JP2012125948A - Fiber-reinforced thermoplastic resin molding and method for producing the same - Google Patents

Fiber-reinforced thermoplastic resin molding and method for producing the same Download PDF

Info

Publication number
JP2012125948A
JP2012125948A JP2010277205A JP2010277205A JP2012125948A JP 2012125948 A JP2012125948 A JP 2012125948A JP 2010277205 A JP2010277205 A JP 2010277205A JP 2010277205 A JP2010277205 A JP 2010277205A JP 2012125948 A JP2012125948 A JP 2012125948A
Authority
JP
Japan
Prior art keywords
fiber
fiber reinforced
reinforced resin
thermoplastic resin
resin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010277205A
Other languages
Japanese (ja)
Other versions
JP5844967B2 (en
Inventor
Akinobu Sasaki
章亘 佐々木
Noriyoshi Terasawa
知徳 寺澤
Takahiro Hayashi
崇寛 林
Satoshi Nago
聡 名合
Hitoshi Kitamura
仁志 北村
Hidetoshi Sonoda
秀利 園田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Toyobo Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46643566&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2012125948(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Rayon Co Ltd, Toyobo Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2010277205A priority Critical patent/JP5844967B2/en
Publication of JP2012125948A publication Critical patent/JP2012125948A/en
Application granted granted Critical
Publication of JP5844967B2 publication Critical patent/JP5844967B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/13Single flanged joints; Fin-type joints; Single hem joints; Edge joints; Interpenetrating fingered joints; Other specific particular designs of joint cross-sections not provided for in groups B29C66/11 - B29C66/12
    • B29C66/131Single flanged joints, i.e. one of the parts to be joined being rigid and flanged in the joint area
    • B29C66/1312Single flange to flange joints, the parts to be joined being rigid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/06Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using friction, e.g. spin welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/303Particular design of joint configurations the joint involving an anchoring effect
    • B29C66/3034Particular design of joint configurations the joint involving an anchoring effect making use of additional elements, e.g. meshes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • B29C66/547Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles, e.g. endless tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7214Fibre-reinforced materials characterised by the length of the fibres
    • B29C66/72143Fibres of discontinuous lengths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7212Fibre-reinforced materials characterised by the composition of the fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/929Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools characterized by specific pressure, force, mechanical power or displacement values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/94Measuring or controlling the joining process by measuring or controlling the time
    • B29C66/949Measuring or controlling the joining process by measuring or controlling the time characterised by specific time values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • B29C66/951Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools
    • B29C66/9513Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools characterised by specific vibration frequency values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • B29C66/951Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools
    • B29C66/9517Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools characterised by specific vibration amplitude values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • B29L2031/3044Bumpers

Abstract

PROBLEM TO BE SOLVED: To provide a fiber-reinforced thermoplastic resin molding having sufficient joining of joints, and a method for producing it.SOLUTION: The fiber-reinforced thermoplastic resin molding 10 includes two or more members joined at joints, and each joint has inner fiber-reinforced resin layers 24 and 34 including to-be-joined surfaces 22a and 32a and outer fiber-reinforced resin layers 23 and 33 disposed outside the inner fiber-reinforced resin layers 24 and 34. The outer fiber-reinforced resin layers 23 and 33 each has one or more layers, and the reinforcing fiber of at least one of the layers has a number-average fiber length longer than the inner fiber-reinforced resin layers 24 and 34.

Description

本発明は繊維強化熱可塑性樹脂成形品とその製造方法に関する。   The present invention relates to a fiber-reinforced thermoplastic resin molded article and a method for producing the same.

近年、種々の分野において、部品の材質を金属から樹脂へと変更することが検討されている。なかでも、剛性、耐衝撃性などの点から、強化繊維によって補強された繊維強化樹脂を金属に代えて採用することが試みられている。
繊維強化樹脂には、マトリックス樹脂として熱可塑性樹脂が用いられた繊維強化熱可塑性樹脂があり、例えば、自動車等の車両分野においては、エンジン周りに使用されるフレーム材や、バンパービームなどへの適用が検討されている(例えば特許文献1〜4参照。)。
In recent years, it has been studied to change the material of parts from metal to resin in various fields. Among them, in view of rigidity, impact resistance and the like, attempts have been made to employ a fiber reinforced resin reinforced with reinforcing fibers instead of metal.
The fiber reinforced resin includes a fiber reinforced thermoplastic resin in which a thermoplastic resin is used as a matrix resin. For example, in a vehicle field such as an automobile, it is applied to a frame material used around an engine or a bumper beam. (For example, refer to Patent Documents 1 to 4).

特開平5−9301号公報JP-A-5-9301 特開平6−313292号公報JP-A-6-313292 特開平7−88840号公報JP-A-7-88840 特開平9−216225号公報JP-A-9-216225

このように繊維強化熱可塑性樹脂を用いて、種々の形状の部材を製造するにあたっては、複数の繊維強化熱可塑性樹脂成形品をそれぞれ製造した後、これらを接合することが必要となる場合がある。
しかしながら、繊維強化熱可塑性樹脂成形品同士は、接合しにくい場合があった。
Thus, in manufacturing members of various shapes using the fiber reinforced thermoplastic resin, it may be necessary to manufacture a plurality of fiber reinforced thermoplastic resin molded products and then join them. .
However, fiber reinforced thermoplastic resin molded products may be difficult to join.

本発明は上記事情に鑑みてなされたもので、本発明の目的は、接合部が十分に接合した繊維強化熱可塑性樹脂成形品と、その製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a fiber-reinforced thermoplastic resin molded article in which the joint portion is sufficiently joined, and a method for producing the same.

本発明の繊維強化熱可塑性樹脂成形品は、複数の部材が接合部で接合された繊維強化熱可塑性樹脂成形品であって、前記各接合部が、被接合面を含む内側繊維強化樹脂層と、前記内側繊維強化樹脂層の外側に設けられた外側繊維強化樹脂層とからなり、前記外側繊維強化樹脂層は、少なくとも1層以上からなり、そのうちの少なくとも1層の強化繊維は、前記内側繊維強化樹脂層の強化繊維よりも数平均の繊維長が長い。
前記内側繊維強化樹脂層に含有される強化繊維は、ランダムに分布していることが好ましい。
前記内側繊維強化樹脂層に含有される強化繊維の繊維長は、数平均で5〜100mmであることが好ましい。
前記外側繊維強化樹脂層のうち、前記内側繊維強化樹脂層の強化繊維よりも数平均の繊維長が長い前記少なくとも1層の強化繊維は、連続繊維であることが好ましい。
前記連続繊維は、該連続繊維が一方向に引き揃えられた一方向材、または、該一方向材が織られたクロス材であることが好ましい。
本発明の繊維強化熱可塑性樹脂成形品の製造方法は、複数の部材が接合部で接合された繊維強化熱可塑性樹脂成形品の製造方法であって、前記各接合部が、被接合面を含む内側繊維強化樹脂層と、前記内側繊維強化樹脂層の外側に設けられた外側繊維強化樹脂層とからなり、前記外側繊維強化樹脂層は、少なくとも1層以上からなり、そのうちの少なくとも1層の強化繊維は、前記内側繊維強化樹脂層の強化繊維よりも数平均の繊維長が長い。
前記接合を振動溶着法により行うことが好ましい。
The fiber reinforced thermoplastic resin molded article of the present invention is a fiber reinforced thermoplastic resin molded article in which a plurality of members are joined at joints, and each joint has an inner fiber reinforced resin layer including a joined surface; And an outer fiber reinforced resin layer provided outside the inner fiber reinforced resin layer, and the outer fiber reinforced resin layer is composed of at least one layer, and at least one of the reinforcing fibers is the inner fiber. The number average fiber length is longer than the reinforcing fiber of the reinforced resin layer.
It is preferable that the reinforcing fibers contained in the inner fiber reinforced resin layer are randomly distributed.
The fiber length of the reinforcing fibers contained in the inner fiber reinforced resin layer is preferably 5 to 100 mm in number average.
Among the outer fiber reinforced resin layers, the at least one layer of reinforcing fibers having a number average fiber length longer than that of the inner fiber reinforced resin layer is preferably a continuous fiber.
The continuous fiber is preferably a unidirectional material in which the continuous fibers are aligned in one direction or a cloth material in which the unidirectional material is woven.
The method for producing a fiber-reinforced thermoplastic resin molded article of the present invention is a method for producing a fiber-reinforced thermoplastic resin molded article in which a plurality of members are joined at joints, and each joint includes a surface to be joined. It consists of an inner fiber reinforced resin layer and an outer fiber reinforced resin layer provided outside the inner fiber reinforced resin layer, and the outer fiber reinforced resin layer is composed of at least one layer, and at least one of them is reinforced. The fibers have a number average fiber length longer than the reinforcing fibers of the inner fiber reinforced resin layer.
The joining is preferably performed by a vibration welding method.

本発明によれば、接合部が十分に接合した繊維強化熱可塑性樹脂成形品を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the fiber reinforced thermoplastic resin molded product which the junction part fully joined can be provided.

本発明の繊維強化熱可塑性樹脂成形品の一例を示す斜視図である。It is a perspective view which shows an example of the fiber reinforced thermoplastic resin molded product of this invention. 図1の繊維強化熱可塑性樹脂成形品の縦断面図である。It is a longitudinal cross-sectional view of the fiber reinforced thermoplastic resin molded product of FIG. 図1の繊維強化熱可塑性樹脂成形品の内側繊維強化樹脂層に使用されるランダムシートを模式的に示す斜視図である。It is a perspective view which shows typically the random sheet used for the inner side fiber reinforced resin layer of the fiber reinforced thermoplastic resin molded product of FIG. 図1の繊維強化熱可塑性樹脂成形品の成形に使用される成形用金型の一例を示す斜視図である。It is a perspective view which shows an example of the metal mold | die used for shaping | molding of the fiber reinforced thermoplastic resin molded product of FIG. 図1の繊維強化熱可塑性樹脂成形品を構成する部材を示す斜視図である。It is a perspective view which shows the member which comprises the fiber reinforced thermoplastic resin molded product of FIG. 実施例1で使用された積層シートを摸式的に示す斜視図である。It is a perspective view which shows typically the lamination sheet used in Example 1. FIG. 実施例2で使用されたプリプレグ積層シートを摸式的に示す斜視図である。4 is a perspective view schematically showing a prepreg laminated sheet used in Example 2. FIG.

以下、本発明を詳細に説明する。
図1は、本発明の繊維強化熱可塑性樹脂成形品の一例を示す斜視図であり、図2は、図1の繊維強化熱可塑性樹脂成形品の縦断面図である。
この繊維強化熱可塑性樹脂成形品10は、繊維強化熱可塑性樹脂成形品からなる第1部材20と第2部材30とが、それぞれの各接合部で接合した中空形状の成形品である。この例の第1部材20と第2部材30は、同じ大きさ、形状を有するものであって、長手方向に沿う凹状部21,31と、その両側に長手方向に沿って形成された一定幅の縁部22,32とを有している。
そして、第1部材20と第2部材30とは、凹状部21,31同士、縁部22,32同士が互いに対向するように配置された後、対向する縁部22,32の表面(被接合面)22a,32a同士が振動溶着により接合され、中空形状とされている。
Hereinafter, the present invention will be described in detail.
FIG. 1 is a perspective view showing an example of a fiber-reinforced thermoplastic resin molded product of the present invention, and FIG. 2 is a longitudinal sectional view of the fiber-reinforced thermoplastic resin molded product of FIG.
The fiber reinforced thermoplastic resin molded product 10 is a hollow molded product in which a first member 20 and a second member 30 made of a fiber reinforced thermoplastic resin molded product are joined at respective joints. The first member 20 and the second member 30 in this example have the same size and shape, and the concave portions 21 and 31 along the longitudinal direction and the constant width formed along the longitudinal direction on both sides thereof. Edge portions 22 and 32.
The first member 20 and the second member 30 are arranged so that the concave portions 21 and 31 and the edge portions 22 and 32 face each other, and then the surfaces of the opposite edge portions 22 and 32 (to-be-joined) Surface) 22a and 32a are joined together by vibration welding to form a hollow shape.

第1部材20と第2部材30とは、図2に示すように、連続した強化繊維(連続繊維)が一方向に引き揃えられた一方向材(UD材)を強化繊維として含む1層の外側繊維強化樹脂層23,33と、強化繊維として束状の短繊維がランダムに分布した1層の内側繊維強化樹脂層24,34の2層構造になっている。そして、第1部材20と第2部材30とは、内側繊維強化樹脂層24,34側が内側に位置するように配置され、縁部22,32同士が接合されている。そのため、第1部材20および第2部材30の各接合部において、縁部22,32の表面、すなわち被接合面22a,32aを含む部分には、内側繊維強化樹脂層24,34が位置し、その外側に外側繊維強化樹脂層23,33が位置した状態になっている。   As shown in FIG. 2, the first member 20 and the second member 30 are formed of a single layer including a unidirectional material (UD material) in which continuous reinforcing fibers (continuous fibers) are aligned in one direction as reinforcing fibers. It has a two-layer structure of outer fiber reinforced resin layers 23 and 33 and one layer of inner fiber reinforced resin layers 24 and 34 in which bundled short fibers are randomly distributed as reinforcing fibers. And the 1st member 20 and the 2nd member 30 are arrange | positioned so that the inner side fiber reinforced resin layers 24 and 34 side may be located inside, and the edge parts 22 and 32 are joined. Therefore, in each joint part of the first member 20 and the second member 30, the inner fiber reinforced resin layers 24 and 34 are located on the surfaces of the edge parts 22 and 32, that is, the parts including the joined surfaces 22a and 32a. The outer fiber reinforced resin layers 23 and 33 are located outside thereof.

繊維強化熱可塑性樹脂を構成する強化繊維としては、ガラス繊維、炭素繊維、アラミド繊維などが挙げられる。外側繊維強化樹脂層23,33と内側繊維強化樹脂層24,34には、通常は同じ種類の強化繊維が使用されるが、目的により、異なる種類の強化繊維が使用されてもよい。
この例で外側繊維強化樹脂層23,33に使用されている一方向材は、多数本の強化繊維フィラメントからなる束が開繊され、引き揃えられたものである。この外側繊維強化樹脂層23,33は、一方向材に熱可塑性樹脂が含浸したプリプレグから構成されている。
また、この例の内側繊維強化樹脂層24,34は、束状の短繊維が層中でランダムに分布したものである。この内側繊維強化樹脂層24,34は、例えば上述の一方向材に熱可塑性樹脂を含浸した後、これを例えば5〜100mmの繊維長に切断し、この短繊維をランダムに分散させた状態で型内で加熱、加圧、冷却して得られた、図3に示すようないわゆるランダムシート40から構成されている。図中符号41は分散している短繊維を示す。
なお、ここでランダムな分散とは、多数本の強化繊維フィラメントからなる束として、強化繊維が特定の方向性を持たずに分散している状態、個々の強化繊維フィラメントとして、特定の方向性を持たずに分散している状態のいずれをも含む。
Examples of the reinforcing fiber constituting the fiber reinforced thermoplastic resin include glass fiber, carbon fiber, and aramid fiber. For the outer fiber reinforced resin layers 23 and 33 and the inner fiber reinforced resin layers 24 and 34, the same type of reinforcing fiber is usually used, but different types of reinforcing fibers may be used depending on the purpose.
In this example, the unidirectional material used for the outer fiber reinforced resin layers 23 and 33 is obtained by opening a bundle of numerous reinforcing fiber filaments and arranging them. The outer fiber reinforced resin layers 23 and 33 are composed of a prepreg in which a unidirectional material is impregnated with a thermoplastic resin.
Further, in the inner fiber reinforced resin layers 24 and 34 in this example, bundled short fibers are randomly distributed in the layer. The inner fiber reinforced resin layers 24 and 34 are obtained by, for example, impregnating the above-mentioned unidirectional material with a thermoplastic resin, cutting the fiber into a fiber length of, for example, 5 to 100 mm, and randomly dispersing the short fibers. It is comprised from what is called the random sheet | seat 40 as shown in FIG. 3 obtained by heating, pressurizing, and cooling in a type | mold. In the figure, reference numeral 41 denotes dispersed short fibers.
Here, the random dispersion means a bundle of a large number of reinforcing fiber filaments, a state in which the reinforcing fibers are dispersed without having a specific direction, and a specific directionality as individual reinforcing fiber filaments. It includes any of the states that are distributed without being held.

繊維強化熱可塑性樹脂を構成する熱可塑性樹脂としては、特に制限はなく、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル、ポリスチレン、ABS樹脂、アクリル樹脂、塩化ビニル、ポリアミド6等のポリアミド、ポリカーボネート、ポリフェニレンエーテル、ポリエーテルスルフォン、ポリサルフォン、ポリエーテルイミド、ポリケトン、ポリエーテルケトン、ポリエーテルエーテルケトンなどを使用できる。また、これら各樹脂の変性体を用いてもよいし、複数種の樹脂をブレンドして用いてもよい。また、熱可塑性樹脂は、各種添加剤、フィラー、着色剤等を含んでいてもよい。
外側繊維強化樹脂層23,33と内側繊維強化樹脂層24,34には、通常は同じ種類の熱可塑性樹脂が使用されるが、目的により、異なる種類の熱可塑性樹脂が使用されてもよい。
The thermoplastic resin constituting the fiber reinforced thermoplastic resin is not particularly limited, polyolefin such as polyethylene and polypropylene, polyester such as polyethylene terephthalate and polybutylene terephthalate, polystyrene, ABS resin, acrylic resin, vinyl chloride, polyamide 6 and the like. Polyamide, polycarbonate, polyphenylene ether, polyether sulfone, polysulfone, polyether imide, polyketone, polyether ketone, polyether ether ketone and the like can be used. Moreover, the modified body of these each resin may be used, and multiple types of resin may be blended and used. Further, the thermoplastic resin may contain various additives, fillers, colorants and the like.
For the outer fiber reinforced resin layers 23 and 33 and the inner fiber reinforced resin layers 24 and 34, the same type of thermoplastic resin is usually used, but different types of thermoplastic resins may be used depending on the purpose.

内側繊維強化樹脂層24,34中の強化繊維の体積含有率(JIS K 7052に準じて測定。)は、10〜60%であることが好ましい。強化繊維の体積含有率を60%以下とすることにより、接合部において、第1部材20と第2部材30とがより良好に接合する。強化繊維の体積含有率が60%を超えると、接合しにくくなったり、接合したとしても接合の度合いが不十分で、一旦接合した後に剥がれてしまったりする可能性がある。一方、強化繊維の体積含有率が10%以上であると、内側繊維強化樹脂層24,34中の強化繊維に由来する物性を発揮させることができる。   The volume content of reinforcing fibers in the inner fiber reinforced resin layers 24 and 34 (measured according to JIS K 7052) is preferably 10 to 60%. By setting the volume content of the reinforcing fibers to 60% or less, the first member 20 and the second member 30 are more favorably bonded at the bonded portion. If the volume content of the reinforcing fiber exceeds 60%, it may be difficult to bond, or even if bonded, the degree of bonding is insufficient, and may be peeled off after being bonded once. On the other hand, when the volume content of the reinforcing fibers is 10% or more, physical properties derived from the reinforcing fibers in the inner fiber reinforced resin layers 24 and 34 can be exhibited.

内側繊維強化樹脂層24,34に含まれる短繊維41の繊維長は、数平均で5〜100mmであることが好ましい。5mm以上であれば、短繊維41をなす強化繊維に由来する物性を発揮させることができ、100mm以下であれば、第1部材20と第2部材30とを良好に接合することができる。   It is preferable that the fiber length of the short fiber 41 contained in the inner fiber reinforced resin layers 24 and 34 is 5 to 100 mm in number average. If it is 5 mm or more, the physical property derived from the reinforced fiber which makes the short fiber 41 can be exhibited, and if it is 100 mm or less, the 1st member 20 and the 2nd member 30 can be favorably joined.

外側繊維強化樹脂層23,33中の強化繊維の体積含有率は、10〜60%であることが好ましい。強化繊維の体積含有率が10%以上であると、外側繊維強化樹脂層23、33中の強化繊維に由来する物性を発揮させることができる。強化繊維の体積含有率が60%を超えると、強化繊維を十分に樹脂で覆うことができなくなる可能性がある。
また、外側繊維強化樹脂層23と内側繊維強化樹脂層24の厚みの合計100%に対して、外側繊維強化樹脂層23の厚みは5〜95%、内側繊維強化樹脂層24の厚みは、95〜5%とするのが好ましい。外側繊維強化樹脂層23の厚みを5%以上とすることにより、強化繊維層に由来する物性を発揮させることができる。内側繊維強化樹脂層24の厚みを5%以上とすることにより、第1部材20の被接合面22aと第2部材30の被接合面32aを良好に接合することができる。また、外側繊維強化樹脂層23と内側繊維強化樹脂層24の厚みの合計は0.5mm〜10mmが好ましい。外側繊維強化樹脂層23と内側繊維強化樹脂層24の厚みの合計を0.5mm以上とすることにより、物性に優れた繊維強化熱可塑性樹脂の成形品を提供することができる。外側繊維強化樹脂層23と内側繊維強化樹脂層24の厚みの合計が10mmあれば、十分に優れた物性を有する。
同様に、外側繊維強化樹脂層33と内側繊維強化樹脂層34の厚みの合計100%に対して、外側繊維強化樹脂層33の厚みは5〜95%、内側繊維強化樹脂層34の厚みは、95〜5%とするのが好ましい。その好ましい理由は、上述と同様である。また、外側繊維強化樹脂層33と内側繊維強化樹脂層34の厚みの合計は0.5mm〜10mmが好ましい。その好ましい理由は上述と同様である。
The volume content of reinforcing fibers in the outer fiber reinforced resin layers 23 and 33 is preferably 10 to 60%. When the volume content of the reinforcing fibers is 10% or more, physical properties derived from the reinforcing fibers in the outer fiber reinforced resin layers 23 and 33 can be exhibited. If the volume content of the reinforcing fibers exceeds 60%, the reinforcing fibers may not be sufficiently covered with the resin.
The thickness of the outer fiber reinforced resin layer 23 is 5 to 95% and the thickness of the inner fiber reinforced resin layer 24 is 95% of the total thickness of the outer fiber reinforced resin layer 23 and the inner fiber reinforced resin layer 24. It is preferable to set it to -5%. By setting the thickness of the outer fiber reinforced resin layer 23 to 5% or more, physical properties derived from the reinforced fiber layer can be exhibited. By setting the thickness of the inner fiber reinforced resin layer 24 to 5% or more, the bonded surface 22a of the first member 20 and the bonded surface 32a of the second member 30 can be bonded well. The total thickness of the outer fiber reinforced resin layer 23 and the inner fiber reinforced resin layer 24 is preferably 0.5 mm to 10 mm. By setting the total thickness of the outer fiber reinforced resin layer 23 and the inner fiber reinforced resin layer 24 to 0.5 mm or more, a molded product of a fiber reinforced thermoplastic resin having excellent physical properties can be provided. If the total thickness of the outer fiber reinforced resin layer 23 and the inner fiber reinforced resin layer 24 is 10 mm, it has sufficiently excellent physical properties.
Similarly, the thickness of the outer fiber reinforced resin layer 33 is 5 to 95% and the thickness of the inner fiber reinforced resin layer 34 is 100% of the total thickness of the outer fiber reinforced resin layer 33 and the inner fiber reinforced resin layer 34. It is preferably 95 to 5%. The reason for this is the same as described above. The total thickness of the outer fiber reinforced resin layer 33 and the inner fiber reinforced resin layer 34 is preferably 0.5 mm to 10 mm. The reason for this is the same as described above.

図1のような繊維強化熱可塑性樹脂成形品10は例えば次のようにして製造できる。
まず、外側繊維強化樹脂層23,33を形成するためのプリプレグを形成する。具体的には、強化繊維として、多数本の強化繊維フィラメントからなる束状の連続繊維を用意し、これを開繊した後、この繊維束に熱可塑性樹脂を含浸させ、テープ状またはシート状の一方向プリプレグを得る。ここでプリプレグの厚みは、用途、目的とする物性などに応じて適宜設定できるが、例えば30〜300μmの範囲である。なお、図2では、外側繊維強化樹脂層23,33を1層のプリプレグ層で構成しているが、2層以上積層して構成してもよい。外側繊維強化樹脂層としての厚みは、例えば30μm〜5.0mmの範囲である。
The fiber-reinforced thermoplastic resin molded article 10 as shown in FIG. 1 can be manufactured as follows, for example.
First, a prepreg for forming the outer fiber reinforced resin layers 23 and 33 is formed. Specifically, as a reinforcing fiber, a bundle-like continuous fiber composed of a large number of reinforcing fiber filaments is prepared, and after opening the fiber, the fiber bundle is impregnated with a thermoplastic resin to form a tape-like or sheet-like fiber. Get a one-way prepreg. Here, the thickness of the prepreg can be appropriately set according to the application, the intended physical properties, etc., but is in the range of 30 to 300 μm, for example. In FIG. 2, the outer fiber reinforced resin layers 23 and 33 are configured by one prepreg layer, but may be configured by stacking two or more layers. The thickness as the outer fiber reinforced resin layer is, for example, in the range of 30 μm to 5.0 mm.

一方、内側繊維強化樹脂層24,34を形成するためのランダムシート40を形成する。具体的には、上述の一方向プリプレグを例えば5〜100mmの長さに切断して、一対の平板状の金型内にランダムに分散させる。ついで、含浸されている熱可塑性樹脂の種類にもよるが、例えば成形温度を(樹脂の融点又はガラス転移温度)℃〜(樹脂の融点又はガラス転移温度+100)℃とし、成形圧力0.2〜2.0MPa、保持時間1〜30分間の条件で加熱、加圧後、金型を冷却することにより、短繊維41がランダムに分散したランダムシート40を得る。ここでランダムシート40の厚みは、例えば100μm〜5.0mmの範囲である。   On the other hand, a random sheet 40 for forming the inner fiber reinforced resin layers 24 and 34 is formed. Specifically, the unidirectional prepreg described above is cut into a length of, for example, 5 to 100 mm, and is randomly dispersed in a pair of flat plate molds. Then, depending on the type of the thermoplastic resin impregnated, for example, the molding temperature is set to (resin melting point or glass transition temperature) ° C. to (resin melting point or glass transition temperature + 100) ° C., and molding pressure 0.2 to After heating and pressing under the conditions of 2.0 MPa and holding time of 1 to 30 minutes, the mold is cooled to obtain a random sheet 40 in which short fibers 41 are randomly dispersed. Here, the thickness of the random sheet 40 is, for example, in the range of 100 μm to 5.0 mm.

ついで、上述の一方向プリプレグとランダムシート40とを重ねて積層シートとし、この積層シートを赤外線ヒーターなどの加熱手段で予備加熱してから、図4に示すような上金型51と下金型52からなる成形用金型50内に配置する。そして、含浸されている熱可塑性樹脂の種類にもよるが、例えば成形温度を(樹脂の融点又はガラス転移温度−100)℃〜(樹脂の融点又はガラス転移温度)℃とし、成形圧力3.0〜30MPa、保持時間0.5〜10分間の条件で加熱、加圧後、成形用金型50を冷却することにより、図5の成形品を得る。この成形品は、第1部材20および第2部材30として使用される。
なお、積層シートをこの例の成形用金型50内に配置する際には、下金型52側に、外側繊維強化樹脂層23,33が位置するようにする。
Next, the above-mentioned unidirectional prepreg and the random sheet 40 are laminated to form a laminated sheet, and this laminated sheet is preheated by heating means such as an infrared heater, and then an upper mold 51 and a lower mold as shown in FIG. It is placed in a molding die 50 made of 52. Depending on the type of impregnated thermoplastic resin, for example, the molding temperature is (resin melting point or glass transition temperature−100) ° C. to (resin melting point or glass transition temperature) ° C., and the molding pressure is 3.0. The molded product of FIG. 5 is obtained by cooling the molding die 50 after heating and pressing under the conditions of ˜30 MPa and a holding time of 0.5 to 10 minutes. This molded product is used as the first member 20 and the second member 30.
When the laminated sheet is placed in the molding die 50 of this example, the outer fiber reinforced resin layers 23 and 33 are positioned on the lower die 52 side.

ついで、得られた第1部材20と第2部材30とを凹状部21,31同士、縁部22,32同士が対向し、中空形状をなすように配置して、対向する縁部22,32の表面(被接合面)22a,32a同士が接合するように、振動溶着法により接合する。振動溶着法は、被接合面22a,32a同士を接触させた状態で振動させることにより接合する方法であり、市販の振動溶着機により行える。   Next, the obtained first member 20 and second member 30 are arranged so that the concave portions 21 and 31 and the edges 22 and 32 face each other and form a hollow shape, and the facing edges 22 and 32 face each other. Are joined by the vibration welding method so that the surfaces (bonded surfaces) 22a and 32a are joined together. The vibration welding method is a method of joining by vibrating the bonded surfaces 22a and 32a in contact with each other, and can be performed by a commercially available vibration welding machine.

このような方法において、第1部材20および第2部材30の接合部の被接合面22a,32aは、内側繊維強化樹脂層24,34で構成され、この内側繊維強化樹脂層24,34の強化繊維は、外側繊維強化樹脂層23,33の強化繊維よりも数平均の繊維長が短い、この例では短繊維である。そのため、振動溶着法で接合部に振動が加えられた場合には、第1部材20の被接合面22a,32aの短繊維と第2部材30の被接合面22a,32aの短繊維とが良好に絡み合い、その結果、被接合面22a,32a同士が良好に接合する。
一方、内側繊維強化樹脂層24,34の外側には、外側繊維強化樹脂層23,33が配置され、この外側繊維強化樹脂層23,33の強化繊維は、内側繊維強化樹脂層24,34を構成する強化繊維よりも数平均の繊維長が長い、この例では一方向材である。そのため、製造された繊維強化熱可塑性樹脂成形品10は、この一方向材に基く耐衝撃性、剛性などの所望の特性を十分に発揮するものとなる。
In such a method, the to-be-joined surfaces 22a and 32a of the joint part of the 1st member 20 and the 2nd member 30 are comprised by the inner side fiber reinforced resin layers 24 and 34, and reinforcement | strengthening of these inner side fiber reinforced resin layers 24 and 34 The fibers are short fibers in this example, the number average fiber length being shorter than the reinforcing fibers of the outer fiber reinforced resin layers 23 and 33. Therefore, when vibration is applied to the joint portion by the vibration welding method, the short fibers of the bonded surfaces 22a and 32a of the first member 20 and the short fibers of the bonded surfaces 22a and 32a of the second member 30 are good. As a result, the joined surfaces 22a and 32a are favorably joined.
On the other hand, outer fiber reinforced resin layers 23 and 33 are disposed outside the inner fiber reinforced resin layers 24 and 34, and the reinforced fibers of the outer fiber reinforced resin layers 23 and 33 are connected to the inner fiber reinforced resin layers 24 and 34. In this example, it is a unidirectional material having a number average fiber length longer than that of the reinforcing fiber to be formed. Therefore, the manufactured fiber reinforced thermoplastic resin molded article 10 sufficiently exhibits desired characteristics such as impact resistance and rigidity based on the unidirectional material.

なお、以上の例では、製造される繊維強化熱可塑性樹脂成形品10として、同形の2つの部材20,30が接合された中空形状のものを例示したが、部材の数は3つ以上でもよいし、また、中空形状に限定されない。さらに、接合される部材同士は異なる形状であってもよい。
また、この例の外側繊維強化樹脂層23,33は、強化繊維として一方向材を含んだものであるが、強化繊維としては、一方向材を織ったクロス材も好適に使用され、その織り方としては、例えば、平織、綾織、朱子織、三軸織等が例示される。さらには、外側繊維強化樹脂層23,33の強化繊維は、内側繊維強化樹脂層24,34の強化繊維よりも数平均の繊維長が長ければよく、強化繊維の形態は、連続繊維や連続繊維からなる一方向材、クロス材には限定されない。例えば、内側繊維強化樹脂層24,34を構成する強化繊維よりも数平均の繊維長が長ければ、短繊維であってもよい。しかしながら、外側繊維強化樹脂層23,33の強化繊維が連続繊維であって、一方向材、クロス材などの形態であると、短繊維である場合よりも、第1部材20および第2部材30や、これらを接合して得られた繊維強化熱可塑性樹脂成形品10は、この強化繊維に基く優れた物性を効果的に発現するものとなる。
In the above example, the fiber-reinforced thermoplastic resin molded article 10 to be manufactured is illustrated as a hollow shape in which two members 20 and 30 having the same shape are joined, but the number of members may be three or more. And it is not limited to a hollow shape. Further, the members to be joined may have different shapes.
The outer fiber reinforced resin layers 23 and 33 in this example include a unidirectional material as a reinforcing fiber. However, a cloth material woven from a unidirectional material is also preferably used as the reinforcing fiber. Examples of the method include plain weave, twill weave, satin weave, and triaxial weave. Furthermore, the reinforcing fibers of the outer fiber reinforced resin layers 23 and 33 only have to have a number average fiber length longer than the reinforcing fibers of the inner fiber reinforced resin layers 24 and 34, and the form of the reinforcing fibers may be continuous fibers or continuous fibers. It is not limited to the unidirectional material which consists of, and cloth material. For example, short fibers may be used as long as the number average fiber length is longer than the reinforcing fibers constituting the inner fiber reinforced resin layers 24 and 34. However, when the reinforcing fibers of the outer fiber reinforced resin layers 23 and 33 are continuous fibers and are in the form of a unidirectional material, a cloth material, or the like, the first member 20 and the second member 30 are more than the case of short fibers. In addition, the fiber-reinforced thermoplastic resin molded article 10 obtained by joining them effectively exhibits excellent physical properties based on the reinforcing fibers.

また、この例では、外側繊維強化樹脂層は1層から構成されているが、2層以上から構成されてもよく、その場合、外側繊維強化樹脂層を構成する層の内、少なくとも1層の強化繊維が、内側繊維強化樹脂層の強化繊維よりも数平均の繊維長が長ければよい。このような条件を満たしている限り、外側繊維強化樹脂を構成する層の組み合わせに制限はない。
例えば、外側繊維強化樹脂層が複数の層からなる場合、各層がいずれも一方向材を含み、隣り合う層の繊維方向が直交するように積層されたものでもよいし、一方向材を含む層とクロス材を含む層とが積層されたものでもよいし、一方向材を含む層と強化繊維として束状の短繊維がランダムに分布したランダム材を含む層とが積層されたものでもよいし、クロス材を含む層とランダム材を含む層とが積層されたものでもよいし、一方向材を含む層とクロス材を含む層とランダム材を含む層とが積層されたものでもよい。
In this example, the outer fiber reinforced resin layer is composed of one layer, but may be composed of two or more layers. In this case, at least one of the layers constituting the outer fiber reinforced resin layer is included. It is sufficient that the reinforcing fiber has a number average fiber length longer than that of the reinforcing fiber of the inner fiber reinforced resin layer. As long as these conditions are satisfied, there is no limitation on the combination of layers constituting the outer fiber reinforced resin.
For example, when the outer fiber reinforced resin layer is composed of a plurality of layers, each layer may include a unidirectional material and may be laminated so that the fiber directions of adjacent layers are orthogonal to each other, or a layer including a unidirectional material And a layer containing a cloth material may be laminated, or a layer containing a unidirectional material and a layer containing a random material in which bundled short fibers are randomly distributed as reinforcing fibers may be laminated. A layer containing a cloth material and a layer containing a random material may be laminated, or a layer containing a unidirectional material, a layer containing a cloth material, and a layer containing a random material may be laminated.

また、内側繊維強化樹脂層24,34は、強化繊維がこの例のようにランダムに分散した層であることが良好な接合の観点から好適であるが、ランダムではない分散、すなわち方向性をもった分散であってもよい。
また、この例では、内側繊維強化樹脂層24,34および外側繊維強化樹脂層23,33は、第1部材20および第2部材30の全面に配置されているが、内側繊維強化樹脂層24,34は、少なくとも被接合面22a,32aを含むように設けられていればよい。
In addition, the inner fiber reinforced resin layers 24 and 34 are preferably layers in which reinforcing fibers are randomly dispersed as in this example, from the viewpoint of good bonding. However, the inner fiber reinforced resin layers 24 and 34 have non-random dispersion, that is, directivity. It may be distributed.
In this example, the inner fiber reinforced resin layers 24 and 34 and the outer fiber reinforced resin layers 23 and 33 are disposed on the entire surface of the first member 20 and the second member 30. 34 should just be provided so that the to-be-joined surfaces 22a and 32a may be included.

さらに、接合される部材同士には、同じ種類の熱可塑性樹脂が使用されていると、接合しやすいために好適であるが、接合性に問題がなければ、異なる種類の熱可塑性樹脂が使用されてもよい。また、接合される部材同士には、通常、同じ種類の強化繊維が使用されるが、目的に応じて、異なる種類の強化繊維が使用されてもよい。   Furthermore, when the same type of thermoplastic resin is used for the members to be joined, it is preferable because it is easy to join, but if there is no problem in the joining property, a different type of thermoplastic resin is used. May be. Moreover, although the same kind of reinforcing fiber is normally used for the members to be joined, different kinds of reinforcing fibers may be used depending on the purpose.

また、この例では、接合方法として振動溶着法を例示したが、例えば、熱板溶着法、抵抗溶着法、超音波溶着法などを採用してもよい。ただし、これらの中でも、振動溶着法を採用すると、他の方法よりも、繊維強化熱可塑性樹脂からなる部材同士を良好に接合でき、好適である。   In this example, the vibration welding method is exemplified as the joining method, but for example, a hot plate welding method, a resistance welding method, an ultrasonic welding method, or the like may be employed. However, among these, when the vibration welding method is employed, it is preferable that members made of fiber-reinforced thermoplastic resin can be joined better than other methods.

このような繊維強化熱可塑性樹脂成形品10は、例えば、フロントサブフレーム、リアサブフレーム、フロントピラー、センターピラー、サイドメンバー、クロスメンバー、サイドシル、ルーフレール、プロペラシャフトなどの自動車部品や、海底油田用のパイプ、電線ケーブルコア、印刷機用ロール・パイプ、ロボットフォーク、航空機の一次構造材、二次構造材などに好適に使用される。   Such a fiber reinforced thermoplastic resin molded article 10 is used for, for example, automobile parts such as a front subframe, a rear subframe, a front pillar, a center pillar, a side member, a cross member, a side sill, a roof rail, a propeller shaft, and a subsea oil field. Pipes, electric wire cable cores, rolls and pipes for printing presses, robot forks, aircraft primary structural materials, secondary structural materials, and the like.

以下本発明について、実施例を挙げて具体的に説明する。
[実施例1]
(1)外側繊維強化樹脂層23,33用のプリプレグの製造
外側繊維強化樹脂層23,33用の強化繊維として、連続繊維である炭素繊維(三菱レイヨン社製、品番:TR50S)を使用した。この炭素繊維は、1本の直径が約7μmであるフィラメントが12000本集束した束状のものである。
この炭素繊維束を開繊し、熱可塑性樹脂として無水マレイン酸変性のポリプロピレン( 三洋化成工業社製、ユーメックス 1001)を含浸させ、強化繊維の体積含有率(JIS K 7052に準拠。)58%、幅12mm、厚み100μmの連続炭素繊維強化熱可塑樹脂テープを製造した。
ついで、このテープを平織して、クロス材からなる強化繊維に無水マレイン酸変性のポリプロピレンが含浸した平均厚み約150μmのプリプレグを製造した。
Hereinafter, the present invention will be specifically described with reference to examples.
[Example 1]
(1) Production of Prepreg for Outer Fiber Reinforced Resin Layers 23, 33 Carbon fibers (manufactured by Mitsubishi Rayon Co., product number: TR50S), which are continuous fibers, were used as reinforcing fibers for the outer fiber reinforced resin layers 23, 33. This carbon fiber is a bundle of 12,000 filaments each having a diameter of about 7 μm.
This carbon fiber bundle is opened and impregnated with maleic anhydride-modified polypropylene (Sanyo Kasei Kogyo Co., Ltd., Umex 1001) as a thermoplastic resin. A continuous carbon fiber reinforced thermoplastic resin tape having a width of 12 mm and a thickness of 100 μm was produced.
Next, this tape was plain woven to produce a prepreg having an average thickness of about 150 μm in which reinforcing fibers made of a cloth material were impregnated with maleic anhydride-modified polypropylene.

(2)内側繊維強化樹脂層24,34用のランダムシート40の製造
上記(1)と同様にして連続炭素繊維強化熱可塑樹脂テープを製造し、これを30mmの長さ(繊維長)にカットして、一対の平板状の金型中に、面方向にランダム(無方向的)に分散させ、堆積させた。ついで、この金型を型締めし、成形温度220℃、成形圧力1.0MPa、保持時間10分で加熱加圧成形し、金型を冷却することにより、厚み1.85mmのランダムシート40を得た。このランダムシート40の強化繊維の体積含有率(JIS K 7052に準拠。)は、58%とした。
(2) Manufacture of Random Sheet 40 for Inner Fiber Reinforced Resin Layers 24 and 34 A continuous carbon fiber reinforced thermoplastic resin tape is manufactured in the same manner as (1) above, and this is cut to a length (fiber length) of 30 mm. Then, they were dispersed and deposited randomly (non-directional) in the plane direction in a pair of flat plate molds. Next, the mold is clamped, and is heated and pressed at a molding temperature of 220 ° C., a molding pressure of 1.0 MPa, and a holding time of 10 minutes, and the mold is cooled to obtain a random sheet 40 having a thickness of 1.85 mm. It was. The volume content of the reinforcing fibers of the random sheet 40 (based on JIS K 7052) was 58%.

(3)成形
上記(1)で製造されたプリプレグ(横150mm、縦400mm、厚み約150μm)と、上記(2)で製造されたランダムシート(横150mm、縦400mm、厚み約1.85mm)とを重ねて図6に示す積層シート60とした。図6中、符号61がプリプレグ層で、符号62がランダムシート層である。この積層シート60を270℃に加熱された赤外線ヒーター(日本ガイシ社製)により5分間予備加熱した。
ついで、この積層シートを図4に示す成形用金型50内に配置し、成形温度110℃(上金型51の温度110℃、下金型52の温度110℃)、成形圧力15MPa、保持時間1分間の条件で加熱、加圧し、該金型50を冷却して、図5の成形品を製造した。同様の方法を繰り返し、計2つの成形品(第1部材20、第2部材30)を得た。
(3) Molding The prepreg manufactured in (1) above (width 150 mm, length 400 mm, thickness about 150 μm), and the random sheet (width 150 mm, length 400 mm, thickness about 1.85 mm) manufactured in (2) above A laminated sheet 60 shown in FIG. In FIG. 6, reference numeral 61 is a prepreg layer, and reference numeral 62 is a random sheet layer. This laminated sheet 60 was preheated for 5 minutes by an infrared heater (manufactured by NGK) heated to 270 ° C.
Next, this laminated sheet is placed in the molding die 50 shown in FIG. 4 and molding temperature is 110 ° C. (the temperature of the upper die 51 is 110 ° C., the temperature of the lower die 52 is 110 ° C.), the molding pressure is 15 MPa, the holding time. Heating and pressurizing were performed for 1 minute, the mold 50 was cooled, and the molded article of FIG. 5 was manufactured. The same method was repeated to obtain a total of two molded articles (first member 20 and second member 30).

(4)接合(振動溶着法)
上記(3)で得られた成形品、すなわち、第1部材20と第2部材30とを凹状部21,31同士、縁部22,32同士が対向するように配置した。そして、振動溶着機(日本エマソン社製)を用いて、対向する縁部22,32の表面、すなわち被接合面22a,32a同士を接触させた状態で振動させ、接合(溶着)させ、図1の中空形状の繊維強化熱可塑性樹脂成形品10を得た。
接合の条件は、荷重16kN、振幅1.5mm、周波数230Hz、時間30秒とした。
この繊維強化熱可塑樹脂成形品10の長手方向の両端の2点を下部から支え、中央付近に上部から8kNの荷重をかけたが、この成形品10の接合部は破壊も分離もせず、良好な接合状態を保っていた。
なお、外側繊維強化樹脂層23,33の厚みはプリプレグの厚みと同じで、内側繊維強化樹脂層24,34の厚みは、ランダムシート40の厚みと同じである。
(4) Joining (vibration welding method)
The molded product obtained in the above (3), that is, the first member 20 and the second member 30 were arranged such that the concave portions 21 and 31 and the edge portions 22 and 32 face each other. Then, using a vibration welding machine (manufactured by Nippon Emerson Co., Ltd.), the surfaces of the opposing edges 22 and 32, that is, the surfaces to be joined 22a and 32a are vibrated and joined (welded). A hollow fiber-reinforced thermoplastic resin molded article 10 was obtained.
The joining conditions were a load of 16 kN, an amplitude of 1.5 mm, a frequency of 230 Hz, and a time of 30 seconds.
Two points at both ends in the longitudinal direction of the fiber reinforced thermoplastic resin molded article 10 were supported from the lower part, and a load of 8 kN was applied to the vicinity of the center from the upper part. Was kept in a good bonding state.
The outer fiber reinforced resin layers 23 and 33 have the same thickness as the prepreg, and the inner fiber reinforced resin layers 24 and 34 have the same thickness as the random sheet 40.

[比較例]
実施例1の積層シートに代えて、実施例1の上記(1)で製造したプリプレグのみを用い、ランダムシートを用いずに、実施例1と同様に成形、接合を行って、第1部材と第2部材を製造した。そして、振動溶着法により、実施例1と同様にして、第1部材と第2部材とを接合しようとしたが、接合せず、中空形状の繊維強化熱可塑性樹脂成形品を得ることはできなかった。
[Comparative example]
Instead of the laminated sheet of Example 1, only the prepreg produced in (1) of Example 1 was used, and the first member was molded and joined in the same manner as in Example 1 without using a random sheet. A second member was produced. And it tried to join the 1st member and the 2nd member by vibration welding method like Example 1, but it cannot join and cannot obtain a hollow fiber reinforced thermoplastic resin molded product. It was.

[実施例2]
厚みが1.5mmであるランダムシート40を実施例1と同様の方法で製造した。
一方、実施例1の(1)と同様の連続炭素繊維強化熱可塑樹脂テープを製造し、これを一方向に並べることによって、一方向材からなる強化繊維に無水マレイン酸変性のポリプロピレンが含浸した厚み100μmのプリプレグを製造した。そして、図7に示すように、このプリプレグ71を5枚重ねて、総厚み500μmのプリプレグ積層シート70を製造した。この際、各プリプレグ71中の強化繊維の繊維方向が隣り合う層で直交するように、互い違いに積層した。
そして、図7の5層構造のプリプレグ積層シート70と、厚みが1.5mmであるランダムシート40とを積層したものを図4に示す成形用金型50内に配置して、実施例1と同様に成形して、第1部材と第2部材を製造した。そして、振動溶着法により、実施例1と同様にして、第1部材と第2部材とを接合させ、中空形状の繊維強化熱可塑性樹脂成形品を得た。
この成形品は、外側繊維強化樹脂層を構成する5層全層の強化繊維が、内側繊維強化樹脂層の強化繊維よりも数平均の繊維長が長いものである。
この繊維強化熱可塑樹脂成形品の長手方向の両端の2点を下部から支え、中央付近に上部から8kNの荷重をかけたが、この成形品の接合部は破壊も分離もせず、良好な接合状態を保っていた。
[Example 2]
A random sheet 40 having a thickness of 1.5 mm was produced in the same manner as in Example 1.
On the other hand, a continuous carbon fiber reinforced thermoplastic resin tape similar to (1) of Example 1 was produced, and the unidirectionally reinforced fibers impregnated with maleic anhydride-modified polypropylene by arranging them in one direction. A prepreg having a thickness of 100 μm was manufactured. Then, as shown in FIG. 7, five prepregs 71 were stacked to manufacture a prepreg laminated sheet 70 having a total thickness of 500 μm. At this time, the reinforcing fibers in each prepreg 71 were laminated alternately so that the fiber directions of the reinforcing fibers were perpendicular to each other in adjacent layers.
Then, a laminate of the prepreg laminated sheet 70 having the five-layer structure shown in FIG. 7 and the random sheet 40 having a thickness of 1.5 mm is placed in the molding die 50 shown in FIG. The first member and the second member were manufactured in the same manner. Then, the first member and the second member were joined by the vibration welding method in the same manner as in Example 1 to obtain a hollow fiber-reinforced thermoplastic resin molded product.
In this molded product, the reinforcing fibers of all the five layers constituting the outer fiber reinforced resin layer have a number average fiber length longer than the reinforcing fibers of the inner fiber reinforced resin layer.
Two points on both ends in the longitudinal direction of this fiber reinforced thermoplastic resin molded product were supported from the lower part, and a load of 8 kN was applied from the upper part near the center. I kept the state.

10 繊維強化熱可塑性樹脂成形品
20 第1部材
30 第2部材
22a,32a 被接合面
23,33 外側繊維強化樹脂層
24,34 内側繊維強化樹脂層
DESCRIPTION OF SYMBOLS 10 Fiber reinforced thermoplastic resin molded product 20 1st member 30 2nd member 22a, 32a Joined surface 23,33 Outer fiber reinforced resin layer 24,34 Inner fiber reinforced resin layer

Claims (7)

複数の部材が接合部で接合された繊維強化熱可塑性樹脂成形品であって、
前記各接合部が、被接合面を含む内側繊維強化樹脂層と、前記内側繊維強化樹脂層の外側に設けられた外側繊維強化樹脂層とからなり、
前記外側繊維強化樹脂層は、少なくとも1層以上からなり、そのうちの少なくとも1層の強化繊維は、前記内側繊維強化樹脂層の強化繊維よりも数平均の繊維長が長い、繊維強化熱可塑性樹脂成形品。
It is a fiber reinforced thermoplastic resin molded product in which a plurality of members are joined at a joint,
Each joint is composed of an inner fiber reinforced resin layer including a bonded surface and an outer fiber reinforced resin layer provided outside the inner fiber reinforced resin layer.
The outer fiber reinforced resin layer is composed of at least one layer, and at least one of the reinforcing fibers has a number average fiber length longer than that of the inner fiber reinforced resin layer. Goods.
前記内側繊維強化樹脂層に含有される強化繊維は、ランダムに分布している、請求項1の繊維強化熱可塑性樹脂成形品。   The fiber-reinforced thermoplastic resin molded article according to claim 1, wherein the reinforcing fibers contained in the inner fiber-reinforced resin layer are randomly distributed. 前記内側繊維強化樹脂層に含有される強化繊維の繊維長は、数平均で5〜100mmである、請求項1または2の繊維強化熱可塑性樹脂成形品。   The fiber-reinforced thermoplastic resin molded article according to claim 1 or 2, wherein the fiber length of the reinforcing fibers contained in the inner fiber-reinforced resin layer is 5 to 100 mm in number average. 前記外側繊維強化樹脂層のうち、前記内側繊維強化樹脂層の強化繊維よりも数平均の繊維長が長い前記少なくとも1層の強化繊維は、連続繊維である、請求項1ないし3のいずれかの記載の繊維強化熱可塑性樹脂成形品。   4. The reinforcing fiber according to claim 1, wherein among the outer fiber reinforced resin layers, the at least one layer of reinforcing fibers having a number average fiber length longer than that of the inner fiber reinforced resin layer is a continuous fiber. 5. The fiber-reinforced thermoplastic resin molded article as described. 前記連続繊維は、該連続繊維が一方向に引き揃えられた一方向材、または、該一方向材が織られたクロス材である、請求項4に記載の繊維強化熱可塑性樹脂成形品。   The fiber-reinforced thermoplastic resin molded article according to claim 4, wherein the continuous fiber is a unidirectional material in which the continuous fibers are aligned in one direction or a cloth material in which the unidirectional material is woven. 複数の部材が接合部で接合された繊維強化熱可塑性樹脂成形品の製造方法であって、
前記各接合部が、被接合面を含む内側繊維強化樹脂層と、前記内側繊維強化樹脂層の外側に設けられた外側繊維強化樹脂層とからなり、
前記外側繊維強化樹脂層は、少なくとも1層以上からなり、そのうちの少なくとも1層の強化繊維は、前記内側繊維強化樹脂層の強化繊維よりも数平均の繊維長が長い、繊維強化熱可塑性樹脂成形品の製造方法。
A method for producing a fiber-reinforced thermoplastic resin molded article in which a plurality of members are joined at a joint,
Each joint is composed of an inner fiber reinforced resin layer including a bonded surface and an outer fiber reinforced resin layer provided outside the inner fiber reinforced resin layer.
The outer fiber reinforced resin layer is composed of at least one layer, and at least one of the reinforcing fibers has a number average fiber length longer than that of the inner fiber reinforced resin layer. Product manufacturing method.
前記接合を振動溶着法により行う、請求項6の繊維強化熱可塑性樹脂成形品の製造方法。   The method for producing a fiber-reinforced thermoplastic resin molded article according to claim 6, wherein the joining is performed by a vibration welding method.
JP2010277205A 2010-12-13 2010-12-13 Fiber-reinforced thermoplastic resin molded article and method for producing the same Active JP5844967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010277205A JP5844967B2 (en) 2010-12-13 2010-12-13 Fiber-reinforced thermoplastic resin molded article and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010277205A JP5844967B2 (en) 2010-12-13 2010-12-13 Fiber-reinforced thermoplastic resin molded article and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012125948A true JP2012125948A (en) 2012-07-05
JP5844967B2 JP5844967B2 (en) 2016-01-20

Family

ID=46643566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010277205A Active JP5844967B2 (en) 2010-12-13 2010-12-13 Fiber-reinforced thermoplastic resin molded article and method for producing the same

Country Status (1)

Country Link
JP (1) JP5844967B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014055258A (en) * 2012-09-13 2014-03-27 Mitsubishi Rayon Co Ltd Thermoplastic resin-based fiber-reinforced composite material for press molding and method for producing the material
JP2014113715A (en) * 2012-12-07 2014-06-26 Mitsubishi Rayon Co Ltd Molded article, and method for producing the same
JPWO2012102315A1 (en) * 2011-01-28 2014-06-30 帝人株式会社 Bonded carbon fiber reinforced composite material
WO2015125646A1 (en) * 2014-02-24 2015-08-27 帝人株式会社 Resin impact-absorbing member
JP2015157371A (en) * 2014-02-21 2015-09-03 トヨタ自動車株式会社 Fiber-reinforced composite material and fiber-reinforced composite material producing method
WO2015141588A1 (en) * 2014-03-18 2015-09-24 帝人株式会社 Hollow structural body and component for vehicles
WO2016017080A1 (en) * 2014-07-31 2016-02-04 小松精練株式会社 Molded object and process for producing same
JP2016034734A (en) * 2014-08-04 2016-03-17 東洋紡株式会社 Welded joint of carbon fiber-reinforced thermoplastic resin molding and metal
CN105415666A (en) * 2014-09-16 2016-03-23 丰田自动车株式会社 Vibration welding device, vibration welding method, vibration welding mold, and vibration welding molded article
JP2016511291A (en) * 2012-12-27 2016-04-14 ゼネラル・エレクトリック・カンパニイ Hybrid continuous fiber-chopped fiber polymer composite structure
JP2016078456A (en) * 2014-10-17 2016-05-16 ブランソン・ウルトラシャル・ニーダーラッスング・デア・エマーソン・テヒノロギーズ・ゲーエムベーハー・ウント・コムパニー・オーハーゲー Plastic preheating mechanism for plastic welding device, plastic welding device as well as preheating method for component
EP3159140A1 (en) 2015-10-22 2017-04-26 Toyota Jidosha Kabushiki Kaisha Manufacturing method for joined body
JP2017178088A (en) * 2016-03-30 2017-10-05 株式会社栗本鐵工所 Support structure of fiber-reinforced resin hollow body
JP2017202640A (en) * 2016-05-12 2017-11-16 トヨタ自動車株式会社 Method for producing fiber-reinforced thermoplastic resin structure
JP2019147374A (en) * 2018-02-27 2019-09-05 国立大学法人名古屋大学 Molded product of fiber reinforced thermoplastic resin and method for producing the same
WO2019168010A1 (en) * 2018-02-27 2019-09-06 国立大学法人名古屋大学 Fiber-reinforced thermoplastic resin molded article and production method therefor
WO2020189268A1 (en) * 2019-03-19 2020-09-24 三井化学株式会社 Fiber-reinforced resin article, method for manufacturing same, and laminate including same
EP3835034A1 (en) * 2019-12-13 2021-06-16 SHPP Global Technologies B.V. Welded fiber-reinforced fittings and methods of making the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62240514A (en) * 1985-12-26 1987-10-21 Nippon Sheet Glass Co Ltd Composite long fiber reinforced thermoplastic resin stampable sheet and bumper beam formed therefrom
JPH04366627A (en) * 1991-06-14 1992-12-18 Sekisui Chem Co Ltd Fiber-reinforced sheet
JPH08281827A (en) * 1995-04-11 1996-10-29 Mitsubishi Eng Plast Kk Vibration fusion bonded hollow molding made of polyamide resin
JPH08294970A (en) * 1995-04-26 1996-11-12 Mitsubishi Eng Plast Kk Oscillation-welded hollow molding made of polyamide resin composition
JPH09216225A (en) * 1997-01-13 1997-08-19 Nippon Sheet Glass Co Ltd Composite long fiber reinforced thermoplastic resin stampable sheet and bumper beam made by molding the same
JPH1190986A (en) * 1997-09-25 1999-04-06 Press Kogyo Co Ltd Method for welding fiber-reinforced resin molding
JP2006049878A (en) * 2004-07-08 2006-02-16 Toray Ind Inc Heat-conductive forming and method of producing the same
JP2006044262A (en) * 2004-07-08 2006-02-16 Toray Ind Inc Hollow molded article and its production method
JP2007110198A (en) * 2005-10-11 2007-04-26 Sony Ericsson Mobilecommunications Japan Inc Mobile terminal
JP2007313778A (en) * 2006-05-26 2007-12-06 Teijin Techno Products Ltd Joining method of fiber-reinforced thermoplastic resin composite material

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62240514A (en) * 1985-12-26 1987-10-21 Nippon Sheet Glass Co Ltd Composite long fiber reinforced thermoplastic resin stampable sheet and bumper beam formed therefrom
JPH04366627A (en) * 1991-06-14 1992-12-18 Sekisui Chem Co Ltd Fiber-reinforced sheet
JPH08281827A (en) * 1995-04-11 1996-10-29 Mitsubishi Eng Plast Kk Vibration fusion bonded hollow molding made of polyamide resin
JPH08294970A (en) * 1995-04-26 1996-11-12 Mitsubishi Eng Plast Kk Oscillation-welded hollow molding made of polyamide resin composition
JPH09216225A (en) * 1997-01-13 1997-08-19 Nippon Sheet Glass Co Ltd Composite long fiber reinforced thermoplastic resin stampable sheet and bumper beam made by molding the same
JPH1190986A (en) * 1997-09-25 1999-04-06 Press Kogyo Co Ltd Method for welding fiber-reinforced resin molding
JP2006049878A (en) * 2004-07-08 2006-02-16 Toray Ind Inc Heat-conductive forming and method of producing the same
JP2006044262A (en) * 2004-07-08 2006-02-16 Toray Ind Inc Hollow molded article and its production method
JP2007110198A (en) * 2005-10-11 2007-04-26 Sony Ericsson Mobilecommunications Japan Inc Mobile terminal
JP2007313778A (en) * 2006-05-26 2007-12-06 Teijin Techno Products Ltd Joining method of fiber-reinforced thermoplastic resin composite material

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012102315A1 (en) * 2011-01-28 2014-06-30 帝人株式会社 Bonded carbon fiber reinforced composite material
JP5694386B2 (en) * 2011-01-28 2015-04-01 帝人株式会社 Bonded carbon fiber reinforced composite material
JP2014055258A (en) * 2012-09-13 2014-03-27 Mitsubishi Rayon Co Ltd Thermoplastic resin-based fiber-reinforced composite material for press molding and method for producing the material
JP2014113715A (en) * 2012-12-07 2014-06-26 Mitsubishi Rayon Co Ltd Molded article, and method for producing the same
JP2016511291A (en) * 2012-12-27 2016-04-14 ゼネラル・エレクトリック・カンパニイ Hybrid continuous fiber-chopped fiber polymer composite structure
JP2015157371A (en) * 2014-02-21 2015-09-03 トヨタ自動車株式会社 Fiber-reinforced composite material and fiber-reinforced composite material producing method
US9890483B2 (en) 2014-02-21 2018-02-13 Toyota Jidosha Kabushiki Kaisha Fiber-reinforced composite material and method for manufacturing the same
WO2015125646A1 (en) * 2014-02-24 2015-08-27 帝人株式会社 Resin impact-absorbing member
JPWO2015125646A1 (en) * 2014-02-24 2017-03-30 帝人株式会社 Resin shock absorber
US11137044B2 (en) 2014-02-24 2021-10-05 Teijin Limited Resin-made impact absorption member
EP3120994A1 (en) * 2014-03-18 2017-01-25 Teijin Limited Hollow structural body and component for vehicles
US9783244B2 (en) 2014-03-18 2017-10-10 Teijin Limited Hollow structure body and vehicular component
KR102206337B1 (en) * 2014-03-18 2021-01-21 데이진 가부시키가이샤 Hollow structure body and component for vehicle
KR20160133457A (en) * 2014-03-18 2016-11-22 데이진 가부시키가이샤 Hollow structure body and component for vehicle
WO2015141588A1 (en) * 2014-03-18 2015-09-24 帝人株式会社 Hollow structural body and component for vehicles
JP5855802B1 (en) * 2014-03-18 2016-02-09 帝人株式会社 Hollow structure and vehicle parts
EP3120994A4 (en) * 2014-03-18 2017-05-17 Teijin Limited Hollow structural body and component for vehicles
WO2016017080A1 (en) * 2014-07-31 2016-02-04 小松精練株式会社 Molded object and process for producing same
JPWO2016017080A1 (en) * 2014-07-31 2017-05-18 小松精練株式会社 Molded body and manufacturing method thereof
US20170232702A1 (en) * 2014-07-31 2017-08-17 Komatsu Seiren Co., Ltd. Molded object and method of manufacturing same
JP2016034734A (en) * 2014-08-04 2016-03-17 東洋紡株式会社 Welded joint of carbon fiber-reinforced thermoplastic resin molding and metal
CN105415666A (en) * 2014-09-16 2016-03-23 丰田自动车株式会社 Vibration welding device, vibration welding method, vibration welding mold, and vibration welding molded article
JP2016060059A (en) * 2014-09-16 2016-04-25 トヨタ自動車株式会社 Vibration deposition device, vibration deposition method, vibration deposition mold, and vibration deposition molding
US9751477B2 (en) 2014-09-16 2017-09-05 Toyota Jidosha Kabushiki Kaisha Vibration welding device, vibration welding method, vibration welding mold, and vibration welding molded article
US10220572B2 (en) 2014-10-17 2019-03-05 Branson Ultraschall Niederlassung Der Emerson Technologies Gmbh & Co. Ohg Plastic preheating arrangement for a plastic welding device, a plastic welding device as well as a preheating method for a component
JP2016078456A (en) * 2014-10-17 2016-05-16 ブランソン・ウルトラシャル・ニーダーラッスング・デア・エマーソン・テヒノロギーズ・ゲーエムベーハー・ウント・コムパニー・オーハーゲー Plastic preheating mechanism for plastic welding device, plastic welding device as well as preheating method for component
EP3159140A1 (en) 2015-10-22 2017-04-26 Toyota Jidosha Kabushiki Kaisha Manufacturing method for joined body
US10307965B2 (en) 2015-10-22 2019-06-04 Toyota Jidosha Kabushiki Kaisha Manufacturing method for joined body
JP2017178088A (en) * 2016-03-30 2017-10-05 株式会社栗本鐵工所 Support structure of fiber-reinforced resin hollow body
JP2017202640A (en) * 2016-05-12 2017-11-16 トヨタ自動車株式会社 Method for producing fiber-reinforced thermoplastic resin structure
JP2019147374A (en) * 2018-02-27 2019-09-05 国立大学法人名古屋大学 Molded product of fiber reinforced thermoplastic resin and method for producing the same
WO2019168010A1 (en) * 2018-02-27 2019-09-06 国立大学法人名古屋大学 Fiber-reinforced thermoplastic resin molded article and production method therefor
JP7198454B2 (en) 2018-02-27 2023-01-04 国立大学法人東海国立大学機構 Method for producing molding of fiber-reinforced thermoplastic resin
JP7161604B2 (en) 2019-03-19 2022-10-26 三井化学株式会社 METHOD FOR MANUFACTURING FIBER REINFORCED RESIN PRODUCT
CN113573864A (en) * 2019-03-19 2021-10-29 三井化学株式会社 Fiber-reinforced resin article, method for producing same, and laminate comprising same
JPWO2020189268A1 (en) * 2019-03-19 2021-12-23 三井化学株式会社 Fiber reinforced plastic article, its manufacturing method, and laminate containing it
US20220168989A1 (en) * 2019-03-19 2022-06-02 Mitsui Chemicals, Inc. Fiber-reinforced resin article, method for manufacturing same, and laminate including same
EP3943267A4 (en) * 2019-03-19 2022-11-16 Mitsui Chemicals, Inc. Fiber-reinforced resin article, method for manufacturing same, and laminate including same
WO2020189268A1 (en) * 2019-03-19 2020-09-24 三井化学株式会社 Fiber-reinforced resin article, method for manufacturing same, and laminate including same
JP7425844B2 (en) 2019-03-19 2024-01-31 三井化学株式会社 Fiber-reinforced resin articles and laminates containing the same
US11951724B2 (en) * 2019-03-19 2024-04-09 Mitsui Chemicals, Inc. Fiber-reinforced resin article, method for manufacturing same, and laminate including same
EP3835034A1 (en) * 2019-12-13 2021-06-16 SHPP Global Technologies B.V. Welded fiber-reinforced fittings and methods of making the same

Also Published As

Publication number Publication date
JP5844967B2 (en) 2016-01-20

Similar Documents

Publication Publication Date Title
JP5844967B2 (en) Fiber-reinforced thermoplastic resin molded article and method for producing the same
JP5968600B2 (en) Fiber-reinforced thermoplastic resin molded article and method for producing the same, and composite and method for producing the same
JP6407057B2 (en) Method for producing molded thermoplastic resin
JP5694386B2 (en) Bonded carbon fiber reinforced composite material
JP6005086B2 (en) Method for manufacturing composite structure
JP6085798B2 (en) COMPOSITE MATERIAL FOR 3D SHAPE FORMING AND ITS MANUFACTURING METHOD
WO2011099611A1 (en) Sheet for fiber-reinforced resin and fiber-reinforced resin molded article using same
JP5910649B2 (en) Fiber-reinforced composite material and method for producing the same
WO2008062818A1 (en) Reinforced thermoplastic-resin multilayer sheet material, process for producing the same, and method of forming molded thermoplastic-resin composite material
JP6267468B2 (en) Polyolefin-based laminated sheet and method for producing the same
CN109996658B (en) Fiber-reinforced resin molded article and method for producing fiber-reinforced resin molded article
JP2009113369A (en) Method of forming molded thermoplastic resin composite material
EP0330960A2 (en) Method of forming a fiber-reinforced thermoplastic article
KR101945560B1 (en) front end module carrier using continuous fiber reinforced thermoplastics and method of manufacturing
JP2015166130A (en) Method for producing fiber-reinforced plastic
JP6441969B2 (en) COMPOSITE MATERIAL STRUCTURE MEMBER AND COMPOSITE MATERIAL STRUCTURE MEMBER MANUFACTURING METHOD
JP6435696B2 (en) Method for producing laminated substrate
KR102358826B1 (en) Production of multishell composite-material components with reinforcement structure bonded thereto
JP5787150B2 (en) Joining method of fiber reinforced thermoplastic resin
WO1994003322A1 (en) Molded laminate and method of producing the same
JPH06344477A (en) Laminated molded product and production thereof
JP2020124837A (en) Edge structure of fiber reinforced resin structure
JP2014169411A (en) Prepreg, and production method thereof
JPH1134105A (en) Fiber reinforced hollow molded article and manufacture thereof
JP2010253801A (en) Fiber-reinforced composite material molded product and method for producing the molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151120

R150 Certificate of patent or registration of utility model

Ref document number: 5844967

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250