JP5678483B2 - Fiber-reinforced plastic molded product with curved shape - Google Patents

Fiber-reinforced plastic molded product with curved shape Download PDF

Info

Publication number
JP5678483B2
JP5678483B2 JP2010129795A JP2010129795A JP5678483B2 JP 5678483 B2 JP5678483 B2 JP 5678483B2 JP 2010129795 A JP2010129795 A JP 2010129795A JP 2010129795 A JP2010129795 A JP 2010129795A JP 5678483 B2 JP5678483 B2 JP 5678483B2
Authority
JP
Japan
Prior art keywords
resin
fiber
continuous fiber
sheet
outermost layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010129795A
Other languages
Japanese (ja)
Other versions
JP2011255533A (en
Inventor
將成 森内
將成 森内
賢也 岡田
賢也 岡田
教生 中川
教生 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2010129795A priority Critical patent/JP5678483B2/en
Publication of JP2011255533A publication Critical patent/JP2011255533A/en
Application granted granted Critical
Publication of JP5678483B2 publication Critical patent/JP5678483B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えばパソコンやOA機器、携帯電話等の部品や筐体部分として用いられる、軽量、高強度・高剛性、高意匠性が要求される繊維強化プラスチック成形品に関する。特に本発明は、高意匠性が要求され、湾曲形状を有する繊維強化プラスチック成形品に関する。   The present invention relates to a fiber-reinforced plastic molded article that is required for light weight, high strength / rigidity, and high design, for example, used as a part or casing part of a personal computer, an OA device, a mobile phone, or the like. In particular, the present invention relates to a fiber-reinforced plastic molded product that requires high designability and has a curved shape.

パソコン、携帯電話等の電気・電子機器製品に用いられるケーシングに対しては、高強度、軽量化(薄肉化)の両立に加え、さらに製品として顧客の目に触れる箇所であることから、外観がきれいなこと、すなわち高意匠性が求められるようになってきている。意匠性の面においては、使いやすさの観点等からも、湾曲形状等といった曲面を有する形状が求められるようになってきている。   For casings used in electrical and electronic equipment products such as personal computers and mobile phones, in addition to achieving both high strength and light weight (thinning), it is also a part that can be seen by customers as a product. What is beautiful, that is, high designability has been demanded. In terms of design, a shape having a curved surface such as a curved shape has been required from the viewpoint of ease of use.

ケーシングの高強度、軽量化(薄肉化)を両立させるため、ガラス繊維や炭素繊維などの高機能繊維で樹脂を強化した繊維強化部材を使用した材料が多数提案されている。繊維強化部材に用いられる繊維基材としては、複数の強化繊維を束ねた強化繊維束を織物にしたクロス材や、強化繊維束を一方向に引きそろえたUD材(ni−irectional材)等が挙げられる。 In order to achieve both high strength and light weight (thinning) of the casing, many materials using fiber reinforced members in which resin is reinforced with high-functional fibers such as glass fibers and carbon fibers have been proposed. The fiber base material used in the fiber-reinforced member, the reinforcing fiber bundle obtained by bundling a plurality of reinforcing fiber cloth material and which is the textile, UD material aligned pull the reinforcing fiber bundle in one direction (U ni- D irectional material) Etc.

また、繊維強化部材の外観に高意匠性を持たせるため、繊維強化部材の最表層に強化繊維束の織り模様が現れるように繊維基材を配置することが提案されている。このとき、繊維強化部材の表面に織り模様が一様に形成されている場合は製品として使用出来るものの、織り模様が乱れたりすると、たとえ強度等は満足していても、意匠性が失われるため、もはや製品に使用することができなくなることも少なくない。   In addition, in order to give high appearance to the appearance of the fiber reinforced member, it has been proposed to arrange the fiber base material so that the woven pattern of the reinforcing fiber bundle appears on the outermost layer of the fiber reinforced member. At this time, if the weave pattern is uniformly formed on the surface of the fiber reinforced member, it can be used as a product, but if the weave pattern is disturbed, the design will be lost even if the strength is satisfied. In many cases, the product can no longer be used.

ここで、クロス材やUD材を最表層に使用する場合は、クロス材やUD材の織り模様がそのまま意匠面として用いられるものの、製品形状によっては、加工時に織り模様を一様に保持できない等により、しばしば意匠性が得られないことがある。例えば、携帯電話ケーシングのように屈曲部を持つ形状にクロス材を適用した場合、強化繊維束の織り模様にズレが生じ、均一な格子模様が損なわれることがある。また、UD材を適用した場合には、強化繊維束が拘束されないUD材特有の構成により、強化繊維束の目曲がりが生じたり、隣接する繊維基材の表面状態の影響を受けたりするため、一様な織り模様が得られにくくなっている。   Here, when a cloth material or a UD material is used as the outermost layer, the weave pattern of the cloth material or the UD material is used as a design surface as it is, but depending on the product shape, the weave pattern cannot be uniformly maintained during processing, etc. As a result, design properties may often not be obtained. For example, when a cloth material is applied to a shape having a bent portion such as a mobile phone casing, the woven pattern of the reinforcing fiber bundle may be displaced, and the uniform lattice pattern may be impaired. Further, when the UD material is applied, the reinforcing fiber bundle is bent and the reinforcing fiber bundle is bent due to the configuration unique to the UD material, or the surface condition of the adjacent fiber base material is affected. It is difficult to obtain a uniform weave pattern.

これまでにも、高強度化と軽量化(薄肉化)の両立に加え、高意匠性を実現させる様々な繊維強化部材が提案されている。特許文献1では、コア材と表面材とから構成されるパネルにおいて表面材に繊維が斜交する一対以上の一方向性炭素繊維プリプレグからなる炭素繊維強化プラスチックを使用し、コア材として芳香族ポリアミド不織布で成形されたハニカムを使用することで、軽量且つ耐衝撃性に優れたサンドイッチパネルを提供している。しかし、コア材の形状をハニカムとしているため、炭素繊維プリプレグがハニカムの凹部に落ち込むことがあり、凹凸のない意匠面を目指す筐体への適応は難しいと考えられる。   In the past, various fiber reinforced members that achieve high designability in addition to achieving both high strength and light weight (thinning) have been proposed. In Patent Document 1, in a panel composed of a core material and a surface material, a carbon fiber reinforced plastic made of a pair of unidirectional carbon fiber prepregs in which fibers are obliquely crossed on the surface material is used, and an aromatic polyamide is used as the core material. By using a honeycomb formed from a non-woven fabric, a sandwich panel having a light weight and excellent impact resistance is provided. However, since the shape of the core material is a honeycomb, the carbon fiber prepreg may fall into the concave portion of the honeycomb, and it is considered difficult to adapt to a casing aiming at a design surface without unevenness.

特許文献2では、炭素繊維強化熱硬化性樹脂シートの双方の面にそれぞれ熱可塑性樹脂フィルムを積層させ、高温環境下にもその表面の平滑性が損なわれることがない炭素繊維強化樹脂成形物を実現している。しかしながら、この方法では表面の平滑性は実現できるものの、意匠面最表層に新たにフィルム層を設けることは薄肉化を目指す筐体に適応するのは非現実的であるとともに、屈曲部を形成する際に強化繊維シートが横滑りして積層体形状が維持できず、所定の強度を発現することは困難と思われる。   In Patent Document 2, a carbon fiber reinforced resin molded product in which a thermoplastic resin film is laminated on both sides of a carbon fiber reinforced thermosetting resin sheet and the smoothness of the surface is not impaired even in a high temperature environment. Realized. However, this method can achieve smoothness of the surface, but it is unrealistic to provide a new film layer on the outermost surface of the design surface, so that it is unrealistic to form a bent portion. At that time, the reinforcing fiber sheet slides sideways and the laminated body shape cannot be maintained, and it seems difficult to express a predetermined strength.

特開平5−208465号公報JP-A-5-208465 特開平10−138354号公報JP 10-138354 A

本発明の目的は、高強度化、軽量化に加えて、従来の方法では達成できなかった湾曲形状を有する繊維強化プラスチック成形品の良好な外観を得ることができるものであり、この特性が要求される用途に適した湾曲形状を有する繊維強化プラスチック成形品を提供することである。   An object of the present invention is to obtain a good appearance of a fiber-reinforced plastic molded article having a curved shape that cannot be achieved by a conventional method, in addition to increasing strength and weight, and this characteristic is required. It is to provide a fiber reinforced plastic molded article having a curved shape suitable for the intended use.

上記課題を解決するための本発明は、以下の構成を採用する。すなわち、
(1)連続繊維束を同一方向に複数配列し、マトリックス樹脂があらかじめ含浸された連続繊維強化シートを含む少なくとも3層以上からなる積層体からなり、意匠面を構成する最表層から2層目に不織布シートが挟まれるとともに、最表層の連続繊維束の配向方向に直交する方向に湾曲してなることを特徴とする湾曲形状を有する繊維強化プラスチック成形品。
(2)前記不織布シートの厚さが0.005mm〜0.1mmである(1)に記載の湾曲形状を有する繊維強化プラスチック成形品。
)前記連続繊維強化シートの強化繊維が炭素繊維である(1)または(2)に記載の湾曲形状を有する繊維強化プラスチック成形品。
)(1)〜()のいずれかの湾曲形状を有する繊維強化プラスチック成形品を含むことを特徴とする電子機器筐体。
である。
The present invention for solving the above problems employs the following configuration. That is,
(1) arranges a plurality tow in the same direction, composed of a multilayer structure composed of at least three or more layers comprising a continuous fiber-reinforced sheet matrix resin is impregnated in advance, the second layer from the outermost layer constituting the design surface A fiber-reinforced plastic molded article having a curved shape, characterized in that the nonwoven fabric sheet is sandwiched between the two, and is curved in a direction perpendicular to the orientation direction of the continuous fiber bundle of the outermost layer.
(2) The fiber-reinforced plastic molded product having the curved shape according to (1), wherein the nonwoven fabric sheet has a thickness of 0.005 mm to 0.1 mm.
( 3 ) The fiber-reinforced plastic molded product having a curved shape according to (1) or (2) , wherein the reinforcing fiber of the continuous fiber-reinforced sheet is a carbon fiber.
( 4 ) An electronic device housing comprising a fiber-reinforced plastic molded product having a curved shape of any one of (1) to ( 3 ).
It is.

本発明により、軽量性、高剛性を維持したまま、厚さをほとんど変えることなく、連続繊維強化シート中の繊維の流動を抑制し、また不織布層を挟むことで下層の織り模様を最表層に出現させなくすることで、意匠性を向上させることができ、これらの特性を有するパソコンや携帯情報端末などの電気・電子機器の筐体を製造するのに適した複合成形品を提供することができる。   According to the present invention, while maintaining lightness and high rigidity, the flow of fibers in the continuous fiber reinforced sheet is suppressed without changing the thickness, and the lower layer weave pattern is made the outermost layer by sandwiching the nonwoven fabric layer. By eliminating the appearance, it is possible to improve the design, and to provide a composite molded product suitable for manufacturing a housing of an electric / electronic device such as a personal computer or a portable information terminal having these characteristics it can.

本発明の湾曲形状を有する繊維強化プラスチック成形品における(a)斜視図、(b)連続繊維強化シートと不織布シートの積層構成を示す概略図、(c)最表層における連続繊維束のばらつきを示す模式図、である。(A) perspective view, (b) schematic diagram showing a laminated configuration of a continuous fiber reinforced sheet and a nonwoven fabric sheet, and (c) variation of continuous fiber bundles in the outermost layer. It is a schematic diagram. 比較例として用いる湾曲形状を有する繊維強化プラスチック成形品における(a)斜視図、(b)連続繊維強化シートの積層構成を示す概略図、(c)最表層における連続繊維束のばらつきを示す模式図、である。(A) Perspective view in a fiber reinforced plastic molded product having a curved shape used as a comparative example, (b) Schematic diagram showing a laminated configuration of continuous fiber reinforced sheets, (c) Schematic diagram showing variation in continuous fiber bundles in the outermost layer .

以下、本発明の湾曲形状を有する繊維強化プラスチック成形品について、図面を用いて説明する。   Hereinafter, a fiber-reinforced plastic molded product having a curved shape according to the present invention will be described with reference to the drawings.

図1(a)は、本発明に係る湾曲形状を有する繊維強化プラスチック成形品10の斜視図である。湾曲形状を有する繊維強化プラスチック成形品10は、図1(b)に示すように、最表層11と支持層12との間に不織布シート13が挟まれた積層構成からなる。最表層11は連続繊維強化シートであり、支持層12は1又は複数の連続繊維強化シートが積層されたものである。   FIG. 1A is a perspective view of a fiber-reinforced plastic molded article 10 having a curved shape according to the present invention. The fiber-reinforced plastic molded article 10 having a curved shape has a laminated structure in which a nonwoven fabric sheet 13 is sandwiched between an outermost layer 11 and a support layer 12 as shown in FIG. The outermost layer 11 is a continuous fiber reinforced sheet, and the support layer 12 is formed by laminating one or more continuous fiber reinforced sheets.

最表層11、支持層12を構成する連続繊維強化シートに用いられる強化繊維としては、例えばアルミニウム繊維、黄銅繊維、ステンレス繊維などの金属繊維、ポリアクリロニトリル系、レーヨン系、リグニン系、ピッチ系等の炭素繊維や黒鉛繊維、ガラス繊維、シリコンカーバイト繊維、シリコンナイトライド繊維などの無機繊維や、アラミド繊維、ポリパラフェニレンベンゾビスオキサゾール(PBO)繊維、ポリフェニレンスルフィド繊維、ポリエステル繊維、アクリル繊維、ナイロン繊維、ポリエチレン繊維などの有機繊維等が使用できる。これらの強化繊維は単独で用いても、また、2種以上併用しても良い。なかでも、比強度、比剛性、軽量性のバランスの観点から炭素繊維が好ましく、比強度・比弾性率に優れる点でポリアクリロニトリル系炭素繊維を少なくとも含むことが好ましい。   Examples of reinforcing fibers used in the continuous fiber reinforced sheet constituting the outermost layer 11 and the support layer 12 include metal fibers such as aluminum fibers, brass fibers and stainless fibers, polyacrylonitrile-based, rayon-based, lignin-based, pitch-based, etc. Inorganic fibers such as carbon fiber, graphite fiber, glass fiber, silicon carbide fiber, silicon nitride fiber, aramid fiber, polyparaphenylene benzobisoxazole (PBO) fiber, polyphenylene sulfide fiber, polyester fiber, acrylic fiber, nylon fiber Organic fibers such as polyethylene fibers can be used. These reinforcing fibers may be used alone or in combination of two or more. Among these, carbon fibers are preferable from the viewpoint of the balance of specific strength, specific rigidity, and lightness, and at least polyacrylonitrile-based carbon fibers are preferably included from the viewpoint of excellent specific strength and specific elastic modulus.

最表層11,支持層12に用いられる連続繊維強化シートは、UD材、クロス材やその他の織物を使用できる。UD材としては一方向の連続繊維束で強化したシートであり、クロス材としては縦方向の繊維束と横方向の連続繊維束を織ったシートが挙げられる。これら以外においても強化繊維が配向されているシート状の織物であれば使用可能である。これらの中でも特に、縦クロス材のような織り目の凹凸なく平滑であるという観点から、UD材が好ましい。なお、連続繊維束を構成する強化繊維の本数には特に制限はないものの、3,000〜24,000本の範囲とすることが好ましい。3,000本未満になると、連続繊維束自身が細くなり、シートに十分な繊維束が配列されず、UD材やクロス材を構成しづらくなる。また、24,000本を越えると、逆に連続繊維束が太くなり、均一な厚みの連続繊維強化シートを構成しづらくなる。特に好ましくは、6,000〜12,000本の範囲である。また、連続繊維強化シートの目付は、特に制限するものではないものの、140〜170g/m程度の範囲であることが、積層時、ハンドリング性がよいという点で好ましい。 As the continuous fiber reinforced sheet used for the outermost layer 11 and the support layer 12, a UD material, a cloth material, and other woven fabrics can be used. The UD material is a sheet reinforced with a unidirectional continuous fiber bundle, and the cloth material includes a sheet woven with a longitudinal fiber bundle and a transverse continuous fiber bundle. In addition to these, any sheet-like woven fabric in which reinforcing fibers are oriented can be used. Among these, a UD material is preferable from the viewpoint of smoothness without a texture unevenness like a vertical cloth material. In addition, although there is no restriction | limiting in particular in the number of the reinforced fiber which comprises a continuous fiber bundle, It is preferable to set it as the range of 3,000-24,000. When the number is less than 3,000, the continuous fiber bundle itself becomes thin, and sufficient fiber bundles are not arranged on the sheet, making it difficult to form a UD material or a cloth material. On the other hand, if the number exceeds 24,000, the continuous fiber bundle becomes conversely thick, making it difficult to form a continuous fiber reinforced sheet having a uniform thickness. Especially preferably, it is the range of 6,000-12,000. The basis weight of the continuous fiber reinforced sheet is not particularly limited, but is preferably in the range of about 140 to 170 g / m 2 from the viewpoint of good handling properties at the time of lamination.

支持層12に用いられる強化繊維を含んだシートは、強化繊維を含む複数の層から構成されるものであっても良い。   The sheet containing reinforcing fibers used for the support layer 12 may be composed of a plurality of layers containing reinforcing fibers.

なお、支持層12に用いられる連続繊維強化シートは、複数の強化繊維を組み合わせた連続繊維強化シートを用いてもよく、また、一部が強化繊維以外の繊維を含んだ連続繊維強化シートであってもよい。   The continuous fiber reinforced sheet used for the support layer 12 may be a continuous fiber reinforced sheet in which a plurality of reinforcing fibers are combined, or a continuous fiber reinforced sheet partially including fibers other than reinforcing fibers. May be.

連続繊維強化シートのマトリックス樹脂として使用される樹脂としては、熱可塑性樹脂と熱硬化性樹脂のいずれでも好適に用いることができる。熱可塑性樹脂としては例えば、ポリエチレンテレフタレート(PET)樹脂、ポリブチレンテレフタレート(PBT)樹脂、ポリトリメチレンテレフタレート(PTT)樹脂、ポリエチレンナフタレート(PEN)樹脂、液晶ポリエステル樹脂等のポリエステル樹脂や、ポリエチレン(PE)樹脂、ポリプロピレン(PP)樹脂、ポリブチレン樹脂等のポリオレフィン樹脂や、スチレン系樹脂の他や、ポリオキシメチレン(POM)樹脂、ポリアミド(PA)樹脂、ポリカーボネート(PC)樹脂、ポリメチレンメタクリレート(PMMA)樹脂、ポリ塩化ビニル(PVC)樹脂、ポリフェニレンスルフィド(PPS)樹脂、ポリフェニレンエーテル(PPE)樹脂、変性PPE樹脂、熱可塑性ポリイミド(PI)樹脂、ポリアミドイミド(PAI)樹脂、ポリエーテルイミド(PEI)樹脂、ポリスルホン(PSU)樹脂、変性PSU樹脂、ポリエーテルスルホン(PES)樹脂、ポリケトン(PK)樹脂、ポリエーテルケトン(PEK)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、ポリエーテルケトンケトン(PEKK)樹脂、ポリアリレート(PAR)樹脂、ポリエーテルニトリル(PEN)樹脂、熱可塑性フェノール系樹脂、フェノキシ樹脂、ポリテトラフルオロエチレン樹脂などのフッ素系樹脂、更にポリスチレン系樹脂、ポリオレフィン系樹脂、ポリウレタン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリブタジエン系樹脂、ポリイソプレン系樹脂、フッ素系樹脂等の熱可塑エラストマー等や、これらの共重合体、変性体、および2種類以上ブレンドした樹脂があげられる。熱硬化性樹脂としては、例えば不飽和ポリエステル樹脂、ビニルエステル樹脂、エポキシ樹脂、フェノール(レゾール型)樹脂、ユリア・メラミン樹脂、ポリイミド樹脂等や、これらの共重合体、変性体、および、これらの少なくとも2種をブレンドした樹脂があげられる。これらの中でも、剛性、強度に優れることから、熱硬化性樹脂が好ましく、とりわけエポキシ樹脂を主成分とする熱硬化性樹脂が成形品の力学特性の観点からより好ましい。マトリックス樹脂には更に耐衝撃性向上等のために、熱硬化性樹脂に熱可塑性樹脂および/またはその他のエラストマーもしくはゴム成分等を添加した樹脂を用いてもよい。   As the resin used as the matrix resin of the continuous fiber reinforced sheet, either a thermoplastic resin or a thermosetting resin can be suitably used. Examples of the thermoplastic resin include polyester resins such as polyethylene terephthalate (PET) resin, polybutylene terephthalate (PBT) resin, polytrimethylene terephthalate (PTT) resin, polyethylene naphthalate (PEN) resin, liquid crystal polyester resin, and polyethylene ( In addition to polyolefin resin such as PE) resin, polypropylene (PP) resin, polybutylene resin, styrene resin, polyoxymethylene (POM) resin, polyamide (PA) resin, polycarbonate (PC) resin, polymethylene methacrylate (PMMA) ) Resin, polyvinyl chloride (PVC) resin, polyphenylene sulfide (PPS) resin, polyphenylene ether (PPE) resin, modified PPE resin, thermoplastic polyimide (PI) resin, polyamideimide ( AI) resin, polyetherimide (PEI) resin, polysulfone (PSU) resin, modified PSU resin, polyethersulfone (PES) resin, polyketone (PK) resin, polyetherketone (PEK) resin, polyetheretherketone (PEEK) ) Resin, polyether ketone ketone (PEKK) resin, polyarylate (PAR) resin, polyether nitrile (PEN) resin, thermoplastic phenol resin, phenoxy resin, polytetrafluoroethylene resin and other fluorine resins, and polystyrene Resins, polyolefin resins, polyurethane resins, polyester resins, polyamide resins, polybutadiene resins, polyisoprene resins, thermoplastic elastomers such as fluorine resins, and their copolymers, modified products, and two types Bren The resin and the like. Examples of thermosetting resins include unsaturated polyester resins, vinyl ester resins, epoxy resins, phenol (resole type) resins, urea / melamine resins, polyimide resins, and the like, copolymers, modified products thereof, and these Examples thereof include resins obtained by blending at least two kinds. Among these, since it is excellent in rigidity and strength, a thermosetting resin is preferable, and in particular, a thermosetting resin containing an epoxy resin as a main component is more preferable from the viewpoint of mechanical properties of a molded product. The matrix resin may be a resin obtained by adding a thermoplastic resin and / or other elastomer or rubber component to a thermosetting resin for the purpose of improving impact resistance.

また、マトリックスの別の好ましい態様として、樹脂以外にも、チタン、マグネシウム、アルミニウム等の金属を用いることも可能である。   As another preferred embodiment of the matrix, metals such as titanium, magnesium, and aluminum can be used in addition to the resin.

不織布シート13としては、熱可塑性樹脂または熱硬化性樹脂からなる不織布を用いることができる。この中でも、高温で軟化し、繊維強化樹脂シートとの密着性がよい熱可塑性樹脂がとくに好ましい。熱可塑性樹脂としては、例えば、ポリエチレン(PE)樹脂、ポリプロピレン(PP)樹脂、ポリブチレン樹脂等のポリオレフィン樹脂や、ポリスチレン(PS)樹脂、アクリロニトリル−ブタジエン−スチレン共重合体(ABS)樹脂、アクリロニトリル−スチレン共重合体(AS)樹脂等のスチレン系樹脂や、ポリエチレンテレフタレート(PET)樹脂、ポリブチレンテレフタレート(PBT)樹脂、ポリトリメチレンテレフタレート(PTT)樹脂、ポリエチレンナフタレート(PEN)樹脂、液晶ポリエステル樹脂等のポリエステル樹脂や、ポリオキシメチレン(POM)樹脂、ポリアミド(PA)樹脂、ポリカーボネート(PC)樹脂、ポリメチルメタクリレート(PMMA)樹脂、ポリ塩化ビニル(PVC)樹脂、ポリフェニレンスルフィド(PPS)樹脂、ポリフェニレンエーテル(PPE)樹脂、変性PPE樹脂、熱可塑性ポリイミド(PI)樹脂、ポリアミドイミド(PAI)樹脂、ポリエーテルイミド(PEI)樹脂、ポリスルホン(PSU)樹脂、変性PSU樹脂、ポリエーテルスルホン(PES)樹脂、ポリケトン(PK)樹脂、ポリエーテルケトン(PEK)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、ポリエーテルケトンケトン(PEKK)樹脂、ポリアリレート(PAR)樹脂、ポリエーテルニトリル(PEN)樹脂、熱可塑性フェノール系樹脂、フェノキシ樹脂、ポリテトラフルオロエチレン(PTFE)樹脂などのフッ素系樹脂、更にポリスチレン系、ポリオレフィン系、ポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系、ポリイソプレン系、フッ素系等の熱可塑エラストマー等や、これらの共重合体、変性体、および2種類以上のブレンド、ポリマーアロイなどがあげられる。これらのうち耐熱性、コストの観点からとくにポリエチレンテレフタラート(PET)樹脂が好ましい。また、不織布シート13に樹脂が含浸されたシートを用いても良い。含浸させる樹脂としては、特に制限するものではないが、軽量かつ高強度の繊維強化プラスチック成形品を得るためには、前述のマトリックス樹脂と同じ樹脂が用いられていることが好ましい。   As the nonwoven fabric sheet 13, a nonwoven fabric made of a thermoplastic resin or a thermosetting resin can be used. Among these, a thermoplastic resin that softens at a high temperature and has good adhesion to the fiber-reinforced resin sheet is particularly preferable. Examples of the thermoplastic resin include polyolefin resins such as polyethylene (PE) resin, polypropylene (PP) resin, and polybutylene resin, polystyrene (PS) resin, acrylonitrile-butadiene-styrene copolymer (ABS) resin, and acrylonitrile-styrene. Styrenic resin such as copolymer (AS) resin, polyethylene terephthalate (PET) resin, polybutylene terephthalate (PBT) resin, polytrimethylene terephthalate (PTT) resin, polyethylene naphthalate (PEN) resin, liquid crystal polyester resin, etc. Polyester resin, polyoxymethylene (POM) resin, polyamide (PA) resin, polycarbonate (PC) resin, polymethyl methacrylate (PMMA) resin, polyvinyl chloride (PVC) resin, polypheny Sulfide (PPS) resin, polyphenylene ether (PPE) resin, modified PPE resin, thermoplastic polyimide (PI) resin, polyamideimide (PAI) resin, polyetherimide (PEI) resin, polysulfone (PSU) resin, modified PSU resin , Polyethersulfone (PES) resin, polyketone (PK) resin, polyetherketone (PEK) resin, polyetheretherketone (PEEK) resin, polyetherketoneketone (PEKK) resin, polyarylate (PAR) resin, polyether Fluorine resins such as nitrile (PEN) resin, thermoplastic phenol resin, phenoxy resin, polytetrafluoroethylene (PTFE) resin, polystyrene, polyolefin, polyurethane, polyester, polyamide, polybene Diene, polyisoprene, thermoplastic elastomers and fluorine such as, copolymers thereof, modified products, and two or more of the blend, such as polymer alloys and the like. Among these, polyethylene terephthalate (PET) resin is particularly preferable from the viewpoint of heat resistance and cost. Alternatively, a sheet in which the nonwoven fabric sheet 13 is impregnated with resin may be used. The resin to be impregnated is not particularly limited, but in order to obtain a lightweight and high-strength fiber-reinforced plastic molded product, it is preferable to use the same resin as the matrix resin described above.

本発明の湾曲形状を有する繊維強化プラスチック成形品10は、前述のように、連続繊維強化シートからなる最表層11と、連続繊維強化シートを積層した支持層12との間に、不織布シート13を挟んだ構成からなるものである。最表層11は1層とし、支持層12は連続繊維強化シートを2層以上積層した構成とすることが好ましい。   As described above, the fiber-reinforced plastic molded article 10 having a curved shape of the present invention has a nonwoven fabric sheet 13 between the outermost layer 11 made of a continuous fiber-reinforced sheet and the support layer 12 on which the continuous fiber-reinforced sheets are laminated. It consists of a sandwiched structure. It is preferable that the outermost layer 11 has one layer and the support layer 12 has a configuration in which two or more continuous fiber reinforced sheets are laminated.

最表層11、支持層12を構成する連続繊維強化シートの組み合わせについて、特に限定されるものではないものの、少ない積層枚数で所定の強度等を発揮させるためには、同一の織り組織を有する連続繊維強化シートを用いることが好ましい。   The combination of the continuous fiber reinforced sheets constituting the outermost layer 11 and the support layer 12 is not particularly limited, but continuous fibers having the same woven structure in order to exhibit a predetermined strength and the like with a small number of laminated layers. It is preferable to use a reinforcing sheet.

最表層11および支持層12の積層方法について、不織布シート13を除いた最表層11と支持層12からなる積層体が、積層体の中心から両表層に向かって対称となるように連続繊維強化シートの織り組織を配置することが好ましい。ここで対称となるように配置するとは、最表層11と支持層12を構成する連続繊維強化シートの枚数が偶数の場合は、その積層枚数の半分にあたる連続繊維強化シートの接する面に対して対称となるように配置されることをいい、奇数の場合は中心に配置される連続繊維強化シートに対して、その両側に配置される連続繊維強化シートが対称に配置されることである。さらに、それぞれの連続繊維強化シートの繊維配向も対称になるように配置されることがさらに好ましい。例えば、同一の織り組織からなるUD材を6層積層(偶数)する場合、繊維配列方向が上から0°/90°/0°/0°/90°/0°となるように積層させることができる。また、UD材を7層積層(奇数)する場合、繊維配列方向が上から0°/90°/0°/90°/0°/90°/0°となるように積層させることができる。ここで、0°とは、図1(a)において連続繊維束配列方向の矢印と平行に連続繊維束が配向する状態を、90°は矢印に直交するように連続繊維束が配向する状態を指す。このように連続繊維強化シートを対称に配置すると、反りや撓みのない繊維強化プラスチック成形品が得られる。逆に対称に配置しないと、連続繊維束の配向によって、反りや撓みを発生させる原因となる。 About the lamination | stacking method of the outermost layer 11 and the support layer 12, the continuous fiber reinforcement sheet | seat so that the laminated body which consists of the outermost layer 11 and the support layer 12 except the nonwoven fabric sheet 13 becomes symmetrical toward both surface layers from the center of a laminated body. It is preferable to arrange a weave structure. Here, when the number of continuous fiber reinforced sheets constituting the outermost layer 11 and the support layer 12 is an even number, the arrangement is symmetrical with respect to the contact surface of the continuous fiber reinforced sheets, which is half of the number of laminated layers. In the case of an odd number, the continuous fiber reinforced sheets arranged on both sides of the continuous fiber reinforced sheet are arranged symmetrically with respect to the continuous fiber reinforced sheet arranged in the center. Furthermore, it is more preferable that the fiber orientations of the respective continuous fiber reinforced sheets are arranged so as to be symmetrical. For example, when 6 layers of UD materials made of the same weave structure are laminated (even number), the fiber arrangement direction is 0 ° / 90 ° / 0 ° / 0 ° / 90 ° / 0 ° from the top. Can do. When seven layers of UD materials are laminated (odd number), they can be laminated so that the fiber arrangement direction is 0 ° / 90 ° / 0 ° / 90 ° / 0 ° / 90 ° / 0 ° from the top. Here, 0 ° is a state in which the continuous fiber bundle is oriented parallel to the arrow in the continuous fiber bundle arrangement direction in FIG. 1A, and 90 ° is a state in which the continuous fiber bundle is oriented so as to be orthogonal to the arrow. Point to. When the continuous fiber reinforced sheets are arranged symmetrically in this way, a fiber reinforced plastic molded product without warping or bending can be obtained. On the contrary, if it is not symmetrically arranged, it causes warping and bending due to the orientation of the continuous fiber bundle.

そして、本発明は、意匠面となる最表層11から2層目に不織布シート13を挟むことが重要である。不織布シート13は、連続繊維強化シートの連続繊維束の凹凸を吸収するとともに、不織布シート13を含む連続繊維強化シートの積層体を湾曲形状にする場合に、図1(c)に示すように、最表層11を構成する連続繊維束のばらつきを抑制して、最表層11の意匠性を高めることができる。 In the present invention, it is important that the nonwoven fabric sheet 13 is sandwiched between the outermost surface layer 11 and the second surface layer serving as a design surface. When the nonwoven fabric sheet 13 absorbs the unevenness of the continuous fiber bundle of the continuous fiber reinforced sheet and makes the laminated body of the continuous fiber reinforced sheet including the nonwoven fabric sheet 13 into a curved shape, as shown in FIG. Variations in the continuous fiber bundles constituting the outermost layer 11 can be suppressed, and the design of the outermost layer 11 can be enhanced.

最表層11および支持層12は、前述のように、90°ずつ直交させるように、異なる繊維方向に積層することがある。断面が略円形や略楕円形の連続繊維束を同一方向に複数配列されたUD材は、連続繊維束同士が接する境界近傍では、構造上凹部が形成されるため、積層した連続繊維強化シートの連続繊維束が、この凹部に落ち込み、表面に凹凸を形成することがある。さらに、UD材等の連続繊維強化シートは、連続繊維束の断面形状が一様とは限らず、また連続繊維束同士の間隙にもばらつき(繊維密度差)が有ることも多い。このため、積層枚数が増えると、このような連続繊維束のばらつき等に起因して、表面に凹凸が形成されやすくなる。本発明においても、支持層12の表面は、このような凹凸が形成されていることが考えられ、この支持層12の上に直接最表層11を積層させると、支持層12表面の凹凸の影響を受け、最表層11の表面を平滑にすることが困難になる。 As described above, the outermost layer 11 and the support layer 12 may be laminated in different fiber directions so as to be orthogonal to each other by 90 °. In the UD material in which a plurality of continuous fiber bundles having a substantially circular or elliptical cross section are arranged in the same direction, a concave portion is formed in the vicinity of the boundary where the continuous fiber bundles contact each other. A continuous fiber bundle may fall into this recess and form irregularities on the surface. Furthermore, in continuous fiber reinforced sheets such as UD materials, the cross-sectional shape of continuous fiber bundles is not always uniform, and there are many variations (fiber density differences) in the gaps between continuous fiber bundles. For this reason, when the number of laminated layers increases, unevenness is likely to be formed on the surface due to such a variation in continuous fiber bundles. Also in the present invention, it is considered that the unevenness is formed on the surface of the support layer 12. When the outermost layer 11 is laminated directly on the support layer 12, the influence of the unevenness on the surface of the support layer 12 is affected. As a result, it becomes difficult to smooth the surface of the outermost layer 11.

このような支持層12の表面に不織布シート13を配置すると、不織布シート13のランダムな繊維配向により、支持層12表面の凹凸を吸収することができる。また、最表層11を不織布シート13上に載置しても、最表層11自身の連続繊維束のばらつきに起因する凹凸が不織布シート13に吸収されるため、支持層12にまで影響を与えることがない。したがって、図1(c)に示すように、最表層11自身の平滑性が、そのまま繊維強化プラスチック成形品の意匠性として発現できるのである。 When the nonwoven fabric sheet 13 is disposed on the surface of the support layer 12, irregularities on the surface of the support layer 12 can be absorbed by the random fiber orientation of the nonwoven fabric sheet 13. In addition, even when the outermost layer 11 is placed on the nonwoven fabric sheet 13, the unevenness due to the variation of the continuous fiber bundle of the outermost layer 11 itself is absorbed by the nonwoven fabric sheet 13, so that the support layer 12 is affected. There is no. Therefore, as shown in FIG.1 (c), the smoothness of outermost layer 11 itself can be expressed as the design property of a fiber reinforced plastic molding as it is.

さらに、不織布シート13は、繊維方向がランダムであるため、最表層11や支持層12の方向、すなわち、繊維強化プラスチック成形品の厚さ方向に向く繊維が存在し、この繊維が最表層11や支持層12の表面に引っかかることにより、アンカー効果を発揮して最表層11や支持層12と高い接着性を発現させることができる。   Furthermore, since the fiber direction of the nonwoven fabric sheet 13 is random, there is a fiber facing in the direction of the outermost layer 11 and the support layer 12, that is, the thickness direction of the fiber-reinforced plastic molded product. By being caught on the surface of the support layer 12, the anchor effect can be exhibited and high adhesion with the outermost layer 11 and the support layer 12 can be expressed.

ここで、本発明のように、最表層の連続繊維束の配向方向に直交する方向に湾曲形状を有する繊維強化プラスチック成形品において、図2(b)のように不織布シート13がない場合には、図2(c)に示すように、湾曲部において連続繊維束同士の間隔にばらつきが生じやすくなる。湾曲形状では樹脂が流動しやすく、繊維密度に差が出るため、部分的には強化繊維が存在しない樹脂のみの部分が形成される。後述するように、樹脂を硬化させると、この樹脂のみの部分にヒケが発生して、最表層11の表面に凹凸を生じさせることもある。不織布シート13を載置すると、支持層12表面の凹凸の影響を受けないばかりでなく、繊維強化プラスチック成形品の厚さ方向に向く繊維により最表層11の連続繊維束が湾曲に沿ってばらつきにくくなり、また軟化した樹脂が不織布シート13内に流れることで密度差のばらつきが生じにくくなり、連続繊維束が均等に配列された湾曲形状を形成することができる。これによって、最表層11には樹脂のみの部分も形成されにくくなり、硬化時におけるヒケも発生しにくく、平滑で高意匠性を発現することができるのである。 Here, in the fiber reinforced plastic molded product having a curved shape in a direction orthogonal to the orientation direction of the continuous fiber bundle of the outermost layer as in the present invention, when the nonwoven fabric sheet 13 is not present as shown in FIG. As shown in FIG. 2 (c), the spacing between the continuous fiber bundles tends to vary in the curved portion. In the curved shape, the resin easily flows and the fiber density is different, so that a portion of the resin alone in which no reinforcing fiber is present is formed. As will be described later, when the resin is cured, sink marks are generated only in the resin, and the surface of the outermost layer 11 may be uneven. When the nonwoven fabric sheet 13 is placed, not only is the influence of the unevenness on the surface of the support layer 12, but the continuous fiber bundle of the outermost layer 11 is less likely to vary along the curve due to the fibers facing the thickness direction of the fiber-reinforced plastic molded product. In addition, since the softened resin flows into the nonwoven fabric sheet 13, variations in density difference are less likely to occur, and a curved shape in which continuous fiber bundles are evenly arranged can be formed. As a result, it is difficult to form a resin-only portion on the outermost layer 11, and it is difficult for sink marks to occur during curing, and it is possible to express smoothness and high design.

なお、図1(c)、図2(c)ともに、最表層11として連続繊維束が一方向に配向したUD材を連続繊維強化シートとした例で説明したが、本発明はこれに限定されることなく、クロス材を用いることも可能である。クロス材の場合、連続繊維束が直交するように構成されているため、いずれか一方の連続繊維束の配向方向に直交する方向に湾曲形状を有するものであればよい。 Incidentally, FIG. 1 (c), the FIG. 2 (c) both, has been described in example tow as the outermost layer 11 has a UD material unidirectionally oriented continuous fiber-reinforced sheet, the present invention is not limited thereto It is also possible to use a cloth material. In the case of the cloth material, since the continuous fiber bundles are configured to be orthogonal to each other, any material having a curved shape in the direction orthogonal to the orientation direction of any one of the continuous fiber bundles may be used.

ここで、不織布シート13の厚さは、湾曲形状を有する繊維強化プラスチック成形品10全体の厚みを抑制するためにも、0.005mm〜0.1mmであることが好ましい。0.1mmより厚いと連続繊維強化シートの対称性が失われ、反りが発生するおそれがある。0.005mmより薄い場合は、その薄さのため、下層の凹凸を十分な吸収できず、下層の織り模様が現れるのを抑制する効果を期待することは難しい。厚みの増加と反りの影響を考慮すると、0.005mm〜0.03mmがさらに好ましい。   Here, the thickness of the nonwoven fabric sheet 13 is preferably 0.005 mm to 0.1 mm in order to suppress the thickness of the entire fiber reinforced plastic molded product 10 having a curved shape. If it is thicker than 0.1 mm, the symmetry of the continuous fiber reinforced sheet is lost, and warping may occur. When the thickness is less than 0.005 mm, it is difficult to expect the effect of suppressing the appearance of the lower layer weave pattern because the lower layer unevenness cannot be sufficiently absorbed due to its thinness. In consideration of the increase in thickness and the influence of warpage, 0.005 mm to 0.03 mm is more preferable.

本発明の対象とする成形プロセスは、マトリックス樹脂があらかじめ含浸されたプリプレグを連続繊維強化シートとした積層体を、加圧すると同時に加熱硬化して板状の成形品を得るプロセスであり、このような成形が可能な方法であれば特に限定されるものではない。例えば、加熱された一対の成形型間に油圧等により加圧力を加え、離型フィルムを用いてプレスする方法や、一つの成形型上に配置したプリプレグの積層体の上にバッグフィルムを配置し、成形型とバッグフィルム間を真空吸引することにより加圧力を得るバッグ法、さらにバッグフィルムの外側を気体で加圧するオートクレーブ法等が挙げられるが、いずれの成形プロセスも用いることが可能であり、成形品の要求特性やマトリックス樹脂の種類に応じて選択することができる。 The molding process which is the subject of the present invention is a process for obtaining a plate-shaped molded article by pressurizing and simultaneously curing a laminate having a prepreg impregnated with a matrix resin in advance as a continuous fiber reinforced sheet. The method is not particularly limited as long as it is a method that allows easy molding. For example, a method of pressing with a release film by applying pressure between a pair of heated molds by hydraulic pressure, etc., or a bag film placed on a prepreg laminate placed on one mold The bag method for obtaining pressure by vacuum suction between the mold and the bag film, and further the autoclave method for pressurizing the outside of the bag film with gas, etc., any molding process can be used, It can be selected according to the required characteristics of the molded product and the type of matrix resin.

以下、実施例を挙げて本発明を詳細に説明するが、本発明の骨子は以下の実施例に限定されるものではない。表1に実施例1〜6の積層構成および効果、表2に比較例1〜5の表層、2層目の積層構成および効果を示す。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, the main point of this invention is not limited to a following example. Table 1 shows the stacked structure and effects of Examples 1 to 6, and Table 2 shows the stacked structure and effects of the surface layers and the second layer of Comparative Examples 1 to 5.

(実施例1)
最表層として炭素繊維一方向プリプレグ(UD PP)P3052S−15(東レ(株)製 炭素繊維T700S使い マトリックス樹脂:エポキシ樹脂 炭素繊維含有率67% 厚さ0.143mm)とし、2層目に不織布シート(PET不織布 厚さ0.038mm)、意匠面から3〜6層目に繊維強化部材として炭素繊維一方向プリプレグ(UD PP)P3052S−15(東レ(株)製 炭素繊維T700S使い マトリックス樹脂:エポキシ樹脂 炭素繊維含有率67% 厚さ0.143mm)、7層目には最表層と同じ炭素繊維一方向プリプレグを順に積層した。なお、PET不織布の厚さはJIS K7130(1999)に基づき、マイクロメーターで測定した。プリプレグの積層構成は、繊維強化プラスチック成形品の長手方向を0°としたとき、炭素繊維の配向を、最表層から順に0°/不織布/90°/0°/0°/90°/0°となるように積層させた。この積層体を離型フィルムで挟んだものを、プレス成形(金型温度150℃、圧力1.5MPa、硬化時間30分、プレス後の狙い厚み0.8mm)し、図1(a)のような湾曲形状を有する繊維強化プラスチック成形品を得た。この成形品を242.90mm×189.75mmのサイズに加工し、射出成形金型内にセットし、型締めを行った後、樹脂部材として長繊維ペレット TLP1146S(東レ(株)製 炭素繊維含有量20%、ベースレジン:ポリアミド6;溶解度パラメータδ(SP値)13.6、樹脂流動方向成形収縮率:0.1%)を成形品の周縁部に射出成形した複合成形品を製造した。その結果、湾曲した最表層の端部に黒いスジ状の凹凸やヒケは全く見られず、極めて高い意匠性を有する良好な外観の複合成形品が得られた。
Example 1
Carbon fiber unidirectional prepreg (UD PP) P3052S-15 (using carbon fiber T700S manufactured by Toray Industries, Inc., matrix resin: epoxy resin, carbon fiber content 67%, thickness 0.143 mm) as the outermost layer, nonwoven fabric sheet as the second layer (PET non-woven fabric thickness 0.038mm), carbon fiber unidirectional prepreg (UD PP) P3052S-15 (Toray Industries, Inc. carbon fiber T700S used as a fiber reinforced member in the 3rd to 6th layers from the design surface Matrix resin: Epoxy resin The carbon fiber content was 67%, the thickness was 0.143 mm), and the same carbon fiber unidirectional prepreg as the outermost layer was sequentially laminated on the seventh layer. The thickness of the PET nonwoven fabric was measured with a micrometer based on JIS K7130 (1999). When the longitudinal direction of the fiber reinforced plastic molded product is 0 °, the orientation of the carbon fiber is 0 ° / nonwoven fabric / 90 ° / 0 ° / 0 ° / 90 ° / 0 ° in order from the outermost layer. They were laminated so that The laminate sandwiched between release films is press-molded (die temperature 150 ° C., pressure 1.5 MPa, curing time 30 minutes, target thickness after pressing 0.8 mm), as shown in FIG. A fiber-reinforced plastic molded product having a curved shape was obtained. This molded product was processed into a size of 242.90 mm × 189.75 mm, set in an injection mold, and clamped, and then a long fiber pellet TLP1146S (carbon fiber content manufactured by Toray Industries, Inc.) 20%, base resin: polyamide 6; solubility parameter δ (SP value) 13.6, resin flow direction molding shrinkage: 0.1%) was produced as a composite molded product by injection molding at the peripheral edge of the molded product. As a result, no black streak-like irregularities or sink marks were observed at the end of the curved outermost layer, and a composite molded article having a very good design and a good appearance was obtained.

(実施例2)
最表層および最表層から7層目に用いるプリプレグを炭素繊維一方向プリプレグ(UD PP)P3052S−17(東レ(株)製 炭素繊維T700S使い マトリックス樹脂:エポキシ樹脂 炭素繊維含有率67% 厚さ0.167mm)とした以外は実施例1と同様の構成からなる積層体を形成し、実施例1と同じ条件でプレス成形を行い、実施例1と同じ長繊維ペレットを射出成形して複合成形品を製造した。最表層の樹脂が比較的厚めとなったものの、最表層において成形品端部に黒いスジ状の凹凸やヒケは全く見られず、極めて高い意匠性を有する良好な外観の複合成形品が得られた。
(Example 2)
The prepreg used in the outermost layer and the seventh layer from the outermost layer is carbon fiber unidirectional prepreg (UD PP) P3052S-17 (carbon fiber T700S manufactured by Toray Industries, Inc.) Matrix resin: epoxy resin Carbon fiber content 67% Thickness 0. 167 mm), a laminate having the same structure as in Example 1 is formed, press molding is performed under the same conditions as in Example 1, and the same long fiber pellet as in Example 1 is injection molded to form a composite molded product. Manufactured. Although the resin on the outermost layer is relatively thick, there are no black streak-like irregularities or sink marks at the end of the molded product on the outermost layer, and a composite molded product with an extremely high design and a good appearance can be obtained. It was.

(実施例3)
最表層および最表層から7層目に用いるプリプレグを炭素繊維一方向プリプレグ(UD PP)P3251S−15(東レ(株)製 炭素繊維T700S使い マトリックス樹脂:エポキシ樹脂 炭素繊維含有率63% 厚さ0.151mm)とした以外は実施例1と同様にして複合成形品を製造した。この複合成形品は実施例1よりも最表層の樹脂割合を高くしたものであるが、最表層において成形品端部に黒いスジ状の凹凸やヒケは全く見られず、極めて高い意匠性を有する良好な外観の複合成形品が得られた。
Example 3
The prepreg used in the outermost layer and the seventh layer from the outermost layer is carbon fiber unidirectional prepreg (UD PP) P3251S-15 (using carbon fiber T700S manufactured by Toray Industries, Inc.) Matrix resin: epoxy resin Carbon fiber content 63% Thickness 0. 151 mm), a composite molded product was produced in the same manner as in Example 1. This composite molded article has a resin ratio of the outermost layer higher than that in Example 1, but no black streak-like irregularities or sink marks are observed at the end of the molded article in the outermost layer, and it has extremely high design properties. A composite molded article having a good appearance was obtained.

(実施例4)
最表層および最表層から7層目に用いるプリプレグを炭素繊維一方向プリプレグ(UD PP)P3255S−17(東レ(株)製 炭素繊維T700S使い マトリックス樹脂:エポキシ樹脂 炭素繊維含有率75% 厚さ0.142mm)とした以外は実施例1と同様にして複合成形品を製造した。実施例1〜3と同様に、最表層において成形品端部に黒いスジ状の凹凸やヒケは全く見られず、極めて高い意匠性を有する良好な外観の複合成形品が得られた。
Example 4
The prepreg used in the outermost layer and the seventh layer from the outermost layer is carbon fiber unidirectional prepreg (UD PP) P3255S-17 (using carbon fiber T700S manufactured by Toray Industries, Inc.) Matrix resin: epoxy resin Carbon fiber content 75% Thickness 0. 142 mm), a composite molded product was produced in the same manner as in Example 1. Similar to Examples 1 to 3, no black streak-like irregularities or sink marks were observed at the end of the molded product on the outermost layer, and a composite molded product having a very good design and a good appearance was obtained.

(実施例5)
2層目の不織布シート目付を厚いもの(PET不織布 厚さ0.15mm)とした以外は、実施例1と同様にして複合成形品を製造した。最表層において外観上問題ない程度の樹脂不足部分が発生し、成形品端部に黒いスジ状の凹凸やヒケは全く見られない良好な外観の複合成形品が得られた。
(Example 5)
A composite molded product was produced in the same manner as in Example 1 except that the basis weight of the second layer nonwoven fabric sheet was changed to a thick one (PET nonwoven fabric thickness 0.15 mm). In the outermost layer, a resin-deficient portion with no problem in appearance was generated, and a composite molded product having a good appearance with no black streak-like irregularities or sink marks at the end of the molded product was obtained.

(実施例6)
2層目の不織布シートをガラス不織布とした以外は実施例1と同様に複合成形品を製造した。不織布シートの材質としてガラス不織布を用いた場合でも、最表層において成形品端部に黒いスジ状の凹凸やヒケは全く見られず、極めて高い意匠性を有する良好な外観の複合成形品が得られた。
(Example 6)
A composite molded article was produced in the same manner as in Example 1 except that the second-layer nonwoven fabric sheet was a glass nonwoven fabric. Even when a glass nonwoven fabric is used as the material of the nonwoven fabric sheet, there are no black streak-like irregularities or sink marks at the end of the molded product on the outermost layer, and a composite molded product with a very good design and a very good appearance can be obtained. It was.

(比較例1〜4)
不織布シートを最表層と支持層との間に挟まないこと以外は、実施例1〜4と同様のプリプレグを組み合わせて複合成形品を製造した。その結果、いずれの成形品においても、湾曲した最表層の端部に、連続繊維束の繊維密度のばらつきに起因する黒いスジ状の凹凸ヒケが高い割合で発生した。
(Comparative Examples 1-4)
A composite molded article was produced by combining the same prepreg as in Examples 1 to 4 except that the nonwoven fabric sheet was not sandwiched between the outermost layer and the support layer. As a result, in any of the molded products, black streak-like uneven sink marks due to variations in the fiber density of the continuous fiber bundle occurred at a high rate at the end of the curved outermost layer.

(比較例5)
実施例1と同じ炭素繊維一方向プリプレグを用意し、最表層から2層目ではなく、3層目に実施例1と同じ不織布シートを積層した以外は、実施例1と同様の構成からなる積層体を形成し、実施例1と同じ条件で複合成形品を製造した。その結果、湾曲した最表層の端部に黒いスジ状の凹凸やヒケが発生した。3層目に不織布シートを配置しても意匠性の向上に対し効果が上がらないことが確認できた。
(Comparative Example 5)
The same carbon fiber unidirectional prepreg as in Example 1 was prepared, and the same structure as in Example 1 except that the same nonwoven fabric sheet as in Example 1 was laminated in the third layer instead of the second layer from the outermost layer. A composite molded article was produced under the same conditions as in Example 1. As a result, black streaky irregularities and sink marks were generated at the end of the curved outermost layer. It was confirmed that even if a non-woven sheet was arranged in the third layer, the effect was not improved with respect to the improvement of the design property.

Figure 0005678483
Figure 0005678483

Figure 0005678483
Figure 0005678483

本発明にかかる繊維強化シートからなる電子機器筐体の用途としては、例えば、パラボナアンテナ、パソコン、ノートパソコン、携帯電話、デジタルスチールカメラ、デジタルビデオカメラ、PDA、ポータブルMD、家庭用ゲーム機などの電子機器筐体に有用である。中でも、高剛性かつ軽量であって、意匠性も同時に求められる、ノートパソコン、携帯電話、PDAなどの電子機器筐体に有用である。   Examples of the use of the electronic device casing made of the fiber reinforced sheet according to the present invention include a parabona antenna, a personal computer, a notebook computer, a mobile phone, a digital still camera, a digital video camera, a PDA, a portable MD, and a home game machine. Useful for electronic equipment casings. Among them, it is useful for electronic equipment casings such as notebook personal computers, mobile phones, and PDAs, which are highly rigid and lightweight, and at the same time require good design.

10 湾曲形状を有する繊維強化プラスチック成形品
11 最表層
12 支持層
13 不織布シート
DESCRIPTION OF SYMBOLS 10 Fiber reinforced plastic molding 11 which has curved shape Outermost layer 12 Support layer 13 Nonwoven fabric sheet

Claims (4)

連続繊維束を同一方向に複数配列し、マトリックス樹脂があらかじめ含浸された連続繊維強化シートを含む少なくとも3層以上からなる積層体からなり、意匠面を構成する最表層から2層目に不織布シートが挟まれるとともに、最表層の連続繊維束の配向方向に直交する方向に湾曲してなることを特徴とする湾曲形状を有する繊維強化プラスチック成形品。 Arranging a plurality of continuous fiber bundles in the same direction, the nonwoven fabric sheet in the second layer from the outermost surface layer composed of a multilayer structure composed of at least three or more layers comprising a continuous fiber-reinforced sheet matrix resin is impregnated in advance, it constitutes a design surface Is a fiber-reinforced plastic molded article having a curved shape, characterized by being bent in a direction perpendicular to the orientation direction of the continuous fiber bundle of the outermost layer. 前記不織布シートの厚さが0.005mm〜0.1mmである請求項1に記載の湾曲形状を有する繊維強化プラスチック成形品。 The fiber-reinforced plastic molded article having a curved shape according to claim 1, wherein the nonwoven fabric sheet has a thickness of 0.005 mm to 0.1 mm. 前記連続繊維強化シートの強化繊維が炭素繊維である請求項1または2に記載の湾曲形状を有する繊維強化プラスチック成形品。 The fiber-reinforced plastic molded article having a curved shape according to claim 1 or 2 , wherein the reinforcing fibers of the continuous fiber-reinforced sheet are carbon fibers. 請求項1〜のいずれかの湾曲形状を有する繊維強化プラスチック成形品を含むことを特徴とする電子機器筐体。 Electronics enclosure which comprises a fiber-reinforced plastic molded article having any curved shape of the claims 1-3.
JP2010129795A 2010-06-07 2010-06-07 Fiber-reinforced plastic molded product with curved shape Active JP5678483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010129795A JP5678483B2 (en) 2010-06-07 2010-06-07 Fiber-reinforced plastic molded product with curved shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010129795A JP5678483B2 (en) 2010-06-07 2010-06-07 Fiber-reinforced plastic molded product with curved shape

Publications (2)

Publication Number Publication Date
JP2011255533A JP2011255533A (en) 2011-12-22
JP5678483B2 true JP5678483B2 (en) 2015-03-04

Family

ID=45472269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010129795A Active JP5678483B2 (en) 2010-06-07 2010-06-07 Fiber-reinforced plastic molded product with curved shape

Country Status (1)

Country Link
JP (1) JP5678483B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105324418B (en) 2013-06-12 2018-08-14 本田技研工业株式会社 Fiber-reinforced resin component
KR102051803B1 (en) 2013-07-29 2020-01-09 삼성디스플레이 주식회사 Foldable display device
KR101554304B1 (en) * 2015-04-20 2015-09-18 한솔테크닉스(주) Curved type rigid board and a Three-dimension antenna manufacturing method of using the same
WO2017056683A1 (en) 2015-09-30 2017-04-06 積水化学工業株式会社 Fiber-reinforced sheet and structure
WO2018199091A1 (en) * 2017-04-28 2018-11-01 株式会社クラレ Laminate composite and method for producing same
WO2019233866A1 (en) * 2018-06-07 2019-12-12 Teijin Carbon Europe Gmbh Multiaxial product having at least two 0° layers
JP7384029B2 (en) * 2019-12-27 2023-11-21 三菱ケミカル株式会社 Fiber fabrics and carbon fiber reinforced composite materials
US20230064511A1 (en) * 2020-02-28 2023-03-02 Mitsubishi Heavy Industries, Ltd. Layered body and layering method
JP6947956B1 (en) * 2020-04-23 2021-10-13 積水化学工業株式会社 Fiber reinforced members and joint structures
WO2021215200A1 (en) * 2020-04-23 2021-10-28 積水化学工業株式会社 Fiber-reinforced member and bonded structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004338271A (en) * 2003-05-16 2004-12-02 Mitsubishi Rayon Co Ltd Fiber-reinforced resin composite material suitable for boring and a method for producing bored fiber-reinforced resin composite material
JP5136876B2 (en) * 2006-11-28 2013-02-06 東レ株式会社 Reinforced fiber laminate and method for producing the same
JP2010018724A (en) * 2008-07-11 2010-01-28 Toray Ind Inc Prepreg layered substrate and fiber-reinforced plastic

Also Published As

Publication number Publication date
JP2011255533A (en) 2011-12-22

Similar Documents

Publication Publication Date Title
JP5678483B2 (en) Fiber-reinforced plastic molded product with curved shape
JP4858544B2 (en) Composite molded article and manufacturing method thereof
JP6167537B2 (en) Manufacturing method of fiber-reinforced plastic molded product and manufacturing method of integrally molded product
JP4670532B2 (en) Composite molded product
JPWO2016017080A1 (en) Molded body and manufacturing method thereof
JP2011021303A (en) Carbon fiber nonwoven fabric, carbon fiber-reinforced resin sheet, and carbon fiber-reinforced resin molded form
US10571963B2 (en) Housing
US10509443B2 (en) Housing
JP2020082429A (en) Integrated compact
US20210283805A1 (en) Fiber-reinforced resin composite body, production method therefor, and non-woven fabric for use in fiber-reinforced resin composite body
JP5332225B2 (en) Manufacturing method of fiber reinforced composite material
JP2004209717A (en) Fiber reinforced molded product
JP2015120354A (en) Thermoplastic base material, and method for producing fiber-reinforced molding by using the material
JP2009220478A (en) Fiber-reinforced sandwich structure composite and composite molding
KR20170112396A (en) Three Dimensional Fiber-Reinforced Plastics and Manufacturing Method thereof
WO2020003926A1 (en) Laminated body
US10639870B2 (en) Polymer fiber composite
WO2018142962A1 (en) Method for producing fiber-reinforced plastic
JP2016117202A (en) Method for manufacturing fiber-reinforced composite material molding
JP2008114525A (en) Composite molded article
JP2010131804A (en) Composite molding and method for manufacturing the same
JP2006130862A (en) Composite molded component and manufacturing method of composite molded component
JP2009173027A (en) Manufacturing method of composite molded product
JP2012051151A (en) Fiber reinforced molding
JP2010046938A (en) Composite molded product and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141222

R151 Written notification of patent or utility model registration

Ref document number: 5678483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151