JP2006044260A - Integrated structural member and its manufacturing method - Google Patents

Integrated structural member and its manufacturing method Download PDF

Info

Publication number
JP2006044260A
JP2006044260A JP2005198551A JP2005198551A JP2006044260A JP 2006044260 A JP2006044260 A JP 2006044260A JP 2005198551 A JP2005198551 A JP 2005198551A JP 2005198551 A JP2005198551 A JP 2005198551A JP 2006044260 A JP2006044260 A JP 2006044260A
Authority
JP
Japan
Prior art keywords
resin composition
integrated
linear expansion
thermoplastic resin
composition layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005198551A
Other languages
Japanese (ja)
Inventor
Atsuki Tsuchiya
敦岐 土谷
Masato Honma
雅登 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2005198551A priority Critical patent/JP2006044260A/en
Publication of JP2006044260A publication Critical patent/JP2006044260A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an integrated structural member causing no warpage or release, and its manufacturing method. <P>SOLUTION: In the integrated structural member constituted by bonding a first member containing reinforcing fibers and a matrix resin composition and a second member, the vertical adhesive strength of the bonded surface of the first and second members is 6 MPa or above at 25°C, the flexural modulus of elasticity based on ASTM D790 of the first member is 20 GPa or above and the coefficient CI of linear expansion of the first member is 4×10<SP>-5</SP>or below. The absolute value of a value Cb/Cs calculated by dividing the large value Cb in the coefficient CI of linear expansion of the first member and the coefficient CII of linear expansion of the second member by the smaller value Cs in them is 50 or below. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、強化繊維とマトリクス樹脂組成物とを含んでなる第一の部材と第二の部材とを接合させてなる一体化構造部材およびその製造方法に関するものであり、強固に接合され、かつ反りの少ない一体化構造部材を提供する。   The present invention relates to an integrated structure member obtained by bonding a first member comprising a reinforcing fiber and a matrix resin composition and a second member, and a method for producing the same, and is firmly bonded, and Provided is an integrated structural member with less warping.

繊維強化プラスチックは、成形性、薄肉、軽量、高剛性、生産性、経済性に優れ、電気・電子機器部品、自動車機器部品、パソコン、OA機器、AV機器、携帯電話、電話機、ファクシミリ、家電製品、玩具用品などの電気・電子機器の部品や筐体に頻繁に使用されている。しかし、例えば強化繊維の長繊維群が層状に積層されて配置された形態の繊維強化プラスチック板は、特に薄肉、軽量、高剛性に優れた素材であるが、複雑形状の成形品を量産性よく容易に生産するのには不向きであった。   Fiber reinforced plastics are excellent in moldability, thin wall, light weight, high rigidity, productivity, and economical efficiency. Electrical / electronic equipment parts, automotive equipment parts, personal computers, OA equipment, AV equipment, mobile phones, telephones, facsimiles, home appliances. It is frequently used for parts and casings of electrical and electronic equipment such as toy supplies. However, for example, fiber reinforced plastic plates in a form in which long fiber groups of reinforcing fibers are arranged in layers are materials that are particularly thin-walled, lightweight, and highly rigid. It was unsuitable for easy production.

一方、Mg合金などの金属材料も、複雑形状化が容易であるなどの利点から、パソコン、携帯電話、携帯情報端末、OA機器などの電子機器や自動車や建材などの部品、部材や筐体に用いられるようになった。しかし、全ての部品等に金属材料を採用しようとしても、Mg合金でも繊維強化プラスチックよりも比重が大きく十分な軽量化効果が得られない、またコスト高になるなどの問題があった。   On the other hand, metal materials such as Mg alloys can be used for electronic devices such as personal computers, mobile phones, personal digital assistants, office automation equipment, automobiles, building materials, etc. It came to be used. However, even when trying to use metal materials for all parts, Mg alloy has a problem that the specific gravity is larger than fiber reinforced plastic and a sufficient weight reduction effect cannot be obtained, and the cost is increased.

一方、射出成形は強度的には複雑形状化が容易で量産性にも優れた成形品である。そこで、繊維強化プラスチック板や金属板などの複合材料を、他の射出成形品等と一体的に接合させる技術が求められている。このような異なる材質からなる部材同士を一体化させた構造部材は、接合部における接着性だけでなく、接合させる部材同士の間で熱膨張率や収縮率に差がある場合は一体化させた構造部材に反りを生じたり、場合によっては接合面の剥離を生じてしまう問題がある。   On the other hand, injection molding is a molded product that is easy to form in a complicated shape and excellent in mass productivity. Therefore, there is a demand for a technique for integrally joining a composite material such as a fiber reinforced plastic plate or a metal plate with another injection molded product or the like. Such structural members made by integrating members made of different materials are integrated in the case where there is a difference in thermal expansion coefficient and contraction rate between the members to be bonded as well as the adhesiveness at the joint. There is a problem in that the structural member is warped, or in some cases, the joint surface is peeled off.

このような問題に対する一体化方法としては、予め成形した部材を接着剤を用いて接合したものが従来より一般に採用されていた。例えば、特許文献1には、金属フレームと射出成形したリブをエポキシ樹脂系の塗料で接着した電子機器筐体が開示されている。しかし、特許文献1の接着剤を用いる方法では、接着剤の準備工程や塗布工程を必要とするため、生産コストの低減が難しいのが現状である。
特開2001−298277号公報
As an integration method for such a problem, a method in which a previously molded member is joined using an adhesive has been generally employed. For example, Patent Document 1 discloses an electronic device casing in which a metal frame and an injection-molded rib are bonded with an epoxy resin-based paint. However, the method using an adhesive disclosed in Patent Document 1 requires an adhesive preparation step and an application step, and thus it is difficult to reduce production costs.
JP 2001-298277 A

そこで本発明の課題は、かかる従来技術の問題点を解消し、反りや剥離を生じることのない一体化構造部材を提供することにある。   Accordingly, an object of the present invention is to provide an integrated structure member that eliminates the problems of the prior art and does not cause warping or peeling.

上記課題を解決するために、本発明に係る一体化構造部材は、強化繊維とマトリックス樹脂組成物とを含んでなる第一の部材と、第二の部材とが接合されてなる一体化構造部材において、前記第一の部材と前記第二の部材との接合面における垂直接着強度が25℃において6MPa以上であり、第一の部材の曲げ弾性率が20GPa以上であり、第二の部材の線膨張係数CIIが4×10-5以下であり、かつ第一の部材の線膨張係数CIと第二の部材の線膨張係数CIIのうち大きい方の値Cbを小さい方の値Csで除した値Cb/Csの絶対値が50以下であることを特徴とするものからなる。 In order to solve the above-described problems, an integrated structural member according to the present invention is an integrated structural member formed by joining a first member comprising a reinforcing fiber and a matrix resin composition, and a second member. In the above, the vertical adhesive strength at the joint surface between the first member and the second member is 6 MPa or more at 25 ° C., the bending elastic modulus of the first member is 20 GPa or more, and the line of the second member A value obtained by dividing the larger value Cb between the linear expansion coefficient CI of the first member and the linear expansion coefficient CII of the second member by the smaller value Cs and having an expansion coefficient CII of 4 × 10 −5 or less. The absolute value of Cb / Cs is 50 or less.

また、本発明に係る一体化構造部材は、強化繊維とマトリックス樹脂組成物とを含んでなる第一の部材と、第二の部材とが、熱可塑性樹脂層を介して接合されてなる一体化構造部材において、前記第一の部材と前記第二の部材との接合面における垂直接着強度が25℃において6MPa以上であり、該一体化構造部材の第一の部材と第二の部材が一体化されている略平面部において、第一の部材の線膨張係数CIと、第二の部材の線膨張係数CIIから算出されるCII/CIの絶対値が0.1〜10であることを特徴とするものからなる。   In addition, the integrated structural member according to the present invention is an integrated structure in which a first member comprising a reinforcing fiber and a matrix resin composition and a second member are joined via a thermoplastic resin layer. In the structural member, the vertical adhesive strength at the joint surface between the first member and the second member is 6 MPa or more at 25 ° C., and the first member and the second member of the integrated structural member are integrated. In the substantially flat portion, the absolute value of CII / CI calculated from the linear expansion coefficient CI of the first member and the linear expansion coefficient CII of the second member is 0.1 to 10, It consists of what to do.

また、本発明に係る一体化構造部材の製造方法は、前記第一の部材と第二の部材との接合を、熱溶着、振動溶着、超音波溶着、レーザー溶着、インサート射出成形、アウトサート射出成形から選択される少なくとも1つの方法にて行うことにより、上記のような一体化構造部材とすることを特徴とする方法からなる。   In addition, the manufacturing method of the integrated structure member according to the present invention includes joining the first member and the second member by heat welding, vibration welding, ultrasonic welding, laser welding, insert injection molding, outsert injection. By performing at least one method selected from molding, the above-described integrated structure member is obtained.

本発明によれば、第一の部材を用いて、第二の部材と接合させた反りや剥離のない一体化構造部材を容易に得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the integrated structure member without the curvature and peeling joined with the 2nd member can be easily obtained using the 1st member.

以下に、本発明の望ましい実施の形態について、図面を参照しながら説明する。
本発明に係る一体化構造部材は、その構成要素の一つとして、第一の部材を有する。第一の部材は、強化繊維とマトリックス樹脂組成物を含んでなる。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
The integrated structural member according to the present invention has a first member as one of its constituent elements. The first member comprises reinforcing fibers and a matrix resin composition.

強化繊維としては例えば、アルミニウム、黄銅、ステンレスなどの金属繊維や、ポリアクリロニトリル系、レーヨン系、リグニン系、ピッチ系の炭素繊維や、黒鉛繊維や、ガラスなどの絶縁性繊維や、アラミド、PBO、ポリフェニレンスルフィド、ポリエステル、アクリル、ナイロン、ポリエチレンなどの有機繊維や、シリコンカーバイト、シリコンナイトライドなどの無機繊維が挙げられる。また、これらの繊維に表面処理が施されているものであってもよい。表面処理としては、導電体として金属の被着処理のほかに、カップリング剤による処理、サイジング剤による処理、添加剤の付着処理などがある。また、これらの強化繊維は1種類を単独で用いてもよいし、2種類以上を併用してもよい。中でも、比強度、比剛性、軽量性や導電性のバランスの観点から炭素繊維、とりわけ安価なコストを実現できる点でポリアクリロニトリル系炭素繊維が好適に用いられる。   Examples of reinforcing fibers include metal fibers such as aluminum, brass, and stainless steel, polyacrylonitrile-based, rayon-based, lignin-based, pitch-based carbon fibers, graphite fibers, insulating fibers such as glass, aramid, PBO, Examples thereof include organic fibers such as polyphenylene sulfide, polyester, acrylic, nylon, and polyethylene, and inorganic fibers such as silicon carbide and silicon nitride. Moreover, the surface treatment may be given to these fibers. Examples of the surface treatment include a treatment with a coupling agent, a treatment with a sizing agent, and an adhesion treatment of an additive in addition to a treatment for depositing a metal as a conductor. Moreover, these reinforcing fibers may be used individually by 1 type, and may use 2 or more types together. Among these, carbon fiber, particularly polyacrylonitrile-based carbon fiber is preferably used from the viewpoint of the balance of specific strength, specific rigidity, light weight, and conductivity, and in particular, at a low cost.

また、強化繊維の形態としては、平均長さが10mm以上のものが層状に積層され配置されているものが、強化繊維の補強効果を効率的に発現するうえで好ましい。強化繊維の層の形態としては、クロスや、フィラメント、ブレイド、フィラメント束、紡績糸等を一方向にひきそろえた形態を好適に使用できる。一方向にひきそろえた形態の層を積層する場合には、その方向を層ごとにずらしながら積層することが積層体の強度の異方性を小さくする上で好ましい。また、これらの層の形態は、1種類を単独で使用しても2種類以上を併用してもよい。   Moreover, as a form of a reinforced fiber, what has an average length of 10 mm or more is laminated | stacked and arrange | positioned at a layer form is preferable when expressing the reinforcement effect of a reinforced fiber efficiently. As the form of the reinforcing fiber layer, a form in which cloths, filaments, blades, filament bundles, spun yarns and the like are arranged in one direction can be suitably used. In the case of stacking layers in a form aligned in one direction, it is preferable to stack the layers while shifting the direction for each layer in order to reduce the strength anisotropy of the stacked body. Moreover, the form of these layers may be used individually by 1 type, or may use 2 or more types together.

本発明で用いる第一の部材に対する強化繊維の割合としては、成形性、力学特性の観点から5〜75体積%が好ましく、10〜65体積%がより好ましい。   As a ratio of the reinforcing fiber with respect to the 1st member used by this invention, 5-75 volume% is preferable from a viewpoint of a moldability and a dynamic characteristic, and 10-65 volume% is more preferable.

本発明で用いる第一の部材は、熱硬化性のマトリックス樹脂に強化繊維が配置された熱硬化性樹脂組成物層と、該熱硬化性樹脂組成物層の少なくとも一部分に形成された熱可塑性樹脂組成物層からなる第一の部材であることが好ましい。   The first member used in the present invention includes a thermosetting resin composition layer in which reinforcing fibers are arranged in a thermosetting matrix resin, and a thermoplastic resin formed on at least a part of the thermosetting resin composition layer. It is preferable that it is the 1st member which consists of a composition layer.

熱硬化性樹脂の使用は、力学特性を得る上で好ましい。熱硬化性樹脂としては例えば、不飽和ポリエステル、ビニルエステル、エポキシ、フェノール(レゾール型)、ユリア・メラミン、ポリイミド等や、これらの共重合体、変性体、あるいは2種類以上ブレンドした樹脂などを使用することができる。中でも、少なくともエポキシ樹脂を含有するものが、第一の部材の力学特性の観点から好ましい。また、耐衝撃性向上のために、熱硬化性樹脂組成物中にエラストマーあるいはゴム成分を添加してもよい。   Use of a thermosetting resin is preferable for obtaining mechanical properties. Examples of thermosetting resins include unsaturated polyesters, vinyl esters, epoxies, phenols (resol type), urea melamine, polyimides, copolymers, modified products, or resins blended with two or more. can do. Among these, those containing at least an epoxy resin are preferable from the viewpoint of the mechanical properties of the first member. In order to improve impact resistance, an elastomer or a rubber component may be added to the thermosetting resin composition.

熱可塑性樹脂組成物層は、これを介して第二の部材と一体化する上で好ましい。かかる熱可塑性樹脂組成物層を構成する熱可塑性樹脂としては、ポリアミド系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、EVA樹脂(エチレン−酢酸ビニル共重合樹脂)、スチレン系樹脂、PPS(ポリフェニレンサルファイド)系樹脂等が挙げられる。またこれらの変性体でもよい。これらの熱可塑性樹脂は、単体で使用してもよいし、これらの共重合体あるいはブレンドポリマーとして2種類以上を併用してもよい。   The thermoplastic resin composition layer is preferable when integrated with the second member through the thermoplastic resin composition layer. Examples of the thermoplastic resin constituting the thermoplastic resin composition layer include polyamide resin, polyester resin, polycarbonate resin, EVA resin (ethylene-vinyl acetate copolymer resin), styrene resin, and PPS (polyphenylene sulfide). Examples thereof include resins. These modified products may also be used. These thermoplastic resins may be used alone or in combination of two or more of these copolymers or blend polymers.

また、用途等に応じ、他の充填材や添加剤を含有してもよい。例えば、無機充填材、難燃剤、導電性付与剤、結晶核剤、紫外線吸収剤、酸化防止剤、制振剤、抗菌剤、防虫剤、防臭剤、着色防止剤、熱安定剤、離型剤、帯電防止剤、可塑剤、滑剤、着色剤、顔料、染料、発泡剤、制泡剤、カップリング剤などが挙げられる。   Moreover, according to a use etc., you may contain another filler and additive. For example, inorganic fillers, flame retardants, conductivity imparting agents, crystal nucleating agents, ultraviolet absorbers, antioxidants, vibration damping agents, antibacterial agents, insect repellents, deodorants, anti-coloring agents, heat stabilizers, release agents , Antistatic agents, plasticizers, lubricants, colorants, pigments, dyes, foaming agents, antifoaming agents, coupling agents and the like.

また、第一の部材と第二の部材との接合面における垂直接着強度が25℃において6MPa以上であることが構造部材として使用するためには重要であり、より好ましくは8MPa以上、さらに好ましくは10MPa以上である。通常の接着剤では10MPa程度の接着強度までしか発現せず、12MPa以上であれば、十分な接着強度と考えられる。垂直接着強度の上限に特に制限はないが、30MPa以下であれば、十分実用に供し得る。   In addition, it is important for use as a structural member that the vertical adhesive strength at the joint surface between the first member and the second member is 6 MPa or more at 25 ° C., more preferably 8 MPa or more, and still more preferably 10 MPa or more. A normal adhesive exhibits only an adhesive strength of about 10 MPa, and if it is 12 MPa or more, it is considered sufficient adhesive strength. Although there is no restriction | limiting in particular in the upper limit of perpendicular | vertical adhesive strength, if it is 30 Mpa or less, it can fully use for practical use.

垂直接着強度は図2に示すように、一体化構造部材から、第一の部材7と第二の部材6が接合している部分より、垂直接着強度評価用試料5を10mm×10mmの大きさで切り出す。このとき嵌合やボルトなどの機械的接合が施されている場合はあらかじめ取り除いておく、またはそのような部位は試験に使用しない。次いで図3に示すように、所定サイズに切り出した垂直接着強度評価用試料9(接着面:10)を測定装置の引張治具8a、8bに固定する。測定装置としては“インストロン”(登録商標)5565型万能材料試験機(インストロン・ジャパン(株)製)を使用している。尚、試料の固定は、成形品がインストロンのチャックに把持できるものはそのままチャックに挟み引張試験を行うが、把持できないものは成形体に接着剤(スリーボンド1782、株式会社スリーボンド製)を塗布し、23±5℃、50±5%RHで4時間放置して治具と接着させてもよい。引張試験の結果より最大荷重を接着面積で除して垂直接着強度(MPa)とする。   As shown in FIG. 2, the vertical adhesive strength of the sample 5 for evaluating the vertical adhesive strength is 10 mm × 10 mm from the part where the first member 7 and the second member 6 are joined from the integrated structural member. Cut out with. At this time, if a mechanical connection such as a fitting or bolt is applied, remove it beforehand or do not use such a part for the test. Next, as shown in FIG. 3, the vertical adhesive strength evaluation sample 9 (adhesion surface: 10) cut out to a predetermined size is fixed to the tension jigs 8 a and 8 b of the measuring apparatus. As the measuring apparatus, an “Instron” (registered trademark) 5565 type universal material testing machine (manufactured by Instron Japan Co., Ltd.) is used. For fixing the sample, if the molded product can be gripped by Instron's chuck, hold it in the chuck as it is and perform a tensile test, but if it cannot be gripped, apply an adhesive (ThreeBond 1784, manufactured by ThreeBond Co., Ltd.) to the molded body. , 23 ± 5 ° C. and 50 ± 5% RH for 4 hours, and may be bonded to the jig. The maximum load is divided by the bonding area from the result of the tensile test to obtain the vertical bonding strength (MPa).

また、アンカー効果により接着を高める意味において、熱硬化性樹脂組成物層と熱可塑性樹脂組成物層とが、これらの層の界面において、凹凸形状を有して一体化されていることが好ましい。さらに熱硬化性樹脂組成物層と熱可塑性樹脂組成物層とのいずれもが、その少なくとも一部に強化繊維を埋没させてなることが好ましい。かかる態様とすることにより、強度の弱い部分を残さない。また、両層の界面付近においては、強化繊維を媒介することによって熱硬化性樹脂組成物と熱可塑性樹脂組成物との接着をより強固なものとすることができ、さらには、同一の繊維が熱硬化性樹脂組成物層と熱可塑性樹脂組成物層との両層に埋没している場合には、いわば串刺しの効果により接着界面が補強され、強固な接着を得ることができる。   Moreover, in the meaning which raises adhesion | attachment by an anchor effect, it is preferable that the thermosetting resin composition layer and the thermoplastic resin composition layer have the uneven | corrugated shape in the interface of these layers, and are integrated. Furthermore, it is preferable that both the thermosetting resin composition layer and the thermoplastic resin composition layer have reinforcing fibers embedded in at least a part thereof. By setting it as this aspect, a weak part is not left. Further, in the vicinity of the interface between the two layers, the adhesion between the thermosetting resin composition and the thermoplastic resin composition can be made stronger by mediating reinforcing fibers, and furthermore, the same fibers When the thermosetting resin composition layer and the thermoplastic resin composition layer are buried in both layers, the adhesion interface is reinforced by the effect of skewering, so that strong adhesion can be obtained.

また、熱可塑性樹脂組成物層に埋没する強化繊維の群が存在する領域の最大厚みTpfが、10μm以上であることが好ましく、より好ましくは20μm以上であり、さらに好ましくは40μm以上である。そうすることにより、より強固な接合を得ることができる。この最大厚みTpfは、熱可塑性樹脂組成物層の厚さ方向において、熱可塑性樹脂組成物層(図1中1a)の表面(図1中2)からみて、熱可塑性樹脂組成物層に埋没している強化繊維3のうち最も表面に近いもの(図1中3−out)と、熱可塑性樹脂組成物層の表面からの入り込み厚さが最も大きい部位において、熱可塑性樹脂組成物層に埋没して・あるいは接している強化繊維のうち最も表面から離れたもの(図1中3−in)との厚さ方向の距離と定義される。最大厚みTpfは繊維強化複合材の断面をSEM観察写真あるいはTEM観察写真を用いて測定することができる。最大厚みTpfは、最大で1,000μmあれば、十分な接合強度を得ることができる。まお。図1において、1bは熱硬化性樹脂組成物層を示している。   The maximum thickness Tpf of the region where the group of reinforcing fibers embedded in the thermoplastic resin composition layer is preferably 10 μm or more, more preferably 20 μm or more, and further preferably 40 μm or more. By doing so, a stronger bond can be obtained. This maximum thickness Tpf is embedded in the thermoplastic resin composition layer as viewed from the surface (2 in FIG. 1) of the thermoplastic resin composition layer (1a in FIG. 1) in the thickness direction of the thermoplastic resin composition layer. Of the reinforcing fibers 3 that are closest to the surface (3-out in FIG. 1) and the portion where the penetration depth from the surface of the thermoplastic resin composition layer is the largest is buried in the thermoplastic resin composition layer. It is defined as the distance in the thickness direction of the reinforcing fibers that are in contact with each other or that are farthest from the surface (3-in in FIG. 1). The maximum thickness Tpf can be measured using a SEM observation photograph or a TEM observation photograph of the cross section of the fiber reinforced composite material. If the maximum thickness Tpf is 1,000 μm at the maximum, sufficient bonding strength can be obtained. Mao. In FIG. 1, 1b has shown the thermosetting resin composition layer.

この第一の部材は、一体化構造部材の少なくとも一部として用いるという観点から、大きな荷重がかかることが想定される。さらに第二の部材と一体化するため、剛性が高くなければ第二の部材を一体化させた際の歪みなどで反りを生じてしまう。そこでその使用に耐えうるために、曲げ弾性率が20GPa以上であることが重要である。第一の部材が面内にまげ弾性率の異方性を有するときは、その最小値をとり評価する。測定方法の更なる詳細は、実施例にて後述する。   From the viewpoint of using this first member as at least a part of the integrated structural member, it is assumed that a large load is applied. Further, since it is integrated with the second member, if the rigidity is not high, warping may occur due to distortion or the like when the second member is integrated. Therefore, in order to withstand the use, it is important that the flexural modulus is 20 GPa or more. When the first member has an anisotropy of the lip elastic modulus in the plane, the minimum value is evaluated. Further details of the measurement method will be described later in Examples.

また、第二の部材の寸法安定性が良いことや、第一の部材と第二の部材の寸法安定性が同程度であることも一体化構造部材の反りや剥離を少なくするうえで重要である。そのため、第二の部材の線膨張係数CIIが4×10-5以下であり、かつ第一の部材の線膨張係数CIと第二の部材の線膨張係数CIIのうち大きい方の値Cbを小さい方の値Csで除した値Cb/Csの絶対値が50以下であることが重要である。第二の部材の線膨張係数CIIが4×10-55以上であると、収縮が大きいために、一体化構造部材とした際に反りや剥離を生じる。線膨張係数の下限に特に制限はないが、1×10-77以上が現実的な下限である。第一の部材の線膨張係数CIと第二の部材の線膨張係数CIIのうち大きい方の値Cbを小さい方の値Csで除した値Cb/Csの絶対値が50よりも大きくなると、収縮の差により反りや剥離を生じる。 Also, it is important to reduce the warpage and peeling of the integrated structural member that the second member has good dimensional stability and that the first member and the second member have the same dimensional stability. is there. Therefore, the linear expansion coefficient CII of the second member is 4 × 10 −5 or less, and the larger value Cb of the linear expansion coefficient CI of the first member and the linear expansion coefficient CII of the second member is small. It is important that the absolute value of the value Cb / Cs divided by the other value Cs is 50 or less. When the linear expansion coefficient CII of the second member is 4 × 10 −5 or more, since the shrinkage is large, warpage or peeling occurs when the integrated member is formed. The lower limit of the linear expansion coefficient is not particularly limited, but 1 × 10 −7 or more is a practical lower limit. When the absolute value of the value Cb / Cs obtained by dividing the larger value Cb of the linear expansion coefficient CI of the first member and the linear expansion coefficient CII of the second member by the smaller value Cs is larger than 50, the shrinkage occurs. Warpage or peeling occurs due to the difference of

本発明において、単に部材の線膨張係数(CI,CIIのように、「max」「min」が付けない)という場合には、第1の部材の場合は部材の最表面の繊維配向方向(D)について測定するものとし、第2の部材については、第一の部材の最表面の繊維配向方向(D)と、同じ方向について測定するものとする。ここで、最表面の繊維配向方向(D)とは以下のように判断する。まず光学顕微鏡やSEM(走査型電子顕微鏡)などで第一の部材表面を観察する。このとき、観察を明瞭にするために、繊維の配向方向が変化しない程度に表面を研磨することも可能である。次に基準となる直線Lを設定し、直線Lに対して観察される強化繊維の繊維軸の配向角度をn=200で測定し、その平均をもって第一の部材の最表面の繊維配向角度とし、その配向角度方向を第一の部材の最表面の繊維配向方向とする。   In the present invention, when the coefficient of linear expansion of a member is simply referred to as “CI” or “CII”, “max” and “min” are not attached), in the case of the first member, the fiber orientation direction (D ) And the second member is measured in the same direction as the fiber orientation direction (D) on the outermost surface of the first member. Here, the fiber orientation direction (D) on the outermost surface is determined as follows. First, the surface of the first member is observed with an optical microscope or SEM (scanning electron microscope). At this time, in order to clarify the observation, it is possible to polish the surface to such an extent that the orientation direction of the fibers does not change. Next, a reference straight line L is set, the orientation angle of the fiber axis of the reinforcing fiber observed with respect to the straight line L is measured at n = 200, and the average is defined as the fiber orientation angle of the outermost surface of the first member. The orientation angle direction is the fiber orientation direction of the outermost surface of the first member.

また、線膨張係数はISO 11359-2に基づいて測定することができる。一体化構造部材の第一の部材と第二の部材が一体化されている略平面部より無作為に選定した部位において、第一の部材の最表面の繊維配向方向に対して切り出した、4本の試験片を用意する。試験片の切り出し位置は、リブ部、ヒンジ部、凹凸部などの形状が意図的に付されている部分は極力避け、上記部位を含む場合は、これらを切削除去して試験に供する。これらの試験片から第一の部材および第二の部材をお互い切り離し、第一の部材の最表面の繊維配向方向に対するそれぞれの線膨張係数を測定する。第一の部材における線膨張係数をCI、第二の部材における線膨張係数をCIIと定義する。なお、測定温度範囲は特に制限はないが、一体化構造部材が使用される環境の観点から、30〜200℃が好ましい範囲として例示できる。   The linear expansion coefficient can be measured based on ISO 11359-2. 4 cut out with respect to the fiber orientation direction of the outermost surface of the first member at a portion randomly selected from the substantially flat surface where the first member and the second member of the integrated structural member are integrated. Prepare a test piece of book. As for the cutout position of the test piece, portions where shapes such as ribs, hinges, and concavo-convex portions are intentionally avoided should be avoided as much as possible. The first member and the second member are separated from each other from these test pieces, and the respective linear expansion coefficients with respect to the fiber orientation direction on the outermost surface of the first member are measured. The linear expansion coefficient in the first member is defined as CI, and the linear expansion coefficient in the second member is defined as CII. In addition, although there is no restriction | limiting in particular in a measurement temperature range, 30-200 degreeC can be illustrated as a preferable range from the viewpoint of the environment where an integrated structural member is used.

また、第一の部材と第二の部材の寸法安定性が同程度であることの別の態様として、一体化構造部材の第一の部材と第二の部材が一体化されている略平面部において、第一の部材の線膨張係数CIと、第二の部材の線膨張係数CIIから算出されるCII/CIの絶対値が0.1〜10であることも重要である。   Further, as another aspect of the dimensional stability of the first member and the second member being substantially the same, the substantially planar portion in which the first member and the second member of the integrated structure member are integrated. It is also important that the absolute value of CII / CI calculated from the linear expansion coefficient CI of the first member and the linear expansion coefficient CII of the second member is 0.1 to 10.

また、使用環境によって、一体化構造部材のネジレを抑える観点から、前記第二の部材の、面方向の最大線膨張係数CIImaxと、最小線膨張係数CIIminとの比、CIImax/CIIminが1〜3であることが好ましく、より好ましくは1〜2、さらに好ましくは1〜1.5である。   Further, from the viewpoint of suppressing twisting of the integrated structural member depending on the use environment, the ratio between the maximum linear expansion coefficient CIImax in the surface direction and the minimum linear expansion coefficient CIImin of the second member, CIImax / CIImin is 1 to 3 It is preferable that it is, More preferably, it is 1-2, More preferably, it is 1-1.5.

線膨張係数はISO 11359-2に基づいて測定する。第二の部材から無作為に選定した部位について、部材の長手方向を基準にして、0度、45度、90度、135度のように、異なる角度において切り出した、4本の試験片を用意する。試験片の切り出し位置は、リブ部、ヒンジ部、凹凸部などの形状が意図的に付されている部分は極力避け、上記部位を含む場合は、これらを切削除去して試験に供する。これらの試験片において、その最大値を最大線膨張係数CIimax、最小値を最小線膨張係数CIiminと定義する。なお、測定温度範囲は特に制限はないが、成形品が使用される環境の観点から、30〜200℃が好ましい範囲として例示できる。   The linear expansion coefficient is measured based on ISO 11359-2. For four parts randomly selected from the second member, prepare four test pieces cut at different angles such as 0 degree, 45 degrees, 90 degrees, and 135 degrees with respect to the longitudinal direction of the member. To do. As for the cutout position of the test piece, portions where shapes such as ribs, hinges, and concavo-convex portions are intentionally avoided should be avoided as much as possible. In these test pieces, the maximum value is defined as the maximum linear expansion coefficient CIimax, and the minimum value is defined as the minimum linear expansion coefficient CIimin. In addition, although there is no restriction | limiting in particular in a measurement temperature range, 30-200 degreeC can be illustrated as a preferable range from a viewpoint of the environment where a molded article is used.

第一の部材の線膨張係数CIに関しても、上記と同様のことが言える。
また、第二の部材の線膨張係数CIIの上限ついては、特に制限はないが、一体化構造部材の寸法安定性の面から、1×10-4以下であることが好ましい。
The same can be said for the linear expansion coefficient CI of the first member.
The upper limit of the linear expansion coefficient CII of the second member is not particularly limited, but is preferably 1 × 10 −4 or less from the viewpoint of dimensional stability of the integrated structural member.

前記第二の部材は、加工性の観点から熱可塑性樹脂組成物を含む部材であることが好ましい。   The second member is preferably a member containing a thermoplastic resin composition from the viewpoint of processability.

また、生産性の観点から射出成形品であることが好ましく、寸法安定性の面からは最大成形収縮率が1%以下であることが好ましい。より好ましくは0.7%以下であり、さらに好ましくは0.4%以下である。最大成形収縮率は、射出成形金型より任意の部位の寸法Rを4箇所測定し、それに対する第二の部材の実寸法rも4箇所測定する。r/R×100(%)で表される成形収縮率を測定し、その最大値を最大成形収縮率と定義する。
また、力学特性の観点から繊維強化系であることが好ましい。具体的には、(A)熱可塑性樹脂40〜95重量%、(B)強化繊維5〜60重量%からなる熱可塑性樹脂組成物であり、力学特性を高く、線膨張係数を低く抑えるためにその数平均繊維長が0.3mm以上であることが好ましい。
Moreover, it is preferable that it is an injection molded product from a viewpoint of productivity, and it is preferable that the maximum mold shrinkage is 1% or less from the viewpoint of dimensional stability. More preferably, it is 0.7% or less, More preferably, it is 0.4% or less. The maximum molding shrinkage ratio is measured by measuring four dimensions R of an arbitrary part from the injection mold and measuring four actual dimensions r of the second member corresponding thereto. The molding shrinkage represented by r / R × 100 (%) is measured, and the maximum value is defined as the maximum molding shrinkage.
Further, a fiber reinforced system is preferable from the viewpoint of mechanical properties. Specifically, it is a thermoplastic resin composition comprising (A) 40 to 95% by weight of a thermoplastic resin and (B) 5 to 60% by weight of a reinforcing fiber, in order to have high mechanical properties and a low coefficient of linear expansion. The number average fiber length is preferably 0.3 mm or more.

前記第二の部材に使用される熱可塑性樹脂(A)としては例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンナフタレート(PENp)、液晶ポリエステル等のポリエステルや、ポリエチレン(PE)、ポリプロピレン(PP)、ポリブチレン等のポリオレフィンや、スチレン系樹脂の他や、ポリオキシメチレン(POM)、ポリアミド(PA)、ポリカーボネート(PC)、ポリメチレンメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフェニレンスルフィド(PPS)、ポリフェニレンエーテル(PPE)、変性PPE、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、ポリスルホン(PSU)、変性PSU、ポリエーテルスルホン、ポリケトン(PK)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンケトン(PEKK)、ポリアリレート(PAR)、ポリエーテルニトリル(PEN)、フェノール系樹脂、フェノキシ樹脂、ポリテトラフルオロエチレンなどのフッ素系樹脂、ポリブタジエン系、ポリイソプレン系、フッ素系等の熱可塑エラストマー等や、これらの共重合体、変性体、および2種類以上ブレンドした樹脂などであってもよい。とりわけ、耐熱性、耐薬品性の観点からはPPS樹脂が、成形品外観、寸法安定性の観点からはポリカーボネート樹脂やスチレン系樹脂が、成形品の強度、耐衝撃性の観点からはポリアミド樹脂がより好ましく用いられる。   Examples of the thermoplastic resin (A) used for the second member include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polyethylene naphthalate (PENp), and liquid crystal polyester. Polyester, polyethylene (PE), polypropylene (PP), polybutylene and other polyolefins, styrenic resins, polyoxymethylene (POM), polyamide (PA), polycarbonate (PC), polymethylene methacrylate (PMMA) , Polyvinyl chloride (PVC), polyphenylene sulfide (PPS), polyphenylene ether (PPE), modified PPE, polyimide (PI), polyamideimide (PAI), polyetherimide (PEI), polysulfone (PSU), modified PSU, polyethersulfone, polyketone (PK), polyetherketone (PEK), polyetheretherketone (PEEK), polyetherketoneketone (PEKK), polyarylate (PAR), polyethernitrile (PEN) ), Fluororesins such as phenolic resins, phenoxy resins, polytetrafluoroethylene, thermoplastic elastomers such as polybutadiene, polyisoprene, and fluorine, copolymers, modified products, and blends of two or more It may be a resin. In particular, PPS resin is used from the viewpoint of heat resistance and chemical resistance, polycarbonate resin and styrene resin are used from the viewpoint of molded product appearance and dimensional stability, and polyamide resin is used from the viewpoint of strength and impact resistance of the molded product. More preferably used.

また、耐衝撃性向上のために、他のエラストマーあるいはゴム成分を添加してもよい。また、用途等に応じ、本発明の目的を損なわない範囲で、他の充填材や添加剤を含有してもよい。例えば、無機充填材、難燃剤、導電性付与剤、結晶核剤、紫外線吸収剤、酸化防止剤、制振剤、抗菌剤、防虫剤、防臭剤、着色防止剤、熱安定剤、離型剤、帯電防止剤、可塑剤、滑剤、着色剤、顔料、染料、発泡剤、制泡剤、カップリング剤などが挙げられる。   Further, other elastomers or rubber components may be added to improve impact resistance. Moreover, according to a use etc., you may contain another filler and additive in the range which does not impair the objective of this invention. For example, inorganic fillers, flame retardants, conductivity imparting agents, crystal nucleating agents, ultraviolet absorbers, antioxidants, vibration damping agents, antibacterial agents, insect repellents, deodorants, anti-coloring agents, heat stabilizers, release agents , Antistatic agents, plasticizers, lubricants, colorants, pigments, dyes, foaming agents, antifoaming agents, coupling agents and the like.

第二の部材で使用する強化繊維としては、前述の第一の部材における強化繊維と同様の思想により選定することができる。ただし第二の部材を射出成形により形成する場合には、強化繊維は短繊維とし、熱可塑性樹脂組成物中に均一に分散していることが好ましい。この場合の強化繊維の配合比率としては、強化繊維が炭素繊維のとき、成形性、強度、軽量性とのバランスの観点から、第二の部材の第一の部材に対して、5〜60重量%が好ましく、より好ましくは15〜55重量%である。   The reinforcing fiber used in the second member can be selected based on the same idea as the reinforcing fiber in the first member. However, when the second member is formed by injection molding, it is preferable that the reinforcing fibers are short fibers and are uniformly dispersed in the thermoplastic resin composition. As a compounding ratio of the reinforcing fiber in this case, when the reinforcing fiber is a carbon fiber, it is 5 to 60 weights with respect to the first member of the second member from the viewpoint of the balance between moldability, strength, and lightness. % Is preferred, more preferably 15 to 55% by weight.

また、前記第一の部材の線膨張係数CIが、その最大値をCImax、その最小値をC
βとするとCImax/CIminが1〜3であることが好ましい。より好ましくは1〜2.5、さらに好ましくは1〜2である。CImax/CIminの絶対値が3よりも大きくなると、第一の部材が線膨張係数に異方性のある材料となり、一体化構造部材の反りや剥離の原因となる可能性がある。
Further, the linear expansion coefficient CI of the first member has a maximum value CImax and a minimum value C
When β is set, CImax / CImin is preferably 1 to 3. More preferably, it is 1-2.5, More preferably, it is 1-2. When the absolute value of CImax / CImin is larger than 3, the first member becomes a material having an anisotropic linear expansion coefficient, which may cause warpage or peeling of the integrated structural member.

前記第一の部材と第二の部材とを接合して一体化成形品を製造する手法としては、第一の部材における熱可塑性樹脂組成物層を構成する熱可塑性樹脂の融点以上のプロセス温度にて第二の部材を接着し、次いで冷却することにより繊維強化複合材と別の構造材とを接合する手法があげられる。熱可塑性樹脂を溶融させて接着させる手法としては例えば、熱溶着、振動溶着、超音波溶着、レーザー溶着、インサート射出成形、アウトサート射出成形を挙げることができる。   As a method of manufacturing the integrated molded product by joining the first member and the second member, the process temperature is equal to or higher than the melting point of the thermoplastic resin constituting the thermoplastic resin composition layer in the first member. For example, the second member is bonded and then cooled to join the fiber-reinforced composite material and another structural material. Examples of the technique for melting and bonding the thermoplastic resin include thermal welding, vibration welding, ultrasonic welding, laser welding, insert injection molding, and outsert injection molding.

また、第一の部材と第二の部材との一体化は、補助的に、嵌合や嵌め込みなどを併用してなることも好ましい。   Moreover, it is also preferable that the integration of the first member and the second member is performed by using fitting or fitting together in an auxiliary manner.

本発明の一体化構造部材の形状としては、曲面、リブ、ヒンジ、ボス、中空部等を有していてもよい。また、成形品にはメッキ、塗装、蒸着、インサート、スタンピング、レーザー照射などによる表面加飾の処理が施されていてもよい。   The shape of the integrated structural member of the present invention may include a curved surface, a rib, a hinge, a boss, a hollow portion, and the like. Further, the molded product may be subjected to surface decoration treatment by plating, painting, vapor deposition, insert, stamping, laser irradiation, or the like.

本発明の一体化構造部材は、電気・電子機器、OA機器、家電機器、自動車または建材の、部品、部材または筐体に好適に用いることができる。   The integrated structural member of the present invention can be suitably used for parts, members or casings of electric / electronic devices, OA devices, home appliances, automobiles or building materials.

[評価・測定方法]
(1)曲げ弾性率
各実施例で用いた第一の部材をISO 14125に基づいて評価した。第一の部材の略平面部から、第一の部材の長手方向を基準にして、0度、45度、90度、135度の異なる角度に切り出した4本の試験片を用意した。試験片の切り出し位置は、リブ部、ヒンジ部、凹凸部などの形状が意図的に付されている部分は極力避け、上記部位を含む場合は、これらを切削除去して試験に供する。これらの試験片において得られる曲げ弾性率の内の最小値を、ここで云う曲げ弾性率として採用した。
[Evaluation / Measurement Method]
(1) Flexural modulus The first member used in each example was evaluated based on ISO 14125. Four test pieces were prepared by cutting out from the substantially planar portion of the first member at different angles of 0 degrees, 45 degrees, 90 degrees, and 135 degrees with respect to the longitudinal direction of the first member. As for the cutout position of the test piece, portions where shapes such as ribs, hinges, and concavo-convex portions are intentionally avoided should be avoided as much as possible. The minimum value of the flexural modulus obtained from these test pieces was adopted as the flexural modulus referred to herein.

(2)線膨張係数
各実施例で用いた第一の部材および第二の部材をISO 11359−2に基づいて評価した。測定温度範囲は30〜200℃とした。第一の部材および第二の部材を予め別々に評価できる場合は、事前に評価する。一体化成形品から評価する場合は、一体化成形品の第一の部材および第二の部材の略平面部から、リブ部、ヒンジ部、凹凸部などの形状が意図的に付されている部分は極力避け、上記部位を含む場合は、これらを切削除去して試験片を切り出す。
(2) Linear expansion coefficient The first member and the second member used in each example were evaluated based on ISO 11359-2. The measurement temperature range was 30 to 200 ° C. If the first member and the second member can be evaluated separately in advance, they are evaluated in advance. When evaluating from an integrally molded product, a part where the rib part, hinge part, uneven part, etc. are intentionally attached from the substantially flat part of the first member and the second member of the integrally molded part Avoid as much as possible, and if the above part is included, cut and remove these to cut out the test piece.

第1の部材は部材の最表面の繊維配向方向(D)について測定し、第2の部材については、第一の部材の最表面の繊維配向方向(D)と、同じ方向について測定した。ここで、最表面の繊維配向方向(D)とは以下のように判断した。まず表面を研磨し、光学顕微鏡で第一の部材表面を観察し、次に基準となる直線Lを設定し、直線Lに対して観察される強化繊維の繊維軸の配向角度をn=200で測定し、その平均をもって第一の部材の最表面の繊維配向角度とし、その配向角度方向を第一の部材の最表面の繊維配向方向とした。また、線膨張係数の最大値、最小値は、第一の部材および第二の部材の長手方向を基準にして、0度、45度、90度、135度の異なる角度に切り出した4本の試験片を測定し、これらのうち最大のものを線膨張係数の最大値、最小のものを線膨張係数の最小値とした。本実施例では予め第一の部材および第二の部材の評価を行った。   The first member was measured in the fiber orientation direction (D) on the outermost surface of the member, and the second member was measured in the same direction as the fiber orientation direction (D) on the outermost surface of the first member. Here, the fiber orientation direction (D) on the outermost surface was determined as follows. First, the surface is polished, the first member surface is observed with an optical microscope, a reference straight line L is set, and the orientation angle of the fiber axis of the reinforcing fiber observed with respect to the straight line L is n = 200. The average was taken as the fiber orientation angle on the outermost surface of the first member, and the orientation angle direction was taken as the fiber orientation direction on the outermost surface of the first member. In addition, the maximum value and the minimum value of the linear expansion coefficient are four cut out at different angles of 0 degrees, 45 degrees, 90 degrees, and 135 degrees with respect to the longitudinal direction of the first member and the second member. The test piece was measured, and the largest one of these was the maximum value of the linear expansion coefficient, and the smallest one was the minimum value of the linear expansion coefficient. In this example, the first member and the second member were evaluated in advance.

(3)Tpf
第一の部材の断面をTEMにて観察し、以下のように測定した。第一の部材の熱可塑性樹脂組成物層の厚さ方向において、熱可塑性樹脂組成物層(図1中1a)の表面(図1中2)からみて、熱可塑性樹脂組成物層に埋没している強化繊維のうち最も表面に近いもの(図1中3−out)と、熱可塑性樹脂組成物層の表面からの入り込み厚さが最も大きい部位において、熱可塑性樹脂組成物層に埋没して・あるいは接している強化繊維のうち最も表面から離れたもの(図1中3−in)との厚さ方向の距離をTpfとして測定する。
(3) Tpf
The cross section of the first member was observed with a TEM and measured as follows. In the thickness direction of the thermoplastic resin composition layer of the first member, as seen from the surface (2 in FIG. 1) of the thermoplastic resin composition layer (1a in FIG. 1), it is buried in the thermoplastic resin composition layer. Among the reinforcing fibers that are closest to the surface (3-out in FIG. 1) and the portion where the penetration depth from the surface of the thermoplastic resin composition layer is the largest, it is buried in the thermoplastic resin composition layer. Or the distance of the thickness direction with the thing (3-in in FIG. 1) farthest from the surface among the reinforcing fibers which are in contact is measured as Tpf.

(4)垂直接着強度
図2に示すように、一体化成形品から、第一の部材7と第二の部材6が接合している部分より、垂直接着強度評価用試料5を10mm×10mmの大きさで切り出した。次いで図3に示すように、所定サイズに切り出した垂直接着強度評価用試料9(接着面:10)を測定装置の引張治具8a、8bに固定した。測定装置としては“インストロン”(登録商標)5565型万能材料試験機(インストロン・ジャパン(株)製)を使用した。尚、試料の固定は、成形品がインストロンのチャックに把持できるものはそのままチャックに挟み引張試験を行うが、把持できないものは成形体に接着剤(スリーボンド1782、株式会社スリーボンド製)を塗布し、23±5℃、50±5%RHで4時間放置して治具と接着させてもよい。
(4) Vertical Adhesive Strength As shown in FIG. 2, from an integrally molded product, the vertical adhesive strength evaluation sample 5 is 10 mm × 10 mm from the portion where the first member 7 and the second member 6 are joined. Cut out in size. Next, as shown in FIG. 3, a sample 9 (adhesive surface: 10) for vertical adhesive strength evaluation cut out to a predetermined size was fixed to the tension jigs 8a and 8b of the measuring apparatus. As the measuring device, “Instron” (registered trademark) 5565 type universal material testing machine (manufactured by Instron Japan Co., Ltd.) was used. For fixing the sample, if the molded product can be held by Instron's chuck, the sample is held in the chuck as it is and a tensile test is performed. If the sample cannot be held, an adhesive (ThreeBond 1782, manufactured by ThreeBond Co., Ltd.) is applied , 23 ± 5 ° C. and 50 ± 5% RH for 4 hours, and may be bonded to the jig.

引張試験は、雰囲気温度が調節可能な試験室において、25℃の雰囲気温度で行った。試験開始前に、試験片は、試験室内において、少なくとも5分間、引張試験の負荷がかからない状態を維持し、また、試験片に熱電対を配置して、雰囲気温度と同等になったことを確認した後に、引張試験を行った。   The tensile test was performed at an ambient temperature of 25 ° C. in a test chamber in which the ambient temperature can be adjusted. Before starting the test, keep the test piece in the test chamber free from the tensile test load for at least 5 minutes, and place a thermocouple on the test piece to confirm that it is equivalent to the ambient temperature. After that, a tensile test was performed.

引張試験は、引張速度1.27mm/分にて、両者の接着面から90°方向(引張方向矢印11a、11b)に引っ張って行い、その最大荷重を接着面積で除した値を垂直接着強度(単位:MPa)とした。また、試料数はn=5とした。   The tensile test was conducted by pulling from the bonding surface of both at 90 ° direction (tensile direction arrows 11a and 11b) at a pulling speed of 1.27 mm / min, and the value obtained by dividing the maximum load by the bonding area (vertical bonding strength ( (Unit: MPa). The number of samples was n = 5.

(5)重量平均繊維長
第二の部材の一部を切り出し、マトリックス樹脂を溶解させる有機溶媒(本実施例ではポリアミド6樹脂を溶解させるギ酸)によりマトリックス樹脂(ポリアミド6樹脂)を十分溶解させた後、濾過により強化繊維を分離した。分離した強化繊維を、無作為に少なくとも400本以上抽出し、その長さを1μm単位まで光学顕微鏡にて測定し、以下の式より重量平均繊維長を算出した。
重量平均繊維長=Σ(Li×Wi/100)
Li:測定した繊維長さ(i=1,2,3,・・・n)
Wi:繊維長さLiの繊維の重量分率
(5) Weight average fiber length A part of the second member was cut out, and the matrix resin (polyamide 6 resin) was sufficiently dissolved with an organic solvent for dissolving the matrix resin (in this example, formic acid for dissolving the polyamide 6 resin). Thereafter, the reinforcing fibers were separated by filtration. At least 400 separated reinforcing fibers were randomly extracted, the length was measured with an optical microscope up to 1 μm unit, and the weight average fiber length was calculated from the following formula.
Weight average fiber length = Σ (Li × Wi / 100)
Li: measured fiber length (i = 1, 2, 3,... N)
Wi: Fiber weight fraction of fiber length Li

実施例1(板状一体化成形品)
(第一の部材)
東レ(株)製“トレカ”使いのプリプレグP6053−12を所定の大きさにカットし、平面の成形対を製造した。まず、雌金型に長方形底面の長手方向を0°として、繊維方向が上から45°、−45°、90°、90°、−45°、45°となるように6枚のプリプレグを積層した。最後に積層したプリプレグの上から、熱可塑性樹脂組成物層として東レ(株)製、3元共重合ポリアミド樹脂CM4000(ナイロン6/66/610、融点150℃、溶解度パラメータδ(SP値)13.3)の幅1000mmの不織布(目付30g/m2 、単繊維繊度0.2tex)を成形体と同様の大きさにカットしたものを2枚重ねて積層した。次に、雄金型をセットして、プレス成形を行った。プレス成形機にて160℃で5分間予熱して熱可塑性樹脂組成物層を溶融させた後、6MPaの圧力をかけながら150℃で30分間加熱して硬化させた。硬化終了後、室温で冷却し、脱型して平均の厚み0.7mmの第一の部材を得た。得られた第一の部材の熱可塑性樹脂組成物層の最大厚みTpfは25μm、曲げ弾性率は30MPa、密度は1.56g/cm3 、線膨張係数CIは3.3×10-6、線膨張係数の最大値CImax/最小値CIminの絶対値は1.8であった。
Example 1 (Plate-like integrated molded product)
(First member)
A prepreg P6053-12 using “Torayca” manufactured by Toray Industries, Inc. was cut to a predetermined size to produce a flat molded pair. First, six prepregs are laminated on a female mold so that the longitudinal direction of the rectangular bottom is 0 ° and the fiber direction is 45 °, −45 °, 90 °, 90 °, −45 °, 45 ° from the top. did. From the top of the last laminated prepreg, as a thermoplastic resin composition layer, Toray Industries, Ltd., terpolymer polyamide resin CM4000 (nylon 6/66/610, melting point 150 ° C., solubility parameter δ (SP value) 13. 3) Nonwoven fabrics having a width of 1000 mm (weight per unit area: 30 g / m 2 , single fiber fineness: 0.2 tex) cut into the same size as the molded body were stacked and laminated. Next, a male mold was set and press molding was performed. The thermoplastic resin composition layer was melted by preheating at 160 ° C. for 5 minutes in a press molding machine, and then cured by heating at 150 ° C. for 30 minutes while applying a pressure of 6 MPa. After the curing, the product was cooled at room temperature and demolded to obtain a first member having an average thickness of 0.7 mm. The maximum thickness Tpf of the thermoplastic resin composition layer of the obtained first member is 25 μm, the flexural modulus is 30 MPa, the density is 1.56 g / cm 3 , the linear expansion coefficient CI is 3.3 × 10 −6 , The absolute value of the maximum value CImax / minimum value CImin of the expansion coefficient was 1.8.

(第二の部材)
上記と同じ第一の部材を第二の部材として使用した。
(Second member)
The same first member as above was used as the second member.

(一体化)
上記第一の部材および第二の部材を、熱板にて160℃で3分間加熱後、熱可塑性樹脂組成物層を有する面同士を接合面として、お互いの最表層の繊維配向方向が同方向となるように張り合わせ、20MPaの圧力にて2分間保持して一体化し、板状の一体化成形品とした。得られた一体化成形品の垂直接着強度の評価を試みたところ、6MPaにおいて、接合部分が剥離するよりも前に試料と治具との接着剤による固定部分が剥離したことから、6MPa以上であると評価される。またCb/Csの絶対値は1であった。
(Integrated)
The first member and the second member are heated with a hot plate at 160 ° C. for 3 minutes, and then the surfaces having the thermoplastic resin composition layers are joined surfaces, and the fiber orientation directions of the outermost layers are the same. Then, they were laminated together by holding at a pressure of 20 MPa for 2 minutes to obtain a plate-like integrated molded product. Attempts were made to evaluate the vertical adhesive strength of the obtained integrally molded product. At 6 MPa, the fixed part by the adhesive between the sample and the jig peeled off before the joint part peeled off. Evaluated as being. The absolute value of Cb / Cs was 1.

実施例2(電子機器筐体)
(第一の部材)
実施例1と同様にして得られる第一の部材を本実施例でも用いた。
Example 2 (electronic equipment casing)
(First member)
The first member obtained in the same manner as in Example 1 was also used in this example.

(第二の部材・一体化)
上記第一の部材を射出成形用金型にインサートし、第一の部材の熱可塑性樹脂組成物層を有する面に対して、第二の部材として、東レ(株)製長繊維ペレットTLP1146(ポリアミド樹脂マトリックス、炭素繊維含有量20重量%)を射出成形にて成形、一体化し、図4に示すような電子機器筐体とした。図4では、第一の部材13と第二の部材14からなるパソコン筐体12が例示されている。第二の部材の線膨張係数は1.4×10-5、CIImax/CIIminの絶対値は1.9、重量平均繊維長は0.6mmであった。また第二の部材の最大成形収縮率は0.2%であった。射出成形機は日本製鋼所(株)製J350EIIIを使用し、射出成形は、スクリュー回転数60rpm、シリンダー温度280℃、射出速度90mm/sec、射出圧力200MPa、背圧0.5MPa、金型温度55℃で行った。得られた一体化成形品の垂直接着強度の評価を試みたところ、6MPaにおいて、接合部分が剥離するよりも前に試料と治具との接着剤による固定部分が剥離したことから、6MPa以上であると評価される。またCII/CIの絶対値は6.7であった。
(Second member / integration)
The first member is inserted into an injection mold, and the first member has a thermoplastic resin composition layer. As a second member, a long fiber pellet TLP1146 (polyamide) manufactured by Toray Industries, Inc. A resin matrix and a carbon fiber content of 20% by weight) were molded and integrated by injection molding to obtain an electronic device casing as shown in FIG. In FIG. 4, a personal computer casing 12 including a first member 13 and a second member 14 is illustrated. The linear expansion coefficient of the second member was 1.4 × 10 −5 , the absolute value of CIImax / CIImin was 1.9, and the weight average fiber length was 0.6 mm. The maximum molding shrinkage of the second member was 0.2%. The injection molding machine uses J350EIII manufactured by Nippon Steel, Ltd., and the injection molding is screw rotation 60 rpm, cylinder temperature 280 ° C., injection speed 90 mm / sec, injection pressure 200 MPa, back pressure 0.5 MPa, mold temperature 55 Performed at ° C. Attempts were made to evaluate the vertical adhesive strength of the obtained integrally molded product. At 6 MPa, the fixed part by the adhesive between the sample and the jig peeled off before the joint part peeled off. Evaluated as being. The absolute value of CII / CI was 6.7.

本発明で用いる第一の部材における最大厚みTpfを模式的に図示したものである。The maximum thickness Tpf in the 1st member used by this invention is typically illustrated. 本発明の一体化構造部材の垂直接着強度評価用試料の模式図である。It is a schematic diagram of the sample for vertical adhesive strength evaluation of the integrated structural member of this invention. 本発明の一体化構造部材の垂直接着強度評価における試料設置の模式図である。It is a schematic diagram of sample installation in the vertical adhesive strength evaluation of the integrated structural member of the present invention. 本発明の一体化構造部材の一態様(実施例2)である電子機器筐体の斜視図である。It is a perspective view of the electronic device housing | casing which is one aspect | mode (Example 2) of the integrated structure member of this invention.

符号の説明Explanation of symbols

1a 熱可塑性樹脂組成物層
1b 熱硬化性樹脂組成物層
2 第一の部材の表面
3 繊維強化
3−in 熱可塑性樹脂組成物層に埋没して・あるいは接している最も表面から離れた強化繊維
3−out 熱可塑性樹脂組成物層に埋没している最も表面に近い強化繊維
4 第一の部材の熱硬化性樹脂組成物層と熱可塑性樹脂組成物層の界面
5 垂直接着強度評価用試料
6 第二の部材
7 第一の部材
8a 引張治具
8b 引張治具
9 垂直接着強度評価用試料
10 接着面
11a 引張方向矢印
11b 引張方向矢印
12 パソコン筐体
13 第一の部材
14 第二の部材
DESCRIPTION OF SYMBOLS 1a Thermoplastic resin composition layer 1b Thermosetting resin composition layer 2 Surface of 1st member 3 Fiber reinforcement 3-in Reinforcing fiber which is buried in or touches the thermoplastic resin composition layer and which is farthest from the surface 3-out Reinforcing fiber closest to the surface embedded in the thermoplastic resin composition layer 4 Interface between the thermosetting resin composition layer of the first member and the thermoplastic resin composition layer 5 Sample for vertical adhesive strength evaluation 6 Second member 7 First member 8a Tensile jig 8b Tensile jig 9 Sample for vertical adhesive strength evaluation 10 Adhesive surface 11a Tensile direction arrow 11b Tensile direction arrow 12 PC housing 13 First member 14 Second member

Claims (16)

強化繊維とマトリックス樹脂組成物とを含んでなる第一の部材と、第二の部材とが接合されてなる一体化構造部材において、前記第一の部材と前記第二の部材との接合面における垂直接着強度が25℃において6MPa以上であり、第一の部材の曲げ弾性率が20GPa以上であり、第二の部材の線膨張係数CIIが4×10-5以下であり、かつ第一の部材の線膨張係数CIと第二の部材の線膨張係数CIIのうち大きい方の値Cbを小さい方の値Csで除した値Cb/Csの絶対値が50以下であることを特徴とする一体化構造部材。 In the integrated structure member formed by joining the first member comprising the reinforcing fiber and the matrix resin composition and the second member, in the joint surface between the first member and the second member The vertical adhesive strength is 6 MPa or more at 25 ° C., the flexural modulus of the first member is 20 GPa or more, the linear expansion coefficient CII of the second member is 4 × 10 −5 or less, and the first member The absolute value of the value Cb / Cs obtained by dividing the larger value Cb of the linear expansion coefficient CI of the second member and the linear expansion coefficient CII of the second member by the smaller value Cs is 50 or less. Structural member. 強化繊維とマトリックス樹脂組成物とを含んでなる第一の部材と、第二の部材とが、熱可塑性樹脂層を介して接合されてなる一体化構造部材において、前記第一の部材と前記第二の部材との接合面における垂直接着強度が25℃において6MPa以上であり、該一体化構造部材の第一の部材と第二の部材が一体化されている略平面部において、第一の部材の線膨張係数CIと、第二の部材の線膨張係数CIIから算出されるCII/CIの絶対値が0.1〜10であることを特徴とする一体化構造部材。   In an integrated structure member in which a first member comprising a reinforcing fiber and a matrix resin composition and a second member are joined via a thermoplastic resin layer, the first member and the first member The vertical adhesive strength at the joint surface with the second member is 6 MPa or more at 25 ° C., and the first member An integral structure member characterized in that the absolute value of CII / CI calculated from the linear expansion coefficient CI of the second member and the linear expansion coefficient CII of the second member is 0.1-10. 前記第二の部材の面方向の最大線膨張係数CIImaxと最小線膨張係数CIiminとの比、CIImax/CIIminの絶対値が1〜3の範囲にある、請求項1または2のいずれかに記載の一体化構造部材。   The ratio between the maximum linear expansion coefficient CIImax and the minimum linear expansion coefficient CIimin in the surface direction of the second member, and the absolute value of CIImax / CIImin is in the range of 1 to 3. Integrated structural member. 前記第一の部材の線膨張係数CIが、その最大値をCImax、その最小値をCIminとすると、CImax/CIminが1〜3の範囲にある、請求項1〜3のいずれかに記載の一体化構造部材。   The linear expansion coefficient CI of the first member has a maximum value CImax and a minimum value CImin, and CImax / CImin is in the range of 1 to 3 according to any one of claims 1 to 3. Structural member. 前記第二の部材の最大線膨張係数が1×10-4以下である、請求項3または4に記載の一体化構造部材。 The integrated structural member according to claim 3 or 4, wherein the second member has a maximum coefficient of linear expansion of 1 x 10-4 or less. 前記第二の部材が熱可塑性樹脂組成物を含む部材である、請求項1〜5のいずれかに記載の一体化構造部材。   The integrated structure member according to claim 1, wherein the second member is a member containing a thermoplastic resin composition. 前記熱可塑性樹脂組成物を含む第二の部材が射出成形により一体化されてなる、請求項6に記載の一体化構造部材。   The integrated structural member according to claim 6, wherein the second member containing the thermoplastic resin composition is integrated by injection molding. 前記熱可塑性樹脂組成物を含む第二の部材の最大成形収縮率が1%以下である、請求項7に記載の一体化構造部材。   The integrated structure member according to claim 7, wherein the maximum molding shrinkage ratio of the second member containing the thermoplastic resin composition is 1% or less. 前記第二の部材が、(A)熱可塑性樹脂40〜95重量%、(B)強化繊維5〜60重量%からなる熱可塑性樹脂組成物であり、その重量平均繊維長が0.3mm以上である、請求項6〜8のいずれかに記載の一体化構造部材。   The second member is a thermoplastic resin composition comprising (A) 40 to 95% by weight of a thermoplastic resin and (B) 5 to 60% by weight of a reinforcing fiber, and the weight average fiber length is 0.3 mm or more. The integrated structural member according to any one of claims 6 to 8. 前記第一の部材が、熱硬化性のマトリックス樹脂に強化繊維が配置された熱硬化性樹脂組成物層と、該熱硬化性樹脂組成物層の少なくとも一部分に形成された熱可塑性樹脂組成物層からなる第一の部材である、請求項1〜9のいずれかに記載の一体化構造部材。   The first member includes a thermosetting resin composition layer in which reinforcing fibers are arranged in a thermosetting matrix resin, and a thermoplastic resin composition layer formed on at least a part of the thermosetting resin composition layer. The integrated structural member according to claim 1, which is a first member comprising: 前記第一の部材が、熱硬化性樹脂組成物層、熱可塑性樹脂組成物層、および強化繊維とからなり、熱硬化性樹脂組成物層と熱可塑性樹脂組成物層とが、これらの層の界面において、凹凸形状を有して一体化され、かつ熱硬化性樹脂組成物層と熱可塑性樹脂組成物層とのいずれもが、その少なくとも一部に強化繊維を埋没させてなる第一の部材である、請求項1〜10のいずれかに記載の一体化構造部材。   The first member includes a thermosetting resin composition layer, a thermoplastic resin composition layer, and reinforcing fibers, and the thermosetting resin composition layer and the thermoplastic resin composition layer are formed of these layers. A first member that is integrated with an uneven shape at the interface, and in which both the thermosetting resin composition layer and the thermoplastic resin composition layer are embedded with reinforcing fibers at least partially. The integrated structural member according to claim 1, wherein 前記熱可塑性樹脂組成物層において、強化繊維が存在している領域の最大厚みTpfが、10μm以上である、請求項10または11に記載の一体化構造部材。   The integrated structure member according to claim 10 or 11, wherein in the thermoplastic resin composition layer, a maximum thickness Tpf of a region where the reinforcing fibers are present is 10 µm or more. 前記強化繊維が炭素繊維である、請求項1〜12のいずれかに記載の一体化構造部材。   The integrated structural member according to claim 1, wherein the reinforcing fibers are carbon fibers. 前記熱硬化性樹脂組成物層がエポキシ樹脂を含む、請求項10〜13のいずれかに記載の一体化構造部材。   The integrated structure member according to claim 10, wherein the thermosetting resin composition layer contains an epoxy resin. 電気・電子機器、OA機器、家電機器、自動車または建材の、部品、部材または筐体のいずれかに用いられるものからなる、請求項1〜14のいずれかに記載の一体化構造部材。   The integrated structural member according to any one of claims 1 to 14, wherein the integrated structural member is used for any one of a part, a member, or a casing of an electric / electronic device, an OA device, a home appliance, an automobile, or a building material. 前記第一の部材と第二の部材との接合を、熱溶着、振動溶着、超音波溶着、レーザー溶着、インサート射出成形、アウトサート射出成形から選択される少なくとも1つの方法にて行うことにより、請求項1〜15のいずれかに記載の一体化構造部材とすることを特徴とする、一体化構造部材の製造方法。   By joining the first member and the second member by at least one method selected from thermal welding, vibration welding, ultrasonic welding, laser welding, insert injection molding, outsert injection molding, A method for producing an integrated structural member, comprising the integrated structural member according to claim 1.
JP2005198551A 2004-07-07 2005-07-07 Integrated structural member and its manufacturing method Pending JP2006044260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005198551A JP2006044260A (en) 2004-07-07 2005-07-07 Integrated structural member and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004200941 2004-07-07
JP2005198551A JP2006044260A (en) 2004-07-07 2005-07-07 Integrated structural member and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006044260A true JP2006044260A (en) 2006-02-16

Family

ID=36023350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005198551A Pending JP2006044260A (en) 2004-07-07 2005-07-07 Integrated structural member and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006044260A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011037150A (en) * 2009-08-12 2011-02-24 Mitsubishi Plastics Inc Laminate
WO2012105717A1 (en) * 2011-02-03 2012-08-09 帝人株式会社 Vehicle skeleton member
JP2016215483A (en) * 2015-05-20 2016-12-22 王子ホールディングス株式会社 Molded body
WO2018056434A1 (en) * 2016-09-26 2018-03-29 東レ株式会社 Electronic device housing
JP2019130912A (en) * 2019-03-27 2019-08-08 王子ホールディングス株式会社 Molded body
JP2019130913A (en) * 2019-03-27 2019-08-08 王子ホールディングス株式会社 Molded body
US11799199B2 (en) * 2016-09-26 2023-10-24 Toray Industries, Inc. Electronic device housing and method for producing same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011037150A (en) * 2009-08-12 2011-02-24 Mitsubishi Plastics Inc Laminate
WO2012105717A1 (en) * 2011-02-03 2012-08-09 帝人株式会社 Vehicle skeleton member
US9132859B2 (en) 2011-02-03 2015-09-15 Teijin Limited Vehicle skeleton member
JP2016215483A (en) * 2015-05-20 2016-12-22 王子ホールディングス株式会社 Molded body
WO2018056434A1 (en) * 2016-09-26 2018-03-29 東レ株式会社 Electronic device housing
CN109691249A (en) * 2016-09-26 2019-04-26 东丽株式会社 Casting of electronic device
CN109691249B (en) * 2016-09-26 2021-07-30 东丽株式会社 Electronic equipment shell
TWI736679B (en) * 2016-09-26 2021-08-21 日商東麗股份有限公司 Electromechanical housing
US11799199B2 (en) * 2016-09-26 2023-10-24 Toray Industries, Inc. Electronic device housing and method for producing same
US11800656B2 (en) 2016-09-26 2023-10-24 Toray Industries, Inc. Electronic device housing
JP2019130912A (en) * 2019-03-27 2019-08-08 王子ホールディングス株式会社 Molded body
JP2019130913A (en) * 2019-03-27 2019-08-08 王子ホールディングス株式会社 Molded body

Similar Documents

Publication Publication Date Title
JP4774839B2 (en) Manufacturing method of fiber reinforced composite material
TWI353303B (en) Sandwich structure and integrated molding using th
JP4858544B2 (en) Composite molded article and manufacturing method thereof
KR101001192B1 (en) Electromagnetic-shielding molded object and process for producing the same
TWI636879B (en) Sandwich structure, integrated molded product using the same, and manufacturing method thereof
JP5776137B2 (en) Manufacturing method of integrated molded products
JP4023515B2 (en) Preform using a base material for thermal bonding, and method for producing laminate
JP2006044260A (en) Integrated structural member and its manufacturing method
JP4543696B2 (en) FIBER-REINFORCED COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND INTEGRATED MOLDED ARTICLE
JP2006044262A (en) Hollow molded article and its production method
JP2008230238A (en) Fiber-reinforced composite material plate and molded article using the same
JP2006044259A (en) Integrated molded product and its manufacturing method
JP2006205436A (en) Fiber reinforced composite material sheet and molded product using it
JPWO2019189384A1 (en) Molded article manufacturing method
TWI794278B (en) Integral body
JP2004209717A (en) Fiber reinforced molded product
JP2011166124A (en) Electrical and electronic equipment housing
TW201919844A (en) Integrated molded body and method for producing same
JP2005297417A (en) Industrial structure member and its manufacturing method
JP2006130862A (en) Composite molded component and manufacturing method of composite molded component
JP2005271583A (en) Injection molding mold and composite injection molding
JP2008114525A (en) Composite molded article
JP2005285923A (en) Electromagnetic interference sealed molded article
WO2023095787A1 (en) Porous body
WO2023095786A1 (en) Prepreg, preform, and fiber-reinforced resin molded article