JP2008273176A - Manufacturing method for fiber-reinforced plastic - Google Patents

Manufacturing method for fiber-reinforced plastic Download PDF

Info

Publication number
JP2008273176A
JP2008273176A JP2008030021A JP2008030021A JP2008273176A JP 2008273176 A JP2008273176 A JP 2008273176A JP 2008030021 A JP2008030021 A JP 2008030021A JP 2008030021 A JP2008030021 A JP 2008030021A JP 2008273176 A JP2008273176 A JP 2008273176A
Authority
JP
Japan
Prior art keywords
fiber
base material
reinforced plastic
cut
prepreg base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008030021A
Other languages
Japanese (ja)
Inventor
Ichiro Takeda
一朗 武田
Eisuke Wadahara
英輔 和田原
Shigemichi Sato
成道 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2008030021A priority Critical patent/JP2008273176A/en
Publication of JP2008273176A publication Critical patent/JP2008273176A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/20Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/0036Slitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/0081Shaping techniques involving a cutting or machining operation before shaping

Abstract

<P>PROBLEM TO BE SOLVED: To provide a core-shell type fiber-reinforced plastic that is manufactured by using a plastic prepreg having good fluidity and shaping followability to a complex shape, and exhibits excellence in a physical property, its small variation and dimensional stability. <P>SOLUTION: The manufacturing method of the core-shell type fiber-reinforced plastic comprises the shaping process (1) of mounting a laminate of a plurality of prepreg base materials containing a cut prepreg base material, the molding process (2) of arranging the laminate in a shaping mold, softening a thermosetting resin, injecting a foaming resin, foaming the same, curing the same, at the same time extending the laminate under foaming pressure of the foaming resin and pushing the same to the shaping mold to cure and form the core-shell type fiber-reinforced plastic, and the mold-removing process (3) of taking out the fiber-reinforced plastic from the shaping mold, these processes being conducted in this order. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、良好な流動性、成形追従性を有し、繊維強化プラスチックとした場合、優れた力学特性、その低バラツキ性、優れた寸法安定性を発現する、閉形状の鞘部と、該閉形状の内側に設けられるフォーム材から構成される芯部とにより構成した芯鞘構造の繊維強化プラスチックの製造方法に関する。かかる繊維強化プラスチックは、例えば自動車などの輸送機器、自転車などのスポーツ用具等の構造部材に特に好適に用いられる。   The present invention has a good fluidity and molding followability, and when a fiber reinforced plastic is used, a closed-shaped sheath portion that exhibits excellent mechanical properties, low variation, and excellent dimensional stability; The present invention relates to a method for manufacturing a fiber-reinforced plastic having a core-sheath structure constituted by a core portion formed of a foam material provided inside a closed shape. Such fiber reinforced plastics are particularly preferably used for structural members such as transport equipment such as automobiles and sports equipment such as bicycles.

強化繊維と熱硬化性樹脂からなる繊維強化プラスチックは、比強度、比弾性率が高く、力学特性に優れること、耐候性、耐薬品性などの高機能特性を有することなどから産業用途においても注目され、その需要は年々高まりつつある。   Fiber reinforced plastics composed of reinforced fibers and thermosetting resins are attracting attention in industrial applications due to their high specific strength, specific elastic modulus, excellent mechanical properties, and high functional properties such as weather resistance and chemical resistance. The demand is increasing year by year.

繊維強化プラスチックの高い力学特性をより軽量に実現するため、フォーム材からなる芯部と繊維強化プラスチックからなる鞘部とから構成される芯鞘構造をとることが多い。芯部の上下面にのみ鞘部を配することもあるが、特に芯部の周囲に連続して鞘部を配する(例えば、筒形状、壺形状の鞘部が芯部を覆う)ことで、予期せぬ様々な方向からの外荷重にも対応することができ、構造部材に適している。   In order to realize high mechanical properties of fiber reinforced plastics in a lighter weight, a core / sheath structure composed of a core part made of foam material and a sheath part made of fiber reinforced plastic is often adopted. Although a sheath part may be arranged only on the upper and lower surfaces of the core part, in particular, by arranging the sheath part continuously around the core part (for example, a cylindrical shape or a hook-shaped sheath part covers the core part). It can cope with external loads from various unexpected directions and is suitable for structural members.

繊維強化プラスチックの成形方法としては、プリプレグ基材と称される連続した強化繊維に熱硬化性樹脂を含浸せしめた半硬化状態の中間基材を積層し、高温高圧釜で加熱加圧することにより熱硬化性樹脂を硬化させ繊維強化プラスチックを成形するオートクレーブ成形が最も一般的に行われている。また、近年では生産効率の向上を目的として、あらかじめ部材形状に賦形した連続繊維基材に熱硬化性樹脂を含浸および硬化させるRTM(レジントランスファーモールディング)成形等も行われている。これらの成形法により得られた繊維強化プラスチックは、連続繊維である所以優れた力学物性を有する。また、連続繊維は規則的な配列であるため、基材の配置により必要とする力学物性に設計することが可能であり、力学物性のバラツキも小さい。しかしながら、一方で連続繊維である所以3次元形状等の複雑な形状を形成することは難しい、という問題があった。   As a method for molding fiber reinforced plastic, a semi-cured intermediate base material impregnated with a thermosetting resin is laminated on a continuous reinforcing fiber called a prepreg base material, and heat is applied by heating and pressurizing with a high-temperature and high-pressure kettle. Autoclave molding in which a curable resin is cured and a fiber-reinforced plastic is molded is most commonly performed. In recent years, for the purpose of improving production efficiency, RTM (resin transfer molding) molding in which a continuous fiber base previously shaped into a member shape is impregnated with a thermosetting resin and cured has been performed. The fiber reinforced plastics obtained by these molding methods have excellent mechanical properties because they are continuous fibers. Further, since the continuous fibers are regularly arranged, it is possible to design the mechanical properties required by the arrangement of the base material, and the variation in the mechanical properties is small. However, on the other hand, there is a problem that it is difficult to form a complicated shape such as a three-dimensional shape because it is a continuous fiber.

特に、繊維強化プラスチックから構成される閉形状の鞘部と、閉形状の内側に設けられるフォーム材から構成される芯部とにより構成した芯鞘構造では、さらにこの問題は深刻であった。所定の形状に削り出したフォーム材、または、所定の形状に注入発泡して得たフォーム材を芯部としてその上に、強化繊維と熱硬化性樹脂からなるシート基材を賦形しながら積層し、成形を行い、鞘部を形成するなどの方法が考えられるが、削り出しや注入発泡などのフォーム材に予備形状を与える工程を追加すること自体がコスト高であるのに加え、シート基材を一層一層形状に沿って賦形するのは非常に手間がかかり高コストなプロセスとなってしまう。   In particular, this problem is more serious in the case of the core-sheath structure constituted by the closed-shaped sheath part made of fiber-reinforced plastic and the core part made of the foam material provided inside the closed shape. A foam material cut into a predetermined shape or a foam material obtained by injecting and foaming into a predetermined shape is used as a core, and a sheet base material made of reinforcing fibers and a thermosetting resin is laminated on the core. However, it is conceivable to form the sheath portion by molding, but in addition to the cost itself of adding a process for giving a preliminary shape to the foam material, such as cutting or injection foaming, the sheet base Forming the material further along the shape is very laborious and expensive.

上述のような芯鞘構造の繊維強化プラスチックを成形するために、例えば特許文献1のような引抜成形法が開示されている。発泡性樹脂の周りに強化繊維基材を配し、成形型内に引き込みながら、発泡性樹脂を発泡、硬化させフォーム材を形成するとともに繊維強化基材と一体化して芯鞘構造の繊維強化プラスチックを連続的に得ることができる。しかしながら、繊維基材は繊維方向に伸張せず突っ張るため、場所によって繊維基材が型に密着せずに外観品位が低下したり、複雑形状に成形追従できない、という問題があった。
特開平9−169057号公報
In order to form a fiber-reinforced plastic having a core-sheath structure as described above, for example, a pultrusion method as disclosed in Patent Document 1 is disclosed. A fiber reinforced plastic with a core-sheath structure that forms a foam material by foaming and curing the foamable resin while placing a reinforced fiber base around the foamable resin and drawing it into the mold. Can be obtained continuously. However, since the fiber base material is stretched without extending in the fiber direction, there is a problem that the fiber base material does not adhere to the mold depending on the location and the appearance quality is deteriorated or the shape cannot be followed to a complicated shape.
Japanese Patent Laid-Open No. 9-169057

本発明は、かかる従来技術の背景に鑑み、良好な流動性、複雑な形状の成形追従性を有し、繊維強化プラスチックとした場合、優れた力学特性、その低バラツキ性、優れた寸法安定性を発現する、芯鞘構造の繊維強化プラスチックおよびその製造方法を提供することにある。   In view of the background of such prior art, the present invention has excellent fluidity, molding followability of complicated shapes, and excellent mechanical properties, low variability, and excellent dimensional stability when used as a fiber reinforced plastic. Is to provide a fiber-reinforced plastic having a core-sheath structure and a method for producing the same.

本発明は、かかる課題を解決するために、次のような手段を採用するものである。すなわち、
(I)一方向に引き揃えられた強化繊維と熱硬化性樹脂とから構成されるプリプレグ基材を用いて、閉形状の鞘部と、該閉形状の内側に設けられるフォーム材から構成される芯部とにより構成した芯鞘構造の繊維強化プラスチックの製造方法であって、前記プリプレグ基材として、強化繊維を横切る方向に複数の切り込みによって少なくとも一部の強化繊維を10〜100mmの長さに分断した切込プリプレグ基材を用いて、少なくとも次の(1)〜(3)の工程を順次経て繊維強化プラスチックを成形する、繊維強化プラスチックの製造方法。
(1)前記切込プリプレグ基材を含む複数枚のプリプレグ基材を積層した積層体を、繊維強化プラスチックの最終形状の略形状のマンドレル上に設け、繊維強化プラスチックの最終形状よりも小さく賦形した後、マンドレルを脱芯する賦形工程
(2)外型となる成形型内に前記積層体を配置し、加熱して前記積層体の熱硬化性樹脂を軟化させ、前記マンドレルを脱芯した箇所に発泡性樹脂を注入して、発泡、硬化させフォーム材とし、前記芯部を形成すると同時に、前記発泡性樹脂の発泡圧で前記積層体を伸張させ、成形型に押し付けて硬化させ、前記積層体から前記鞘部を形成し、前記鞘部と前記芯部を一体化して、芯鞘構造の繊維強化プラスチックを成形する成形工程
(3)成形型から繊維強化プラスチックを取り出す脱型工程
(II)少なくとも前記積層体の一部に、前記切り込みにより強化繊維が10〜100mmの長さに分断した切込プリプレグ基材のみが積層されている領域が形成されている、(I)に記載の繊維強化プラスチックの製造方法。
The present invention employs the following means in order to solve such problems. That is,
(I) Using a prepreg base material composed of reinforcing fibers aligned in one direction and a thermosetting resin, a closed sheath portion and a foam material provided inside the closed shape A method of manufacturing a fiber-reinforced plastic having a core-sheath structure constituted by a core portion, wherein the prepreg base material has at least a part of reinforcing fibers having a length of 10 to 100 mm by a plurality of cuts in a direction crossing the reinforcing fibers. A method for producing a fiber-reinforced plastic, wherein a fiber-reinforced plastic is molded through at least the following steps (1) to (3) in sequence using the cut prepreg base material.
(1) A laminate in which a plurality of prepreg base materials including the cut prepreg base material are laminated is provided on a substantially shaped mandrel of the final shape of the fiber reinforced plastic, and is shaped smaller than the final shape of the fiber reinforced plastic. After that, the shaping step for decentering the mandrel (2) The laminated body is placed in a molding die which is an outer mold, and the thermosetting resin of the laminated body is softened by heating to decenter the mandrel. Foamed resin is injected into the location, foamed and cured to form a foam material, and at the same time the core is formed, the laminate is stretched with the foaming pressure of the foamable resin, pressed against a mold and cured, Forming the sheath from the laminate, integrating the sheath and the core, and molding the fiber-reinforced plastic having the core-sheath structure (3) Demolding step of taking out the fiber-reinforced plastic from the mold (II) Small The fiber according to (I), wherein a region where only the cut prepreg base material in which the reinforcing fibers are cut into a length of 10 to 100 mm is laminated is formed in a part of the laminate. A method of manufacturing reinforced plastics.

(III)前記切込プリプレグ基材を構成する強化繊維の全てが前記切り込みにより分断されており、前記切り込みにより分断されている繊維長さLが10〜100mmの範囲内である、(I)または(II)に記載の繊維強化プラスチックの製造方法。   (III) All of the reinforcing fibers constituting the cut prepreg base material are cut by the cut, and the fiber length L cut by the cut is in the range of 10 to 100 mm, (I) or The manufacturing method of the fiber reinforced plastic as described in (II).

(IV)前記切込プリプレグ基材の切り込みが直線状であり、かつ、該切り込みを強化繊維の垂直方向に投影した投影長さWsが30μm〜100mmであり、断続的かつ周期的に全面にわたって配置されている、(I)〜(III)のいずれかに記載の繊維強化プラスチックの製造方法。   (IV) The incision of the notched prepreg base material is linear, and the projection length Ws obtained by projecting the incision in the vertical direction of the reinforcing fiber is 30 μm to 100 mm, and is disposed intermittently and periodically over the entire surface. A method for producing a fiber-reinforced plastic according to any one of (I) to (III).

(V)前記切込プリプレグ基材が2層以上連続して隣接し、該2層以上の層のうち隣接する任意の2層について、一方の切込プリプレグ基材上の任意の切り込みの幾何中心と他方の切込プリプレグ基材上のいずれの切り込みの幾何中心とも5mm以上離れる様に積層する、(I)〜(IV)のいずれかに記載の繊維強化プラスチックの製造方法。   (V) The notch prepreg base material is continuously adjacent to two or more layers, and an arbitrary notch geometric center on one notch prepreg base material for any two adjacent layers among the two or more layers. And the other cut prepreg substrate, the fiber-reinforced plastic production method according to any one of (I) to (IV), wherein the layers are laminated so as to be separated from the geometric center of any cut by 5 mm or more.

(VI)前記切り込みが繊維直交方向から傾いている、(I)〜(V)のいずれかに記載の繊維強化プラスチックの製造方法。   (VI) The method for producing a fiber-reinforced plastic according to any one of (I) to (V), wherein the notch is inclined from a direction perpendicular to the fiber.

(VII)前記切り込みが強化繊維となす角度Θの絶対値が2〜25°の範囲内である、(I)〜(V)のいずれかに記載の繊維強化プラスチックの製造方法。   (VII) The method for producing a fiber-reinforced plastic according to any one of (I) to (V), wherein an absolute value of an angle Θ formed by the cut with the reinforcing fiber is in the range of 2 to 25 °.

(VIII)前記積層体が前記切込プリプレグ基材のみから構成される、(I)〜(VII)のいずれかに記載の繊維強化プラスチックの製造方法。   (VIII) The method for producing a fiber-reinforced plastic according to any one of (I) to (VII), wherein the laminate is composed only of the cut prepreg base material.

(IX)前記(1)の賦形工程で用いられる積層体を、前記プリプレグ基材を前記マンドレル上に順次賦形して形成する、(I)〜(VIII)のいずれかに記載の繊維強化プラスチックの製造方法。   (IX) The fiber reinforcement according to any one of (I) to (VIII), wherein the laminate used in the shaping step of (1) is formed by sequentially shaping the prepreg base material on the mandrel. Plastic manufacturing method.

(X)前記(1)の賦形工程で用いられる積層体を、前記プリプレグ基材を平板状に積層して形成した後、前記積層体を前記マンドレル上に賦形する、(I)〜(VIII)のいずれかに記載の繊維強化プラスチックの製造方法。   (X) After forming the laminated body used at the shaping process of said (1) by laminating | stacking the said prepreg base material in flat form, the said laminated body is shaped on the said mandrel, (I)-( The manufacturing method of the fiber reinforced plastic in any one of VIII).

(XI)前記積層体を引き取りながら、前記(1)〜(3)の工程を連続的に実施して筒形状の芯鞘構造の繊維強化プラスチックを得る(I)〜(X)のいずれかに記載の繊維強化プラスチックの製造方法。   (XI) While taking up the laminate, the steps (1) to (3) are continuously performed to obtain a fiber-reinforced plastic having a cylindrical core-sheath structure. The manufacturing method of the fiber reinforced plastic of description.

(XII)前記(2)の成形工程において、連続的に異形状に変化する型に押し付けて異形断面の筒形状の芯鞘構造の繊維強化プラスチックを得る(XI)に記載の繊維強化プラスチックの製造方法。   (XII) In the molding step (2), a fiber-reinforced plastic having a cylindrical core-sheath structure with a deformed cross section is obtained by pressing against a mold that continuously changes into a different shape. Method.

本発明によれば、良好な流動性、複雑な形状の成形追従性を有し、繊維強化プラスチックとした場合、優れた力学特性、その低バラツキ性、優れた寸法安定性を発現する、閉形状の鞘部と、該閉形状の内側に設けられるフォーム材から構成される芯部とにより構成した芯鞘構造の繊維強化プラスチックを得ることが出来る。   According to the present invention, the closed shape has good fluidity, molding conformability of complex shapes, and exhibits excellent mechanical properties, its low variability, and excellent dimensional stability when used as a fiber reinforced plastic. A fiber-reinforced plastic having a core-sheath structure constituted by a sheath part of the core and a core part made of a foam material provided inside the closed shape can be obtained.

本発明者らは、良好な流動性、複雑な形状の成形追従性を有し、繊維強化プラスチックとした場合、優れた力学特性、その低バラツキ性、優れた寸法安定性を発現する、閉形状の鞘部と、該閉形状の内側に設けられるフォーム材から構成される芯部とにより構成した芯鞘構造の繊維強化プラスチックの製造方法について、鋭意検討し、一方向に引き揃えられた炭素繊維と熱硬化性樹脂から構成されるプリプレグ基材という特定の基材に特定の切り込みパターンを挿入した切込プリプレグ基材を用い、該切込プリプレグ基材をマンドレル上に積層して積層体を得、外形上を決定する成形型内に配置した後、マンドレルを脱芯した箇所に発泡性樹脂を注入して、発泡、硬化させフォーム材とし、同時に発泡性樹脂の発泡圧で積層体を膨張させて該積層体を伸長させ成形型に押し付けて硬化させて、前記フォーム材と一体化した芯鞘構造の繊維強化プラスチックを成形することにより、かかる課題を一挙に解決することを究明したのである。   The present inventors have good fluidity, molding conformability of complex shapes, and when made into fiber reinforced plastic, it exhibits excellent mechanical properties, its low variation, excellent dimensional stability, closed shape Carbon fiber that has been intensively studied and produced in one direction, with regard to a method for producing a fiber-reinforced plastic having a core-sheath structure composed of a sheath portion of the core and a core portion made of a foam material provided inside the closed shape And a prepreg base material composed of a thermosetting resin and a notched prepreg base material in which a specific notch pattern is inserted into a specific base material, and the laminated prepreg base material is laminated on a mandrel. After placing in the mold to determine the outer shape, inject foamable resin into the location where the mandrel is decentered, foam and cure to form foam material, and at the same time expand the laminate with foaming resin foam pressure The Is extended to lamina cured against the mold, by molding a fiber-reinforced plastic sheath structure integrated with the foam material is to that investigation to solve such problems at a stroke.

なお、本発明において、“閉形状“とは、壺形状、筒形状のような、実質的に内部空間を有する形状を意味する。その内部空間の形状には特に制限はなく、例えば内部にリブやボスなどがあってもよく、さらに間仕切りなどでいくつかの空間に分けられていてもよく、内部空間と外部空間を繋ぐ開口部を設けてもよい。本明細書では、特に断らない限り、繊維あるいは繊維を含む用語(例えば“繊維方向”等)において、繊維とは強化繊維を表すものとする。また、本発明で用いられるプリプレグ基材には、一方向に引き揃えられた強化繊維や強化繊維基材に樹脂が完全に含浸した基材に加え、樹脂シートが繊維間に完全に含浸していない状態で一体化した樹脂半含浸基材(セミプレグ:以下、半含浸プリプレグと称することもある。)を含むものとする。また、本発明で規定の芯鞘構造とは、内部の芯部が表層の鞘部に囲まれた二重構造を意味するが、外形状が筒形状の場合は、内部空間を埋めるフォーム材が、内部空間にアクセスする口が2箇所以上ある表層に囲まれている構造であれば本発明で言う芯鞘構造とし、外形状が壺形状の場合は、内部空間を埋めるフォーム材が、内部空間にアクセスする口が1箇所である表層に囲まれている構造であれば本発明で言う芯鞘構造とし、当該フォーム材を芯部、当該表層を鞘部とする。なお、前記リブ、ボス、間仕切りは芯部にあっても鞘部にあっても良い。   In the present invention, the “closed shape” means a shape having a substantially internal space, such as a bowl shape or a cylindrical shape. There is no particular limitation on the shape of the internal space, for example, there may be ribs or bosses inside, and it may be divided into several spaces by partitions, etc., and an opening that connects the internal space and the external space May be provided. In the present specification, unless otherwise specified, in the term including fibers or fibers (for example, “fiber direction” and the like), the fibers represent reinforcing fibers. In addition, the prepreg base material used in the present invention has a resin sheet completely impregnated between the fibers, in addition to the reinforcing fibers aligned in one direction and the base material in which the reinforcing fiber base material is completely impregnated with the resin. It includes a semi-impregnated resin base material (semi-preg: hereinafter also referred to as a semi-impregnated prepreg) integrated in a non-existing state. Further, the core-sheath structure defined in the present invention means a double structure in which the inner core part is surrounded by the surface sheath part, but when the outer shape is cylindrical, the foam material filling the inner space is In the case of a structure surrounded by a surface layer having two or more openings for accessing the internal space, the core-sheath structure referred to in the present invention is used, and when the outer shape is a bowl shape, the foam material filling the internal space is the internal space. If it is the structure surrounded by the surface layer which is one location, the core-sheath structure said by this invention is used, the said foam material is made into a core part and the said surface layer is made into a sheath part. The ribs, bosses, and partitions may be in the core portion or in the sheath portion.

本発明で用いられる切込プリプレグ基材は、一方向に引き揃えられた強化繊維と熱硬化性樹脂とから構成され、該強化繊維を横切る方向に複数の切り込みによって少なくとも一部の強化繊維を10〜100mmの長さに分断しているものを指す。切込プリプレグ基材上において強化繊維が10〜100mmの長さに分断されている領域は、成形時に伸長することができる領域に対応している。したがって、複雑形状の繊維強化プラスチックを成形するにあたり、凹凸部に対応する領域の積層体は、切込プリプレグ基材において切り込みによって強化繊維が10〜100mmの長さに分断されている領域が積層されてなるものであることが好ましい。   The cut prepreg base material used in the present invention is composed of a reinforcing fiber and a thermosetting resin aligned in one direction, and at least a part of the reinforcing fibers is cut by a plurality of cuts in a direction crossing the reinforcing fiber. It refers to what is divided into a length of ~ 100 mm. The area | region where the reinforcing fiber is divided | segmented into the length of 10-100 mm on the cutting prepreg base material respond | corresponds to the area | region which can be extended | stretched at the time of shaping | molding. Therefore, when molding a fiber reinforced plastic having a complicated shape, the laminated body in the region corresponding to the concavo-convex portion is laminated with a region in which the reinforcing fibers are divided into lengths of 10 to 100 mm by cutting in the cut prepreg base material. It is preferable that

本発明に用いる切込プリプレグ基材は強化繊維が一方向に引き揃えられているので、繊維方向の配向制御により任意の力学物性を有する成形体の設計が可能となる。加えて、繊維を横切る方向に複数の切り込みによって少なくとも一部の繊維を100mm以下の長さに分断していることによって、成形時に繊維が流動可能、特に繊維長手方向にも流動可能となり、複雑な形状の成形追従性にも優れる。該切り込みがない場合、すなわち連続繊維のみの場合、繊維長手方向には流動しないため、複雑形状を形成することは出来ない。一方、繊維長さを10mm未満にすると、さらに流動性が向上するが、他の要件を満たしても構造材として必要な高力学特性は得られない。流動性と力学特性との関係を鑑みると、繊維長さが10〜100mmである必要があり、さらに好ましくは20〜60mmの範囲内である。   Since the reinforced fibers are aligned in one direction in the cut prepreg base material used in the present invention, it is possible to design a molded body having arbitrary mechanical properties by controlling the orientation in the fiber direction. In addition, by dividing at least a part of the fibers into a length of 100 mm or less by a plurality of cuts in the direction crossing the fibers, the fibers can flow at the time of molding, particularly in the longitudinal direction of the fibers. Excellent shape conformability. When there is no notch, that is, when only continuous fibers are used, a complicated shape cannot be formed because they do not flow in the fiber longitudinal direction. On the other hand, when the fiber length is less than 10 mm, the fluidity is further improved. However, even if other requirements are satisfied, the high mechanical properties necessary for the structural material cannot be obtained. Considering the relationship between fluidity and mechanical properties, the fiber length needs to be 10 to 100 mm, and more preferably within the range of 20 to 60 mm.

図5に切込プリプレグ基材の流動のメカニズムの例を示した。図5a)のとおり、90°のプリプレグ基材に0°の切込プリプレグ基材が挟まれた積層体12の上から圧力13が加わり成形する際、図5b)のように、圧力で押し出された樹脂が90°方向に流れ14を作り、その流れに従って強化繊維の端部の開き15が起こる。すなわち、一方向に引き揃えられた繊維からなるプリプレグ基材に切り込みを設け、少なくとも一部の強化繊維が10〜100mmの長さである切込プリプレグ基材を積層することではじめて、繊維長手方向への流動が可能となり、複雑な形状の成形追従性が生まれる。   FIG. 5 shows an example of the flow mechanism of the cut prepreg base material. As shown in FIG. 5 a), when molding is performed by applying pressure 13 from above the laminate 12 in which the 90 ° prepreg base material is sandwiched between the 90 ° prepreg base material, as shown in FIG. The resin forms a flow 14 in the direction of 90 °, and the opening 15 of the end of the reinforcing fiber occurs according to the flow. That is, the longitudinal direction of the fiber is not provided until the prepreg base material made of fibers aligned in one direction is cut, and the cut prepreg base material in which at least some reinforcing fibers are 10 to 100 mm in length is laminated. It is possible to flow into a complex shape, resulting in molding conformability of complex shapes.

このように繊維の流動は樹脂の流動が駆動源であるため、適性のVf(繊維体積含有率)であることが好ましい。すなわち、Vfは65%以下で十分な流動性が得られるようになり好ましい。また、Vfが低いほど流動性は向上するが、Vfが45%を下回ると、構造材に必要な高力学特性が得られなくなる可能性があるので、Vfは45%以上であることが好ましい。流動性と力学特性との関係を鑑みると、さらに好ましくは55〜60%の範囲内である。   Thus, since the flow of the resin is the driving source, the flow of the fiber is preferably an appropriate Vf (fiber volume content). That is, Vf is preferably 65% or less because sufficient fluidity can be obtained. Moreover, although fluidity | liquidity improves, so that Vf is low, when Vf is less than 45%, since there exists a possibility that a high mechanical characteristic required for a structural material may not be acquired, it is preferable that Vf is 45% or more. Considering the relationship between fluidity and mechanical properties, it is more preferably in the range of 55-60%.

本発明では、上記切込プリプレグ基材を用いて、閉形状の鞘部と、該閉形状の内側に設けられるフォーム材から構成される芯部とにより構成した芯鞘構造の繊維強化プラスチックを成形するにあたり、少なくとも次の(1)〜(3)の工程を順次経ることが必要である。
(1)切込プリプレグ基材を含む複数枚のプリプレグ基材を積層した積層体を、繊維強化プラスチックの最終形状の略形状のマンドレル上に設け、繊維強化プラスチックの最終形状よりも小さく賦形した後、マンドレルを脱芯する賦形工程
(2)外型となる成形型内に積層体を配置し、加熱して積層体の熱硬化性樹脂を軟化させ、マンドレルを脱芯した箇所に発泡性樹脂を注入して、発泡、硬化させフォーム材とし、芯部を形成すると同時に、発泡性樹脂の発泡圧で積層体を伸張させ、成形型に押し付けて硬化させ、積層体から鞘部を形成し、鞘部と芯部を一体化して、芯鞘構造の繊維強化プラスチックを成形する成形工程
(3)成形型から繊維強化プラスチックを取り出す脱型工程。
In the present invention, a fiber-reinforced plastic having a core-sheath structure composed of a closed sheath portion and a core portion made of a foam material provided inside the closed shape is molded using the above-described cut prepreg base material. In doing so, it is necessary to sequentially perform at least the following steps (1) to (3).
(1) A laminate in which a plurality of prepreg base materials including a cut prepreg base material are laminated is provided on a mandrel having a substantially shape of the final shape of the fiber reinforced plastic, and is shaped smaller than the final shape of the fiber reinforced plastic. After that, the shaping step for decentering the mandrel (2) The laminated body is placed in a molding die as an outer mold and heated to soften the thermosetting resin of the laminated body, and the mandrel is defoamed at the location where it is decentered. The resin is injected, foamed and cured to form a foam, and the core is formed.At the same time, the laminate is stretched by the foaming pressure of the foamable resin and pressed against the mold to be cured, and the sheath is formed from the laminate. (1) Molding step for molding the fiber-reinforced plastic having a core-sheath structure by integrating the sheath and the core, and (3) a demolding step of taking out the fiber-reinforced plastic from the mold.

例えば、壺形状の閉形状の鞘部と鞘部の内側に設けられるフォーム材とから構成される芯鞘構造の繊維強化プラスチックを製造するに当たり、まず、最終形状の繊維強化プラスチック16(図1c))よりも小さなマンドレルを用意して、そのマンドレル上に上記切込プリプレグ基材を含む複数枚のプリプレグ基材を積層した積層体を設ける。すなわち、マンドレルは、最終的に得られる繊維強化プラスチックの略形状を有することを必須とする。ここで言う略形状とは、得られる繊維強化プラスチックの形状を単純にした形状であって、凹凸の数が少なくなったり、起伏が少なくなったりした形状を指す。もっとも単純化した形態のひとつが円筒形状である。また、本発明においては、ワイヤ状の骨組みやガイド等も、繊維強化プラスチックの略形状を形作るものであり、積層体を繊維強化プラスチックの略形状に賦形することができるものは、マンドレルと称する。また、本発明の成形方法を用いれば、積層体自体の精度は最終的な成形品位に影響しないことも多いため、単純な筒形状の積層体を形成する際、手で積層体に形状を与えても良く、本発明においてはこの行為をもって“マンドレル上に設け、マンドレルを脱芯する“とする。   For example, in manufacturing a fiber-reinforced plastic having a core-sheath structure composed of a closed-shell-shaped sheath portion and a foam material provided inside the sheath portion, first, a fiber-reinforced plastic 16 having a final shape (FIG. 1c). A mandrel smaller than () is prepared, and a laminate in which a plurality of prepreg base materials including the cut prepreg base material are laminated on the mandrel is provided. That is, it is essential that the mandrel has the approximate shape of the finally obtained fiber-reinforced plastic. The approximate shape referred to here is a shape obtained by simplifying the shape of the obtained fiber reinforced plastic, and indicates a shape in which the number of irregularities is reduced or undulation is reduced. One of the most simplified forms is a cylindrical shape. Further, in the present invention, the wire-like framework, guide, and the like also form the approximate shape of the fiber reinforced plastic, and what can form the laminate into the approximate shape of the fiber reinforced plastic is called a mandrel. . In addition, when the molding method of the present invention is used, the accuracy of the laminate itself often does not affect the final molding quality. Therefore, when forming a simple cylindrical laminate, the laminate is manually shaped. In the present invention, this action is referred to as “providing on the mandrel and removing the mandrel”.

一般的に、プリプレグ基材は、賦形の際、複雑形状に沿いにくい。したがって、簡単な形状、究極的には円筒形状に巻きつけただけの積層体を用いて複雑形状の繊維強化プラスチックを得ることができるメリットは非常に大きい。すなわち、本発明に用いられる切込プリプレグ基材の強化繊維を10〜100mmの長さに分断した領域は、成形時に伸張することができるため、繊維強化プラスチックの形状通りに賦形しておかなくても成形できる。また、従来の積層体は成形後の繊維強化プラスチックに比べ嵩高となるため、成形後の繊維強化プラスチックの外形を決定する成形型内に積層体を配することは困難であり、さらに、無理に積層体を成形型内に配置すると、型に収まりきらない積層体がはみ出して、型間の隙間にバリや繊維噛み込みが発生したり、樹脂リッチ部や繊維乱れの発生により表面品位が低下したりする原因となっていた。他方、本発明の場合、積層体は最終形状よりも小さく賦形することを必須としているため、型内への搬入や型締めが容易になり、バリ発生などの問題が一気に解消されるのである。   Generally, a prepreg base material is difficult to follow a complicated shape during shaping. Therefore, there is a great merit that a fiber reinforced plastic having a complicated shape can be obtained by using a laminate that is simply wound into a simple shape, ultimately a cylindrical shape. That is, since the area | region which cut | disconnected the reinforcement fiber of the cut prepreg base material used for this invention in the length of 10-100 mm can be extended | stretched at the time of shaping | molding, it is not shaped according to the shape of fiber reinforced plastic. Can be molded. In addition, since the conventional laminate is bulky compared to the fiber reinforced plastic after molding, it is difficult to arrange the laminate in a mold that determines the outer shape of the fiber reinforced plastic after molding. If the laminate is placed in the mold, the laminate that does not fit in the mold will protrude, causing burrs and fiber biting in the gaps between the molds, and reducing the surface quality due to resin-rich parts and fiber disturbances. It was a cause. On the other hand, in the case of the present invention, since it is essential that the laminate is shaped smaller than the final shape, it is easy to carry into the mold and mold clamping, and problems such as the occurrence of burrs are solved at once. .

本発明で用いられるマンドレルとしては、金属製の硬質なものでも良いし、シリコンラバー等の柔らかい固形物、シリコンラバーやPP、PE、PET等の袋状体に圧空やビーズなどを詰めて剛性を持たせて用い、硬質なマンドレルでは脱型できない形状(例えば曲がったパイプ状)とするのも良い。   The mandrel used in the present invention may be a hard metal or a soft solid such as silicon rubber, or a bag-like body such as silicon rubber, PP, PE, PET, or the like packed with compressed air or beads. It is also possible to have a shape that cannot be removed by a hard mandrel (for example, a bent pipe shape).

本発明に係る繊維強化プラスチックの製造方法では、マンドレル上に積層体を設けた後、マンドレルを脱芯し、外型となる成形型内に積層体を配置し、加熱して積層体の熱硬化性樹脂を軟化させ、マンドレルを脱芯した箇所である積層体の内側に発泡性樹脂を注入して、発泡、硬化させフォーム材とし、芯鞘構造の芯部を形成すると同時に、発泡性樹脂の発泡圧で積層体の繊維が10〜100mmの長さに分断されている領域を伸張して成形型に押し付けて硬化させ、積層体から芯鞘構造の鞘部を形成し、これら鞘部と芯部を一体化して、芯鞘構造の繊維強化プラスチックとする。積層体は繊維強化プラスチックの最終形状よりも小さいため、簡単に型に配置することができる。また、積層体の搬入口が小さい場合でも、成形時に型開けを省略して、積層体を折りたたむなどして配置してもよい。本発明に用いられる成形型は繊維強化プラスチックが成形後に抜き取れさえすれば、一型でも、上型と下型といったように両面型でも、さらに複雑形状に対応した3つ以上の型からなる分割型でもよい。発泡性樹脂は0.1MPa〜3MPa程度に加圧して注入しても構わないし、自重で滴下して注入し化学反応により発泡させても良い。図1b)の例は、発泡性樹脂27を注入して積層体12を伸張させながら型に押し付けて成形する様子を示している。   In the method for producing a fiber reinforced plastic according to the present invention, after providing a laminate on a mandrel, the mandrel is decentered, the laminate is placed in a molding die that is an outer mold, and heated to heat cure the laminate. The foamable resin is softened and injected into the inside of the laminate, where the mandrel is decentered, and foamed and cured to form a foam material. At the same time, the core of the core-sheath structure is formed. A region in which the fibers of the laminate are divided into 10 to 100 mm in length by foaming pressure is stretched and pressed against a mold to be cured to form a sheath portion of a core-sheath structure from the laminate, and the sheath portion and the core The parts are integrated into a fiber-reinforced plastic with a core-sheath structure. Since the laminate is smaller than the final shape of the fiber reinforced plastic, it can be easily placed in a mold. Further, even when the stack inlet is small, the mold opening may be omitted at the time of molding, and the stack may be folded. The mold used in the present invention is divided into three or more molds corresponding to complex shapes, even if the fiber reinforced plastic can be extracted after molding, whether it is a single mold or a double-sided mold such as an upper mold and a lower mold. It may be a mold. The foamable resin may be injected under pressure of about 0.1 MPa to 3 MPa, or may be injected dropwise by its own weight and foamed by a chemical reaction. The example of FIG. 1b) shows a state in which foaming resin 27 is injected and pressed against a mold while the laminate 12 is stretched.

鞘部および芯部の硬化が終わった後、もしくは脱型可能な程度硬化した後、成形型から繊維強化プラスチックを取り出す。繊維強化プラスチックを取り出した後、別のオーブンに入れ、後硬化させてもよい。   After the sheath portion and the core portion have been cured, or after being cured to such an extent that they can be removed, the fiber reinforced plastic is taken out from the mold. After taking out the fiber reinforced plastic, it may be put in another oven and post-cured.

このようにして、本発明によれば、高力学特性を有する芯鞘構造の繊維強化プラスチックを容易に製造することが可能である。なお、本発明は繊維強化プラスチックの形状が複雑形状であっても製造できることに特徴がある。   Thus, according to the present invention, it is possible to easily manufacture a fiber-reinforced plastic having a core-sheath structure having high mechanical properties. The present invention is characterized in that it can be manufactured even if the shape of the fiber reinforced plastic is a complicated shape.

さらに好ましくは、図4に示すように、少なくとも積層体の一部が、切り込みにより繊維が10〜100mmの長さに分断された切込プリプレグ基材のみが積層されてなる領域37があるのが良い。すなわち、領域37では積層体の厚み方向に、実質的に10〜100mmの繊維のみからなる、切込プリプレグ基材のみが積層されている。ここで”実質的に10〜100mmの繊維のみからなる”とは該領域に含まれる強化繊維本数のうち95%以上が10〜100mmに分断されていることを言う。該領域を以下、積層体の不連続部と称す。   More preferably, as shown in FIG. 4, at least a part of the laminated body has a region 37 in which only the cut prepreg base material in which the fibers are cut into lengths of 10 to 100 mm by cutting is laminated. good. That is, in the region 37, only the cut prepreg base material, which is substantially made only of fibers of 10 to 100 mm, is laminated in the thickness direction of the laminated body. Here, “consisting essentially of fibers of 10 to 100 mm” means that 95% or more of the number of reinforcing fibers contained in the region is divided into 10 to 100 mm. Hereinafter, this region is referred to as a discontinuous portion of the laminate.

複雑形状を有する繊維強化プラスチックを成形するにあたり、複雑形状に対応する積層体の領域が不連続部であることで、成形時に容易に伸張することができ、複雑系状に沿わせることができる。図4a)、b)はそれぞれの積層体の一部に不連続部を有した例を示しており、それぞれ上図は平面図、下図はA−A断面の断面図を示す。図4a)は全面に切り込みを入れられた切込プリプレグ基材10aを5層積層した上に、切込プリプレグ基材10aより小さな連続繊維からなるプリプレグ基材11を1層表層に積層した例を示す。連続繊維からなるプリプレグ基材11に覆われていない領域37が不連続部にあたる。なお、連続繊維からなるプリプレグ基材としては、一方向に連続繊維を引き揃えたプリプレグ基材や織物のプリプレグ基材などが考えられる。図4b)は一部に切り込みを入れられた切込プリプレグ基材10bを5層積層した積層体12で、積層された切込プリプレグ基材10bはすべて図4b)の上図のように左端の領域にのみ切り込みが入れられている例を示す。各切込プリプレグ基材10bの切り込みが入れられている領域が重なって積層されている領域37が不連続部にあたる。   When molding a fiber reinforced plastic having a complex shape, the region of the laminate corresponding to the complex shape is a discontinuous portion, so that it can be easily stretched at the time of molding, and can follow a complex system. 4A) and 4B show examples in which a discontinuous portion is provided in a part of each laminate, and the upper drawing shows a plan view and the lower drawing shows a cross-sectional view taken along the line AA. FIG. 4a) shows an example in which five layers of cut prepreg base material 10a cut into the entire surface are laminated and a prepreg base material 11 made of continuous fibers smaller than the cut prepreg base material 10a is laminated on the surface of one layer. Show. The area | region 37 which is not covered with the prepreg base material 11 which consists of continuous fibers corresponds to a discontinuous part. In addition, as a prepreg base material which consists of continuous fibers, the prepreg base material which aligned the continuous fiber in one direction, the prepreg base material of a textile fabric, etc. can be considered. FIG. 4b) is a laminate 12 in which five layers of cut prepreg base material 10b, in which a part of the cut is made, are laminated, and all of the laminated cut prepreg base materials 10b are at the left end as shown in the upper view of FIG. 4b). An example in which a cut is made only in the area is shown. A region 37 in which the regions where the cuts of the respective cut prepreg base materials 10b are cut overlap each other corresponds to the discontinuous portion.

こうして得られた繊維強化プラスチックは、少なくとも繊維強化プラスチックの一部の領域に含まれるすべての強化繊維の繊維長さLcが10〜100mmの範囲内である、という特徴を有する。   The fiber reinforced plastic obtained in this way has a characteristic that the fiber length Lc of all the reinforced fibers included in at least a partial region of the fiber reinforced plastic is in the range of 10 to 100 mm.

さらに好ましくは、切込プリプレグ基材を構成する強化繊維の全てが前記切り込みにより分断されており、前記切り込みにより分断されている繊維長さLが10〜100mmの範囲内である。切込プリプレグ基材の全ての繊維長さLを100mm以下とすることで、最終的に製造される繊維強化プラスチックの形状を考慮することなく、切込プリプレグ基材や積層体を製造することができるため、設計、作業効率の面で大きなメリットがある。また、積層時にトラップされた空気が厚み方向に切り込みを通じて脱気しやすく、ボイドが発生しにくく、高力学特性が期待できる。なお、本発明において“強化繊維の全てが前記切り込みにより分断され”ているとは、プリプレグ基材に含まれる強化繊維本数のうち95%以上が10〜100mmに分断されていることを言う。   More preferably, all of the reinforcing fibers constituting the cut prepreg base material are cut by the cut, and the fiber length L cut by the cut is in the range of 10 to 100 mm. By making all the fiber lengths L of the cut prepreg base material 100 mm or less, it is possible to manufacture a cut prepreg base material and a laminate without considering the shape of the fiber reinforced plastic to be finally produced. Because it can, there is a big merit in terms of design and work efficiency. In addition, air trapped at the time of lamination is easily degassed by cutting in the thickness direction, voids are not easily generated, and high mechanical properties can be expected. In the present invention, “all of the reinforcing fibers are divided by the incision” means that 95% or more of the number of reinforcing fibers contained in the prepreg base material is divided into 10 to 100 mm.

好ましい切込プリプレグ基材の切り込みの形態の一つとして、切り込みが直線状であり、かつ、切り込みを強化繊維の垂直方向に投影した投影長さWsが30μm〜100mmであり、断続的かつ周期的に全面にわたって配置されている切込プリプレグ基材が挙げられる。切り込みが連続的ではなく断続的に入っていることで、切込プリプレグ基材が切り込みによりばらばらになることなく、積層時などの取り扱い性に優れる。また、周期的に切り込みが配置することで、切り込みの位置を制御することができ、物性を制御することができる。ここで、“切り込みを強化繊維の垂直方向に投影した投影長さWs”とは図2に示すとおり、切り込み4を強化繊維3の垂直方向(繊維直交方向2)を投影面として、切り込み4から該投影面に垂直(繊維長手方向1)に投影した際の長さ9を指す。また、切り込みが“全面にわたって配置されている”とは、切込プリプレグ基材全面に含まれる強化繊維をすべて10〜100mmの長さに分断する切り込みを設けることを意味する。   As one of the preferred incision forms of the incision prepreg base material, the incision is linear, and the projected length Ws in which the incision is projected in the vertical direction of the reinforcing fiber is 30 μm to 100 mm, and is intermittent and periodic And a cut prepreg substrate disposed over the entire surface. Since the cuts are not continuous but intermittent, the cut prepreg base material does not become loose due to the cuts, and is excellent in handleability during lamination. In addition, when the cuts are periodically arranged, the position of the cut can be controlled, and the physical properties can be controlled. Here, the “projection length Ws obtained by projecting the notch in the vertical direction of the reinforcing fiber” is as shown in FIG. 2, from the notch 4 using the notch 4 as the projection plane in the vertical direction (fiber orthogonal direction 2) of the reinforcing fiber 3. The length 9 when projected perpendicularly to the projection plane (fiber longitudinal direction 1) is indicated. In addition, the expression “arranged over the entire surface” means that the incisions that divide all the reinforcing fibers contained in the entire surface of the incised prepreg base material into a length of 10 to 100 mm are provided.

切り込みにより生成された繊維束端部は、繊維強化プラスチックに荷重が加わったときに応力集中が起こり、破壊の起点となる可能性が高い。したがって、切り込みが小さい方が強度上有利である。Wsは分断する強化繊維の量を示す指標であり、Wsが100mm以下の場合には強度が大きく向上する。しかしながら、Wsが30μmより小さくとなると、切り込みの制御が難しくなる場合があり、強化繊維の不連続部全体に渡ってLが10〜100mmとなるよう、保障することが難しくなることがある。すなわち、切り込みにより切断されていない繊維が複雑形状に沿うことを期待されている不連続部中に存在すると、繊維が突っ張り流動性は著しく低下することがあるが、長めに切り込みを入れるとLが10mmを下回る領域が多くなってしま設計値より低い強度となってしまうことがある、という問題点がある。逆にWsが100mmより大きいときにはほぼ強度が一定に落ち着く。すなわち、繊維束端部がある一定以上に大きくなると、破壊が始まる荷重がほぼ同等となる。さらに好ましくは、Wsが1.5mm以下であるときに、強度向上が著しい。すなわち、簡易な装置で切り込みを挿入することができるという観点からは、Wsは1〜100mmであることが好ましく、一方、切り込みの制御のしやすさと力学特性との関係を鑑みると、Wsは30μm〜1.5mmであることが好ましく、さらに好ましくは50μm〜1mmの範囲内である。   The fiber bundle end portion generated by the cutting is likely to become a starting point of fracture due to stress concentration when a load is applied to the fiber reinforced plastic. Therefore, a smaller notch is advantageous in strength. Ws is an index indicating the amount of reinforcing fiber to be divided, and when Ws is 100 mm or less, the strength is greatly improved. However, when Ws is smaller than 30 μm, it may be difficult to control the cutting, and it may be difficult to ensure that L is 10 to 100 mm over the entire discontinuous portion of the reinforcing fiber. That is, if fibers that are not cut by cutting are present in a discontinuous portion that is expected to follow a complicated shape, the fiber may be remarkably lowered in fluidity. There is a problem that the area below 10 mm is increased and the strength may be lower than the design value. Conversely, when Ws is greater than 100 mm, the strength is almost constant. That is, when the fiber bundle end becomes larger than a certain value, the load at which breakage starts becomes substantially equal. More preferably, the strength is significantly improved when Ws is 1.5 mm or less. That is, Ws is preferably 1 to 100 mm from the viewpoint that a cut can be inserted with a simple device. On the other hand, in view of the relationship between the ease of cutting control and mechanical properties, Ws is 30 μm. It is preferable that it is -1.5mm, More preferably, it exists in the range of 50 micrometers-1 mm.

以下、好ましい切り込みパターンの一例を、図2を用いて説明する。   Hereinafter, an example of a preferable cutting pattern will be described with reference to FIG.

強化繊維が一方向に引き揃えられたプリプレグ基材上に制御されて整列した切り込み4を複数入れる。繊維長手方向1の対になる切り込み同士で繊維が分断され、その間隔6を10〜100mmとすることで、プリプレグ基材上の強化繊維の繊維長さLを実質的に10〜100mmにすることができる。   A plurality of controlledly aligned cuts 4 are made on a prepreg base material in which reinforcing fibers are aligned in one direction. The fibers are divided by the pair of cuts in the fiber longitudinal direction 1 and the fiber length L of the reinforcing fibers on the prepreg substrate is substantially 10 to 100 mm by setting the interval 6 to 10 to 100 mm. Can do.

図2では繊維長さLと切り込みを強化繊維の垂直方向に投影した投影長さWsがいずれも一種類である例を示している。第1の断続的な切り込みからなる列7aと、第3の断続的な切り込みからなる列7cは繊維長手方向1にL平行移動することで重ねることができ、また、第2の断続的な切り込みからなる列7bと、第4の断続的な切り込みからなる列7dは繊維長手方向1にL平行移動することで重ねることができる。また、第1、第2の切り込みの列と第3、第4の切り込みの列に互いに切り込まれた繊維があり、繊維長さL以下に切り込まれた幅5が存在することによって、安定的に繊維長さを100mm以下で切込プリプレグ基材を製造できる。切り込みのパターンとしては図3のa)〜f)にいくつか例示したが、上記条件を満たせばどのようなパターンでも構わない。図3において、強化繊維の配列の図示は省略されているが、強化繊維の配列方向は、図3において上下方向である。図3のa)、b)あるいはc)は、切り込みが繊維直交方向2に入っている態様、図3のd)、e)あるいはf)は、切り込みが繊維直交方向2から傾いている様態を示している。対になる切り込み以外の切り込みに分断される繊維の中には、前記繊維長さより短い繊維も存在するが、かかる繊維は本発明で規定する繊維長さLを有する繊維には含まない。そして、そのような10mm以下の繊維は少なければ少ないほどよい。   FIG. 2 shows an example in which both the fiber length L and the projected length Ws obtained by projecting the cut in the vertical direction of the reinforcing fiber are one kind. The row 7a consisting of the first intermittent cuts and the row 7c consisting of the third intermittent cuts can be overlapped by moving L in the fiber longitudinal direction 1 and the second intermittent cuts. The row 7b made of the above and the row 7d made of the fourth intermittent cut can be overlapped by moving in the fiber longitudinal direction 1 in the L direction. Further, there are fibers cut into the first and second cut rows and the third and fourth cut rows, and the presence of the width 5 cut to the fiber length L or less ensures stable In particular, a cut prepreg base material can be produced with a fiber length of 100 mm or less. Several examples of the cut pattern are illustrated in FIGS. 3A to 3F, but any pattern may be used as long as the above conditions are satisfied. In FIG. 3, the arrangement of the reinforcing fibers is not shown, but the arrangement direction of the reinforcing fibers is the vertical direction in FIG. 3 a), b) or c) is a mode in which the cut is in the fiber orthogonal direction 2, and d), e) or f) in FIG. 3 is a mode in which the cut is inclined from the fiber orthogonal direction 2. Show. Among the fibers that are divided into cuts other than the pair of cuts, there are also fibers that are shorter than the fiber length, but such fibers are not included in the fibers having the fiber length L defined in the present invention. And the fewer the fibers of 10 mm or less, the better.

図5でも説明したとおり、本発明に用いられる切込プリプレグ基材は、90°方向への樹脂の流動が繊維の流動の駆動力であるため、繊維が一方向に引き揃えられたプリプレグ基材を2層以上異なる繊維方向に積層すると、繊維長手方向への流動性が発現する。したがって、切込プリプレグ基材に隣接する層は一方向に強化繊維が配向したプリプレグ基材(本発明係る切込プリプレグ基材を含む)であり、切込プリプレグ基材とは異なる繊維方向に積層されているのがよい。やむを得ず同一繊維方向の切込プリプレグ基材を隣接して積層する際には、切り込みが重ならないように積層するのがよい。またこれら切込プリプレグ基材の層間に樹脂フィルム等を積層し、流動性を向上させてもよい。また流動しなくてもよい領域には連続繊維基材を配し、さらにその領域の力学特性を向上させることもできる。形状によっては切り込みのない一方向プリプレグ基材と本発明に係る切込プリプレグ基材を積層して用いることもできる。例えば、図8b)のように一様断面形状の筒状体ならば、形状変化のない方向に連続繊維を配しても、流動性に問題はない。   As described with reference to FIG. 5, the cut prepreg base material used in the present invention is a prepreg base material in which the fibers are aligned in one direction because the resin flow in the 90 ° direction is the driving force of the fiber flow. When two or more layers are laminated in different fiber directions, fluidity in the fiber longitudinal direction is expressed. Therefore, the layer adjacent to the cut prepreg base material is a prepreg base material (including the cut prepreg base material according to the present invention) in which reinforcing fibers are oriented in one direction, and is laminated in a fiber direction different from the cut prepreg base material. It is good to be. When it is unavoidable to stack the cut prepreg base materials in the same fiber direction adjacent to each other, it is preferable to stack the cuts so that the cuts do not overlap. Moreover, a resin film etc. may be laminated | stacked between the layers of these cutting prepreg base materials, and fluidity | liquidity may be improved. In addition, a continuous fiber base material can be disposed in a region that does not need to flow, and the mechanical properties of the region can be further improved. Depending on the shape, the unidirectional prepreg base material having no cut and the cut prepreg base material according to the present invention may be laminated and used. For example, in the case of a cylindrical body having a uniform cross-sectional shape as shown in FIG. 8b), there is no problem in fluidity even if continuous fibers are arranged in a direction where there is no change in shape.

層同士で繊維方向が異なると、層ごとの流動方向、距離に違いが生じるが、層間が滑ることで変位差を吸収できる。すなわち、繊維体積含有率Vfが45〜65%と高くても、本発明に用いる積層体は層間に樹脂を偏在させることができる構成のため、高い流動性を発現することができる。SMC(シートモールディングコンパウンド)の場合、ランダムに分散したチョップドストランド同士で流動性が異なり、互いに違う方向に流動しようとするが、繊維同士が干渉して流動しにくく、最大でVfが40%程度までしか流動性を確保することができない。すなわち、本発明に用いる積層体は力学特性を向上することができる高Vfの構成であっても高い流動性を発現できる、という特徴を有する。また、本流動性の特長により、得られた繊維強化プラスチックは、複雑形状であっても積層構造を保つことができ、高い弾性率や強度が発現し、強度ばらつきが低減し、さらに衝撃特性も大きく向上する。その他、織物基材等の連続繊維基材と切込プリプレグ基材のハイブリッド積層体において、切込プリプレグ基材が複雑形状に追従しても連続繊維基材と切込プリプレグ基材の層間が滑ることで、連続繊維基材も無理なくある程度の形状には追従可能となる。   If the fiber direction is different between layers, a difference occurs in the flow direction and distance of each layer, but the displacement difference can be absorbed by sliding between the layers. That is, even if the fiber volume content Vf is as high as 45 to 65%, the laminate used in the present invention can exhibit high fluidity because the resin can be unevenly distributed between the layers. In the case of SMC (Sheet Molding Compound), fluidity is different between randomly chopped strands and they try to flow in different directions, but the fibers interfere with each other and do not flow easily, and the maximum Vf is about 40%. Only liquidity can be secured. That is, the laminate used in the present invention has a characteristic that high fluidity can be expressed even with a high Vf configuration capable of improving mechanical properties. In addition, due to the characteristics of this fluidity, the obtained fiber reinforced plastic can maintain a laminated structure even if it has a complex shape, expresses high elastic modulus and strength, reduces strength variation, and also has impact characteristics. Greatly improved. In addition, in a hybrid laminate of a continuous fiber base material such as a textile base material and a cut prepreg base material, the layer between the continuous fiber base material and the cut prepreg base material slides even if the cut prepreg base material follows a complex shape. Thus, the continuous fiber substrate can follow a certain shape without difficulty.

さらに好ましくは、切込プリプレグ基材が2層以上連続して隣接し、該2層以上の層のうち隣接する任意の2層について、一方の切込プリプレグ基材上の任意の切り込みの幾何中心と他方の切込プリプレグ基材上のいずれの切り込みの幾何中心とも5mm以上離れる様に積層するのがよい。隣接する切込プリプレグ基材の切り込みの幾何中心同士が離れているのは、2つの意味で重要である。一つ目は、成形時に積層体が伸張される際、切り込み同士がつながっていると、そこから発泡性樹脂が侵入して裂け易く、本発明の成形が失敗してしまうことがあるからである。また、成形時に裂けなくても、切り込みの幾何中心同士が近い領域では繊維含有率が低くなり、肉厚が減ってしまうなどの、品質に影響を与えてしまう可能性がある。二つ目は、繊維強化プラスチックとなった際、切り込みによって分断された強化繊維束端部は、いわゆる応力集中点のため、破壊の起点となりやすいが、切り込み同士がつながっていると、容易にクラックがつながりやすく、強度が低くなる場合がある。図6に、積層された切込プリプレグ基材の2層の関係を図示したが、1層目の切り込み4aと2層目の切り込み4bの内、最近接の切り込みの幾何中心8同士が図6b)〜d)のように離れており、好ましくは5mm以上離れていれば、成形時の懸念点も、物性面の懸念点も問題なくクリアできるが、図6a)のように、5mmより近づくと、問題が起こってくることがある。なお、ここで言う“幾何中心”とは、そのまわりで一次モーメントが0であるような点であり、切り込み上の点xに対して、幾何中心点gが次のような式が成り立つ。   More preferably, the notch prepreg base material is adjacent to two or more layers in succession, and for any two adjacent layers of the two or more layers, the geometric center of any incision on one incision prepreg base material And the other cut prepreg base material are preferably laminated so as to be separated from the geometric center of any cut by 5 mm or more. It is important in two ways that the geometric centers of the notches of adjacent notched prepreg base materials are separated from each other. The first is that when the laminate is stretched during molding, if the cuts are connected to each other, the foamable resin easily enters and tears, and the molding of the present invention may fail. . Moreover, even if it is not torn at the time of molding, there is a possibility of affecting the quality such that the fiber content is lowered and the wall thickness is reduced in the region where the geometric centers of the cut are close to each other. Second, when the fiber reinforced plastic becomes a fiber reinforced plastic, the ends of the reinforced fiber bundles that are cut by the cuts are so-called stress concentration points, so they tend to break, but if the cuts are connected, cracks can easily occur. May be easily connected and the strength may be reduced. FIG. 6 illustrates the relationship between the two layers of the laminated cut prepreg base material, and the geometrical center 8 of the closest cuts among the cuts 4a and 4b in the first layer is shown in FIG. ) To d), preferably 5 mm or more away, both the concerns during molding and the physical properties can be cleared without problems, but when approaching 5 mm as shown in FIG. 6a) The problem may come up. The “geometric center” mentioned here is a point where the first moment is zero around the geometric center point g, and the geometrical center point g is expressed by the following equation for the point x on the notch.

Figure 2008273176
Figure 2008273176

本発明に係る切込プリプレグ基材を得るためにプリプレグ基材に切り込みを入れる方法としては、まず一方向に引き揃えられた連続繊維のプリプレグ基材を作製し、その後カッターを用いての手作業や裁断機により切り込みを入れる方法、あるいは一方向に引き揃えられた連続繊維のプリプレグ基材製造工程において所定の位置に刃を配置した回転ローラーを連続的に押し当てたり、多層にプリプレグ基材を重ねて所定の位置に刃を配置した型で押し切ったりする等の方法がある。成形現場等で簡易にプリプレグ基材の一部に切り込みを入れる場合には前者が、生産効率を考慮し大量に切込プリプレグ基材を作製する場合、特に全面に切り込みを入れる場合には後者が適している。回転ローラーを用いる場合には、直接ローラーを削りだして所定の刃を設けてもよいが、マグネットローラーなどに平板を削りだして所定の位置に刃を配置したシート状の型を巻きつけることにより、刃の取りかえが容易で好ましい。このような回転ローラーを用いることで、Wsの小さな(具体的には1mm以下であっても)切込プリプレグ基材でも良好に切り込みを挿入することができる。切り込みを入れた後、さらに、切込プリプレグ基材をローラー等で熱圧着することで、切り込み部に樹脂が充填、融着することにより、取り扱い性を向上させてもよい。   In order to obtain a cut prepreg base material according to the present invention, as a method of cutting into the prepreg base material, first, a prepreg base material of continuous fibers aligned in one direction is prepared, and then manual operation using a cutter is performed. A method of cutting with a cutting machine or a cutting machine, or a continuous roller prepreg base material manufacturing process that is aligned in one direction, continuously pressing a rotating roller with a blade placed at a predetermined position, or prepreg base material in multiple layers There is a method such as pressing and cutting with a mold in which blades are arranged at predetermined positions. The former is used when making a cut into a part of the prepreg base material easily at the molding site, and the latter is used when making a large amount of the cut prepreg base material in consideration of production efficiency. Is suitable. When a rotating roller is used, the roller may be directly cut out to provide a predetermined blade, but by cutting a flat plate around a magnet roller or the like and winding a sheet-shaped mold with the blade placed at a predetermined position The replacement of the blade is easy and preferable. By using such a rotating roller, it is possible to insert the cut well even with a cut prepreg base material having a small Ws (specifically, 1 mm or less). After making the cut, the cut prepreg base material may be further thermocompression-bonded with a roller or the like, so that the cut portion is filled with a resin and fused, thereby improving the handleability.

このようにして得られた切込プリプレグ基材の一例を用いて本発明により成形して得た繊維強化プラスチックの特徴を、図7を用いて説明する。切り込み4が繊維3を90°方向に横切っている切込プリプレグ基材10を積層した積層体12の一部をa)、その積層体12を本発明により成形して得た芯鞘構造の繊維強化プラスチックの鞘部33の等方的に伸張した一部をb)に、それぞれ切込プリプレグ基材10由来の層をクローズアップした平面図と平面図のA−A断面を切り出した断面図を示した。図7a)の切込プリプレグ基材10は、図3a)〜c)のように、繊維に垂直な切り込みを全面に設けられており、切り込み4は層の厚み方向に貫いている。繊維長さLを100mm以下とすることで、流動性が確保され、容易に積層体12より面積が伸長した鞘部33を得ることができる(ただし、厚みは減る)。図7b)のように、伸長した鞘部33を得た際、切込プリプレグ基材10由来の短繊維層17は、繊維垂直方向に伸長すると共に、繊維が存在しない領域(切り込み開口部)18が生成される。これは一般的に強化繊維が成形程度の圧力では伸長しないためであり、図7のケースでは、伸張した長さ分だけ切り込み開口部18が生成される。この領域18は断面図に示すとおり、隣接層19が侵入してきて、略三角形の樹脂リッチ部20と隣接層19が侵入している領域とで占められる。例えば、鞘部の表層に、全面に切り込みを入れた切込プリプレグ基材が配されている場合、図8のように繊維が流動した領域では積層体切り込み開口部18が観察される、という特徴がある。さらに好ましくは、繊維強化プラスチックを構成する層すべてが、繊維長さLcが10〜100mmの範囲内であり、幅Wscが30μm〜150mmの短冊状の集合体から構成されることである。本発明において、図7の点線で囲まれた領域38に示したように、2つの対になる繊維束分断部22に囲まれた領域を短冊状と表現する。切込プリプレグ基材の切り込みを強化繊維の垂直方向に投影した投影長さWsに対して、成形後の繊維垂直方向の広がり幅である短冊状の幅Wscは、成形により最大50%程度まで伸張されることが予想されるため、Wscは30μm〜150mmの範囲となる。   The characteristics of the fiber reinforced plastic obtained by molding according to the present invention using an example of the cut prepreg base material thus obtained will be described with reference to FIG. A part of the laminate 12 in which the cut prepreg base material 10 in which the cut 4 crosses the fiber 3 in the 90 ° direction is laminated is a), and the core-sheath fiber obtained by molding the laminate 12 according to the present invention. A plan view in which a portion of the reinforced plastic sheath 33 isotropically expanded is shown in b) with a close-up of the layer derived from the cut prepreg base material 10 and a cross-sectional view taken along the line AA of the plan view. Indicated. The cut prepreg base material 10 in FIG. 7a) is provided with cuts perpendicular to the fibers as shown in FIGS. 3a) to 3c), and the cuts 4 penetrate in the thickness direction of the layers. By setting the fiber length L to 100 mm or less, the fluidity is ensured, and the sheath part 33 whose area is easily extended from the laminate 12 can be easily obtained (however, the thickness is reduced). When the elongated sheath portion 33 is obtained as shown in FIG. 7b), the short fiber layer 17 derived from the cut prepreg base material 10 extends in the fiber vertical direction, and the region (cut opening portion) 18 in which no fiber exists. Is generated. This is because the reinforcing fiber generally does not expand at a pressure of the molding level. In the case of FIG. 7, the cut opening 18 is generated by the extended length. As shown in the cross-sectional view, the region 18 is occupied by the adjacent layer 19 that has entered, and the substantially triangular resin-rich portion 20 and the region in which the adjacent layer 19 has entered. For example, when a cut prepreg base material that has been cut into the entire surface is disposed on the surface layer of the sheath, the laminate cut opening 18 is observed in the region where the fibers flow as shown in FIG. There is. More preferably, all the layers constituting the fiber reinforced plastic are made of a strip-shaped aggregate having a fiber length Lc in the range of 10 to 100 mm and a width Wsc of 30 μm to 150 mm. In the present invention, as shown in a region 38 surrounded by a dotted line in FIG. 7, a region surrounded by two pairs of fiber bundle dividing portions 22 is expressed as a strip shape. The strip-shaped width Wsc, which is the spread width in the vertical direction of the fiber after molding, is extended to a maximum of about 50% by molding with respect to the projected length Ws obtained by projecting the cut of the notched prepreg base material in the vertical direction of the reinforcing fiber. Therefore, Wsc is in the range of 30 μm to 150 mm.

図3a)〜c)のように切り込みが繊維に垂直な切込プリプレグ基材以外の本発明に好適に用いられる切込プリプレグ基材としては、図3d)〜f)に示すように、切り込みが繊維直交方向2から傾いているのがよい。工業的に回転ローラー等で切り込みを入れる際、繊維方向に供給されたプリプレグ基材に繊維直交方向2に切り込みを入れようとすると、繊維を一気に分断する必要があり、大きな力が必要な他、刃の耐久性が低くなり、また繊維が直交方向2に逃げやすく、繊維の切り残りが増える。一方、切り込みが繊維直交方向2から傾いていることにより、刃の単位長さあたり裁断する繊維量が減少し、小さな力で繊維を裁断でき、刃の耐久性が高く、繊維の切り残り少なくできる。さらに、切り込みが繊維直交方向2から傾いていることにより、切り込み長さに対して、切り込みを強化繊維の垂直方向に投影した投影長さWsを小さくすることができ、一つ一つの切り込みにより分断される繊維量が減ることにより、強度向上が見込まれる。繊維直交方向2に切り込みを入れる場合には、Wsを小さくするために、小さな刃を用意するのが好ましいが、小さくし過ぎると耐久性、加工性に問題が生じる可能性がある。   As the cut prepreg base material suitably used in the present invention other than the cut prepreg base material whose incision is perpendicular to the fibers as shown in FIGS. 3a) to 3c), as shown in FIGS. It is good to incline from the fiber orthogonal direction 2. When making an incision with a rotating roller or the like industrially, if an attempt is made to make an incision in the fiber orthogonal direction 2 to the prepreg base material supplied in the fiber direction, it is necessary to divide the fiber at once, a large force is required, The durability of the blade is reduced, and the fibers easily escape in the orthogonal direction 2, resulting in an increase in the amount of uncut fibers. On the other hand, since the incision is inclined from the fiber orthogonal direction 2, the amount of fibers to be cut per unit length of the blade is reduced, the fibers can be cut with a small force, the durability of the blade is high, and the uncut fibers can be reduced. Further, since the incision is inclined from the fiber orthogonal direction 2, the projection length Ws obtained by projecting the incision in the vertical direction of the reinforcing fiber can be made smaller than the incision length, and the cutting is divided by each incision. The strength is expected to be reduced by reducing the amount of fibers produced. When cutting in the fiber orthogonal direction 2, it is preferable to prepare a small blade in order to reduce Ws. However, if it is too small, there may be a problem in durability and workability.

さらに別の切込プリプレグ基材の好ましい形態としては、切り込みが強化繊維となす角度Θの絶対値が2〜25°の範囲内である切込プリプレグ基材が挙げられる。この切込プリプレグ基材の場合は、断続的な切り込みであって、かつ切り込みが強化繊維となす角度Θが小さい、図10のような切り込みでもよいし、図9に示すような連続的な切り込みでも良い。Θの絶対値が25°より大きくても流動性は得ることができ、従来のSMC等と比較して高い力学特性は得ることができるが、特にΘの絶対値が25°以下であることで力学特性の向上が著しい。一方、Θの絶対値は2°より小さくても流動性も力学特性も十分得ることが出来るが、切り込みを安定して入れることが難しくなる。すなわち、繊維に対しする切り込みの角度が小さくなってくると、切り込みを入れる際、繊維が刃から逃げやすく、また、繊維長さLを100mm以下とするためには、Θの絶対値が2°より小さいと少なくとも切り込み同士の最短距離が0.9mmより小さくなるなど、生産安定性に欠ける場合がある。また、このように切り込み同士の距離が小さいと積層時の取り扱い性が難しくなるという問題が生じることがある。切り込みの制御のしやすさと力学特性との関係に鑑みると、さらに好ましくは5〜15°の範囲内である。   Still another preferred form of the cut prepreg base material is a cut prepreg base material in which the absolute value of the angle Θ formed by the cut with the reinforcing fiber is in the range of 2 to 25 °. In the case of this cut prepreg base material, it is intermittent cut and the angle Θ formed by the cut with the reinforcing fiber is small, as shown in FIG. 10, or continuous cut as shown in FIG. But it ’s okay. Even if the absolute value of Θ is larger than 25 °, fluidity can be obtained, and higher mechanical properties can be obtained as compared with conventional SMC, etc., but in particular, when the absolute value of Θ is 25 ° or less. Significant improvement in mechanical properties. On the other hand, even if the absolute value of Θ is smaller than 2 °, sufficient fluidity and mechanical properties can be obtained, but it is difficult to make a stable cut. That is, when the angle of cut with respect to the fiber becomes smaller, the fiber easily escapes from the blade when making the cut, and in order to make the fiber length L 100 mm or less, the absolute value of Θ is 2 °. If it is smaller, at least the shortest distance between the cuts may be less than 0.9 mm, resulting in poor production stability. In addition, when the distance between the cuts is small as described above, there may be a problem that handling at the time of stacking becomes difficult. In view of the relationship between the ease of controlling the cutting and the mechanical characteristics, it is more preferably in the range of 5 to 15 °.

切り込みは図11c)のように曲線でも構わないが、直線状が流動性をコントロールしやすく好ましい。また、切り込みにより分断される強化繊維の長さLは図11b)のように一定でなくてもよいが、図11a)のように繊維長さLが全面で一定であると流動性をコントロールしやすく、強度ばらつきをさらに押さえることができるため好ましい。なお、ここで規定の直線状とは、幾何学上の直線の一部をなしている状態を意味するが、前記流動性のコントロールを容易とするという効果を損なわない限り、前記幾何学上の直線の一部をなしていない箇所があっても差支えが無く、その結果、繊維長さLが全面で一定とはならない箇所があっても(この場合、繊維長さLが実質的に全面で一定であると言えるので)差支えが無い。   The incision may be a curve as shown in FIG. 11c), but a straight line is preferable because the flowability is easily controlled. Further, the length L of the reinforcing fiber divided by the cut may not be constant as shown in FIG. 11b), but the fluidity is controlled when the fiber length L is constant over the entire surface as shown in FIG. 11a). It is preferable because it is easy and can further suppress variation in strength. Here, the prescribed linear shape means a state in which a part of a geometrical straight line is formed, but unless the effect of facilitating the control of the fluidity is impaired, the geometrical Even if there is a portion that does not form a part of the straight line, there is no problem. As a result, even if there is a portion where the fiber length L is not constant over the entire surface (in this case, the fiber length L is substantially over the entire surface). It can be said that it is constant).

好ましい例[1]としては、図9や図11a)〜c)のように、切り込み4cが連続して入れられているのがよい。例[1]のパターンでは、切り込み4cが断続的でないため、切り込み端部付近での流動乱れが起きず、切り込み4cを入れた領域では、すべての繊維長さLを一定とすることができ、流動が安定している。切り込みをプリプレグ基材全面に設ける場合、切り込み4cが連続的に入れられているため、切込プリプレグ基材10がばらばらになってしまうのを防ぐ目的で、切込プリプレグ基材の周辺部に切り込みがつながっていない領域を設けたり、切り込みの入っていないシート状の離型紙やフィルムなどの支持体で把持することで、取り扱い性を向上させることができる。また、積層時の取り扱い性を向上するために、図19のようにあらかじめ切り込みを連続的に入れた上記切込プリプレグ基材を切り込みが重ならないように2枚重ねて積層した2層積層体としてもよい。   As a preferable example [1], as shown in FIG. 9 and FIGS. In the pattern of Example [1], since the cut 4c is not intermittent, flow disturbance does not occur in the vicinity of the cut end, and in the region where the cut 4c is made, all the fiber lengths L can be made constant, The flow is stable. When the cut is provided on the entire surface of the prepreg base material, since the cuts 4c are continuously formed, the cut prepreg base material 10 is cut into the peripheral portion of the cut prepreg base material in order to prevent the cut prepreg base material 10 from being separated. It is possible to improve the handleability by providing a region where no is connected, or by gripping it with a support such as a sheet-like release paper or film that is not cut. Moreover, in order to improve the handleability at the time of lamination | stacking, as a two-layer laminated body which laminated | stacked the said cut prepreg base material which cut | incised continuously beforehand like FIG. Also good.

また、他の好ましい例[2]としては、図10に示すように、強化繊維の垂直方向に投影した長さ9をWsとするとWsが30μm〜100mmの範囲内である断続的な切り込み4dが切込プリプレグ基材10全面に設けられており、切り込み4dと前記切り込み4dの繊維長手方向に隣接した切り込み4dの幾何形状が同一であるとよい。図10では、LとWsがいずれも一種類である例を示している。いずれの切り込み4d(例えば4d)も繊維方向に平行移動することで重なる他の切り込み4d(例えば4d)がある。前記繊維方向の対になる切り込み4d同士により分断される繊維長さLよりさらに短い繊維長さで隣接する切り込みにより分断され繊維が分断される幅5が存在することによって、安定的に繊維長さを100mm以下で切込プリプレグ基材10を製造できる。例[2]のパターンでは、得られた切込プリプレグ基材10を積層する際、切り込みが断続的なため取り扱い性に優れる。図11d)、e)にはその他のパターンも例示したが、上記条件を満たせばどのようなパターンでも構わない。 In addition, as another preferable example [2], as shown in FIG. 10, when the length 9 projected in the vertical direction of the reinforcing fiber is Ws, intermittent cuts 4d in which Ws is in the range of 30 μm to 100 mm are provided. The notch prepreg base material 10 is provided on the entire surface, and the notch 4d 1 and the notch 4d 2 adjacent in the fiber longitudinal direction of the notch 4d 1 may have the same geometric shape. FIG. 10 shows an example in which both L and Ws are one type. Any of the cuts 4d (for example, 4d 1 ) has another cut 4d (for example, 4d 2 ) that overlaps by translating in the fiber direction. The fiber length can be stably increased by the presence of the width 5 in which the fibers are divided by the adjacent incisions at a fiber length shorter than the fiber length L divided by the cuts 4d that form pairs in the fiber direction. The cut prepreg base material 10 can be manufactured at 100 mm or less. In the pattern of Example [2], when the obtained cut prepreg base material 10 is laminated, the cut is intermittent, and thus the handleability is excellent. Although other patterns are illustrated in FIGS. 11D) and 11E, any pattern may be used as long as the above conditions are satisfied.

このようにして得られた好ましい例[1]の切込プリプレグ基材を用いて本発明により成形して得られた芯鞘構造の繊維強化プラスチックの鞘部33の特徴を、図12を用いて説明する。本発明に係る切込プリプレグ基材10を積層した積層体12の一部をa)、その積層体12を本発明により成形して得た芯鞘構造の繊維強化プラスチックの鞘部33の等方的に伸張した一部をb)に、それぞれ切込プリプレグ基材10由来の層をクローズアップした平面図と平面図のA−A断面を切り出した断面図を示した。a)に示すとおり、切込プリプレグ基材10は、繊維3との角度が25°以下の切り込み4cを全面に設けられており、切り込み4cは層の厚み方向を貫いている。繊維長さLを100mm以下とすることで、流動性が確保され、容易に積層体12より面積が伸長した鞘部33を得ることが出来る。b)のように、伸長した鞘部33を得た際、切込プリプレグ基材10由来の短繊維層17は、繊維垂直方向に伸長すると共に、繊維3自体が回転24して伸長領域の面積を稼ぐため、図7のように繊維が存在しない領域(切り込み開口部)18が実質的に生成せず、切り込み開口部の層の表面における面積が層の表面積と比較して10%以下である。従って、断面図からも分かるとおり、隣接層19が侵入することもなく、層のうねりや樹脂リッチ部のない高剛性、高強度で品位の高い鞘部33を得ることが出来る。面内全体にくまなく繊維3が配されているため、面内での剛性差がなく、設計も従来の連続繊維強化プラスチックと同様、簡易に適用できる。この繊維が回転して伸長し、層うねりのない鞘部を得るというさらなる画期的効果は、切り込みの繊維となす角度Θの絶対値が25°以下であることで初めて得ることができる。また、強度の面では、前述と同様に荷重方向から±10°以下程度に向いている繊維に注目すると、図12b)のように、繊維束端部22が荷重方向に対して寝てきている様子がわかる。繊維束端部22が層厚み方向に斜めとなっているため、荷重の伝達がスムーズであり、繊維束端部22からの剥離も起こりにくい。従って、図7に比べさらなる強度向上が見込まれる。この繊維束端部22が層厚み方向に斜めとなるのは上述の繊維が回転する際、上面と下面の摩擦により上面から下面で繊維3の回転24になだらかな分布があるためで、そのため、層厚み方向に繊維3の存在分布が発生し、繊維束端部22が層厚み方向に斜めとなったと考えられる。このような鞘部33の層内で層厚み方向に斜めの繊維束端部を形成し、強度を著しく向上するというさらなる画期的効果は、切り込み4cの繊維3となす角度Θの絶対値が25°以下であることで初めて得ることができる。   The characteristics of the sheath portion 33 of the fiber-reinforced plastic having the core-sheath structure obtained by molding according to the present invention using the cut prepreg base material of the preferable example [1] obtained in this way are described with reference to FIG. explain. A part of a laminate 12 in which the cut prepreg base material 10 according to the present invention is laminated is a), and the sheath 33 of the fiber-reinforced plastic having a core-sheath structure obtained by molding the laminate 12 according to the present invention A partially expanded view b) shows a plan view in which the layers derived from the cut prepreg base material 10 are respectively close-up, and a cross-sectional view taken along the line AA of the plan view. As shown to a), the notch prepreg base material 10 is provided with the notch 4c whose angle with the fiber 3 is 25 degrees or less over the entire surface, and the notch 4c penetrates the thickness direction of the layer. By setting the fiber length L to 100 mm or less, the fluidity is ensured, and the sheath portion 33 whose area is extended from the laminate 12 can be easily obtained. When the elongated sheath portion 33 is obtained as in b), the short fiber layer 17 derived from the cut prepreg base material 10 extends in the fiber vertical direction, and the fiber 3 itself rotates 24 to expand the area of the elongated region. As shown in FIG. 7, the region (cut opening) 18 where no fiber is present is not substantially generated, and the area of the surface of the layer of the cut opening is 10% or less compared to the surface area of the layer. . Therefore, as can be seen from the cross-sectional view, the adjacent layer 19 does not penetrate, and the highly rigid and high quality sheath portion 33 having no layer undulation or resin rich portion can be obtained. Since the fibers 3 are arranged all over the surface, there is no difference in rigidity in the surface, and the design can be easily applied as in the conventional continuous fiber reinforced plastic. A further epoch-making effect that this fiber rotates and stretches to obtain a sheath portion without layer waviness can be obtained only when the absolute value of the angle Θ formed with the cut fiber is 25 ° or less. Further, in terms of strength, when attention is paid to the fibers oriented to about ± 10 ° or less from the load direction as described above, the fiber bundle end portion 22 lies down with respect to the load direction as shown in FIG. I can see the situation. Since the fiber bundle end portion 22 is slanted in the layer thickness direction, load transmission is smooth, and peeling from the fiber bundle end portion 22 hardly occurs. Therefore, further improvement in strength is expected compared to FIG. The fiber bundle end 22 is inclined in the layer thickness direction because when the above-mentioned fiber rotates, there is a gentle distribution in the rotation 24 of the fiber 3 from the upper surface to the lower surface due to friction between the upper surface and the lower surface. It is considered that the presence distribution of the fibers 3 occurs in the layer thickness direction, and the fiber bundle end 22 is inclined in the layer thickness direction. In such a layer of the sheath part 33, a further breakthrough effect of significantly increasing the strength by forming an oblique fiber bundle end in the layer thickness direction is that the absolute value of the angle Θ formed with the fiber 3 of the cut 4c is It can be obtained for the first time when the angle is 25 ° or less.

一方、図13には、好ましい例[2]の切込プリプレグ基材10を積層した積層体12の一部をa)、その積層体12を成形した繊維強化プラスチックの鞘部33の等方的に伸張した一部をb)に、それぞれ切込プリプレグ基材10由来の層をクローズアップした平面図を示した。a)に示すとおり、切込プリプレグ基材10は、繊維3となす角度Θの絶対値が25°以下の断続的な切り込み4dが全面に設けられており、切り込み4dは層の厚み方向を貫いている。切り込み4dにより繊維長さLを切込プリプレグ基材10の全面で100mm以下とすることで、流動性が確保され、容易に積層体12より面積が伸長した繊維強化プラスチックの鞘部33とすることができる。切り込み長さ、切り込み角度を小さくすることにより、切り込みを強化繊維の垂直方向に投影した投影長さWsを1.5mm以下とすることができる。b)のように、伸長した繊維強化プラスチックの鞘部33を得た際、切込プリプレグ基材10由来の短繊維層17は、繊維垂直方向に伸長する際、繊維方向に繊維が伸張しないため、繊維が存在しない領域(切り込み開口部)18が生成されるが、隣接する短繊維群が繊維垂直方向に流動することで、切り込み開口部18を埋め、切り込み開口部18の面積が小さくなる。この傾向は特に、切り込みを強化繊維の垂直方向に投影した投影長さWsを1.5mm以下とすることで顕著となり、実質的に切り込み開口部18が生成せず、切り込み開口部18の層の表面における面積が層の表面積と比較して0.1〜10%の範囲内とすることができる。従って、厚み方向に隣接層が侵入することもなく、層のうねりや樹脂リッチ部のない高剛性、高強度で品位の高い繊維強化プラスチックの鞘部33を得ることが出来る。面内全体にくまなく繊維3が配されているため、面内での剛性差がなく、設計も従来の連続繊維強化プラスチックと同様、簡易に適用できる。この切り込み開口部18を繊維垂直方向の流動により埋め、層うねりのない鞘部を得るという画期的効果は切り込み角度Θの絶対値が25°以下であり、かつ切り込みを強化繊維の垂直方向に投影した投影長さWsを1.5mm以下とすることで初めて得ることができる。さらに好ましくはWsが1mm以下であることにより、より高剛性、高強度、高品位とすることができ、外板部材としての適用も可能となる。   On the other hand, in FIG. 13, a part of the laminate 12 in which the cut prepreg base material 10 of the preferred example [2] is laminated is a), and the sheath portion 33 of the fiber reinforced plastic formed from the laminate 12 isotropic. A plan view showing a close-up of a layer derived from the cut prepreg base material 10 is shown in part b). As shown in a), the cut prepreg substrate 10 is provided with intermittent cuts 4d having an absolute value of the angle Θ between the fibers 3 of 25 ° or less, and the cuts 4d penetrate the thickness direction of the layer. ing. By setting the fiber length L to 100 mm or less over the entire surface of the cut prepreg base material 10 by the cut 4d, the fluidity is ensured and the sheath portion 33 of fiber reinforced plastic whose area is easily extended from the laminate 12 is obtained. Can do. By reducing the cut length and the cut angle, the projected length Ws obtained by projecting the cut in the vertical direction of the reinforcing fiber can be made 1.5 mm or less. When the elongated fiber-reinforced plastic sheath 33 is obtained as in b), the short fiber layer 17 derived from the cut prepreg base material 10 does not stretch in the fiber direction when stretched in the fiber vertical direction. A region 18 where the fibers do not exist (cut opening portion) 18 is generated, but the adjacent short fiber group flows in the fiber vertical direction, thereby filling the cut opening 18 and reducing the area of the cut opening 18. This tendency is particularly remarkable when the projection length Ws obtained by projecting the cut in the vertical direction of the reinforcing fiber is 1.5 mm or less, and the cut opening 18 is not substantially generated, and the layer of the cut opening 18 is not formed. The area on the surface can be in the range of 0.1 to 10% compared to the surface area of the layer. Accordingly, the sheath layer 33 of the fiber reinforced plastic having high rigidity, high strength and high quality without the undulation of the layer and the resin rich portion can be obtained without the adjacent layer entering in the thickness direction. Since the fibers 3 are arranged all over the surface, there is no difference in rigidity in the surface, and the design can be easily applied as in the conventional continuous fiber reinforced plastic. The epoch-making effect of filling the cut opening 18 with the flow in the vertical direction of the fiber to obtain a sheath portion without layer undulation has an absolute value of the cut angle Θ of 25 ° or less and the cut in the vertical direction of the reinforcing fiber. It can be obtained for the first time when the projected length Ws is 1.5 mm or less. More preferably, when Ws is 1 mm or less, higher rigidity, higher strength, and higher quality can be obtained, and application as an outer plate member is also possible.

さらに、積層体が切込プリプレグ基材のみから構成されるのが、流動性向上のために好ましい。さらに好ましくは、積層体が切込プリプレグ基材のみから構成され、かつ、その切込プリプレグ基材を構成する強化繊維の全ての繊維長さLが10〜100mmの範囲内であるのが良い。形状に合わせて切り込みを入れるのは、設計、作業の面で非常に手間がかかりやすいため、品質安定性のためにも、全面に切り込みを入れ、積層体のどの領域が複雑形状にあたっても沿いやすくしておくことが好ましい。   Furthermore, it is preferable for the fluidity improvement that the laminate is composed only of the cut prepreg base material. More preferably, the laminate is composed of only a cut prepreg base material, and all the fiber lengths L of the reinforcing fibers constituting the cut prepreg base material are within a range of 10 to 100 mm. Making the incision according to the shape is very time-consuming in terms of design and work. For quality stability, the entire surface is incised so that any area of the laminate can easily follow the complicated shape. It is preferable to keep it.

本発明に係る切込プリプレグ基材に用いられる強化繊維としては、例えば、アラミド繊維、ポリエチレン繊維、ポリパラフェニレンベンズオキサドール(PBO)繊維などの有機繊維、ガラス繊維、炭素繊維、炭化ケイ素繊維、アルミナ繊維、チラノ繊維、玄武岩繊維、セラミックス繊維などの無機繊維、ステンレス繊維やスチール繊維などの金属繊維、その他、ボロン繊維、天然繊維、変性した天然繊維などを繊維として用いた強化繊維などが挙げられる。その中でも特に炭素繊維は、これら強化繊維の中でも軽量であり、しかも比強度および比弾性率において特に優れた性質を有しており、さらに耐熱性や耐薬品性にも優れていることから、軽量化が望まれる自動車パネルなどの部材に好適である。なかでも、高強度の炭素繊維が得られやすいPAN系炭素繊維が好ましい。   Examples of the reinforcing fibers used for the cut prepreg base material according to the present invention include, for example, organic fibers such as aramid fibers, polyethylene fibers, polyparaphenylene benzoxador (PBO) fibers, glass fibers, carbon fibers, silicon carbide fibers, Examples include inorganic fibers such as alumina fibers, Tyranno fibers, basalt fibers, ceramic fibers, metal fibers such as stainless steel fibers and steel fibers, and other reinforcing fibers using boron fibers, natural fibers, modified natural fibers, etc. . Among them, carbon fiber is particularly lightweight among these reinforcing fibers, and has particularly excellent properties in specific strength and specific modulus, and is also excellent in heat resistance and chemical resistance. It is suitable for members such as automobile panels that are desired to be made. Among these, PAN-based carbon fibers that can easily obtain high-strength carbon fibers are preferable.

本発明に係る切込プリプレグ基材に用いられる熱硬化性樹脂としては、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂、エポキシアクリレート樹脂、ウレタンアクリレート樹脂、フェノキシ樹脂、アルキド樹脂、ウレタン樹脂、マレイミド樹脂、シアネート樹脂などが挙げられる。熱硬化性樹脂がプリプレグ基材に用いられることにより、切込プリプレグ基材は室温においてタック性を有しているため、該基材を積層した際に上下の該基材と粘着により一体化され、意図したとおりの積層構成を保ったままで成形することができる。さらに、熱硬化性樹脂から構成される本発明に係る切込プリプレグ基材は、室温において優れたドレープ性を有するため、例えば、凹凸部を有する型を用いて成形する場合、予めその凹凸に沿わした予備賦形を容易に行うことが出来る。この予備賦形により成形性は向上し、流動の制御も容易になる。なお、本発明において、かかる目的が達成される限りにおいて、マトリックス樹脂に熱可塑性樹脂(例えば、40重量%以下)が含まれていても差し支えはない。   Examples of the thermosetting resin used for the cut prepreg base material according to the present invention include an epoxy resin, an unsaturated polyester resin, a vinyl ester resin, a phenol resin, an epoxy acrylate resin, a urethane acrylate resin, a phenoxy resin, an alkyd resin, A urethane resin, a maleimide resin, a cyanate resin, etc. are mentioned. When the thermosetting resin is used for the prepreg base material, the cut prepreg base material has tackiness at room temperature, so when the base material is laminated, it is integrated with the upper and lower base materials by adhesion. Then, it can be molded while maintaining the intended laminated structure. Furthermore, since the cut prepreg base material according to the present invention composed of a thermosetting resin has excellent drapability at room temperature, for example, when molding using a mold having a concavo-convex portion, it follows the concavo-convex in advance. It is possible to easily perform the preliminary shaping. This pre-shaping improves moldability and facilitates flow control. In the present invention, as long as this object is achieved, the matrix resin may contain a thermoplastic resin (for example, 40% by weight or less).

また、本発明に係る切込プリプレグ基材はテープ状支持体に密着されていてもよい。切り込みが挿入された基材は、全ての繊維が切り込みにより切断されてもその形態を保持することが可能となり、賦形時に繊維が脱落してバラバラになってしまうという問題はない。ここで、テープ状支持体とは、クラフト紙などの紙類やポリエチレン・ポリプロピレンなどのポリマーフィルム類、アルミなどの金属箔類などが挙げられ、さらに樹脂との離型性を得るために、シリコーン系や“テフロン(登録商標)”系の離型剤や金属蒸着等を表面に付与しても構わない。   Moreover, the cut prepreg base material according to the present invention may be in close contact with the tape-like support. The base material into which the cut has been inserted can retain its shape even when all the fibers are cut by the cut, and there is no problem that the fibers fall off during shaping. Here, the tape-like support includes papers such as kraft paper, polymer films such as polyethylene / polypropylene, metal foils such as aluminum and the like, and in order to obtain releasability from the resin, silicone. A surface or “Teflon (registered trademark)” type release agent, metal vapor deposition, or the like may be applied to the surface.

さらに好ましくは熱硬化性樹脂の中でも、エポキシ樹脂や不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂、アクリル樹脂等や、それらの混合樹脂がよい。これらの樹脂の常温(25℃)における樹脂粘度としては、1×10Pa・s以下であることが好ましく、この範囲内であれば本発明に好適なタック性およびドレープ性を有するプリプレグ基材を得ることができる。中でもエポキシ樹脂は炭素繊維と組み合わせて得られる強化繊維複合材料としての力学特性に最も優れている。 More preferably, among the thermosetting resins, an epoxy resin, an unsaturated polyester resin, a vinyl ester resin, a phenol resin, an acrylic resin, or a mixed resin thereof is preferable. The resin viscosity at normal temperature (25 ° C.) of these resins is preferably 1 × 10 6 Pa · s or less, and within this range, a prepreg base material having tackiness and draping properties suitable for the present invention. Can be obtained. Among them, the epoxy resin is most excellent in mechanical properties as a reinforced fiber composite material obtained in combination with carbon fiber.

本発明における注入発泡の方法としては、特開平9−328568号公報に示されているように、(1)加熱することにより分解しガスを発生する熱分解性発泡剤を混ぜた樹脂を加熱し熱分解性発泡剤を発泡させる、(2)低沸点液状体を封入した樹脂を加熱して樹脂を軟化させるとともに低沸点液状体を膨張させ発泡させる、(3)樹脂にその場で高圧気体を混入して発泡させる、(4)反応により発生するガスにより樹脂を膨張させる、(5)発泡ビーズを混入し発泡させる、などの方法が挙げられ、いずれを用いても構わない。好ましい例としては発泡スチロール、ポリエチレンフォーム、ポリプロピレンフォームなどがあるが、特に高強度な芯鞘構造を得るには、(4)のポリウレタン樹脂のポリオールとイソシアネートの反応で生成する二酸化炭素ガスによりポリウレタン樹脂を発泡させて得たウレタンフォームを用いるのが良い。   As the method of injection foaming in the present invention, as disclosed in JP-A-9-328568, (1) a resin mixed with a thermally decomposable foaming agent that decomposes by heating to generate gas is heated. (2) The resin encapsulating the low-boiling liquid is heated to soften the resin, and the low-boiling liquid is expanded and foamed. (3) A high-pressure gas is applied to the resin on the spot. Examples of the method include mixing and foaming, (4) expanding the resin with a gas generated by the reaction, and (5) mixing and foaming foam beads. Preferred examples include polystyrene foam, polyethylene foam, polypropylene foam, etc. In order to obtain a particularly strong core-sheath structure, the polyurethane resin is produced by carbon dioxide gas generated by the reaction of the polyol of the polyurethane resin (4) and isocyanate. It is preferable to use urethane foam obtained by foaming.

さらに好ましい製造方法の具体例を以下に説明していく。   Specific examples of more preferable production methods will be described below.

(1)の賦形工程で用いる積層体については、大きく分けて次の2つの手法をとるのが好ましい。一つ目は、プリプレグ基材をマンドレル上に順次賦形して形成する方法であり、二つ目はプリプレグ基材を平板状に積層して形成する方法である。一つ目の方法は、直接最終形状である繊維強化プラスチックの略形状であるマンドレル上に積層体を形成する方法で、テープレイアップやシートワインディングなどの機械的な手法を用いて切込プリプレグ基材等を積層してもよい。ある程度の形状のついたマンドレルに直接賦形するため、シワが発生しにくく、きれいな積層体を形成することができる。二つ目の方法は、まず最初に切込プリプレグ基材などプリプレグ基材を平板状に積層しておき、その積層体をマンドレル上に賦形する方法で、積層と賦形を別々に行うため作業効率が良い。厚い積層体の場合、略形状とはいえある程度の形状がついたマンドレルに賦形するとシワが発生しやすいため、積層体を硬化しない程度に加熱して軟化させて積層させるのがよい。ただし、積層体の賦形時のシワは、成形時に積層体を適正に伸張させることで解消するため、本発明の場合、大きな問題とならないことが多い。   About the laminated body used at the shaping process of (1), it is preferable to divide roughly and take the following two methods. The first is a method of forming a prepreg base material by sequentially shaping it on a mandrel, and the second is a method of forming a prepreg base material by laminating it in a flat plate shape. The first method is to directly form a laminate on a mandrel, which is an approximate shape of fiber-reinforced plastic, which is the final shape, and is based on a cut prepreg base using mechanical techniques such as tape layup and sheet winding. Materials and the like may be laminated. Since it is directly formed on a mandrel having a certain shape, wrinkles are hardly generated, and a clean laminate can be formed. The second method is a method in which a prepreg base material such as a cut prepreg base material is first laminated in a flat plate shape, and the laminate is shaped on a mandrel. Work efficiency is good. In the case of a thick laminated body, wrinkles are likely to occur when it is formed on a mandrel having a certain shape although it is a substantial shape. Therefore, it is preferable to heat and soften the laminated body so as not to harden and laminate the laminated body. However, wrinkles at the time of shaping the laminated body are eliminated by appropriately stretching the laminated body at the time of molding.

外形状が筒形状(内部空間にアクセスする口が2箇所以上ある鞘部とその内部空間を埋めるフォーム材からなる芯鞘構造)の繊維強化プラスチックを製造するには、積層体を凹凸のない筒形状にマンドレル上に設けるだけでよく、もっとも本発明が好ましいとする実施形態である。例えば図14のように、製造される繊維強化プラスチックが複雑な形状であっても、鞘部の両端が開いた形状であるならば、シート状の切込プリプレグ基材を巻きつけるなどして円筒状の積層体を用意すれば、容易に複雑形状に沿うことができる。一方、壺形状(内部空間にアクセスする口が1箇所である鞘部とその内部空間を埋めるフォーム材からなる芯鞘構造)の繊維強化プラスチックを製造するには、積層体を袋状に作成する必要がある。特に、本発明においては積層体を伸張させながら成形することに特徴があるため、筒形状の積層体の穴の一端を閉じて袋状としただけでは、積層体を伸張した際に簡単に閉じた穴が開いてしまう危険性がある。そこで、成形工程において、積層体の少なくとも1箇所以上を成形型に押し付けて固定した後に、前記膨張性マンドレルを膨張させるのがよい。すなわち、袋状にした積層体が伸張した際に簡単に穴が開きやすい領域をあらかじめ型に押し当てておくことでその領域は伸張させず、穴を開けないのが良い。押し当てる領域には繊維長さが100mm以上の繊維を配置することで、さらにこの効果を高めることができる。具体的には図1の壺形状の場合、首の部分31と底の部分30のみ、先に成形型に押し当てて積層体を固定し、伸張の基点とすることで、積層体からなる鞘部に穴を開けることなく繊維強化プラスチックを製造することができる。   To produce a fiber-reinforced plastic with an outer shape of a cylindrical shape (a core-sheath structure consisting of a sheath part having two or more openings for accessing the inner space and a foam material filling the inner space), the laminated body is made of a cylinder without irregularities. It is only necessary to provide the shape on a mandrel, and this is the preferred embodiment of the present invention. For example, as shown in FIG. 14, even if the fiber-reinforced plastic to be manufactured has a complicated shape, if the both ends of the sheath portion are open, a sheet-shaped cut prepreg base material is wound to form a cylinder. If a layered laminate is prepared, it can easily follow a complicated shape. On the other hand, in order to manufacture a fiber-reinforced plastic having a cocoon shape (a core-sheath structure made up of a sheath part having one opening for accessing the internal space and a foam material filling the internal space), the laminate is formed in a bag shape. There is a need. In particular, the present invention is characterized in that the laminate is molded while being stretched. Therefore, if one end of the hole of the cylindrical laminate is closed to form a bag shape, the laminate is easily closed when the laminate is stretched. There is a risk that the hole will open. Therefore, in the molding step, it is preferable to expand the expandable mandrel after pressing and fixing at least one portion of the laminate to the mold. That is, when a bag-like laminate is stretched, a region where a hole is easily opened is pressed against a mold in advance so that the region is not expanded and a hole is not formed. This effect can be further enhanced by arranging fibers having a fiber length of 100 mm or more in the area to be pressed. Specifically, in the case of the collar shape of FIG. 1, only the neck portion 31 and the bottom portion 30 are pressed against the mold first to fix the laminate, and the sheath is made of the laminate. A fiber-reinforced plastic can be manufactured without making a hole in the part.

また、本発明を用いることで、例えば翼形状のような、大きなRと小さなRに囲まれた断面形状を有する筒形状を好ましく成形することができる。一旦、円筒形状の積層体を上下に潰して楕円形状として、翼形状のキャビティ内に納める。積層体は得られる繊維強化プラスチックの外形上よりも小さくできているため、簡単にキャビティ内にセットすることができる。次に発泡樹脂を積層体内に注入することで、隅々まで均等に圧力が加わり、従来沿いにくい小さなR部にもしっかり積層体が押し付けられ、高品位の繊維強化プラスチックを得ることができる。   Further, by using the present invention, it is possible to preferably form a cylindrical shape having a cross-sectional shape surrounded by a large R and a small R, such as a wing shape. Once the cylindrical laminated body is crushed up and down to make an elliptical shape, it is placed in a wing-shaped cavity. Since the laminate is made smaller than the outer shape of the obtained fiber reinforced plastic, it can be easily set in the cavity. Next, by injecting the foamed resin into the laminated body, pressure is applied evenly to every corner, and the laminated body is firmly pressed against a small R portion that is difficult to follow, so that a high-quality fiber-reinforced plastic can be obtained.

また、金属の押出材などを曲げ加工する際に用いられる、いわゆるドローベンディングを本発明の繊維強化プラスチックの製造方法にも適用できる。賦形工程において、柔軟性を有するマンドレル(例えばシリコンラバーの固形物)に積層体を設けた後、加熱などにより軟化させながら曲げ、マンドレルを除去した後、成形工程において、成形型に配置し、発泡性樹脂を注入して積層体を伸張して成形を行うことができる。   In addition, so-called draw bending, which is used when bending a metal extruded material or the like, can also be applied to the fiber-reinforced plastic manufacturing method of the present invention. In the shaping process, after providing a laminate to a flexible mandrel (e.g., solid silicon rubber), bending while softening by heating or the like, removing the mandrel, and then placing it in a molding die in the molding process, Molding can be performed by injecting a foamable resin and stretching the laminate.

さらに好ましくは、積層体を引き取りながら、賦形工程、成形工程、脱型工程を連続的に実施して筒形状の芯鞘構造の繊維強化プラスチックを得る、いわゆる引抜成形を行うのが良い。連続的に芯鞘構造の繊維強化プラスチックを得ることができ、本発明の成形法の中でももっとも低コストな成形法のひとつである。   More preferably, so-called pultrusion molding, in which a fiber-reinforced plastic having a cylindrical core-sheath structure is obtained by continuously performing a shaping step, a molding step, and a demolding step while taking up the laminate. A fiber-reinforced plastic having a core-sheath structure can be obtained continuously, and is one of the lowest cost molding methods among the molding methods of the present invention.

さらに好ましくは、成形工程において、連続的に筒形状の芯鞘構造の繊維強化プラスチックを得るのが良く、成形工程をこのような態様とすることで、連続的に異形断面に変化する型に押し付けることができ、その結果、連続的に異形断面の筒形状の芯鞘構造の繊維強化プラスチックを得ることができる。図15には、全面に切り込みを入れた切込プリプレグ基材のみからなる積層体12を連続的に供給し、ガイド状のマンドレル36aによって折り曲げ、螺旋状のガイド34によって積層体12の端部同士を重ねてオーバーラップさせながら、予熱用の型28cに引き込み、積層体12で囲まれた閉空間に注入口26を介して発泡性樹脂27を注入する態様が示されている。予熱用の型28cは予熱を積層体12に加えて軟化させ、発泡性樹脂27の発泡圧により積層体12を伸張する。可動式の型35は予熱用の型28cと同等、もしくはそれ以上の温度に温調されており、可動式の型35を稼動させながら異型断面の芯鞘構造の繊維強化プラスチック16を成形する。連続的に変化する異形断面形状であっても、本発明の成形法を用いることで、特に複雑なカットパターンのプリプレグ基材を何種類も用意することなく、同一の切込プリプレグ基材を積層した積層体を用いて、高効率に異型断面の芯鞘構造の繊維強化プラスチックを得ることができる。   More preferably, in the molding process, it is preferable to obtain a fiber-reinforced plastic having a cylindrical core-sheath structure continuously, and by pressing the molding process in such a manner, the mold is continuously pressed into a deformed cross section. As a result, it is possible to obtain a fiber-reinforced plastic having a cylindrical sheath-shell structure with a continuously deformed cross section. In FIG. 15, the laminated body 12 made of only a cut prepreg base material with cuts on the entire surface is continuously supplied, bent by a guide-shaped mandrel 36 a, and ends of the laminated body 12 by a spiral guide 34. In the illustrated embodiment, the foamed resin 27 is drawn into the preheating mold 28c while being overlapped, and the foamable resin 27 is injected into the closed space surrounded by the laminate 12 through the injection port 26. The preheating mold 28 c applies preheating to the laminate 12 to soften it, and the laminate 12 is stretched by the foaming pressure of the foamable resin 27. The movable die 35 is temperature-controlled at a temperature equal to or higher than that of the preheating die 28c, and the fiber-reinforced plastic 16 having a core-sheath structure with an irregular cross section is formed while the movable die 35 is operated. Even with irregularly changing cross-sectional shapes, by using the molding method of the present invention, the same cut prepreg base material can be laminated without preparing many kinds of prepreg base materials with particularly complicated cut patterns. By using the laminated body, a fiber-reinforced plastic having a core-sheath structure with an irregular cross section can be obtained with high efficiency.

本発明の成形条件としては、成形工程における成形型の温度T1と、脱型工程における成形型の温度T2とを実質的に一定とするのがよい。なお、成形型の温度は積層体に触れるキャビティの表面を複数点(上下型ある場合には、少なくとも一点以上どちらの型も測定)、熱電対で測定した温度の平均で代表する。ここで、本発明における金型温度Tが実質的に一定とは、通常金型温度の変動が±10℃の範囲内であることを表す。また、T1、T2ともに経時的に変化しないのがよい。熱硬化性樹脂をプリプレグ基材に用いることにより、金型温度Tを保ったまま脱型することが可能であり、成形型の昇降温の時間を省くことによるサイクルタイムの圧縮により、大幅に生産性が向上する。   As the molding conditions of the present invention, it is preferable that the mold temperature T1 in the molding process and the mold temperature T2 in the demolding process are substantially constant. The temperature of the mold is represented by the average of the temperatures measured by a thermocouple at a plurality of points on the surface of the cavity that touches the laminate (when there are upper and lower molds, at least one point is measured). Here, that the mold temperature T in the present invention is substantially constant means that the variation of the mold temperature is usually within a range of ± 10 ° C. Further, both T1 and T2 should not change over time. By using a thermosetting resin for the prepreg base material, it is possible to remove the mold while maintaining the mold temperature T, and production is greatly achieved by reducing the cycle time by eliminating the time for raising and lowering the mold temperature. Improves.

本発明において、繊維強化プラスチックは、金型温度Tが、プリプレグ基材に用いられる熱硬化性樹脂の示差走査熱量測定(DSC)に拠る発熱ピーク温度Tpに対して、
Tp−60≦T≦Tp+20・・・(I)
の範囲内で製造することが好ましい。さらに好ましくは、
Tp−30≦T≦Tp・・・(II)
の範囲内である。金型温度Tが、Tp−60より低い場合、樹脂の硬化に要する時間が非常に長くなり、また硬化が不十分である場合もある。一方、Tp+20より高い場合、樹脂の急激な反応により樹脂内部でのボイドの生成、硬化不良を引き起こすことがある。なお、本発明におけるDSCに拠る発熱ピーク温度Tpは、JIS K 7121(1987)に準じて行われ、温度30〜180℃で、昇温速度10℃/分の条件にて昇温させて得た発熱曲線のピークをとった値である。JIS K 7121(1987)に言う試験片は、本発明においてはペーストである。従って、「試験片の状態調節」、「試験片」はそれぞれ「ペーストの状態調節」、「ペースト」と言うことができる。ペーストの状態調節は、原則として、温度23±2℃及び相対湿度50±5%において6〜8時間静置して行い、熱処理等は一切行わない。また、ペーストはペースト状のまま測定するため、寸法に関する規定はない。
In the present invention, the fiber reinforced plastic has a mold temperature T with respect to an exothermic peak temperature Tp based on differential scanning calorimetry (DSC) of a thermosetting resin used for a prepreg substrate.
Tp−60 ≦ T ≦ Tp + 20 (I)
It is preferable to manufacture within the range. More preferably,
Tp-30 ≦ T ≦ Tp (II)
Is within the range. When the mold temperature T is lower than Tp-60, the time required for curing of the resin becomes very long, and the curing may be insufficient. On the other hand, when it is higher than Tp + 20, a rapid reaction of the resin may cause generation of voids inside the resin and poor curing. In addition, exothermic peak temperature Tp based on DSC in this invention was performed according to JISK7121 (1987), and it heated up on the conditions of the temperature increase rate of 10 degree-C / min at the temperature of 30-180 degreeC. This is a value obtained by taking the peak of the exothermic curve. The test piece referred to in JIS K 7121 (1987) is a paste in the present invention. Therefore, “condition adjustment of test piece” and “test piece” can be referred to as “condition adjustment of paste” and “paste”, respectively. In principle, the state of the paste is adjusted to stand for 6 to 8 hours at a temperature of 23 ± 2 ° C. and a relative humidity of 50 ± 5%, and no heat treatment or the like is performed. In addition, since the paste is measured in the form of a paste, there is no regulation regarding the dimensions.

本発明において、熱硬化性樹脂は、動的粘弾性測定(DMA)に拠る最低粘度が0.1〜100Pa・sであるのがよい。さらに好ましくは0.1〜10Pa・sである。最低粘度が0.1Pa・sより小さい場合、加圧時に樹脂のみが流動し、突起部の先端まで十分に強化繊維が充填されない場合がある。一方、100Pa・sより大きい場合、樹脂の流動性が乏しいため、突起部の先端まで十分に強化繊維および樹脂が充填されない場合がある。なお、本発明におけるDMAに拠る最低粘度は、回転粘度計を使用して、半径20mmの平行平板を用い、平行平板間の距離1mm、測定開始温度40℃、昇温速度1.5℃/分、測定周波数0.5Hzの条件にて測定し、観測された最低粘度の値である。   In the present invention, the thermosetting resin preferably has a minimum viscosity of 0.1 to 100 Pa · s based on dynamic viscoelasticity measurement (DMA). More preferably, it is 0.1-10 Pa.s. When the minimum viscosity is less than 0.1 Pa · s, only the resin flows during pressurization, and the reinforcing fiber may not be sufficiently filled up to the tip of the protrusion. On the other hand, when the viscosity is higher than 100 Pa · s, the fluidity of the resin is poor, and thus the reinforcing fibers and the resin may not be sufficiently filled up to the tip of the protrusion. The minimum viscosity due to DMA in the present invention is a rotational viscometer, using parallel plates with a radius of 20 mm, a distance between parallel plates of 1 mm, a measurement start temperature of 40 ° C., and a temperature increase rate of 1.5 ° C./min. Measured under the condition of a measurement frequency of 0.5 Hz, the value of the lowest viscosity observed.

本発明で得られた繊維強化プラスチックの好ましい適用例の一つとして、繊維強化プラスチックの周囲にさらに連続繊維と熱硬化性樹脂とで構成された連続繊維強化プラスチックとが一体化しているのがよい。すなわち、図7に示したように、本発明により製造された繊維強化プラスチックにおいては、切り込みに起因する繊維束分断部22や切り込み開口部18が表面に生成されることがあるため、曲げなどの荷重に対して応力集中により破壊が引き起こされる可能性もある。そこで、一旦、本発明により繊維強化プラスチックを製造した後、表面上に連続繊維から構成される繊維強化プラスチックを一体化することで、少なくとも表面に応力集中源である繊維束分断部のない高強度な繊維強化プラスチックを得ることができる。連続繊維から構成される繊維強化プラスチックは複雑形状に製作することが困難であることは前述のとおりであり、芯鞘構造を有する繊維強化プラスチックを本発明の製造方法により製作した後、芯鞘構造の繊維強化プラスチックの上から樹脂の含浸していない連続繊維基材を配してRTM(樹脂注入成形)したり、連続繊維プリプレグ基材を配してコキュアしたり、連続繊維プリプレグ基材を接着剤とともに一体化してコボンドしたりすることで、連続繊維からなる繊維強化プラスチックと一体化することができ、複雑形状の高強度な繊維強化プラスチックを低コストに製作することができる。   As one preferred application example of the fiber reinforced plastic obtained in the present invention, it is preferable that a continuous fiber reinforced plastic composed of continuous fibers and a thermosetting resin is further integrated around the fiber reinforced plastic. . That is, as shown in FIG. 7, in the fiber reinforced plastic manufactured according to the present invention, the fiber bundle dividing part 22 and the cut opening 18 resulting from the cut may be generated on the surface. Failure may also be caused by stress concentration against the load. Therefore, once the fiber reinforced plastic is manufactured according to the present invention, by integrating the fiber reinforced plastic composed of continuous fibers on the surface, at least the surface has a high strength without a fiber bundle splitting portion that is a stress concentration source Fiber reinforced plastic can be obtained. As described above, it is difficult to fabricate a fiber-reinforced plastic composed of continuous fibers into a complex shape. After a fiber-reinforced plastic having a core-sheath structure is manufactured by the manufacturing method of the present invention, a core-sheath structure is obtained. RTM (resin injection molding) by placing a continuous fiber base not impregnated with resin on top of the fiber reinforced plastic, or cocure with a continuous fiber prepreg base, or bonding a continuous fiber prepreg base By integrating and co-bonding together with the agent, it can be integrated with a fiber reinforced plastic made of continuous fibers, and a complex-shaped high-strength fiber reinforced plastic can be manufactured at low cost.

さらに図4に示した積層体12の不連続部37に、回転部などの機構を備える目的で金属インサートを埋め込み、硬化、一体化させることにより、アセンブリコストが低減することができる。その際、金属インサートの周囲に複数の凹部設けることにより、流動した繊維が凹部に進入し、容易に隙間を充填することができるとともに、成形温度から低下することで、金属と繊維の熱膨張差でかしめられ、強固に一体化させることができる。   Further, the assembly cost can be reduced by embedding, hardening, and integrating the metal insert in the discontinuous portion 37 of the laminate 12 shown in FIG. 4 for the purpose of providing a mechanism such as a rotating portion. At that time, by providing a plurality of recesses around the metal insert, the flowed fibers can enter the recesses, and can easily fill the gaps. And can be firmly integrated.

なお、本発明により製造された繊維強化プラスチックの用途としては、強度、剛性、軽量性が要求される、自転車用品、ゴルフ等のスポーツ部材のシャフトやヘッド、ドアやシートフレームなどの自動車部材、ロボットアームなどの機械部品がある。中でも、強度、軽量に加え、部材形状が複雑で、本材料のように形状追従性が要求されるシートパネルやシートフレーム等の自動車部品に好ましく適用できる。   The fiber reinforced plastic manufactured according to the present invention is used for bicycle members, shafts and heads of sports parts such as golf equipment and golf, automobile parts such as doors and seat frames, and robots that require strength, rigidity, and lightness. There are mechanical parts such as arms. In particular, in addition to strength and light weight, the shape of the member is complicated, and it can be preferably applied to automobile parts such as seat panels and seat frames that require shape followability like this material.

以下、実施例により本発明をさらに具体的に説明するが、本発明は、実施例に記載の発明に限定されるというものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the inventions described in the examples.

(実施例1)
<プリプレグ基材の作製>
以下に示す手順にてエポキシ樹脂組成物を得た。
Example 1
<Preparation of prepreg base material>
An epoxy resin composition was obtained by the following procedure.

(a)エポキシ樹脂(ジャパンエポキシレジン(株)製“エピコート(登録商標)”828:30重量部、エピコート1001:35重量部、エピコート154:35重量部)と、熱可塑性樹脂ポリビニルホルマール(チッソ(株)製“ビニレック(登録商標)”K)5重量部とを、150〜190℃に加熱しながら1〜3時間攪拌し、ポリビニルホルマールを均一に溶解した。   (A) Epoxy resin (“Epicoat (registered trademark)” 828: 30 parts by weight, Epicoat 1001: 35 parts by weight, Epicoat 154: 35 parts by weight) manufactured by Japan Epoxy Resin Co., Ltd., and thermoplastic resin polyvinyl formal (Chisso ( "Vinylec (registered trademark)" K) 5 parts by weight was stirred for 1 to 3 hours while heating at 150 to 190 ° C to uniformly dissolve polyvinyl formal.

(b)樹脂温度を55〜65℃まで降温した後、硬化剤ジシアンジアミド(ジャパンエポキシレジン(株)製DICY7)3.5重量部と、硬化促進剤3−(3,4−ジクロロフェニル)−1,1−ジメチルウレア(保土谷化学工業(株)製DCMU99)4重量部とを加え、該温度で30〜40分間混練後、ニーダー中から取り出してエポキシ樹脂組成物を得た。   (B) After lowering the resin temperature to 55 to 65 ° C., 3.5 parts by weight of a curing agent dicyandiamide (DICY7 manufactured by Japan Epoxy Resin Co., Ltd.) and a curing accelerator 3- (3,4-dichlorophenyl) -1, 4 parts by weight of 1-dimethylurea (DCU99 manufactured by Hodogaya Chemical Co., Ltd.) was added, kneaded at the temperature for 30 to 40 minutes, and then taken out from the kneader to obtain an epoxy resin composition.

得られたエポキシ樹脂組成物を、リバースロールコーターを使用し離型紙上に塗布し、樹脂フィルムを作製した。   The obtained epoxy resin composition was apply | coated on the release paper using the reverse roll coater, and the resin film was produced.

次に、シート状に一方向に整列させた炭素繊維(引張強度4,900MPa、引張弾性率235GPa)に樹脂フィルム2枚を炭素繊維の両面から重ね、加熱し、加圧して樹脂組成物を含浸させ、炭素繊維目付150g/m、樹脂重量分率33%の一方向プリプレグ基材を作製した。 Next, the carbon fiber (tensile strength 4,900 MPa, tensile elastic modulus 235 GPa) aligned in one direction in a sheet shape is laminated with two resin films from both sides of the carbon fiber, heated and pressurized to impregnate the resin composition. Thus, a unidirectional prepreg base material having a carbon fiber basis weight of 150 g / m 2 and a resin weight fraction of 33% was produced.

得られたエポキシ樹脂組成物のDSCに拠る発熱ピーク温度Tpは152℃であった。測定装置としては、ティー・エイ・インスツルメンツ社製DSC2910(品番)を用いて、昇温速度10℃/分の条件にて測定した。   The exothermic peak temperature Tp according to DSC of the obtained epoxy resin composition was 152 ° C. As a measuring apparatus, DSC2910 (product number) manufactured by TA Instruments Inc. was used, and the measurement was performed under a temperature rising rate of 10 ° C./min.

DMAに拠る最低粘度は0.5Pa・sであった。測定装置としては、ティー・エイ・インスツルメンツ社製動的粘弾性測定装置“ARES”を用いて、昇温速度1.5℃/分、周波数0.5Hz、パラレルプレート(半径20mm)の条件にて、温度と粘度の関係曲線から最低粘度を求めた。   The minimum viscosity due to DMA was 0.5 Pa · s. As a measuring device, a dynamic viscoelasticity measuring device “ARES” manufactured by T.A. Instruments Co., Ltd. was used under the conditions of a temperature rising rate of 1.5 ° C./min, a frequency of 0.5 Hz, and a parallel plate (radius 20 mm). The minimum viscosity was determined from the temperature-viscosity relationship curve.

<プリプレグ基材への切り込みの導入>
上記プリプレグ基材に、自動裁断機を用いて図16に示すような切り込みを全面に挿入することにより、等間隔で規則的な切り込みを有する切込プリプレグ基材を得た。切り込みの方向は繊維直交方向2で、切り込みの長さWは10.1mm(すなわち、Ws=10.1mm)であり、間隔L(繊維長さ)は30mmである。図16に示すように、隣り合う切り込みの列7aと7bは繊維直交方向に10mm移動すると、幾何的に同等である。また、繊維長手方向に対になる切り込みの列には、7aと7c、7bと7dの組があり、切り込みの列のパターンは2パターン存在する。さらに、隣り合う列の切り込みが互いに切り込んでいる5の範囲は0.1mmである。
<Introduction of cut into prepreg base material>
A cut prepreg base material having regular cuts at regular intervals was obtained by inserting cuts as shown in FIG. 16 into the prepreg base material using an automatic cutter. The cutting direction is the fiber orthogonal direction 2, the cutting length W is 10.1 mm (that is, Ws = 10.1 mm), and the interval L (fiber length) is 30 mm. As shown in FIG. 16, adjacent cut rows 7a and 7b are geometrically equivalent when moved 10 mm in the direction perpendicular to the fiber. In addition, there are pairs of cuts 7a and 7c and 7b and 7d in the cut rows that are paired in the fiber longitudinal direction, and there are two patterns of cut rows. Furthermore, the range of 5 in which the cuts in the adjacent rows cut into each other is 0.1 mm.

<発泡性樹脂の準備>
ウレタンフォームを形成する発泡性樹脂27の原材料を下記に示す調合割合で調合し準備した。
<Preparation of foamable resin>
The raw material of the foamable resin 27 forming the urethane foam was prepared and prepared at the following mixing ratio.

有機ポリイソシアナートA:コスモネートM−200(三井武田ケミカル(株)社製の有機ポリイソシアナート。NCO%=31.4%)。   Organic polyisocyanate A: Cosmonate M-200 (Organic polyisocyanate manufactured by Mitsui Takeda Chemical Co., Ltd. NCO% = 31.4%).

ポリオールX:以下に記載のポリオールA、ポリオールB、ポリオールCのそれぞれ28:12:60重量比の混合ポリオール(三井武田ケミカル(株)社製のポリオール。水酸基価350mgKOH/g)。   Polyol X: Polyol A, Polyol B, and Polyol C described below in a mixed polyol ratio of 28:12:60 (polyol manufactured by Mitsui Takeda Chemical Co., Ltd., hydroxyl value 350 mgKOH / g).

ポリオールA:ペンタエリスリトールに水酸化カリウムを触媒として反応温度110℃でプロピレンオキシドを付加して得られる水酸基価が350mgKOH/gのポリオール。   Polyol A: A polyol having a hydroxyl value of 350 mgKOH / g obtained by adding propylene oxide to pentaerythritol at a reaction temperature of 110 ° C. using potassium hydroxide as a catalyst.

ポリオールB:トリレンジアミンとトリエタノールアミンの70:30重量比の混合物に、水酸化カリウムを触媒として反応温度110℃でプロピレンオキシドを付加して得られる水酸基価350mgKOH/gのポリオール。   Polyol B: A polyol having a hydroxyl value of 350 mgKOH / g obtained by adding propylene oxide to a 70:30 weight ratio mixture of tolylenediamine and triethanolamine at a reaction temperature of 110 ° C. using potassium hydroxide as a catalyst.

ポリオールC:ソルビトールと水の97:3重量比の混合物に、水酸化カリウムを触媒として反応温度110℃でプロピレンオキシドを付加して得られる水酸基価350mgKOH/gのポリオール。   Polyol C: A polyol having a hydroxyl value of 350 mgKOH / g, obtained by adding propylene oxide to a 97: 3 weight ratio mixture of sorbitol and water at a reaction temperature of 110 ° C. using potassium hydroxide as a catalyst.

触媒A:カオライザーNo.10(花王(株)社製でN,N−ジメチルシクロヘキシルアミン)。
シリコーン整泡剤A:X−20−1328(信越化学工業(株)製のポリジメチルシロキサン誘導体)。
Catalyst A: Kaulizer No. 10 (N, N-dimethylcyclohexylamine manufactured by Kao Corporation).
Silicone foam stabilizer A: X-20-1328 (polydimethylsiloxane derivative manufactured by Shin-Etsu Chemical Co., Ltd.).

<芯鞘構造の繊維強化プラスチックの成形>
図17b)に示すような、全体の長さが300mmで、筒の口径は50mm、最大半径は75mmの中央が膨らんだタンクのような芯鞘構造の繊維強化プラスチックを成形した。上記切込プリプレグ基材を幅300mmにカットし、半径47.6mmの円筒状の鉄芯からなるマンドレルに巻きつけた。円筒形状の長手方向を0°として、炭素繊維の配向方向(0°方向)と、炭素繊維の配向方向から右に45度ずらした方向(45°方向)に切込プリプレグ基材を切り出し、[45/0/−45/90]2sの積層構成でシワがない様に16層積層し、各層は巻き始めと巻き終わりでオーバーラップがないようにした(各層厚み一定)。また、巻き始めの位置は5mmずつずらして巻き、切込プリプレグ基材の端部が各層重ならないようにした。このようにしてマンドレル上に設けた積層体をマンドレルから取り外した。
<Molding of fiber-reinforced plastic with core-sheath structure>
As shown in FIG. 17b), a fiber-reinforced plastic having a core-sheath structure like a tank having an overall length of 300 mm, a tube diameter of 50 mm, and a maximum radius of 75 mm and a center inflated was molded. The cut prepreg base material was cut to a width of 300 mm and wound around a mandrel made of a cylindrical iron core with a radius of 47.6 mm. With the longitudinal direction of the cylindrical shape being 0 °, the cut prepreg base material is cut in the orientation direction of the carbon fiber (0 ° direction) and the direction shifted 45 degrees to the right from the orientation direction of the carbon fiber (45 ° direction) 45/0 / −45 / 90] Sixteen layers were laminated so that there was no wrinkle in a laminated structure of 2s , and each layer was made to have no overlap at the beginning and end of winding (the thickness of each layer was constant). In addition, the winding start position was shifted by 5 mm to prevent the edge of the cut prepreg base material from overlapping each layer. Thus, the laminated body provided on the mandrel was removed from the mandrel.

成形型は金型(型28aと型28b)からなり、両型を合わせた際のキャビティ29は最終成形品の外形状を決定するよう設計されており、また、脱気口41が上部に設けられた。成形工程における成形型の温度T1が、プリプレグ基材に用いたエポキシ樹脂組成物のDSCに拠る発熱ピーク温度Tpとほぼ同となるよう150℃に温度制御した。半径47.6mmの円筒状のシリコンラバー製の密閉蓋25を、積層体12の内径に合わせて積層体12の両端から蓋をするようにはめ込んだ。上の密閉蓋25には後ほど発泡性樹脂27を注入する注入口26を有する。密閉蓋25と一体化した積層体12をキャビティ29内に配置した後、両型を閉じた。型の上下の隙間は、密閉蓋25と積層体12で押圧され、型の上下から発泡性樹脂27が漏れることのないようシールされた。   The mold is composed of molds (mold 28a and mold 28b). The cavity 29 when both molds are combined is designed to determine the outer shape of the final molded product, and a deaeration port 41 is provided at the top. It was. The temperature was controlled at 150 ° C. so that the temperature T1 of the mold in the molding step was substantially the same as the exothermic peak temperature Tp due to DSC of the epoxy resin composition used for the prepreg substrate. A sealing lid 25 made of cylindrical silicon rubber having a radius of 47.6 mm was fitted so as to cover from both ends of the laminated body 12 according to the inner diameter of the laminated body 12. The upper sealing lid 25 has an inlet 26 through which a foamable resin 27 is injected later. After the laminate 12 integrated with the sealing lid 25 was placed in the cavity 29, both molds were closed. The upper and lower gaps of the mold were pressed by the sealing lid 25 and the laminate 12 and sealed so that the foamable resin 27 did not leak from the upper and lower sides of the mold.

ウレタンフォームを形成する発泡性樹脂27を注入口27から滴下、注入発泡した。ポリオールX100重量部に対し、触媒Aを0.8重量部と、シリコーン整泡剤Aを2重量部と、水を5重量部とを混合した液と、NCO/OH当量比が1.1となるよう有機ポリイソシアナートA173.5重量部を、混合し、注入口26から800g投入した後、注入口26を密閉した。発泡性樹脂27は即座に発泡し、ウレタンフォームを形成しながら積層体12を伸張し、金型28に積層体12を押し付けた。金型28内で30分間放置した後、脱型工程における成形型の温度T2をT1から低下させることなく150℃のまま成形型28を開け、芯鞘構造の繊維強化プラスチック16を脱型した。   A foamable resin 27 forming a urethane foam was dropped from the inlet 27 and injected and foamed. A mixture of 0.8 parts by weight of catalyst A, 2 parts by weight of silicone foam stabilizer A, and 5 parts by weight of water, and an NCO / OH equivalent ratio of 1.1 with respect to 100 parts by weight of polyol X After mixing 173.5 parts by weight of organic polyisocyanate A and adding 800 g from the inlet 26, the inlet 26 was sealed. The foamable resin 27 immediately foamed, and the laminate 12 was stretched while forming a urethane foam, and the laminate 12 was pressed against the mold 28. After leaving in the mold 28 for 30 minutes, the mold 28 was opened at 150 ° C. without lowering the temperature T2 of the mold in the demolding process from T1, and the fiber-reinforced plastic 16 having the core-sheath structure was demolded.

成形型の外形上に沿ったタンク状の維強化プラスチックを得ることができた。硬質なフォーム材からなる芯部33と平滑でソリのない鞘部32が一体化され、高剛性で軽量な繊維強化プラスチックとなった。最も伸張された最大半径周りでは、切り込みにより分断された繊維束端部間に存在する切り込み開口部と、繊維長さLcが30mm、幅Wsが11〜15mm程度の分布を持つ短冊状の繊維束がほぼ均等に分布していた。繊維強化プラスチックの上下の口の部分は積層体が伸張していないため、切り込みは開口していなかった。   A tank-like fiber-reinforced plastic along the outer shape of the mold was obtained. The core portion 33 made of a hard foam material and the smooth and warp-free sheath portion 32 are integrated into a highly rigid and lightweight fiber-reinforced plastic. A strip-shaped fiber bundle having a distribution in which the fiber length Lc is about 30 mm and the width Ws is about 11 to 15 mm around the maximum stretched maximum radius, between the fiber bundle end portions divided by the cut. Were distributed almost evenly. In the upper and lower mouth portions of the fiber reinforced plastic, the cut was not opened because the laminate was not stretched.

(実施例2)
実施例1と同様にして、プリプレグ基材を作製し、切り込みを導入して切込プリプレグ基材を作製した。次に図18a)に示したように、積層体を作製する際、切込プリプレグ基材の端部をずらして16層疑似等方([45/0/−45/90]2s)の平板状に積層した。切込プリプレグ基材は幅300mm、長さはマンドレルに積層体を配した際、もっとも内側(マンドレル側)に来る45°層が299mm、以降、1層ごとに1mmずつ長く切り出した。積層体の一方の端部で、切込プリプレグ基材の幅を合わせて、長さ方向に5mmずつオフセットして積層し、上記16層の擬似等方の積層体を得た。こうして得た積層体をドライヤーで暖めながら、実施例1と同様のマンドレル上に巻きつけた。一層一層プリプレグ基材を巻きつけた実施例1と同様に、若干のシワは発生したものの、図18b)のように5mmずつ各層の端部がずれて積層体が賦形された。以下、実施例1と同様にして成形を行い、繊維強化プラスチックを得た。
(Example 2)
A prepreg base material was prepared in the same manner as in Example 1, and a cut was introduced to prepare a cut prepreg base material. Next, as shown in FIG. 18 a), when producing a laminate, the end of the cut prepreg base material is shifted to form a 16-layer pseudo-isotropic ([45/0 / −45 / 90] 2s ) flat plate shape. Laminated. The cut prepreg base material had a width of 300 mm, and the length was 299 mm when the laminated body was arranged on the mandrel. The 45 ° layer that came to the innermost side (mandrel side) was cut long by 1 mm thereafter. At one end of the laminate, the width of the cut prepreg base material was matched and laminated by offsetting by 5 mm in the length direction to obtain the 16-layer pseudo-isotropic laminate. The laminated body thus obtained was wound on the same mandrel as in Example 1 while warming with a dryer. As in Example 1 in which the prepreg base material was wound one layer further, although slight wrinkles were generated, the end portions of the respective layers were shifted by 5 mm as shown in FIG. Thereafter, molding was performed in the same manner as in Example 1 to obtain a fiber-reinforced plastic.

得られた繊維強化プラスチックは、実施例1と同様に、設計どおりの形状に成形された。表面は平滑であり、ソリもなかった。最も伸張された最大半径周りでは、切り込みにより分断された繊維束端部間に存在する切り込み開口部と、繊維長さLcが30mm、幅Wsが11〜15mm程度の分布を持つ短冊状の繊維束がほぼ均等に分布していた。繊維強化プラスチックの上下の口の部分は積層体が伸張していないため、切り込みは開口していなかった。   The obtained fiber reinforced plastic was molded into a shape as designed in the same manner as in Example 1. The surface was smooth and free of warping. A strip-shaped fiber bundle having a distribution in which the fiber length Lc is about 30 mm and the width Ws is about 11 to 15 mm around the maximum stretched maximum radius, between the fiber bundle end portions divided by the cut. Were distributed almost evenly. In the upper and lower mouth portions of the fiber reinforced plastic, the cut was not opened because the laminate was not stretched.

(実施例3)
実施例1と同様にして、プリプレグ基材を作製した。このプリプレグ基材に、自動裁断機を用いて図9に示すような繊維から10°の方向の直線的な切り込みを連続的に挿入した。こうして得た切込プリプレグ基材を図19に示すように繊維方向が同一で切り込みが交差するように(10°と−10°方向に)2枚表裏に重ねて積層し、連続的な切り込みにより切込プリプレグ基材がばらばらになるのを防いだ。この2層積層体を8セットそれぞれの方向に疑似等方([45/45/0/0/−45/−45/90/90])に平板状に積層する。それぞれの配向に合わせて、幅180mm、長さは膨張性マンドレルに積層体を配した際、もっとも内側に来る45°層が299mm、以降、2層ごとに2mmずつ長く切り出した。積層体の一方の端部で、2層積層体の幅を合わせて、長さ方向に5mmずつオフセットして積層し、上記16層の擬似等方の積層体を得た。以下、実施例2と同様に、積層体をマンドレル上に賦形した。また、実施例1と同様にして成形を行い、繊維強化プラスチックを得た。
(Example 3)
In the same manner as in Example 1, a prepreg base material was produced. A linear notch in the direction of 10 ° was continuously inserted into the prepreg base material from the fiber as shown in FIG. 9 using an automatic cutter. As shown in FIG. 19, the cut prepreg base material obtained in this manner was laminated on the front and back so that the fiber directions were the same and the cuts intersected (in the directions of 10 ° and −10 °). The cut prepreg base material was prevented from falling apart. This two-layer laminate is laminated in the form of a plate in a pseudo isotropic manner ([45/45/0/0 / −45 / −45 / 90/90] S ) in the direction of each of eight sets. According to each orientation, when the laminated body was disposed on the expandable mandrel with a width of 180 mm, the innermost 45 ° layer was cut out by 299 mm, and thereafter every 2 layers was cut out by 2 mm longer. At one end of the laminate, the width of the two-layer laminate was matched and laminated with an offset of 5 mm in the length direction to obtain the 16-layer pseudo-isotropic laminate. Thereafter, the laminate was shaped on a mandrel in the same manner as in Example 2. Moreover, it shape | molded like Example 1 and obtained the fiber reinforced plastic.

得られた繊維強化プラスチックは、実施例1と同様に、設計どおりの形状に成形された。表面の切り込み部においても、ほとんど切り込み開口部が見られず、強化繊維が存在せずに樹脂リッチとなっている領域や、隣接層の強化繊維が除いている領域はほとんどなく、良好な外観品位と平滑性を得た。繊維方向は積層体を配置したときから回転しており、その回転により切り込み開口部を埋め、平滑な繊維強化プラスチックとなったと推測された。   The obtained fiber reinforced plastic was molded into a shape as designed in the same manner as in Example 1. Even in the cut portion on the surface, almost no cut opening is seen, and there is almost no region where the reinforcing fiber is not present and the resin is rich, or the reinforcing fiber of the adjacent layer is excluded, and the appearance quality is good. And obtained smoothness. The fiber direction was rotated from the time when the laminated body was arranged, and it was assumed that the rotation cut the filling opening and became a smooth fiber reinforced plastic.

(実施例4)
実施例1と同様にして、プリプレグ基材を作成した。このプリプレグ基材に、自動裁断機を用いて図10に示すような繊維から20°の方向に、1mmの直線状の切り込みを断続的に挿入することで、切り込みを強化繊維の垂直方向に投影した投影長さWsを0.34mmとした。対になる切り込み4d、4dにより、繊維は分断され、得られた切込プリプレグ基材の全面で繊維長さLは30mmとなった。こうして得られた切込プリプレグ基材を実施例1と同様に切り出し、積層、成形を行って繊維強化プラスチックを得た。
Example 4
A prepreg base material was prepared in the same manner as in Example 1. In this prepreg base material, an automatic cutting machine is used to project a cut in the vertical direction of the reinforcing fiber by intermittently inserting a straight cut of 1 mm in the direction of 20 ° from the fiber as shown in FIG. The projected length Ws was 0.34 mm. The fibers were cut by the pair of cuts 4d 1 and 4d 2 , and the fiber length L was 30 mm over the entire surface of the obtained cut prepreg base material. The cut prepreg base material thus obtained was cut out in the same manner as in Example 1, laminated and molded to obtain a fiber reinforced plastic.

得られた繊維強化プラスチックは、図13b)のように、繊維3が若干うねりながら、切り込み開口部18を埋め、表面にほとんど切り込み開口部18が見られず、切り込みがあったことさえ、見分けがつかないほど良好な外観品位と平滑性を得た。   As shown in FIG. 13 b), the obtained fiber-reinforced plastic filled the cut opening 18 while the fiber 3 was slightly swollen, so that the cut opening 18 was hardly seen on the surface. Good appearance quality and smoothness were obtained.

(実施例5)
図1c)のような壺形状の繊維強化プラスチックを成形した。壺の形状は長径180mm、短径60mmの楕円を回転してできた球体状に半径40mm、長さ20mmの円筒状の首部がついた形状を予定した。実施例1と同様にして、プリプレグ基材を作製し、切り込みを導入して切込プリプレグ基材を作製した。次に、半径38.8mmの円筒状のマンドレルの上に、適当な大きさに切り出した切込プリプレグ基材を、切込プリプレグ基材の端部をずらして16層で疑似等方([90/0]4S)に積層し、マンドレル先端から200mmの範囲に積層体12を配した。平面の基材を袋状に賦形するのは難しいため、筒状に切込プリプレグ基材を巻きつけた後、若干のシワを許容しながらマンドレル先端部に切込プリプレグ基材を折り込み、シワとなる部分ははさみで切り取った。こうして得られた口がひとつの積層体をマンドレルから取り外し、図1a)のようなシリコンラバー製の密閉蓋25で積層体12の口を塞いだ。
(Example 5)
A cocoon-shaped fiber-reinforced plastic as shown in FIG. 1c) was molded. The shape of the heel was planned to be a sphere formed by rotating an ellipse having a major axis of 180 mm and a minor axis of 60 mm, with a cylindrical neck having a radius of 40 mm and a length of 20 mm. A prepreg base material was prepared in the same manner as in Example 1, and a cut was introduced to prepare a cut prepreg base material. Next, a cut prepreg base material cut into an appropriate size on a cylindrical mandrel having a radius of 38.8 mm is quasi-isotropic ([90 / 0] 4S ), and the laminate 12 was placed in a range of 200 mm from the mandrel tip. Since it is difficult to shape a flat base material into a bag shape, after winding the cut prepreg base material in a cylindrical shape, the cut prepreg base material is folded at the tip of the mandrel while allowing slight wrinkles. The part to be cut with scissors. The mouth thus obtained removed one laminate from the mandrel, and the mouth of the laminate 12 was closed with a sealing lid 25 made of silicon rubber as shown in FIG.

成形型は金型(型28aと型28b)からなり、両型を合わせた際のキャビティ29は最終成形品の外形状を決定するよう設計されており、また、脱気口41が上部に設けられた。T1が150℃となるよう温度制御した成形型28のキャビティに積層体の先端30が接触するように配置した。成形型28の開口部は、密閉蓋25と積層体12で押圧され、発泡性樹脂27が漏れることのないようシールされた。上下型を閉じて固定した後、注入口26から実施例1と同様の発泡性樹脂27を0.3MPaの圧力で注入した。発泡性樹脂27は即座に発泡して、ウレタンフォームを形成しながら積層体12を伸張し、金型28に積層体12を押し付けた。金型28内で30分間放置した後、脱型工程における成形型の温度T2をT1から低下させることなく150℃のまま成形型28を開け、芯鞘構造の繊維強化プラスチック16を脱型した。   The mold is composed of molds (mold 28a and mold 28b). The cavity 29 when both molds are combined is designed to determine the outer shape of the final molded product, and a deaeration port 41 is provided at the top. It was. It arrange | positioned so that the front-end | tip 30 of a laminated body may contact the cavity of the shaping | molding die 28 temperature-controlled so that T1 may be 150 degreeC. The opening of the mold 28 was pressed by the sealing lid 25 and the laminate 12 and sealed so that the foamable resin 27 did not leak. After the upper and lower molds were closed and fixed, the same foamable resin 27 as in Example 1 was injected from the injection port 26 at a pressure of 0.3 MPa. The foamable resin 27 immediately foamed to stretch the laminate 12 while forming a urethane foam, and pressed the laminate 12 against the mold 28. After leaving in the mold 28 for 30 minutes, the mold 28 was opened at 150 ° C. without lowering the temperature T2 of the mold in the demolding process from T1, and the fiber-reinforced plastic 16 having the core-sheath structure was demolded.

得られた繊維強化プラスチックは、実施例1と同様に、表面は平滑であり、ソリもなかった。フォーム材は実施例1よりも硬質で非常に高強度、高剛性な芯鞘構造の繊維強化プラスチックとなった。図8a)のように、切り込みにより分断された繊維束端部が離れて存在する切り込み開口部18と、繊維長さLcが30mmの短冊状の繊維束が、表面全面にほぼ均等に分布していた。切り込み開口部18や短冊状の繊維束の形状や大きさは、領域によって伸張率が異なるためばらばらであったが、規則正しく配列していた。また、成形型に押し付けて配置した壺形状の先端部30はほとんど切り込み開口部18が見られず、繊維が流動していなかった。   The obtained fiber reinforced plastic had a smooth surface and no warpage as in Example 1. The foam material was harder than Example 1, and became a fiber-reinforced plastic having a very high strength and high rigidity core-sheath structure. As shown in FIG. 8 a), the cut opening 18 where the fiber bundle ends separated by the cut are present apart from each other, and the strip-shaped fiber bundle having a fiber length Lc of 30 mm are distributed almost evenly on the entire surface. It was. The shape and size of the cut openings 18 and the strip-like fiber bundles were different because the stretch ratios were different depending on the regions, but they were regularly arranged. Further, the notch opening portion 18 was hardly seen in the bowl-shaped tip portion 30 that was pressed against the mold, and the fibers did not flow.

(実施例6)
図15のような装置を用いて連続的に異形断面の芯鞘構造の繊維強化プラスチック16を引抜成形した。実施例1と同様にして、プリプレグ基材を作製し、切り込みを導入して切込プリプレグ基材を作製した。次に図18a)に示したように、積層体を作製する際、切込プリプレグ基材の端部をずらして16層疑似等方([45/0/−45/90]2s)の平板状に積層した。切込プリプレグ基材の幅は、成形時にもっとも内側(フォーム材側)に来る45°層が160mm、以降、1層ごとに1mmずつ長く切り出した。積層体の幅方向の一方の端部で、切込プリプレグ基材の幅を合わせて、長さ方向に5mmずつオフセットして積層し、上記16層の擬似等方の積層体を得た。こうして得た積層体12を連続的に装置に供給し、V字のガイド状のマンドレル36aによって折り曲げられ、螺旋状のガイド34によって円筒状に積層材が賦形されるとともに、積層体の端部同士が順次重なって図18b)のようにオーバーラップなく全層16層分の厚みの積層体12が形作られた。円筒状の積層体12中に実施例1と同様の発泡性樹脂27が注入口26から注入され、120℃に温調された予熱用の型28c内で発泡、積層体12を伸張させながら、可動式の型35に押し当てた。可動式の型35は予熱用の型28cの出口から断面形状が連続的に変化するよう動作し、160℃に温調し繊維強化プラスチックを硬化させて断面形状を決定した。断面形状は矩形で、一方の幅は50mm固定で、もう一方の幅を45〜60mmの範囲内で変動させた。引き取り速度は10mm/minで、可動式の型35の2つある可動部の最大変動速度が引き取り速度の1/5を超えないよう設定した。このようにして連続的に異型断面の芯鞘構造の繊維強化プラスチック16を得た。
(Example 6)
The fiber reinforced plastic 16 having a core-sheath structure with a deformed cross section was continuously drawn using an apparatus as shown in FIG. A prepreg base material was prepared in the same manner as in Example 1, and a cut was introduced to prepare a cut prepreg base material. Next, as shown in FIG. 18 a), when producing a laminate, the end of the cut prepreg base material is shifted to form a 16-layer pseudo-isotropic ([45/0 / −45 / 90] 2s ) flat plate shape. Laminated. The width of the cut prepreg base material was 160 mm at the 45 ° layer that was the innermost (foam material side) at the time of molding. At one end in the width direction of the laminate, the width of the cut prepreg base material was matched and laminated by offsetting by 5 mm in the length direction to obtain the 16-layer pseudo isotropic laminate. The laminated body 12 obtained in this way is continuously supplied to the apparatus, bent by a V-shaped guide-shaped mandrel 36a, shaped into a cylindrical shape by a spiral guide 34, and at the end of the laminated body As shown in FIG. 18b, the laminate 12 having a thickness corresponding to all 16 layers was formed without overlapping. While the foamable resin 27 similar to that in Example 1 is injected into the cylindrical laminate 12 from the injection port 26, foaming is performed in the preheating mold 28c adjusted to 120 ° C., and the laminate 12 is stretched. It was pressed against a movable die 35. The movable die 35 was operated so that the cross-sectional shape continuously changed from the outlet of the preheating die 28c, the temperature was adjusted to 160 ° C., and the fiber reinforced plastic was cured to determine the cross-sectional shape. The cross-sectional shape was rectangular, one width was fixed at 50 mm, and the other width was varied within the range of 45-60 mm. The take-up speed was 10 mm / min, and the maximum fluctuation speed of the two movable parts of the movable die 35 was set so as not to exceed 1/5 of the take-up speed. In this way, a fiber-reinforced plastic 16 having a core-sheath structure with a continuously deformed cross section was obtained.

こうして得られた繊維強化プラスチックは実施例1と同様に、表面は平滑であり、ソリもなかった。切り込みにより分断された繊維束端部が離れて存在する切り込み開口部18と、繊維長さLcが30mmの短冊状の繊維束が、表面全面に分布していた。   The fiber-reinforced plastic thus obtained had a smooth surface and no warpage, as in Example 1. The cut opening 18 in which the fiber bundle ends separated by the cut are present apart from each other, and the strip-shaped fiber bundle having a fiber length Lc of 30 mm are distributed over the entire surface.

(参考例1)
実施例1の芯鞘構造の繊維強化プラスチックが高力学特性であることを、芯鞘構造のほとんどの力学特性を受け持つ鞘部の繊維強化プラスチックの物性、すなわち、繊維強化プラスチックの平板で実証した。実施例1と同様にして、プリプレグ基材を作製し、切り込みを導入して切込プリプレグ基材を作製した。炭素繊維の配向方向(0°方向)と、炭素繊維の配向方向から右に45度ずらした方向(45°方向)に、それぞれ250×250mmの大きさのサイズに切り出した。切り出した切込プリプレグ基材を16層で疑似等方に積層して([45/0/−45/90]2S)、積層体を得た。
(Reference Example 1)
The fiber reinforced plastic with the core-sheath structure of Example 1 was demonstrated to have high mechanical properties with the physical properties of the fiber reinforced plastic in the sheath part, which bears most of the mechanical properties of the core-sheath structure, that is, the flat plate of fiber reinforced plastic. A prepreg base material was prepared in the same manner as in Example 1, and a cut was introduced to prepare a cut prepreg base material. Each was cut into a size of 250 × 250 mm in a carbon fiber orientation direction (0 ° direction) and a direction shifted 45 degrees to the right from the carbon fiber orientation direction (45 ° direction). The cut prepreg base material cut out was laminated in a pseudo isotropic manner with 16 layers ([45/0 / −45 / 90] 2S ) to obtain a laminate.

さらに、上記の積層体を用いて、300×300mmのキャビティを有する平板金型上の概中央部に配置した後、加熱型プレス成形機により、6MPaの加圧のもと、150℃×30分間の条件により硬化せしめ、300×300mmの平板状の繊維強化プラスチックを得た。   Furthermore, after arrange | positioning in the approximate center part on the flat plate metal mold | die which has a cavity of 300x300mm using said laminated body, it is 150 degreeC x 30 minutes under the pressurization of 6 MPa with a heating type press molding machine. The plate was hardened under the above conditions to obtain a flat fiber reinforced plastic of 300 × 300 mm.

得られた平板状の繊維強化プラスチックより、長さ250±1mm、幅25±0.2mmの引張強度試験片を切り出した。JIS K−7073(1998)に規定する試験方法に従い、標点間距離を150mmとし、クロスヘッド速度2.0mm/分で引張強度を測定した。なお、本参考例においては、試験機としてインストロン(登録商標)万能試験機4208型を用いた。測定した試験片の数はn=5とし、平均値を引張強度とした。さらに、測定値より標準偏差を算出し、その標準偏差を平均値で除することにより、バラツキの指標である変動係数(CV値(%))を算出した。引張弾性率は43GPa、引張強度に関しても370MPaと高い値が発現し、そのCV値も3%ときわめてバラツキの小さい結果となった。   A tensile strength test piece having a length of 250 ± 1 mm and a width of 25 ± 0.2 mm was cut out from the obtained flat fiber-reinforced plastic. According to the test method specified in JIS K-7073 (1998), the tensile strength was measured at a crosshead speed of 2.0 mm / min with a distance between the gauge points of 150 mm. In this reference example, an Instron (registered trademark) universal testing machine 4208 type was used as a testing machine. The number of test pieces measured was n = 5, and the average value was the tensile strength. Further, a standard deviation was calculated from the measured value, and the standard deviation was divided by an average value, thereby calculating a variation coefficient (CV value (%)) as an index of variation. The tensile elastic modulus was 43 GPa, the tensile strength was as high as 370 MPa, and the CV value was 3%, which was a very small variation.

繊維強化プラスチックは端部まで繊維が均等に流動しており、実施例1と同様に繊維長さLcが30mm、幅Wsが11〜15mm程度の分布を持つ短冊状の繊維束が表面全体にほぼ均等に分布していたことから、実施例1で得られた繊維強化プラスチックも高力学特性を発現することが予想された。また、参考例1では平板形状を6MPaもの高圧で成形実施したが、実施例1では発泡性樹脂の発泡圧のみで積層体を伸張することができた。低圧でも成形可能なことも本発明の特徴である。   In the fiber reinforced plastic, the fibers are evenly flowed to the end, and like the first embodiment, a strip-like fiber bundle having a distribution with a fiber length Lc of 30 mm and a width Ws of about 11 to 15 mm is almost on the entire surface. Since it was evenly distributed, it was expected that the fiber reinforced plastic obtained in Example 1 would also exhibit high mechanical properties. In Reference Example 1, the flat plate was molded at a high pressure of 6 MPa, but in Example 1, the laminate could be stretched only with the foaming pressure of the foamable resin. It is also a feature of the present invention that molding is possible even at low pressure.

(参考例2)
実施例3の繊維強化プラスチックが高力学特性であることを、芯鞘構造のほとんどの力学特性を受け持つ鞘部の繊維強化プラスチックの物性、すなわち、繊維強化プラスチックの平板で実証した。実施例3と同様にして、2層積層体を得た。この2層積層体から、炭素繊維の配向方向(0°方向)と、炭素繊維の配向方向から右に45度ずらした方向(45°方向)に、それぞれ250×250mmの大きさに切り出し、2層積層体を8枚それぞれの方向に疑似等方([45/45/0/0/−45/−45/90/90])に積層して、全面に切り込みを有する250×250mmの積層体を得た。
(Reference Example 2)
The high mechanical properties of the fiber reinforced plastic of Example 3 were demonstrated by the physical properties of the fiber reinforced plastic in the sheath portion, which has most of the mechanical properties of the core-sheath structure, that is, the flat plate of fiber reinforced plastic. In the same manner as in Example 3, a two-layer laminate was obtained. From this two-layer laminate, cut into a size of 250 × 250 mm in each of a carbon fiber orientation direction (0 ° direction) and a direction shifted to the right by 45 degrees from the carbon fiber orientation direction (45 ° direction). A layer stack of 8 layers is laminated in a pseudo isotropic manner ([45/45/0/0 / -45 / -45 / 90/90] S ) in each direction, and a 250 × 250 mm laminate having a notch on the entire surface. Got the body.

こうして得られた積層体を参考例1と同様にしてプレス成形し、平板の繊維強化プラスチックを得た。得られた繊維強化プラスチックを参考例1と同様に引張試験した。引張弾性率は46GPa、引張強度に関しても470MPaと高い値が発現し、そのCV値も4%ときわめてバラツキの小さい結果となった。   The laminate thus obtained was press-molded in the same manner as in Reference Example 1 to obtain a flat fiber reinforced plastic. The obtained fiber reinforced plastic was subjected to a tensile test in the same manner as in Reference Example 1. The tensile modulus was 46 GPa and the tensile strength was as high as 470 MPa, and the CV value was 4%, which was very small.

繊維強化プラスチックは端部まで繊維が均等に流動しており、表面にほとんど切り込み開口部が見られず、繊維方向も積層体を配置したときから回転している様子も実施例3と同様であるため、実施例3で得られた筒形状の繊維強化プラスチックも高力学特性を発現することが予想された。   In the fiber reinforced plastic, the fibers are flowing evenly to the end, almost no cut openings are seen on the surface, and the fiber direction is the same as in Example 3 in the state of rotation from the time when the laminate is arranged. For this reason, it was expected that the cylindrical fiber reinforced plastic obtained in Example 3 would also exhibit high mechanical properties.

(参考例3)
実施例4の繊維強化プラスチックが高力学特性であることを、平板で実証した。実施例4と同様にして、切込プリプレグ基材を得、参考例1と同様にして切り出し、積層、プレス成形した。得られた繊維強化プラスチックを参考例1と同様に引張試験したところ、引張弾性率は46GPa、引張強度は620MPaと高い値が発現し、そのCV値も4%ときわめてバラツキの小さい結果となった。繊維強化プラスチックは端部まで繊維が均等に流動しており、繊維が若干うねりながら、切り込み開口部を埋め、表面にほとんど切り込み開口部が見られず、切り込みがあったことさえ、見分けがつかない様子も実施例4と同様であるため、実施例4で得られた筒形状の繊維強化プラスチックも高力学特性を発現することが予想された。
(Reference Example 3)
It was demonstrated on a flat plate that the fiber reinforced plastic of Example 4 has high mechanical properties. A cut prepreg base material was obtained in the same manner as in Example 4, cut out, laminated and press-molded in the same manner as in Reference Example 1. When the obtained fiber reinforced plastic was subjected to a tensile test in the same manner as in Reference Example 1, the tensile elastic modulus was 46 GPa, the tensile strength was as high as 620 MPa, and the CV value was 4%, which was a very small variation. . In fiber reinforced plastic, fibers flow evenly to the end, filling the cut openings while the fibers swell slightly, there are almost no cut openings on the surface, and even the cuts are indistinguishable Since the appearance is the same as in Example 4, it was expected that the cylindrical fiber reinforced plastic obtained in Example 4 would also exhibit high mechanical properties.

(比較例1)
実施例1と同様に、芯鞘構造の繊維強化プラスチックを連続繊維プリプレグ基材を用いて成形を試みた。実施例1と同様にして、プリプレグ基材を作製した。こうして得たプリプレグ基材から積層体を作製する際、実施例2と同様に、図18a)に示したように、プリプレグ基材の端部をずらして16層で疑似等方([45/0/−45/90]2S)に平板状に積層した。プリプレグ基材は幅300mm、長さはマンドレルに積層体を配した際、もっとも内側(マンドレル側)に来る45°層が299mm、以降、1層ごとに1mmずつ長く切り出した。積層体の一方の端部で、プリプレグ基材の幅を合わせて、長さ方向に5mmずつオフセットして積層し、上記16層の擬似等方の積層体を得た。こうして得た積層体をドライヤーで暖めながら、実施例1と同様のマンドレル上に巻きつけた。積層体の各層の周長差から、シワが発生したが、そのまま実施例1と同様に成形を行った。
(Comparative Example 1)
As in Example 1, molding of a fiber-reinforced plastic having a core-sheath structure was attempted using a continuous fiber prepreg base material. In the same manner as in Example 1, a prepreg base material was produced. When producing a laminated body from the prepreg base material obtained in this manner, as shown in FIG. 18 a), the end of the prepreg base material is shifted and pseudo-isotropic ([45/0 / −45 / 90] 2S ) in a flat plate shape. When the prepreg base material had a width of 300 mm and a length of the laminated body arranged on the mandrel, the 45 ° layer that came to the innermost side (mandrel side) was cut out by 299 mm, and thereafter, each layer was cut out by 1 mm longer. At one end of the laminate, the width of the prepreg base material was matched and the laminate was offset by 5 mm in the length direction to obtain the 16-layer pseudo-isotropic laminate. The laminated body thus obtained was wound on the same mandrel as in Example 1 while warming with a dryer. Although wrinkles were generated due to the difference in circumferential length of each layer of the laminate, the molding was carried out in the same manner as in Example 1.

得られた繊維強化プラスチックは、簡単に脱型することができ、表面はざらざらで、繊維強化プラスチックが成形型に完全に密着してなかった様子がわかった。繊維が突っ張り、積層体が伸張することができず、成形型に沿わなかったことが原因と考えられた。   It was found that the obtained fiber reinforced plastic could be easily removed from the mold, the surface was rough, and the fiber reinforced plastic was not completely adhered to the mold. The cause was thought to be that the fibers were stretched and the laminate could not be stretched and did not conform to the mold.

(比較例2)
実施例1と同様に、芯鞘構造の繊維強化プラスチックを積層体にSMCを用いて成形を試みた。SMCのマトリックス樹脂としてビニルエステル樹脂(ダウ・ケミカル(株)製、デラケン790)を100重量部、硬化剤としてtert−ブチルパーオキシベンゾエート(日本油脂(株)製、パーブチルZ)を1重量部、内部離型剤としてステアリン酸亜鉛(堺化学工業(株)製、SZ−2000)を2重量部、増粘剤として酸化マグネシウム(協和化学工業(株)製、MgO#40)を4重量部用いて、それらを十分に混合撹拌し、樹脂ペーストを得た。樹脂ペーストをドクターブレードを用いて、ポリプロピレン製の離型フィルム上に塗布した。その上から、長さ25mmにカットされた炭素繊維束(引張強度4,900MPa、引張弾性率235GPa、12,000本)を単位面積あたりの重量が500g/mになるよう均一に落下、散布した。さらに、樹脂ペーストを塗布したもう一方のポリプロピレンフィルムとで樹脂ペースト側を内にして挟んだ。炭素繊維のSMCシートに対する体積含有量は40%とした。得られたシートを40℃にて24時間静置することにより、樹脂ペーストを十分に増粘化させて、SMCシートを得た。このSMCシートを300mm幅に切り出し、実施例1と同様の膨張性マンドレルに巻きつけ、積層体を得た。その後は実施例1と同様に成形し、繊維強化プラスチックを得た。
(Comparative Example 2)
In the same manner as in Example 1, a fiber-reinforced plastic with a core-sheath structure was molded using SMC as a laminate. 100 parts by weight of vinyl ester resin (manufactured by Dow Chemical Co., Ltd., Delaken 790) as a matrix resin of SMC, 1 part by weight of tert-butyl peroxybenzoate (manufactured by NOF Corporation, Perbutyl Z) as a curing agent, 2 parts by weight of zinc stearate (manufactured by Sakai Chemical Industry Co., Ltd., SZ-2000) is used as an internal mold release agent, and 4 parts by weight of magnesium oxide (Kyowa Chemical Industry Co., Ltd., MgO # 40) is used as a thickener. Then, they were sufficiently mixed and stirred to obtain a resin paste. The resin paste was applied onto a polypropylene release film using a doctor blade. From there, carbon fiber bundles (tensile strength 4,900 MPa, tensile elastic modulus 235 GPa, 12,000 fibers) cut to a length of 25 mm are uniformly dropped and dispersed so that the weight per unit area is 500 g / m 2. did. Further, it was sandwiched between the other polypropylene film coated with the resin paste with the resin paste side inward. The volume content of carbon fiber with respect to the SMC sheet was 40%. The obtained sheet was allowed to stand at 40 ° C. for 24 hours, thereby sufficiently thickening the resin paste to obtain an SMC sheet. This SMC sheet was cut out to a width of 300 mm and wound around the same inflatable mandrel as in Example 1 to obtain a laminate. Thereafter, molding was performed in the same manner as in Example 1 to obtain a fiber-reinforced plastic.

得られた繊維強化プラスチックの鞘部はキャビティの端部まで繊維が十分に流動していた。ソリはなかったが、表面に繊維の粗密による若干のヒケが見られた。また、穴が開いているところこそないものの、一部肉厚が極端に薄いところがあり、流動性が均一でなかったことが伺えた。また、Vfが40%であることから、強度も実施例1ほどは得られないと推測された。   In the sheath portion of the obtained fiber reinforced plastic, the fibers sufficiently flowed to the end of the cavity. Although there was no warp, some sink marks due to the density of the fibers were observed on the surface. In addition, although there was no place where there was a hole, it was found that there was a part where the wall thickness was extremely thin, and the fluidity was not uniform. Further, since Vf was 40%, it was estimated that the strength was not as high as that of Example 1.

本発明の繊維強化プラスチックの製造方法の一例を示す断面図である。It is sectional drawing which shows an example of the manufacturing method of the fiber reinforced plastics of this invention. 本発明に用いる切込プリプレグ基材の一例を示す拡大平面図である。It is an enlarged plan view which shows an example of the cutting prepreg base material used for this invention. 本発明に用いる切込プリプレグ基材の例を示す平面図である。It is a top view which shows the example of the cutting prepreg base material used for this invention. 本発明に用いる積層体の一例を示す平面図および断面図である。It is the top view and sectional drawing which show an example of the laminated body used for this invention. 本発明に用いる積層体の流動のメカニズムの一例を示す断面図である。It is sectional drawing which shows an example of the mechanism of the flow of the laminated body used for this invention. 本発明に用いる積層体の切り込み位置関係の例を示す平面図である。It is a top view which shows the example of the cutting positional relationship of the laminated body used for this invention. 本発明に用いる積層体の伸張の様子の一例を示す平面図および断面図である。It is the top view and sectional view which show an example of the mode of extension of the layered product used for the present invention. 本発明により製造された繊維強化プラスチックの一例を示す概略図である。It is the schematic which shows an example of the fiber reinforced plastic manufactured by this invention. 本発明に用いる切込プリプレグ基材の一例を示す拡大平面図である。It is an enlarged plan view which shows an example of the cutting prepreg base material used for this invention. 本発明に用いる切込プリプレグ基材の一例を示す拡大平面図である。It is an enlarged plan view which shows an example of the cutting prepreg base material used for this invention. 本発明に用いる切込プリプレグ基材の例を示す平面図である。It is a top view which shows the example of the cutting prepreg base material used for this invention. 本発明に用いる積層体の伸張の様子の一例を示す平面図および断面図である。It is the top view and sectional view which show an example of the mode of extension of the layered product used for the present invention. 本発明に用いる積層体の伸張の様子の一例を示す平面図である。It is a top view which shows an example of the mode of the expansion | extension of the laminated body used for this invention. 本発明の繊維強化プラスチックの製造方法の一例を示す断面図である。It is sectional drawing which shows an example of the manufacturing method of the fiber reinforced plastics of this invention. 本発明の繊維強化プラスチックの製造方法の一例を示す断面図である。It is sectional drawing which shows an example of the manufacturing method of the fiber reinforced plastics of this invention. 本発明に用いる切込プリプレグ基材の一例を示す拡大平面図である。It is an enlarged plan view which shows an example of the cutting prepreg base material used for this invention. 本発明の繊維強化プラスチックの製造方法の一例を示す拡大図である。It is an enlarged view which shows an example of the manufacturing method of the fiber reinforced plastics of this invention. 本発明の積層体の賦形方法の一例を示す断面図である。It is sectional drawing which shows an example of the shaping method of the laminated body of this invention. 本発明に用いる切込プリプレグ基材の形態の一例を示す平面図である。It is a top view which shows an example of the form of the cut prepreg base material used for this invention.

符号の説明Explanation of symbols

1:繊維長手方向
2:繊維直交方向
3:強化繊維
4:強化繊維の不連続端(切り込み)
4a:a層の切り込み
4b:b層の切り込み
4c(4c,4c):連続的な切り込み
4d(4d,4d):断続的な切り込み
5:互いに切り込んでいる幅
6:繊維方向に対になる切り込みの幾何中心同士の間隔L(繊維長さL)
7:断続的な切り込みの列
7a:第1の断続的な切り込みの列
7b:第2の断続的な切り込みの列
7c:第3の断続的な切り込みの列
7d:第4の断続的な切り込みの列
8:切り込みの幾何中心
8a:a層の切り込みの幾何中心
8b:b層の切り込みの幾何中心
9:切り込みを強化繊維の垂直方向に投影した投影長さWs
10:切込プリプレグ基材
10a:全面に切り込みが入れられたプリプレグ基材
10b:一部に切り込みが入れられたプリプレグ基材
11:連続繊維基材のプリプレグ基材
12:積層体
13:積層体に加わる圧力
14:樹脂の流れ
15:強化繊維の端部の開き
16:芯鞘構造の繊維強化プラスチック
17:短繊維層
18:強化繊維の存在しない領域(切り込み開口部)
19:隣接層
20:樹脂リッチ部
21:層うねり
22:繊維束端部
23:切り込みと繊維方向のなす角度Θ
24:強化繊維の回転
25:密閉蓋
26:注入口
27:発泡性樹脂
28:成形型
28a:成形型a
28b:成形型b
28c:予熱用の型
29:成形型のキャビティ
30:壺形状の底部
31:壺形状の首部
32:フォーム材(芯部)
33:繊維強化プラスチック(鞘部)
34:螺旋状のガイド
35:可動型
36:マンドレル
36a:ガイド状のマンドレル
37:切込みにより繊維が10〜100mmの長さに分断された切込プリプレグ基材のみが積層されてなる領域(積層体の不連続部)
38:2つの対になる繊維束分断部に囲まれた領域(短冊状の繊維束)
39:積層体端部の各層オフセット
40:切込プリプレグ基材を2層積層した基材
41:脱気口
1: Fiber longitudinal direction 2: Fiber orthogonal direction 3: Reinforcing fiber 4: Discontinuous end (cutting) of reinforcing fiber
4a: cut in layer a 4b: cut in layer b 4c (4c 1 , 4c 2 ): continuous cut 4d (4d 1 , 4d 2 ): intermittent cut 5: width cut into each other 6: in the fiber direction Distance L (fiber length L) between geometric centers of the pair of cuts
7: Row of intermittent notches 7a: Row of first intermittent cuts 7b: Row of second intermittent cuts 7c: Row of third intermittent cuts 7d: Fourth row of intermittent cuts 8: Geometric center of cut 8a: Geometric center of cut of layer a 8b: Geometric center of cut of layer b 9: Projected length Ws obtained by projecting the cut in the vertical direction of the reinforcing fiber
DESCRIPTION OF SYMBOLS 10: Cut prepreg base material 10a: Pre-preg base material with notches in the entire surface 10b: Pre-preg base material with notches in part 11: Pre-preg base material with continuous fiber base material 12: Laminate body 13: Laminate body 14: Flow of resin 15: Opening of end of reinforcing fiber 16: Fiber-reinforced plastic with core-sheath structure 17: Short fiber layer 18: Region where no reinforcing fiber exists (cut opening)
19: Adjacent layer 20: Resin rich portion 21: Layer waviness 22: Fiber bundle end portion 23: Angle Θ formed by notch and fiber direction
24: Rotation of reinforcing fiber 25: Sealing lid 26: Injection port 27: Foamable resin 28: Mold 28a: Mold a
28b: Mold b
28c: Mold for preheating 29: Cavity of molding mold 30: Bottom part of bowl shape 31: Neck part of bowl shape 32: Foam material (core part)
33: Fiber reinforced plastic (sheath)
34: Spiral guide 35: Movable type 36: Mandrel 36a: Guide-shaped mandrel 37: Region in which only cut prepreg base materials in which fibers are cut into a length of 10 to 100 mm by cutting are stacked (laminated body) Discontinuity)
38: Region surrounded by two pairs of fiber bundle splitting portions (strip-shaped fiber bundle)
39: Each layer offset at the end of the laminated body 40: A base material in which two layers of cut prepreg base material are laminated 41: Deaeration port

Claims (12)

一方向に引き揃えられた強化繊維と熱硬化性樹脂とから構成されるプリプレグ基材を用いて、閉形状の鞘部と、該閉形状の内側に設けられるフォーム材から構成される芯部とにより構成した芯鞘構造の繊維強化プラスチックの製造方法であって、前記プリプレグ基材として、強化繊維を横切る方向に複数の切り込みによって少なくとも一部の強化繊維を10〜100mmの長さに分断した切込プリプレグ基材を用いて、少なくとも次の(1)〜(3)の工程を順次経て繊維強化プラスチックを成形する、繊維強化プラスチックの製造方法。
(1)前記切込プリプレグ基材を含む複数枚のプリプレグ基材を積層した積層体を、繊維強化プラスチックの最終形状の略形状のマンドレル上に設け、繊維強化プラスチックの最終形状よりも小さく賦形した後、マンドレルを脱芯する賦形工程
(2)外型となる成形型内に前記積層体を配置し、加熱して前記積層体の熱硬化性樹脂を軟化させ、前記マンドレルを脱芯した箇所に発泡性樹脂を注入して、発泡、硬化させフォーム材とし、前記芯部を形成すると同時に、前記発泡性樹脂の発泡圧で前記積層体を伸張させ、成形型に押し付けて硬化させ、前記積層体から前記鞘部を形成し、前記鞘部と前記芯部を一体化して、芯鞘構造の繊維強化プラスチックを成形する成形工程
(3)成形型から繊維強化プラスチックを取り出す脱型工程
Using a prepreg base material composed of reinforced fibers and thermosetting resin aligned in one direction, a closed sheath portion, and a core portion composed of a foam material provided inside the closed shape A method for producing a fiber-reinforced plastic having a core-sheath structure constituted by: cutting at least a part of reinforcing fibers into a length of 10 to 100 mm by a plurality of cuts in a direction crossing the reinforcing fibers as the prepreg base material A method for producing a fiber reinforced plastic, wherein a fiber reinforced plastic is molded through at least the following steps (1) to (3) using an embedded prepreg base material.
(1) A laminate in which a plurality of prepreg base materials including the cut prepreg base material are laminated is provided on a substantially shaped mandrel of the final shape of the fiber reinforced plastic, and is shaped smaller than the final shape of the fiber reinforced plastic. After that, the shaping step for decentering the mandrel (2) The laminated body is placed in a molding die which is an outer mold, and the thermosetting resin of the laminated body is softened by heating to decenter the mandrel. Foamed resin is injected into the location, foamed and cured to form a foam material, and at the same time the core is formed, the laminate is stretched by the foaming pressure of the foamable resin, pressed against a mold and cured, Forming step of forming the sheath portion from the laminate, and molding the sheath portion and the core portion to form a fiber-reinforced plastic having a core-sheath structure (3) Demolding step of taking out the fiber-reinforced plastic from the mold
少なくとも前記積層体の一部に、前記切り込みにより強化繊維が10〜100mmの長さに分断した切込プリプレグ基材のみが積層されている領域が形成されている、請求項1に記載の繊維強化プラスチックの製造方法。 The fiber reinforcement according to claim 1, wherein a region where only the cut prepreg base material in which the reinforcing fibers are cut into a length of 10 to 100 mm is laminated is formed in at least a part of the laminate. Plastic manufacturing method. 前記切込プリプレグ基材を構成する強化繊維の全てが前記切り込みにより分断されており、前記切り込みにより分断されている繊維長さLが10〜100mmの範囲内である、請求項1または2に記載の繊維強化プラスチックの製造方法。 All of the reinforced fiber which comprises the said cutting prepreg base material is divided | segmented by the said cutting, The fiber length L divided | segmented by the said cutting is in the range of 10-100 mm, The Claim 1 or 2 Manufacturing method for fiber reinforced plastic. 前記切込プリプレグ基材の切り込みが直線状であり、かつ、該切り込みを強化繊維の垂直方向に投影した投影長さWsが30μm〜100mmであり、断続的かつ周期的に全面にわたって配置されている、請求項1〜3のいずれかに記載の繊維強化プラスチックの製造方法。 The cut of the cut prepreg base material is linear, and the projection length Ws obtained by projecting the cut in the vertical direction of the reinforcing fiber is 30 μm to 100 mm, and is disposed intermittently and periodically over the entire surface. The manufacturing method of the fiber reinforced plastic in any one of Claims 1-3. 前記切込プリプレグ基材が2層以上連続して隣接し、該2層以上の層のうち隣接する任意の2層について、一方の切込プリプレグ基材上の任意の切り込みの幾何中心と他方の切込プリプレグ基材上のいずれの切り込みの幾何中心とも5mm以上離れる様に積層する、請求項1〜4のいずれかに記載の繊維強化プラスチックの製造方法。 The notch prepreg base material is adjacent to two or more layers in succession, and any two adjacent layers of the two or more layers are arranged with respect to the geometric center of any notch on one notch prepreg base material and the other The manufacturing method of the fiber reinforced plastics in any one of Claims 1-4 laminated | stacked so that it may leave | separate 5 mm or more from the geometrical center of any notch on a notch prepreg base material. 前記切り込みが繊維直交方向から傾いている、請求項1〜5のいずれかに記載の繊維強化プラスチックの製造方法。 The manufacturing method of the fiber reinforced plastics in any one of Claims 1-5 in which the said notch inclines from the fiber orthogonal direction. 前記切り込みが強化繊維となす角度Θの絶対値が2〜25°の範囲内である、請求項1〜5のいずれかに記載の繊維強化プラスチックの製造方法。 The manufacturing method of the fiber reinforced plastics in any one of Claims 1-5 whose absolute value of angle (theta) which the said notch makes with a reinforced fiber is in the range of 2-25 degrees. 前記積層体が前記切込プリプレグ基材のみから構成される、請求項1〜7のいずれかに記載の繊維強化プラスチックの製造方法。 The manufacturing method of the fiber reinforced plastics in any one of Claims 1-7 with which the said laminated body is comprised only from the said cut prepreg base material. 前記(1)の賦形工程で用いられる積層体を、前記プリプレグ基材を前記マンドレル上に順次賦形して形成する、請求項1〜8のいずれかに記載の繊維強化プラスチックの製造方法。 The method for producing a fiber-reinforced plastic according to any one of claims 1 to 8, wherein the laminate used in the shaping step (1) is formed by sequentially shaping the prepreg base material on the mandrel. 前記(1)の賦形工程で用いられる積層体を、前記プリプレグ基材を平板状に積層して形成した後、前記積層体を前記マンドレル上に賦形する、請求項1〜8のいずれかに記載の繊維強化プラスチックの製造方法。 The laminate used in the shaping step of (1) is formed by laminating the prepreg base material in a flat plate shape, and then the laminate is shaped on the mandrel. The manufacturing method of the fiber reinforced plastic as described in 2 .. 前記積層体を引き取りながら、前記(1)〜(3)の工程を連続的に実施して筒形状の芯鞘構造の繊維強化プラスチックを得る請求項1〜10のいずれかに記載の繊維強化プラスチックの製造方法。 The fiber-reinforced plastic according to any one of claims 1 to 10, wherein the steps (1) to (3) are continuously performed while the laminate is taken to obtain a fiber-reinforced plastic having a cylindrical core-sheath structure. Manufacturing method. 前記(2)の成形工程において、連続的に異形状に変化する型に押し付けて異形断面の筒形状の芯鞘構造の繊維強化プラスチックを得る請求項11に記載の繊維強化プラスチックの製造方法。 The method for producing a fiber reinforced plastic according to claim 11, wherein, in the molding step (2), a fiber reinforced plastic having a cylindrical core-sheath structure with a deformed cross section is obtained by pressing against a die that continuously changes into a different shape.
JP2008030021A 2007-04-03 2008-02-12 Manufacturing method for fiber-reinforced plastic Pending JP2008273176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008030021A JP2008273176A (en) 2007-04-03 2008-02-12 Manufacturing method for fiber-reinforced plastic

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007097086 2007-04-03
JP2008030021A JP2008273176A (en) 2007-04-03 2008-02-12 Manufacturing method for fiber-reinforced plastic

Publications (1)

Publication Number Publication Date
JP2008273176A true JP2008273176A (en) 2008-11-13

Family

ID=40051758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008030021A Pending JP2008273176A (en) 2007-04-03 2008-02-12 Manufacturing method for fiber-reinforced plastic

Country Status (1)

Country Link
JP (1) JP2008273176A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009286817A (en) * 2008-05-27 2009-12-10 Toray Ind Inc Laminated substrate, fiber-reinforced plastic, and methods for producing them
ES2338084A1 (en) * 2008-10-30 2010-05-03 Airbus Operations, S.L. Method for manufacturing a complex-geometry panel with pre-impregnated composite material
JP5975171B2 (en) * 2014-02-14 2016-08-23 三菱レイヨン株式会社 Fiber reinforced plastic and method for producing the same
KR20190074106A (en) * 2017-12-19 2019-06-27 (주)엘지하우시스 Fiber reinforced composite material and methode for manufacturing the same
JP2020157654A (en) * 2019-03-27 2020-10-01 日産自動車株式会社 Manufacturing method of laminated panel material and laminated panel material
CN113442466A (en) * 2015-10-27 2021-09-28 东丽株式会社 Incision prepreg
WO2022144998A1 (en) * 2020-12-28 2022-07-07 三菱重工業株式会社 Layered body structure and method for manufacturing layered body structure
WO2022145005A1 (en) * 2020-12-28 2022-07-07 三菱重工業株式会社 Fiber-reinforced sheet laminate, production method for fiber-reinforced sheet laminate, and production method for structure

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009286817A (en) * 2008-05-27 2009-12-10 Toray Ind Inc Laminated substrate, fiber-reinforced plastic, and methods for producing them
ES2338084A1 (en) * 2008-10-30 2010-05-03 Airbus Operations, S.L. Method for manufacturing a complex-geometry panel with pre-impregnated composite material
WO2010049566A1 (en) * 2008-10-30 2010-05-06 Airbus Operations, S.L. Method for manufacturing a complex-geometry panel with pre-impregnated composite material
US11034103B2 (en) 2014-02-14 2021-06-15 Mitsubishi Chemical Corporation Fiber-reinforced plastic and production method therefor
JP5975171B2 (en) * 2014-02-14 2016-08-23 三菱レイヨン株式会社 Fiber reinforced plastic and method for producing the same
US10773473B2 (en) 2014-02-14 2020-09-15 Mitsubishi Chemical Corporation Fiber-reinforced plastic and production method therefor
CN113442466A (en) * 2015-10-27 2021-09-28 东丽株式会社 Incision prepreg
CN113442466B (en) * 2015-10-27 2023-07-28 东丽株式会社 Incision prepreg
KR102200964B1 (en) * 2017-12-19 2021-01-08 (주)엘지하우시스 Fiber reinforced composite material and methode for manufacturing the same
KR20190074106A (en) * 2017-12-19 2019-06-27 (주)엘지하우시스 Fiber reinforced composite material and methode for manufacturing the same
JP2020157654A (en) * 2019-03-27 2020-10-01 日産自動車株式会社 Manufacturing method of laminated panel material and laminated panel material
JP7203659B2 (en) 2019-03-27 2023-01-13 日産自動車株式会社 LAMINATED PANEL MATERIAL MANUFACTURING METHOD AND LAMINATED PANEL MATERIAL
WO2022144998A1 (en) * 2020-12-28 2022-07-07 三菱重工業株式会社 Layered body structure and method for manufacturing layered body structure
WO2022145005A1 (en) * 2020-12-28 2022-07-07 三菱重工業株式会社 Fiber-reinforced sheet laminate, production method for fiber-reinforced sheet laminate, and production method for structure

Similar Documents

Publication Publication Date Title
JP2008273176A (en) Manufacturing method for fiber-reinforced plastic
JP2008279753A (en) Manufacturing method of fiber-reinforced plastics
JP5167953B2 (en) Laminated substrate, fiber reinforced plastic, and production method thereof
JP2008254425A (en) Manufacturing method for fiber-reinforced plastic
JP5353099B2 (en) Manufacturing method of fiber reinforced plastic
US8101262B2 (en) Fiber-reinforced plastic and process for production thereof
EP2067592B1 (en) Process for producing composite prepreg base, layered base, and fiber-reinforced plastic
JP5572947B2 (en) Molding material, fiber reinforced plastic, and production method thereof
US8354156B2 (en) Prepreg base material, layered base material, fiber-reinforced plastic, process for producing prepreg base material, and process for producing fiber-reinforced plastic
US6875297B1 (en) Process for manufacturing highly stressed composite parts
EP2116358B1 (en) Method and apparatus for conforming a blank
JP5272418B2 (en) Cut prepreg base material, composite cut prepreg base material, laminated base material, fiber reinforced plastic, and method for producing cut prepreg base material
WO2018181983A1 (en) Prepreg sheet, method for manufacturing same, skin material-provided unitary layer, method for manufacturing article molded from fiber-reinforced composite material, and article molded from fiber-reinforced composite material
JP5292972B2 (en) Manufacturing method of fiber reinforced plastic
JP6009399B2 (en) Fiber-reinforced composite and method for producing the same
NO174335B (en) Method for producing molded articles of plastic composite material
JP6560669B2 (en) Compression molding fiber reinforced preform molding apparatus and molding method
CN107921718A (en) Improvement or the improvement related with moulded parts in moulded parts
WO2018019682A1 (en) Impregnated tape-shaped prepreg comprising reinforcing fibers and method and apparatus for making it
CN107530988A (en) Method and apparatus for forming composite component
EP3778172A1 (en) Method for producing fiber-reinforced resin
JP2007146151A (en) Prepreg substrate material, laminated substrate material and fiber-reinforced plastic
JP2008260793A (en) Laminated substrate and fiber-reinforced plastic
CN107567381A (en) The method for manufacturing composite component
JP2008238809A (en) Method of manufacturing laminate