんど切り込み開口部が見られず、強化繊維が存在せずに樹脂リッチとなっている領域や、隣接層の強化繊維が除いている領域はほとんどなく、良好な外観品位と平滑性を得た。繊維方向は積層体を配置したときから回転しており、その回転により切り込み開口部を埋め、平滑な繊維強化プラスチックとなったと推測された。   The obtained fiber reinforced plastic was molded into a shape as designed in the same manner as in Example 1. Even in the cut portion on the surface, almost no cut opening is seen, and there is almost no region where the reinforcing fiber is not present and the resin is rich, or the reinforcing fiber of the adjacent layer is excluded, and the appearance quality is good. And obtained smoothness. The fiber direction was rotated from the time when the laminated body was arranged, and it was assumed that the rotation cut the filling opening and became a smooth fiber reinforced plastic.

(実施例4)
実施例1と同様にして、プリプレグ基材を作成した。このプリプレグ基材に、自動裁断機を用いて図9に示すような繊維から20°の方向に、1mmの直線状の切り込みを断続的に挿入することで、切り込みを強化繊維の垂直方向に投影した投影長さWsを0.34mmとした。対になる切り込み4d、4dにより、繊維は分断され、得られた切込プリプレグ基材の全面で繊維長さLは30mmとなった。こうして得られた切込プリプレグ基材を実施例1と同様に切り出し、積層、成形を行って繊維強化プラスチックを得た。
Example 4
A prepreg base material was prepared in the same manner as in Example 1. By using an automatic cutting machine, a 1 mm linear cut is intermittently inserted into the prepreg base material in the direction of 20 ° from the fiber as shown in FIG. 9 to project the cut in the vertical direction of the reinforcing fiber. The projected length Ws was 0.34 mm. The fibers were cut by the pair of cuts 4d 1 and 4d 2 , and the fiber length L was 30 mm over the entire surface of the obtained cut prepreg base material. The cut prepreg base material thus obtained was cut out in the same manner as in Example 1, laminated and molded to obtain a fiber reinforced plastic.

得られた繊維強化プラスチックは、図12b)のように、繊維3が若干うねりながら、切り込み開口部18を埋め、表面にほとんど切り込み開口部18が見られず、切り込みがあったことさえ、見分けがつかないほど良好な外観品位と平滑性を得た。   As shown in FIG. 12 b), the obtained fiber-reinforced plastic filled the cut opening 18 while the fiber 3 was slightly swelled, and the cut opening 18 was hardly seen on the surface. Good appearance quality and smoothness were obtained.

(実施例5)
図13のような成形装置を用いて、楕円形の弁当箱の蓋のような形状の繊維強化プラスチックを成形した。実施例1と同様にして、プリプレグ基材を作製し、切り込みを導入して切込プリプレグ基材を作製、積層一体化して積層体12を作製した。
(Example 5)
Using a molding apparatus as shown in FIG. 13, a fiber reinforced plastic shaped like a lid of an elliptical lunch box was molded. In the same manner as in Example 1, a prepreg base material was produced, a cut was introduced, a cut prepreg base material was produced, and laminated and integrated to produce a laminate 12.

成形型としては、図13に示した最終形状をかたどった凸部(ダブルコンター部25)と、その周りに溝33を設けた片面型28cを用意した。片面型28cの周囲にはシーラント31を配し、また、真空ポンプと連結したポリアミド製の耐熱チューブをシーラント31上に配置し脱気口26とし、150℃に温度制御されたオーブン内で加熱した。片面型28cが150℃一定となったところで、凸部の表面積よりも小さな積層体12を凸部上の略中央に配置し、すばやく伸縮性のシリコンラバーフィルム32を被せてシーラント31で密着させ、フィルム32と型28c間に密閉空間30を形成した。と同時に、真空ポンプを起動させ、真空引き38を行い、脱気口26から排気して、外気と密閉空間30との差圧(約0.1MPa)で軟化した積層体12を伸張させ型28cに押し付けて、ホットドレープ成形した。溝33の存在により、フィルム32がしっかり凸部の根元まで形状に沿い、凸部の根元までしっかり圧力が加わった。30分間オーブン内に放置した後、オーブンから成形装置全体を取り出し、フィルム32を破って、繊維強化プラスチックを型28cから脱型した。   As a forming die, a single-sided die 28c having a convex portion (double contour portion 25) shaped like the final shape shown in FIG. 13 and a groove 33 around it was prepared. A sealant 31 is arranged around the single-sided mold 28c, and a polyamide heat-resistant tube connected to a vacuum pump is disposed on the sealant 31 to form a deaeration port 26, which is heated in an oven controlled at 150 ° C. . When the single-sided mold 28c becomes constant at 150 ° C., the laminated body 12 smaller than the surface area of the convex portion is disposed at the approximate center on the convex portion, and the elastic silicone rubber film 32 is quickly put on and closely adhered with the sealant 31. A sealed space 30 was formed between the film 32 and the mold 28c. At the same time, the vacuum pump is activated, the vacuum 38 is performed, the exhaust air is exhausted from the deaeration port 26, and the laminated body 12 softened by the differential pressure (about 0.1 MPa) between the outside air and the sealed space 30 is expanded to form the mold 28c. To form a hot drape. Due to the presence of the grooves 33, the film 32 was firmly in the shape up to the base of the convex portion, and pressure was firmly applied to the base of the convex portion. After leaving in the oven for 30 minutes, the entire molding apparatus was taken out of the oven, the film 32 was broken, and the fiber reinforced plastic was removed from the mold 28c.

積層体12は得られた繊維強化プラスチックよりも小さな平板状であったものの、設計どおり楕円形の弁当箱の蓋のような形状の繊維強化プラスチックを得ることができた。実施例1、2と比べると成形の圧力が小さいため、大きくは伸張していないものの、ダブルコンター部の形状はきれいに転写されており、表面品位のよい繊維強化プラスチックを得ることができた。   Although the laminated body 12 had a flat plate shape smaller than the obtained fiber reinforced plastic, a fiber reinforced plastic having a shape like an elliptical lunch box lid could be obtained as designed. Since the molding pressure was smaller than in Examples 1 and 2, the double contour part was clearly transferred, although it was not greatly expanded, and a fiber-reinforced plastic with good surface quality could be obtained.

(実施例6)
図14のような成形型を用いて、図1c)のような500×500mmの正方形の平板上にダブルコンター部(直径350mmの円を境界線として、R800mmの球が頭を出した形状)が中央に設けられた繊維強化プラスチックを成形した。
(Example 6)
Using a mold as shown in FIG. 14, a double contour part (a shape in which an R800 mm sphere protrudes from a circle with a diameter of 350 mm as a boundary line) on a square plate of 500 × 500 mm as shown in FIG. A fiber reinforced plastic provided in the center was molded.

実施例1と同様にして、プリプレグ基材を作製し、まず0°および45°の方向に500×500mmの正方形に切り出した。正方形の中央部に直径360mmの範囲内に実施例1と同様の切り込みを入れ、繊維長が実質的に25mmの強化繊維のみで構成される領域を形成した。実施例1と同様に[45/0/−45/90]2Sの積層構成で16層積層し、500×500mmの平板状の積層体を得た。25mmの強化繊維のみで構成される領域は各層すべて重なっており、図1a)のように積層体の中央部直径360mmの範囲内に不連続部37を形成した。 A prepreg base material was produced in the same manner as in Example 1, and first cut into 500 × 500 mm squares in the directions of 0 ° and 45 °. A notch similar to that in Example 1 was cut in the center of the square in a range of 360 mm in diameter to form a region composed of only reinforcing fibers having a fiber length of substantially 25 mm. 16 layers were laminated | stacked by the laminated structure of [45/0 / -45 / 90] 2S similarly to Example 1, and the flat laminated body of 500x500 mm was obtained. A region composed only of 25 mm reinforcing fibers overlapped with each other, and a discontinuous portion 37 was formed in the range of the central portion diameter of 360 mm of the laminate as shown in FIG. 1a).

成形型は上型28a、下型28bとともに、スプリング27で支持された分割型28dから形成されている。下型28bはダブルコンター部25のみの形状を決定する型であり、分割型28dは下型28bが上型28aにアクセスできるように平板を円形にくり抜いた形状であり、平板部の形状を決定する型である。分割型28dはスプリングで支えられ、型が開いている時は、下型28bより上方にある。成形型全体を実施例1と同様に150℃で温度制御し、積層体12を分割型28d上に配置した。この際、積層体12の大きさとキャビティの大きさが一緒のため、精度よく位置決めして配置した。次に上型28aを降ろし、まず積層体12の周囲および分割型28dと接触させた。積層体12の周囲は連続繊維が配された領域36であり、繊維が流動しにくいため、領域36の繊維はこの段階で固定され、積層体12の伸張の起点となった。さらに上型28aを押し込むことで、下型28bと上型28aによりダブルコンター部25の形状が決定され、成形型のキャビティが閉じられた。このときのプレス圧は、500×500mmの面積で割り返した圧力が6MPaとなるよう、調節した。実施例1と同様に、金型内で30分間放置した後、繊維強化プラスチックを脱型した。   The molding die is formed of a split die 28d supported by a spring 27 together with an upper die 28a and a lower die 28b. The lower die 28b is a die that determines the shape of only the double contour portion 25, and the split die 28d is a shape in which a flat plate is hollowed out so that the lower die 28b can access the upper die 28a, and the shape of the flat plate portion is determined. The type to be. The split mold 28d is supported by a spring, and is above the lower mold 28b when the mold is open. The temperature of the entire mold was controlled at 150 ° C. in the same manner as in Example 1, and the laminate 12 was placed on the split mold 28d. At this time, since the size of the laminate 12 and the size of the cavity were the same, the laminate 12 was positioned with high precision. Next, the upper die 28a was lowered, and first, it was brought into contact with the periphery of the laminate 12 and the split die 28d. The periphery of the laminate 12 is a region 36 in which continuous fibers are arranged, and the fibers hardly flow. Therefore, the fibers in the region 36 are fixed at this stage and become the starting point of the extension of the laminate 12. Further, by pushing the upper die 28a, the shape of the double contour part 25 was determined by the lower die 28b and the upper die 28a, and the cavity of the molding die was closed. The pressing pressure at this time was adjusted so that the pressure divided by an area of 500 × 500 mm was 6 MPa. In the same manner as in Example 1, the fiber-reinforced plastic was removed from the mold after being left in the mold for 30 minutes.

成形型の外形上に沿ったダブルコンター部を有する維強化プラスチックを得ることができた。実施例1と同様に表面品位はよく、ダブルコンター部のみが伸張され、切り込みにより分断された繊維束端部間に存在する切り込み開口部と、繊維長さLcが30mm、幅Wsが11〜15mm程度の分布を持つ短冊状の繊維束がダブルコンター部に集中して分布していた。また、積層体12の周辺部はほとんど流動しておらず、キャビティ通り成形され、トリムレスで繊維強化プラスチックが得られた。   A fiber reinforced plastic having a double contour portion along the outer shape of the mold could be obtained. Similar to Example 1, the surface quality is good, only the double contour part is stretched, the notch opening existing between the fiber bundle ends divided by the notch, the fiber length Lc is 30 mm, and the width Ws is 11 to 15 mm. Strip-like fiber bundles with a degree of distribution were concentrated in the double contour part. Moreover, the peripheral part of the laminated body 12 hardly flowed, it was molded according to the cavity, and a fiber-reinforced plastic was obtained without trim.

(実施例7)
図18b)のような150×150×20mmの直方体の弁当箱の蓋のような繊維強化プラスチック16を両面型でホットプレス成形した。実施例1と同様のプリプレグ基材を用いて、実施例4と同様の、図9に示すような繊維から20°の方向に、1mmの直線状の切り込み(Wsは0.34mm)を入れ、全面で繊維長さLが30mmとなる切込プリプレグ基材を作成した。こうして得られた切込プリプレグ基材を矩形(190×150mm)に切り出し、[45/0/−45/90]2Sの積層構成で16層積層し、180×150mmの平板状の積層体を得た。次に、成形型の下型28b上に平板状の積層体を配置し、80℃に温度制御したアイロンを押し当てて、該積層体をR部で15mmずつ折り返してコの字型とした。このようにして得られたシングルコンター形状に予備賦形した積層体12を下型28bから取り外した後、成形型を150℃に温度制御した。成形型が上下型とも150℃となったところで、図18a)のように改めて予備賦形した積層体12を下型28bに配置し、型締めして、150×150mmの面積で割り返した圧力が6MPaとなるようなプレス圧を加え、繊維強化プラスチック16を30分後に脱型した。
(Example 7)
A fiber reinforced plastic 16 like a lid of a 150 × 150 × 20 mm rectangular lunch box as shown in FIG. Using the same prepreg base material as in Example 1, a straight cut of 1 mm (Ws is 0.34 mm) is made in the direction of 20 ° from the fiber as shown in FIG. A cut prepreg base material having a fiber length L of 30 mm over the entire surface was prepared. The cut prepreg base material thus obtained was cut into a rectangle (190 × 150 mm) and laminated in a [45/0 / −45 / 90] 2S laminate structure to obtain a flat laminate of 180 × 150 mm. It was. Next, a flat laminate was placed on the lower die 28b of the mold, and an iron whose temperature was controlled at 80 ° C. was pressed, and the laminate was folded back by 15 mm at the R portion to form a U-shape. After removing the laminated body 12 pre-shaped in the single contour shape thus obtained from the lower mold 28b, the temperature of the mold was controlled at 150 ° C. When both the upper and lower molds reached 150 ° C., the pre-shaped laminate 12 as shown in FIG. 18 a) was placed in the lower mold 28 b, and the mold was clamped, and the pressure was divided by an area of 150 × 150 mm. A pressure of 6 MPa was applied, and the fiber reinforced plastic 16 was demolded after 30 minutes.

得られた繊維強化プラスチック16は、図18b)に示すように2つの立ち面も含め良好に繊維が充填していた。予備賦形により2つの立ち面を埋めていたため、積層体12の伸張方向が制御され、安定した品質の繊維強化プラスチック16が得られたものと推測された。さらに、成形時に充填した立ち面と平面の角におけるR部断面40を観察したところ、図19のように、成形時に充填されたにもかかわらず、平面と変わらない積層構造(若干のうねりを含む)が生成されていた。特に、奥行きが繊維配向方向の層41について、R部において局所的に層厚みが厚く偏肉された領域42が存在した。これにより繊維強化プラスチック16全体の曲げ剛性が向上すると推測された。   The obtained fiber reinforced plastic 16 was satisfactorily filled with fibers including two standing surfaces as shown in FIG. 18b). Since two standing surfaces were filled by the pre-shaping, it was assumed that the extension direction of the laminated body 12 was controlled, and the fiber-reinforced plastic 16 having a stable quality was obtained. Further, when the R-section cross section 40 at the corner of the standing surface and the plane filled at the time of molding was observed, a laminated structure (including some undulations) that did not change from the plane despite being filled at the time of molding as shown in FIG. ) Was generated. In particular, with respect to the layer 41 whose depth is in the fiber orientation direction, there was an uneven region 42 where the layer thickness was locally thick at the R portion. Thereby, it was estimated that the bending rigidity of the whole fiber reinforced plastic 16 improved.

(実施例8)
図20c)のようなドーナツ形状の窓枠のような繊維強化プラスチック16を片面型でオートクレーブ成形した。実施例1と同様のプリプレグ基材を用いて、実施例4と同様の、図9に示すような繊維から20°の方向に、1mmの直線状の切り込み(Wsは0.34mm)を入れ、全面で繊維長さLが30mmとなる切込プリプレグ基材を作成した。こうして得られた切込プリプレグ基材を、繊維強化プラスチック16の外形線に沿って裁断し、積層して積層体を作成し、繊維強化プラスチックを成形した後、中央部をトリミングしてもよいが、歩止まりが悪いので、図20a)のようなカットパターンで切込プリプレグ基材の突き合わせ位置39が斜めとなるように切込プリプレグ基材10を裁断し、切込プリプレグ基材10をドーナツ形状に積層し、平板状の積層体12を得た。積層構成は[45/0/−45/90]2Sである。こうして得た積層体12を成形後の繊維強化プラスチックの最終形状をかたどった凸部を設けた片面型上に配した。片面型の周囲にはシーラントを配し、バッグフィルムを被せて、バッグフィルムと片面型間に密閉空間を形成した。密閉空間にアクセスする金属ホースを取り付け、真空ポンプで減圧した状態で、この成形型をオートクレーブ内に搬入し、150℃、2時間の条件で、密閉空間とオートクレーブ雰囲気の差圧が0.3MPaのとなるようにしてオートクレーブ成形し、脱型して図20c)のような繊維強化プラスチック16を得た。
(Example 8)
A fiber-reinforced plastic 16 like a donut-shaped window frame as shown in FIG. 20c) was autoclaved with a single-sided mold. Using the same prepreg base material as in Example 1, a straight cut of 1 mm (Ws is 0.34 mm) is made in the direction of 20 ° from the fiber as shown in FIG. A cut prepreg base material having a fiber length L of 30 mm over the entire surface was prepared. The cut prepreg base material obtained in this way may be cut along the outline of the fiber reinforced plastic 16 and laminated to create a laminate, and after molding the fiber reinforced plastic, the center portion may be trimmed. Since the yield is poor, the cut prepreg base material 10 is cut in a cut pattern as shown in FIG. 20a) so that the abutting position 39 of the cut prepreg base material is oblique, and the cut prepreg base material 10 is formed into a donut shape. And a flat laminate 12 was obtained. The stack configuration is [45/0 / −45 / 90] 2S . The laminate 12 thus obtained was placed on a single-sided mold provided with a convex portion that shaped the final shape of the fiber-reinforced plastic after molding. A sealant was placed around the single-sided mold, and the bag film was covered to form a sealed space between the bag film and the single-sided mold. Attach a metal hose that accesses the sealed space and reduce the pressure with a vacuum pump. Then, the mold is carried into the autoclave, and the differential pressure between the sealed space and the autoclave atmosphere is 0.3 MPa at 150 ° C. for 2 hours. Then, autoclave molding was performed and the mold was removed to obtain a fiber reinforced plastic 16 as shown in FIG. 20c).

得られた繊維強化プラスチック16は、表面品位よく、切り込みがあったことさえ、見分けがつかないほど良好な外観品位と平滑性を得た。また、断面を切り出してみてもオートクレーブにより加圧したためボイドが見られず、高い力学特性を発現すると推測された。   The obtained fiber reinforced plastic 16 obtained good appearance quality and smoothness so as to be indistinguishable even when the surface quality was good and even the cut was made. Moreover, even if it cut out the cross section, since it pressurized with the autoclave, a void was not seen but it was estimated that high mechanical characteristics were expressed.

(参考例1)
実施例1の繊維強化プラスチックが高力学特性であることを、繊維強化プラスチックの平板で実証した。実施例1と同様にして、プリプレグ基材を作製し、切り込みを導入して切込プリプレグ基材を作製した。炭素繊維の配向方向(0°方向)と、炭素繊維の配向方向から右に45度ずらした方向(45°方向)に、それぞれ250×250mmの大きさのサイズに切出した。切り出したプリプレグ基材を16層で疑似等方に積層して([45/0/−45/90]2S)、積層体を得た。
(Reference Example 1)
The fiber-reinforced plastic flat plate of Example 1 demonstrated that the fiber-reinforced plastic of Example 1 has high mechanical properties. A prepreg base material was prepared in the same manner as in Example 1, and a cut was introduced to prepare a cut prepreg base material. Each of the carbon fiber was cut into a size of 250 × 250 mm in the orientation direction of the carbon fiber (0 ° direction) and the direction shifted 45 degrees to the right from the orientation direction of the carbon fiber (45 ° direction). The cut prepreg base material was laminated in a pseudo isotropic manner with 16 layers ([45/0 / −45 / 90] 2S ) to obtain a laminate.

さらに、上記の積層体を用いて、300×300mmのキャビティを有する平板金型上の概中央部に配置した後、加熱型プレス成形機により、6MPaの加圧のもと、150℃×30分間の条件により硬化せしめ、300×300mmの平板状の繊維強化プラスチックを得た。   Furthermore, after arrange | positioning in the approximate center part on the flat plate metal mold | die which has a cavity of 300x300mm using said laminated body, it is 150 degreeC x 30 minutes under the pressurization of 6 MPa with a heating type press molding machine. The plate was hardened under the above conditions to obtain a flat fiber reinforced plastic of 300 × 300 mm.

得られた平板状の繊維強化プラスチックより、長さ250±1mm、幅25±0.2mmの引張強度試験片を切り出した。JIS K−7073(1998)に規定する試験方法に従い、標点間距離を150mmとし、クロスヘッド速度2.0mm/分で引張強度を測定した。なお、本参考例においては、試験機としてインストロン(登録商標)万能試験機4208型を用いた。測定した試験片の数はn=5とし、平均値を引張強度とした。さらに、測定値より標準偏差を算出し、その標準偏差を平均値で除することにより、バラツキの指標である変動係数(CV値(%))を算出した。引張弾性率は43GPa、引張強度に関しても370MPaと高い値が発現し、そのCV値も3%ときわめてバラツキの小さい結果となった。   A tensile strength test piece having a length of 250 ± 1 mm and a width of 25 ± 0.2 mm was cut out from the obtained flat fiber-reinforced plastic. According to the test method specified in JIS K-7073 (1998), the tensile strength was measured at a crosshead speed of 2.0 mm / min with a distance between the gauge points of 150 mm. In this reference example, an Instron (registered trademark) universal testing machine 4208 type was used as a testing machine. The number of test pieces measured was n = 5, and the average value was the tensile strength. Further, a standard deviation was calculated from the measured value, and the standard deviation was divided by an average value, thereby calculating a variation coefficient (CV value (%)) as an index of variation. The tensile elastic modulus was 43 GPa, the tensile strength was as high as 370 MPa, and the CV value was 3%, which was a very small variation.

繊維強化プラスチックは端部まで繊維が均等に流動しており、実施例1と同様に繊維長さLcが30mm、幅Wsが11〜15mm程度の分布を持つ短冊状の繊維束が表面全体にほぼ均等に分布していたことから、実施例1で得られた繊維強化プラスチックも高力学特性を発現することが予想された。   In the fiber reinforced plastic, the fibers are evenly flowed to the end, and like the first embodiment, a strip-like fiber bundle having a distribution with a fiber length Lc of 30 mm and a width Ws of about 11 to 15 mm is almost on the entire surface. Since it was evenly distributed, it was expected that the fiber reinforced plastic obtained in Example 1 would also exhibit high mechanical properties.

(参考例2)
実施例3の繊維強化プラスチックが高力学特性であることを、繊維強化プラスチックの平板で実証した。実施例3と同様にして、2層積層体を得た。この2層積層体から、炭素繊維の配向方向(0°方向)と、炭素繊維の配向方向から右に45度ずらした方向(45°方向)に、それぞれ250×250mmの大きさに切り出し、2層積層体を8枚それぞれの方向に疑似等方([45/45/0/0/−45/−45/90/90])に積層して、全面に切り込みを有する250×250mmの積層体を得た。
(Reference Example 2)
The fiber reinforced plastic of Example 3 demonstrated high mechanical properties with a fiber reinforced plastic flat plate. In the same manner as in Example 3, a two-layer laminate was obtained. From this two-layer laminate, cut into a size of 250 × 250 mm in each of a carbon fiber orientation direction (0 ° direction) and a direction shifted to the right by 45 degrees from the carbon fiber orientation direction (45 ° direction). A layer stack of 8 layers is laminated in a pseudo isotropic manner ([45/45/0/0 / -45 / -45 / 90/90] S ) in each direction, and a 250 × 250 mm laminate having a notch on the entire surface. Got the body.

こうして得られた積層体を参考例1と同様にしてホットプレス成形し、平板の繊維強化プラスチックを得た。得られた繊維強化プラスチックを参考例1と同様に引張試験した。引張弾性率は46GPa、引張強度に関しても470MPaと高い値が発現し、そのCV値も4%ときわめてバラツキの小さい結果となった。   The laminate thus obtained was hot press molded in the same manner as in Reference Example 1 to obtain a flat fiber reinforced plastic. The obtained fiber reinforced plastic was subjected to a tensile test in the same manner as in Reference Example 1. The tensile modulus was 46 GPa and the tensile strength was as high as 470 MPa, and the CV value was 4%, which was very small.

繊維強化プラスチックは端部まで繊維が均等に流動しており、表面にほとんど切り込み開口部が見られず、繊維方向も積層体を配置したときから回転している様子も実施例3と同様であるため、実施例3で得られた繊維強化プラスチックも高力学特性を発現することが予想された。   In the fiber reinforced plastic, the fibers are flowing evenly to the end, almost no cut openings are seen on the surface, and the fiber direction is the same as in Example 3 in the state of rotation from the time when the laminate is arranged. For this reason, the fiber reinforced plastic obtained in Example 3 was also expected to exhibit high mechanical properties.

(参考例3)
実施例4の繊維強化プラスチックが高力学特性であることを、平板で実証した。実施例4と同様にして、切込プリプレグ基材を得、参考例1と同様にして切り出し、積層、ホットプレス成形した。得られた繊維強化プラスチックを参考例1と同様に引張試験したところ、引張弾性率は46GPa、引張強度は620MPaと高い値が発現し、そのCV値も4%ときわめてバラツキの小さい結果となった。繊維強化プラスチックは端部まで繊維が均等に流動しており、繊維が若干うねりながら、切り込み開口部を埋め、表面にほとんど切り込み開口部が見られず、切り込みがあったことさえ、見分けがつかない様子も実施例4と同様であるため、実施例4で得られた繊維強化プラスチックも高力学特性を発現することが予想された。
(Reference Example 3)
It was demonstrated on a flat plate that the fiber reinforced plastic of Example 4 has high mechanical properties. A cut prepreg base material was obtained in the same manner as in Example 4, cut out in the same manner as in Reference Example 1, laminated, and hot press molded. When the obtained fiber reinforced plastic was subjected to a tensile test in the same manner as in Reference Example 1, the tensile elastic modulus was 46 GPa, the tensile strength was as high as 620 MPa, and the CV value was 4%, which was a very small variation. . In fiber reinforced plastic, fibers flow evenly to the end, filling the cut openings while the fibers swell slightly, there are almost no cut openings on the surface, and even the cuts are indistinguishable Since the appearance is the same as in Example 4, it was expected that the fiber reinforced plastic obtained in Example 4 would also exhibit high mechanical properties.

(比較例1)
実施例1と同様に、図15に示す、平板上にダブルコンター部が複数設けられた繊維強化プラスチックを連続繊維プリプレグ基材で成形を試みた。実施例1と同様にして、プリプレグ基材を作製した。こうして得たプリプレグ基材を矩形(270×180mm)に切り出し、[45/0/−45/90]2Sの積層構成で16層積層し、270×180mmの平板状の積層体を得た。次に、実施例1と同様に成形を行った。
(Comparative Example 1)
In the same manner as in Example 1, a fiber reinforced plastic having a plurality of double contour portions provided on a flat plate as shown in FIG. 15 was molded with a continuous fiber prepreg base material. In the same manner as in Example 1, a prepreg base material was produced. The thus obtained prepreg base material was cut into a rectangle (270 × 180 mm), and 16 layers were laminated in a [45/0 / −45 / 90] 2S laminated structure to obtain a plate-like laminate of 270 × 180 mm. Next, molding was performed in the same manner as in Example 1.

得られた繊維強化プラスチックは、簡単に脱型することができ、表面はざらざらで、繊維強化プラスチックが成形型に完全に密着してなかった様子がわかった。繊維が突っ張り、積層体が伸張することができず、成形型に沿わなかったことが原因と推測された。   It was found that the obtained fiber reinforced plastic could be easily removed from the mold, the surface was rough, and the fiber reinforced plastic was not completely adhered to the mold. The reason was presumed that the fibers were stretched and the laminate could not be stretched and did not conform to the mold.

(比較例2)
実施例1と同様に平板上にダブルコンター部が複数設けられた繊維強化プラスチックを積層体にSMCを用いて成形を試みた。SMCのマトリックス樹脂としてビニルエステル樹脂(ダウ・ケミカル(株)製、デラケン790)を100重量部、硬化剤としてtert−ブチルパーオキシベンゾエート(日本油脂(株)製、パーブチルZ)を1重量部、内部離型剤としてステアリン酸亜鉛(堺化学工業(株)製、SZ−2000)を2重量部、増粘剤として酸化マグネシウム(協和化学工業(株)製、MgO#40)を4重量部用いて、それらを十分に混合撹拌し、樹脂ペーストを得た。樹脂ペーストをドクターブレードを用いて、ポリプロピレン製の離型フィルム上に塗布した。その上から、長さ25mmにカットされた炭素繊維束(引張強度4,900MPa、引張弾性率235GPa、12,000本)を単位面積あたりの重量が500g/mになるよう均一に落下、散布した。さらに、樹脂ペーストを塗布したもう一方のポリプロピレンフィルムとで樹脂ペースト側を内にして挟んだ。炭素繊維のSMCシートに対する体積含有量Vfは40%とした。得られたシートを40℃にて24時間静置することにより、樹脂ペーストを十分に増粘化させて、SMCシートを得た。このSMCシートを270×180mmの矩形に切り出し、3枚積層し、積層体を得た。その後は実施例1と同様に成形し、繊維強化プラスチックを得た。
(Comparative Example 2)
In the same manner as in Example 1, a fiber reinforced plastic having a plurality of double contour portions provided on a flat plate was molded using SMC as a laminate. 100 parts by weight of vinyl ester resin (manufactured by Dow Chemical Co., Ltd., Delaken 790) as a matrix resin of SMC, 1 part by weight of tert-butyl peroxybenzoate (manufactured by NOF Corporation, Perbutyl Z) as a curing agent, 2 parts by weight of zinc stearate (manufactured by Sakai Chemical Industry Co., Ltd., SZ-2000) is used as an internal mold release agent, and 4 parts by weight of magnesium oxide (Kyowa Chemical Industry Co., Ltd., MgO # 40) is used as a thickener. Then, they were sufficiently mixed and stirred to obtain a resin paste. The resin paste was applied onto a polypropylene release film using a doctor blade. From there, carbon fiber bundles (tensile strength 4,900 MPa, tensile elastic modulus 235 GPa, 12,000 fibers) cut to a length of 25 mm are uniformly dropped and dispersed so that the weight per unit area is 500 g / m 2. did. Further, it was sandwiched between the other polypropylene film coated with the resin paste with the resin paste side inward. The volume content Vf of the carbon fiber with respect to the SMC sheet was 40%. The obtained sheet was allowed to stand at 40 ° C. for 24 hours, thereby sufficiently thickening the resin paste to obtain an SMC sheet. This SMC sheet was cut into a rectangle of 270 × 180 mm, and three sheets were laminated to obtain a laminate. Thereafter, molding was performed in the same manner as in Example 1 to obtain a fiber-reinforced plastic.

得られた繊維強化プラスチックはキャビティの端部まで繊維が十分に流動していた。ソリはなかったが、表面に繊維の粗密による若干のヒケが見られた。また、Vfが40%であることから、強度も実施例1ほどは得られないと推測された。   In the obtained fiber reinforced plastic, fibers sufficiently flowed to the end of the cavity. Although there was no warp, some sink marks due to the density of the fibers were observed on the surface. Further, since Vf was 40%, it was estimated that the strength was not as high as that of Example 1.

本発明の繊維強化プラスチックの製造方法の一例を示す図である。It is a figure which shows an example of the manufacturing method of the fiber reinforced plastic of this invention. 本発明に用いる切込プリプレグ基材の一例を示す拡大平面図である。It is an enlarged plan view which shows an example of the cutting prepreg base material used for this invention. 本発明に用いる切込プリプレグ基材の例を示す平面図である。It is a top view which shows the example of the cutting prepreg base material used for this invention. 本発明に用いる積層体の一例を示す平面図および断面図である。It is the top view and sectional drawing which show an example of the laminated body used for this invention. 本発明に用いる積層体の流動のメカニズムの一例を示す断面図である。It is sectional drawing which shows an example of the mechanism of the flow of the laminated body used for this invention. 本発明に用いる積層体の切り込み位置関係の例を示す平面図である。It is a top view which shows the example of the cutting positional relationship of the laminated body used for this invention. 本発明に用いる積層体の伸張の様子の一例を示す平面図および断面図である。It is the top view and sectional view which show an example of the mode of extension of the layered product used for the present invention. 本発明に用いる切込プリプレグ基材の一例を示す拡大平面図である。It is an enlarged plan view which shows an example of the cutting prepreg base material used for this invention. 本発明に用いる切込プリプレグ基材の一例を示す拡大平面図である。It is an enlarged plan view which shows an example of the cutting prepreg base material used for this invention. 本発明に用いる切込プリプレグ基材の例を示す平面図である。It is a top view which shows the example of the cutting prepreg base material used for this invention. 本発明に用いる積層体の伸張の様子の一例を示す平面図および断面図である。It is the top view and sectional view which show an example of the mode of extension of the layered product used for the present invention. 本発明に用いる積層体の伸張の様子の一例を示す平面図である。It is a top view which shows an example of the mode of the expansion | extension of the laminated body used for this invention. 本発明の繊維強化プラスチックの製造方法の一例を示す平面図および断面図である。It is the top view and sectional drawing which show an example of the manufacturing method of the fiber reinforced plastics of this invention. 本発明の繊維強化プラスチックの製造方法の一例を示す断面図である。It is sectional drawing which shows an example of the manufacturing method of the fiber reinforced plastics of this invention. 本発明により製造された繊維強化プラスチックの一例を示す概略図である。It is the schematic which shows an example of the fiber reinforced plastic manufactured by this invention. 本発明に用いる切込プリプレグ基材の一例を示す拡大平面図である。It is an enlarged plan view which shows an example of the cutting prepreg base material used for this invention. 本発明に用いる切込プリプレグ基材の形態の一例を示す平面図である。It is a top view which shows an example of the form of the cut prepreg base material used for this invention. 本発明の繊維強化プラスチックの製造方法の一例を示す概略図である。It is the schematic which shows an example of the manufacturing method of the fiber reinforced plastics of this invention. 本発明により製造された繊維強化プラスチックの特徴の一例を示す断面図である。It is sectional drawing which shows an example of the characteristic of the fiber reinforced plastic manufactured by this invention. 本発明の繊維強化プラスチックの製造方法の一例を示す概略図である。It is the schematic which shows an example of the manufacturing method of the fiber reinforced plastics of this invention.

符号の説明Explanation of symbols

1:繊維長手方向
2:繊維直交方向
3:強化繊維
4:強化繊維の不連続端(切り込み)
4a:a層の切り込み
4b:b層の切り込み
4c(4c,4c):連続的な切り込み
4d(4d,4d):断続的な切り込み
5:互いに切り込んでいる幅
6:繊維方向に対になる切り込みの幾何中心同士の間隔L(繊維長さL)
7:断続的な切り込みの列
7a:第1の断続的な切り込みの列
7b:第2の断続的な切り込みの列
7c:第3の断続的な切り込みの列
7d:第4の断続的な切り込みの列
8:切り込みの幾何中心
8a:a層の切り込みの幾何中心
8b:b層の切り込みの幾何中心
9:切り込みを強化繊維の垂直方向に投影した投影長さWs
10:切込プリプレグ基材
10a:全面に切り込みが入れられたプリプレグ基材
10b:一部に切り込みが入れられたプリプレグ基材
11:連続繊維基材のプリプレグ基材
12:積層体
13:積層体に加わる圧力
14:樹脂の流れ
15:強化繊維の端部の開き
16:繊維強化プラスチック
17:短繊維層
18:強化繊維の存在しない領域(切り込み開口部)
19:隣接層
20:樹脂リッチ部
21:層うねり
22:繊維束端部
23:切り込みと繊維方向のなす角度Θ
24:強化繊維の回転
25:ダブルコンター部
26:脱気口
27:スプリング
28:成形型
28a:上型
28b:下型
28c:片面型
28d:分割型
29:成形型のキャビティ
30:密閉された空間
31:シーラント
32:伸縮性のフィルム
33:溝
34:切込プリプレグ基材を2層積層した基材
35:2つの対になる繊維束分断部に囲まれた領域(短冊状の繊維束)
36:連続繊維が配された領域
37:切り込みにより繊維が10〜100mmの長さに分断された切込プリプレグ基材のみが積層されてなる領域(積層体の不連続部)
38:真空引き
39:プリプレグ基材の突き合わせ位置
40:R部断面
41:奥行きが繊維配向方向の層
42:層厚みが厚い領域
1: Fiber longitudinal direction 2: Fiber orthogonal direction 3: Reinforcing fiber 4: Discontinuous end (cutting) of reinforcing fiber
4a: cut in layer a 4b: cut in layer b 4c (4c 1 , 4c 2 ): continuous cut 4d (4d 1 , 4d 2 ): intermittent cut 5: width cut into each other 6: in the fiber direction Distance L (fiber length L) between geometric centers of the pair of cuts
7: Row of intermittent notches 7a: Row of first intermittent cuts 7b: Row of second intermittent cuts 7c: Row of third intermittent cuts 7d: Fourth row of intermittent cuts 8: Geometric center of cut 8a: Geometric center of cut of layer a 8b: Geometric center of cut of layer b 9: Projected length Ws obtained by projecting the cut in the vertical direction of the reinforcing fiber
DESCRIPTION OF SYMBOLS 10: Cut prepreg base material 10a: Pre-preg base material with notches in the entire surface 10b: Pre-preg base material with notches in part 11: Pre-preg base material with continuous fiber base material 12: Laminate body 13: Laminate body 14: Flow of resin 15: Opening of end of reinforcing fiber 16: Fiber reinforced plastic 17: Short fiber layer 18: Area where no reinforcing fiber exists (cut opening)
19: Adjacent layer 20: Resin rich portion 21: Layer waviness 22: Fiber bundle end portion 23: Angle Θ formed by notch and fiber direction
24: Rotation of reinforcing fiber 25: Double contour part 26: Deaeration port 27: Spring 28: Mold 28a: Upper mold 28b: Lower mold 28c: Single-sided mold 28d: Split mold 29: Mold cavity 30: Sealed Space 31: Sealant 32: Stretchable film 33: Groove 34: Base material obtained by laminating two layers of cut prepreg base material 35: Area surrounded by two pairs of fiber bundle splitting portions (strip-shaped fiber bundle)
36: Area where continuous fibers are arranged 37: Area where only the cut prepreg base material in which the fibers are cut into a length of 10 to 100 mm by cutting is laminated (discontinuous part of the laminated body)
38: Vacuum drawing 39: Abutment position of prepreg base material 40: R section cross section 41: Layer whose depth is in the fiber orientation direction 42: Region where layer thickness is thick

Claims (13)

一方向に引き揃えられた強化繊維と熱硬化性樹脂から構成されるプリプレグ基材の積層体をホットプレス成形し、ダブルコンター部を有する繊維強化プラスチックとする、繊維強化プラスチックの製造方法であって、前記プリプレグ基材として、該強化繊維を横切る方向に複数の切り込みによって少なくとも一部の強化繊維を10〜100mmの長さに分断した切込プリプレグ基材を用いて、少なくとも次の(1)〜(3)の工程を順次経て繊維強化プラスチックを成形する、繊維強化プラスチックの製造方法。
(1)前記切込プリプレグ基材を含む複数枚のプリプレグ基材を積層して積層体を得るに際し、少なくとも前記積層体の一部に、前記切り込みにより強化繊維が10〜100mmの長さに分断した切込プリプレグ基材のみが積層されている領域が形成されるように積層し、平板状の積層体を得る積層工程
(2)成形型上に前記積層体を配置し、加熱して軟化させ、前記積層体を前記成形型に押し付けて硬化させ、繊維強化プラスチックとするに際し、前記成形型のダブルコンター部に前記領域を配置し、前記領域を伸張させてダブルコンター部に沿わせて成形する成型工程
(3)前記成形型から前記繊維強化プラスチックを取り出す脱型工程
A method for producing a fiber reinforced plastic, wherein a laminate of a prepreg base material composed of reinforced fibers and a thermosetting resin aligned in one direction is hot press molded into a fiber reinforced plastic having a double contour portion. As the prepreg base material, at least the following (1) to (1), using a notched prepreg base material in which at least some of the reinforcing fibers are divided into a length of 10 to 100 mm by a plurality of cuts in a direction crossing the reinforcing fibers. A method for producing a fiber reinforced plastic, comprising sequentially molding the fiber reinforced plastic through the step (3).
(1) When a laminated body is obtained by laminating a plurality of prepreg base materials including the cut prepreg base material, at least a part of the laminated body is divided into 10 to 100 mm in length by reinforcing the cut. Lamination process (2) to obtain a flat laminate, placing the laminate on a mold and softening by heating so that a region where only the cut prepreg base material is laminated is formed. When the laminate is pressed against the mold and cured to form a fiber reinforced plastic, the region is disposed in the double contour portion of the mold, and the region is stretched and molded along the double contour portion. Molding step (3) Demolding step of taking out the fiber reinforced plastic from the mold
一方向に引き揃えられた強化繊維と熱可塑性樹脂から構成されるプリプレグ基材の積層体をコールドプレス成形し、ダブルコンター部を有する繊維強化プラスチックとする、繊維強化プラスチックの製造方法であって、前記プリプレグ基材として、該強化繊維を横切る方向に複数の切り込みによって少なくとも一部の強化繊維を10〜100mmの長さに分断した切込プリプレグ基材を用いて、少なくとも次の(4)〜(6)の工程を順次経て繊維強化プラスチックを成形する、繊維強化プラスチックの製造方法。
(4)前記切込プリプレグ基材を含む複数枚のプリプレグ基材を積層して積層体を得るに際し、少なくとも前記積層体の一部に、前記切り込みにより強化繊維が10〜100mmの長さに分断した切込プリプレグ基材のみが積層されている領域が形成されるように積層し、平板状の積層体を得る積層工程
(5)前記積層体を加熱して軟化させ、前記積層体よりも低温の成形型上に前記積層体を配置し、前記積層体を成形型に押し付けて固化させ、繊維強化プラスチックとするに際し、前記成型型のダブルコンター部に前記領域を配置し、前記領域を伸張させてダブルコンター部に沿わせて成形する成型工程
(6)前記成形型から前記繊維強化プラスチックを取り出す脱型工程
A method for producing a fiber reinforced plastic, wherein a laminate of a prepreg base material composed of a reinforced fiber and a thermoplastic resin aligned in one direction is cold-pressed to obtain a fiber reinforced plastic having a double contour part, As the prepreg base material, at least the following (4) to (4) are used by using a cut prepreg base material in which at least some of the reinforcing fibers are divided into a length of 10 to 100 mm by a plurality of cuts in a direction across the reinforcing fibers. 6) A method for producing fiber reinforced plastic, wherein fiber reinforced plastic is molded sequentially through the process of 6).
(4) When a laminated body is obtained by laminating a plurality of prepreg base materials including the cut prepreg base material, at least a part of the laminated body is cut into lengths of 10 to 100 mm by the cutting to provide reinforcing fibers. Lamination process (5) to obtain a flat laminate by heating so as to form a region in which only the cut prepreg base material is laminated. The laminate is heated and softened at a lower temperature than the laminate. When the laminate is placed on a mold, and the laminate is pressed against the mold and solidified to form a fiber reinforced plastic, the region is placed in the double contour portion of the mold, and the region is expanded. (6) Demolding process for removing the fiber reinforced plastic from the mold
前記切込プリプレグ基材を構成する強化繊維の全てが前記切り込みにより分断されており、前記切り込みにより分断されている繊維長さLが10〜100mmの範囲内である、請求項1または2に記載の繊維強化プラスチックの製造方法。 All of the reinforced fiber which comprises the said cutting prepreg base material is divided | segmented by the said cutting, The fiber length L divided | segmented by the said cutting is in the range of 10-100 mm, The Claim 1 or 2 Manufacturing method for fiber reinforced plastic. 前記切込プリプレグ基材の切り込みが直線状であり、かつ、該切り込みの長さWが30μm〜100mmであり、断続的かつ周期的に全面にわたって配置されている、請求項1〜3のいずれかに記載の繊維強化プラスチックの製造方法。 The cut of the cut prepreg base material is linear, and the length W of the cut is 30 μm to 100 mm, and is intermittently and periodically disposed over the entire surface. The manufacturing method of the fiber reinforced plastic as described in 2. 前記切込プリプレグ基材が2層以上連続して隣接し、該2層以上の層のうち隣接する任意の2層について、一方の切込プリプレグ基材上の任意の切り込みの幾何中心と他方の切込プリプレグ基材上のいずれの切り込みの幾何中心とも5mm以上離れる様に積層する、請求項1〜4のいずれかに記載の繊維強化プラスチックの製造方法。 The notch prepreg base material is adjacent to two or more layers in succession, and any two adjacent layers of the two or more layers are arranged with respect to the geometric center of any notch on one notch prepreg base material and the other The manufacturing method of the fiber reinforced plastics in any one of Claims 1-4 laminated | stacked so that it may leave | separate 5 mm or more from the geometrical center of any notch on a notch prepreg base material. 前記切り込みが繊維直交方向から傾いている、請求項1〜5のいずれかに記載の繊維強化プラスチックの製造方法。 The manufacturing method of the fiber reinforced plastics in any one of Claims 1-5 in which the said notch inclines from the fiber orthogonal direction. 前記切り込みが強化繊維となす角度Θの絶対値が2〜25°の範囲内である、請求項1〜5のいずれかに記載の繊維強化プラスチックの製造方法。 The manufacturing method of the fiber reinforced plastics in any one of Claims 1-5 whose absolute value of angle (theta) which the said notch makes with a reinforced fiber is in the range of 2-25 degrees. 前記積層体が前記切込プリプレグ基材のみから構成される、請求項1〜7のいずれかに記載の繊維強化プラスチックの製造方法。 The manufacturing method of the fiber reinforced plastics in any one of Claims 1-7 with which the said laminated body is comprised only from the said cut prepreg base material. 前記成形型が片面型であり、該片面型上に前記積層体を配し、前記積層体の上に伸縮性のフィルムを覆って前記積層体を密封し、該密封された空間と外気との差圧により前記積層体を前記片面型に押し付けて成形する、請求項1〜8のいずれかに記載の繊維強化プラスチックの製造方法。 The molding die is a single-sided die, the laminate is disposed on the single-sided die, the stretchable film is covered on the laminate and the laminate is sealed, and the sealed space and the outside air The manufacturing method of the fiber reinforced plastics in any one of Claims 1-8 which press and shape | mold the said laminated body to the said single-sided type | mold with a differential pressure. 前記成形型が2つ以上の型からなり、型締めにより前記積層体を前記成形型に押し付けるに際し、前記積層体が2つの型両方に最初に接触する領域に連続繊維が配されている、請求項1〜8のいずれかに記載の繊維強化プラスチックの製造方法。 The mold comprises two or more molds, and continuous fibers are arranged in a region where the laminate first contacts both of the two molds when the laminate is pressed against the mold by clamping. Item 9. A method for producing a fiber-reinforced plastic according to any one of Items 1 to 8. 前記積層工程後、前記成形工程に先立って、前記積層体を成形後の繊維強化プラスチックの略形状に予備賦形した後、成形型上に前記積層体を配置する、請求項1〜10のいずれかに記載の繊維強化プラスチックの製造方法。 After the said lamination process, prior to the said shaping | molding process, after pre-shaped the said laminated body to the substantially shape of the fiber reinforced plastic after shaping | molding, the said laminated body is arrange | positioned on a shaping | molding die. A method for producing the fiber-reinforced plastic according to claim 1. 前記積層体をシングルコンター形状に予備賦形する、請求項11に記載の繊維強化プラスチックの製造方法。 The manufacturing method of the fiber reinforced plastics of Claim 11 which pre-shapes the said laminated body to a single contour shape. 繊維強化プラスチックの凹凸部において、前記凹凸部の最も曲率の小さな方向から±10°以下の角度に強化繊維が配向した層を他層より厚く偏肉する、請求項1〜12のいずれかに記載の繊維強化プラスチックの製造方法。 In the uneven | corrugated | grooved part of a fiber reinforced plastic, the layer in which the reinforced fiber orientated in the angle of ± 10 degrees or less from the direction with the smallest curvature of the said uneven | corrugated | grooved part is thickened more thickly than another layer. Manufacturing method for fiber reinforced plastic.
JP2008030022A 2007-04-13 2008-02-12 Manufacturing method of fiber-reinforced plastics Pending JP2008279753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008030022A JP2008279753A (en) 2007-04-13 2008-02-12 Manufacturing method of fiber-reinforced plastics

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007105566 2007-04-13
JP2008030022A JP2008279753A (en) 2007-04-13 2008-02-12 Manufacturing method of fiber-reinforced plastics

Publications (1)

Publication Number Publication Date
JP2008279753A true JP2008279753A (en) 2008-11-20

Family

ID=40140971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008030022A Pending JP2008279753A (en) 2007-04-13 2008-02-12 Manufacturing method of fiber-reinforced plastics

Country Status (1)

Country Link
JP (1) JP2008279753A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009286817A (en) * 2008-05-27 2009-12-10 Toray Ind Inc Laminated substrate, fiber-reinforced plastic, and methods for producing them
JP2011020365A (en) * 2009-07-16 2011-02-03 Nippon Steel Chem Co Ltd Copper foil with resin, laminated plate, and printed wiring board
JP2012006216A (en) * 2010-06-24 2012-01-12 Sanko Gosei Ltd Fiber-reinforced resin molded form and shaped form molding method
JP2014030429A (en) * 2013-10-18 2014-02-20 Globeride Inc Fishing line guide
JP2014088487A (en) * 2012-10-30 2014-05-15 Mitsubishi Rayon Co Ltd Method for producing fiber-reinforced plastic
WO2015037570A1 (en) * 2013-09-10 2015-03-19 三菱レイヨン株式会社 Thermoplastic prepreg and laminate
JP2016221885A (en) * 2015-06-01 2016-12-28 富士重工業株式会社 Fiber-reinforced resin structure and manufacturing process thereof
WO2017073460A1 (en) * 2015-10-27 2017-05-04 東レ株式会社 Nicked prepreg, cross-ply laminate, and nicked prepreg production method
WO2017159567A1 (en) * 2016-03-16 2017-09-21 東レ株式会社 Manufacturing method for fiber-reinforced plastic and fiber-reinforced plastic
JP2017171894A (en) * 2016-03-16 2017-09-28 東レ株式会社 Notch prepreg and manufacturing method of notch prepreg
WO2019031478A1 (en) * 2017-08-09 2019-02-14 東レ株式会社 Fiber reinforced plastic and fiber reinforced plastic manufacturing method
CN112873891A (en) * 2019-11-29 2021-06-01 财团法人金属工业研究发展中心 Method for local forming of fiber thermoplastic composite material and method for joining metal

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009286817A (en) * 2008-05-27 2009-12-10 Toray Ind Inc Laminated substrate, fiber-reinforced plastic, and methods for producing them
JP2011020365A (en) * 2009-07-16 2011-02-03 Nippon Steel Chem Co Ltd Copper foil with resin, laminated plate, and printed wiring board
JP2012006216A (en) * 2010-06-24 2012-01-12 Sanko Gosei Ltd Fiber-reinforced resin molded form and shaped form molding method
JP2014088487A (en) * 2012-10-30 2014-05-15 Mitsubishi Rayon Co Ltd Method for producing fiber-reinforced plastic
KR101787627B1 (en) 2013-09-10 2017-10-18 미쯔비시 케미컬 주식회사 Thermoplastic prepreg and laminate
WO2015037570A1 (en) * 2013-09-10 2015-03-19 三菱レイヨン株式会社 Thermoplastic prepreg and laminate
JP5858171B2 (en) * 2013-09-10 2016-02-10 三菱レイヨン株式会社 Thermoplastic prepreg, laminated substrate and molded product
US10604633B2 (en) 2013-09-10 2020-03-31 Mitsubishi Chemical Corporation Thermoplastic prepreg and laminate
JP2014030429A (en) * 2013-10-18 2014-02-20 Globeride Inc Fishing line guide
JP2016221885A (en) * 2015-06-01 2016-12-28 富士重工業株式会社 Fiber-reinforced resin structure and manufacturing process thereof
CN108350201A (en) * 2015-10-27 2018-07-31 东丽株式会社 The manufacturing method of notch prepreg, positive quadraturing laying laminated body and notch prepreg
EP3369768A4 (en) * 2015-10-27 2020-06-17 Toray Industries, Inc. Nicked prepreg, cross-ply laminate, and nicked prepreg production method
US11926074B2 (en) 2015-10-27 2024-03-12 Toray Industries, Inc. Incised prepreg, cross-ply laminate, and production method for incised prepreg
CN113442466A (en) * 2015-10-27 2021-09-28 东丽株式会社 Incision prepreg
CN108350201B (en) * 2015-10-27 2021-07-20 东丽株式会社 Incision prepreg, orthogonal lay-up laminate, and method for producing incision prepreg
US10913236B2 (en) 2015-10-27 2021-02-09 Toray Industries, Inc. Incised prepreg, cross-ply laminate, and production method for incised prepreg
WO2017073460A1 (en) * 2015-10-27 2017-05-04 東レ株式会社 Nicked prepreg, cross-ply laminate, and nicked prepreg production method
JPWO2017159567A1 (en) * 2016-03-16 2019-01-17 東レ株式会社 Manufacturing method of fiber reinforced plastic and fiber reinforced plastic
CN108602284B (en) * 2016-03-16 2021-03-23 东丽株式会社 Method for producing fiber-reinforced plastic and fiber-reinforced plastic
JP2017171894A (en) * 2016-03-16 2017-09-28 東レ株式会社 Notch prepreg and manufacturing method of notch prepreg
CN108602284A (en) * 2016-03-16 2018-09-28 东丽株式会社 The manufacturing method and fibre reinforced plastics of fibre reinforced plastics
WO2017159567A1 (en) * 2016-03-16 2017-09-21 東レ株式会社 Manufacturing method for fiber-reinforced plastic and fiber-reinforced plastic
WO2019031478A1 (en) * 2017-08-09 2019-02-14 東レ株式会社 Fiber reinforced plastic and fiber reinforced plastic manufacturing method
CN112873891A (en) * 2019-11-29 2021-06-01 财团法人金属工业研究发展中心 Method for local forming of fiber thermoplastic composite material and method for joining metal

Similar Documents

Publication Publication Date Title
JP2008279753A (en) Manufacturing method of fiber-reinforced plastics
JP5353099B2 (en) Manufacturing method of fiber reinforced plastic
JP5167953B2 (en) Laminated substrate, fiber reinforced plastic, and production method thereof
JP6222370B2 (en) Manufacturing method of fiber reinforced composite material
JP5315692B2 (en) Manufacturing method of fiber reinforced plastic
JP5272418B2 (en) Cut prepreg base material, composite cut prepreg base material, laminated base material, fiber reinforced plastic, and method for producing cut prepreg base material
US8354156B2 (en) Prepreg base material, layered base material, fiber-reinforced plastic, process for producing prepreg base material, and process for producing fiber-reinforced plastic
JP5223354B2 (en) Cut prepreg base material, laminated base material, fiber reinforced plastic, and method for producing cut prepreg base material
JP5292972B2 (en) Manufacturing method of fiber reinforced plastic
EP0195562B1 (en) Method of producing shaped articles from reinforced composites
JP2009292002A (en) Method of manufacturing fiber-reinforced plastics
NO174335B (en) Method for producing molded articles of plastic composite material
JP2008254425A (en) Manufacturing method for fiber-reinforced plastic
JP2008207544A5 (en)
JPWO2014069503A1 (en) Preform manufacturing method and fiber reinforced resin molded product manufacturing method
JP2008273176A (en) Manufacturing method for fiber-reinforced plastic
JP2010023359A (en) Method of manufacturing laminate
JP5332225B2 (en) Manufacturing method of fiber reinforced composite material
CN112313055A (en) Prepreg sheet and method for producing same, fiber-reinforced composite material molded article and method for producing same, and method for producing preform
WO2020138473A1 (en) Method for manufacturing preform, method for manufacturing composite material molded article, and mold
US20200398461A1 (en) Method of producing fiber-reinforced resin
JP2007146151A (en) Prepreg substrate material, laminated substrate material and fiber-reinforced plastic
JPWO2019031478A1 (en) Fiber-reinforced plastic and method for producing fiber-reinforced plastic
JP7156513B2 (en) METHOD FOR MANUFACTURING FIBER REINFORCED COMPOSITE MOLDED PRODUCT AND PREPREG
JP6409569B2 (en) Manufacturing method of fiber reinforced plastic