JP2008114525A - Composite molded article - Google Patents

Composite molded article Download PDF

Info

Publication number
JP2008114525A
JP2008114525A JP2006301287A JP2006301287A JP2008114525A JP 2008114525 A JP2008114525 A JP 2008114525A JP 2006301287 A JP2006301287 A JP 2006301287A JP 2006301287 A JP2006301287 A JP 2006301287A JP 2008114525 A JP2008114525 A JP 2008114525A
Authority
JP
Japan
Prior art keywords
resin
composite molded
molded article
sheet
iii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006301287A
Other languages
Japanese (ja)
Inventor
Koji Hasegawa
孝司 長谷川
Hiroshi Ochi
寛 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2006301287A priority Critical patent/JP2008114525A/en
Publication of JP2008114525A publication Critical patent/JP2008114525A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite molded article having a light weight, a thin thickness and a high strength and superior in high design property and a high scratch resistance and suitable for applications required for these characteristics. <P>SOLUTION: In the composite molded article (I) including a sheet-shape reinforced member (II) and a resin member (III), a hard layer (IV) having a pencil hardness of 2H or more is formed on at least a part of a front surface across a connecting part between the sheet-shape reinforced member (II) and the resin member (III), a gap S of the sheet-shape reinforced member (II) formed with the hard layer (IV) and the resin member (III) is 0-50 μm, and a height difference D between a higher surface and a lower surface thereof is 0-50 μm. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば、パソコンやOA機器、携帯電話などの部品や筐体部分として用いられる、軽量、高強度、高剛性、高意匠性、高耐傷性が要求される用途に適した複合成形品に関する。   The present invention is, for example, a composite molded product suitable for applications requiring lightweight, high strength, high rigidity, high designability, and high scratch resistance, which are used as parts and casing parts of personal computers, office automation equipment, mobile phones and the like. About.

現在、パソコン、OA機器、AV機器、携帯電話、電話機、ファクシミリ、家電製品、玩具用品などの電気機器、電子機器の携帯化が進むにつれ、より小型、軽量化が要求されている。その要求を達成するために、機器を構成する部品、特に筐体には小型、軽量薄肉化を達成しつつ、外部から荷重がかかった場合に筐体が大きく撓んで内部部品と接触、破壊を起こさないようにする必要があるため、高強度、高剛性化が求められている。さらに製品として客先に触れる面でもあり、外観がきれいなこと(高意匠性)、使用中に傷がつきにくいこと(高耐傷性)も必須条件である。   Currently, as portable electronic devices and electronic devices such as personal computers, OA devices, AV devices, mobile phones, telephones, facsimiles, home appliances, and toy products are increasingly required, smaller and lighter weights are required. In order to achieve that requirement, the components that make up the equipment, especially the housing, have been made smaller, lighter and thinner, but when the load is applied from the outside, the housing will bend greatly to contact and destroy the internal components. Since it is necessary to prevent it from occurring, high strength and high rigidity are required. Furthermore, it is also a surface that touches customers as a product, and the appearance is clean (high design), and it is difficult to be damaged during use (high scratch resistance).

そこで、高強度、高剛性な成形品を得るために、一方向に連続な強化繊維を含む熱可塑性樹脂シートまたはそれを積層したシートと熱可塑性樹脂が一体化してなる複合射出成形物が提案されているが(例えば、特許文献1参照)、表面の鉛筆硬度はせいぜいH程度であり、使用中に容易に傷が付くという問題があった。さらに、例えば、表面に硬質層を設けたブロー成形品が提案されているが(例えば、特許文献2参照)、成形品自体の強度・剛性に劣るという問題があった。
特開平9−272134号公報 特開平10−330517号公報
Therefore, in order to obtain a high-strength, high-rigidity molded product, a thermoplastic resin sheet containing continuous reinforcing fibers in one direction or a composite injection molded product in which a sheet laminated with the thermoplastic resin is integrated is proposed. However, the pencil hardness of the surface is at most about H, and there is a problem that it is easily scratched during use. Furthermore, for example, although a blow molded product having a hard layer provided on the surface has been proposed (see, for example, Patent Document 2), there is a problem that the strength and rigidity of the molded product itself is inferior.
JP-A-9-272134 Japanese Patent Laid-Open No. 10-330517

本発明は、かかる従来技術の問題点に鑑み、軽量、薄肉、高強度、高剛性で、かつ高意匠性、高耐傷性に優れたものであり、これらの特性が要求される用途に適した複合成形品を提供することを課題とする。   In view of the problems of the prior art, the present invention is lightweight, thin, high-strength, high-rigidity, excellent in design and scratch resistance, and suitable for applications requiring these characteristics. It is an object to provide a composite molded product.

上記課題を達成するための本発明は、以下の構成を採用する。すなわち、
(1)シート状強化部材(II)と樹脂部材(III)とを含む複合成形品(I)において、シート状強化部材(II)と樹脂部材(III)との接合部にまたがる表面の少なくとも一部に鉛筆硬度が2H以上の硬質層(IV)が形成されているとともに、該硬質層(IV)が形成されるシート状強化部材(II)と樹脂部材(III)との接合部の間隙Sが0〜50μmであり、かつ表面高低差Dが0〜50μmであることを特徴とする複合成形品(I)。
To achieve the above object, the present invention adopts the following configuration. That is,
(1) In the composite molded article (I) including the sheet-like reinforcing member (II) and the resin member (III), at least one of the surfaces straddling the joint between the sheet-like reinforcing member (II) and the resin member (III) A hard layer (IV) having a pencil hardness of 2H or more is formed at the portion, and a gap S between the joint portion between the sheet-like reinforcing member (II) and the resin member (III) on which the hard layer (IV) is formed Is a composite molded article (I), wherein the surface height difference D is 0 to 50 μm.

(2)樹脂部材(III)は射出成形されて形成されており、かつ樹脂流動方向の成形収縮率が0〜0.5%である前記(1)に記載の複合成形品(I)。   (2) The composite molded article (I) according to (1), wherein the resin member (III) is formed by injection molding and has a molding shrinkage in the resin flow direction of 0 to 0.5%.

(3)シート状強化部材(II)が、連続繊維を一方向にシート状に配列した繊維強化層を含む繊維強化層体である前記(1)または(2)に記載の複合成形品(I)。   (3) The composite molded article (I) according to (1) or (2), wherein the sheet-shaped reinforcing member (II) is a fiber-reinforced layer body including a fiber-reinforced layer in which continuous fibers are arranged in a sheet shape in one direction. ).

(4)繊維強化層の連続繊維が、少なくとも炭素繊維を含む前記(3)に記載の複合成形品(I)。   (4) The composite molded article (I) according to (3), wherein the continuous fibers of the fiber reinforced layer include at least carbon fibers.

(5)シート状強化部材(II)と樹脂部材(III)が熱可塑性樹脂組成物(V)を介して接合されている前記(1)から(4)のいずれかに記載の複合成形品(I)。   (5) The composite molded article according to any one of (1) to (4), wherein the sheet-like reinforcing member (II) and the resin member (III) are joined via the thermoplastic resin composition (V) ( I).

(6)樹脂部材(III)を構成する樹脂の溶解度パラメータ(SP値)δAと熱可塑性樹脂組成物(V)を構成する樹脂の溶解度パラメータ(SP値)δBの差の絶対値(|δAーδB|)が0〜1.2である前記(5)に記載の複合成形品(I)。   (6) Absolute value of the difference between the solubility parameter (SP value) δA of the resin constituting the resin member (III) and the solubility parameter (SP value) δB of the resin constituting the thermoplastic resin composition (V) (| δA- The composite molded article (I) according to (5), wherein δB |) is 0 to 1.2.

(7)シート状強化部材(II)および樹脂部材(III)のUL−94に基づく難燃性が0.1〜1.6mmのいずれかの厚みの試験片でV−1またはV−0である前記(1)から(6)のいずれかに記載の複合成形品(I)。   (7) A test piece having a thickness of 0.1 to 1.6 mm in flame retardancy based on UL-94 of the sheet-like reinforcing member (II) and the resin member (III) is V-1 or V-0. The composite molded article (I) according to any one of (1) to (6).

(8)シート状強化部材(II)および樹脂部材(III)が少なくともリン系の難燃剤を含む前記(7)に記載の複合成形品(I)。   (8) The composite molded article (I) according to (7), wherein the sheet-like reinforcing member (II) and the resin member (III) include at least a phosphorus-based flame retardant.

(9)シート状強化部材(II)がエポキシ樹脂を主成分とするマトリックス樹脂を含む前記(1)から(8)のいずれかに記載の複合成形品(I)。   (9) The composite molded article (I) according to any one of (1) to (8), wherein the sheet-like reinforcing member (II) includes a matrix resin mainly composed of an epoxy resin.

(10)樹脂部材(III)が強化繊維を含む前記(1)から(9)のいずれかに記載の複合成形品(I)。   (10) The composite molded article (I) according to any one of (1) to (9), wherein the resin member (III) includes reinforcing fibers.

(11)強化繊維が少なくとも炭素繊維を含む前記(10)に記載の複合成形品(I)。   (11) The composite molded article (I) according to (10), wherein the reinforcing fibers include at least carbon fibers.

(12)硬質層(IV)が光硬化型樹脂、触媒硬化型樹脂、電子線硬化型樹脂のいずれかで形成される前記(1)から(11)のいずれかに記載の複合成形品(I)。   (12) The composite molded article (I) according to any one of (1) to (11), wherein the hard layer (IV) is formed of any one of a photocurable resin, a catalyst curable resin, and an electron beam curable resin. ).

(13)電子機器用筐体である前記(1)から(12)のいずれかに記載の複合成形品(I)。   (13) The composite molded article (I) according to any one of (1) to (12), which is a casing for an electronic device.

(14)ノートパソコン用筐体である前記(13)に記載の複合成形品(I)。   (14) The composite molded article (I) according to (13), which is a notebook personal computer casing.

(15)携帯電話用筐体である前記(13)に記載の複合成形品(I)。   (15) The composite molded article (I) according to (13), which is a mobile phone casing.

本発明の複合成形品は、軽量、薄肉、高剛性、高強度で、高意匠性、高耐傷性に優れ、これらの特性を有するパソコン、ディスプレイや携帯情報端末などの電気機器、電子機器の筐体およびその筐体を製造するのに適する。   The composite molded article of the present invention is lightweight, thin, high-rigidity, high-strength, excellent in design and scratch resistance, and has such characteristics as electrical equipment such as personal computers, displays and portable information terminals, and housings of electronic equipment. Suitable for manufacturing the body and its housing.

以下、本発明についてその一実施例に係る図面を参照しながら具体的に説明するが、下記実施例は本発明を何ら制限するものではなく、本発明の主旨を逸脱しない範囲で変更することは、本発明の技術範囲である。   Hereinafter, the present invention will be described in detail with reference to the drawings relating to one embodiment thereof. However, the following embodiments are not intended to limit the present invention in any way, and modifications may be made without departing from the spirit of the present invention. This is the technical scope of the present invention.

図1は、本発明の一実施例に係る複合成形品(I)の斜視図である。   FIG. 1 is a perspective view of a composite molded product (I) according to an embodiment of the present invention.

図2は、図1に例示した複合成形品(I)のA−A断面図である。   FIG. 2 is a cross-sectional view of the composite molded article (I) illustrated in FIG.

図3は、図2に例示した複合成形品(I)のB部詳細図である。   FIG. 3 is a detailed view of part B of the composite molded article (I) illustrated in FIG.

図1、図2、図3において、本発明の複合成形品(I)は、角孔部1箇所と丸孔部1箇所が設けられた連続繊維を一方向にシート状に配列したシート状強化部材(II)と樹脂部材(III)、(IIIa)、(IIIb)、および該シート状強化部材(II)と樹脂部材(III)、(IIIa)、(IIIb)との接合部にまたがる表面の一部または全部に鉛筆硬度が2H以上の硬質層(IV)が形成された構成を有している。   1, 2, and 3, the composite molded product (I) of the present invention is a sheet-like reinforcement in which continuous fibers provided with one square hole portion and one round hole portion are arranged in a sheet shape in one direction. The surface of the member (II) and the resin member (III), (IIIa), (IIIb), and the sheet-shaped reinforcing member (II) and the resin member (III), (IIIa), (IIIb) The hard layer (IV) having a pencil hardness of 2H or more is partially or entirely formed.

硬質層(IV)を設ける理由は、複合成形品(I)の使用中に外部からの傷付きを抑制し、高意匠性を維持することである。さらに表面が傷つけられることで強化繊維が表面に露出して切断され、強化繊維のささくれにより指などに刺さって負傷させることを抑制するといった安全性も向上させることができる。   The reason for providing the hard layer (IV) is to suppress external scratches during use of the composite molded product (I) and maintain high designability. Further, the safety can be improved such that the reinforcing fiber is exposed and cut on the surface due to the surface being damaged and the reinforcing fiber is prevented from being stabbed into a finger or the like and being injured.

前記目的を達するためには、硬質層(IV)は、鉛筆硬度が2H以上のものを用いる。なお、鉛筆硬度は高いほど好ましく、硬質層(IV)を形成する母材の種類にもよるが、現状では鉛筆硬度は5H程度が技術レベルである。また、硬質層(IV)の形成方法については、特に限定はしないが、短期間で硬化が可能であり量産効率がよく、かつ硬化させる際の熱履歴が小さく、成形品への熱影響の少なくてすむことから光硬化型樹脂、触媒硬化型樹脂、電子線硬化型樹脂のいずれかで形成させることが好ましい。これら光硬化型、触媒硬化型、電子線硬化型樹脂の主成分としては、不飽和ポリエステル樹脂、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート、不飽和アクリル樹脂等が例示でき、硬化方法により例えば光硬化型樹脂では、光重合開始剤としてクロロチオキサントン、イソプロピルチオキサントン、ベンジル、ベンゾフェノン、メチルベンジルフォルメート、ヘキサクロロエタン等をが重合開始剤として添加される。また、触媒硬化型樹脂では、例えば過酸化ベンゾイル、過酸化メチルエチルケトン等がラジカル重合触媒として添加されるることで硬化を促進させる。   In order to achieve the object, the hard layer (IV) having a pencil hardness of 2H or more is used. The higher the pencil hardness, the better. Depending on the type of the base material for forming the hard layer (IV), the pencil hardness is about 5H at present. In addition, the formation method of the hard layer (IV) is not particularly limited, but it can be cured in a short period of time, has high mass production efficiency, has a small heat history during curing, and has little thermal effect on the molded product. Therefore, it is preferable to form the photocurable resin, the catalyst curable resin, or the electron beam curable resin. Examples of the main components of these photo-curing type, catalyst-curing type, and electron beam curable resins include unsaturated polyester resins, epoxy acrylates, urethane acrylates, polyester acrylates, polyether acrylates, and unsaturated acrylic resins. For example, in a photocurable resin, chlorothioxanthone, isopropylthioxanthone, benzyl, benzophenone, methylbenzyl formate, hexachloroethane, or the like is added as a polymerization initiator as a photopolymerization initiator. In addition, in the case of a catalyst curable resin, for example, benzoyl peroxide, methyl ethyl ketone peroxide, or the like is added as a radical polymerization catalyst to promote curing.

硬質層(IV)が形成される複合成形品(I)の表面、特にシート状強化部材(II)と樹脂部材(III)との接合部において、図3に示したように、間隙Sや表面高低差(段差)Dがあると硬質層(IV)がその部分で不均一になり、外観意匠性を大きく低下し、商品価値を損なうことになる。高意匠性を満足しつつ、硬質層(IV)による耐傷性を達成するためには、シート状強化部材(II)と樹脂部材(III)との接合部の間隙Sは0〜50μmとするものであり、好ましくは0〜30μmとするものである。また同様に表面高低差Dも0〜50μmとするものであり、好ましくは0〜30μmとするものである。   As shown in FIG. 3, the surface of the composite molded product (I) on which the hard layer (IV) is formed, particularly the joint between the sheet-like reinforcing member (II) and the resin member (III), If there is an elevation difference (level difference) D, the hard layer (IV) becomes non-uniform in that portion, the appearance design is greatly reduced, and the commercial value is impaired. In order to achieve scratch resistance due to the hard layer (IV) while satisfying high designability, the gap S between the joint portions of the sheet-like reinforcing member (II) and the resin member (III) is set to 0 to 50 μm. And preferably 0 to 30 μm. Similarly, the surface height difference D is also 0 to 50 μm, preferably 0 to 30 μm.

なお、鉛筆硬度の測定はJIS K5400に記載されている方法で測定する。また、接合部の間隙Sおよび表面高低差Dは表面粗さ測定器で測定し最大高さとした。   The pencil hardness is measured by the method described in JIS K5400. Further, the gap S and the surface height difference D of the joint were measured with a surface roughness measuring device and set to the maximum height.

シート状強化部材(II)と樹脂部材(III)とを一体化する方法として、予め各々別々に製造した後、接着剤、熱溶着、振動溶着、超音波溶着、レーザー溶着、熱圧着などにより一体化させてもよいが、別々に部材製造する場合には上記間隙および表面高低差の精度を達成するためには極めて精度の高い金型で各部材を製造および管理する必要があるが、生産性が極めて低くなる。そのため、シート状強化部材(II)に直接射出成形により、樹脂部材(III)、(IIIa)、(IIIb)を設けることが生産性および寸法精度の観点から好ましい。ただ、射出樹脂は成形の際に収縮を伴うため、射出成形品自体は金型寸法より小さくなるため、成形収縮率の大きな樹脂は、上記間隙、および表面高低差の精度が達成できなくなる。そのため、射出成形に用いられる樹脂部材(III)は、樹脂流動方向の成形収縮率が0〜0.5%であることが好ましい。さらに好ましくは0〜0.3%である。これにより、シート状強化部材(II)に発生する反りやねじれも低減することができる。さらに、強化繊維が含まれた射出樹脂を選定することで成形収縮率がより小さくなる傾向があり、上記間隙および表面高低差を小さくでき、反りやねじれをより低減するだけでなく、複合成形品(I)全体の剛性向上も図ることができ好ましい。さらに、炭素繊維を強化繊維とすることがなお好ましい。なお、成形収縮率の測定はJIS K7152に記載されている方法で測定する。   As a method of integrating the sheet-like reinforcing member (II) and the resin member (III), each is manufactured separately beforehand, and then integrated by adhesive, thermal welding, vibration welding, ultrasonic welding, laser welding, thermocompression bonding, etc. However, when manufacturing components separately, it is necessary to manufacture and manage each component with a highly accurate mold in order to achieve the accuracy of the gap and surface height difference. Is extremely low. Therefore, it is preferable from the viewpoint of productivity and dimensional accuracy to provide the resin members (III), (IIIa), and (IIIb) by direct injection molding on the sheet-like reinforcing member (II). However, since the injection resin is shrunk during molding, the injection molded product itself is smaller than the mold size. Therefore, the resin having a large molding shrinkage cannot achieve the accuracy of the gap and the surface height difference. Therefore, the resin member (III) used for injection molding preferably has a molding shrinkage in the resin flow direction of 0 to 0.5%. More preferably, it is 0 to 0.3%. Thereby, the curvature and twist which generate | occur | produce in sheet-like reinforcement member (II) can also be reduced. In addition, by selecting an injection resin containing reinforcing fibers, the molding shrinkage tends to be smaller, the gap and surface height difference can be reduced, and not only warping and twisting are further reduced, but also composite molded products. (I) It is preferable because the overall rigidity can be improved. Furthermore, it is still more preferable to use carbon fibers as reinforcing fibers. The molding shrinkage is measured by the method described in JIS K7152.

複合成形品(I)における樹脂部材(III)の割合は、成形収縮率の観点から必要最低限で形状機能が必要な部分のみとし、極力小さくすることが好ましい。さらにこれによりシート状強化部材(II)の割合が増すので、強度および剛性面からも有効である。   The ratio of the resin member (III) in the composite molded product (I) is preferably the minimum necessary from the viewpoint of molding shrinkage, and is preferably as small as possible. Further, this increases the proportion of the sheet-like reinforcing member (II), which is effective from the viewpoint of strength and rigidity.

なお、形状設計上でどうしても樹脂部材(III)を大きくする必要があるなど、間隙および表面高低差が大きくなる場合には、硬化層(IV)の形成前にサンディングを行ったり、パテなどの充填材で間隙および表面高低差を小さく調整することでも対応することができる。   If the gap and the surface height difference are large due to the necessity of enlarging the resin member (III) in shape design, sanding or filling of putty etc. is performed before forming the hardened layer (IV). This can also be dealt with by adjusting the gap and the surface height difference to be small.

シート状強化部材(II)に孔部を設ける理由は、例えばノートパソコン用筐体ではカメラレンズ取り付け用の孔や会社名が明示されたロゴ用の台座部を設けたい要求があるためである。このような場合、一般的にはシート状強化部材(II)に孔部や切り欠き部、凹部を穿孔、切削、ザグリなどの加工により形成するが、このとき連続な強化繊維の一部を切断するため、該孔部、切り欠き部、凹部の加工面は強化繊維がささくれ、外観を著しく低下させるばかりか、成形品の製造または使用中にささくれや剥がれが生じやすくなる。最悪は指などに刺さって負傷させてしまう危険性があるため、該孔部、切り欠き部、凹部の加工面に樹脂部材(IIIa)、(IIIb)を設けることで安全性を高めることができ、さらには複雑な形状のため、強化繊維の切断による乱れの影響によりシート状強化部材(II)が充分な加工寸法精度が得られない場合でも、樹脂部材(IIIa)、(IIIb)を孔部に設けることで、寸法精度を確保することができる。樹脂部材(III)、(IIIa)、(IIIb)は一般的に金型に樹脂を流して成形されるため、寸法精度を確保することは容易である。   The reason for providing a hole in the sheet-like reinforcing member (II) is that, for example, there is a need to provide a camera lens mounting hole or a logo pedestal with a company name clearly specified in a notebook PC housing. In such cases, generally, holes, notches, and recesses are formed in the sheet-like reinforcing member (II) by drilling, cutting, counterbore, etc., but at this time, a part of continuous reinforcing fibers is cut. For this reason, the processed surfaces of the hole, the notch and the concave portion are not only reinforced by the reinforcing fibers, and the appearance is remarkably deteriorated, but also during the production or use of the molded product, the surface is easily crushed and peeled off. In the worst case, there is a risk of being stabbed into a finger or the like to cause injury, so the safety can be improved by providing resin members (IIIa) and (IIIb) on the processed surfaces of the hole, notch and recess. Further, because of the complicated shape, even if the sheet-like reinforcing member (II) cannot obtain sufficient processing dimensional accuracy due to the influence of disturbance due to the cutting of the reinforcing fibers, the resin members (IIIa) and (IIIb) are formed in the holes. By providing in, dimensional accuracy can be ensured. Since the resin members (III), (IIIa), and (IIIb) are generally formed by pouring resin into a mold, it is easy to ensure dimensional accuracy.

なお、樹脂部材(III)、(IIIa)および(IIIb)は同一材料であってもよいが、例えば一部に弾力性や導電性を持たせたいとかといった必要機能により、それぞれ異なる樹脂で形成しても良い。さらに、樹脂部材(IIIa)のようにシート状強化部材(II)の角孔部全体に形成し、該各孔部を閉鎖しかつ会社名が明示されたロゴ用の台座部として断面が凹形状とすることもできるし、樹脂部材(IIIb)のようにシート状強化部材(II)の丸孔部の加工面部分のみを形成し、孔部形状を残すこともできる。なお、シート状強化部材(II)に形成する形状は孔部形状のみに限らず、切り欠き部形状、凹部形状でもよく、後加工を施したどのような形状でも構わない。また、該後加工部分に形成する樹脂部材(IIIa)、(IIIb)の形状は図2に示した形状のみに限らず、要求形状に合わせた任意の形状でも構わない。   The resin members (III), (IIIa), and (IIIb) may be made of the same material, but may be formed of different resins depending on the necessary functions such as, for example, providing some elasticity or conductivity. May be. Furthermore, it is formed in the entire square hole portion of the sheet-like reinforcing member (II) like the resin member (IIIa), and the cross section is concave as a pedestal portion for a logo in which each hole portion is closed and the company name is clearly indicated. It is also possible to form only the processed surface portion of the round hole portion of the sheet-like reinforcing member (II) like the resin member (IIIb), and leave the hole shape. The shape formed on the sheet-like reinforcing member (II) is not limited to the hole shape, but may be a notch shape or a concave shape, or any shape that has been post-processed. Further, the shape of the resin members (IIIa) and (IIIb) formed in the post-processed portion is not limited to the shape shown in FIG. 2, but may be any shape that matches the required shape.

連続繊維を一方向にシート状に配列した繊維強化層を含む繊維強化層体からなるシート状強化部材(II)の製造方法としては、プレス成形、ハンドレイアップ成形法、スプレーアップ成形法、真空バック成形法、加圧成形法、オートクレーブ成形法、トランスファー成形法などの熱硬化樹脂を使用した方法、およびプレス成形、スタンピング成形法などの熱可塑性樹脂を使用した方法などが挙げられる。とりわけ、プロセス性、力学特性の観点から真空バック成形法、プレス成形法、トランスファー成形法などが好適に用いられる。   As a method for producing a sheet-like reinforcing member (II) comprising a fiber reinforced layer body including a fiber reinforced layer in which continuous fibers are arranged in a sheet shape in one direction, press molding, hand lay-up molding method, spray-up molding method, vacuum Examples thereof include a method using a thermosetting resin such as a back molding method, a pressure molding method, an autoclave molding method and a transfer molding method, and a method using a thermoplastic resin such as a press molding and a stamping molding method. In particular, vacuum back molding, press molding, transfer molding, and the like are preferably used from the viewpoint of processability and mechanical properties.

連続繊維とは10mm以上の長さの連続した繊維が配列されている状態であって、必ずしも繊維強化層全体にわたって連続した繊維である必要はなく、途中で分断されていても特に問題はない。具体的な繊維の形態としては、フィラメント、クロス、一方向引き揃え(UD)、ブレイド、マルチフィラメントや紡績糸をドラムワインドなどで一方向に引き揃えた形態の強化材などの形態が例示できるが、プロセス面の観点から、クロス、UDが好適に使用される。また、これらの強化形態は単独で使用しても、2種以上の強化形態を併用してもよい。   The continuous fiber is a state in which continuous fibers having a length of 10 mm or more are arranged, and is not necessarily a continuous fiber throughout the fiber reinforced layer, and there is no particular problem even if it is divided in the middle. Examples of specific fiber forms include filaments, crosses, unidirectional drawing (UD), braids, multifilaments, and reinforcing materials in a form in which spun yarns are arranged in one direction with a drum wind or the like. From the viewpoint of process, cloth and UD are preferably used. Moreover, these strengthening forms may be used independently or may use 2 or more types of strengthening forms together.

具体的な連続繊維としては、例えばアルミニウム繊維、黄銅繊維、ステンレス繊維などの金属繊維、ポリアクリロニトリル系、レーヨン系、リグニン系、ピッチ系の炭素繊維、黒鉛繊維などの単独で導電性を示す繊維の他に、ガラス繊維などの絶縁性繊維や、アラミド繊維、ポリパラフェニレンベンズオキサゾール(PBO)繊維、ポリフェニレンスルフィド繊維、ポリエステル繊維、アクリル繊維、ナイロン繊維、ポリエチレン繊維などの有機繊維、およびシリコンカーバイト繊維、シリコンナイトライド繊維などの無機繊維が例示できる。   Specific continuous fibers include, for example, metal fibers such as aluminum fibers, brass fibers, and stainless fibers, polyacrylonitrile-based, rayon-based, lignin-based, pitch-based carbon fibers, and fibers that exhibit conductivity alone. In addition, insulating fibers such as glass fibers, organic fibers such as aramid fibers, polyparaphenylene benzoxazole (PBO) fibers, polyphenylene sulfide fibers, polyester fibers, acrylic fibers, nylon fibers, polyethylene fibers, and silicon carbide fibers Examples thereof include inorganic fibers such as silicon nitride fibers.

これらの連続繊維は単独で用いても、また、2種以上併用しても良い。中でも、比強度、比剛性、軽量性のバランスの観点から炭素繊維、とりわけ安価なコストを実現できる点でポリアクリロニトリル系炭素繊維が好適に用いられる。   These continuous fibers may be used alone or in combination of two or more. Among these, carbon fiber, particularly polyacrylonitrile-based carbon fiber is preferably used from the viewpoint of the balance of specific strength, specific rigidity, and light weight, and in particular, at a low cost.

繊維強化層体のマトリックスとしては、熱可塑性樹脂、熱硬化性樹脂、または金属などを用いることができる。かかる熱可塑性樹脂としては、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンナフタレート(PEN)、液晶ポリエステルなどのポリエステルや、ポリエチレン(PE)、ポリプロピレン(PP)、ポリブチレンなどのポリオレフィンや、スチレン系樹脂の他や、ポリオキシメチレン(POM)、ポリアミド(PA)、ポリカーボネート(PC)、ポリメチレンメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフェニレンスルフィド(PPS)、ポリフェニレンエーテル(PPE)、変性PPE、熱可塑性ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、ポリスルホン(PSU)、変性PSU、ポリエーテルスルホン(PES)、ポリケトン(PK)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンケトン(PEKK)、ポリアリレート(PAR)、ポリエーテルニトリル(PEN)、熱可塑性フェノール系樹脂、フェノキシ樹脂、ポリテトラフルオロエチレンなどのフッ素系樹脂、さらにポリスチレン系、ポリオレフィン系、ポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系、ポリイソプレン系、フッ素系などの熱可塑エラストマーなどや、これらの共重合体、変性体、および2種類以上ブレンドした樹脂などが挙げられる。   As the matrix of the fiber reinforced layered body, a thermoplastic resin, a thermosetting resin, a metal, or the like can be used. Examples of the thermoplastic resin include polyesters such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polyethylene naphthalate (PEN), liquid crystal polyester, polyethylene (PE), and polypropylene. (PP), polyolefins such as polybutylene, styrene resins, polyoxymethylene (POM), polyamide (PA), polycarbonate (PC), polymethylene methacrylate (PMMA), polyvinyl chloride (PVC), polyphenylene sulfide (PPS), polyphenylene ether (PPE), modified PPE, thermoplastic polyimide (PI), polyamideimide (PAI), polyetherimide (PEI), polysulfone (PSU), PSU, polyethersulfone (PES), polyketone (PK), polyetherketone (PEK), polyetheretherketone (PEEK), polyetherketoneketone (PEKK), polyarylate (PAR), polyethernitrile (PEN) , Fluoroplastics such as thermoplastic phenolic resins, phenoxy resins, polytetrafluoroethylene, and thermoplastic elastomers such as polystyrene, polyolefin, polyurethane, polyester, polyamide, polybutadiene, polyisoprene, and fluorine And these copolymers, modified products, and resins obtained by blending two or more types.

熱硬化性樹脂としては、例えば、不飽和ポリエステル、ビニルエステル、エポキシ、フェノール(レゾール型)、ユリア・メラミン、ポリイミドなどや、これらの共重合体、変性体、および、これらの少なくとも2種をブレンドした樹脂などが挙げられる。とりわけ繊維強化層体の剛性、強度に優れる熱硬化性樹脂、なかでもエポキシ樹脂を主成分とする熱硬化性樹脂が成形品の力学特性の観点から好ましい。   Examples of thermosetting resins include unsaturated polyesters, vinyl esters, epoxies, phenols (resol type), urea melamines, polyimides, copolymers, modified products, and blends of at least two of these. Resin and the like. In particular, a thermosetting resin excellent in rigidity and strength of the fiber reinforced layer body, particularly a thermosetting resin mainly composed of an epoxy resin is preferable from the viewpoint of the mechanical properties of the molded product.

さらに耐衝撃性向上のために、上記熱可塑性樹脂および熱硬化性樹脂にその他のエラストマーもしくはゴム成分を添加した樹脂であってもよい。   Furthermore, in order to improve impact resistance, a resin obtained by adding another elastomer or a rubber component to the thermoplastic resin and the thermosetting resin may be used.

また、樹脂に限らず、チタン、マグネシウム、アルミなどの金属でもよい。   Moreover, not only resin but metals, such as titanium, magnesium, and aluminum, may be sufficient.

繊維強化層体を構成する連続繊維の割合は、成形性、力学特性の観点から20〜90体積%が好ましく、30〜80体積%がより好ましい。なお、体積%の測定はJIS K 7075に記載されている方法で測定する。   20 to 90 volume% is preferable from a viewpoint of a moldability and a dynamic characteristic, and, as for the ratio of the continuous fiber which comprises a fiber reinforcement layer body, 30 to 80 volume% is more preferable. The volume% is measured by the method described in JIS K7075.

また、本発明の複合成形品(I)は、その機能を最大限に発揮するために、シート状強化部材(II)と樹脂部材(III)は強固に接合していることが好ましく、強固に接合させるために、シート状強化部材(II)と樹脂部材(III)が熱可塑性樹脂組成物(V)を介して接合されていることが好ましい。さらに好ましくは、シート状強化部材(II)と樹脂部材(III)を接合させるプロセス時に熱可塑性樹脂組成物(V)を溶融させることであり、熱可塑性樹脂組成物(V)が接合層としてシート状強化部材(II)と樹脂部材(III)の間に行き渡ることができる。   In addition, the composite molded article (I) of the present invention preferably has a strong bonding between the sheet-like reinforcing member (II) and the resin member (III) in order to maximize its functions. In order to join, it is preferable that the sheet-like reinforcing member (II) and the resin member (III) are joined via the thermoplastic resin composition (V). More preferably, the thermoplastic resin composition (V) is melted during the process of bonding the sheet-like reinforcing member (II) and the resin member (III), and the thermoplastic resin composition (V) is used as a bonding layer. The reinforcing member (II) and the resin member (III) can be distributed.

さらに、接合性を向上させる観点から、予めシート状強化部材(II)と熱可塑性樹脂組成物(V)とを一体化成形しておくことが好ましい。   Furthermore, it is preferable that the sheet-like reinforcing member (II) and the thermoplastic resin composition (V) are integrally formed in advance from the viewpoint of improving the bondability.

さらに、シート状強化部材(II)と樹脂部材(III)の接合を高めるために互いの樹脂の溶解度パラメータ(SP値)を近づけることが好ましく、樹脂部材(III)を構成する樹脂の溶解度パラメータ(SP値)δAと熱可塑性樹脂組成物(V)を構成する樹脂の溶解度パラメータ(SP値)δBの差の絶対値(|δAーδB|)が0〜1.2であることが好ましい。より好ましくは0〜1.0である。   Further, in order to enhance the bonding between the sheet-like reinforcing member (II) and the resin member (III), it is preferable to bring the mutual solubility parameters (SP values) of the resins close to each other, and the solubility parameter of the resin constituting the resin member (III) ( The absolute value (| δA−δB |) of the difference between the SP value) δA and the solubility parameter (SP value) δB of the resin constituting the thermoplastic resin composition (V) is preferably 0 to 1.2. More preferably, it is 0-1.0.

溶解度パラメータδ(SP値)は、フェダーズ(Fedors)の方法により決定される25℃におけるポリマーの繰り返し単位の値を指す。該方法は下記文献1、2に記載されている。すなわち、求める化合物の構造式において、原子および原子団の蒸発エネルギーとモル体積のデータより次式により決定される。   The solubility parameter δ (SP value) refers to the value of the repeating unit of the polymer at 25 ° C. determined by the method of Fedors. This method is described in the following documents 1 and 2. That is, in the structural formula of the desired compound, it is determined by the following formula from the data of the evaporation energy and molar volume of atoms and atomic groups.

溶解度パラメータδ(SP値)=(ΣΔei/ΣΔvi)1/2
ただし、式中、ΔeiおよびΔviは、それぞれ原子または原子団の蒸発エネルギーおよびモル体積を表す。求める化合物の構造式はIR、NMR、マススペクトルなどの通常の構造分析手法を用いて決定する。
(文献1)R.F.Fedors,Polym.Eng.Sci.,14(2),147(1974)
(文献2)向井淳二及び金城徳幸著「技術者のための実学高分子」
(講談社,1981年10月1日発行)第66〜87頁
熱可塑性樹脂組成物(V)を構成する樹脂としては、例えば、ポリアミド系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、スチレン系樹脂、エチレン−酢酸ビニル共重合(EVA)樹脂、ウレタン系樹脂、アクリル系樹脂、ポリフェニレンサルファイド(PPS)系樹脂、これらの共重合体、変性体、および、これらの少なくとも2種類をブレンドした樹脂がある。必要に応じ、添加剤、充填材などを含んでいても良い。充填剤あるいは添加剤としては、無機充填剤、難燃剤、導電性付与剤、結晶核剤、紫外線吸収剤、酸化防止剤、制振剤、抗菌剤、防虫剤、防臭剤、着色防止剤、熱安定剤、離型剤、帯電防止剤、可塑剤、滑剤、着色剤、顔料、発泡剤、カップリング剤などがある。
Solubility parameter δ (SP value) = (ΣΔei / ΣΔvi) 1/2
In the formula, Δei and Δvi represent the evaporation energy and molar volume of an atom or atomic group, respectively. The structural formula of the compound to be determined is determined using a general structural analysis technique such as IR, NMR, and mass spectrum.
(Reference 1) RFFedors, Polym. Eng. Sci., 14 (2), 147 (1974)
(Reference 2) Shinji Mukai and Noriyuki Kaneshiro “Practical polymers for engineers”
(Kodansha, published on October 1, 1981) Pages 66-87 Examples of the resin constituting the thermoplastic resin composition (V) include polyamide resins, polyester resins, polycarbonate resins, styrene resins, and ethylene. -There are vinyl acetate copolymer (EVA) resin, urethane resin, acrylic resin, polyphenylene sulfide (PPS) resin, copolymers, modified products, and resins obtained by blending at least two of them. If necessary, an additive, a filler and the like may be included. As fillers or additives, inorganic fillers, flame retardants, conductivity imparting agents, crystal nucleating agents, ultraviolet absorbers, antioxidants, vibration damping agents, antibacterial agents, insect repellents, deodorants, coloring inhibitors, heat There are stabilizers, mold release agents, antistatic agents, plasticizers, lubricants, colorants, pigments, foaming agents, coupling agents and the like.

本発明の複合成形品(I)は、その用途に対する特性として、難燃性を有していることが好ましく、シート状強化部材(II)および樹脂部材(III)のUL−94に基づく難燃性が0.1〜1.6mmのいずれかの厚みの試験片でV−1またはV−0であることが好ましい。より好ましくは0.1〜1.0mmのいずれかの厚みの試験片でV−1またはV−0である。難燃性はUL−94規格に基づき、垂直燃焼試験により評価する。   The composite molded article (I) of the present invention preferably has flame retardancy as a characteristic for its use, and flame retardancy based on UL-94 of the sheet-like reinforcing member (II) and the resin member (III) The test piece having a thickness of 0.1 to 1.6 mm is preferably V-1 or V-0. More preferably, it is V-1 or V-0 in the test piece of any thickness of 0.1-1.0 mm. Flame retardancy is evaluated by a vertical combustion test based on the UL-94 standard.

また、難燃性を付与するためにシート状強化部材(II)および樹脂部材(III)が少なくともリン系の難燃剤を含むことが好ましい。リン系の難燃剤としては例えば、リン酸エステル、縮合リン酸エステル、ホスファフェナントレン系化合物などのリン含有化合物や赤リンが好ましく用いられる。なかでも赤リンは、難燃剤を付与する働きをするリン原子含有率が大きいため、十分な難燃効果を得るために加えるべき難燃剤の添加量が少量でよいため好ましい。   In order to impart flame retardancy, it is preferable that the sheet-like reinforcing member (II) and the resin member (III) include at least a phosphorus-based flame retardant. As the phosphorus-based flame retardant, for example, phosphorus-containing compounds such as phosphate esters, condensed phosphate esters, and phosphaphenanthrene compounds, and red phosphorus are preferably used. Among these, red phosphorus is preferable because it has a high phosphorus atom content that serves to impart a flame retardant, so that a small amount of flame retardant should be added to obtain a sufficient flame retardant effect.

樹脂部材(III)に使用される樹脂としては特に制限はなく、とりわけ、耐熱性、耐薬品性の観点からはPPS樹脂が、成形品外観、寸法安定性の観点からはポリカーボネート樹脂やスチレン系樹脂が、成形品の強度、耐衝撃性の観点からはポリアミド樹脂がより好ましく用いられる。   The resin used for the resin member (III) is not particularly limited. In particular, PPS resin is used from the viewpoint of heat resistance and chemical resistance, and polycarbonate resin and styrene resin are used from the viewpoint of molded product appearance and dimensional stability. However, a polyamide resin is more preferably used from the viewpoint of the strength and impact resistance of the molded product.

さらに複合成形品(I)をより高強度および高剛性化を図るために樹脂部材(III)の樹脂として、強化繊維を含有させたものを用いても良い。強化繊維としては、例えばアルミニウム繊維、黄銅繊維、ステンレス繊維などの金属繊維、ポリアクリロニトリル系、レーヨン系、リグニン系、ピッチ系の炭素繊維、黒鉛繊維などの単独で導電性を示す繊維の他に、ガラス繊維などの絶縁性繊維や、アラミド繊維、PBO繊維、ポリフェニレンスルフィド繊維、ポリエステル繊維、アクリル繊維、ナイロン繊維、ポリエチレン繊維などの有機繊維、およびシリコンカーバイト繊維、シリコンナイトライド繊維などの無機繊維が例示できる。   Further, in order to increase the strength and rigidity of the composite molded product (I), a resin containing reinforcing fibers may be used as the resin of the resin member (III). As reinforcing fibers, for example, metal fibers such as aluminum fibers, brass fibers, stainless steel fibers, polyacrylonitrile-based, rayon-based, lignin-based, pitch-based carbon fibers, fibers exhibiting conductivity alone such as graphite fibers, Insulating fibers such as glass fibers, organic fibers such as aramid fibers, PBO fibers, polyphenylene sulfide fibers, polyester fibers, acrylic fibers, nylon fibers, polyethylene fibers, and inorganic fibers such as silicon carbide fibers and silicon nitride fibers It can be illustrated.

これらの連続繊維は単独で用いても、また、2種以上併用しても良い。中でも、比強度、比剛性、軽量性のバランスの観点から炭素繊維、とりわけ安価なコストを実現できる点でポリアクリロニトリル系炭素繊維が好適に用いられる。   These continuous fibers may be used alone or in combination of two or more. Among these, carbon fiber, particularly polyacrylonitrile-based carbon fiber is preferably used from the viewpoint of the balance of specific strength, specific rigidity, and light weight, and in particular, at a low cost.

さらに、樹脂部材(III)を構成する樹脂には、要求される特性に応じ、本発明の目的を損なわない範囲で他の充填材や添加剤を含有しても良い。例えば、無機充填材、リン系以外の難燃剤、導電性付与剤、結晶核剤、紫外線吸収剤、酸化防止剤、制振剤、抗菌剤、防虫剤、防臭剤、着色防止剤、熱安定剤、離型剤、帯電防止剤、可塑剤、滑剤、着色剤、顔料、染料、発泡剤、制泡剤、カップリング剤などが挙げられる。   Furthermore, the resin constituting the resin member (III) may contain other fillers and additives within a range that does not impair the object of the present invention, depending on required characteristics. For example, inorganic fillers, non-phosphorous flame retardants, conductivity imparting agents, crystal nucleating agents, ultraviolet absorbers, antioxidants, vibration damping agents, antibacterial agents, insect repellents, deodorants, anti-coloring agents, heat stabilizers , Mold release agents, antistatic agents, plasticizers, lubricants, colorants, pigments, dyes, foaming agents, antifoaming agents, coupling agents and the like.

図4は、図1に例示した複合成形品(I)の分解斜視図である。   FIG. 4 is an exploded perspective view of the composite molded article (I) illustrated in FIG.

図4において、本発明の複合成形品(I)は連続繊維を一方向にシート状に配列した繊維強化層を4層有したシート状強化部材(II)としているが、繊維強化層を4層としている理由は、連続繊維による繊維強化層は金属とは異なり、繊維方向には強く、繊維方向以外の方向には弱いといった方向により力学的特性が異なる異方性材料であるため(一例を挙げると炭素繊維による繊維強化層は繊維方向の曲げ弾性率に対し、繊維方向と直角方向の曲げ弾性率は約1/5程度である。)、このような材料を筐体に用いる場合、ある方向では強度的に満足できていてもそのほかの方向では満足できないということが起こり得る。このため、繊維強化層の繊維方向を強度が要求される方向に適切に配列することが必要となる。   In FIG. 4, the composite molded product (I) of the present invention is a sheet-like reinforcing member (II) having four fiber reinforced layers in which continuous fibers are arranged in a sheet shape in one direction. The reason is that the fiber reinforced layer made of continuous fibers is an anisotropic material that has different mechanical properties depending on the direction, which is strong in the fiber direction and weak in the direction other than the fiber direction, unlike metal. And the fiber reinforced layer made of carbon fiber has a bending elastic modulus in the direction perpendicular to the fiber direction of about 1/5 with respect to the bending elastic modulus in the fiber direction.) Then, even if it is satisfactory in terms of strength, it may happen that it cannot be satisfied in other directions. For this reason, it is necessary to arrange the fiber direction of a fiber reinforcement layer appropriately in the direction where strength is required.

しかし、繊維強化層は、連続繊維のマトリックスとして樹脂や金属を用いて一般的には加圧および加熱により成形を行っているため、ただ、闇雲に繊維方向を定めても各方向での成形収縮率や引っ張り強度などの違いにより繊維強化層に反りやねじれが発生してしまうという問題が生じる。例えば、強化繊維が炭素繊維でマトリックス樹脂がエポキシ樹脂の場合、繊維方向の成形収縮率は繊維方向と直交する方向と比べ1/50程度と極めて小さい。このため、異方性を抑えつつ、かつ成形時に反りやねじれなどが少なく、寸法安定性の高いシート状強化部材(II)を得るためには、繊維配向が中立層を規準とし、上下対称となるように繊維強化層を配置した方が好ましい。ここで中立層とは、積層方向に対し、中央層のことである。具体的には、積層数が(2×n)層(nは正の整数)の場合はn層目と(n+1)層目の間の層を示し、積層数が(2×n−1)層(nは正の整数)の場合は、n層目のことである。なお、繊維強化層の層数はここでは4層としているが、特に限定するものではなく、厚み厚くしたいときにはより多く積層し、逆に薄くしたい場合は、層数を減らすといった必要厚み、必要強度などによって適切に選定することが好ましい。ただ、上述した異方性を低減し、より剛性バランスのとれたシート状強化部材(II)とするためには繊維強化層を複数層積層することが好ましい。   However, the fiber reinforced layer is generally molded by pressurization and heating using resin or metal as a continuous fiber matrix, so even if the fiber direction is determined in the dark clouds, molding shrinkage in each direction There arises a problem that warping or twisting occurs in the fiber reinforced layer due to a difference in rate or tensile strength. For example, when the reinforcing fibers are carbon fibers and the matrix resin is an epoxy resin, the molding shrinkage in the fiber direction is extremely small, about 1/50 compared with the direction orthogonal to the fiber direction. For this reason, in order to obtain a sheet-shaped reinforcing member (II) having low anisotropy and less warping or twisting during molding and having high dimensional stability, the fiber orientation is based on the neutral layer, and is vertically symmetrical It is preferable to dispose the fiber reinforced layer as described above. Here, the neutral layer is a central layer with respect to the stacking direction. Specifically, when the number of stacked layers is (2 × n) layers (n is a positive integer), the layers between the nth layer and the (n + 1) th layer are shown, and the number of stacked layers is (2 × n−1). In the case of a layer (n is a positive integer), it is the nth layer. The number of fiber reinforced layers is four here, but it is not particularly limited. When the thickness is desired to be increased, the number of layers is increased. On the other hand, when the thickness is desired to be decreased, the required thickness and required strength are reduced. It is preferable to select appropriately according to the above. However, in order to reduce the above-described anisotropy and obtain a sheet-like reinforcing member (II) with a more balanced stiffness, it is preferable to laminate a plurality of fiber reinforced layers.

特にノートパソコン用筐体の場合、特に外力から筐体内部部品を保護するため、外力を受けてもよりたわまないこと、すなわち曲げ剛性を高めることが要求されるが、この場合、シート状強化部材(II)の最外層の強化繊維の方向がシート状強化部材(II)のほぼ短辺方向(1a)になるように配置することが曲げ剛性向上の観点から好ましい。例えば、長辺と短辺との比が2である長方形形状の炭素繊維強化シート状強化部材(II)を3層構成で製造する場合、1層目の強化繊維の方向を短辺方向(1a)に、2層目の強化繊維の方向を長辺方向(1b)に、3層目の強化繊維の方向を短辺方向に(1a)積層したものは、1層目の強化繊維の方向を長辺方向(1b)に、2層目の強化繊維の方向を短辺方向(1a)に、3層目の強化繊維の方向を長辺方向(1b)に積層したものと比べ、一定荷重がかかった場合のたわみは1/2程度となる。また、より軽量化を図りたい場合は繊維強化層間に軽量な樹脂部材、より好ましくは発泡樹脂部材などをサンドイッチしたサンドイッチ構成のシート状強化部材(II)を用いることもできる。材料力学上、曲げ剛性はシート状強化部材(II)の表層に近い層の剛性の影響が前述した中立層に近い層の剛性の影響に比べ極めて大きいため、表層は繊維強化層で、中立層は軽量樹脂部材で構成することでシート状強化部材(II)の軽量化を図りつつ、剛性も確保することができるためである。   In particular, in the case of a notebook computer case, in order to protect the internal parts of the case from external force, it is required to bend even when external force is applied, that is, to increase bending rigidity. It is preferable from the viewpoint of improving bending rigidity that the reinforcing fiber (II) is arranged so that the direction of the reinforcing fiber in the outermost layer is substantially the short side direction (1a) of the sheet-like reinforcing member (II). For example, when the rectangular carbon fiber reinforced sheet-shaped reinforcing member (II) having a ratio of the long side to the short side of 2 is manufactured in a three-layer configuration, the direction of the first layer of reinforcing fibers is the short side direction (1a ), The direction of the second layer reinforcing fiber is the long side direction (1b), the direction of the third layer reinforcing fiber is the short side direction (1a), and the direction of the first layer reinforcing fiber is In the long side direction (1b), the direction of the second layer reinforcing fiber is shorter than the direction of the short side (1a), and the direction of the third layer reinforcing fiber is longer than the direction of the long side (1b). When applied, the deflection is about ½. In order to further reduce the weight, it is also possible to use a sheet-shaped reinforcing member (II) having a sandwich structure in which a lightweight resin member, more preferably a foamed resin member, is sandwiched between fiber reinforced layers. In terms of material mechanics, the surface stiffness is a fiber reinforced layer and the neutral layer because the stiffness of the layer close to the surface layer of the sheet-like reinforcing member (II) is significantly greater than the stiffness of the layer near the neutral layer described above. This is because the rigidity of the sheet-like reinforcing member (II) can be ensured while the weight is reduced by constituting the lightweight resin member.

図5は、本発明の一実施例に係る射出成形金型の概略横断面図である。   FIG. 5 is a schematic cross-sectional view of an injection mold according to an embodiment of the present invention.

まず(a)孔部、(b)切り欠き部、および(c)凹部、からなる群より選ばれた1種以上の形状を有するシート状強化部材(II)を予め製造し、この部材を図5に示す金型内にセットした後、型締めを行い、樹脂部材(III)を射出成形することで該孔部、切り欠き部、凹部の加工面の少なくとも一部に樹脂部材(IIIa)、(IIIb)を形成して複合成形品(I)を製造する。   First, a sheet-shaped reinforcing member (II) having at least one shape selected from the group consisting of (a) hole, (b) notch, and (c) recess is produced in advance, and this member is illustrated in FIG. After being set in the mold shown in FIG. 5, the mold is clamped, and the resin member (IIIa) is formed on at least a part of the processed surface of the hole, notch, and recess by injection molding the resin member (III). (IIIb) is formed to produce a composite molded article (I).

図5で例示する金型は、雌金型2と雄金型3から構成されており、雄金型3には、樹脂部材(III)を射出成形するためのゲート4、角孔部に樹脂部材(IIIa)を射出成形するためのゲート4a、図示していない丸孔部に樹脂部材(IIIb)を射出成形するためのゲートおよびシート状強化部材(II)を雄型3内に固定するための吸着用孔5が設けられている。なお、シート状強化部材(II)の形状自体に穴部や凹凸形状がある場合は、雄金型3に該穴部、該凹凸部と勘合できるような図示していない位置決め部材やシート状強化部材(II)の外周の少なくとも一部を固定できるような位置決め部材6を予め設けておくことでシート状強化部材(II)を雄金型3内に固定することもできる。さらに樹脂部材(III)を型締め後、射出成形し複合成形品(I)を金型から取り出すための突き出しピン7も設けられている。   The mold illustrated in FIG. 5 includes a female mold 2 and a male mold 3. The male mold 3 includes a gate 4 for injection molding a resin member (III), and a resin in a square hole portion. In order to fix the gate 4a for injection molding of the member (IIIa), the gate for injection molding of the resin member (IIIb) in a round hole (not shown) and the sheet-like reinforcing member (II) in the male mold 3 The adsorption hole 5 is provided. In addition, when the shape of the sheet-like reinforcing member (II) itself has a hole or an uneven shape, a positioning member or a sheet-like reinforcing member (not shown) that can be fitted into the male mold 3 with the hole or the uneven portion. The sheet-shaped reinforcing member (II) can be fixed in the male mold 3 by providing in advance a positioning member 6 that can fix at least a part of the outer periphery of the member (II). Furthermore, an extrusion pin 7 is also provided for injection molding after the resin member (III) is clamped and taking out the composite molded product (I) from the mold.

かかる複合成形品(I)の用途としては、例えば、パソコン、ディスプレイ、OA機器、携帯電話、携帯情報端末、ファクシミリ、コンパクトディスク、ポータブルMD、携帯用ラジオカセット、PDA(電子手帳などの携帯情報端末)、ビデオカメラ、デジタルスチルカメラ、光学機器、オーディオ、エアコン、照明機器、娯楽用品、玩具用品、その他家電製品などの電気、電子機器の筐体およびトレイやシャーシなどの内部部材やそのケース、機構部品、自動車や航空機の電装部材、内部部品などが挙げられる。   Examples of applications of the composite molded product (I) include personal computers, displays, OA equipment, mobile phones, personal digital assistants, facsimile machines, compact discs, portable MDs, portable radio cassettes, PDAs (electronic notebooks, etc.) ), Video cameras, digital still cameras, optical equipment, audio equipment, air conditioners, lighting equipment, entertainment equipment, toy equipment, other electrical appliances such as home appliances, and internal components such as trays and chassis, cases and mechanisms thereof Examples include parts, electric parts for automobiles and aircraft, and internal parts.

とりわけ、本発明の複合成形品(I)はその優れた軽量性、高強度・高剛性、高意匠性、高耐傷性を活かして、電気、電子機器用筐体や外部部材用に好適であり、さらには薄肉で広い投影面積を必要とするノート型パソコンや携帯情報端末などの筐体として好適である。   In particular, the composite molded product (I) of the present invention is suitable for electrical and electronic equipment casings and external members by taking advantage of its excellent lightness, high strength and high rigidity, high designability, and high scratch resistance. Furthermore, it is suitable as a casing for a notebook personal computer or a portable information terminal that requires a thin and wide projection area.

以下に実施例を示し、本発明をさらに具体的に説明するが、下記実施例は本発明を何ら制限するものではなく、本発明の主旨を逸脱しない範囲で変更することは、本発明の技術範囲である。   The present invention will be described more specifically with reference to the following examples. However, the following examples are not intended to limit the present invention in any way, and modifications within the scope of the present invention may be made without departing from the spirit of the present invention. It is a range.

(実施例1)
シート状強化部材(II)として、炭素繊維一方向プリプレグ(UD PP)P3052S(東レ(株)製 炭素繊維T700S(強度4900MPa、弾性率230GPa)、炭素繊維含有率67重量%、炭素繊維目付125g/m、ベースレジン:エポキシ樹脂#2500)を4層積層し、最外層に熱可塑性樹脂組成物(V)としてポリアミド層 CM4000(東レ(株)製 3元共重合ポリアミド樹脂、ポリアミド6/66/610、融点150℃;溶解度パラメータδ(SP値)13.3)を1層積層したものをプレス成形(金型温度150℃、圧力1.5MPa、硬化時間30分、成形後の目標厚み0.5mm)して製造し、これを外形サイズ約300mm×230mmに加工後、シート状強化部材(II)内に40mm×30mmの角孔部1箇所およびφ10mmの丸孔部1箇所を設けたものを図5に示すような射出成形金型内にセットし、型締めを行った後、樹脂部材(III)として長繊維ペレット TLP1146S(東レ(株)製 炭素繊維含有量20%、ベースレジン:ポリアミド6;溶解度パラメータδ(SP値)13.6、樹脂流動方向成形収縮率:0.1%)を射出成形して複合成形品(I)を製造したところ、シート状強化部材(II)と樹脂部材(III)との接合部の間隙Sは最大で5μmであり、表面高低差Dは最大で10μmであった。その後、硬質層(IV)として、光硬化型(紫外線硬化型)塗料(オリジン電気(株)製 M−40)を形成したところ、外観意匠性も良好であり、かつ硬質層面の鉛筆硬度は2Hであり、爪で引っ掻いてもほとんど傷が付かなかった。
(Example 1)
As the sheet-like reinforcing member (II), carbon fiber unidirectional prepreg (UD PP) P3052S (manufactured by Toray Industries, Inc., carbon fiber T700S (strength 4900 MPa, elastic modulus 230 GPa), carbon fiber content 67% by weight, carbon fiber basis weight 125 g / m 2 , base resin: epoxy resin # 2500), and the outermost layer as a thermoplastic resin composition (V) is a polyamide layer CM4000 (manufactured by Toray Industries, Ltd., terpolymer polyamide resin, polyamide 6/66 / 610, melting point 150 ° C .; one layer of solubility parameter δ (SP value) 13.3) is press-molded (die temperature 150 ° C., pressure 1.5 MPa, curing time 30 minutes, target thickness after molding 0. 5mm), and after processing this into an external size of about 300mm x 230mm, 40mm x 30mm square holes in the sheet-like reinforcing member (II) After setting one place and one φ10mm round hole part in an injection mold as shown in FIG. 5 and performing mold clamping, long fiber pellets TLP1146S (Toray ( Co., Ltd. carbon fiber content 20%, base resin: polyamide 6; solubility parameter δ (SP value) 13.6, resin flow direction molding shrinkage: 0.1%) is injection molded to form a composite molded product (I) As a result, the gap S at the joint between the sheet-like reinforcing member (II) and the resin member (III) was 5 μm at the maximum, and the surface height difference D was 10 μm at the maximum. Then, when a photocurable (ultraviolet curable) paint (M-40 manufactured by Origin Electric Co., Ltd.) was formed as the hard layer (IV), the appearance design was good and the pencil hardness of the hard layer surface was 2H. Even if scratched with a nail, it was hardly scratched.

(実施例2)
シート状強化部材(II)として、炭素繊維一方向プリプレグ(UD PP)P3052S(東レ(株)製 炭素繊維T700S(強度4900MPa、弾性率230GPa)、炭素繊維含有率67重量%、炭素繊維目付200g/m、ベースレジン:エポキシ樹脂#2500)を2層積層した後、ポリプロピレン発泡材 “エフセル”(登録商標)RC2010(古河電工(株)製;厚み1.0mm)を1層積層し、さらに炭素繊維一方向プリプレグ(UD PP)P3052S(東レ(株)製 炭素繊維T700S(強度4900MPa、弾性率230GPa)、炭素繊維含有率67重量%、炭素繊維目付200g/m、ベースレジン:エポキシ樹脂#2500)を2層積層し、最外層に熱可塑性樹脂組成物(V)としてポリアミド層 CM4000(東レ(株)製 3元共重合ポリアミド樹脂、ポリアミド6/66/610、融点150℃;溶解度パラメータδ(SP値)13.3)を1層積層したものをプレス成形(金型温度145℃、圧力1.5MPa、硬化時間30分、成形後の目標厚み1.5mm)して製造し、これを300mm×230mmのサイズに加工後、シート状強化部材(II)内に40mm×30mmの角孔部1箇所およびφ10mmの丸孔部1箇所を設けたものを図5に示すような射出成形金型内にセットし、型締めを行った後、樹脂部材(III)として長繊維ペレット TLP1146S(東レ(株)製 炭素繊維含有量20%、ベースレジン:ポリアミド6;溶解度パラメータδ(SP値)13.6、樹脂流動方向成形収縮率:0.1%)を射出成形して複合成形品(I)を製造したところ、シート状強化部材(II)と樹脂部材(III)との接合部の間隙Sは最大で5μmであり、表面高低差Dは最大で10μmであった。その後、硬質層(IV)として、光硬化型(紫外線硬化型)塗料(オリジン電気(株)製 M−40)を形成したところ、外観意匠性も良好であり、かつ硬質層面の鉛筆硬度は2Hであり、爪で引っ掻いてもほとんど傷が付かなかった。
(Example 2)
As the sheet-like reinforcing member (II), carbon fiber unidirectional prepreg (UD PP) P3052S (Toray Industries, Inc. carbon fiber T700S (strength 4900 MPa, elastic modulus 230 GPa), carbon fiber content 67% by weight, carbon fiber basis weight 200 g / m 2 , base resin: epoxy resin # 2500), and then a polypropylene foam material “Efcel” (registered trademark) RC2010 (manufactured by Furukawa Electric Co., Ltd .; thickness 1.0 mm) is laminated, and carbon Fiber unidirectional prepreg (UD PP) P3052S (manufactured by Toray Industries, Inc., carbon fiber T700S (strength 4900 MPa, elastic modulus 230 GPa), carbon fiber content 67 wt%, carbon fiber basis weight 200 g / m 2 , base resin: epoxy resin # 2500 ) And a polyamide layer CM4 as the thermoplastic resin composition (V) in the outermost layer. 000 (manufactured by Toray Industries, Inc., ternary copolymer polyamide resin, polyamide 6/66/610, melting point 150 ° C .; solubility parameter δ (SP value) 13.3) is laminated by pressing (mold temperature 145 C., pressure 1.5 MPa, curing time 30 minutes, target thickness after molding 1.5 mm), and after processing this into a size of 300 mm × 230 mm, it is 40 mm × 30 mm in the sheet-like reinforcing member (II) After setting one corner hole portion and one φ10 mm round hole portion in an injection mold as shown in FIG. 5 and performing mold clamping, long fiber pellets TLP1146S as a resin member (III) (Toray Industries, Inc., carbon fiber content 20%, base resin: polyamide 6; solubility parameter δ (SP value) 13.6, resin flow direction molding shrinkage: 0.1%) was injection molded to form a composite molded product. Was producing I), the gap S of the joint portion of the sheet-like reinforcing member (II) and the resin member (III) is 5μm at most, surface height difference D was 10μm in maximum. Then, when a photocurable (ultraviolet curable) paint (M-40 manufactured by Origin Electric Co., Ltd.) was formed as the hard layer (IV), the appearance design was good and the pencil hardness of the hard layer surface was 2H. Even if scratched with a nail, it was hardly scratched.

(実施例3)
シート状強化部材(II)として、炭素繊維一方向プリプレグ(UD PP)P3052S(東レ(株)製 炭素繊維T700S(強度4900MPa、弾性率230GPa)、炭素繊維含有率67重量%、炭素繊維目付125g/m、ベースレジン:エポキシ樹脂#2500)を4層積層し、最外層に熱可塑性樹脂組成物(V)としてポリアミド層 CM4000(東レ(株)製 3元共重合ポリアミド樹脂、ポリアミド6/66/610、融点150℃;溶解度パラメータδ(SP値)13.3)を1層積層したものをプレス成形(金型温度150℃、圧力1.5MPa、硬化時間30分、成形後の目標厚み0.5mm)して製造し、これを外形サイズ約300mm×230mmに加工後、シート状強化部材(II)内に40mm×30mmの角孔部1箇所およびφ10mmの丸孔部1箇所を設けたものを図5に示すような射出成形金型内にセットし、型締めを行った後、樹脂部材(III)として長繊維ペレット TLP1146S(東レ(株)製 炭素繊維含有量20%、ベースレジン:ポリアミド6;溶解度パラメータδ(SP値)13.6、樹脂流動方向成形収縮率:0.1%)を射出成形して複合成形品(I)を製造したところ、シート状強化部材(II)と樹脂部材(III)との接合部の間隙Sは最大で5μmであり、表面高低差Dは最大で10μmであった。その後、アクリル・ウレタン塗料(オリジン電気(株)製 オリジンプレート−Z−NY)を塗布・乾燥後、硬質層(IV)として、光硬化型(紫外線硬化型)塗料(オリジン電気(株)製 M−40)を形成したところ、外観意匠性も良好であり、かつ硬質層面の鉛筆硬度は2Hであり、爪で引っ掻いてもほとんど傷が付かなかった。
(Example 3)
As the sheet-like reinforcing member (II), carbon fiber unidirectional prepreg (UD PP) P3052S (manufactured by Toray Industries, Inc., carbon fiber T700S (strength 4900 MPa, elastic modulus 230 GPa), carbon fiber content 67% by weight, carbon fiber basis weight 125 g / m 2 , base resin: epoxy resin # 2500), and the outermost layer as a thermoplastic resin composition (V) is a polyamide layer CM4000 (manufactured by Toray Industries, Ltd., terpolymer polyamide resin, polyamide 6/66 / 610, melting point 150 ° C .; one layer of solubility parameter δ (SP value) 13.3) is press-molded (die temperature 150 ° C., pressure 1.5 MPa, curing time 30 minutes, target thickness after molding 0. 5mm), and after processing this into an external size of about 300mm x 230mm, 40mm x 30mm square holes in the sheet-like reinforcing member (II) After setting one place and one φ10mm round hole part in an injection mold as shown in FIG. 5 and performing mold clamping, long fiber pellets TLP1146S (Toray ( Co., Ltd. carbon fiber content 20%, base resin: polyamide 6; solubility parameter δ (SP value) 13.6, resin flow direction molding shrinkage: 0.1%) is injection molded to form a composite molded product (I) As a result, the gap S at the joint between the sheet-like reinforcing member (II) and the resin member (III) was 5 μm at the maximum, and the surface height difference D was 10 μm at the maximum. Then, after applying and drying acrylic urethane paint (Origin Plate-Z-NY, manufactured by Origin Electric Co., Ltd.), as a hard layer (IV), photocurable (ultraviolet curable) paint (Made by Origin Electric Co., Ltd., M) When -40) was formed, the appearance design was also good, the pencil hardness of the hard layer surface was 2H, and it was hardly scratched even when scratched with a nail.

(実施例4)
シート状強化部材(II)として、炭素繊維一方向プリプレグ(UD PP)P3052S(東レ(株)製 炭素繊維T700S(強度4900MPa、弾性率230GPa)、炭素繊維含有率67重量%、炭素繊維目付125g/m、ベースレジン:エポキシ樹脂#2500)を4層積層したものをプレス成形(金型温度150℃、圧力1.5MPa、硬化時間30分、成形後の目標厚み0.5mm)して製造し、これを外形サイズ約300mm×230mmに加工後、シート状強化部材(II)内に40mm×30mmの角孔部1箇所およびφ10mmの丸孔部1箇所を設けたものを製造した。また樹脂部材(III)、(IIIa)、(IIIb)として長繊維ペレット TLP1146S(東レ(株)製 炭素繊維含有量20%、ベースレジン:ポリアミド6;溶解度パラメータδ(SP値)13.6、樹脂流動方向成形収縮率:0.1%)を射出成形して製造した後、シート状強化部材(II)と樹脂部材(III)、(IIIa)、(IIIb)を接着剤にて一体化したところ、シート状強化部材(II)と樹脂部材(III)との接合部の隙間Sが最大で70μm、表面高低差Dが最大で100μmであったため、硬質層(IV)の形成面に不飽和ポリエステルパテ((株)ソーラー製 LP960)を塗布乾燥後、サンドペーパー(#1000)にてサンディングし、シート状強化部材(II)と樹脂部材(III)、(IIIa)、(IIIb)との接合部の間隙Sおよび表面高低差Dを50μm以下になるようにし、アクリル・ウレタン塗料(オリジン電気(株)製 オリジンプレート−Z−NY)を塗布乾燥後、硬質層(IV)として、光硬化型(紫外線硬化型)塗料(オリジン電気(株)製 M−40)を形成したところ、外観意匠性も良好であり、かつ硬質層面の鉛筆硬度は2Hであり、爪で引っ掻いてもほとんど傷が付かなかった。
Example 4
As the sheet-like reinforcing member (II), carbon fiber unidirectional prepreg (UD PP) P3052S (manufactured by Toray Industries, Inc., carbon fiber T700S (strength 4900 MPa, elastic modulus 230 GPa), carbon fiber content 67% by weight, carbon fiber basis weight 125 g / 4 layers of m 2 , base resin: epoxy resin # 2500) are manufactured by press molding (mold temperature 150 ° C., pressure 1.5 MPa, curing time 30 minutes, target thickness after molding 0.5 mm). Then, after processing this into an outer size of about 300 mm × 230 mm, a sheet-like reinforcing member (II) having one square hole portion of 40 mm × 30 mm and one round hole portion of φ10 mm was manufactured. Resin members (III), (IIIa) and (IIIb) are long fiber pellets TLP1146S (carbon fiber content 20%, manufactured by Toray Industries, Inc., base resin: polyamide 6; solubility parameter δ (SP value) 13.6, resin After the flow direction molding shrinkage: 0.1%) is manufactured by injection molding, the sheet-like reinforcing member (II) and the resin members (III), (IIIa), (IIIb) are integrated with an adhesive. Since the gap S at the joint between the sheet-like reinforcing member (II) and the resin member (III) is 70 μm at the maximum and the surface height difference D is 100 μm at the maximum, the unsaturated polyester is formed on the surface on which the hard layer (IV) is formed. After applying and drying putty (LP960 made by Solar Co., Ltd.), sanding with sandpaper (# 1000) and joining the sheet-like reinforcing member (II) and resin members (III), (IIIa), (IIIb) Gap S and surface height D is set to 50 μm or less, acrylic / urethane paint (Origin Plate-Z-NY, manufactured by Origin Electric Co., Ltd.) is applied and dried, and then the hard layer (IV) is used as a photocurable (ultraviolet curable) paint (origin) When M-40 manufactured by Denki Co., Ltd. was formed, the appearance design was also good, the pencil hardness of the hard layer surface was 2H, and scars were hardly scratched even when scratched with a nail.

(比較例1)
硬質層(IV)を形成しない以外は実施例1と同様にして複合成形品(I)を製造したところ、表面の鉛筆硬度はHBであり、爪で引っ掻くことで容易に傷が付き、高意匠性を維持することができなかった。
(Comparative Example 1)
A composite molded article (I) was produced in the same manner as in Example 1 except that the hard layer (IV) was not formed. The surface pencil hardness was HB, and it was easily scratched by scratching with a nail. The sex could not be maintained.

(比較例2)
シート状強化部材(II)として、炭素繊維一方向プリプレグ(UD PP)P3052S(東レ(株)製 炭素繊維T700S(強度4900MPa、弾性率230GPa)、炭素繊維含有率67重量%、炭素繊維目付125g/m、ベースレジン:エポキシ樹脂#2500)を4層積層したものをプレス成形(金型温度150℃、圧力1.5MPa、硬化時間30分、成形後の目標厚み0.5mm)して製造し、これを外形サイズ約300mm×230mmに加工後、シート状強化部材(II)内に40mm×30mmの角孔部1箇所およびφ10mmの丸孔部1箇所を設けたものを製造した。また樹脂部材(III)、(IIIa)、(IIIb)として長繊維ペレット TLP1146S(東レ(株)製 炭素繊維含有量20%、ベースレジン:ポリアミド6;溶解度パラメータδ(SP値)13.6、樹脂流動方向成形収縮率:0.1%)を射出成形して製造した後、シート状強化部材(II)と樹脂部材(III)、(IIIa)、(IIIb)を接着剤にて一体化したところ、シート状強化部材(II)と樹脂部材(III)との接合部の隙間Sが最大で70μm、表面高低差Dが最大で100μmであった。その後、アクリル・ウレタン塗料(オリジン電気(株)製 オリジンプレート−Z−NY)を塗布乾燥後、硬質層(IV)として、光硬化型(紫外線硬化型)塗料(オリジン電気(株)製 M−40)を形成したところ、硬質面層の鉛筆硬度は2Hであったが、シート状強化部材(II)と樹脂部材(III)との接合部のスジが見える外観不良となり、製品としては不十分であった。
(Comparative Example 2)
As the sheet-like reinforcing member (II), carbon fiber unidirectional prepreg (UD PP) P3052S (manufactured by Toray Industries, Inc., carbon fiber T700S (strength 4900 MPa, elastic modulus 230 GPa), carbon fiber content 67% by weight, carbon fiber basis weight 125 g / 4 layers of m 2 , base resin: epoxy resin # 2500) are manufactured by press molding (mold temperature 150 ° C., pressure 1.5 MPa, curing time 30 minutes, target thickness after molding 0.5 mm). Then, after processing this into an outer size of about 300 mm × 230 mm, a sheet-like reinforcing member (II) having one square hole portion of 40 mm × 30 mm and one round hole portion of φ10 mm was manufactured. Resin members (III), (IIIa) and (IIIb) are long fiber pellets TLP1146S (carbon fiber content 20%, manufactured by Toray Industries, Inc., base resin: polyamide 6; solubility parameter δ (SP value) 13.6, resin After the flow direction molding shrinkage: 0.1%) is manufactured by injection molding, the sheet-like reinforcing member (II) and the resin members (III), (IIIa), (IIIb) are integrated with an adhesive. The gap S at the joint between the sheet-like reinforcing member (II) and the resin member (III) was 70 μm at the maximum, and the surface height difference D was 100 μm at the maximum. Then, after applying and drying an acrylic / urethane paint (Origin Plate-Z-NY, manufactured by Origin Electric Co., Ltd.), the hard layer (IV) was used as a photocurable (ultraviolet curable) paint (M-made by Origin Electric Co., Ltd.). 40) was formed, the pencil hardness of the hard surface layer was 2H, but the appearance of the streaks at the joint between the sheet-like reinforcing member (II) and the resin member (III) was poor, which was insufficient as a product. Met.

実施例1〜4、比較例1、2より以下のことが明らかになった。   From Examples 1 to 4 and Comparative Examples 1 and 2, the following became clear.

実施例1〜4の複合成形品(I)は軽量、高剛性・高剛性である上、極めて高い意匠性を満足し、かつ高い耐傷性を有し、電気・電子機器の筐体として好適であった。   The composite molded products (I) of Examples 1 to 4 are lightweight, highly rigid, and highly rigid, satisfy extremely high design properties, have high scratch resistance, and are suitable as a housing for electric / electronic devices. there were.

一方、比較例1の複合成形品(I)では、表面に容易に傷が付いてしまい、高意匠性を維持することができなかった。また、比較例2ではシート状強化部材(II)と樹脂部材(III)との接合部にスジが見え、製品としては不十分であった。   On the other hand, in the composite molded product (I) of Comparative Example 1, the surface was easily damaged, and high designability could not be maintained. In Comparative Example 2, streaks were seen at the joint between the sheet-like reinforcing member (II) and the resin member (III), which was insufficient as a product.

本発明の複合成形品(I)は、ノート型パソコンや携帯端末などの電気・電子機器筐体用途に限らず、その優れた軽量性、高強度・高剛性、高意匠性、安全性を活かして、スポイラーなどの自動車部品用途や担架などの医療部品用途、また楽器運搬用ケースなどにも応用することができるが、その応用範囲は、これらに限られるものではない。   The composite molded product (I) of the present invention is not limited to use in electrical and electronic equipment casings such as notebook computers and portable terminals, but takes advantage of its excellent lightness, high strength, high rigidity, high designability, and safety. Although it can be applied to automotive parts such as spoilers, medical parts such as stretchers, and musical instrument carrying cases, the application range is not limited to these.

本発明の一実施例に係る複合成形品(I)の斜視図である。1 is a perspective view of a composite molded product (I) according to an embodiment of the present invention. 本発明の一実施例に係る複合成形品(I)のA−A断面図である。It is AA sectional drawing of the composite molded product (I) which concerns on one Example of this invention. 本発明の一実施例に係る複合成形品(I)のB部詳細図である。It is B section detail drawing of the composite molded product (I) which concerns on one Example of this invention. 本発明の一実施例に係る複合成形品(I)の分解斜視図である。It is a disassembled perspective view of the composite molded product (I) which concerns on one Example of this invention. 本発明の一実施例に係る複合成形品(I)を成形するための射出成形金型の概要横断面図ある。It is a general | schematic cross-sectional view of the injection mold for shape | molding the composite molded product (I) based on one Example of this invention.

符号の説明Explanation of symbols

I :複合成形品
II :シート状強化部材
III :樹脂部材
IIIa:樹脂部材(角孔部)
IIIb:樹脂部材(丸孔部)
IV :硬質層
V :熱可塑製樹脂塑性物
1a :繊維強化層の繊維方向(短辺方向)
1b :繊維強化層の繊維方向(長辺方向)
2 :雌型
3 :雄型
4 :ゲート
4a :ゲート(角孔部形成用)
5 :吸着用孔
6 :位置決め部材
7 :突き出しピン
S: 接合部の間隙
D: 接合部の表面高低差(段差)
I: Composite molded product
II: Sheet-like reinforcing member
III: Resin member
IIIa: Resin member (square hole)
IIIb: Resin member (round hole)
IV: Hard layer
V: Thermoplastic resin plastic 1a: Fiber direction (short side direction) of fiber reinforced layer
1b: Fiber direction of the fiber reinforced layer (long side direction)
2: Female type 3: Male type 4: Gate 4a: Gate (for forming a square hole)
5: Hole for suction 6: Positioning member 7: Extrusion pin S: Gap between joints D: Surface height difference (step) of joints

Claims (15)

シート状強化部材(II)と樹脂部材(III)とを含む複合成形品(I)において、シート状強化部材(II)と樹脂部材(III)との接合部にまたがる表面の少なくとも一部に鉛筆硬度が2H以上の硬質層(IV)が形成されているとともに、該硬質層(IV)が形成されるシート状強化部材(II)と樹脂部材(III)との接合部の間隙Sが0〜50μmであり、かつ表面高低差Dが0〜50μmであることを特徴とする複合成形品(I)。 In the composite molded product (I) including the sheet-like reinforcing member (II) and the resin member (III), a pencil is provided on at least a part of the surface extending over the joint portion between the sheet-like reinforcing member (II) and the resin member (III). The hard layer (IV) having a hardness of 2H or more is formed, and the gap S at the joint between the sheet-like reinforcing member (II) and the resin member (III) on which the hard layer (IV) is formed is 0 to 0 A composite molded article (I) having a surface height difference D of 0 to 50 μm and a thickness of 50 μm. 樹脂部材(III)は射出成形されて形成されており、かつ樹脂流動方向の成形収縮率が0〜0.5%である請求項1に記載の複合成形品(I)。 The composite molded article (I) according to claim 1, wherein the resin member (III) is formed by injection molding and has a molding shrinkage in the resin flow direction of 0 to 0.5%. シート状強化部材(II)が、連続繊維を一方向にシート状に配列した繊維強化層を含む繊維強化層体である請求項1または2に記載の複合成形品(I)。 The composite molded article (I) according to claim 1 or 2, wherein the sheet-like reinforcing member (II) is a fiber-reinforced layer body including a fiber-reinforced layer in which continuous fibers are arranged in a sheet shape in one direction. 繊維強化層の連続繊維が、少なくとも炭素繊維を含む請求項3に記載の複合成形品(I)。 The composite molded article (I) according to claim 3, wherein the continuous fibers of the fiber reinforced layer contain at least carbon fibers. シート状強化部材(II)と樹脂部材(III)が熱可塑性樹脂組成物(V)を介して接合されている請求項1から4のいずれかに記載の複合成形品(I)。 The composite molded article (I) according to any one of claims 1 to 4, wherein the sheet-like reinforcing member (II) and the resin member (III) are joined via the thermoplastic resin composition (V). 樹脂部材(III)を構成する樹脂の溶解度パラメータ(SP値)δAと熱可塑性樹脂組成物(V)を構成する樹脂の溶解度パラメータ(SP値)δBの差の絶対値(|δAーδB|)が0〜1.2である請求項5に記載の複合成形品(I)。 Absolute value (| δA-δB |) of the difference between the solubility parameter (SP value) δA of the resin constituting the resin member (III) and the solubility parameter (SP value) δB of the resin constituting the thermoplastic resin composition (V) The composite molded article (I) according to claim 5, wherein is from 0 to 1.2. シート状強化部材(II)および樹脂部材(III)のUL−94に基づく難燃性が0.1〜1.6mmのいずれかの厚みの試験片でV−1またはV−0である請求項1から6のいずれかに記載の複合成形品(I)。 The flame retardancy based on UL-94 of the sheet-like reinforcing member (II) and the resin member (III) is V-1 or V-0 in a test piece having a thickness of 0.1 to 1.6 mm. The composite molded article (I) according to any one of 1 to 6. シート状強化部材(II)および樹脂部材(III)が少なくともリン系の難燃剤を含む請求項7に記載の複合成形品(I)。 The composite molded article (I) according to claim 7, wherein the sheet-like reinforcing member (II) and the resin member (III) contain at least a phosphorus-based flame retardant. シート状強化部材(II)がエポキシ樹脂を主成分とするマトリックス樹脂を含む請求項1から8のいずれかに記載の複合成形品(I)。 The composite molded article (I) according to any one of claims 1 to 8, wherein the sheet-like reinforcing member (II) contains a matrix resin mainly composed of an epoxy resin. 樹脂部材(III)が強化繊維を含む請求項1から9のいずれかに記載の複合成形品(I)。 The composite molded article (I) according to any one of claims 1 to 9, wherein the resin member (III) contains reinforcing fibers. 強化繊維が少なくとも炭素繊維を含む請求項10に記載の複合成形品(I)。 The composite molded article (I) according to claim 10, wherein the reinforcing fibers include at least carbon fibers. 硬質層(IV)が光硬化型樹脂、触媒硬化型樹脂、電子線硬化型樹脂のいずれかで形成される請求項1から11のいずれかに記載の複合成形品(I)。 The composite molded article (I) according to any one of claims 1 to 11, wherein the hard layer (IV) is formed of any one of a photocurable resin, a catalyst curable resin, and an electron beam curable resin. 電子機器用筐体である請求項1から12のいずれかに記載の複合成形品(I)。 The composite molded article (I) according to any one of claims 1 to 12, which is a casing for electronic equipment. ノートパソコン用筐体である請求項13に記載の複合成形品(I)。 The composite molded article (I) according to claim 13, which is a notebook personal computer casing. 携帯電話用筐体である請求項13に記載の複合成形品(I)。 The composite molded article (I) according to claim 13, which is a casing for a mobile phone.
JP2006301287A 2006-11-07 2006-11-07 Composite molded article Pending JP2008114525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006301287A JP2008114525A (en) 2006-11-07 2006-11-07 Composite molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006301287A JP2008114525A (en) 2006-11-07 2006-11-07 Composite molded article

Publications (1)

Publication Number Publication Date
JP2008114525A true JP2008114525A (en) 2008-05-22

Family

ID=39500882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006301287A Pending JP2008114525A (en) 2006-11-07 2006-11-07 Composite molded article

Country Status (1)

Country Link
JP (1) JP2008114525A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012139834A (en) * 2010-12-28 2012-07-26 Toray Ind Inc Composite molding body and method of manufacturing the same
US10639863B2 (en) * 2012-03-23 2020-05-05 Cutting Dynamics, Inc. Injection molded composite blank and guide
JP2021102302A (en) * 2019-12-25 2021-07-15 レノボ・シンガポール・プライベート・リミテッド Housing member and method for manufacturing the same
JP2021146654A (en) * 2020-03-20 2021-09-27 株式会社日本製鋼所 Molding method of molding resin molded article containing twisted part

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012139834A (en) * 2010-12-28 2012-07-26 Toray Ind Inc Composite molding body and method of manufacturing the same
US10639863B2 (en) * 2012-03-23 2020-05-05 Cutting Dynamics, Inc. Injection molded composite blank and guide
JP2021102302A (en) * 2019-12-25 2021-07-15 レノボ・シンガポール・プライベート・リミテッド Housing member and method for manufacturing the same
JP2021146654A (en) * 2020-03-20 2021-09-27 株式会社日本製鋼所 Molding method of molding resin molded article containing twisted part

Similar Documents

Publication Publication Date Title
JP4670532B2 (en) Composite molded product
JP4858544B2 (en) Composite molded article and manufacturing method thereof
JP5151535B2 (en) Sandwich structure, molded body using the same, and electronic equipment casing
JP6942961B2 (en) Electronic device housing
JP4774839B2 (en) Manufacturing method of fiber reinforced composite material
JP5034502B2 (en) Sandwich structure and integrated molded body using the same
JP6617557B2 (en) Laminates and integrated molded products
JP5678483B2 (en) Fiber-reinforced plastic molded product with curved shape
JP2007038519A5 (en)
WO2017047439A1 (en) Housing
JP2014148111A (en) Production method of fiber-reinforced plastic molding article and production method of integral molding article
US10509443B2 (en) Housing
JP2004209717A (en) Fiber reinforced molded product
JP2008114525A (en) Composite molded article
JP2009220478A (en) Fiber-reinforced sandwich structure composite and composite molding
JP2006044260A (en) Integrated structural member and its manufacturing method
JP2006130862A (en) Composite molded component and manufacturing method of composite molded component
JP2011166124A (en) Electrical and electronic equipment housing
JP2005271583A (en) Injection molding mold and composite injection molding
JP2020131459A (en) Integrated molding
JP2009173027A (en) Manufacturing method of composite molded product
WO2020250151A1 (en) Portable electronic device housings comprising an asymmetric fiber-reinforced laminate and a sidewall including a polymeric body and methods of making the same
JP2010131804A (en) Composite molding and method for manufacturing the same
JP2010046938A (en) Composite molded product and method of manufacturing the same
JP2010076174A (en) Frp molding and method of repairing the same