JP2017171894A - Notch prepreg and manufacturing method of notch prepreg - Google Patents

Notch prepreg and manufacturing method of notch prepreg Download PDF

Info

Publication number
JP2017171894A
JP2017171894A JP2017045667A JP2017045667A JP2017171894A JP 2017171894 A JP2017171894 A JP 2017171894A JP 2017045667 A JP2017045667 A JP 2017045667A JP 2017045667 A JP2017045667 A JP 2017045667A JP 2017171894 A JP2017171894 A JP 2017171894A
Authority
JP
Japan
Prior art keywords
cut
prepreg
cuts
cutting
reinforcing fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017045667A
Other languages
Japanese (ja)
Other versions
JP6965530B2 (en
Inventor
藤田 雄三
Yuzo Fujita
雄三 藤田
悠太 内藤
Yuta Naito
悠太 内藤
一朗 武田
Ichiro Takeda
一朗 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JP2017171894A publication Critical patent/JP2017171894A/en
Application granted granted Critical
Publication of JP6965530B2 publication Critical patent/JP6965530B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/20Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres
    • B29C70/205Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres the structure being shaped to form a three-dimensional configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/0036Slitting

Abstract

PROBLEM TO BE SOLVED: To provide an intermediate substrate excellent in followability to three-dimensional shape and exhibiting good surface quality and high physical properties when made as a fiber reinforced plastic.SOLUTION: There is provided a notch prepreg having a plurality of notches cutting a reinforced fiber in at least a part of area of a prepreg containing monoaxially oriented reinforced fiber and a resin, having average of population of 10 or more and variation coefficient within 20% when the number of notches contained in 10 circle small areas with diameter of 10 mm optionally selected from the area is recognized as the population.SELECTED DRAWING: Figure 1

Description

本発明は、成形時に良好な形状追従性を有し、固化した際に高い力学特性を有する繊維強化プラスチックの中間基材として好適な切込プリプレグおよびその製造方法に関する。   The present invention relates to a cut prepreg suitable as an intermediate base material for fiber-reinforced plastic having good shape following property at the time of molding and having high mechanical properties when solidified, and a method for producing the same.

強化繊維と樹脂とからなる繊維強化プラスチックは、比強度、比弾性率が高く、力学特性に優れること、耐候性、耐薬品性などの高機能特性を有することなどから産業用途においても注目され、航空機、宇宙機、自動車、鉄道、船舶、電化製品、スポーツ等の構造用途に展開され、その需要は年々高まりつつある。   Fiber reinforced plastics composed of reinforced fibers and resins are attracting attention in industrial applications because they have high specific strength, high specific modulus, excellent mechanical properties, and high functional properties such as weather resistance and chemical resistance. Deployed in structural applications such as aircraft, spacecraft, automobiles, railways, ships, electrical appliances, sports, etc., the demand is increasing year by year.

繊維強化プラスチックの中間基材として、SMC(シートモールディングコンパウンド)がある。SMCは、通常25mm程度に切断し熱硬化性樹脂を含浸したチョップドストランドがランダムに分散したシート状の基材であり、複雑な三次元形状を有する繊維強化プラスチックを成形するのに適した材料として知られている。しかし、SMCにより成形された繊維強化プラスチックはチョップドストランドの分布ムラ、配向ムラが必然的に生じてしまうため、成形体の力学特性が低下し、あるいはその値のバラツキが大きくなってしまう。安定して高い力学特性を発現する繊維強化プラスチックの成形法としては、連続した強化繊維に樹脂を含浸したプリプレグを積層し、オートクレーブにより成形する方法が知られている。しかしながら、連続繊維を用いたプリプレグでは、変形能不足によりシワや強化繊維の突っ張りが発生し、三次元形状等の複雑な形状へと成形することが難しい。   As an intermediate base material for fiber reinforced plastic, there is SMC (sheet molding compound). SMC is a sheet-like base material in which chopped strands that are usually cut to about 25 mm and impregnated with a thermosetting resin are randomly dispersed, and is suitable as a material suitable for molding fiber-reinforced plastic having a complicated three-dimensional shape. Are known. However, fiber reinforced plastics molded by SMC inevitably cause uneven distribution and orientation unevenness of chopped strands, so that the mechanical properties of the molded body are lowered or the variation of the values becomes large. As a method for molding a fiber reinforced plastic that stably exhibits high mechanical properties, a method is known in which a continuous reinforced fiber is laminated with a prepreg impregnated with a resin and molded by an autoclave. However, in a prepreg using continuous fibers, wrinkles and stretching of reinforcing fibers occur due to insufficient deformability, and it is difficult to form into a complicated shape such as a three-dimensional shape.

上述のような材料の欠点を埋めるべく、連続的な強化繊維と樹脂とからなるプリプレグに切込を入れて強化繊維を分断することにより、流動可能で、かつ力学特性のバラツキも小さくなるとされる基材が開示されている(例えば特許文献1、2)。   In order to fill the drawbacks of the materials as described above, the prepreg made of continuous reinforcing fiber and resin is cut to divide the reinforcing fiber so that it can flow and the variation in mechanical properties is reduced. A base material is disclosed (for example, Patent Documents 1 and 2).

特開昭63−247012号公報Japanese Unexamined Patent Publication No. 63-247010 特許第5167953号公報Japanese Patent No. 5167953

特許文献1及び特許文献2に記載の方法は、SMCと比較すると力学特性が大きく向上し、バラツキも小さくなるものの、特許文献1については構造材として適用するには十分な強度とは言えず、三次元形状追従性も向上の余地がある。また特許文献2については、さらに高い強度を発現し三次元形状追従性も良好であるものの、成形時に切込が開口することによりプリプレグ対比、表面品位が劣るという問題があった。   The methods described in Patent Document 1 and Patent Document 2 have significantly improved mechanical properties and reduced variations compared to SMC. However, Patent Document 1 cannot be said to have sufficient strength to be applied as a structural material. There is room for improvement in three-dimensional shape tracking. In addition, Patent Document 2 has a problem in that, although higher strength is exhibited and the three-dimensional shape followability is good, the prepreg contrast and the surface quality are inferior due to the opening of the notch during molding.

本発明は、かかる背景技術に鑑み、三次元形状追従性に優れ、固化した際に高い表面品位と優れた力学特性を発現する繊維強化プラスチックを得ることのできる中間基材(切込プリプレグ)を提供することにある。   In view of the background art, the present invention provides an intermediate base material (cut prepreg) that is excellent in three-dimensional shape followability and can obtain a fiber-reinforced plastic that exhibits high surface quality and excellent mechanical properties when solidified. It is to provide.

本発明は、かかる課題を解決するために、次のような手段を採用するものである。すなわち、以下である。
(1)一方向に配向した強化繊維と樹脂とを含むプリプレグの少なくとも一部の領域に強化繊維を分断する複数の切込を有する切込プリプレグであって、前記領域内から任意に選択される、10個の直径10mmの円形の小領域内に含まれる切込の個数を母集団とした場合に、母集団の平均値が10以上、かつ変動係数が20%以内である切込プリプレグ。
(2)強化繊維と樹脂とを含むプリプレグの少なくとも一部の領域に強化繊維を分断する複数の切込を有する切込プリプレグの製造方法であって、
プリプレグに対して複数の切込1を挿入する工程1、及び、プリプレグに対して、切込1と重ならない複数の切込2を挿入する工程2とを含む、切込プリプレグの製造方法。
The present invention employs the following means in order to solve such problems. That is:
(1) A cut prepreg having a plurality of cuts for dividing the reinforcing fiber in at least a partial region of the prepreg including the reinforcing fiber and the resin oriented in one direction, and is arbitrarily selected from the region. An incision prepreg in which the average value of the population is 10 or more and the coefficient of variation is within 20% when the number of incisions contained in 10 small circular regions having a diameter of 10 mm is a population.
(2) A method for producing a cut prepreg having a plurality of cuts for dividing the reinforcing fiber in at least a partial region of the prepreg containing the reinforcing fiber and the resin,
A method for manufacturing a cut prepreg, comprising: a step 1 for inserting a plurality of cuts 1 into a prepreg; and a step 2 for inserting a plurality of cuts 2 that do not overlap the cuts 1 with respect to the prepreg.

本発明によれば、3次元形状追従性に優れ、繊維強化プラスチックとした場合に良質な表面品位と優れた力学特性を発現する中間基材を得ることができる。   According to the present invention, it is possible to obtain an intermediate substrate that is excellent in three-dimensional shape followability and exhibits good surface quality and excellent mechanical properties when a fiber reinforced plastic is used.

本発明の切込プリプレグの概念図である。It is a conceptual diagram of the cutting prepreg of this invention. 均質でない切込パターン(a)と均質な切込パターン(b,c)を例示したものである。A non-uniform cut pattern (a) and a homogeneous cut pattern (b, c) are illustrated. 本発明の切込プリプレグに用いられる切込パターンの一例である。It is an example of the cutting pattern used for the cutting prepreg of this invention. 本発明の切込プリプレグに用いられる切込パターンの一例である。It is an example of the cutting pattern used for the cutting prepreg of this invention. 本発明の切込プリプレグに用いられる切込パターンの一例である。It is an example of the cutting pattern used for the cutting prepreg of this invention. 本発明の切込プリプレグに用いられる切込パターンの一例である。It is an example of the cutting pattern used for the cutting prepreg of this invention. プレス成形用の型である。This is a press mold. 本発明の切込プリプレグに用いられる切込パターンの6つの例である。It is six examples of the cutting pattern used for the cutting prepreg of this invention. 本発明の切込プリプレグに用いられない切込パターンの5つの例である。It is five examples of the cutting pattern which is not used for the cutting prepreg of this invention. 実施例における、切込プリプレグ内の小領域抽出パターンである。It is a small area extraction pattern in the cut prepreg in an Example.

本発明者らは、三次元形状への追従性に優れ、繊維強化プラスチックとした場合に優れた力学特性を発現する中間基材を得るために、鋭意検討し、一方向に配向した強化繊維と樹脂とを含むプリプレグの少なくとも一部の領域に強化繊維を分断する複数の切込が挿入し強化繊維を不連続とすることで3次元形状への追従性を高め、かかる課題を解決することを究明した。   In order to obtain an intermediate base material that has excellent followability to a three-dimensional shape and expresses excellent mechanical properties when used as a fiber reinforced plastic, the present inventors have intensively studied, and reinforced fibers oriented in one direction In order to solve such a problem, a plurality of cuts for dividing the reinforcing fiber are inserted into at least a partial region of the prepreg containing the resin to make the reinforcing fiber discontinuous, thereby improving the follow-up to the three-dimensional shape. Investigated.

具体的には、複数の切込が挿入された領域(以下、切込領域という)において任意に選択される10個の直径10mmの円形の小領域内に含まれる切込の個数を母集団とした場合に、母集団の平均値が10以上かつ変動係数が20%以内の切込プリプレグである(以下、母集団の平均値が10以上の状態を高密度、変動係数が20%以内の状態を均質という)。   Specifically, the number of cuts included in 10 circular 10 mm diameter small regions arbitrarily selected in a region where a plurality of cuts are inserted (hereinafter referred to as a cut region) is defined as a population. If the average value of the population is 10 or more and the coefficient of variation is 20% or less, the cut prepreg (the average value of the population is 10 or more is high density, and the coefficient of variation is 20% or less. Is called homogeneous).

図1(a)はプリプレグ1に複数の切込2が挿入された切込領域3を含む切込プリプレグの概念図を示している。切込領域は、プリプレグの少なくとも一部の領域にありさえすれば、プリプレグの一部のみに存在しても、プリプレグ全域に存在してもよく、プリプレグ内に複数の切込領域が含まれていてもよい。切込領域は、切込プリプレグのいずれの箇所に存在しても構わないが、切込プリプレグを用いて成形して繊維強化プラスチックとした際に、曲面や凹凸など三次元形状を含む領域に存在することが好ましい。切込領域内では、全ての強化繊維が切込によって分断されていても、切込によって分断されない強化繊維を含んでいても良い。また、強化繊維の配向方向と切込とのなす角が2種以上となってもよいし、切込によって分断される強化繊維の長さが2種以上となってもよい。   FIG. 1A shows a conceptual diagram of a cut prepreg including a cut area 3 in which a plurality of cuts 2 are inserted into the prepreg 1. As long as the cut area is in at least a part of the prepreg, the cut area may exist only in a part of the prepreg or in the entire prepreg, and a plurality of cut areas are included in the prepreg. May be. The incision area may exist in any part of the incision prepreg, but it exists in an area that includes a three-dimensional shape such as a curved surface or unevenness when molded with the incision prepreg into a fiber reinforced plastic. It is preferable to do. Even if all the reinforcing fibers are divided by the cutting in the cutting area, the reinforcing fibers that are not divided by the cutting may be included. Further, the angle formed by the orientation direction of the reinforcing fiber and the cut may be two or more, and the length of the reinforcing fiber divided by the cut may be two or more.

図1(b)は切込領域3内で直径10mmの円形の小領域4を10箇所抽出した様子を示している(以降、直径10mmの円形の小領域4を、小領域と略記する)。小領域は、切込領域内で、小領域が重ならない程度に密に抽出することが好ましいが、切込領域が小領域を10個全て重ならずに抽出するのに十分なサイズでない場合には、小領域同士が重なるように抽出しても良い。ただし、前述の母集団の平均値と変動係数をより精度よく測るために、切込領域の境界を越えて小領域を設定してはならない。切込領域の境界は、切込の端部同士を結ぶ線分を繋げた線分群であって、かつ該線分群内に全ての切込が含まれ、該線分群の長さの合計が最小となる線分群とする。   FIG. 1B shows a state where ten circular small areas 4 having a diameter of 10 mm are extracted in the cut area 3 (hereinafter, the circular small areas 4 having a diameter of 10 mm are abbreviated as small areas). The small area is preferably extracted as densely as the small area does not overlap within the cut area, but the cut area is not large enough to extract all 10 small areas without overlapping. May be extracted so that the small regions overlap each other. However, in order to measure the average value and variation coefficient of the above-mentioned population more accurately, a small area should not be set beyond the boundary of the cut area. The boundary of the incision area is a line segment group connecting line segments connecting the ends of the notch, and all the incisions are included in the line segment group, and the total length of the line segment group is the smallest Is a line group.

小領域内に含まれる切込みの個数とは、小領域内に存在する切込と、小領域の輪郭に一部が接触する切込の合計数とする。なお、前述の母集団の平均値と前述の母集団の変動係数は、10個の小領域内の切込数をni(i=1〜10)とすると、それぞれ式1、式2で計算される。   The number of cuts included in the small area is the total number of cuts existing in the small area and cuts partially contacting the outline of the small area. The average value of the population and the coefficient of variation of the population are calculated by Equations 1 and 2, respectively, where the number of cuts in the 10 small regions is ni (i = 1 to 10). The

Figure 2017171894
Figure 2017171894

Figure 2017171894
Figure 2017171894

切込の個数は高密度であるほど、三次元形状への追従性が向上し、切込プリプレグの変形時に一つ一つの切込の開口が小さくなるため、繊維強化プラスチックとした際に、良好な表面品位を得ることができる。また、全体として切込によって分断される強化繊維の数が同じであっても、繊維強化プラスチックとした際に負荷が与えられた場合、切込が大きい場合は切込周辺の応力集中が大きくなるが、細かくなるほど応力集中が軽減され、力学特性が向上する。   The higher the number of cuts, the better the followability to the three-dimensional shape, and the smaller each cut opening when the cut prepreg is deformed, the better when using fiber reinforced plastic. Surface quality can be obtained. In addition, even if the number of reinforcing fibers divided by cutting is the same as a whole, when a load is applied when using fiber reinforced plastic, if the cutting is large, the stress concentration around the cutting increases. However, as it becomes finer, stress concentration is reduced and mechanical properties are improved.

したがって、小領域内に含まれる切込の個数を、10個の小領域においてカウントし母集団とした際に、母集団は平均値が10以上であることが好ましい。さらに好ましくは15個以上である。小領域内で同一の強化繊維が複数の切込によって分断されていてもよいが、強化繊維の繊維長さLが10mmより小さい場合、固化後の力学特性が低下する場合があるため、小領域内では同一の強化繊維が複数の切込みによって分断されていないことがより好ましい。なお繊維長さLとは、図2(a)〜(c)に示すように、任意の切込と、強化繊維方向に最近接の切込(対になる切込)とにより分断される強化繊維の長さを指している。母集団の平均値が50より大きい場合、小領域内で同一の強化繊維が複数の切込によって分断される可能性が高くなるため、母集団の平均値は50以下であることが好ましい。一方、切込領域内において、均質に切込が分布しているほど、切込プリプレグ変形時に一つ一つの切込の開口のバラツキが小さくなるため、繊維強化プラスチックとした際に安定した力学特性を発現する。したがって、母集団の変動係数は20%以下が好ましい。さらに好ましくは15%以下である。ここで小領域の抽出方法としては、図1(b)に示すように、小領域同士が比較的近くに存在するように抽出することが好ましい。抽出パターンによって前記変動係数が変動する場合もあるが、その場合は5回抽出パターンを変えて測定し、4回以上前記変動係数が20%以下であれば、本発明の態様を満たすとみなす。   Therefore, when the number of cuts included in the small area is counted in 10 small areas to make a population, it is preferable that the average value of the population is 10 or more. More preferably, it is 15 or more. In the small region, the same reinforcing fiber may be divided by a plurality of cuts, but if the fiber length L of the reinforcing fiber is smaller than 10 mm, the mechanical properties after solidification may be reduced. It is more preferable that the same reinforcing fiber is not divided by a plurality of cuts. In addition, as shown in FIGS. 2A to 2C, the fiber length L is a reinforcement that is divided by an arbitrary cut and a cut closest to the reinforcing fiber direction (cutting in pairs). Refers to the length of the fiber. When the average value of the population is larger than 50, the possibility that the same reinforcing fiber is divided by a plurality of cuts in the small region is high, and thus the average value of the population is preferably 50 or less. On the other hand, the more uniformly the cuts are distributed in the cut region, the smaller the variation of each cut opening when the cut prepreg is deformed. Is expressed. Therefore, the variation coefficient of the population is preferably 20% or less. More preferably, it is 15% or less. Here, as a method for extracting small regions, it is preferable to extract the small regions so that they are relatively close to each other as shown in FIG. In some cases, the variation coefficient may vary depending on the extraction pattern. In this case, if the variation pattern is measured five times and the variation coefficient is 20% or less four times or more, it is considered that the aspect of the present invention is satisfied.

比較的小さな切込を挿入する概念は既に特許文献2に記載されているが、例えば特許文献2の図2に記載の切込パターンを拡大縮小して前記母集団の平均値が10以上となるようにした場合、強化繊維の繊維長さは10mm以下とならざるを得ず、強化繊維の繊維長さを10mmとした場合には、前記母集団の平均値は5以下と、切込の分布の密度は小さくなる。   The concept of inserting a relatively small cut has already been described in Patent Document 2, but for example, the cut pattern described in FIG. 2 of Patent Document 2 is enlarged and reduced, and the average value of the population becomes 10 or more. In this case, the fiber length of the reinforcing fiber must be 10 mm or less, and when the fiber length of the reinforcing fiber is 10 mm, the average value of the population is 5 or less, and the distribution of the cuts. The density of becomes smaller.

また、特許文献1の第1図(A)に代表される多くの既存の切込パターンでは、図2(a)(文献を特定しないときは本明細書の図である。以下同じ)に示すように、強化繊維の長さLに対して、隣接する切込を、Lの半分の長さL/2ずらして、断続的な切込としている。このような切込パターンの場合、切込の長さが短く、繊維長さが長いほど、強化繊維の配向方向にL/2おきに存在する直線状に切込が存在しやすくなり、前記母集団のばらつきが大きくなる。このような場合、切込開口が前記直線上に集中し、開口が顕著に現れる。図2(b)のように、隣接する切込をL/2ではなく、L/5やL/6といった、細かい周期でずらすことで、切込プリプレグ中により切込が均等に分布した切込パターンとなり、切込プリプレグが伸張する際に、伸張箇所が偏ることなく、均質な変形が可能となり、一つ一つの切込の開口が抑制される(以降、切込が均等に分布した切込パターンのことを均質な切込パターンと記す場合もある)。さらに、図2(b)のように、隣り合う切込を階段状にずらすのではなく、図2(c)のようにずらしてもよい。図2(c)はL/10の周期で切込がずれているが、切込によって分断された強化繊維束で、隣り合う強化繊維束の端部同士(例えば図2(c)中の切込s1と切込s2)の距離は、2L/5となっており、図2(b)のL/5よりも長くなっている。隣り合う強化繊維束の端部同士の距離が長いことで、き裂進展や切込開口の連鎖を抑制する効果があり、力学特性・表面品位ともに向上する。図2(a)の場合、隣り合う強化繊維束の端部同士の距離はL/2と長いが、強化繊維束を挟んだ2つの切込同士の距離も近いため、その2つの切込開口による応力集中部が重なりやすく、力学特性としても好ましくない。   Moreover, in many existing cutting patterns represented by FIG. 1 (A) of patent document 1, it shows in FIG. 2 (a) (It is a figure of this specification when literature is not specified. The same hereafter). Thus, with respect to the length L of the reinforcing fiber, the adjacent cuts are shifted by a length L / 2 that is half of L to make intermittent cuts. In the case of such a cutting pattern, the shorter the cutting length and the longer the fiber length, the easier it is for the cutting to occur in a straight line that exists every other L / 2 in the orientation direction of the reinforcing fiber. The variation of the population increases. In such a case, the cut openings are concentrated on the straight line, and the openings appear remarkably. As shown in FIG. 2 (b), the adjacent cuts are shifted not by L / 2 but by a fine cycle such as L / 5 or L / 6, so that the cuts are evenly distributed in the cut prepreg. When the cut prepreg is stretched, the stretched portion is not biased and uniform deformation is possible, and the opening of each cut is suppressed (hereinafter the cuts are distributed evenly) The pattern is sometimes referred to as a uniform cut pattern). Further, the adjacent cuts may be shifted as shown in FIG. 2C instead of being shifted stepwise as shown in FIG. In FIG. 2C, the notch is shifted at a cycle of L / 10, but the reinforcing fiber bundles are divided by the incision, and ends of adjacent reinforcing fiber bundles (for example, the cuts in FIG. 2C). The distance between the cut s1 and the cut s2) is 2L / 5, which is longer than L / 5 in FIG. A long distance between the ends of adjacent reinforcing fiber bundles has the effect of suppressing crack propagation and chain of notch openings, and improves both mechanical properties and surface quality. In the case of FIG. 2 (a), the distance between the ends of adjacent reinforcing fiber bundles is as long as L / 2, but the distance between the two cuts sandwiching the reinforcing fiber bundle is also short, so the two cut openings The stress concentration part due to is easy to overlap, which is not preferable as a mechanical characteristic.

分断後の強化繊維の長さは10mm以上が好ましく、15mm以上がより好ましく、さらに好ましくは20mm以上である。強化繊維の長さが20mm以上の場合でも、一つ一つの切込によって分断される強化繊維数を少なくすることで、切込が高密度に分布した切込パターン(以降、高密度な切込パターンと記す場合もある)を得ることができ、強化繊維が長いことに加え、切込が小さいことにより、力学特性向上の効果が見込める。図2(b)のように、隣接する切込を細かい周期でずらすことにより、繊維長さを保ちつつ、均質かつ高密度な切込パターンを実現できる。切込が強化繊維の配向方向に対して斜めに挿入されている場合でも同様である。   The length of the reinforcing fiber after splitting is preferably 10 mm or more, more preferably 15 mm or more, and further preferably 20 mm or more. Even when the length of the reinforcing fiber is 20 mm or more, by reducing the number of reinforcing fibers divided by each cutting, a cutting pattern in which the cutting is distributed with high density (hereinafter, high-density cutting) In some cases, the effect of improving the mechanical properties can be expected due to the long reinforcing fibers and the small depth of cut. As shown in FIG. 2B, a uniform and high-density cutting pattern can be realized while maintaining the fiber length by shifting adjacent cuttings with a fine period. The same applies when the cut is inserted obliquely with respect to the orientation direction of the reinforcing fibers.

本発明における切込プリプレグの態様として、任意の切込Aと、当該切込に最近接する別の切込Bとは、同一の強化繊維を分断していないことが好ましい。最近接する切込同士で分断された強化繊維は、比較的短い強化繊維となってしまうため、繊維強化プラスチックとした際に力学特性を低下させる要因となる。また、切込Aと最近接する切込Bとの間に、切込Aと切込Bのどちらによっても分断されていない強化繊維が存在することで、繊維強化プラスチックとした際に、切込Aと切込Bが損傷により連結しにくくなり、力学特性が向上する。   As an aspect of the cut prepreg in the present invention, it is preferable that an arbitrary cut A and another cut B closest to the cut do not divide the same reinforcing fiber. Reinforcing fibers that are separated by the notches that are in closest contact with each other become relatively short reinforcing fibers, and this is a factor that degrades the mechanical properties of the fiber-reinforced plastic. Moreover, when there is a reinforcing fiber that is not divided by either the cutting A or the cutting B between the cutting A and the closest cutting B, the cutting A is obtained when the fiber is reinforced plastic. And the cut B are difficult to be connected due to damage, and the mechanical characteristics are improved.

図3は切込領域の一部を示しており、切込Aと最近接する切込Bとの間には複数の強化繊維5が存在しており、切込Aと切込Bは同一の強化繊維を分断していない。図3(a)のように、切込Aと切込Bの間の強化繊維5が、切込Aおよび切込Bに最近接していない切込Cによって分断されていてもよいし、図3(b)のように、切込Aと切込Bの間の強化繊維5が、切込によって分断されていなくてもよい。最近接する切込同士の間は、強化繊維の直角方向に、切込を強化繊維に直角な平面に投影した投影長さWsの0.5倍以上であることが好ましく、より好ましくはWsの1倍以上である。   FIG. 3 shows a part of the incision region, and a plurality of reinforcing fibers 5 exist between the incision A and the closest incision B, and the incision A and the incision B have the same reinforcement. The fiber is not divided. As shown in FIG. 3 (a), the reinforcing fiber 5 between the cut A and the cut B may be divided by a cut C that is not closest to the cut A and the cut B. FIG. As shown in (b), the reinforcing fiber 5 between the cut A and the cut B may not be divided by the cut. The distance between the closest cuts is preferably 0.5 times or more of the projected length Ws obtained by projecting the cut on the plane perpendicular to the reinforcing fibers in the direction perpendicular to the reinforcing fibers, and more preferably 1 Ws. It is more than double.

高密度に切込を分布させた切込プリプレグでは、切込同士の距離が近くなり、最近接する切込同士が同一の強化繊維を分断してしまった際には非常に短い強化繊維が混入してしまう可能性があるため、最近接する切込同士が同一の強化繊維を分断しないように間隔を設けることで、高密度な切込パターンであっても短い強化繊維の混入を抑制し、安定した力学特性を発現せさることができる。   In the cutting prepreg in which the cuts are distributed at high density, the distance between the cuts becomes close, and when the closest cuts divide the same reinforcing fiber, very short reinforcing fibers are mixed. Therefore, by providing an interval so that the closest cuts do not divide the same reinforcing fiber, even if it is a high-density cutting pattern, mixing of short reinforcing fibers is suppressed and stable. Mechanical properties can be expressed.

本発明における切込プリプレグの好ましい態様として、図4のように、切込は実質的に同一の長さY(以下、Yを切込長さともいう)であり、最近接する切込同士の距離6は、Yの0.5倍よりも長い切込プリプレグが挙げられる。ここで、実質的に同一の長さとは、全ての切込長さが、全ての切込長さの平均値の±5%以内であることをいう(以下同じ)。なお、本発明において切込は、直線状でも曲線状でもよく、いずれの場合でも切込の端部同士を結ぶ線分を切込長さYとする。   As a preferable embodiment of the cutting prepreg in the present invention, as shown in FIG. 4, the cutting is substantially the same length Y (hereinafter, Y is also referred to as the cutting length), and the distance between the closest cuttings 6 is a cutting prepreg longer than 0.5 times Y. Here, “substantially the same length” means that all the cut lengths are within ± 5% of the average value of all the cut lengths (the same applies hereinafter). In the present invention, the cut may be linear or curved, and in any case, the line segment connecting the ends of the cut is the cut length Y.

最近接する切込同士の距離とは、最近接する切込同士の最短距離を意味する。最近接する切込同士の距離が近い場合、繊維強化プラスチックに損傷が入った場合に、損傷が切込同士を連結しやすくなるため、最近接する切込同士の距離が、切込長さYの0.5倍より大きいことが好ましい。最近接する切込同士の距離は、より好ましくはYの0.8倍以上、さらに好ましくはYの1.0倍以上である。一方で、最近接する切込同士の距離に上限は特にないが、プリプレグに高密度な切込を付与するにあたり、最近接する切込同士の距離が切込長さYの10倍以上とすることは容易ではない。   The distance between the closest cuts means the shortest distance between the closest cuts. When the distance between the closest cuts is close, when the fiber reinforced plastic is damaged, damage becomes easy to connect the cuts, so the distance between the closest cuts is 0 of the cut length Y. It is preferably larger than 5 times. The distance between the closest cuts is more preferably 0.8 times Y or more, and still more preferably 1.0 times or more Y. On the other hand, there is no particular upper limit on the distance between the closest cuts, but when giving a high-density cut to the prepreg, the distance between the closest cuts should be 10 times the cut length Y or more. It's not easy.

高密度に切込が分布する切込プリプレグにおいては、三次元形状への追従性は向上し、一つ一つの切込が小さいことによる力学特性の向上が見込めるが、切込同士の距離が近い場合よりも切込同士が離れている方が力学特性はさらに向上する。したがって、密に切込を挿入した場合には、切込同士の距離を空けた切込パターン、すなわち最近接する切込同士の距離を、切込長さYの0.5倍より大きくすることが力学特性向上のために特に重要となる。さらに、切込領域内で全ての強化繊維を分断し賦形性を向上させた切込プリプレグの場合、最近接する切込同士の最短距離を切込長さYの0.5倍よりも大きく空け、かつ最近接する切込同士が同一の強化繊維を分断しないことで、三次元形状への追従性および表面品位を損なわずに、最大限に力学特性を発現できる。   Incision prepregs with high-density distribution of cuts, the followability to the three-dimensional shape is improved, and improvement in mechanical properties can be expected due to the smallness of each cut, but the distance between the cuts is close The mechanical characteristics are further improved when the cuts are separated from each other. Therefore, when the cuts are inserted densely, the cut pattern in which the distances between the cuts are separated, that is, the distance between the closest cuts is made larger than 0.5 times the cut length Y. This is particularly important for improving mechanical properties. Furthermore, in the case of a cut prepreg in which all the reinforcing fibers are divided in the cut area to improve the shapeability, the shortest distance between the closest cuts is larger than 0.5 times the cut length Y. In addition, since the closest cuts do not cut the same reinforcing fiber, the mechanical properties can be expressed to the maximum without impairing the followability to the three-dimensional shape and the surface quality.

本発明における切込プリプレグの好ましい態様として、切込が、強化繊維の配向方向に対して、斜めに挿入されている切込プリプレグが挙げられる。切込が曲線状の場合は、切込の端部同士を結ぶ線分が、強化繊維の配向方向に対して斜めであることを指す。切込を、強化繊維の配向方向に対して斜めとすることで、切込プリプレグの三次元形状への追従性や繊維強化プラスチックとした際の力学特性を向上することができる。強化繊維の配向方向と切込のなす角度をθとすると、θが2〜60°であることが好ましい。特にθの絶対値が25°以下であることで力学特性、中でも引張強度の向上が著しく、かかる観点からθの絶対値が25°以下がより好ましい。一方、θの絶対値は2°より小さいと切込を安定して入れることが難しくなる。すなわち、強化繊維に対して切込が寝てくると、刃で切込を入れる際、強化繊維が刃から逃げやすく、切込の位置精度を担保しながら挿入することが難しくなる。かかる観点からは、θの絶対値が2°以上であることがより好ましい。   As a preferable aspect of the cut prepreg in the present invention, a cut prepreg in which the cut is inserted obliquely with respect to the orientation direction of the reinforcing fibers can be mentioned. When the cut is curved, it means that the line segment connecting the ends of the cut is oblique with respect to the orientation direction of the reinforcing fibers. By making the incision oblique with respect to the orientation direction of the reinforcing fiber, it is possible to improve the followability to the three-dimensional shape of the incision prepreg and the mechanical characteristics when the fiber reinforced plastic is used. If the angle between the orientation direction of the reinforcing fibers and the cut is θ, θ is preferably 2 to 60 °. In particular, when the absolute value of θ is 25 ° or less, the mechanical properties, particularly the tensile strength, are remarkably improved. From this viewpoint, the absolute value of θ is more preferably 25 ° or less. On the other hand, if the absolute value of θ is smaller than 2 °, it becomes difficult to make a stable cut. That is, when the cut is laid on the reinforcing fiber, the reinforcing fiber easily escapes from the blade when cutting with the blade, and it becomes difficult to insert the reinforcing fiber while ensuring the positional accuracy of the cut. From this viewpoint, the absolute value of θ is more preferably 2 ° or more.

高密度に切込が分布する場合に限らず、θの絶対値が小さくなるほど、力学特性の向上が見込める一方、特に切込領域内で全ての強化繊維を分断する場合に、切込同士が近くなり、切込で発生した損傷が連結しやすく力学特性が低下する懸念もある。しかし、任意の切込と、当該切込に最近接する別の切込とは、同一の強化繊維を分断していないこと、かつ切込は、実質的に同一の長さYであり、最近接する切込同士の距離が、Yの0.5倍よりも長いことで、切込が強化繊維の配向方向に対して直角な場合と比較して、さらなる力学特性の向上が見込める。切込が高密度の場合は、特に、力学特性の向上と共に、切込開口の抑制による表面品位の向上が見込める。特許文献2に代表されるように、強化繊維に対して斜めに切込を挿入することは知られた技術であるが、特許文献2の図2(f)や図12のように、隣接する切込が強化繊維の繊維長さLに対してL/2ずれたような切込パターンでは、Lが長く切込の長さが小さい場合には、図2に示した現象と同様に、均質な切込パターンは実現できず、切込プリプレグの伸張時には切込が密な箇所が伸張しやすくなり、繊維強化プラスチックとした場合も切込同士が近くに存在するため、切込同士が連結しやすく、力学特性の低下を招く場合がある。図2(b)や図2(c)のような均質な切込配置に斜めの切込を適用することで、斜めに切込を挿入することによる力学特性向上の効果をより効果的に発現できる。   Not only when the cuts are distributed at high density, but the smaller the absolute value of θ, the better the mechanical properties can be expected, while the cuts are close to each other, especially when all reinforcing fibers are cut within the cut region. Therefore, there is also a concern that the damage caused by the cutting is easily connected and the mechanical characteristics are lowered. However, an arbitrary cut and another cut closest to the cut do not sever the same reinforcing fiber, and the cut is substantially the same length Y and is closest. When the distance between the cuts is longer than 0.5 times Y, further improvement in mechanical properties can be expected as compared with the case where the cuts are perpendicular to the orientation direction of the reinforcing fibers. When the depth of cut is high, the improvement of surface quality can be expected by improving the mechanical characteristics and suppressing the opening of the cut. As represented by Patent Document 2, it is a known technique to insert a cut diagonally with respect to the reinforcing fiber, but it is adjacent as shown in FIG. 2 (f) and FIG. 12 of Patent Document 2. In the cutting pattern in which the cutting is shifted by L / 2 with respect to the fiber length L of the reinforcing fiber, when L is long and the cutting length is small, the same as the phenomenon shown in FIG. However, when the cutting prepreg is stretched, it becomes easy to stretch the parts where the cuts are dense, and even when fiber reinforced plastic is used, the cuts are close to each other. It is easy to cause a decrease in mechanical properties. Applying oblique notches to the uniform notch arrangement as shown in FIG. 2 (b) and FIG. 2 (c), more effectively manifesting the effect of improving the mechanical properties by inserting the notches obliquely. it can.

本発明における切込プリプレグの好ましい態様として、切込と強化繊維の配向方向とのなす角度θの絶対値が、実質的に同一であり、さらにθが正である切込(正切込という)とθが負である切込(負切込という)を含む切込プリプレグが挙げられる。θの絶対値が実質的に同一とは、全ての切込における角度θの絶対値が、全ての切込における角度θの絶対値から求めた平均値の±1°以内であることをいう。切込プリプレグ内に正切込だけでなく、負切込も挿入することで、切込プリプレグが伸張時に正切込近傍で面内せん断変形が発生した場合に、負切込近傍では逆向きのせん断変形が生じることによりマクロとして面内のせん断変形を抑制し伸張させることができる。   As a preferred embodiment of the cutting prepreg in the present invention, the absolute value of the angle θ formed by the cutting and the orientation direction of the reinforcing fibers is substantially the same, and further, a cutting in which θ is positive (referred to as a positive cutting). An incision prepreg including an incision in which θ is negative (referred to as negative incision) can be mentioned. That the absolute value of θ is substantially the same means that the absolute value of the angle θ in all the cuts is within ± 1 ° of the average value obtained from the absolute value of the angle θ in all the cuts. By inserting not only positive cuts but also negative cuts into the cut prepreg, when in-plane shear deformation occurs near the positive cut when the cut prepreg is extended, reverse shear deformation occurs near the negative cut. As a result, the in-plane shear deformation can be suppressed and expanded as a macro.

さらに好ましくは、正切込と負切込を略同数含む、切込プリプレグである。正切込と負切込を略同数含むとは、θが正となる切込の数とθが負となる切込の数が略同数であることを意味する。そして、θが正となる切込の数とθが負となる切込の数が略同数とは、数を基準とした百分率で示した時に、正の角となるθの数と負の数となるθの数がいずれも45%以上55%以下であることをいう(以下同じ)。   More preferably, it is a cutting prepreg including substantially the same number of positive cuttings and negative cuttings. The inclusion of substantially the same number of positive cuts and negative cuts means that the number of cuts for which θ is positive and the number of cuts for which θ is negative are substantially the same. The number of incisions for which θ is positive and the number of incisions for which θ is negative are substantially the same as the percentage based on the number, and the number of θ that is a positive angle and a negative number That is, the number of θs is 45% or more and 55% or less (the same applies hereinafter).

図5のように正切込と負切込は互いに交互に配置することで、高い密度で切込を挿入しながらも、近接する切込間の距離を確保しやすくなる。また、得られた切込プリプレグを積層する際、正切込または負切込のみを含む切込プリプレグの場合には、同一の強化繊維の配向方向のプリプレグであっても、プリプレグを表から見るか裏から見るかで異なる切込の方向となる。したがって繊維強化プラスチック製造時に、毎回切込の方向が同じようになるように、もしくは同じ強化繊維の方向で切込の方向が異なるものを同じ枚数積層するための積層手順を制御する手間が増える可能性がある。したがって、切込と強化繊維の配向方向とのなす角度θの絶対値が実質的に同一であり、正切込と負切込が略同数となる切込パターンであれば、通常の連続繊維プリプレグ同様の扱いで積層が可能となる。   As shown in FIG. 5, the positive cuts and the negative cuts are alternately arranged, so that it is easy to secure the distance between the adjacent cuts while inserting the cuts with high density. In addition, when laminating the obtained cut prepreg, in the case of a cut prepreg including only positive cuts or negative cuts, whether the prepreg is viewed from the table even if the prepregs are oriented in the same reinforcing fiber orientation The direction of the cut differs depending on whether it is viewed from the back. Therefore, when manufacturing fiber reinforced plastics, it is possible to increase the time and effort required to control the stacking procedure for stacking the same number of the same reinforcing fibers with different cutting directions so that the cutting direction is the same each time. There is sex. Therefore, the absolute value of the angle θ formed by the cut and the orientation direction of the reinforcing fiber is substantially the same, and if the cut pattern has substantially the same number of positive cuts and negative cuts, it is the same as a normal continuous fiber prepreg Stacking is possible by handling.

正切込と負切込が略同数存在する切込プリプレグで、かつ正切込と負切込が均一に混合された切込パターンの場合は、特に高密度の切込分布の場合に、任意の切込が、当該切込に最近接する別の切込とで、同一の強化繊維を分断せず、かつ最近接する切込同士の距離がYの0.5倍よりも長い切込パターンを作成しやすくなる。これにより、切込で発生した損傷の連結を抑制することができ、力学特性が向上する。また、正切込と負切込が存在する場合は切込プリプレグ伸張時にも切込の開口が発見されにくく、繊維強化プラスチックとした場合に良好な表面品位を得られるが、高密度な切込分布とした際にはさらに切込が細かくなり、さらに良好な表面品位を得ることができる。切込領域内で全ての強化繊維を分断する際にも当該切込パターンは有効であり、三次元形状への追従性を保ちつつ、力学特性と表面品位を向上させることができる。また、刃を用いてプリプレグに切込を挿入する際に、正切込または負切込のみ挿入する場合は、刃に押し出される際にプリプレグを幅方向に移動する力が作用するため、プリプレグが幅方向にズレやすくなるが、正切込と負切込が略同数含まれた刃を用いることで、プリプレグが幅方向にズレにくくなり、精度よく切込を挿入できる。   In the case of a cutting prepreg with approximately the same number of positive cuts and negative cuts, and a cut pattern in which positive cuts and negative cuts are mixed uniformly, an arbitrary cut can be obtained, especially in the case of a high-density cut distribution. It is easy to create a notch pattern in which the distance between the closest notches is longer than 0.5 times Y without cutting the same reinforcing fiber with another notch closest to the notch. Become. Thereby, the connection of the damage which generate | occur | produced by the notch can be suppressed, and a dynamic characteristic improves. In addition, when there is a positive cut and a negative cut, it is difficult to find the opening of the cut even when the cut prepreg is stretched, and a good surface quality can be obtained when it is made of fiber reinforced plastic. In this case, the cut becomes finer, and a better surface quality can be obtained. The cutting pattern is also effective when dividing all the reinforcing fibers in the cutting region, and the mechanical properties and the surface quality can be improved while maintaining the followability to the three-dimensional shape. Also, when inserting a notch into the prepreg using a blade, when inserting only a positive cut or a negative cut, a force that moves the prepreg in the width direction acts when pushed out by the blade, so the prepreg Although it becomes easy to shift in the direction, by using a blade including approximately the same number of positive cuts and negative cuts, the prepreg becomes difficult to shift in the width direction, and the cuts can be inserted with high accuracy.

さらに好ましくは、任意の切込と、当該切込の延長線上に存在する最近接する別の切込との間隔について、正切込同士の間隔と負切込同士の間隔とで長さが異なる、切込プリプレグである。図6は正切込と負切込が略同数ずつ挿入された切込プリプレグを示している。正切込は直線9上に、負切込は直線10上に配置されており、直線9上での正切込の間隔は直線10上での負切込の間隔よりも小さくなっている。このような切込の配置にすることで、均質・高密度かつ近接する切込間の距離を確保することができ、最近接する切込が同一の強化繊維を分断しない切込パターンが作成可能である。さらに、任意の切込と、当該切込の延長線上に存在する最近接する別の切込との間隔について、正切込同士の間隔と負切込同士の間隔とで長さが同一の場合よりも強化繊維の長さを長くすることが可能であり、高密度で切込が分布されていても力学特性を維持することが可能である。なお、切込の延長線上に切込が存在するとは、切込を延長した直線と対象となる切込同士の最も近接する点同士を結んだ直線との角度が1°以内であることを指す。   More preferably, with respect to the interval between an arbitrary cut and another closest cut existing on the extended line of the cut, the length differs between the positive cut interval and the negative cut interval. It is a prepreg. FIG. 6 shows a cut prepreg in which approximately the same number of positive cuts and negative cuts are inserted. The positive cut is arranged on the straight line 9 and the negative cut is arranged on the straight line 10, and the interval between the positive cuts on the straight line 9 is smaller than the interval between the negative cuts on the straight line 10. By arranging the cuts in this way, it is possible to secure a uniform, high-density and close distance between adjacent cuts, and it is possible to create a cut pattern in which the closest cuts do not break the same reinforcing fiber. is there. Furthermore, with regard to the interval between an arbitrary cut and another closest cut existing on the extension line of the cut, the distance between the positive cuts and the gap between the negative cuts is the same as the length. The length of the reinforcing fiber can be increased, and the mechanical properties can be maintained even when the cuts are distributed at a high density. Note that the presence of a cut on the extension line of the cut means that the angle between the straight line extending the cut and the straight line connecting the closest points of the target cuts is within 1 °. .

任意の切込と、当該切込の延長線上に存在する最近接する別の切込との間隔について、正切込同士の間隔と負切込同士の間隔とで長さが異なる切込パターンとすることで、高密度であっても強化繊維の長さをより長くすることができ、さらに切込領域内で全ての強化繊維を分断する場合にも、任意の切込と、当該切込に最近接する別の切込とは、同一の強化繊維を分断せず、最近接する切込同士の距離が切込長さYの0.5倍よりも長い切込パターンが得やすくなる。これにより、より効果的に、表面品位と三次元形状への追従性を損なわずに、力学特性を向上させることができる。すなわち、正切込と負切込が略同数挿入されており、任意の切込と、当該切込の延長線上に存在する最近接する別の切込との間隔について、正切込同士の間隔と負切込同士の間隔とで長さが異なり、任意の切込と、当該切込に最近接する別の切込とは、同一の強化繊維を分断せず、最近接する切込同士の距離が切込長さYの0.5倍よりも長く、切込領域にて実質的に全ての強化繊維が繊維長さ15mm以上に分断されている切込パターンが、三次元形状追従性、表面品位、力学特性の観点から、特に好ましい。特許文献2の図1、図2(d)、図14(d)のように、正切込と負切込が挿入された切込パターンは既知であるが、いずれの切込パターンも、本明細書の図2(a)と同様に、隣接する切込が強化繊維の繊維長さLの半分ズレた切込パターンであり、Lが長く、切込が小さくなるほど、切込配置の疎密が発生しやすくなる。隣接する切込を図2(b)、図2(c)のようにL/2に限定せず、ずらすことで、高密度かつ均質な切込パターンとすることができる。   About the interval between any notch and another closest notch that exists on the extension line of the notch, it should be a notch pattern with different lengths between the positive notches and the negative notches. Thus, even if the density is high, the length of the reinforcing fiber can be made longer, and even when all the reinforcing fibers are divided in the cutting area, any cutting and the closest to the cutting With another cut, the same reinforcing fiber is not divided, and a cut pattern in which the distance between the closest cuts is longer than 0.5 times the cut length Y is easily obtained. As a result, the mechanical properties can be improved more effectively without impairing the surface quality and followability to the three-dimensional shape. In other words, approximately the same number of positive cuts and negative cuts are inserted, and the interval between an arbitrary cut and another closest cut existing on the extension line of the cut is the same as the interval between the positive cuts and the negative cut. The length differs depending on the interval between the cuts, and an arbitrary cut and another cut closest to the cut do not divide the same reinforcing fiber, and the distance between the closest cuts is the cut length The cut pattern, which is longer than 0.5 times the length Y and in which substantially all the reinforcing fibers are divided into fiber lengths of 15 mm or more in the cut region, has a three-dimensional shape following property, surface quality, and mechanical properties. From the viewpoint of, it is particularly preferable. As shown in FIG. 1, FIG. 2 (d), and FIG. 14 (d) of Patent Document 2, a cutting pattern in which a positive cutting and a negative cutting are inserted is known. As in FIG. 2 (a), the adjacent notch is a notch pattern in which the fiber length L of the reinforcing fiber is shifted by half, and as L becomes longer and the notch becomes smaller, the density of the notch arrangement becomes more dense. It becomes easy to do. The adjacent cuts are not limited to L / 2 as shown in FIG. 2B and FIG. 2C, but can be made a high-density and uniform cut pattern by shifting.

また、切込プリプレグを製造する際に、切込プリプレグの表面に、保護シートを貼りつけ、保護シートを貫通してプリプレグに切込を挿入することで、回転刃ロールと切込プリプレグの粘着を抑制してもよい。そのようにして製造された切込プリプレグの積層時には、保護シートを剥がす必要があり、最近接する切込同士の距離が近いと、保護シートを剥がす際に保護シートが引きちぎれ、取り扱い性が低下する場合がある。したがって、切込プリプレグシートの取り扱い性の観点からも、最近接する切込同士の距離が切込長さYの0.5倍よりも長いことが好ましい。略同数の正切込と負切込が混合して配置されている場合には、保護シートを剥がす際に保護シート上の切込が連結しにくく、切込プリプレグシートの取り扱い性がさらに向上する。任意の切込と、当該切込の延長線上に存在する最近接する別の切込との間隔について、正切込同士の間隔と負切込同士の間隔とで長さが異なる場合は、正切込と負切込をより均一に配置することができ、保護シートが引きちぎれにくくなり、切込プリプレグの取り扱い性がさらに向上する。なお、保護シートの材質の代表的なものにはポリエチレン、ポリプロピレン等のポリマー類が挙げられ、プリプレグに刃で切込を挿入する際、刃に樹脂が粘着することを防ぐ役割や、切込プリプレグ保管時に切込プリプレグ表面をホコリ等の異物から保護する役割がある。   In addition, when manufacturing a cut prepreg, a protective sheet is attached to the surface of the cut prepreg, and the adhesive is attached to the rotary blade roll and the cut prepreg by penetrating the protective sheet and inserting the cut into the prepreg. It may be suppressed. When laminating cut prepregs manufactured in this way, it is necessary to peel off the protective sheet. If the distance between the closest cuts is close, the protective sheet may be torn off when the protective sheet is peeled off, resulting in poor handling. There is. Therefore, also from the viewpoint of the handleability of the cut prepreg sheet, it is preferable that the distance between the closest cuts is longer than 0.5 times the cut length Y. When approximately the same number of positive cuts and negative cuts are mixed and arranged, when the protective sheet is peeled off, the cuts on the protective sheet are difficult to be connected, and the handleability of the cut prepreg sheet is further improved. If the length between an arbitrary notch and another notch closest on the extension line of the notch differs in length between the positive notches and the negative notches, The negative cuts can be arranged more uniformly, the protective sheet is hardly torn off, and the handleability of the cut prepreg is further improved. Typical materials for the protective sheet include polymers such as polyethylene and polypropylene. When inserting a notch into the prepreg with a blade, the role of preventing the resin from sticking to the blade, It has the role of protecting the cut prepreg surface from foreign substances such as dust during storage.

本発明において、切込プリプレグに含まれる樹脂は、熱可塑性樹脂でも熱硬化性樹脂でもよく、熱可塑性樹脂としては、例えば、ポリアミド(PA)、ポリアセタール、ポリアクリレート、ポリスルフォン、ABS、ポリエステル、アクリル、ポリブチレンテレフタラート(PBT)、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリエチレン、ポリプロピレン、ポリフェニレンスルフィド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルイミド(PEI)、ポリエーテルケトンケトン(PEKK)、液晶ポリマー、塩ビ、ポリテトラフルオロエチレンなどのフッ素系樹脂、シリコーンなどが挙げられる。熱硬化性樹脂としては、樹脂が熱により架橋反応を起こし少なくとも部分的な三次元架橋構造を形成するものであればよい。これらの熱硬化性樹脂としては、不飽和ポリエステル樹脂、ビニルエステル樹脂、エポキシ樹脂、ベンゾオキサジン樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂およびポリイミド樹脂等が挙げられる。これらの樹脂の変形および2種以上のブレンドの樹脂を用いることもできる。また、これらの熱硬化性樹脂は熱により自己硬化する樹脂であってもよいし、硬化剤や硬化促進剤等を含むものであってもよい。また、耐熱性や導電性等を向上させるために充填材が含まれていてもよい。   In the present invention, the resin contained in the cut prepreg may be a thermoplastic resin or a thermosetting resin. Examples of the thermoplastic resin include polyamide (PA), polyacetal, polyacrylate, polysulfone, ABS, polyester, acrylic , Polybutylene terephthalate (PBT), polycarbonate (PC), polyethylene terephthalate (PET), polyethylene, polypropylene, polyphenylene sulfide (PPS), polyetheretherketone (PEEK), polyetherimide (PEI), polyetherketoneketone ( PEKK), liquid crystal polymer, vinyl chloride, fluorine-based resins such as polytetrafluoroethylene, and silicone. Any thermosetting resin may be used as long as the resin undergoes a crosslinking reaction by heat to form at least a partial three-dimensional crosslinked structure. Examples of these thermosetting resins include unsaturated polyester resins, vinyl ester resins, epoxy resins, benzoxazine resins, phenol resins, urea resins, melamine resins, and polyimide resins. Deformation of these resins and resins of two or more blends can also be used. Further, these thermosetting resins may be resins that are self-cured by heat, or may include a curing agent, a curing accelerator, and the like. In addition, a filler may be included to improve heat resistance, conductivity, and the like.

本発明の切込プリプレグに含まれる強化繊維は、ガラス繊維、ケブラー繊維、炭素繊維、グラファイト繊維またはボロン繊維等であってもよい。この内、比強度および比弾性率の観点からは、炭素繊維が好ましい。   The reinforcing fiber contained in the cut prepreg of the present invention may be glass fiber, Kevlar fiber, carbon fiber, graphite fiber or boron fiber. Among these, carbon fiber is preferable from the viewpoint of specific strength and specific modulus.

強化繊維の体積含有率Vfは70%以下とすることで切込部の強化繊維のずれがおき、ブリッジングを効果的に抑制し、形状追従性とボイド等の成形不具合の抑制効果を得ることができる。かかる観点からVfが70%以下であることがより好ましい。また、Vfは低いほどブリッジングは抑制できるが、Vfが40%より小さくなると、構造材に必要な高力学特性が得られにくくなる。かかる観点からVfが40%以上であることがより好ましい。より好ましいVfの範囲は45〜65%、さらに好ましくは50〜60%である。   By setting the volume content Vf of the reinforcing fiber to 70% or less, the reinforcing fiber shifts in the cut portion, effectively suppresses bridging, and obtains the effect of suppressing shape defects such as shape followability and voids. Can do. From this viewpoint, Vf is more preferably 70% or less. Moreover, bridging can be suppressed as Vf is lower. However, when Vf is smaller than 40%, it is difficult to obtain high mechanical properties necessary for the structural material. From this viewpoint, it is more preferable that Vf is 40% or more. A more preferable range of Vf is 45 to 65%, still more preferably 50 to 60%.

切込プリプレグは強化繊維へ部分的に樹脂を含浸させた(すなわち、一部を未含浸とした)プリプレグを用いて製造してもよい。強化繊維に部分的に樹脂を含浸させた切込プリプレグを用いることで、プリプレグ内部の強化繊維の未含浸部が面内の流路となり、積層の際に切込プリプレグの層間に閉じ込められた空気や切込プリプレグからの揮発成分などの気体が切込プリプレグ外に排出されやすくなる(このような気体の流路を脱気パスと呼ぶ)。一方で、含浸率が低すぎると、強化繊維と樹脂の間で剥離が生じ、切込プリプレグ積層時に未含浸部で切込プリプレグが二つに割れてしまうなど作業性が劣ってしまう場合があることや、成形中の含浸時間を長く取らないとボイドが残ってしまう場合があること、などから、含浸率は10〜90%が好ましい。かかる観点から、含浸率の範囲のより好ましい上限は70%であり、さらに好ましい上限は50%であり、含浸率の範囲のより好ましい下限は20%である。   The cut prepreg may be manufactured using a prepreg in which a reinforcing fiber is partially impregnated with a resin (that is, a part of the prepreg is not impregnated). By using a cut prepreg in which the reinforcing fiber is partially impregnated with resin, the unimpregnated portion of the reinforcing fiber inside the prepreg becomes an in-plane flow path, and the air trapped between the layers of the cut prepreg during lamination Gases such as volatile components from the cut prepreg are easily discharged out of the cut prepreg (such a gas flow path is referred to as a degassing path). On the other hand, if the impregnation rate is too low, peeling may occur between the reinforcing fiber and the resin, and the workability may be inferior, for example, the cut prepreg may be broken in two at the non-impregnated portion when the cut prepreg is laminated. In addition, the impregnation ratio is preferably 10 to 90% because voids may remain unless the impregnation time during molding is long. From this viewpoint, the more preferable upper limit of the impregnation rate range is 70%, the more preferable upper limit is 50%, and the more preferable lower limit of the impregnation rate range is 20%.

本発明の切込プリプレグは、その表面に樹脂層が存在しても良い。切込プリプレグの表面に樹脂層が存在することで、切込プリプレグを積層した際に、切込プリプレグ同士の間に層間樹脂層が形成される。これにより、面外衝撃荷重が加わった際、クラックが柔軟な層間樹脂層に誘導され、かつ熱可塑性樹脂の存在により靭性が高いため剥離が抑制されることで、面外衝撃後の残存圧縮強度を高くすることができ、航空機などの高い安全性が要求される主構造用材料として適する。   The cut prepreg of the present invention may have a resin layer on the surface thereof. Since the resin layer exists on the surface of the cut prepreg, an interlayer resin layer is formed between the cut prepregs when the cut prepreg is laminated. As a result, when an out-of-plane impact load is applied, cracks are induced in the flexible interlayer resin layer, and due to the high toughness due to the presence of the thermoplastic resin, peeling is suppressed, so that the residual compressive strength after the out-of-plane impact is reduced. It is suitable as a main structural material that requires high safety such as aircraft.

本発明の切込プリプレグは、積層してプレス成形やオートクレーブ成形に適用することができる。積層方法は用途に応じて任意に選択可能であるが、熱の残留応力に起因する反りの抑制や力学特性のバランスを考慮すると擬似等方積層体やクロスプライ積層が特に好ましい。積層時には、積層基材の流動性をさらに高めるために、SMCなどランダムに強化繊維が配向した基材や、樹脂フィルムなどを適宜積層してもよい。   The cut prepreg of the present invention can be laminated and applied to press molding or autoclave molding. The lamination method can be arbitrarily selected depending on the application, but pseudo-isotropic laminates and cross-ply lamination are particularly preferred in consideration of the suppression of warpage caused by thermal residual stress and the balance of mechanical properties. At the time of lamination, in order to further improve the fluidity of the laminated substrate, a substrate in which reinforcing fibers are randomly oriented, such as SMC, a resin film, or the like may be appropriately laminated.

以下では、強化繊維と樹脂とを含むプリプレグの少なくとも一部の領域に強化繊維を分断する複数の切込を有する切込プリプレグの製造方法について説明する。   Below, the manufacturing method of the cutting prepreg which has a some incision which divides a reinforcement fiber in the at least one part area | region of a prepreg containing a reinforcement fiber and resin is demonstrated.

プリプレグに切込を挿入する手段は、刃を用いて機械的に挿入してもレーザーのような熱源で焼き切ってもよい。より高密度に、精度よく切込を挿入する場合は、刃が定位置に配置されたロールをプリプレグに押し当てる方法が好ましい。   The means for inserting the cut into the prepreg may be mechanically inserted using a blade or burned out with a heat source such as a laser. In order to insert the incision with higher density and higher accuracy, a method of pressing a roll having a blade disposed at a fixed position against the prepreg is preferable.

別の好ましい切込プリプレグの製造方法としては、プリプレグに対して複数の切込1を挿入する工程1、及び、プリプレグに対して切込1と重ならない複数の切込2を挿入する工程2とを含む方法であってもよい。具体的には、刃の配置された打ち抜き型を昇降機に取り付け、打ち抜き型をプリプレグに押し当てることで切込を挿入する装置で、切込1を挿入した後、プリプレグ又は昇降機を移動させ、切込1と重ならない位置に切込2を挿入する方法が挙げられる。打ち抜き型の代わりに回転刃を用いるのも好ましい手段の一つである。また切込1と切込2で切込領域のサイズや形が異なっていてもよい。   As another preferable method of manufacturing the cut prepreg, the step 1 of inserting a plurality of cuts 1 into the prepreg, and the step 2 of inserting a plurality of cuts 2 that do not overlap with the cuts 1 into the prepreg, A method including Specifically, it is a device that inserts a notch by attaching a punching die with blades to the elevator and pressing the punching die against the prepreg. After inserting the notch 1, the prepreg or the elevator is moved to The method of inserting the notch 2 in the position which does not overlap with the notch 1 is mentioned. It is also a preferable means to use a rotary blade instead of the punching die. Further, the size and shape of the cut area may be different between the cut 1 and the cut 2.

本発明における切込プリプレグの製造方法は、切込パターンが、切込と強化繊維の配向方向がなす角が異なる切込が存在する場合にも好ましく用いることができる。具体的には、切込1と強化繊維とのなす角度θ1が正又は負であり、切込2と強化繊維とのなす角度θ2が、前記なす角度θ1とは正負が異なる場合である。特に、刃によって切込を挿入する場合、異なる角度の刃が高密度に配置させた刃を作製することが困難な場合があるため、複数段階に分けて切込を挿入することで、より高密度に切込を挿入することができる。   The manufacturing method of the cutting prepreg in this invention can be preferably used also when the cutting pattern has a notch with which the angle which the notch and the orientation direction of a reinforced fiber make differs. Specifically, the angle θ1 formed by the cut 1 and the reinforcing fiber is positive or negative, and the angle θ2 formed by the cut 2 and the reinforcing fiber is different from the angle θ1 formed by the positive and negative. In particular, when inserting a cut with a blade, it may be difficult to produce a blade in which blades with different angles are arranged at a high density. You can insert notches into the density.

なお、本発明における切込プリプレグの製造方法は、強化繊維が一方向に配向したプリプレグだけでなく、強化形態が織物やランダムマットである場合にも好ましく適用できる。   In addition, the manufacturing method of the cut prepreg in this invention is preferably applicable not only to the prepreg in which the reinforcing fibers are oriented in one direction, but also when the reinforcing form is a woven fabric or a random mat.

以下、実施例により本発明をさらに具体的に説明するが、本発明は、実施例に記載の発明に限定されるものではない。本実施例において、切込プリプレグの作製、切込の密度分布、三次元形状への追従性、繊維強化プラスチックの表面に品位、引張弾性率、引張強度は下記方法に従って測定した。図8、9はそれぞれ実施例および比較例に用いた切込パターンの一部を示しており、切込プリプレグ上で各々の切込パターンがプリプレグ面内で繰り返されている。実施例1〜7、比較例1〜5の結果は表1に示した通りである。 EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited to the invention as described in an Example. In this example, the production of the cut prepreg, the density distribution of the cut, the followability to the three-dimensional shape, the quality on the surface of the fiber reinforced plastic, the tensile modulus, and the tensile strength were measured according to the following methods. FIGS. 8 and 9 each show a part of the cutting pattern used in the example and the comparative example, and each cutting pattern is repeated in the prepreg surface on the cutting prepreg. The results of Examples 1 to 7 and Comparative Examples 1 to 5 are as shown in Table 1.

<切込プリプレグの製造>
“トレカ”(商標登録)プリプレグシートP3052S−15(強化繊維:T700S、樹脂組成物樹脂:2500、強化繊維の体積含有率:56%、片面離型紙を積層)を準備し、刃を設けたシートを巻きつけたロール(回転刃ロール)にプリプレグシートを押し付けることで、切込を挿入した。いずれの実施例においても切込領域はプリプレグ全体とし、全ての切込が同一長さ、切込によって分断される強化繊維の長さも同一となる切込パターンとした。プリプレグシートはシート基材Aである離型紙で担持されており、離型紙と反対側の面にはポリエチレンフィルムが密着している。切込挿入時にはポリエチレンフィルムを貫通し、離型紙にも厚さの50%程度まで切込を挿入した。
<Manufacture of cut prepreg>
"Torayca" (registered trademark) prepreg sheet P3052S-15 (reinforced fiber: T700S, resin composition resin: 2500, volume content of reinforcing fiber: 56%, laminated with single-sided release paper) and a sheet provided with a blade A notch was inserted by pressing the prepreg sheet against a roll (rotary blade roll) wound around. In any of the examples, the incision region was the entire prepreg, and the incision pattern was such that all the incisions had the same length and the lengths of the reinforcing fibers divided by the incision. The prepreg sheet is supported by a release paper that is a sheet base A, and a polyethylene film is in close contact with the surface opposite to the release paper. At the time of inserting the cut, the polyethylene film was penetrated, and the cut was inserted into the release paper to about 50% of the thickness.

<切込プリプレグの切込パターンの確認>
切込プリプレグに意図通り切込が挿入できているかどうかを確認するために、切込挿入後に、切込プリプレグの表面をデジタルマイクロスコープで撮影し、デジタルマイクロスコープの測定ソフトウェアを用いて、切込分布、切込の長さ、切込によって分断された強化繊維の長さ、強化繊維の配向方向と切込とのなす角(切込角)、切込を強化繊維の配向方向に直角な平面に投影した投影長さWs、最近接する切込同士の距離、切込の延長線上に存在する切込同士の間隔を測定した。撮影した画像を複数枚連結させて50mm×50mmの領域として、測定を行った。
<Check cutting pattern of cutting prepreg>
In order to check whether the incision can be inserted into the incision prepreg as intended, after the incision is inserted, the surface of the incision prepreg is photographed with a digital microscope, and the incision is made using the measurement software of the digital microscope. Distribution, the length of the cut, the length of the reinforcing fiber divided by the cut, the angle between the orientation direction of the reinforcing fiber and the cut (cut angle), and the plane perpendicular to the orientation direction of the reinforcing fiber The projection length Ws projected onto the surface, the distance between the closest cuts, and the interval between the cuts existing on the extended line of the cut were measured. A plurality of photographed images were connected to measure a 50 mm × 50 mm region.

まず、画像上に存在する切込の端部同士を結んだ線分を、全ての切込において抽出することで、切込パターンを抽出した。ただし、画像の端部と接している切込に関しては線分を抽出していない。画像上に、直径10mmの円形の小領域を図10のように六方最密配置状で10個描き、各小領域内に含まれる線分をカウントした。このとき、小領域の境界に接する線分も小領域内に含まれるとみなした。10個の小領域に含まれる線分数を母集団とし、式1および式2で母集団の平均値と変動係数を算出した。   First, the cutting pattern was extracted by extracting the line segment which connected the edge part of the cutting which exists on an image in all the cuttings. However, no line segment is extracted for the incision in contact with the edge of the image. On the image, 10 circular small regions having a diameter of 10 mm were drawn in a hexagonal close-packed arrangement as shown in FIG. 10, and the line segments included in each small region were counted. At this time, the line segment that touches the boundary of the small region is also considered to be included in the small region. The number of line segments included in the 10 small regions was used as a population, and the average value and variation coefficient of the population were calculated using Equation 1 and Equation 2.

切込の長さについては、線分の長さが切込の長さに相当し、画像上に存在する全ての線分の長さの平均値を算出した。全ての線分の長さが平均値±5%の範囲内であれば、全ての切込が実質的に同一であるとみなし、平均値を代表値として切込の長さとした。   Regarding the length of the cut, the length of the line segment corresponds to the length of the cut, and the average value of the lengths of all the line segments existing on the image was calculated. If the length of all the line segments was within the range of the average value ± 5%, it was considered that all the cuts were substantially the same, and the average value was used as the representative value as the cut length.

切込角については、強化繊維の配向方向(繊維方向)と線分とのなす角度とした。全ての線分において切込角を測定して平均値を算出し、全ての切込角が平均値±1%の範囲内であれば、全ての切込角が実質的に同一であるとみなし、平均値を代表値として切込角とした。正切込と負切込が存在する場合は、切込角の絶対値を代表値として上記計算を行った。   The cut angle was defined as an angle formed by the orientation direction (fiber direction) of the reinforcing fiber and the line segment. The average value is calculated by measuring the cutting angle in all line segments. If all the cutting angles are within the range of the average value ± 1%, it is considered that all the cutting angles are substantially the same. The average value was used as a representative value as the cutting angle. When positive cutting and negative cutting existed, the above calculation was performed using the absolute value of the cutting angle as a representative value.

切込によって分断される強化繊維の長さについては、繊維方向に隣接する線分間の、繊維方向における距離とした。一組の線分間について3箇所の距離を測定してその平均値を線分間距離とし、抽出可能な線分間全てについて同様に線分間距離を測定した。線分間距離の平均値を、切込によって分断された強化繊維の長さとした。   About the length of the reinforced fiber divided | segmented by cutting, it was set as the distance in the fiber direction of the line segment adjacent to a fiber direction. Three distances were measured for a set of line segments, and the average value was taken as the line segment distance, and the line segment distances were measured in the same manner for all extractable line segments. The average value of the distance between the line segments was the length of the reinforcing fiber divided by the cut.

Wsについては、各線分について、各線分の端部と接し、繊維方向と平行な直線を描き、該直線同士の直線間距離とした。全ての線分について直線間距離を測定し、平均値を代表地としてWsとした。   About Ws, about each line segment, it contact | connected the edge part of each line segment, the straight line parallel to the fiber direction was drawn, and it was set as the distance between these straight lines. The distance between the straight lines was measured for all the line segments, and the average value was set as Ws.

最近接する切込同士の距離は、任意の線分について線分の端部と、該端部と最も近い線分との最短距離とした。全ての線分の端部について該端部と最も近い線分との最短距離を測定し、平均値を代表地として最近接する切込同士の距離とした。また、任意の切込において、最近接する切込同士の間に、該二つの切込によっても切断されない強化繊維が複数本存在する場合に、任意の切込と、当該切込に最近接する別の切込とは、同一の強化繊維を分断していないとみなした。   The distance between the closest cuts was the shortest distance between the end of the line segment and the line segment closest to the end of any line segment. The shortest distance between the end portion and the closest line segment was measured for the end portions of all the line segments, and the average value was taken as the distance between the closest cuts with the representative location. In addition, when there are a plurality of reinforcing fibers that are not cut by the two cuts between the cuts closest to each other, any cut and another cut closest to the cut Incision was considered not to cut the same reinforcing fiber.

切込の延長線上に存在する切込同士の間隔については、正切込と負切込が存在する場合に測定した。正切込に関しては、任意の正切込から抽出された線分を延長し、他の正切込から抽出された線分と接触、あるいは限りなく近づく線分が存在し、かつ該2つの線分の中央を結ぶ直線と、どちらか一方の線分との角度が1°以下である場合に、2つの線分が一つの直線状に存在するとみなした。図6の正切込同士の距離11のように2つの線分の近い方の端点同士の距離を最近接する切込同士の距離とした。負切込に関しても同様に同一直線状に隣接する切込間距離12を測定した。   About the space | interval of the notch which exists on the extended line of a notch, it measured when the positive notch and the negative notch existed. For regular cuts, a line segment extracted from any regular cut is extended, and there is a line segment that touches or approaches the line segment extracted from other regular cuts, and the center of the two line segments. When the angle between the straight line connecting the two and one of the line segments is 1 ° or less, it was considered that two line segments existed as one straight line. Like the distance 11 between the normal cuts in FIG. 6, the distance between the closest end points of the two line segments is the distance between the closest cuts. Similarly, regarding the negative cut, the distance 12 between adjacent cuts in the same straight line was measured.

<プレス成形後の表面品位確認>
切込プリプレグの強化繊維の配向方向を0°とし、[+45/0/−45/90]2sに積層された150mm×150mmの積層体を準備し、図7に示す形状の金型でプレス成形を行った。成形温度は150℃、プレス圧は3MPaとした。成形品の表面品位を以下の3段階で評価した。
<Checking surface quality after press molding>
The orientation direction of the reinforcing fiber of the cut prepreg is set to 0 °, and a 150 mm × 150 mm laminated body laminated on [+ 45/0 / −45 / 90] 2s is prepared, and press-molded with a mold having the shape shown in FIG. Went. The molding temperature was 150 ° C. and the press pressure was 3 MPa. The surface quality of the molded product was evaluated in the following three stages.

A:切込の存在がほとんど認識できないもの
B:切込の開口は少ないものの切込の存在が認識されるもの
C:切込が開口が大きく開口し、切込開口が目立つもの。
A: The incision is almost unrecognizable. B: The incision is recognized although the incision is small. C: The incision is large and the incision is conspicuous.

<繊維強化プラスチックの引張弾性率・引張強度>
切込プリプレグから300mm×300mm、積層構成が[+45/−45/0/90]2sの切込プリプレグの積層体を作製した。積層時は、ポリエチレンフィルムを剥がした面が上に来るように積層した。その後、切込プリプレグの積層体を350mm×350mmの型を用いてプレス機により3MPaの面圧の下でプレス成形し、350mm×350mmの繊維強化プラスチックを成形した。プレス時の温度は130℃、プレス後に90分保持してから脱型し、室温に放置して冷却した。強化繊維の0度方向が長手方向となるように、25mm×250mmの試験片を切り出し、ASTM D3039(2008)に規定された方法で引張試験を行った。測定した試験片の数は各水準5本とし、引張弾性率および引張強度の平均値を代表値として算出した。
<Tensile modulus and tensile strength of fiber reinforced plastic>
A laminated body of cut prepregs of 300 mm × 300 mm from the cut prepreg and a laminated structure of [+ 45 / −45 / 0/90] 2 s was produced. At the time of lamination, the layers were laminated such that the surface from which the polyethylene film was peeled up. Then, the laminated body of the cut prepreg was press-molded under a surface pressure of 3 MPa with a press using a 350 mm × 350 mm mold to form a 350 mm × 350 mm fiber reinforced plastic. The temperature at the time of pressing was 130 ° C., held for 90 minutes after pressing, removed from the mold, and allowed to cool at room temperature. A test piece of 25 mm × 250 mm was cut out so that the 0-degree direction of the reinforcing fiber was the longitudinal direction, and a tensile test was performed by a method defined in ASTM D3039 (2008). The number of test specimens measured was 5 for each level, and the average values of tensile modulus and tensile strength were calculated as representative values.

(実施例1)
切込プリプレグの切込パターンを図8(a)のような切込パターンとした。切込挿入により分断された強化繊維の長さは8mm、切込を強化繊維の配向方向に直角な平面に投影した投影長さWsは1mm、強化繊維の配向方向と切込とがなす角は90°であった。切込によって分断された強化繊維束は、隣接する強化繊維束に対して、強化繊維長さLの1/3ずれて配置されていた。
(Example 1)
The cutting pattern of the cutting prepreg was a cutting pattern as shown in FIG. The length of the reinforcing fiber divided by the insertion of the cut is 8 mm, the projected length Ws obtained by projecting the cut on the plane perpendicular to the orientation direction of the reinforcing fiber is 1 mm, and the angle formed by the orientation direction of the reinforcing fiber and the cut is It was 90 °. The reinforcing fiber bundle divided by the cutting was arranged with a shift of 1/3 of the reinforcing fiber length L with respect to the adjacent reinforcing fiber bundle.

プレス成形品は表面に切込の開口が見られた。強化繊維の長さが短いが引張弾性率は高い値となった。   The press-molded product had a notch opening on the surface. Although the length of the reinforcing fiber was short, the tensile modulus was high.

(実施例2)
切込プリプレグの切込パターンを図8(b)のような切込パターンとした。切込挿入により分断された強化繊維の長さは12mm、切込を強化繊維の配向方向に直角な平面に投影した投影長さWsは0.64mm、強化繊維の配向方向と切込とがなす角は40°であった。切込は実質的に同一の長さY=1mmであり、最近接する切込同士の距離は1.7mmでYの0.5倍よりも長い。切込によって分断された強化繊維束は、隣接する強化繊維束に対して、強化繊維長さLの1/6ずれて配置されていた。
(Example 2)
The cutting pattern of the cutting prepreg was a cutting pattern as shown in FIG. The length of the reinforcing fiber divided by the incision is 12 mm, the projected length Ws obtained by projecting the incision on a plane perpendicular to the orientation direction of the reinforcing fiber is 0.64 mm, and the orientation direction of the reinforcing fiber and the incision are formed. The angle was 40 °. The cuts are substantially the same length Y = 1 mm, and the distance between the closest cuts is 1.7 mm, which is longer than 0.5 times Y. The reinforcing fiber bundle divided by the cutting was arranged with a shift of 1/6 of the reinforcing fiber length L with respect to the adjacent reinforcing fiber bundle.

プレス成形品は表面に切込の開口が見られた。引張弾性率は実施例1と同等であったが引張強度は実施例1より向上した。   The press-molded product had a notch opening on the surface. The tensile elastic modulus was equivalent to that of Example 1, but the tensile strength was improved from that of Example 1.

(実施例3)
切込プリプレグの切込パターンを、図8(c)のような切込パターンとした。切込挿入後に確認したところ、任意の切込と、当該切込に最近接する別の切込とは、同一の強化繊維を分断していなかった。切込は実質的に同一の長さY=1mmであり、最近接する切込同士の距離は1mmでYと同等であった。分断された強化繊維の長さは20mm、切込を強化繊維の配向方向に直角な平面に投影した投影長さWsは0.34mm、強化繊維の配向方向と切込とがなす角は20°であった。複数の切込により断続的な直線が形成されていた。
(Example 3)
The cutting pattern of the cutting prepreg was a cutting pattern as shown in FIG. As a result of confirmation after the insertion of the cut, an arbitrary cut and another cut closest to the cut did not divide the same reinforcing fiber. The cuts were substantially the same length Y = 1 mm, and the distance between the closest cuts was 1 mm, which was equivalent to Y. The length of the divided reinforcing fiber is 20 mm, the projected length Ws obtained by projecting the cut on a plane perpendicular to the orientation direction of the reinforcing fiber is 0.34 mm, and the angle formed by the orientation direction of the reinforcing fiber and the cut is 20 °. Met. An intermittent straight line was formed by a plurality of cuts.

プレス成形品の表面品位は実施例1、2と同等であったが、引張弾性率、引張強度は実施例1、2よりさらに高い値となった。   The surface quality of the press-formed product was the same as in Examples 1 and 2, but the tensile modulus and tensile strength were higher than those in Examples 1 and 2.

(実施例4)
切込プリプレグの切込パターンを、図8(d)のような切込パターンとした。切込挿入後に確認したところ、任意の切込と、当該切込に最近接する別の切込とは、同一の強化繊維を分断していなかった。切込は実質的に同一の長さY=1mmであり、最近接する切込同士の距離は1.5mmでYの1.5倍であった。分断された強化繊維の長さは20mm、切込を強化繊維の配向方向に直角な平面に投影した投影長さWsは0.34mmであった。強化繊維の配向方向と切込とがなす角は20°であった。切込によって分断された強化繊維束は、隣接する強化繊維束に対して、強化繊維長さLの2/5ずれて配置されていた。
Example 4
The cutting pattern of the cutting prepreg was a cutting pattern as shown in FIG. As a result of confirmation after the insertion of the cut, an arbitrary cut and another cut closest to the cut did not divide the same reinforcing fiber. The cuts were substantially the same length Y = 1 mm, and the distance between the closest cuts was 1.5 mm, 1.5 times Y. The length of the divided reinforcing fiber was 20 mm, and the projected length Ws obtained by projecting the cut on a plane perpendicular to the orientation direction of the reinforcing fiber was 0.34 mm. The angle formed by the orientation direction of the reinforcing fiber and the cut was 20 °. The reinforcing fiber bundles divided by the cutting were arranged so as to be shifted by 2/5 of the reinforcing fiber length L with respect to the adjacent reinforcing fiber bundles.

プレス成形品の表面品位は実施例3と同等であったが、引張強度は実施例3もよりさらに高い値となった。   The surface quality of the press-formed product was equivalent to that of Example 3, but the tensile strength was higher than that of Example 3.

(実施例5)
切込プリプレグの切込パターンを、図8(e)のような切込パターンとした。切込挿入後に確認したところ、切込は実質的に同一の長さY=1mmであり、最近接する切込同士の距離は1.4mmでYの1.4倍であった。分断された強化繊維の長さは12mm、切込を強化繊維の配向方向に直角な平面に投影した投影長さWsは0.64mmであった。強化繊維の配向方向と切込とがなす角θの絶対値は40°でありθが正である正切込とθが負である負切込を略同数含んでいた。
(Example 5)
The cutting pattern of the cutting prepreg was a cutting pattern as shown in FIG. When confirmed after the insertion of the cut, the cut was substantially the same length Y = 1 mm, and the distance between the closest cuts was 1.4 mm, 1.4 times Y. The length of the divided reinforcing fiber was 12 mm, and the projected length Ws obtained by projecting the cut on a plane perpendicular to the orientation direction of the reinforcing fiber was 0.64 mm. The absolute value of the angle θ formed by the orientation direction of the reinforcing fiber and the cut was 40 °, and included approximately the same number of positive cuts where θ was positive and negative cuts where θ was negative.

切込プリプレグ製造時には、実施例2の切込パターンでは、プリプレグシートを回転刃ロールに押し当てる際、押し当てた距離が長くなるほどプリプレグシートが幅方向にずれていく傾向が見られたが、実施例5ではプリプレグの幅方向のズレが小さかった。積層時には、離型紙側とポリエチレンフィルム側、どちらが上になるように積層しても正切込と負切込が存在するため、切込プリプレグの裏表気にすることなく積層することができた。また、実施例2の切込パターンではポリエチレンフィルムを剥がす際に、ポリエチレンフィルムがちぎれやすかったが、実施例5ではちぎれることなくポリエチレンフィルムをはがすことができた。   At the time of cutting prepreg manufacture, in the cutting pattern of Example 2, when the prepreg sheet was pressed against the rotary blade roll, the prepreg sheet tended to shift in the width direction as the pressed distance increased. In Example 5, the deviation in the width direction of the prepreg was small. At the time of lamination, there was a positive cut and a negative cut regardless of whether the release paper side or the polyethylene film side was on the top, so that the lamination could be done without making the back and front of the cut prepreg. Moreover, when the polyethylene film was peeled off in the cutting pattern of Example 2, the polyethylene film was easily torn off, but in Example 5, the polyethylene film could be peeled off without being torn off.

プレス成形品には、切込開口が見られたが、実施例2よりも見えにくくなっていた。引張弾性率、引張強度は実施例2と同等の値となった。   Although the cut opening was seen in the press-formed product, it was harder to see than in Example 2. The tensile elastic modulus and tensile strength were the same values as in Example 2.

(実施例6)
切込プリプレグの切込パターンを、図8(f)のような切込パターンとした。切込挿入後に確認したところ、任意の切込と、当該切込に最近接する別の切込とは、同一の強化繊維を分断していなかった。切込は実質的に同一の長さY=1mmであり、最近接する切込同士の距離は1.5mmでYの1.5倍であった。分断された強化繊維の長さは20mm、切込を強化繊維の配向方向に直角な平面に投影した投影長さWsは0.34mmであった。強化繊維の配向方向と切込とがなす角θの絶対値は20°でありθが正である正切込とθが負である負切込を略同数含む。さらに、切込の延長線上に存在する切込同士の間隔が、正切込(3.4mm)と負切込(24.5mm)とで異なった。
(Example 6)
The cutting pattern of the cutting prepreg was a cutting pattern as shown in FIG. As a result of confirmation after the insertion of the cut, an arbitrary cut and another cut closest to the cut did not divide the same reinforcing fiber. The cuts were substantially the same length Y = 1 mm, and the distance between the closest cuts was 1.5 mm, 1.5 times Y. The length of the divided reinforcing fiber was 20 mm, and the projected length Ws obtained by projecting the cut on a plane perpendicular to the orientation direction of the reinforcing fiber was 0.34 mm. The absolute value of the angle θ formed by the orientation direction of the reinforcing fiber and the cut is 20 °, and includes approximately the same number of positive cuts where θ is positive and negative cuts where θ is negative. Furthermore, the interval between the cuts existing on the extended line of the cut was different between the positive cut (3.4 mm) and the negative cut (24.5 mm).

プレス成形品には、切込開口がほとんど見られなかった。引張弾性率、引張強度は実施例3、4よりも高い値となった。   In the press-formed product, almost no cut opening was seen. The tensile elastic modulus and tensile strength were higher than those in Examples 3 and 4.

(実施例7)
切込プリプレグの切込パターンを、図8(f)のような切込パターンとした。切込挿入後に確認したところ、任意の切込と、当該切込に最近接する別の切込とは、同一の強化繊維を分断していなかった。切込は実質的に同一の長さY=1mmであり、最近接する切込同士の距離は1.8mmでYの1.8倍であった。分断された強化繊維の長さは24mm、切込を強化繊維の配向方向に直角な平面に投影した投影長さWsは0.34mmであった。強化繊維の配向方向と切込とがなす角θの絶対値は20°でありθが正である正切込とθが負である負切込を略同数含んでいた。さらに、切込の延長線上に存在する切込同士の間隔が、正切込(33.3mm)と負切込(44.7mm)とで異なった。
(Example 7)
The cutting pattern of the cutting prepreg was a cutting pattern as shown in FIG. As a result of confirmation after the insertion of the cut, an arbitrary cut and another cut closest to the cut did not divide the same reinforcing fiber. The cuts were substantially the same length Y = 1 mm, and the distance between the closest cuts was 1.8 mm, which was 1.8 times Y. The length of the divided reinforcing fiber was 24 mm, and the projected length Ws obtained by projecting the cut on a plane perpendicular to the orientation direction of the reinforcing fiber was 0.34 mm. The absolute value of the angle θ formed by the orientation direction of the reinforcing fiber and the cut is 20 °, and includes approximately the same number of positive cuts where θ is positive and negative cuts where θ is negative. Furthermore, the interval between the cuts existing on the extended line of the cut was different between the positive cut (33.3 mm) and the negative cut (44.7 mm).

プレス成形品には、切込開口がほとんど見られなかった。引張強度は実施例6より高い値となった。   In the press-formed product, almost no cut opening was seen. The tensile strength was higher than that in Example 6.

(比較例1)
切込プリプレグの切込パターンを、図9(a)のような切込パターンとした。切込と、当該切込に最近接する別の切込とは、同一の強化繊維を分断している可能性があり、最近接する切込同士の距離が、切込の長さの0.5倍よりも短い箇所があった。分断された強化繊維の長さが20mm以下、切込を強化繊維の配向方向に直角な平面に投影した投影長さWsは1〜2mm、強化繊維の配向方向と切込とがなす角θは90°の範囲でランダムに挿入されていた。
(Comparative Example 1)
The cutting pattern of the cutting prepreg was a cutting pattern as shown in FIG. The notch and another notch closest to the notch may break the same reinforcing fiber, and the distance between the closest notches is 0.5 times the length of the notch There was a shorter section. The length of the divided reinforcing fiber is 20 mm or less, the projected length Ws obtained by projecting the cut on a plane perpendicular to the orientation direction of the reinforcing fiber is 1 to 2 mm, and the angle θ formed by the orientation direction of the reinforcing fiber and the notch is It was inserted randomly in the range of 90 °.

プレス成形品には、切込が大きく開口している箇所があった。引張強度は実施例1〜7のいずれよりも低かった。   In the press-formed product, there was a portion where the cut was greatly opened. The tensile strength was lower than any of Examples 1-7.

(比較例2)
切込プリプレグの切込パターンを、図9(b)のような切込パターンとした。切込と、当該切込に最近接する別の切込とは、同一の強化繊維を分断している可能性があった。分断された強化繊維の長さは20mm、切込を強化繊維の配向方向に直角な平面に投影した投影長さWsは5mmであった。強化繊維の配向方向と切込とがなす角θは40°であった。
(Comparative Example 2)
The cutting pattern of the cutting prepreg was a cutting pattern as shown in FIG. The cut and another cut closest to the cut may have split the same reinforcing fiber. The length of the divided reinforcing fiber was 20 mm, and the projected length Ws obtained by projecting the cut on a plane perpendicular to the orientation direction of the reinforcing fiber was 5 mm. The angle θ formed by the orientation direction of the reinforcing fiber and the cut was 40 °.

プレス成形品の表面は、切込が大きく開口していた。引張弾性率、引張強度は比較例1と比べて高かったが、同じ強化繊維の長さとした実施例3、4、6と比較すると低かった。   The surface of the press-formed product had a large opening. The tensile elastic modulus and tensile strength were higher than those of Comparative Example 1, but were lower than those of Examples 3, 4, and 6 having the same reinforcing fiber length.

(比較例3)
切込プリプレグの切込パターンを、図9(c)のような切込パターンとした。切込と、当該切込に最近接する別の切込とは、同一の強化繊維を分断している可能性がある。分断された強化繊維の長さは20mm、切込を強化繊維の配向方向に直角な平面に投影した投影長さWsは5mmであった。強化繊維の配向方向と切込とがなす角θの絶対値は40°でありθが正である正切込とθが負である負切込を略同数含む。
(Comparative Example 3)
The cutting pattern of the cutting prepreg was a cutting pattern as shown in FIG. The cut and another cut closest to the cut may divide the same reinforcing fiber. The length of the divided reinforcing fiber was 20 mm, and the projected length Ws obtained by projecting the cut on a plane perpendicular to the orientation direction of the reinforcing fiber was 5 mm. The absolute value of the angle θ formed by the orientation direction of the reinforcing fiber and the cut is 40 °, and includes substantially the same number of positive cuts where θ is positive and negative cuts where θ is negative.

プレス成形品の表面は、切込の開口が見られたが、比較例2よりも小さかった。引張強度は比較例2より若干向上した。   The surface of the press-molded product was smaller than that of Comparative Example 2 although a cut opening was observed. The tensile strength was slightly improved as compared with Comparative Example 2.

(比較例4)
切込プリプレグの切込パターンを、図9(d)のような切込パターンとした。連続的な切込が挿入されており、分断された強化繊維の長さは20mm、切込と強化繊維の配向方向とがなす角θは20°であった。
(Comparative Example 4)
The cutting pattern of the cutting prepreg was a cutting pattern as shown in FIG. A continuous cut was inserted, the length of the cut reinforcing fiber was 20 mm, and the angle θ formed by the cut and the orientation direction of the reinforcing fiber was 20 °.

プレス成形品の表面は切込が大きく開口していた。引張強度は比較例3よりも高かった。   The surface of the press-formed product had a large opening. The tensile strength was higher than that of Comparative Example 3.

(比較例5)
切込プリプレグの切込パターンを、図9(e)のような切込パターンとした。切込は実質的に同一の長さY=1mmであり、分断された強化繊維の長さは24mm、切込を強化繊維の配向方向に直角な平面に投影した投影長さWsは0.34mmであった。強化繊維の配向方向と切込とがなす角θの絶対値は20°であった。小領域の位置を変えた場合、変動係数が80%を超えるパターンも存在していた。
(Comparative Example 5)
The cutting pattern of the cutting prepreg was a cutting pattern as shown in FIG. The cut has substantially the same length Y = 1 mm, the length of the cut reinforcing fiber is 24 mm, and the projected length Ws obtained by projecting the cut on a plane perpendicular to the orientation direction of the reinforcing fiber is 0.34 mm. Met. The absolute value of the angle θ formed by the orientation direction of the reinforcing fiber and the cut was 20 °. When the position of the small area was changed, there was a pattern with a coefficient of variation exceeding 80%.

切込により分断された繊維長と、θの絶対値が同じであるにもかかわらず、実施例7と比較すると、プレス成形品の表面は切込が大きく開口しており、引張強度は低かった。   Although the fiber length divided by the cut and the absolute value of θ were the same, the surface of the press-molded product had a large cut and a low tensile strength compared to Example 7. .

Figure 2017171894
Figure 2017171894

1:プリプレグ
2:切込
3:強化繊維を分断する複数の切込を有する領域(切込領域)
4:直径10mmの円形の小領域
5:切込Aと切込Bの間の強化繊維
6:最近接する切込同士の距離
7:正切込
8:負切込
9:正切込が乗る直線
10:負切込が乗る直線
11:同一直線状に隣接する正切込間距離
12:同一直線状に隣接する負切込間距離
1: Prepreg 2: Incision 3: Area having a plurality of incisions for dividing the reinforcing fiber (incision area)
4: 10 mm diameter circular small region 5: Reinforcing fiber 6 between cut A and cut B: Distance between the closest cuts 7: Positive cut 8: Negative cut 9: Straight line 10 on which the positive cut rides: Straight line 11 with negative cut: Distance between positive cuts adjacent in the same straight line 12: Distance between negative cuts adjacent in the same straight line

Claims (9)

一方向に配向した強化繊維と樹脂とを含むプリプレグの少なくとも一部の領域に強化繊維を分断する複数の切込を有する切込プリプレグであって、
前記領域内から任意に選択される、10個の直径10mmの円形の小領域内に含まれる切込の個数を母集団とした場合に、母集団の平均値が10以上、かつ変動係数が20%以内である切込プリプレグ。
A cut prepreg having a plurality of cuts for dividing the reinforcing fiber in at least a partial region of the prepreg containing the reinforcing fiber and the resin oriented in one direction,
When the number of cuts included in 10 small circular regions having a diameter of 10 mm, which are arbitrarily selected from the regions, is a population, the average value of the population is 10 or more and the coefficient of variation is 20 Cut prepreg that is within%.
任意の切込と、当該切込に最近接する別の切込とは、同一の強化繊維を分断していない、請求項1に記載の切込プリプレグ。   The cutting prepreg according to claim 1, wherein the arbitrary cutting and another cutting closest to the cutting do not divide the same reinforcing fiber. 切込は、実質的に同一の長さYであり、最近接する切込同士の距離は、Yの0.5倍よりも長い、請求項1または2に記載の切込プリプレグ。   The incision prepreg according to claim 1 or 2, wherein the incisions have substantially the same length Y, and the distance between the closest incisions is longer than 0.5 times Y. 切込が、強化繊維の配向方向に対して、斜めに挿入されている、請求項1〜3のいずれかに記載の切込プリプレグ。   The cutting prepreg according to any one of claims 1 to 3, wherein the cutting is inserted obliquely with respect to the orientation direction of the reinforcing fibers. 切込と強化繊維の配向方向とのなす角度θの絶対値が、実質的に同一であり、さらにθが正である切込(正切込という)とθが負である切込(負切込という)を含む、請求項1〜4のいずれかに記載の切込プリプレグ。   The absolute value of the angle θ formed by the incision and the orientation direction of the reinforcing fibers is substantially the same, and further, the incision in which θ is positive (called positive incision) and the incision in which θ is negative (negative incision) The cutting prepreg according to any one of claims 1 to 4, comprising: 正切込と負切込を略同数含む、請求項5に記載の切込プリプレグ。   The cutting prepreg according to claim 5, comprising substantially the same number of positive cuttings and negative cuttings. 任意の切込と、当該切込の延長線上に存在する最近接する別の切込との間隔について、正切込同士の間隔と負切込同士の間隔とで長さが異なる、請求項5または6に記載の切込プリプレグ。   The distance between an arbitrary cut and another closest cut existing on an extension of the cut is different in length between a positive cut and a negative cut. The cutting prepreg described in 1. 強化繊維と樹脂とを含むプリプレグの少なくとも一部の領域に強化繊維を分断する複数の切込を有する切込プリプレグの製造方法であって、
プリプレグに対して複数の切込1を挿入する工程1、及び、プリプレグに対して切込1と重ならない複数の切込2を挿入する工程2とを含む、切込プリプレグの製造方法。
A method for producing a cut prepreg having a plurality of cuts for dividing the reinforcing fiber into at least a part of the region of the prepreg containing the reinforcing fiber and the resin,
A method for manufacturing a cut prepreg, comprising: a step 1 for inserting a plurality of cuts 1 into a prepreg; and a step 2 for inserting a plurality of cuts 2 that do not overlap the cuts 1 with respect to the prepreg.
切込1と強化繊維とのなす角度θ1が正又は負であり、切込2と強化繊維とのなす角度θ2が、前記なす角度θ1とは正負が異なる、請求項8に記載の切込プリプレグの製造方法。   The cut prepreg according to claim 8, wherein an angle θ1 formed by the cut 1 and the reinforcing fiber is positive or negative, and an angle θ2 formed by the cut 2 and the reinforcing fiber is different from the formed angle θ1. Manufacturing method.
JP2017045667A 2016-03-16 2017-03-10 Notch prepreg and method of manufacturing notch prepreg Active JP6965530B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016051891 2016-03-16
JP2016051891 2016-03-16

Publications (2)

Publication Number Publication Date
JP2017171894A true JP2017171894A (en) 2017-09-28
JP6965530B2 JP6965530B2 (en) 2021-11-10

Family

ID=59971712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017045667A Active JP6965530B2 (en) 2016-03-16 2017-03-10 Notch prepreg and method of manufacturing notch prepreg

Country Status (1)

Country Link
JP (1) JP6965530B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008279753A (en) * 2007-04-13 2008-11-20 Toray Ind Inc Manufacturing method of fiber-reinforced plastics
WO2014142061A1 (en) * 2013-03-11 2014-09-18 三菱レイヨン株式会社 Layered substrate and method for manufacturing same
WO2015037570A1 (en) * 2013-09-10 2015-03-19 三菱レイヨン株式会社 Thermoplastic prepreg and laminate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008279753A (en) * 2007-04-13 2008-11-20 Toray Ind Inc Manufacturing method of fiber-reinforced plastics
WO2014142061A1 (en) * 2013-03-11 2014-09-18 三菱レイヨン株式会社 Layered substrate and method for manufacturing same
WO2015037570A1 (en) * 2013-09-10 2015-03-19 三菱レイヨン株式会社 Thermoplastic prepreg and laminate

Also Published As

Publication number Publication date
JP6965530B2 (en) 2021-11-10

Similar Documents

Publication Publication Date Title
JP6597309B2 (en) Cutting prepreg and cutting prepreg sheet
JP6962191B2 (en) Manufacturing method of fiber reinforced plastic and fiber reinforced plastic
WO2017073460A1 (en) Nicked prepreg, cross-ply laminate, and nicked prepreg production method
KR102406662B1 (en) Spreader element for manufacturing unidirectional fiber-reinforced tapes
RU2678043C1 (en) Composite materials with electrically conductive and delamination resistance properties
JP6907503B2 (en) Manufacturing method of cross-ply laminate and fiber reinforced plastic
JP5678483B2 (en) Fiber-reinforced plastic molded product with curved shape
CN105473331A (en) Continuous fiber reinforced resin composite material and molded article thereof
TWI793144B (en) Prepreg laminate and method for producing fiber-reinforced plastic using prepreg laminate
WO2018055932A1 (en) Notched prepreg and method for producing notched prepreg
KR20190022461A (en) Prepreg and its manufacturing method
JP2010018723A (en) Incised prepreg substrate, prepreg layered product, and fiber-reinforced plastic
JP6965530B2 (en) Notch prepreg and method of manufacturing notch prepreg
EP3578332B1 (en) Method for producing fiber-reinforced plastic
CN110612196B (en) Fiber reinforced plastic
WO2018142963A1 (en) Method for producing fiber-reinforced plastic
JP2004346190A (en) Prepreg and fiber reinforced resin composite
US20240059031A1 (en) Prepreg laminate, composite structure, and method for manufacturing composite structure
TW202323445A (en) Porous body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211004

R151 Written notification of patent or utility model registration

Ref document number: 6965530

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151