JP2006044262A - Hollow molded article and its production method - Google Patents

Hollow molded article and its production method Download PDF

Info

Publication number
JP2006044262A
JP2006044262A JP2005199964A JP2005199964A JP2006044262A JP 2006044262 A JP2006044262 A JP 2006044262A JP 2005199964 A JP2005199964 A JP 2005199964A JP 2005199964 A JP2005199964 A JP 2005199964A JP 2006044262 A JP2006044262 A JP 2006044262A
Authority
JP
Japan
Prior art keywords
hollow molded
molded body
thermoplastic resin
hollow
body according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005199964A
Other languages
Japanese (ja)
Inventor
Masato Honma
雅登 本間
Atsuki Tsuchiya
敦岐 土谷
Yoshibumi Nakayama
義文 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2005199964A priority Critical patent/JP2006044262A/en
Publication of JP2006044262A publication Critical patent/JP2006044262A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7394General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoset
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • B29C66/1142Single butt to butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/122Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section
    • B29C66/1222Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section comprising at least a lapped joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/122Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section
    • B29C66/1224Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section comprising at least a butt joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/13Single flanged joints; Fin-type joints; Single hem joints; Edge joints; Interpenetrating fingered joints; Other specific particular designs of joint cross-sections not provided for in groups B29C66/11 - B29C66/12
    • B29C66/131Single flanged joints, i.e. one of the parts to be joined being rigid and flanged in the joint area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/301Three-dimensional joints, i.e. the joined area being substantially non-flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5346Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/536Joining substantially flat single elements to hollow articles to form tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • B29C66/542Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles joining hollow covers or hollow bottoms to open ends of container bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • B29C66/547Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles, e.g. endless tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7212Fibre-reinforced materials characterised by the composition of the fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7214Fibre-reinforced materials characterised by the length of the fibres
    • B29C66/72141Fibres of continuous length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/06Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using friction, e.g. spin welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/08Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • B29C66/712General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined the composition of one of the parts to be joined being different from the composition of the other part

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hollow molded article having a light weight and excellent dynamic characteristics in which both of formation of complicated shapes and producibility can be realized at the same time by making the 1st member composed of FRP and the 2nd member into a strongly integrated structure. <P>SOLUTION: In the hollow molded article, the 1st member 11 and the 2nd member 12 are made integrated, and at least the 1st material is composed mainly of a thermosetting resin 16 reinforced by a continuous reinforcing fibers 14 and contains a thermoplastic resin layer 13 at the joint part with the 2nd member, wherein the thermoplastic resin layer incorporates a part of the reinforcing fiber, or, as an alternative, the 1st member composed mainly of a thermosetting resin reinforced by a continuous reinforcing fibers and the 2nd member mainly composed of a thermoplastic resin are made integrated to form a hollow structure, and in those articles, the 1st member has a surface shape which constitutes at least one surface of the molded article, and the 2nd member constitutes a surface opposite to the 1st member. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、2つの部材を一体化することで中空形状を形成した中空成形体およびその製造方法に関し、さらに詳しくは、連続した強化繊維群で強化された繊維強化樹脂(FRP)を強固に一体化することで、軽量性、力学特性に優れ、かつ複雑形状の成形性と、生産性を両立させた中空成形品およびその製造方法に関する。   The present invention relates to a hollow molded body in which a hollow shape is formed by integrating two members and a manufacturing method thereof, and more specifically, a fiber reinforced resin (FRP) reinforced with a continuous reinforcing fiber group is firmly integrated. Therefore, the present invention relates to a hollow molded article that is excellent in light weight and mechanical properties, and has both a moldability of a complicated shape and productivity, and a method for manufacturing the same.

連続した強化繊維群で強化された繊維強化樹脂(FRP)は、航空機、自動車、二輪車、自転車などの輸送機器用途、テニス、ゴルフ、釣り竿などのスポーツ用途、耐震補強材などの建設構造物など、軽量性と力学特性が要求される構造体の材料として、頻繁に使用されている。   Fiber reinforced resin (FRP) reinforced with continuous reinforcing fiber groups is used for transportation equipment such as aircraft, automobiles, motorcycles and bicycles, sports applications such as tennis, golf and fishing rods, construction structures such as seismic reinforcement, etc. It is frequently used as a material for structures requiring light weight and mechanical properties.

とりわけFRPの中空成形体は、航空機構造体、車輌構造体、自動車部材、自転車クランク、気体や液体などを貯蔵あるいは搬送するためのタンクやパイプ、ゴルフシャフト、釣り竿、風車ブレードなど適用用途は非常に広い。   In particular, FRP hollow moldings are very applicable to aircraft structures, vehicle structures, automobile parts, bicycle cranks, tanks and pipes for storing or transporting gas and liquid, golf shafts, fishing rods, windmill blades, etc. wide.

ここで、中空成形体の中でも、例えばゴルフシャフトや圧力容器のように単純な形状で、開口部が比較的小さい中空成形体は、回転するライナーに、樹脂を含浸した強化繊維束を巻き付けた後に硬化させる、いわゆる強化繊維ワインディング法にて好適に製造できる。この製法は、比較的安価で生産性は高いものの、対象が回転体形状に限定されており、複雑な形状の用途に適用することは困難である。   Here, among hollow molded bodies, for example, a hollow molded body having a simple shape, such as a golf shaft or a pressure vessel, with a relatively small opening, is obtained by winding a reinforcing fiber bundle impregnated with resin around a rotating liner. It can be suitably produced by a so-called reinforcing fiber winding method for curing. Although this manufacturing method is relatively inexpensive and high in productivity, the target is limited to the shape of a rotating body, and it is difficult to apply to a complicated shape.

また、中空成形体の中でも、例えば自動車モノコックボディや、航空機構造材のようにある程度複雑な形状で大型の中空成形品は、繊維基材を金型に賦形して未硬化の樹脂を注入し、基材に含浸させた後に硬化させる、いわゆるレジントランスファーモールディング(RTM)成形法などで製造できる。特許文献1には、中子を使用して非円形断面形状の中空体を製造する方法が開示されている。しかしながら、この方法は大型成形品を少量製造するには適しているが、成形品を大量製造するには生産性が課題となる。   Among hollow molded products, for example, automobile monocoque bodies and large hollow molded products with a somewhat complicated shape such as aircraft structural materials are shaped by injecting uncured resin by shaping the fiber base into a mold. Further, it can be produced by a so-called resin transfer molding (RTM) molding method in which a substrate is impregnated and then cured. Patent Document 1 discloses a method of manufacturing a hollow body having a non-circular cross-sectional shape using a core. However, this method is suitable for producing a large-sized molded product in a small amount, but productivity is a problem for mass-producing the molded product.

そこで、非中空のFRP成形品や、開口部が比較的大きな中空のFRP成形品を複数接合して複雑形状の中空成形品を製造することも可能であるが、一般に公知の接着剤を使用すると、接着工程に要する工数とリードタイムがコストの増大と生産性低下に繋がり、何より接着強度が十分に発現できず、高強度・高剛性というFRPの特徴を損なうことが問題である。また、ボルト、ネジなどの機械接合法では、別途機械加工工程が必要であるだけでなく、デザイン上の制約があり適用が限定されること、何より軽量性というFRPの特徴を損なうことが問題である。
国際公開第2000/18566号パンフレット(第39頁、第22行)
Therefore, it is possible to manufacture a non-hollow FRP molded product or a hollow molded product having a complicated shape by joining a plurality of hollow FRP molded products having relatively large openings, but generally using a known adhesive The man-hours and lead time required for the bonding process lead to an increase in cost and a decrease in productivity, and above all, the bonding strength cannot be sufficiently exhibited, and the characteristics of the FRP such as high strength and high rigidity are impaired. In addition, mechanical joining methods such as bolts and screws not only require a separate machining process, but also have limitations in design and limited application, and above all, the characteristics of FRP such as lightness are impaired. is there.
International Publication No. 2000/18566 pamphlet (page 39, line 22)

本発明の課題は、かかる従来技術に鑑み、FRPからなる第1の部材と、第2の部材とを強固に一体化することにより、軽量かつ力学特性に優れた中空成形体を提供することにある。さらには、接合強度に優れ、複雑形状の成形性と生産性とを両立できる接合方法を提供することをも課題とする。   In view of the prior art, an object of the present invention is to provide a hollow molded body that is lightweight and excellent in mechanical characteristics by firmly integrating the first member made of FRP and the second member. is there. It is another object of the present invention to provide a bonding method that is excellent in bonding strength and can achieve both the moldability and productivity of complex shapes.

上記課題を解決するために、本発明に係る中空成形体は、少なくとも第1の部材と第2の部材の2つの部材を一体化することで中空形状を形成した中空成形体であって、前記部材のうち少なくとも第1の部材は連続した強化繊維群で強化された熱硬化性樹脂を主成分とし、第2の部材との接合部分において熱可塑性樹脂層を有しており、前記熱可塑性樹脂層が前記強化繊維群の一部の強化繊維を包含してなることを特徴とするものからなる(以下、第1発明と言うこともある)。   In order to solve the above problems, a hollow molded body according to the present invention is a hollow molded body in which a hollow shape is formed by integrating at least two members of a first member and a second member, At least the first member of the members is mainly composed of a thermosetting resin reinforced with a continuous reinforcing fiber group, and has a thermoplastic resin layer at a joint portion with the second member. The layer comprises a part of the reinforcing fibers of the reinforcing fiber group (hereinafter also referred to as the first invention).

また、本発明に係る中空成形体は、連続した強化繊維群で強化された熱硬化性樹脂を主成分とする第1の部材と、熱可塑性樹脂を主成分とする第2の部材とを一体化することで中空形状を形成した中空成形体であって、該第1の部材が面形状であり、成形体の少なくとも一つの面を形成し、該第2の部材が該第1の部材に対向する面を形成してなることを特徴とするものからなる(以下、第2発明と言うこともある)。   In addition, the hollow molded body according to the present invention is formed by integrating a first member mainly composed of a thermosetting resin reinforced with a group of continuous reinforcing fibers and a second member mainly composed of a thermoplastic resin. A hollow molded body in which a hollow shape is formed, wherein the first member has a planar shape, forms at least one surface of the molded body, and the second member serves as the first member. It consists of what is characterized by forming the surface which opposes (henceforth a 2nd invention).

さらに、本発明に係る中空成形体の製造方法は、上記のような中空成形体を製造するに際し、第1の部材と第2の部材とを、熱溶着、振動溶着、超音波溶着、レーザー溶着、インサート射出成形、アウトサート射出成形から選択される少なくとも1つの方法にて一体化する方法からなる。   Furthermore, in the method for producing a hollow molded body according to the present invention, when producing the hollow molded body as described above, the first member and the second member are thermally welded, vibration welded, ultrasonic welded, laser welded. And at least one method selected from insert injection molding and outsert injection molding.

本発明に係る中空成形体は、FRPの成形体からなる第1の部材を、第2の部材と強固に一体化でき、それによって優れた軽量性、力学特性を備えることができる。また、複雑な形状にあっても、安価な方法で、生産性よく製造することができる。したがってこれら中空成形体は、タンク、パイプ、風車ブレード、自動車部材、自転車クランクなどの用途に好適である。   The hollow molded body according to the present invention can firmly integrate the first member made of the FRP molded body with the second member, thereby providing excellent lightness and mechanical properties. Moreover, even in a complicated shape, it can be manufactured with high productivity by an inexpensive method. Therefore, these hollow molded bodies are suitable for applications such as tanks, pipes, windmill blades, automobile members, and bicycle cranks.

以下に、本発明の中空成形体およびその製造方法について、望ましい実施の形態とともに詳細に説明する。
本発明の中空成形体とは、中空形状をなす構造体である。中空形状とは、殻形状、鼓形状、筒形状のような、実質的に内部空間を有する形状を意味する。その内部空間の形状には特に制限はなく、例えば内部にリブや、ボスなどがあってもよく、さらに間仕切りなどでいくつかの空間に分けられていてもよく、内部空間と外部空間を繋ぐ開口部を設けていてもよい。開口部は、人や人の手が出入りしたり、荷物を出し入れしたり、穀物や液体、気体などを内部に収納するための出入口などに利用することができる。
Below, the hollow molded object of this invention and its manufacturing method are demonstrated in detail with desirable embodiment.
The hollow molded body of the present invention is a structure having a hollow shape. The hollow shape means a shape having a substantially internal space, such as a shell shape, a drum shape, or a cylindrical shape. There are no particular restrictions on the shape of the internal space. For example, there may be ribs or bosses inside it, and it may be divided into several spaces by partitions, etc., and the opening that connects the internal space and the external space A part may be provided. The opening can be used as a doorway for a person or a person's hand to go in and out, to load or unload a baggage, or to store grains, liquid, gas, or the like inside.

内部空間の大きさについても特に制限はないが、内容物の収納や移動、また内部空間を意図的に有効機能させたり、成形品の比重を低減するために厚肉化する観点から、中空成形体における中空部の最大厚みは10mm以上が好ましく、20mm以上がさらに好ましい。ここで、中空部の厚みとは、第1の部材と第2の部材によって形成される内部空間のうち、成形品の形状を代表する最大面と、該面に対向するように配置されてなる面で挟まれてた高さを意味する。これは、成形品の厚みから、それぞれの部材の厚みを差し引くことで確認してもよい。また複数の空間高さを有する場合は、空間高さの最大となる長さを、最大厚みと定義する。   There is no particular restriction on the size of the internal space, but it is hollow molding from the viewpoint of storing and moving the contents, making the internal space function effectively, and reducing the specific gravity of the molded product. The maximum thickness of the hollow part in the body is preferably 10 mm or more, and more preferably 20 mm or more. Here, the thickness of the hollow portion refers to the maximum surface that represents the shape of the molded product in the internal space formed by the first member and the second member, and is disposed so as to face the surface. It means the height sandwiched between the faces. This may be confirmed by subtracting the thickness of each member from the thickness of the molded product. Moreover, when it has several space height, the length which becomes the largest space height is defined as the maximum thickness.

本発明の中空成形体の外形にも特に制限はないが、回転体形状よりも、非回転体形状である方が、より多様な用途に適用できる点で好ましい。なお、ここでの非回転体形状とは左右対称、上下対称のものも含まれる。   Although there is no restriction | limiting in particular also in the external shape of the hollow molded object of this invention, the direction which is a non-rotating body shape rather than a rotating body shape is preferable at the point applicable to a more various use. Note that the non-rotating body shape here includes a symmetrical shape and a vertically symmetric shape.

本発明の中空成形体は、少なくとも2つの部材を一体化することで、上記中空形状を形成させるものである。中空形状の形成方式については特に制限はなく、例えば、上下もしくは左右に2つのコの字部材を合わせてもよいし、平面部材および曲面部材を複数個繋ぎあわせてもよいし、中空形状内部に梁を形成させてもよいし、また箱状部材に天蓋を形成させてもよい。   The hollow molded body of the present invention is one in which the hollow shape is formed by integrating at least two members. There are no particular restrictions on the method of forming the hollow shape. For example, two U-shaped members may be combined vertically or horizontally, a plurality of planar members and curved members may be connected, and the hollow shape may be formed inside. A beam may be formed, or a canopy may be formed on the box-shaped member.

さらには、内部空間に、ウレタンフォーム、ポリスチレンフォーム、ポリエチレンフォーム、ポリプロピレンフォーム、フェノールフォーム、ユリアフォーム、ポリ塩化ビニルフォーム、シリコンフォーム、エポキシフォーム、ポリイミドフォーム、ポリエステルフォーム、メラミンフォーム、繊維状物質からなる発泡構造体などの軽量発泡材を配置してもよい。   Furthermore, the interior space consists of urethane foam, polystyrene foam, polyethylene foam, polypropylene foam, phenol foam, urea foam, polyvinyl chloride foam, silicon foam, epoxy foam, polyimide foam, polyester foam, melamine foam, and fibrous material. You may arrange lightweight foam materials, such as a foam structure.

ここで本発明に係る中空成形体の一実施態様を、図1を用いて説明する。中空成形体は、第1の部材1と第2の部材2から構成されている。   Here, one embodiment of the hollow molded body according to the present invention will be described with reference to FIG. The hollow molded body is composed of a first member 1 and a second member 2.

本第1発明の中空成形体は、該部材のうち少なくとも第1の部材は連続した強化繊維群で強化された熱硬化性樹脂を主成分とし、第2の部材との接合部分において熱可塑性樹脂層を有しており、該熱可塑性樹脂層が該強化繊維群の一部の強化繊維を包含してなる中空成形体である。図2に、第1の部材3と第2の部材4との接合部分の例を、断面を拡大した図として示す。図2は、走査型電子顕微鏡写真を用いて撮影して得られた写真に基づき作成された図である。図2において、第1の部材3は、多数の連続した強化繊維5a、5bと、熱硬化性樹脂6が主成分である。そして第2の部材4との接合部分において熱可塑性樹脂層7を有しており、この熱可塑性樹脂層7が一群の(一部の)強化繊維5bを包含している。ここで、熱可塑性樹脂層7は、熱硬化性樹脂6とその界面で凸凹形状を有して一体化していることが好ましい。   In the hollow molded body of the first invention, at least the first member among the members is mainly composed of a thermosetting resin reinforced with a continuous reinforcing fiber group, and a thermoplastic resin is bonded to the second member. A hollow molded body having a layer, wherein the thermoplastic resin layer includes a part of the reinforcing fibers of the reinforcing fiber group. In FIG. 2, the example of the junction part of the 1st member 3 and the 2nd member 4 is shown as a figure which expanded the cross section. FIG. 2 is a diagram created based on a photograph obtained by using a scanning electron micrograph. In FIG. 2, the first member 3 is mainly composed of a large number of continuous reinforcing fibers 5 a and 5 b and a thermosetting resin 6. And it has the thermoplastic resin layer 7 in the junction part with the 2nd member 4, and this thermoplastic resin layer 7 includes a group (part) reinforcement fiber 5b. Here, it is preferable that the thermoplastic resin layer 7 has an uneven shape at the interface with the thermosetting resin 6 and is integrated.

本第2発明の中空成形体は、連続した強化繊維群で強化された熱硬化性樹脂を主成分とする第1の部材と、熱可塑性樹脂を主成分とする第2の部材とを一体化することで中空形状を形成した中空成形体である。第2の部材が熱可塑性樹脂で構成されることで、加熱溶着が可能であるだけでなく、ボス、ヒンジや嵌合部など接合するための構造が容易に成形、加工できる。この第1の部材を面形状とし、成形体の少なくとも一つの面を形成させ、第2の部材が第1の部材に対向する面を形成させることで、中空成形体を一体化する上で生産性よく製造することができる。   The hollow molded body of the second aspect of the present invention is an integrated first member mainly composed of a thermosetting resin reinforced with a group of continuous reinforcing fibers and a second member mainly composed of a thermoplastic resin. It is the hollow molded object which formed the hollow shape by doing. When the second member is made of a thermoplastic resin, not only heat welding is possible, but also a structure for joining such as a boss, a hinge, and a fitting portion can be easily formed and processed. This first member is formed into a surface shape, and at least one surface of the molded body is formed, and the second member is formed to form a surface facing the first member, thereby producing a hollow molded body integrally. It can be manufactured with good performance.

本第2発明の中空成形体は、前記第1の部材と、前記第2の部材とが、その接合面で接着されていることが、その実用上好ましい。接着の方法は、一般的な熱可塑性もしくは熱硬化性の接着剤を使用してもよいが、より好ましい接合形態としては、前記第1の部材が、前記第2の部材との接合部分において熱可塑性樹脂層を有しており、該熱可塑性樹脂層が前記連続した強化繊維群の一部の強化繊維を包含することにより接着されていることである。これらのさらに好ましい接合部分の態様は、前記図2に記載されているものと同様である。   In the hollow molded body of the second invention, it is practically preferable that the first member and the second member are bonded to each other at the joint surface. As a bonding method, a general thermoplastic or thermosetting adhesive may be used. As a more preferable bonding mode, the first member is heated at a bonding portion with the second member. It has a plastic resin layer, and the thermoplastic resin layer is bonded by including some reinforcing fibers of the continuous reinforcing fiber group. The aspect of these more preferable joining parts is the same as that described in FIG.

本発明の中空成形体において、図2に示されるような第1の部材3の構造は、多数本の連続した強化繊維5a、5bからなる強化繊維群8に、硬化前の熱硬化性樹脂が含浸せしめられてなるプリプレグもしくはプリプレグ積層物に、熱可塑性樹脂を加工してなる基材を配置し、熱硬化性樹脂の硬化反応時に、もしくは、硬化反応前の予熱時に、基材の熱可塑性樹脂を強化繊維群8に含浸せしめることにより形成することができる。さらに、熱硬化性樹脂6は熱硬化性樹脂層を形成し、熱可塑性樹脂は熱可塑性樹脂層7を形成する。熱可塑性樹脂の強化繊維群8への含浸、すなわち、強化繊維群8を形成している多数本の強化繊維5bの間への熱可塑性樹脂の浸透により、熱硬化性樹脂6の層と熱可塑性樹脂層7との間の界面の凹凸形状が形成される。   In the hollow molded body of the present invention, the structure of the first member 3 as shown in FIG. 2 is that the thermosetting resin before curing is added to the reinforcing fiber group 8 composed of a large number of continuous reinforcing fibers 5a and 5b. A base material formed by processing a thermoplastic resin is placed on the prepreg or prepreg laminate that has been impregnated, and the base material thermoplastic resin during the curing reaction of the thermosetting resin or during preheating before the curing reaction Can be formed by impregnating the reinforcing fiber group 8. Further, the thermosetting resin 6 forms a thermosetting resin layer, and the thermoplastic resin forms a thermoplastic resin layer 7. The layer of the thermosetting resin 6 and the thermoplastic resin are impregnated into the reinforcing fiber group 8 of the thermoplastic resin, that is, by penetration of the thermoplastic resin between a large number of reinforcing fibers 5b forming the reinforcing fiber group 8. The uneven shape of the interface with the resin layer 7 is formed.

上記プリプレグとして、必要に応じ、複数の強化繊維群8からなり、これらの強化繊維群が、プリプレグの幅方向に配列され、あるいは、プリプレグの厚さ方向に積層されているプリプレグが用いられる。図2においては、プリプレグにおいて最外層に位置し、第2の部材4との接合面に最も近い強化繊維群8が示されている。   As the prepreg, a prepreg composed of a plurality of reinforcing fiber groups 8 as necessary and arranged in the width direction of the prepreg or laminated in the thickness direction of the prepreg is used. In FIG. 2, the reinforcing fiber group 8 that is located in the outermost layer in the prepreg and is closest to the joint surface with the second member 4 is shown.

ここで、強化繊維群は、少なくとも一方向に、10mm以上の長さにわたり連続した多数本の強化繊維から構成されている。強化繊維群は、第1の部材の長さ方向の全長にわたり、あるいは、第1の部材の幅方向の全幅にわたり、連続している必要はなく、途中で分断されていてもよい。   Here, the reinforcing fiber group is composed of a large number of reinforcing fibers continuous in a length of 10 mm or more in at least one direction. The reinforcing fiber group does not need to be continuous over the entire length in the length direction of the first member or over the entire width in the width direction of the first member, and may be divided in the middle.

強化繊維群は、多数本の強化繊維からなる強化繊維束、この繊維束から構成されたクロス、多数本の強化繊維が一方向に配列された強化繊維束(一方向性繊維束)、この一方向性繊維束から構成された一方向性クロスなどである。なかでもプリプレグや部材の生産性の観点から、クロス、一方向性繊維束が好ましい。強化繊維群は、同一の形態の複数本の繊維束から構成されていてもよく、あるいは、異なる形態の複数本の繊維束から構成されていてもよい。一つの強化繊維群を構成する強化繊維数は、通常、300〜48,000であるが、プリプレグの製造や、クロスの製造を考慮すると、好ましくは、300〜24,000であり、より好ましくは、1,000〜12,000である。   The reinforcing fiber group includes a reinforcing fiber bundle composed of a large number of reinforcing fibers, a cloth composed of the fiber bundle, a reinforcing fiber bundle in which a large number of reinforcing fibers are arranged in one direction (unidirectional fiber bundle), A unidirectional cloth composed of directional fiber bundles. Among these, from the viewpoint of prepreg and member productivity, a cloth and a unidirectional fiber bundle are preferable. The reinforcing fiber group may be composed of a plurality of fiber bundles having the same form, or may be composed of a plurality of fiber bundles having different forms. The number of reinforcing fibers constituting one reinforcing fiber group is usually 300 to 48,000, but in consideration of the production of prepreg and the production of cloth, it is preferably 300 to 24,000, more preferably 1,000 to 12,000.

また、第1の部材の好ましい態様としては、繊維束が何層にも積層された積層体である。強化繊維群の配向方向を変えて積層することにより、部材全体の力学特性をコントロールすることができる。また、必要に応じ、積層された強化繊維群の積層間に、他の基材が積層されてなるサンドイッチ形態も用いられる。   Moreover, as a preferable aspect of a 1st member, it is the laminated body by which the fiber bundle was laminated | stacked in layers. By changing the orientation direction of the reinforcing fiber group and laminating, the mechanical properties of the entire member can be controlled. Moreover, the sandwich form by which another base material is laminated | stacked between the lamination | stacking of the laminated | stacked reinforcing fiber group as needed is also used.

本発明の中空成形体における第1の部材の構造は、たとえば以下の方法で検証できる。 まず第1の試験方法は、部材接合部の表層部分断面の走査型電子顕微鏡(SEM)あるいは透過型電子顕微鏡(TEM)による観察に基づく。断面の観察は、必要に応じ、撮影した断面写真に基づいて行なわれてもよい。観察する試験片は、部材から切り出した表層部分を用いて作成された薄肉切片である。この作成に当たり、強化繊維群の強化繊維の一部が脱落する場合があるが、観察に影響がない範囲であれば、問題はない。試験片は、観察のコントラストを調整するために、必要に応じ、染色されてもよい。   The structure of the 1st member in the hollow molded object of this invention can be verified with the following method, for example. First, the first test method is based on observation of a partial cross section of a surface layer of a member joint by a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The observation of the cross section may be performed based on the taken cross-sectional photograph, if necessary. The test piece to be observed is a thin slice created using the surface layer portion cut out from the member. In making this, some of the reinforcing fibers of the reinforcing fiber group may fall off, but there is no problem as long as the observation is not affected. The test piece may be stained as necessary to adjust the contrast of observation.

強化繊維群を構成する強化繊維は、通常、円形断面として観察される。強化繊維が脱落している場合は、通常、円形の脱落跡として観察される。強化繊維群を構成する強化繊維が位置する部分以外の部分において、熱硬化性樹脂層と熱可塑性樹脂層とは、コントラストの異なる2つの領域として観察される。   The reinforcing fibers constituting the reinforcing fiber group are usually observed as a circular cross section. When the reinforcing fiber is dropped, it is usually observed as a circular drop mark. In the portion other than the portion where the reinforcing fibers constituting the reinforcing fiber group are located, the thermosetting resin layer and the thermoplastic resin layer are observed as two regions having different contrasts.

この第1の方法による観察結果の例が、図3に示される。図3は、第1の部材11と第2の部材12が一体化してなる中空成形体の接合面の断面を拡大して示したものである。熱可塑性樹脂層13の樹脂が、強化繊維群14を構成する多数本の強化繊維15a、15b間の間隙の中まで進入している状態が示され、更に、熱硬化性樹脂16の層と熱可塑性樹脂層13との界面17が凸凹形状を有している状態が示される。   An example of the observation result by the first method is shown in FIG. FIG. 3 is an enlarged view of the cross section of the joint surface of the hollow molded body in which the first member 11 and the second member 12 are integrated. The state in which the resin of the thermoplastic resin layer 13 has entered into the gap between the multiple reinforcing fibers 15a and 15b constituting the reinforcing fiber group 14 is shown. The state where the interface 17 with the plastic resin layer 13 has an uneven shape is shown.

第2の試験方法は、部材接合部の表層部分の熱可塑性樹脂を溶媒で抽出除去した状態の断面の走査型電子顕微鏡(SEM)あるいは透過型電子顕微鏡(TEM)による観察に基づく。断面の観察は、必要に応じ、断面写真に基づいて行われてもよい。部材を長さ10mm、幅10mm程度にカットして試験片とする。この試験片において、熱可塑性樹脂層を、それを構成している樹脂の良溶媒で十分に洗浄し、熱可塑性樹脂を除去して、観察用の試験片が作成される。作成された試験片の断面をSEM(あるいは、TEM)を用いて観察する。   The second test method is based on observation with a scanning electron microscope (SEM) or a transmission electron microscope (TEM) of a cross section in which the thermoplastic resin in the surface layer portion of the member joint is extracted and removed with a solvent. The observation of the cross section may be performed based on a cross-sectional photograph as necessary. The member is cut to a length of about 10 mm and a width of about 10 mm to obtain a test piece. In this test piece, the thermoplastic resin layer is sufficiently washed with a good solvent for the resin constituting the test piece, and the thermoplastic resin is removed to prepare a test piece for observation. The cross section of the prepared test piece is observed using SEM (or TEM).

この第2の方法による観察結果の例が、図4に示される。図4は、第1の部材18と第2の部材19が一体化してなる中空成形体から、第2の部材と熱可塑性樹脂層を除去した状態での接合面の断面を拡大して示したものである。図4において、熱硬化性樹脂20は、強化繊維群21を構成する強化繊維22aを有して存在するが、熱硬化性樹脂20と凹凸形状の界面23を有して存在していた熱可塑性樹脂層は、試験片の作成時に溶媒により除去されているため、存在しない。界面23の凹凸形状が観察されるとともに、熱可塑性樹脂層が存在していた位置に、強化繊維群21を構成する強化繊維22bが観察され、これらの強化繊維の間に、空隙24が観察される。これにより、熱可塑性樹脂層に、強化繊維群21を構成する強化繊維22bが包含されていたことが証明される。   An example of the observation result by the second method is shown in FIG. FIG. 4 shows an enlarged cross section of the joint surface in a state where the second member and the thermoplastic resin layer are removed from the hollow molded body in which the first member 18 and the second member 19 are integrated. Is. In FIG. 4, the thermosetting resin 20 exists with the reinforcing fibers 22 a constituting the reinforcing fiber group 21, but the thermoplastic that has existed with the thermosetting resin 20 and the uneven interface 23. The resin layer does not exist because it is removed by the solvent when the test piece is prepared. While the uneven shape of the interface 23 is observed, the reinforcing fiber 22b constituting the reinforcing fiber group 21 is observed at the position where the thermoplastic resin layer was present, and the void 24 is observed between these reinforcing fibers. The This proves that the reinforcing fiber 22b constituting the reinforcing fiber group 21 was included in the thermoplastic resin layer.

なお、第1の方法および第2の方法において、一体化した中空成形体から部材接合部を観察するに際し、熱可塑性樹脂層の樹脂が可塑化する温度まで加熱して接合部を剥離させるか、第2の部材を機械的に除去するなどの方法で処理してもよい。   In the first method and the second method, when observing the member joint portion from the integrated hollow molded body, the joint portion is peeled off by heating to a temperature at which the resin of the thermoplastic resin layer is plasticized, You may process by the method of removing a 2nd member mechanically.

第3の試験方法は、一体化された成形品において、一方から他方を強制的に剥離したときに得られる状態の観察に基づく。この試験方法は、一体化成形品を、第1の部材と第2の部材との間で破壊するように、室温にて強制的に剥離させることにより行なわれる。剥離した第2の部材には、第1の部材表層の一部が残査として付着する場合がある。この残査が、顕微鏡で観察される。   The third test method is based on observation of a state obtained when the other is forcibly peeled from one to the other in an integrated molded product. This test method is performed by forcibly peeling the integrally molded product at room temperature so as to break between the first member and the second member. A part of the surface layer of the first member may adhere as a residue to the peeled second member. This residue is observed with a microscope.

第3の試験方法を実施して得られた試験片の状態の一例が、図5に示される。図5において、第2の部材25に、第1の部材の表面が接合されていた接合部分26が示され、この接合部分26の一部に第1の部材表層部の一部が残査27として観察される。この残査27には、第1の部材の表層に位置していた強化繊維群から脱落した複数の強化繊維が存在していることが観察される。   An example of the state of the test piece obtained by implementing the third test method is shown in FIG. In FIG. 5, a joining portion 26 where the surface of the first member is joined is shown in the second member 25, and a part of the first member surface layer portion remains in the joining portion 26. As observed. In this residue 27, it is observed that there are a plurality of reinforcing fibers dropped from the reinforcing fiber group located on the surface layer of the first member.

本発明の中空成形体の構造的特徴は、上記の少なくとも1つの試験方法で検証することができる。   The structural characteristics of the hollow molded body of the present invention can be verified by the at least one test method described above.

本発明の中空成形体における第1の部材は、第2の部材との接着強度を高める目的で、図2に示される熱可塑性樹脂層7において、連続した強化繊維5bが存在している領域の最大厚みTpf−maxが、10μm以上であることが好ましく、20μm以上であることがより好ましく、40μm以上であることが更に好ましい。この最大厚みTpf−maxは、熱可塑性樹脂層7の厚さ方向において、熱可塑性樹脂層7の樹脂に接している一番外側(接合側)の強化繊維5b−outと、熱可塑性樹脂層7の樹脂の表面からの入り込み厚さが最も大きい部位において、熱可塑性樹脂層7の樹脂に接している一番内側の強化繊維5b−in−maxとの間の距離(Tpf−max)と定義される。最大厚みTpf−maxは、第1の試験方法や第2の試験方法により得られるSEMあるいはTEM写真において、測定することができる。最大厚みTpf−maxは、最大で、1,000μmあれば、本発明の効果が十分に達成される。   The first member in the hollow molded body of the present invention is a region in which the continuous reinforcing fibers 5b exist in the thermoplastic resin layer 7 shown in FIG. 2 for the purpose of increasing the adhesive strength with the second member. The maximum thickness Tpf-max is preferably 10 μm or more, more preferably 20 μm or more, and further preferably 40 μm or more. This maximum thickness Tpf-max is the outermost (bonding side) reinforcing fiber 5b-out in contact with the resin of the thermoplastic resin layer 7 in the thickness direction of the thermoplastic resin layer 7, and the thermoplastic resin layer 7 Is defined as a distance (Tpf-max) between the innermost reinforcing fiber 5b-in-max in contact with the resin of the thermoplastic resin layer 7 at the portion where the penetration depth from the surface of the resin is the largest. The The maximum thickness Tpf-max can be measured in the SEM or TEM photograph obtained by the first test method or the second test method. If the maximum thickness Tpf-max is 1,000 μm at the maximum, the effect of the present invention is sufficiently achieved.

最小厚みTpf−minは、熱可塑性樹脂層7の厚さ方向において、熱可塑性樹脂層7の樹脂に接している一番外側(表面側)の強化繊維5a−outと、熱可塑性樹脂層7の樹脂の表面からの入り込み厚さが最も小さい部位において、熱可塑性樹脂層7の樹脂に接している一番内側の強化繊維5b−in−minとの間の距離(Tpf−min)と定義される。   The minimum thickness Tpf-min is the outermost (surface side) reinforcing fiber 5a-out in contact with the resin of the thermoplastic resin layer 7 in the thickness direction of the thermoplastic resin layer 7, and the thermoplastic resin layer 7 It is defined as the distance (Tpf-min) between the innermost reinforcing fiber 5b-in-min in contact with the resin of the thermoplastic resin layer 7 at the portion where the penetration depth from the resin surface is the smallest. .

第1の部材において、熱硬化性樹脂6と熱可塑性樹脂層7との界面9は、図2に示されるように、一方向に引き揃えられた多数本の強化繊維5a、5bからなる強化繊維群13の中に存在することが好ましい。第1の部材において、強化繊維群13が、厚み方向に複数積層存在する積層板の場合、界面9は、最外層の強化繊維群の中にのみ存在することがより好ましい。   In the first member, as shown in FIG. 2, the interface 9 between the thermosetting resin 6 and the thermoplastic resin layer 7 is a reinforcing fiber composed of a large number of reinforcing fibers 5a and 5b aligned in one direction. It is preferably present in group 13. In the first member, in the case where a plurality of reinforcing fiber groups 13 are laminated in the thickness direction, it is more preferable that the interface 9 exists only in the outermost reinforcing fiber group.

本発明の中空成形体は、第2の部材と接合し一体化成形品とする際に、優れた接着効果を得るためには、第1の部材の表面に設けられている前記熱可塑性樹脂層において第2の部材と接合されることが必要である。第1の部材の表面に設けられる熱可塑性樹脂層の面積Sは、接合が予定される第2の部材との接合力が確保可能な面積に応じて、適宜決められる。   In order to obtain an excellent adhesive effect when the hollow molded body of the present invention is joined to the second member to form an integrally molded product, the thermoplastic resin layer provided on the surface of the first member It is necessary to be joined to the second member. The area S of the thermoplastic resin layer provided on the surface of the first member is appropriately determined according to the area where the bonding force with the second member to be bonded can be secured.

すなわち、本発明の中空成形体は、前記熱可塑性樹脂層を構成する熱可塑性樹脂組成物からなる被膜を介して、第1の部材と第2の部材が接着されていることが好ましい。第1の部材に形成される被膜の平均厚みは、0.01〜1,000μmであることが好ましく、0.1〜200μmであることがより好ましく、1〜50μmであることが更に好ましい。被膜の平均厚みTpは、図2に示される熱可塑性樹脂層7の樹脂に接している一番外側(接合側)の強化繊維5b−outと、第1の部材3と第2の部材4との接合界面10との距離で定義される。被膜の厚みが一定でない場合は、任意の数点において測定し、得られた測定値の平均値を被膜の厚みとする。平均厚みが、上記の好ましい範囲にあると、第1の部材と第2の部材がより確実に接合される。   That is, in the hollow molded body of the present invention, it is preferable that the first member and the second member are bonded via a film made of a thermoplastic resin composition constituting the thermoplastic resin layer. The average thickness of the coating film formed on the first member is preferably 0.01 to 1,000 μm, more preferably 0.1 to 200 μm, and still more preferably 1 to 50 μm. The average thickness Tp of the coating is the outermost (bonding side) reinforcing fiber 5b-out in contact with the resin of the thermoplastic resin layer 7 shown in FIG. 2, the first member 3 and the second member 4. It is defined by the distance to the bonding interface 10 of When the thickness of the film is not constant, measurement is performed at an arbitrary number of points, and the average value of the obtained measured values is defined as the thickness of the film. When the average thickness is in the above preferable range, the first member and the second member are more reliably joined.

本発明の中空成形体において、使用される強化繊維群および/または強化繊維の繊維素材としては、例えば、ガラス繊維、炭素繊維、金属繊維、芳香族ポリアミド繊維、ポリアラミド繊維、アルミナ繊維、炭化珪素繊維、ボロン繊維、玄武岩繊維がある。これらは、単独または2種以上併用して用いられる。これらの繊維素材は、表面処理が施されているものであってもよい。表面処理としては、金属の被着処理、カップリング剤による処理、サイジング剤による処理、添加剤の付着処理などがある。これらの繊維素材の中には、導電性を有する繊維素材も含まれている。繊維素材としては、比重が小さく、高強度、高弾性率である炭素繊維が、好ましく使用される。   Examples of the reinforcing fiber group and / or the fiber material of the reinforcing fiber used in the hollow molded body of the present invention include glass fiber, carbon fiber, metal fiber, aromatic polyamide fiber, polyaramid fiber, alumina fiber, and silicon carbide fiber. Boron fiber, basalt fiber. These are used alone or in combination of two or more. These fiber materials may be subjected to surface treatment. Examples of the surface treatment include a metal deposition treatment, a treatment with a coupling agent, a treatment with a sizing agent, and an additive adhesion treatment. Among these fiber materials, conductive fiber materials are also included. As the fiber material, carbon fiber having a small specific gravity, high strength and high elastic modulus is preferably used.

本発明の中空成形体において、第1の部材に使用される熱硬化性樹脂としては、例えば、不飽和ポリエステル、ビニルエステル、エポキシ、フェノール(レゾール型)、ユリア・メラミン、ポリイミド、これらの共重合体、変性体、および、これらの少なくとも2種類をブレンドした樹脂がある。耐衝撃性向上のために、熱硬化性樹脂には、エラストマーもしくはゴム成分が添加されていてもよい。特に、エポキシ樹脂は、第1の部材における力学特性の観点から好ましい。   In the hollow molded body of the present invention, examples of the thermosetting resin used for the first member include unsaturated polyester, vinyl ester, epoxy, phenol (resol type), urea melamine, polyimide, There are coalesced, modified and blended resins of at least two of these. In order to improve the impact resistance, an elastomer or a rubber component may be added to the thermosetting resin. In particular, the epoxy resin is preferable from the viewpoint of the mechanical characteristics of the first member.

本発明の中空成形体において、第1の部材に使用される熱可塑性樹脂層を形成する熱可塑性樹脂としては、溶解度パラメーターδ(SP値)が9〜16であることが好ましく、より好ましくは10〜15、とりわけ好ましくは11〜14である。上記範囲内とすることにより、熱可塑性樹脂の凝集力が大きく、本発明の目的の1つである接着強度を高める上で有効である。   In the hollow molded body of the present invention, the thermoplastic resin forming the thermoplastic resin layer used for the first member preferably has a solubility parameter δ (SP value) of 9 to 16, more preferably 10 -15, particularly preferably 11-14. By setting it within the above range, the cohesive force of the thermoplastic resin is large, and it is effective in increasing the adhesive strength which is one of the objects of the present invention.

かかる溶解度パラメーターδを達成しうる熱可塑性樹脂としては例えば、アミド結合、エステル結合、ウレタン結合、エーテル結合、アミノ基、水酸基、カルボキシル基、酸無水物基、スルホン酸基、芳香環、イミド環などの炭化水素骨格よりも極性の高い結合、官能基あるいは構造を持つものを挙げることができる。   Examples of the thermoplastic resin that can achieve the solubility parameter δ include amide bonds, ester bonds, urethane bonds, ether bonds, amino groups, hydroxyl groups, carboxyl groups, acid anhydride groups, sulfonic acid groups, aromatic rings, imide rings, and the like. And those having a bond, functional group or structure having a polarity higher than that of the hydrocarbon skeleton.

また、熱可塑性樹脂の重量平均分子量としては、2,000〜200,000が好ましく、5,000〜150,000がより好ましく、10,000〜100,000が更に好ましい。上記範囲内とすることにより、分子間力や分子鎖の絡み合いが多くなり、熱可塑性樹脂自体の強度が大きくなるため、容易に熱可塑性樹脂自体が破壊しにくくなり、同時に熱可塑性樹脂が十分に強化繊維群へ含浸でき、繊維群を包含することで強固な接着力を発現することができる。   Moreover, as a weight average molecular weight of a thermoplastic resin, 2,000-200,000 are preferable, 5,000-150,000 are more preferable, 10,000-100,000 are still more preferable. By setting it within the above range, intermolecular forces and entanglement of molecular chains increase, and the strength of the thermoplastic resin itself increases, so that the thermoplastic resin itself is not easily broken, and at the same time, the thermoplastic resin is sufficient. The reinforcing fiber group can be impregnated, and by including the fiber group, a strong adhesive force can be expressed.

さらに、本発明の中空成形体において、第1の部材に使用される熱可塑性樹脂層を形成する熱可塑性樹脂としては、カルボキシル基、酸無水物基、アミノ基、エポキシ基、水酸基から選択される少なくとも1種の官能基を含有することにより、熱可塑性樹脂の反応性を高め、本発明の目的の1つである接着強度を高める上で有効である。中でも、酸無水物基、アミノ基、エポキシ基がより好ましく選択される。ここで、熱可塑性樹脂の官能基量は、1×10-5モル/g以上が好ましく、1×10-4モル/g以上がより好ましく、1×10-3モル/g以上がさらに好ましい。官能基量は、特に限定されることなく、一般的な化学分析法で測定できる。例えば、IR(赤外線吸収スペクトル測定)により成分の同定を行い、NMR(核磁気共鳴スペクトル測定)により分子構造を同定し、GPC(ゲルパーミレーションクロマトグラフィ)により分子量を特定する。得られた結果から、高分子鎖単位重量あたりの、官能基のモル数が計算できる。 Furthermore, in the hollow molded body of the present invention, the thermoplastic resin forming the thermoplastic resin layer used for the first member is selected from a carboxyl group, an acid anhydride group, an amino group, an epoxy group, and a hydroxyl group. By containing at least one kind of functional group, the reactivity of the thermoplastic resin is increased, and this is effective in increasing the adhesive strength, which is one of the objects of the present invention. Among these, an acid anhydride group, an amino group, and an epoxy group are more preferably selected. Here, the functional group amount of the thermoplastic resin is preferably 1 × 10 −5 mol / g or more, more preferably 1 × 10 −4 mol / g or more, and further preferably 1 × 10 −3 mol / g or more. The amount of the functional group is not particularly limited and can be measured by a general chemical analysis method. For example, the components are identified by IR (infrared absorption spectrum measurement), the molecular structure is identified by NMR (nuclear magnetic resonance spectrum measurement), and the molecular weight is identified by GPC (gel permeation chromatography). From the obtained result, the number of moles of the functional group per unit weight of the polymer chain can be calculated.

以上より、本発明の中空成形体において、第1の部材に用いられる熱可塑性樹脂組成物として、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンナフタレート(PEN)、液晶ポリエステル等のポリエステルや、変性ポリエチレン(PE)、変性ポリプロピレン(PP)、ポリブチレン等の変性ポリオレフィンや、スチレン系樹脂の他や、ポリオキシメチレン(POM)、ポリアミド(PA)、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフェニレンスルフィド(PPS)、ポリフェニレンエーテル(PPE)、変性PPE、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、ポリスルホン(PSU)、変性PSU、ポリエーテルスルホン、ポリケトン(PK)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンケトン(PEKK)、ポリアリレート(PAR)、ポリエーテルニトリル(PEN)、フェノール系樹脂、フェノキシ樹脂、ポリテトラフルオロエチレンなどのフッ素系樹脂、更にポリスチレン系、ポリオレフィン系、ポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系、ポリイソプレン系、フッ素系等の熱可塑エラストマー等や、これらの共重合体、変性体、および、これらの少なくとも2種類をブレンドした樹脂を用いることができる。中でも、ポリエステル系樹脂、ポリアミド系樹脂、変性ポリオレフィン系樹脂が、生産性と経済性の観点から好ましく用いられる。   As described above, in the hollow molded body of the present invention, examples of the thermoplastic resin composition used for the first member include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), and polyethylene naphthalate. In addition to phthalate (PEN), polyester such as liquid crystal polyester, modified polyethylene (PE), modified polypropylene (PP), modified polyolefin such as polybutylene, styrenic resin, polyoxymethylene (POM), polyamide (PA), Polycarbonate (PC), polymethyl methacrylate (PMMA), polyvinyl chloride (PVC), polyphenylene sulfide (PPS), polyphenylene ether (PPE), modified PPE, polyimide (PI), polyamideimide (PAI) Polyetherimide (PEI), Polysulfone (PSU), Modified PSU, Polyethersulfone, Polyketone (PK), Polyetherketone (PEK), Polyetheretherketone (PEEK), Polyetherketoneketone (PEKK), Polyarylate ( PAR), polyether nitrile (PEN), phenolic resin, phenoxy resin, polytetrafluoroethylene and other fluorine resins, polystyrene, polyolefin, polyurethane, polyester, polyamide, polybutadiene, polyisoprene, Fluorine-based thermoplastic elastomers and the like, copolymers, modified products, and resins obtained by blending at least two of them can be used. Among these, polyester resins, polyamide resins, and modified polyolefin resins are preferably used from the viewpoints of productivity and economy.

熱可塑性樹脂には、耐衝撃性向上のために、エラストマーもしくはゴム成分が添加されていてもよいし、機能性を高める観点から、充填材や添加剤が添加されていてもよい。例えば、難燃剤、導電性付与剤、結晶核剤、紫外線吸収剤、酸化防止剤、制振剤、抗菌剤、防虫剤、防臭剤、着色防止剤、熱安定剤、離型剤、帯電防止剤、可塑剤、滑剤、着色剤、顔料、染料、発泡剤、制泡剤、カップリング剤である。とりわけ、無機物を添加する場合には、その分散サイズが小さい方が、強化繊維群への含浸の観点からより好ましい。特にナノオーダーの分散サイズを有するものは、少量添加で効果を発現できる点からさらに好ましい。   In order to improve impact resistance, an elastomer or a rubber component may be added to the thermoplastic resin, and a filler or an additive may be added from the viewpoint of improving functionality. For example, flame retardants, conductivity imparting agents, crystal nucleating agents, ultraviolet absorbers, antioxidants, vibration damping agents, antibacterial agents, insect repellents, deodorants, coloring inhibitors, heat stabilizers, mold release agents, antistatic agents Plasticizers, lubricants, colorants, pigments, dyes, foaming agents, antifoaming agents, and coupling agents. In particular, when an inorganic substance is added, a smaller dispersion size is more preferable from the viewpoint of impregnation into the reinforcing fiber group. In particular, those having a nano-order dispersion size are more preferable from the viewpoint that the effect can be exhibited by addition of a small amount.

本第1発明の中空成形体において、第2の部材としては、第1の部材との接合部において、熱接着性を有する素材からなるものであれば特に制限はない。   In the hollow molded body of the first aspect of the present invention, the second member is not particularly limited as long as it is made of a material having thermal adhesiveness at the joint portion with the first member.

例えば、第2の部材が、第1の部材と実質的に同一の構成を有する部材で、接合部に熱可塑性樹脂層が配置されたものは力学特性に優れた中空成形体を製造する観点から好ましい。   For example, the second member is a member having substantially the same configuration as the first member, and the one in which the thermoplastic resin layer is disposed at the joint is from the viewpoint of manufacturing a hollow molded body having excellent mechanical characteristics. preferable.

また、第2の部材が、熱可塑性樹脂組成物から構成された部材であれば、より複雑な形状を成形できる観点から好ましい。使用される熱可塑性樹脂としては、特に制限はなく、これは本第2発明の中空成形体において、第2の部材に使用される熱可塑性樹脂としても同様に例示できる。例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンナフタレート(PEN)、液晶ポリエステル等のポリエステルや、ポリエチレン(PE)、ポリプロピレン(PP)、ポリブチレン等のポリオレフィンや、スチレン系樹脂の他や、ポリオキシメチレン(POM)、ポリアミド(PA)、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフェニレンスルフィド(PPS)、ポリフェニレンエーテル(PPE)、変性PPE、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、ポリスルホン(PSU)、変性PSU、ポリエーテルスルホン、ポリケトン(PK)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンケトン(PEKK)、ポリアリレート(PAR)、ポリエーテルニトリル(PEN)、フェノール系樹脂、フェノキシ樹脂、ポリテトラフルオロエチレンなどのフッ素系樹脂、更にポリスチレン系、ポリオレフィン系、ポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系、ポリイソプレン系、フッ素系等の熱可塑エラストマー等や、これらの共重合体、変性体、および、これらの少なくとも2種類をブレンドした樹脂を用いることができる。熱可塑性樹脂には、耐衝撃性向上のために、エラストマーもしくはゴム成分が添加されていてもよい。とりわけ、耐熱性、耐薬品性の観点からPPS樹脂が、成形品外観、寸法安定性の観点からポリカーボネート樹脂やスチレン系樹脂が、成形品の強度、耐衝撃性の観点からポリアミド樹脂が、経済性の観点からポリオレフィン系樹脂が好ましく用いられる。   Moreover, if the 2nd member is a member comprised from the thermoplastic resin composition, it is preferable from a viewpoint which can shape | mold a more complicated shape. There is no restriction | limiting in particular as a thermoplastic resin to be used, This can be illustrated similarly as a thermoplastic resin used for a 2nd member in the hollow molded object of this 2nd invention. For example, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polyethylene naphthalate (PEN), polyester such as liquid crystal polyester, polyethylene (PE), polypropylene (PP), polybutylene, etc. In addition to polyolefins and styrene resins, polyoxymethylene (POM), polyamide (PA), polycarbonate (PC), polymethyl methacrylate (PMMA), polyvinyl chloride (PVC), polyphenylene sulfide (PPS), polyphenylene ether ( PPE), modified PPE, polyimide (PI), polyamideimide (PAI), polyetherimide (PEI), polysulfone (PSU), modified PSU, polyethersulfone, polyketo (PK), polyetherketone (PEK), polyetheretherketone (PEEK), polyetherketoneketone (PEKK), polyarylate (PAR), polyethernitrile (PEN), phenolic resin, phenoxy resin, polytetrafluoro Fluorine-based resins such as ethylene, polystyrene-based, polyolefin-based, polyurethane-based, polyester-based, polyamide-based, polybutadiene-based, polyisoprene-based, fluorine-based thermoplastic elastomers, copolymers thereof, modified products, and the like A resin obtained by blending at least two of these can be used. An elastomer or a rubber component may be added to the thermoplastic resin in order to improve impact resistance. In particular, PPS resin is economical from the viewpoint of heat resistance and chemical resistance, polycarbonate resin and styrene resin are from the viewpoint of molded product appearance and dimensional stability, and polyamide resin is economical from the viewpoint of molded product strength and impact resistance. From this point of view, a polyolefin resin is preferably used.

本発明に用いられる第2の部材については、中空成形体の強度、剛性、寸法安定性の観点から、熱可塑性樹脂に強化繊維が含有されていることが好ましい。かかる強化繊維としては、例えば、ポリアクリロニトリル系、レーヨン系、リグニン系、ピッチ系の炭素繊維、黒鉛繊維、ガラス繊維、アルミニウム繊維、黄銅繊維、ステンレス繊維などの金属繊維、シリコンカーバイト繊維、シリコンナイトライド繊維などの無機繊維がある。強化繊維の繊維長は特に制限はないが、数平均繊維長で0.1〜60mmの範囲内が好ましく、0.3〜30mmの範囲内がより好ましく、1〜20mmの範囲内がとりわけ好ましい。また、強化繊維の含有量にも特に制限はなく、1〜90重量%の範囲内が好ましく、10〜70重量%の範囲内がより好ましく、20〜60重量%の範囲内がとりわけ好ましい。   About the 2nd member used for this invention, it is preferable that the reinforcement fiber is contained in the thermoplastic resin from a viewpoint of the intensity | strength of a hollow molded object, rigidity, and dimensional stability. Examples of such reinforcing fibers include polyacrylonitrile-based, rayon-based, lignin-based, pitch-based carbon fibers, graphite fibers, glass fibers, aluminum fibers, brass fibers, stainless fibers, and other metal fibers, silicon carbide fibers, and siliconite. There are inorganic fibers such as ride fibers. The fiber length of the reinforcing fiber is not particularly limited, but the number average fiber length is preferably in the range of 0.1 to 60 mm, more preferably in the range of 0.3 to 30 mm, and particularly preferably in the range of 1 to 20 mm. Moreover, there is no restriction | limiting in particular also in content of a reinforced fiber, The inside of the range of 1-90 weight% is preferable, The inside of the range of 10-70 weight% is more preferable, The inside of the range of 20-60 weight% is especially preferable.

これら繊維長や繊維含有量は、一般公知の方法で測定できる。例えば、第2の部材から長さ10mm、幅10mmの大きさで試験片を切り出す。作成された試験片を、熱可塑性樹脂が可溶な溶剤に24時間浸漬し、樹脂成分を溶解させる。樹脂成分が溶解された試験片から強化繊維分を抽出する。得られた、強化繊維を顕微鏡にて観察し、強化繊維の無作為抽出したN本について、繊維長を測定する。N数は400本以上であれば特に制限はない。個々の繊維長をLiとすると、数平均繊維長は次の式に基づき、算出する。
数平均繊維長=(ΣLi)/(N)
These fiber length and fiber content can be measured by a generally known method. For example, a test piece is cut out from the second member with a length of 10 mm and a width of 10 mm. The prepared test piece is immersed in a solvent in which the thermoplastic resin is soluble for 24 hours to dissolve the resin component. The reinforcing fiber is extracted from the test piece in which the resin component is dissolved. The obtained reinforcing fibers are observed with a microscope, and the fiber length is measured for N pieces of randomly extracted reinforcing fibers. If N number is 400 or more, there will be no restriction | limiting in particular. When each fiber length is Li, the number average fiber length is calculated based on the following formula.
Number average fiber length = (ΣLi) / (N)

また、抽出された強化繊維の重量と、試験片の重量からその含有量が測定できる。なお、熱可塑性樹脂が溶媒に難溶性または不溶性の場合には、熱可塑性樹脂を加熱除去して強化繊維を抽出する方法を用いてもよい。   Further, the content can be measured from the weight of the extracted reinforcing fiber and the weight of the test piece. When the thermoplastic resin is hardly soluble or insoluble in the solvent, a method of extracting the reinforcing fiber by removing the thermoplastic resin by heating may be used.

さらに、熱可塑性樹脂には機能性を高める観点から、充填材や添加剤が添加されていてもよい。例えば、難燃剤、導電性付与剤、結晶核剤、紫外線吸収剤、酸化防止剤、制振剤、抗菌剤、防虫剤、防臭剤、着色防止剤、熱安定剤、離型剤、帯電防止剤、可塑剤、滑剤、着色剤、顔料、染料、発泡剤、制泡剤、カップリング剤である。   Furthermore, a filler and an additive may be added to the thermoplastic resin from the viewpoint of enhancing functionality. For example, flame retardants, conductivity imparting agents, crystal nucleating agents, ultraviolet absorbers, antioxidants, vibration damping agents, antibacterial agents, insect repellents, deodorants, coloring inhibitors, heat stabilizers, mold release agents, antistatic agents Plasticizers, lubricants, colorants, pigments, dyes, foaming agents, antifoaming agents, and coupling agents.

前記熱可塑性樹脂を主成分とする成形材料には特に制限はなく、射出成形用のペレット、スタンパブルシート、高圧成形用の熱可塑性シートが例示できる。中でも、強化繊維の繊維長を1mm以上に維持する観点から、長繊維ペレットや熱可塑性シート材料がより好ましく用いられる。   There is no restriction | limiting in particular in the molding material which has the said thermoplastic resin as a main component, The pellet for injection molding, a stampable sheet, and the thermoplastic sheet for high pressure molding can be illustrated. Among these, long fiber pellets and thermoplastic sheet materials are more preferably used from the viewpoint of maintaining the fiber length of the reinforcing fibers at 1 mm or more.

さらに、第2の部材が、金属材料からなる部材であれば、堅牢性を高める観点から好ましい。金属材料としては、アルミニウム、鉄、マグネシウム、チタンおよびこれらとの合金等に、熱接着性の表面処理を施した金属材料であってもよい。   Furthermore, if the 2nd member is a member which consists of metal materials, it is preferable from a viewpoint which improves robustness. The metal material may be a metal material obtained by subjecting aluminum, iron, magnesium, titanium, an alloy thereof, or the like to a heat-adhesive surface treatment.

本発明の中空成形体において、一体化成形後や使用環境によって、成形品の寸法変化やソリの発生を抑える観点から、前記第2の部材の面方向の最大線膨張係数CIImaxが4×10-5以下であることが好ましく、より好ましくは1×10-5以下である。同様に、成形品のネジレを抑える観点から、前記第2の部材の、面方向の最大線膨張係数CIImaxと、最小線膨張係数CIIminとの比、CIImax/CIIminが1.8以下であることが好ましく、より好ましくは1.5以下である。 In the hollow molded article of the present invention, integrated by molding or after the use environment, from the viewpoint of suppressing the dimensional change and warpage of occurrence of the molded article, the maximum linear expansion coefficient CIImax surface direction of the second member 4 × 10 - It is preferably 5 or less, more preferably 1 × 10 −5 or less. Similarly, from the viewpoint of suppressing twisting of the molded product, the ratio between the maximum linear expansion coefficient CIImax and the minimum linear expansion coefficient CIImin in the surface direction of the second member, CIImax / CIImin is 1.8 or less. Preferably, it is 1.5 or less.

線膨張係数はISO 11359−2に基づいて測定することができる。成形品から無作為に選定した部位について、部材の長手方向を基準にして、0度、45度、90度、135度のように、異なる角度において切り出した、4本の試験片を用意する。試験片の切り出し位置は、リブ部、ヒンジ部、凹凸部などの形状が意図的に付されている部分は極力避け、上記部位を含む場合は、これらを切削除去して試験に供する。これらの試験片において、その最大値を最大線膨張係数CIimax、最小値を最小線膨張係数CIiminと定義する。なお、測定温度範囲は特に制限はないが、成形品が使用される環境の観点から、30〜200℃が好ましい範囲として例示できる。   The linear expansion coefficient can be measured based on ISO 11359-2. For a part randomly selected from the molded product, four test pieces cut out at different angles such as 0 degrees, 45 degrees, 90 degrees, and 135 degrees with respect to the longitudinal direction of the member are prepared. As for the cutout position of the test piece, portions where shapes such as ribs, hinges, and concavo-convex portions are intentionally avoided should be avoided as much as possible. In these test pieces, the maximum value is defined as the maximum linear expansion coefficient CIimax, and the minimum value is defined as the minimum linear expansion coefficient CIimin. In addition, although there is no restriction | limiting in particular in a measurement temperature range, 30-200 degreeC can be illustrated as a preferable range from a viewpoint of the environment where a molded article is used.

さらに、中空成形品の剛性および寸法安定性の観点で、前記第2の部材のISO 179に基づく曲げ弾性率が10GPa以上であることが好ましく、さらに好ましくは12GPa以上である。曲げ弾性率の測定には、成形品の平面部から、部材の長手方向を基準にして、0度、45度、90度、135度のように、異なる角度において切り出した、4本の試験片を用意する。試験片の切り出しは、リブ部、ヒンジ部、凹凸部など意図的に形状が付されている部位を避けて行われるのが好ましい。試験片にこれらの意図的な形状部位が含まれている場合、試験片の厚みの測定は、この部位を除いて行われる。これらの試験片において得られる曲げ弾性率の内の最小値を、曲げ弾性率として定義する。   Furthermore, from the viewpoint of the rigidity and dimensional stability of the hollow molded article, the flexural modulus based on ISO 179 of the second member is preferably 10 GPa or more, and more preferably 12 GPa or more. For the measurement of the flexural modulus, four test pieces cut out at different angles such as 0 degrees, 45 degrees, 90 degrees, and 135 degrees from the flat part of the molded product with reference to the longitudinal direction of the member. Prepare. It is preferable to cut out the test piece while avoiding a portion where the shape is intentionally provided such as a rib portion, a hinge portion, and an uneven portion. When these intentionally shaped parts are included in the test piece, the thickness of the test piece is measured excluding this part. The minimum value of the flexural modulus obtained in these test pieces is defined as the flexural modulus.

本発明の中空成形体の一体化方法としては、特に制限されない。例えば、その製造方法は、第1の部材を構成している熱可塑性樹脂層あるいは被膜の融点または軟化点以上の温度で、第2の部材を接合させ、貼り付け、次いで冷却することからなる。   The method for integrating the hollow molded body of the present invention is not particularly limited. For example, the manufacturing method includes joining the second member at a temperature equal to or higher than the melting point or softening point of the thermoplastic resin layer or coating film constituting the first member, bonding, and then cooling.

その接合における手順は、特に限定されない。例えば、(i)第1の部材を予め成形しておき、第2の部材の成形と同時に、両者を接合し、一体化させる手法、(ii)第2の部材を予め成形しておき、第1の部材の成形と同時に、両者を接合し、一体化させる手法、あるいは、(iii)第1の部材と第2の部材とをそれぞれ別々に予め成形しておき、両者を接合し、一体化させる手法を適用できる。   The procedure in the joining is not particularly limited. For example, (i) a method in which the first member is molded in advance and the second member is molded at the same time as the second member is joined and integrated; (ii) the second member is molded in advance; A method of joining and integrating the two at the same time as forming the one member, or (iii) forming the first member and the second member separately in advance, and joining and integrating the two. Can be applied.

一体化の手法として、第1の部材と第2の部材とを、機械的に嵌合させ、一体化する手法、両者をボルト、ネジなどの機械的結合手段を用いて一体化する手法、両者を接着剤などの化学的結合手段を用いて一体化する手法もある。これらの一体化する手法は、必要に応じて、併用されてもよい。   As a method of integration, a method of mechanically fitting and integrating the first member and the second member, a method of integrating both using mechanical coupling means such as bolts and screws, both There is also a technique of integrating the materials using chemical bonding means such as an adhesive. These methods for integrating may be used in combination as necessary.

前記一体化手法(i)の具体例としては、第1の部材をプレス成形し、必要に応じ所定のサイズに加工あるいは後処理し、次いで射出成形金型にインサートし、その後、第2の部材を形成する材料を金型に射出成形する手法がある。   As a specific example of the integration method (i), the first member is press-molded, processed or post-processed into a predetermined size as necessary, then inserted into an injection mold, and then the second member. There is a technique of injection molding a material for forming a mold into a mold.

前記一体化手法(ii)の具体例としては、第2の部材をプレス成形もしくは射出成形し、必要に応じ所定のサイズに加工あるいは後処理し、次いでプレス金型にインサートし、その後、プレス金型を所定のプロセス温度として、第1の部材を形成する未硬化の熱硬化性樹脂と多数本の連続した強化繊維群からなるプリプレグの表面に熱可塑性樹脂層が形成された基材をレイアップし、次いで熱可塑性樹脂の融点以上の温度で成形する手法がある。   As a specific example of the integration method (ii), the second member is press-molded or injection-molded, processed or post-processed into a predetermined size as necessary, and then inserted into a press mold, and then the press mold Laying up a base material with a thermoplastic resin layer formed on the surface of a prepreg consisting of an uncured thermosetting resin forming a first member and a group of continuous reinforcing fibers, with a mold as a predetermined process temperature Then, there is a method of molding at a temperature equal to or higher than the melting point of the thermoplastic resin.

前記一体化手法(iii)の具体例としては、第1の部材をプレス成形し、必要に応じ所定のサイズに加工あるいは後処理して用意し、別途、第2の部材を予め成形しておき、それぞれを熱溶着、振動溶着、超音波溶着などで前記一体化手法(ii)と同様にして一体化させる方法がある。また、いずれかの部材がレーザー透過性を有すると、レーザー溶着にて一体化することもできる。   As a specific example of the integration method (iii), the first member is press-molded, prepared by processing or post-processing to a predetermined size as necessary, and the second member is separately molded in advance. There is a method of integrating each by heat welding, vibration welding, ultrasonic welding and the like in the same manner as the integration method (ii). Further, if any member has laser permeability, it can be integrated by laser welding.

上記のような一体化手法の中でも、中空成形体の量産性の観点から、前記一体化手法(i)におけるインサート射出成形やアウトサート射出成形が好ましく使用される。とりわけ、中空形状を形成するためにブロー成形を適用することが好ましい。形状安定性や接着部分の精密性の観点から、前記一体化手法(iii)が好ましく使用され、熱溶着、振動溶着、超音波溶着、レーザー溶着が好ましく使用できる。   Among the integration methods as described above, insert injection molding and outsert injection molding in the integration method (i) are preferably used from the viewpoint of mass productivity of the hollow molded body. In particular, it is preferable to apply blow molding to form a hollow shape. From the viewpoint of shape stability and precision of the bonded portion, the above-mentioned integration method (iii) is preferably used, and heat welding, vibration welding, ultrasonic welding, and laser welding can be preferably used.

また、本発明の中空成形体の製造する上で、一体化を効率的に行うと同時に、形状の自由度を高める観点から、前記第1の部材が、曲率半径が1000m以内の曲面を形成していてもよい。より好ましくは500m以内であり、これらの曲面は断続的、間欠的に、成形品の一つの面内に複数個形成されていてもよい。さらに、これらの面内に、曲率半径が5mm以上の絞りが形成されていてもよい。   Further, in the production of the hollow molded body of the present invention, the first member forms a curved surface with a radius of curvature of 1000 m or less from the viewpoint of efficiently performing integration and at the same time increasing the degree of freedom of shape. It may be. More preferably, it is within 500 m, and a plurality of these curved surfaces may be formed intermittently or intermittently in one surface of the molded product. Further, a diaphragm having a radius of curvature of 5 mm or more may be formed in these planes.

その一方で、第2の部材には、その厚み方向に三次元形状を形成されていてもよく、例えば、機能面から凹凸を有する構造や、意匠面から凹凸を有する構造や、機械接合を補助するためのボス、リブ、ヒンジ、嵌合構造などが形成されていてもよい。   On the other hand, the second member may be formed with a three-dimensional shape in the thickness direction. For example, the second member has a structure having irregularities from the functional surface, a structure having irregularities from the design surface, and assists mechanical joining. Bosses, ribs, hinges, fitting structures, and the like may be formed.

本発明の中空成形体の用途としては、軽量で力学特性が要求される分野における製品がある。例えば、タンク、インテークマニホールドなどのパイプ、ポンプ、インパネ、内装材、スポイラー、ピラー、ドアパネル、ボンネット、エンジンカバー、各種ビームや衝撃吸収材などの自動車部材、風車ブレードなどの構造体、カウル、自転車クランクなどの二輪車、自転車の部材、ランディングギアポッド、モノコック、ウィングレット、スポイラー、エッジ、ラダー、エレベーター、フェイリング、リブなどの航空機関連部品、パラボラアンテナ、ノートパソコン、携帯電話、デジタルスチルカメラ、PDA、ポータブルMD、プラズマディスプレーなどの電気または電子機器の部品、部材および筐体、電話、ファクシミリ、VTR、コピー機、テレビ、アイロン、ヘアードライヤー、炊飯器、電子レンジ、音響機器、掃除機、トイレタリー用品、レーザーディスク、コンパクトディスク、照明、冷蔵庫、エアコン、タイプライター、ワードプロセッサーなどに代表される家庭または事務製品部品、部材および筐体、パチンコ、スロットマシン、ゲーム機などの遊技または娯楽製品部品、部材および筐体、顕微鏡、双眼鏡、カメラ、時計などの光学機器、精密機械関連部品、部材および筐体、X線カセッテなどの医療用途、テニスラケット、ゴルフクラブヘッド、ボード、ヨットなどのスポーツ関連部品、建材用の部品やパネルなどが挙げられる。   As a use of the hollow molded article of the present invention, there is a product in a field that is lightweight and requires mechanical properties. For example, pipes such as tanks, intake manifolds, pumps, instrument panels, interior materials, spoilers, pillars, door panels, bonnets, engine covers, automobile parts such as various beams and shock absorbers, structures such as windmill blades, cowls, bicycle cranks Aircraft parts such as motorcycles, bicycle parts, landing gear pods, monocoques, winglets, spoilers, edges, ladders, elevators, failings, ribs, parabolic antennas, laptop computers, mobile phones, digital still cameras, PDAs, Parts, members and casings of electric or electronic devices such as portable MDs and plasma displays, telephones, facsimiles, VTRs, photocopiers, televisions, irons, hair dryers, rice cookers, microwave ovens, audio equipment, vacuum cleaners, toilets -Household or office product parts represented by articles, laser discs, compact discs, lighting, refrigerators, air conditioners, typewriters, word processors, parts and housings, game or entertainment product parts such as pachinko machines, slot machines, game machines, Components and housings, microscopes, binoculars, cameras, watches and other optical equipment, precision machine parts, members and housings, medical applications such as X-ray cassettes, tennis rackets, golf club heads, boards, yachts and other sports-related parts And building material parts and panels.

上記の中でも、タンク、パイプ、風車ブレード、自転車クランク、ゴルフクラブヘッド、ノートパソコン筐体、X線カセッテ、自動車部材、建材パネルにおいて、軽量と高剛性の要求が強く、好適に使用される。   Among these, tanks, pipes, windmill blades, bicycle cranks, golf club heads, notebook computer cases, X-ray cassettes, automobile members, and building material panels are highly demanded for light weight and high rigidity, and are preferably used.

実施例に基づき、本発明が更に具体的に説明される。実施例中に示される配合割合(%)は、別途特定している場合を除き、全て重量%に基づく値である。本発明の実施例に使用した成分を以下に示す。   Based on an Example, this invention is demonstrated further more concretely. Unless otherwise specified, the blending ratio (%) shown in the examples is a value based on% by weight. The components used in the examples of the present invention are shown below.

参考例1
3元共重合ポリアミド樹脂(東レ(株)製、3元共重合ポリアミド樹脂CM4000、ポリアミド6/66/610、融点150℃、溶解度パラメーターδ(SP値)13.3)のペレットを、幅10mm、目付80g/m2の不織布状テープに加工した。
Reference example 1
Pellets of ternary copolymer polyamide resin (manufactured by Toray Industries, Inc., ternary copolymer polyamide resin CM4000, polyamide 6/66/610, melting point 150 ° C., solubility parameter δ (SP value) 13.3), It processed into the nonwoven fabric-like tape of 80 g / m < 2 > of fabric weight.

参考例2
ポリアミド6(東レ(株)製、ポリアミド6樹脂CM1001)を粒子径10〜1000μmのパウダーに加工し、チョップド炭素繊維(東レ(株)製トレカTW12、繊維長6mm)とをドライで混合した。混合物を80℃で3時間真空乾燥後、250℃でプレス成形を行い、炭素繊維含量30重量%のシート状成形体を得た。該成形体の最大線膨張係数は1.2×10-5であり、最小線膨張係数は0.9×10-5であった。また、曲げ弾性率は16GPaであった。
Reference example 2
Polyamide 6 (manufactured by Toray Industries, Inc., polyamide 6 resin CM1001) was processed into a powder having a particle diameter of 10 to 1000 μm, and chopped carbon fibers (Toray Industries, Inc., trading card TW12, fiber length 6 mm) were mixed in a dry manner. The mixture was vacuum-dried at 80 ° C. for 3 hours and then press-molded at 250 ° C. to obtain a sheet-like molded body having a carbon fiber content of 30% by weight. The molded article had a maximum coefficient of linear expansion of 1.2 × 10 −5 and a minimum coefficient of linear expansion of 0.9 × 10 −5 . The flexural modulus was 16 GPa.

実施例1
図6を用いて説明することで、本実施例をより明確に説明できる。
エポキシ樹脂(熱硬化性樹脂)が、一方向に配列された炭素繊維群に含浸したプリプレグ(東レ(株)製トレカプリプレグP6053−12)から、所定の形状のプリプレグシートを10枚切り出した。図6のように、これら10枚のシートを、成形品長手方向を基準に[0°/90°]5sとなるように順次雌金型29に沿うように積層し(プリプレグ積層体30)、さらに参考例1で調製した不織布状テープ28を、幅10mmの接合部分に配置した(配置された不織布状テープ31)。
Example 1
By explaining using FIG. 6, this embodiment can be explained more clearly.
Ten prepreg sheets having a predetermined shape were cut out from a prepreg impregnated with a group of carbon fibers arranged in one direction with an epoxy resin (thermosetting resin) (Treka prepreg P6053-12 manufactured by Toray Industries, Inc.). As shown in FIG. 6, these 10 sheets are sequentially laminated along the female mold 29 so as to be [0 ° / 90 °] 5 s with respect to the longitudinal direction of the molded product (prepreg laminate 30), Furthermore, the nonwoven fabric-like tape 28 prepared in Reference Example 1 was arranged at a joint portion having a width of 10 mm (arranged nonwoven fabric-like tape 31).

次に、雄金型(図示せず)をセットして、プレス成形を行った。プレス成形機にて、160℃で5分間予熱し、5MPaの圧力をかけながら、150℃で30分間加熱して熱硬化性樹脂を硬化させた。硬化終了後、室温で冷却し、脱型して、厚み1.2mmの積層体からなる第1の部材32を成形した。成形された第1の部材32の、上記不織布状テープ31を配置した部位は、第2の部材との接合部分33に形成される。   Next, a male mold (not shown) was set and press molding was performed. In a press molding machine, preheating was performed at 160 ° C. for 5 minutes, and the thermosetting resin was cured by heating at 150 ° C. for 30 minutes while applying a pressure of 5 MPa. After the curing, the first member 32 made of a laminate having a thickness of 1.2 mm was formed by cooling at room temperature and removing the mold. The site | part which has arrange | positioned the said nonwoven fabric tape 31 of the shape | molded 1st member 32 is formed in the junction part 33 with a 2nd member.

得られた積層体からなる第1の部材32を射出成形金型にインサートし、長繊維ペレット(東レ(株)製TLP1146S、炭素繊維含量20wt%、ポリアミド樹脂マトリックス)を用いて、インサートされている積層体に対し、天蓋部分36a、開口部分36b、把持部分36cを成形し、図6に示される、開口部分を有する中空成形体34を製造した。中空成形体34の部位35が上記第1の部材である。射出成形は、日本製鋼所(株)製J350EIII射出成形機を用いて行い、シリンダー温度は280℃とした。   The first member 32 made of the obtained laminate is inserted into an injection mold and inserted using long fiber pellets (TLP1146S manufactured by Toray Industries, Inc., carbon fiber content 20 wt%, polyamide resin matrix). A canopy portion 36a, an opening portion 36b, and a gripping portion 36c were formed on the laminate, and a hollow molded body 34 having an opening portion shown in FIG. 6 was manufactured. A portion 35 of the hollow molded body 34 is the first member. Injection molding was performed using a J350EIII injection molding machine manufactured by Nippon Steel Works, and the cylinder temperature was 280 ° C.

得られた一体化成形品34は、少なくとも前記不織布状テープを配置した接合部分33で接しており、強固に一体化した。この一体化成形品から、接合部分を切り出し、蟻酸に12時間溶解させて熱可塑性樹脂部分を除去し、断面観察用試験片とした。試験片を走査型電子顕微鏡(SEM)にて観察したところ、炭素繊維群がむき出されている状態が観察された。さらには、積層体32の接合面方向に空隙を有する炭素繊維群と、その反対方向に空隙を有しない炭素繊維群の二層構造が観察され、図4に示されているように、連続した強化繊維群で強化された熱硬化性樹脂と、熱可塑性樹脂層との界面は、凸凹形状を有していることが認められた。炭素繊維群の空隙部分が、熱可塑性樹脂層の強化繊維が包含されている領域であり、この最大厚みTpfと最小厚みTpf−minとを測定したところ、最小厚みTpf−minは30μm、最大厚みTpf−maxは60μmであった。   The obtained integrated molded product 34 was in contact with at least the joint portion 33 on which the nonwoven fabric tape was disposed, and was firmly integrated. A joint portion was cut out from this integrated molded article, dissolved in formic acid for 12 hours to remove the thermoplastic resin portion, and a test piece for cross-sectional observation was obtained. When the test piece was observed with a scanning electron microscope (SEM), a state in which the carbon fiber group was exposed was observed. Furthermore, a two-layer structure of a carbon fiber group having a gap in the bonding surface direction of the laminate 32 and a carbon fiber group having no gap in the opposite direction was observed, and was continuous as shown in FIG. It was recognized that the interface between the thermosetting resin reinforced with the reinforcing fiber group and the thermoplastic resin layer has an uneven shape. The void portion of the carbon fiber group is a region in which the reinforcing fibers of the thermoplastic resin layer are included, and when the maximum thickness Tpf and the minimum thickness Tpf-min are measured, the minimum thickness Tpf-min is 30 μm and the maximum thickness. Tpf-max was 60 μm.

また、前記積層体32の接合部分の断面をSEM観察すると、表面には、熱可塑性樹脂が溶融して被膜状に付着しており、その膜厚は10μmであった。   Further, when the cross section of the bonded portion of the laminate 32 was observed with an SEM, the thermoplastic resin was melted and adhered to the surface in the form of a film, and the film thickness was 10 μm.

実施例2
図7を用いて説明することで、本実施例をより明確に説明できる。
実施例1と同様の方法で、風車ブレードの表裏を構成する2つの積層体37、38(第2の部材37、第1の部材38)を製造する。図7に示すように、少なくとも接合部分で、180℃にて10分間熱圧着を行い、中空成形体を製造した。得られた一体化成形品は、少なくとも前記不織布状テープを配置した接合部分39で接しており、強固に一体化した。
Example 2
By explaining using FIG. 7, this embodiment can be explained more clearly.
In the same manner as in Example 1, two laminated bodies 37 and 38 (second member 37 and first member 38) constituting the front and back of the wind turbine blade are manufactured. As shown in FIG. 7, at least a bonded portion was subjected to thermocompression bonding at 180 ° C. for 10 minutes to produce a hollow molded body. The obtained integrally molded product was in contact with at least the joint portion 39 on which the nonwoven fabric tape was disposed, and was firmly integrated.

同様に、連続した強化繊維群で強化された熱硬化性樹脂と、熱可塑性樹脂層との界面は、凸凹形状を有していることが認められた。Tpf−minは30μm、最大厚みTpf−maxは60μmであった。   Similarly, it was recognized that the interface between the thermosetting resin reinforced with the continuous reinforcing fiber group and the thermoplastic resin layer has an uneven shape. Tpf-min was 30 μm, and the maximum thickness Tpf-max was 60 μm.

また、前記積層体38の接合部分断面をSEM観察すると、表面には、熱可塑性樹脂が溶融して被膜状に付着しており、その膜厚は10μmであった。   Further, when the cross section of the bonded portion of the laminate 38 was observed with an SEM, the thermoplastic resin was melted and adhered to the surface in the form of a film, and the film thickness was 10 μm.

実施例3
第2の部材37を、参考例2で調整した熱可塑性シート状成形体を再度プレス成形で製造する。成形体を250℃で10分間、熱風乾燥機で予熱した後、120℃の金型にて5MPaの圧力で成形した。得られた部材を、実施例2と同様の方法で一体化した。
Example 3
The thermoplastic sheet-like molded body prepared by adjusting the second member 37 in Reference Example 2 is manufactured again by press molding. The molded body was preheated with a hot air dryer at 250 ° C. for 10 minutes, and then molded with a 120 ° C. mold at a pressure of 5 MPa. The obtained member was integrated in the same manner as in Example 2.

実施例4
図8を用いて説明することで、本実施例をより明確に説明できる。
実施例1と同様の方法で、プリプレグを雌金型に積層し、不織布状テープを幅10mmの接合部分42に配置した。次いで、真空バッグ成形し、160℃で5分間予熱し、150℃で30分間加熱して熱硬化性樹脂を硬化させ、2つの第1の積層体(第1の部材)40a、40bを製造した。同様に、2つの第2の積層体(第2の部材)41a、41bをプレス成形にて製造した。
Example 4
By explaining using FIG. 8, this embodiment can be explained more clearly.
In the same manner as in Example 1, the prepreg was laminated on the female mold, and the non-woven tape was placed on the joint portion 42 having a width of 10 mm. Next, a vacuum bag was formed, preheated at 160 ° C. for 5 minutes, heated at 150 ° C. for 30 minutes to cure the thermosetting resin, and two first laminated bodies (first members) 40a and 40b were manufactured. . Similarly, two second laminates (second members) 41a and 41b were manufactured by press molding.

次に、図8に示すように、第1の積層体と第2の積層体を配置し、熱圧着して中空成形体を製造した。得られた一体化成形品は、少なくとも前記不織布状テープを配置した接合部分42で接しており、強固に一体化した。同様に、連続した強化繊維群で強化された熱硬化性樹脂と、熱可塑性樹脂層との界面は、凸凹形状を有していることが認められた。Tpf−minは30μm、最大厚みTpf−maxは60μmであった。   Next, as shown in FIG. 8, the 1st laminated body and the 2nd laminated body were arrange | positioned, and the hollow molded body was manufactured by thermocompression bonding. The obtained integrally molded product was in contact with at least the joint portion 42 on which the nonwoven fabric tape was disposed, and was firmly integrated. Similarly, it was recognized that the interface between the thermosetting resin reinforced with the continuous reinforcing fiber group and the thermoplastic resin layer has an uneven shape. Tpf-min was 30 μm, and the maximum thickness Tpf-max was 60 μm.

また、前記積層体40aの断面をSEM観察すると、表面には、熱可塑性樹脂が溶融して被膜状に付着しており、その膜厚は10μmであった。   Further, when the cross section of the laminate 40a was observed with an SEM, the thermoplastic resin was melted and adhered to the surface in the form of a film, and the film thickness was 10 μm.

実施例5
図9を用いて説明することで、本実施例をより明確に説明できる。
実施例1と同様の方法で、自転車用クランクの表裏を構成する2つの積層体43、44(第1の部材43、第2の部材44)を製造する。図9に示すように、少なくとも接合部分に、180℃で10分間熱圧着を行い、中空成形体を製造した。得られた一体化成形品は、少なくとも前記不織布状テープを配置した接合部分45で接しており、強固に一体化した。同様に、連続した強化繊維群で強化された熱硬化性樹脂と、熱可塑性樹脂層との界面は、凸凹形状を有していることが認められた。Tpf−minは30μm、最大厚みTpf−maxは60μmであった。
Example 5
This embodiment can be described more clearly by using FIG.
In the same manner as in the first embodiment, the two laminated bodies 43 and 44 (the first member 43 and the second member 44) constituting the front and back of the bicycle crank are manufactured. As shown in FIG. 9, at least the bonded portion was subjected to thermocompression bonding at 180 ° C. for 10 minutes to produce a hollow molded body. The obtained integrally molded product was in contact with at least the joint portion 45 on which the nonwoven fabric tape was disposed, and was firmly integrated. Similarly, it was recognized that the interface between the thermosetting resin reinforced with the continuous reinforcing fiber group and the thermoplastic resin layer has an uneven shape. Tpf-min was 30 μm, and the maximum thickness Tpf-max was 60 μm.

また、前記積層体44の断面をSEM観察すると、表面には、熱可塑性樹脂が溶融して被膜状に付着しており、その膜厚は10μmであった。   Further, when the cross section of the laminate 44 was observed with an SEM, the thermoplastic resin was melted and adhered to the surface in the form of a film, and the film thickness was 10 μm.

本発明の一実施態様に係る中空成形体の断面図である。It is sectional drawing of the hollow molded object which concerns on one embodiment of this invention. 本発明の中空成形体における、接合部分の拡大断面図である。It is an expanded sectional view of the joined part in the hollow fabrication object of the present invention. 本発明の中空成形体を、第1の試験方法によって観察した結果を示す断面図である。It is sectional drawing which shows the result of having observed the hollow molded object of this invention by the 1st test method. 本発明の中空成形体を、第2の試験方法によって観察した結果を示す断面図である。It is sectional drawing which shows the result of having observed the hollow molded object of this invention by the 2nd test method. 本発明の中空成形体を、第3の試験方法によって観察した結果を示す斜視図である。It is a perspective view which shows the result of having observed the hollow molded object of this invention by the 3rd test method. 本発明の実施例1の工程および中空成形体組立を示す説明図である。It is explanatory drawing which shows the process and hollow molded object assembly of Example 1 of this invention. 本発明の実施例2の工程および中空成形体組立を示す説明図である。It is explanatory drawing which shows the process of Example 2 of this invention, and a hollow molded object assembly. 本発明の実施例4の中空成形体組立を示す斜視図である。It is a perspective view which shows the hollow molded object assembly of Example 4 of this invention. 本発明の実施例5の中空成形体組立を示す斜視図である。It is a perspective view which shows the hollow molded object assembly of Example 5 of this invention.

符号の説明Explanation of symbols

1 第1の部材
2 第2の部材
3 第1の部材
4 第2の部材
5a、5b 強化繊維
6 熱硬化性樹脂
7 熱可塑性樹脂層
8 強化繊維群
9 熱硬化性樹脂と熱可塑性樹脂層との界面
10 第1の部材と第2の部材との界面
11 第1の部材
12 第2の部材
13 熱可塑性樹脂層
14 強化繊維群
15a、15b 強化繊維
16 熱硬化性樹脂
17 熱硬化性樹脂と熱可塑性樹脂層との界面
18 第1の部材
19 第2の部材
20 熱硬化性樹脂
21 強化繊維群
22a、22b 強化繊維
23 熱硬化性樹脂と熱可塑性樹脂層との界面
24 熱可塑性樹脂層が存在していた空隙
25 第2の部材
26 第1の部材との接合部分
27 残査
28 不織布状テープ
29 雌金型
30 プリプレグ積層体
31 不織布状テープ
32 第1の部材
33 第1の部材と第2の部材との接合部分
34 中空成形体
35 第1の部材
36a 第2の部材天蓋部
36b 第2の部材開口部
36c 第2の部材把持部
37 第2の部材
38 第1の部材
39 第1の部材と第2の部材との接合部分
40a、40b 第1の部材
41a、41b 第2の部材
42 第1の部材と第2の部材との接合部分
43 第1の部材
44 第2の部材
45 第1の部材と第2の部材との接合部分
DESCRIPTION OF SYMBOLS 1 1st member 2 2nd member 3 1st member 4 2nd member 5a, 5b Reinforcing fiber 6 Thermosetting resin 7 Thermoplastic resin layer 8 Reinforcing fiber group 9 Thermosetting resin and thermoplastic resin layer Interface 10 of the first member and the second member 11 First member 12 Second member 13 Thermoplastic resin layer 14 Reinforcing fiber group 15a, 15b Reinforcing fiber 16 Thermosetting resin 17 Thermosetting resin Interface with thermoplastic resin layer 18 1st member 19 2nd member 20 Thermosetting resin 21 Reinforcing fiber group 22a, 22b Reinforcing fiber 23 Interface between thermosetting resin and thermoplastic resin layer 24 Thermoplastic resin layer Existing gap 25 Second member 26 Joint portion with first member 27 Residual 28 Non-woven tape 29 Female mold 30 Prepreg laminate 31 Non-woven tape 32 First member 33 First member and first 2 Joining portion with member 34 Hollow molded body 35 First member 36a Second member canopy portion 36b Second member opening portion 36c Second member gripping portion 37 Second member 38 First member 39 First member 40a, 40b 1st member 41a, 41b 2nd member 42 Joining part of 1st member and 2nd member 43 1st member 44 2nd member 45 1st Part of the member and the second member

Claims (25)

少なくとも第1の部材と第2の部材の2つの部材を一体化することで中空形状を形成した中空成形体であって、前記部材のうち少なくとも第1の部材は連続した強化繊維群で強化された熱硬化性樹脂を主成分とし、第2の部材との接合部分において熱可塑性樹脂層を有しており、前記熱可塑性樹脂層が前記強化繊維群の一部の強化繊維を包含してなることを特徴とする中空成形体。   A hollow molded body in which a hollow shape is formed by integrating at least two members of a first member and a second member, and at least the first member of the members is reinforced with a continuous reinforcing fiber group. A thermoplastic resin layer at the joint portion with the second member, and the thermoplastic resin layer includes a part of the reinforcing fibers of the reinforcing fiber group. The hollow molded object characterized by the above-mentioned. 前記第2の部材が、前記第1の部材と実質的に同一構成の部材、または金属材料からなる部材である、請求項1に記載の中空成形体。   The hollow molded body according to claim 1, wherein the second member is a member having substantially the same configuration as the first member or a member made of a metal material. 連続した強化繊維群で強化された熱硬化性樹脂を主成分とする第1の部材と、熱可塑性樹脂を主成分とする第2の部材とを一体化することで中空形状を形成した中空成形体であって、該第1の部材が面形状であり、成形体の少なくとも一つの面を形成し、該第2の部材が該第1の部材に対向する面を形成してなることを特徴とする中空成形体。   Hollow molding in which a hollow shape is formed by integrating a first member mainly composed of a thermosetting resin reinforced with a group of continuous reinforcing fibers and a second member mainly composed of a thermoplastic resin. The first member has a surface shape, forms at least one surface of the molded body, and the second member forms a surface facing the first member. A hollow molded body. 前記第2の部材が、数平均繊維長0.1〜60mmの強化繊維を含有してなる、請求項3に記載の中空成形体。   The hollow molded body according to claim 3, wherein the second member contains reinforcing fibers having a number average fiber length of 0.1 to 60 mm. 前記第1の部材と、前記第2の部材とが、その接合面で接着されてなる、請求項3または4に記載の中空成形体。   The hollow molded body according to claim 3 or 4, wherein the first member and the second member are bonded to each other at a joining surface thereof. 前記第1の部材が、前記第2の部材との接合部分において熱可塑性樹脂層を有しており、該熱可塑性樹脂層が前記連続した強化繊維群の一部の強化繊維を包含してなる、請求項3〜5のいずれかに記載の中空成形体。   The first member has a thermoplastic resin layer at a joint portion with the second member, and the thermoplastic resin layer includes a part of the continuous reinforcing fiber group. The hollow molded body according to any one of claims 3 to 5. 前記熱可塑性樹脂層が、連続した強化繊維群で強化された熱硬化性樹脂の層と、その界面において、凸凹形状を有して一体化されている、請求項1または6に記載の中空成形体。   The hollow molding according to claim 1 or 6, wherein the thermoplastic resin layer is integrated with a thermosetting resin layer reinforced with a group of continuous reinforcing fibers and has an uneven shape at an interface thereof. body. 前記熱可塑性樹脂層において、前記強化繊維が包含されている領域の最大厚みが10μm以上である、請求項1、6、7のいずれかに記載の中空成形体。   The hollow molded body according to any one of claims 1, 6, and 7, wherein in the thermoplastic resin layer, a maximum thickness of a region including the reinforcing fibers is 10 µm or more. 前記最大厚みが1,000μm以下である、請求項8に記載の中空成形体。   The hollow molded body according to claim 8, wherein the maximum thickness is 1,000 μm or less. 前記熱可塑性樹脂層の樹脂が、第2の部材との接合部分に被膜状に介在してなる、請求項1、6〜9のいずれかに記載の中空成形体。   The hollow molded body according to any one of claims 1 and 6 to 9, wherein the resin of the thermoplastic resin layer is formed in a film shape at a joint portion with the second member. 前記被膜の平均厚みが0.01〜1000μmの範囲にある、請求項10に記載の中空成形体。   The hollow molded object according to claim 10, wherein the average thickness of the coating film is in the range of 0.01 to 1000 µm. 前記第1の部材が積層体である、請求項1〜11のいずれかに記載の中空成形体。   The hollow molded object in any one of Claims 1-11 whose said 1st member is a laminated body. 前記第1の部材に用いられる強化繊維が炭素繊維である、請求項1〜12のいずれかに記載の中空成形体。   The hollow molded object in any one of Claims 1-12 whose reinforced fiber used for a said 1st member is carbon fiber. 前記熱硬化性樹脂がエポキシ樹脂を主成分とする樹脂である、請求項1〜13のいずれかに記載の中空成形体。   The hollow molded body according to any one of claims 1 to 13, wherein the thermosetting resin is a resin mainly composed of an epoxy resin. 前記第1の部材に用いられる熱可塑性樹脂が、ポリエステル系樹脂、ポリアミド系樹脂、変性ポリオレフィン系樹脂から選択される少なくとも1種である、請求項1〜14のいずれかに記載の中空成形体。   The hollow molded body according to any one of claims 1 to 14, wherein the thermoplastic resin used for the first member is at least one selected from a polyester resin, a polyamide resin, and a modified polyolefin resin. 前記第2の部材の、面方向の最大線膨張係数最大線膨張係数CIImaxが4×10-5以下である、請求項1〜15のいずれかに記載の中空成形体。 The hollow molded body according to any one of claims 1 to 15, wherein the second member has a maximum linear expansion coefficient CIImax in a plane direction of 4 x 10-5 or less. 前記第2の部材の、面方向の最大線膨張係数CIImaxと、最小線膨張係数CIIminとの比、CIImax/CIIminが1.8以下である、請求項1〜16のいずれかに記載の中空成形体。   The hollow molding according to any one of claims 1 to 16, wherein the ratio of the maximum linear expansion coefficient CIImax in the surface direction to the minimum linear expansion coefficient CIImin of the second member, CIImax / CIImin is 1.8 or less. body. 前記第2の部材の、曲げ弾性率が10GPa以上である、請求項1〜17のいずれかに記載の中空成形体。   The hollow molded body according to any one of claims 1 to 17, wherein the second member has a flexural modulus of 10 GPa or more. 前記中空成形体が、殻形状、鼓形状、筒形状のいずれかの形態を有している、請求項1〜18のいずれかに記載の中空成形体。   The hollow molded body according to any one of claims 1 to 18, wherein the hollow molded body has any one of a shell shape, a drum shape, and a cylindrical shape. 前記中空成形体における、中空部の最大厚みが10mm以上である、請求項1〜19のいずれかに記載の中空成形体。   The hollow molded object in any one of Claims 1-19 whose maximum thickness of the hollow part in the said hollow molded object is 10 mm or more. 前記第1の部材が、曲率半径が1000m以内の略曲面を形成してなる、請求項1〜20のいずれかに記載の中空成形体。   The hollow molded body according to any one of claims 1 to 20, wherein the first member forms a substantially curved surface having a radius of curvature of 1000 m or less. 前記第1の部材が、その面内に曲率半径が5mm以上の絞りを形成してなる、請求項1〜21のいずれかに記載の中空成形体。   The hollow molded body according to any one of claims 1 to 21, wherein the first member is formed with a diaphragm having a radius of curvature of 5 mm or more in a plane thereof. 前記第2の部材が、その厚み方向に三次元形状を形成してなる、請求項1〜22のいずれかに記載の中空成形体。   The hollow molded body according to any one of claims 1 to 22, wherein the second member forms a three-dimensional shape in a thickness direction thereof. 前記中空成形体が、タンク、パイプ、風車ブレード、または、自動車、二輪車、自転車、航空機、建材用の部品、部材またはパネルである、請求項1〜23のいずれかに記載の中空成形体。   The hollow molded body according to any one of claims 1 to 23, wherein the hollow molded body is a tank, a pipe, a windmill blade, or a part, member, or panel for an automobile, a motorcycle, a bicycle, an aircraft, or a building material. 前記第1の部材と第2の部材とを、熱溶着、振動溶着、超音波溶着、レーザー溶着、インサート射出成形、アウトサート射出成形から選択される少なくとも1つの方法にて一体化する、請求項1〜24のいずれかに記載の中空成形体の製造方法。   The first member and the second member are integrated by at least one method selected from thermal welding, vibration welding, ultrasonic welding, laser welding, insert injection molding, and outsert injection molding. The manufacturing method of the hollow molded object in any one of 1-24.
JP2005199964A 2004-07-08 2005-07-08 Hollow molded article and its production method Pending JP2006044262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005199964A JP2006044262A (en) 2004-07-08 2005-07-08 Hollow molded article and its production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004201313 2004-07-08
JP2005199964A JP2006044262A (en) 2004-07-08 2005-07-08 Hollow molded article and its production method

Publications (1)

Publication Number Publication Date
JP2006044262A true JP2006044262A (en) 2006-02-16

Family

ID=36023352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005199964A Pending JP2006044262A (en) 2004-07-08 2005-07-08 Hollow molded article and its production method

Country Status (1)

Country Link
JP (1) JP2006044262A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007093006A1 (en) * 2006-02-17 2007-08-23 William Rodgers Articles of composite construction and methods of manufacture thereof
JP2008012710A (en) * 2006-07-04 2008-01-24 Taisei Plas Co Ltd Integrated product made of resin of fiber reinforced plastic and thermoplastic resin molded product, and its manufacturing method
JP2008049702A (en) * 2006-07-28 2008-03-06 Toray Ind Inc Molded article and its manufacturing method
JP2009531194A (en) * 2006-03-28 2009-09-03 シーアールシー フォー アドバンスト コンポジット ストラクチャーズ リミテッド Welding of functional members to polymer composite members
JP2012125948A (en) * 2010-12-13 2012-07-05 Mitsubishi Rayon Co Ltd Fiber-reinforced thermoplastic resin molding and method for producing the same
JP2013000933A (en) * 2011-06-14 2013-01-07 Mitsubishi Rayon Co Ltd Fiber-reinforced thermoplastic resin molded article and method for producing the same, and composite body and method for producing the same
JP2013159170A (en) * 2012-02-02 2013-08-19 Bridgestone Cycle Co Method of manufacturing bicycle frame and bicycle frame
JP2013159171A (en) * 2012-02-02 2013-08-19 Bridgestone Cycle Co Method of manufacturing bicycle frame and bicycle frame
JPWO2012102315A1 (en) * 2011-01-28 2014-06-30 帝人株式会社 Bonded carbon fiber reinforced composite material
JP2016041476A (en) * 2014-08-18 2016-03-31 パナソニックIpマネジメント株式会社 Resin structure, and vacuum cleaner using the same
EP2939818A4 (en) * 2012-12-26 2016-06-08 Toray Industries Molded product having hollow structure and process for producing same
JPWO2014112506A1 (en) * 2013-01-18 2017-01-19 日本軽金属株式会社 Method for producing metal-resin joined body and metal-resin joined body
CN109996673A (en) * 2016-11-10 2019-07-09 乌本产权有限公司 MULTILAYER COMPOSITE component

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07100943A (en) * 1993-10-06 1995-04-18 Asahi Chem Ind Co Ltd Pipe made of fiber-reinforced resin
WO2000018566A1 (en) * 1998-09-30 2000-04-06 Toray Industries, Inc. Hollow structure of fiber-reinforced resin and method of manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07100943A (en) * 1993-10-06 1995-04-18 Asahi Chem Ind Co Ltd Pipe made of fiber-reinforced resin
WO2000018566A1 (en) * 1998-09-30 2000-04-06 Toray Industries, Inc. Hollow structure of fiber-reinforced resin and method of manufacturing the same

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11713187B2 (en) 2006-02-17 2023-08-01 Omni Tanker Technology Pty Ltd (Acn 135 294 772) Articles of composite construction and methods of manufacture thereof
EP1991413A1 (en) * 2006-02-17 2008-11-19 William Rodgers Articles of composite construction and methods of manufacture thereof
AU2007215389B2 (en) * 2006-02-17 2012-04-26 Omni Tanker Technology Pty Ltd Articles of composite construction and methods of manufacture thereof
EP1991413A4 (en) * 2006-02-17 2012-09-19 William Rodgers Articles of composite construction and methods of manufacture thereof
EA035152B1 (en) * 2006-02-17 2020-05-06 Омни Танкер Текнолоджи Пти Лтд Articles of composite construction and methods of manufacture thereof
WO2007093006A1 (en) * 2006-02-17 2007-08-23 William Rodgers Articles of composite construction and methods of manufacture thereof
US11059665B2 (en) 2006-02-17 2021-07-13 Omni Tanker Technology Pty Ltd (Acn 135 294 772) Articles of composite construction and methods of manufacture thereof
JP2009531194A (en) * 2006-03-28 2009-09-03 シーアールシー フォー アドバンスト コンポジット ストラクチャーズ リミテッド Welding of functional members to polymer composite members
JP2008012710A (en) * 2006-07-04 2008-01-24 Taisei Plas Co Ltd Integrated product made of resin of fiber reinforced plastic and thermoplastic resin molded product, and its manufacturing method
JP2008049702A (en) * 2006-07-28 2008-03-06 Toray Ind Inc Molded article and its manufacturing method
JP2012125948A (en) * 2010-12-13 2012-07-05 Mitsubishi Rayon Co Ltd Fiber-reinforced thermoplastic resin molding and method for producing the same
JPWO2012102315A1 (en) * 2011-01-28 2014-06-30 帝人株式会社 Bonded carbon fiber reinforced composite material
JP2013000933A (en) * 2011-06-14 2013-01-07 Mitsubishi Rayon Co Ltd Fiber-reinforced thermoplastic resin molded article and method for producing the same, and composite body and method for producing the same
JP2013159171A (en) * 2012-02-02 2013-08-19 Bridgestone Cycle Co Method of manufacturing bicycle frame and bicycle frame
JP2013159170A (en) * 2012-02-02 2013-08-19 Bridgestone Cycle Co Method of manufacturing bicycle frame and bicycle frame
EP2939818A4 (en) * 2012-12-26 2016-06-08 Toray Industries Molded product having hollow structure and process for producing same
JPWO2014112506A1 (en) * 2013-01-18 2017-01-19 日本軽金属株式会社 Method for producing metal-resin joined body and metal-resin joined body
JP2016041476A (en) * 2014-08-18 2016-03-31 パナソニックIpマネジメント株式会社 Resin structure, and vacuum cleaner using the same
CN109996673A (en) * 2016-11-10 2019-07-09 乌本产权有限公司 MULTILAYER COMPOSITE component
JP2019535552A (en) * 2016-11-10 2019-12-12 ヴォッベン プロパティーズ ゲーエムベーハー Multi-layer composite member

Similar Documents

Publication Publication Date Title
JP2006044262A (en) Hollow molded article and its production method
JP4774839B2 (en) Manufacturing method of fiber reinforced composite material
EP2527139B1 (en) Sandwich structure and integrated formed article using the same
TWI636879B (en) Sandwich structure, integrated molded product using the same, and manufacturing method thereof
JP4802802B2 (en) Enclosure for electronic equipment
JP4721105B2 (en) Decorative molded body and method for producing the same
JP4023515B2 (en) Preform using a base material for thermal bonding, and method for producing laminate
US10882224B2 (en) Method for manufacturing structure material
WO2004060658A1 (en) Layered product, electromagnetic-shielding molded object, and processes for producing these
US10571963B2 (en) Housing
JP2008230238A (en) Fiber-reinforced composite material plate and molded article using the same
US20180270967A1 (en) Housing
JP2010253937A (en) Integrally molded product
JP2014095034A (en) Molded article and method for producing molded article
EP3808521B1 (en) Fiber-reinforced resin composite body, production method therefor, and non-woven fabric for use in fiber-reinforced resin composite body
JP2006044259A (en) Integrated molded product and its manufacturing method
US10509443B2 (en) Housing
JP2007110138A (en) Molded object for electromagnetic wave shielding and method of manufacturing the same
JP2006205436A (en) Fiber reinforced composite material sheet and molded product using it
JP2006044260A (en) Integrated structural member and its manufacturing method
JP2010046941A (en) Method for producing integrated molding
JP7013873B2 (en) Manufacturing method of processed products and processed products
JP2006130862A (en) Composite molded component and manufacturing method of composite molded component
CN110877477A (en) Composite molded article, and method for producing and use thereof
JP7547794B2 (en) Fiber Reinforced Resin Composites

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110420

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120131