JPH07100943A - Pipe made of fiber-reinforced resin - Google Patents

Pipe made of fiber-reinforced resin

Info

Publication number
JPH07100943A
JPH07100943A JP5250659A JP25065993A JPH07100943A JP H07100943 A JPH07100943 A JP H07100943A JP 5250659 A JP5250659 A JP 5250659A JP 25065993 A JP25065993 A JP 25065993A JP H07100943 A JPH07100943 A JP H07100943A
Authority
JP
Japan
Prior art keywords
fiber
resin
reinforced
thermoplastic resin
thermosetting resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5250659A
Other languages
Japanese (ja)
Inventor
Kazuyuki Obara
和幸 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP5250659A priority Critical patent/JPH07100943A/en
Publication of JPH07100943A publication Critical patent/JPH07100943A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE:To obtain a fiber reinforced resin-made pipe having sufficient substanttial strength, rigidity, and durability and also superior vibration damping properties and resistance to impact and hardly changing in characteristics in various enviroments for use. CONSTITUTION:In a fiber reinforced resin-made pipe made of a fiber-reinforced thermosetting resin and a fiber-reinforced themookastic resin, an area in which the thermosetting resin/thermoplastic resin or the thermosetting resin/ thermoplastic resin/reinforcing fiber exist in a mixed state exsts at the boundary of the fiber-reinforced thermtsetting resin and the fiber-reinforced thermoplastic resin.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自転車の構造部材、ゴ
ルフシャフトや釣竿などのスポーツレジャー分野、航空
宇宙分野の構造部材等に用いられる繊維強化樹脂製パイ
プに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber-reinforced resin pipe used as a structural member of a bicycle, a sports and leisure field such as a golf shaft and a fishing rod, and a structural field in the aerospace field.

【0002】[0002]

【従来の技術】近年、自転車の構造部材、ゴルフシャフ
トや釣竿などのスポーツレジャー分野、航空宇宙分野の
構造部材等に軽量性、高剛性、高強度、耐久性等の特徴
を生かして繊維強化樹脂製パイプが用いられるようにな
ってきている。それに用いられる強化用繊維の形態とし
ては、長繊維、短繊維、ウィスカー等が、マトリックス
樹脂としては、エポキシ樹脂等の熱硬化性樹脂が主流で
あるが、一部でナイロン、ポリフェニレンエーテル、ポ
リエーテルエーテルケトン等の熱可塑性樹脂が使用され
ている。
2. Description of the Related Art In recent years, fiber reinforced resin has been utilized in structural members of bicycles, sports and leisure fields such as golf shafts and fishing rods, structural members in the aerospace field, etc. by taking advantage of characteristics such as light weight, high rigidity, high strength and durability. Pipes are being used. The form of the reinforcing fibers used for it is long fibers, short fibers, whiskers, etc., and as the matrix resin, thermosetting resins such as epoxy resins are the mainstream, but some of them are nylon, polyphenylene ether, polyether. A thermoplastic resin such as ether ketone is used.

【0003】通常、繊維強化樹脂製パイプは炭素繊維の
様な高強度、高弾性率の繊維で強化された熱硬化性樹脂
から一体的に成形されている。この材料は剛性が高く優
れたものであるが、衝撃を受けた時に振動が発生し易
く、又破壊しやすいという欠点がある。近年、、強化用
繊維として長繊維を使用した繊維強化熱可塑性樹脂製の
パイプも一部見られ、熱可塑性樹脂の有する靱性の高さ
を反映して、従来の熱硬化性樹脂製パイプでは達し得な
かった耐衝撃性、振動減衰性などの特性が得られる。し
かし、一般に熱可塑性樹脂は熱硬化性樹脂に比較し、弾
性率の環境依存性が大きく、パイプの使用環境に依り、
剛性等の特性が変化し易いという欠点がある。
Usually, a fiber-reinforced resin pipe is integrally molded from a thermosetting resin reinforced with fibers having high strength and high elastic modulus such as carbon fibers. Although this material has high rigidity and is excellent, it has drawbacks in that it is liable to vibrate and easily break when it receives an impact. In recent years, some pipes made of fiber-reinforced thermoplastic resin using long fibers as reinforcing fibers have been seen, and reflecting the high toughness of the thermoplastic resin, it has reached the level of conventional thermosetting resin pipes. Properties such as impact resistance and vibration damping that were not obtained can be obtained. However, in general, a thermoplastic resin has a large environmental dependency of elastic modulus as compared with a thermosetting resin, and depending on the environment in which the pipe is used,
There is a drawback that characteristics such as rigidity are easily changed.

【0004】[0004]

【発明が解決しようとする課題】本発明は、充分な実質
的強度、剛性、耐久性を有しながら、振動減衰性、耐衝
撃性が優れており、使用環境に依り特性変化が少ない繊
維強化樹脂製パイプを提供するものである。
DISCLOSURE OF THE INVENTION The present invention has a fiber reinforced structure that has sufficient vibration resistance and impact resistance while having sufficient substantial strength, rigidity and durability, and has little characteristic change depending on the use environment. It is intended to provide a resin pipe.

【0005】[0005]

【課題を解決するための手段】本発明は繊維強化熱硬化
性樹脂と繊維強化熱可塑性樹脂とからなる繊維強化樹脂
製パイプにおいて、繊維強化熱硬化性樹脂と繊維強化熱
可塑性樹脂の境界で熱硬化性樹脂と熱可塑性樹脂または
熱硬化性樹脂と熱可塑性樹脂と強化繊維が混在する領域
が存在することを特徴とする繊維強化樹脂製パイプであ
る。
DISCLOSURE OF THE INVENTION The present invention provides a pipe made of a fiber reinforced thermosetting resin and a fiber reinforced thermoplastic resin, which is heated at the boundary between the fiber reinforced thermosetting resin and the fiber reinforced thermoplastic resin. The fiber-reinforced resin pipe is characterized by having a region in which a curable resin and a thermoplastic resin or a thermosetting resin, a thermoplastic resin, and a reinforcing fiber are mixed.

【0006】本発明における繊維強化熱硬化性樹脂のマ
トリックス樹脂としては、エポキシ樹脂、不飽和ポリエ
ステル樹脂、フェノール樹脂、ポリイミド樹脂をはじめ
各種熱硬化性樹脂を使用できる。これらの樹脂は、単独
で用いてもよく、また混合して用いてもよい。更に、該
熱硬化性樹脂とゴム、熱可塑性樹脂、熱可塑性エラスト
マー等を混合して用いてもよい。好ましくは、エポキシ
樹脂、エポキシ樹脂を用いた混合樹脂が使用できる。ま
た、硬化前の熱硬化性樹脂を一定昇温速度で加熱しなが
ら粘度測定した際、30℃での粘度と最低粘度との比が
100以下、好ましくは50以下、更に好ましくは10
以下の熱硬化性樹脂を使用する事が好ましい。このよう
な樹脂は、公知の増粘効果を有する成分或いは粒子を適
宜添加する事で得られる。例えば、アエロジルの添加に
よる増粘により、所望の樹脂が得られる。30℃におけ
る粘度は1000〜50000ポイズ、好ましくは50
00〜20000ポイズである。繊維強化熱硬化性樹脂
の室温でのハンドリング性と硬化時の流動挙動制御を両
立させるには上記粘度であることが好ましい。
As the matrix resin of the fiber reinforced thermosetting resin in the present invention, various thermosetting resins such as epoxy resin, unsaturated polyester resin, phenol resin and polyimide resin can be used. These resins may be used alone or as a mixture. Further, the thermosetting resin may be mixed with rubber, a thermoplastic resin, a thermoplastic elastomer, or the like. Preferably, an epoxy resin and a mixed resin using an epoxy resin can be used. When the viscosity of the thermosetting resin before curing is measured at a constant heating rate, the ratio of the viscosity at 30 ° C. to the minimum viscosity is 100 or less, preferably 50 or less, more preferably 10 or less.
It is preferable to use the following thermosetting resins. Such a resin can be obtained by appropriately adding a known component or particle having a thickening effect. For example, the desired resin can be obtained by thickening by adding Aerosil. The viscosity at 30 ° C. is 1,000 to 50,000 poise, preferably 50.
It is from 00 to 20000 poise. The above viscosity is preferable in order to achieve both the handling property of the fiber-reinforced thermosetting resin at room temperature and the flow behavior control during curing.

【0007】本発明における繊維強化熱硬化性樹脂の強
化繊維は、炭素繊維、ガラス繊維、アラミド繊維、炭化
珪素繊維、アルミナ繊維など公知の高強度、高弾性率繊
維が単独または組み合わせて用いられるが、強化効率、
軽量化の観点から炭素繊維が最も好ましく用いられる。
強化繊維としては長繊維、短繊維、ウィスカー等が利用
できるが、強化効率の点から長繊維が好ましく用いられ
る。
As the reinforcing fiber of the fiber-reinforced thermosetting resin in the present invention, known high-strength and high-modulus fibers such as carbon fiber, glass fiber, aramid fiber, silicon carbide fiber and alumina fiber are used alone or in combination. , Strengthening efficiency,
From the viewpoint of weight reduction, carbon fiber is most preferably used.
As the reinforcing fibers, long fibers, short fibers, whiskers and the like can be used, but long fibers are preferably used from the viewpoint of reinforcing efficiency.

【0008】本発明における繊維強化熱可塑性樹脂のマ
トリックス樹脂としては、ポリオレフィン樹脂、ポリエ
ステル樹脂、ポリアミド樹脂、アクリル樹脂、ポリオキ
シメチレン樹脂、ポリカーボネート樹脂、ポリフェニレ
ンエーテル樹脂、ポリスチレン樹脂、ポリエーテルケト
ン樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテ
ルスルホン樹脂、ポリフェニレンスルフィド樹脂、ポリ
エーテルイミド樹脂などを用いる事ができる。これらは
共重合体、アロイ、ブレンド、コンパウンドに成ってい
ても良い。
As the matrix resin of the fiber reinforced thermoplastic resin in the present invention, polyolefin resin, polyester resin, polyamide resin, acrylic resin, polyoxymethylene resin, polycarbonate resin, polyphenylene ether resin, polystyrene resin, polyether ketone resin, poly Ether ether ketone resin, polyether sulfone resin, polyphenylene sulfide resin, polyether imide resin and the like can be used. These may be copolymers, alloys, blends, and compounds.

【0009】繊維強化熱可塑性樹脂のマトリックス樹脂
の融点または軟化点は繊維強化熱硬化性樹脂のマトリッ
クス樹脂が硬化前の状態で最低粘度となる温度以上であ
る事が好ましく、更に該最低粘度となる温度以上、30
0℃以下である事が好ましい。成形温度、成形時の界面
制御、成形体の物性より上記温度範囲が好ましい。吸水
によるパイプの特性変化を抑制するために、繊維強化熱
可塑性樹脂のマトリックス樹脂のASTM D570に
依り測定した吸水率が1.5%以下、更に好ましくは
0.5%以下である事が好ましい。
It is preferable that the melting point or softening point of the matrix resin of the fiber-reinforced thermoplastic resin is not less than the temperature at which the matrix resin of the fiber-reinforced thermosetting resin has the lowest viscosity before curing, and further it becomes the lowest viscosity. Above temperature, 30
It is preferably 0 ° C. or lower. The above temperature range is preferred in view of molding temperature, interface control during molding, and physical properties of the molded product. In order to suppress changes in the characteristics of the pipe due to water absorption, it is preferable that the water absorption of the matrix resin of the fiber reinforced thermoplastic resin measured by ASTM D570 is 1.5% or less, more preferably 0.5% or less.

【0010】繊維強化熱可塑性樹脂のマトリックス樹脂
としては、融点、吸水率が上記範囲であり、更にガラス
転移点が室温以下で室温における振動減衰性が熱可塑性
樹脂の中でも特に優れるポリプロピレン樹脂、酸化クラ
ッキングにより変性したポリプロピレン樹脂、酸変性ポ
リプロピレン樹脂、ポリプロピレン樹脂または酸化クラ
ッキングにより変性したポリプロピレン樹脂または酸変
性ポリプロピレン樹脂を成分とする共重合体、アロイ、
ブレンド、コンパウンドが好ましく使用される。特に他
樹脂及び強化繊維との接着性に優れる酸化クラッキング
により変性したポリプロピレン樹脂、酸変性ポリプロピ
レン樹脂、酸化クラッキングにより変性したポリプロピ
レン樹脂または酸変性ポリプロピレン樹脂を成分とする
共重合体、アロイ、ブレンド、コンパウンドが好ましく
使用される。
The matrix resin of the fiber-reinforced thermoplastic resin has a melting point and a water absorption rate within the above ranges, and further has a glass transition temperature of room temperature or lower and a vibration damping property at room temperature which is particularly excellent among polypropylene resins, and oxide cracking. Modified polypropylene resin, acid-modified polypropylene resin, polypropylene resin or a copolymer containing polypropylene resin modified by oxidation cracking or acid-modified polypropylene resin as a component, alloy,
Blends and compounds are preferably used. Particularly excellent adhesion to other resins and reinforcing fibers polypropylene resin modified by oxidation cracking, acid-modified polypropylene resin, polypropylene resin modified by oxidation cracking or copolymers containing acid-modified polypropylene resin as components, alloys, blends, compounds Is preferably used.

【0011】本発明における繊維強化熱可塑性樹脂の強
化繊維は、炭素繊維、ガラス繊維、アラミド繊維、炭化
珪素繊維、アルミナ繊維など公知の高強度、高弾性率繊
維が単独または組み合わせて用いられるが、強化効率、
軽量化の観点から炭素繊維が最も好ましく用いられる。
強化繊維としては長繊維、短繊維、ウィスカー等が利用
できるが、強化効率の点から長繊維が好ましく用いられ
る。長繊維とは実質的に連続した繊維及び長さ5mm以
上の不連続繊維のことである。強化長繊維の形態として
は実質的に繊維長方向を一方向に引き揃えて配列した
物、織物、ランダムマット等が使用でき、実質的に繊維
長方向を一方向に引き揃えて配列した物が、最も効果的
にマトリックス樹脂を強化でき、好ましい。
As the reinforcing fiber of the fiber-reinforced thermoplastic resin in the present invention, known high-strength and high-modulus fibers such as carbon fiber, glass fiber, aramid fiber, silicon carbide fiber and alumina fiber are used alone or in combination. Strengthening efficiency,
From the viewpoint of weight reduction, carbon fiber is most preferably used.
As the reinforcing fibers, long fibers, short fibers, whiskers and the like can be used, but long fibers are preferably used from the viewpoint of reinforcing efficiency. The long fibers are substantially continuous fibers and discontinuous fibers having a length of 5 mm or more. As the form of the reinforced long fibers, a product in which the fiber length direction is substantially aligned in one direction and arranged, a woven fabric, a random mat, or the like can be used, and a product in which the fiber length direction is substantially aligned in one direction is used. It is preferable since the matrix resin can be reinforced most effectively.

【0012】繊維強化熱可塑性樹脂の成形材料としては
不連続長繊維、短繊維、ウィスカー等を含有した熱可塑
性樹脂ペレット、ランダムマットに熱可塑性樹脂を含浸
したいわゆるスタンピングシート、長繊維織物に熱可塑
性樹脂を含浸した物、実質的に繊維長方向を一方向に引
き揃えて配列した物に熱可塑性樹脂を含浸した物、強化
長繊維と熱可塑性長繊維を引き揃えたまたは混繊した繊
維束を組み紐形態としたものや、すだれ状の形態にした
もの、縦糸に強化長繊維または上記の強化長繊維と熱可
塑性長繊維を引き揃えた、または混繊した繊維束を使用
し、横糸に熱可塑性長繊維を使用して製造した織物、実
質的に繊維長方向を一方向に引き揃えて配列した強化長
繊維集合体と熱可塑性繊維のシートからなる複合シート
であって、該熱可塑性繊維が該シートを構成する強化長
繊維の間に入り込んで交絡一体化している複合シート、
該複合シートを円筒形の組み紐状に加工した物等が使用
できる。ハンドリンク性の良さ、成形時の熱可塑性樹脂
の含浸性の良さ、強化効率の高さから、実質的に繊維長
方向を一方向に引き揃えて配列した強化長繊維集合体と
熱可塑性繊維のシートからなる複合シートであって、該
熱可塑性繊維が該シートを構成する強化長繊維の間に入
り込んで交絡一体化している複合シート、該複合シート
を円筒形の組み紐状に加工した物を利用する事が好まし
い。上記各種の繊維強化熱可塑性樹脂の成形材料を製造
する方法は公知の方法を利用できる。
As a molding material of the fiber reinforced thermoplastic resin, thermoplastic resin pellets containing discontinuous long fibers, short fibers, whiskers, etc., a so-called stamping sheet in which a random mat is impregnated with a thermoplastic resin, and a long fiber woven fabric are thermoplastic. A resin-impregnated product, a product in which the fiber length direction is substantially aligned in one direction and a thermoplastic resin-impregnated product, or a fiber bundle in which reinforced long fibers and thermoplastic long fibers are aligned or mixed Braided form, interlaced form, warp yarns made of reinforced long fibers or the above-mentioned reinforced long fibers and thermoplastic long fibers aligned or mixed fiber bundles are used, and the wefts are made of thermoplastic A woven fabric produced using long fibers, which is a composite sheet comprising a sheet of reinforced long fiber aggregates in which the fiber length direction is substantially aligned in one direction and a sheet of thermoplastic fibers, Composite sheet sexual fibers are entangled integrally enters between the reinforcing long fibers constituting the sheet,
A product obtained by processing the composite sheet into a cylindrical braid can be used. Due to good hand-linkability, good impregnation with thermoplastic resin at the time of molding, and high reinforcement efficiency, the reinforced long-fiber aggregates and thermoplastic fibers in which the fiber length direction is substantially aligned in one direction are arranged. A composite sheet composed of sheets, wherein the thermoplastic fiber is interlaced and integrated between the reinforcing long fibers constituting the sheet, and the composite sheet is processed into a cylindrical braided shape. It is preferable to do. A known method can be used as a method for producing the above-mentioned various fiber-reinforced thermoplastic resin molding materials.

【0013】本発明においては、繊維強化熱硬化性樹脂
と繊維強化熱可塑性樹脂が同一のパイプに同時に存在す
る事が必要である。繊維強化熱硬化性樹脂と繊維強化熱
可塑性樹脂の存在様式は特に限定されない。パイプの断
面において、内層から発泡合成樹脂−繊維強化熱可塑性
樹脂−繊維強化熱硬化性樹脂の順序で積層された、また
は発泡合成樹脂−繊維強化熱硬化性樹脂−繊維強化熱可
塑性樹脂の順序で積層された存在様式、内層から熱可塑
性樹脂チューブ−繊維強化熱可塑性樹脂−繊維強化熱硬
化性樹脂の順序で積層された、または熱可塑性樹脂チュ
ーブ−繊維強化熱硬化性樹脂−繊維強化熱可塑性樹脂の
順序で積層された存在様式、内層から繊維強化熱可塑性
樹脂−繊維強化熱硬化性樹脂の順序で積層された、また
は繊維強化熱硬化性樹脂−繊維強化熱可塑性樹脂の順序
で積層された存在様式が例示される。繊維強化熱硬化性
樹脂と繊維強化熱可塑性樹脂が交互に積層された存在様
式も例示される。上記パイプの断面における存在様式が
パイプ全長にわたって存在しても良く、パイプの一部で
存在様式が変化しても良い。また、繊維強化熱可塑性樹
脂と繊維強化熱硬化性樹脂が同時に存在する部分がパイ
プの一部分のみで、その他の部分が繊維強化熱可塑性樹
脂または繊維強化熱硬化性樹脂のみから成っていても良
い。もちろん、存在様式は上記例示に限定されない。
In the present invention, it is necessary that the fiber-reinforced thermosetting resin and the fiber-reinforced thermoplastic resin be present in the same pipe at the same time. The mode of existence of the fiber-reinforced thermosetting resin and the fiber-reinforced thermoplastic resin is not particularly limited. In the cross section of the pipe, laminated from the inner layer in the order of foam synthetic resin-fiber reinforced thermoplastic resin-fiber reinforced thermosetting resin, or in the order of foam synthetic resin-fiber reinforced thermosetting resin-fiber reinforced thermoplastic resin Layered existence mode, laminated from the inner layer in the order of thermoplastic resin tube-fiber reinforced thermoplastic resin-fiber reinforced thermosetting resin, or thermoplastic resin tube-fiber reinforced thermosetting resin-fiber reinforced thermoplastic resin Existence mode in which the layers are laminated in this order, the layers are laminated from the inner layer in the order of fiber-reinforced thermoplastic resin-fiber-reinforced thermosetting resin, or in the order of fiber-reinforced thermosetting resin-fiber-reinforced thermoplastic resin. A style is illustrated. The presence mode in which the fiber-reinforced thermosetting resin and the fiber-reinforced thermoplastic resin are alternately laminated is also exemplified. The existence mode in the cross section of the pipe may exist over the entire length of the pipe, or the existence mode may change in a part of the pipe. Further, the portion where the fiber reinforced thermoplastic resin and the fiber reinforced thermosetting resin exist at the same time may be only a portion of the pipe, and the other portion may be made of the fiber reinforced thermoplastic resin or the fiber reinforced thermosetting resin. Of course, the mode of existence is not limited to the above example.

【0014】本発明で最も肝要な点は、繊維強化熱硬化
性樹脂と繊維強化熱可塑性樹脂の境界で、熱硬化性樹脂
と熱可塑性樹脂または熱硬化性樹脂と熱可塑性樹脂と強
化繊維が混在する事である。混在する事に依り、接着性
が必ずしもいいとは限らない繊維強化熱硬化性樹脂と繊
維強化熱可塑性樹脂の接着性が大幅に向上し、両樹脂間
での剥離等による破壊強度が向上する。従って、パイプ
としての耐久性、耐衝撃性も向上する。
The most important point in the present invention is the boundary between the fiber-reinforced thermosetting resin and the fiber-reinforced thermoplastic resin, and the thermosetting resin and the thermoplastic resin or the thermosetting resin and the thermoplastic resin and the reinforcing fiber are mixed. Is to do. Due to the mixture, the adhesiveness between the fiber-reinforced thermosetting resin and the fiber-reinforced thermoplastic resin, which do not necessarily have good adhesiveness, is significantly improved, and the breaking strength due to peeling between the two resins is improved. Therefore, the durability and impact resistance of the pipe are also improved.

【0015】混在させる方法としては繊維強化樹脂のマ
トリックス樹脂として相溶性の熱硬化性樹脂と熱可塑性
樹脂が分子レベルで混在した物、或いは溶融状態では相
溶しているが、硬化または凝固が進行すると相分離する
樹脂の組み合わせでミクロ相分離構造を持つ様に混在さ
せた物を用いると良い。該樹脂同志とウィスカー、短繊
維等の強化繊維を混練して用いても良い。また、非相溶
性の熱硬化性樹脂と熱可塑性樹脂がマクロレベルで混在
し、海島構造、ドメイン構造等をとっている物を用いて
も良い。海島構造、ドメイン構造を抑制し、両樹脂間の
接着性を高める為に、相溶化剤を併用する事は好ましい
実施態様である。
As a mixing method, a thermosetting resin and a thermoplastic resin, which are compatible with each other as a matrix resin of a fiber reinforced resin, are mixed at a molecular level, or they are compatible with each other in a molten state, but curing or solidification proceeds. Then, it is preferable to use a mixture of resins that are phase-separated so as to have a microphase-separated structure. The resins may be kneaded with reinforcing fibers such as whiskers and short fibers. In addition, an incompatible thermosetting resin and a thermoplastic resin may be mixed at a macro level and may have a sea-island structure, a domain structure, or the like. In order to suppress the sea-island structure and the domain structure and enhance the adhesion between the two resins, it is a preferred embodiment to use a compatibilizer together.

【0016】また、別の混在方法としては、熱硬化性樹
脂または熱可塑性樹脂からなる予め多孔構造を持った発
泡体やスパンボンド法、メルトブロー法、スパンレース
法等で得られた網目構造を有する不織布等を成形前の繊
維強化熱硬化性樹脂と繊維強化熱可塑性樹脂の境界に配
置し多孔構造、網目構造内に熱硬化性樹脂または熱可塑
性樹脂を含浸させて混在してもよい。成形前の繊維強化
熱硬化性樹脂または繊維強化熱可塑性樹脂がもともと多
孔構造、網目構造を持つものであれば、その境界に別の
発泡体や不織布等を配置させなくても、混在部分を得る
ことができるので好ましい。
Further, as another mixing method, a foamed body made of a thermosetting resin or a thermoplastic resin having a porous structure in advance, or a network structure obtained by a spunbond method, a melt blow method, a spunlace method or the like is used. A non-woven fabric or the like may be arranged at the boundary between the fiber-reinforced thermosetting resin and the fiber-reinforced thermoplastic resin before molding, and may be mixed by impregnating the thermosetting resin or the thermoplastic resin in the porous structure or network structure. If the fiber-reinforced thermosetting resin or fiber-reinforced thermoplastic resin before molding originally has a porous structure or a network structure, a mixed portion can be obtained without disposing another foam or nonwoven fabric at the boundary. It is possible because it is possible.

【0017】発泡体や不織布等を構成する樹脂は、熱可
塑性樹脂でも熱硬化性樹脂でも、また、強化繊維を含む
熱可塑性樹脂でも熱硬化性樹脂でも良いが、熱可塑性樹
脂または繊維強化熱可塑性樹脂が好ましい。また、用い
る熱硬化性樹脂と熱可塑性樹脂は、それぞれ繊維強化熱
硬化性樹脂や繊維強化熱可塑性樹脂のマトリックス樹脂
と同種の樹脂を用いる事が好ましい。
The resin constituting the foam or nonwoven fabric may be a thermoplastic resin or a thermosetting resin, or a thermoplastic resin containing reinforcing fibers or a thermosetting resin. Resins are preferred. Moreover, it is preferable to use the same kind of resin as the matrix resin of the fiber-reinforced thermosetting resin or the fiber-reinforced thermoplastic resin, respectively, for the thermosetting resin and the thermoplastic resin used.

【0018】より具体的には、耐熱性チューブ(例えば
シリコーンゴム、フッソゴムなどの大きな伸びを有する
ゴムチューブやポリイミド、パラ配向アラミドなどの不
融耐熱性重合体のチューブなど)を芯材にし、該耐熱性
チューブに繊維強化熱可塑性樹脂を被覆し、さらに、そ
の外層に連通多孔性の熱可塑性樹脂シート、繊維強化熱
硬化性樹脂で被覆した後、金型内にセットし、耐熱性チ
ューブに液体または気体を送り圧力をかけるとともに成
形材料を加熱成形し、耐熱性チューブを取り除く方法が
挙げられる。連通多孔性の熱可塑性樹脂シートは繊維強
化熱可塑性樹脂のマトリックス樹脂と同種の樹脂である
事が好ましい。連通多孔に繊維強化熱硬化性樹脂のマト
リックス樹脂が含浸するためには、連通多孔性の熱可塑
性樹脂は融点または軟化点が繊維強化熱硬化性樹脂のマ
トリックス樹脂が硬化前の状態で最低粘度となる温度以
上である事が好ましく、更に該最低粘度となる温度以
上、300℃以下である事が好ましい。連通多孔に繊維
強化熱硬化性樹脂のマトリックス樹脂が含浸しすぎ、繊
維強化熱可塑性樹脂にまで達すると多孔性シートを配置
した効果が低下するので、成形条件を最適化すると供
に、硬化前の繊維強化熱硬化性樹脂のマトリックス樹脂
は一定昇温速度で加熱しながら粘度測定した際、30℃
での粘度と最低粘度との比が100以下、好ましくは5
0以下、更に好ましくは10以下である事が好ましい。
連通多孔性の熱可塑性樹脂シートの代わりに網目構造を
有する不織布を用いても良い。
More specifically, a heat-resistant tube (for example, a rubber tube having a large elongation such as silicone rubber or fluorine rubber or a tube of a non-melting heat-resistant polymer such as polyimide or para-oriented aramid) is used as a core material, The heat-resistant tube is coated with fiber-reinforced thermoplastic resin, and the outer layer is covered with a continuous porous thermoplastic resin sheet and fiber-reinforced thermosetting resin, then set in a mold and the liquid is put into the heat-resistant tube. Alternatively, a method may be mentioned in which a heat-resistant tube is removed by feeding a gas to apply pressure and thermoforming a molding material. The continuous porous thermoplastic resin sheet is preferably the same resin as the matrix resin of the fiber reinforced thermoplastic resin. In order to impregnate the continuous pores with the matrix resin of the fiber-reinforced thermosetting resin, the continuous porous thermoplastic resin has a melting point or a softening point of which the matrix resin of the fiber-reinforced thermosetting resin has the minimum viscosity in the state before curing. It is preferable that the temperature is not lower than the above temperature, and it is more preferable that the temperature is not less than the temperature at which the minimum viscosity is reached and not higher than 300 ° C. If the matrix resin of the fiber-reinforced thermosetting resin is excessively impregnated into the communicating pores and the fiber-reinforced thermoplastic resin is reached, the effect of arranging the porous sheet will decrease. The matrix resin of the fiber reinforced thermosetting resin is 30 ° C. when the viscosity is measured while heating at a constant heating rate.
The ratio of the minimum viscosity to the minimum viscosity is 100 or less, preferably 5
It is preferably 0 or less, more preferably 10 or less.
Instead of the continuous porous thermoplastic resin sheet, a nonwoven fabric having a mesh structure may be used.

【0019】耐熱性チューブの代わりに発泡合成樹脂、
熱可塑性樹脂チューブを芯材として用いても良い。芯材
へ被覆する順序は上記例示の順序に限定されるものでは
ない。実質的に繊維長方向を一方向に引き揃えて配列し
た強化長繊維集合体と熱可塑性繊維のシートからなる複
合シートであって、該熱可塑性繊維が該シートを構成す
る強化長繊維の間に入り込んで交絡一体化している複合
シートで、該熱可塑性繊維のシートが網目構造を有する
不織布である複合シート、該複合シートを円筒形の組み
紐状に加工した物を繊維強化熱可塑性樹脂の成形材料と
して用いる事は好ましく、この場合、予め多孔構造、網
目構造とした熱硬化性樹脂または熱可塑性樹脂を成形前
の繊維強化熱硬化性樹脂と繊維強化熱可塑性樹脂の境界
に配置する必要はない。さらに熱可塑性繊維のシートを
強化長繊維集合体の片面のみに配し交絡一体化した、片
面で強化長繊維が露出した複合シートを用いると、露出
面に熱硬化性樹脂を配することによって、熱硬化性樹
脂、熱可塑性樹脂の両方が強化長繊維集合体に含浸する
ため、熱可塑性樹脂と熱硬化性樹脂と強化長繊維が混在
した領域ができ、優れた接着性が得られ、特に好まし
い。
Foamed synthetic resin instead of the heat-resistant tube,
You may use a thermoplastic resin tube as a core material. The order of coating the core material is not limited to the above-exemplified order. A composite sheet comprising a sheet of reinforced long fiber aggregates in which fiber length directions are substantially aligned in one direction and a sheet of thermoplastic fibers, wherein the thermoplastic fibers are present between the reinforced long fibers constituting the sheet. A composite sheet in which the thermoplastic fiber sheet is a non-woven fabric having a mesh structure, and a composite sheet in which the thermoplastic fiber sheet is entangled and integrated with each other, and a product obtained by processing the composite sheet into a cylindrical braided shape is a fiber-reinforced thermoplastic resin molding material. In this case, it is not necessary to dispose a thermosetting resin or thermoplastic resin having a porous structure or a network structure in advance at the boundary between the fiber-reinforced thermosetting resin and the fiber-reinforced thermoplastic resin before molding. Furthermore, a sheet of thermoplastic fibers is entangled and integrated only on one side of the reinforced long fiber aggregate, and when a composite sheet in which reinforced long fibers are exposed on one side is used, by arranging a thermosetting resin on the exposed surface, Since both the thermosetting resin and the thermoplastic resin impregnate the reinforced long fiber aggregate, a region in which the thermoplastic resin, the thermosetting resin and the reinforced long fibers are mixed is formed, and excellent adhesiveness is obtained, which is particularly preferable. .

【0020】パイプの形状は特に限定されず、用途に応
じて最適な形状を選択する。例えば、断面形状が円、四
角形、五角形以上の多角形のいずれでも構わない。途中
で形状が変化しても良く、例えば円と四角形を接合した
ような形状でも構わない。断面の大きさも限定されず、
長さ方向に一定の大きさでも良く、テーパーの如く連続
的に大きさが変化しても良く、段付きの如く不連続的に
大きさが変化しても良い。直管でも曲管でも構わない。
The shape of the pipe is not particularly limited, and the optimum shape is selected according to the application. For example, the cross-sectional shape may be any of a circle, a quadrangle, and a pentagon or more polygon. The shape may change on the way, for example, a shape in which a circle and a quadrangle are joined may be used. The size of the cross section is not limited,
The size may be constant in the length direction, the size may change continuously like a taper, or the size may change discontinuously like a step. It may be a straight pipe or a curved pipe.

【0021】[0021]

【実施例】以下、実施例により本発明を説明するが、本
発明は、実施例により限定されるものではない。尚表1
に、以下の方法により得られた各パイプの特性を示す。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to the examples. Table 1
Shows the characteristics of each pipe obtained by the following method.

【0022】[0022]

【表1】 [Table 1]

【0023】物性は全て比較例2、20℃の物性を10
0とした相対値である。 1):スパン300mmで曲げ荷重を加えた時の四点曲
げ破壊強度。 2):ハンマーで先端部を叩いた時、末端部で検出され
る振幅が初期振幅の1/10になるまでの時間の逆数。 3):アイゾット衝撃強度。 4):四点曲げ試験で破壊荷重の20%の荷重を繰り返
し加えた時、破壊するまでの回数。
All the physical properties were the same as those of Comparative Example 2 at 20 ° C.
It is a relative value with 0. 1): Four-point bending fracture strength when a bending load was applied with a span of 300 mm. 2): The reciprocal of the time until the amplitude detected at the end when hitting the tip with a hammer becomes 1/10 of the initial amplitude. 3): Izod impact strength. 4): The number of times to break when a load of 20% of the breaking load is repeatedly applied in the four-point bending test.

【0024】[0024]

【実施例1】シリコンチューブに炭素繊維強化エポキシ
樹脂プリプレグをシートワインディング法で被覆した
後、マレイン酸変性ポリプロピレン樹脂のメルトブロー
法による不織布を被覆し、更に実質的に繊維長方向を一
方向に配列した炭素繊維集合体にマレイン酸変性ポリプ
ロピレン樹脂を溶融含浸したシートをシートワインディ
ング法で被覆した。このプリフォームをパイプ金型に装
着した。シリコンチューブの両端より10kg/mm2
の空気圧をかけ、200℃で20分加熱した後、130
℃で30分加熱して外径25mm、内径20mmのパイ
プを作製した。シリコンチューブは室温まで冷却した
後、パイプから取り除いた。炭素繊維強化エポキシ樹脂
プリプレグのマトリックス樹脂は最低粘度を示す温度が
約120℃であり、30℃での粘度と最低粘度の比が約
25であるため、200℃までの昇温過程で軟化流動し
て、上記不織布の網目構造内に含浸したが最低粘度が高
い為、繊維強化熱可塑性樹脂シートまでは到達せず不織
布内に留まった。さらに約160℃で該不織布と繊維強
化熱可塑性樹脂シートのマトリックス樹脂が溶融し一体
化して、繊維強化熱硬化性樹脂と繊維強化熱可塑性樹脂
の境界に網目構造に由来する三次元的に熱硬化性樹脂と
熱可塑性樹脂が絡まりあって混在する領域が生成した。
Example 1 A silicon tube was coated with a carbon fiber reinforced epoxy resin prepreg by a sheet winding method, and then a nonwoven fabric of a maleic acid-modified polypropylene resin was melt-blown, and the fiber length direction was substantially aligned in one direction. A sheet obtained by melt-impregnating a carbon fiber aggregate with a maleic acid-modified polypropylene resin was covered by a sheet winding method. This preform was mounted on a pipe mold. 10 kg / mm 2 from both ends of the silicon tube
After applying air pressure for 20 minutes at 200 ℃, 130
A pipe having an outer diameter of 25 mm and an inner diameter of 20 mm was produced by heating at 30 ° C. for 30 minutes. The silicon tube was cooled to room temperature and then removed from the pipe. The matrix resin of the carbon fiber reinforced epoxy resin prepreg has a minimum viscosity temperature of about 120 ° C and a ratio of the viscosity at 30 ° C to the minimum viscosity of about 25. Therefore, it softens and flows during the temperature rising process up to 200 ° C. Then, it was impregnated into the network structure of the above-mentioned non-woven fabric, but since it had a high minimum viscosity, it did not reach the fiber-reinforced thermoplastic resin sheet and remained in the non-woven fabric. Further, at about 160 ° C., the non-woven fabric and the matrix resin of the fiber reinforced thermoplastic resin sheet are melted and integrated, and three-dimensionally thermoset due to the network structure at the boundary between the fiber reinforced thermosetting resin and the fiber reinforced thermoplastic resin. A region where the functional resin and the thermoplastic resin are entangled and mixed with each other was generated.

【0025】図1にパイプの断面、図2に繊維強化熱硬
化性樹脂と繊維強化熱可塑性樹脂の境界の拡大模式図を
示す。
FIG. 1 shows a cross section of the pipe, and FIG. 2 shows an enlarged schematic view of the boundary between the fiber-reinforced thermosetting resin and the fiber-reinforced thermoplastic resin.

【0026】[0026]

【比較例1】マレイン酸変性ポリプロピレン樹脂のメル
トブロー法による不織布を被覆しない以外は実施例1と
同様にしてパイプを作製した。繊維強化熱硬化性樹脂と
繊維強化熱可塑性樹脂は明瞭な界面を示し、熱硬化性樹
脂と熱可塑性樹脂の混在する領域は存在しなかった。
[Comparative Example 1] A pipe was produced in the same manner as in Example 1 except that a non-woven fabric prepared by melt-blowing a maleic acid-modified polypropylene resin was not coated. The fiber-reinforced thermosetting resin and the fiber-reinforced thermoplastic resin showed a clear interface, and there was no region where the thermosetting resin and the thermoplastic resin were mixed.

【0027】[0027]

【実施例2、3】シリコンチューブに炭素繊維強化エポ
キシ樹脂プリプレグをシートワインディング法で被覆し
た後、更に実質的に繊維長方向を一方向に配列した炭素
繊維集合体にマレイン酸変性ポリプロピレン樹脂のメル
トブロー法による不織布を両面に配置し(実施例2)ま
たは、片面のみに配置し(実施例3)、高圧水流により
炭素繊維集合体の間にマレイン酸変性ポリプロピレン樹
脂の繊維が入り込んで一体化した複合シートをシートワ
インディング法で被覆した。このプリフォームをパイプ
金型に装着した。シリコンチューブの両端より10kg
/mm2 の空気圧をかけ、200℃で20分加熱した
後、130℃で30分加熱して外径25mm、内径20
mmのパイプを作製した。シリコンチューブは室温まで
冷却した後、パイプから取り除いた。炭素繊維強化エポ
キシ樹脂プリプレグのマトリックス樹脂は最低粘度を示
す温度が約120℃であり、30℃での粘度と最低粘度
の比が約25であった。実施例2では200℃までの昇
温過程で該マトリックス樹脂が軟化流動して、上記不織
布の網目構造内に含浸したが最低粘度が高い為、繊維強
化熱可塑性樹脂シート内の炭素繊維までは到達せず不織
布内に留まった。さらに約160℃で繊維強化熱可塑性
樹脂シートのマトリックス樹脂が溶融し、シートを構成
する炭素繊維内に含浸するとともに、繊維強化熱硬化性
樹脂と繊維強化熱可塑性樹脂が一体化し、繊維強化熱硬
化性樹脂と繊維強化熱可塑性樹脂の境界に網目構造に由
来する三次元的に熱硬化性樹脂と熱可塑性樹脂が絡まり
あって混在する領域が生成した。実施例3では炭素繊維
が露出した繊維強化熱可塑性樹脂シートと繊維強化熱硬
化性樹脂を用いることで、三次元的に熱硬化性樹脂と熱
可塑性樹脂が絡まりあって混在する領域に炭素繊維も共
存するため、より強固な境界が形成される。図3に実施
例3における繊維強化熱硬化性樹脂と繊維強化熱可塑性
樹脂の境界の拡大模式図を示す。
[Examples 2 and 3] A silicon tube was coated with a carbon fiber reinforced epoxy resin prepreg by a sheet winding method, and then a carbon fiber aggregate in which the fiber length direction was substantially arranged in one direction was melt-blown with a maleic acid-modified polypropylene resin. The non-woven fabric prepared by the method is arranged on both sides (Example 2) or only on one side (Example 3), and the fibers of the maleic acid-modified polypropylene resin are intercalated and integrated between the carbon fiber aggregates by the high-pressure water flow. The sheet was coated by the sheet winding method. This preform was mounted on a pipe mold. 10kg from both ends of the silicon tube
/ Mm 2 of air pressure, heated at 200 ℃ for 20 minutes, then heated at 130 ℃ for 30 minutes, outside diameter 25mm, inside diameter 20
mm pipes were made. The silicon tube was cooled to room temperature and then removed from the pipe. The matrix resin of the carbon fiber reinforced epoxy resin prepreg had a minimum viscosity temperature of about 120 ° C. and a viscosity-minimum ratio at 30 ° C. of about 25. In Example 2, the matrix resin softened and flowed during the temperature rising process up to 200 ° C. and was impregnated into the network structure of the non-woven fabric, but the minimum viscosity was high. Therefore, even the carbon fibers in the fiber-reinforced thermoplastic resin sheet were reached. Without staying in the non-woven fabric. Further, at about 160 ° C, the matrix resin of the fiber reinforced thermoplastic resin sheet is melted and impregnated into the carbon fibers forming the sheet, and the fiber reinforced thermosetting resin and the fiber reinforced thermoplastic resin are integrated to form a fiber reinforced thermosetting resin. At the boundary between the thermosetting resin and the fiber-reinforced thermoplastic resin, a region where the thermosetting resin and the thermoplastic resin are entangled with each other and three-dimensionally derived from the network structure was formed. In Example 3, by using the fiber-reinforced thermoplastic resin sheet in which the carbon fibers are exposed and the fiber-reinforced thermosetting resin, the carbon fibers also exist in the region where the thermosetting resin and the thermoplastic resin are entangled and mixed with each other. The coexistence creates a stronger boundary. FIG. 3 shows an enlarged schematic view of the boundary between the fiber-reinforced thermosetting resin and the fiber-reinforced thermoplastic resin in Example 3.

【0028】[0028]

【比較例2】炭素繊維強化エポキシ樹脂のみでパイプを
作製した。
[Comparative Example 2] A pipe was produced using only a carbon fiber reinforced epoxy resin.

【0029】[0029]

【発明の効果】本発明のパイプは繊維強化熱硬化性樹脂
と繊維強化熱可塑性樹脂の境界で熱硬化性樹脂と熱可塑
性樹脂または該両樹脂と強化繊維が混在する物であるた
め、実質的な強度、剛性、耐久性を有しながら、振動減
衰性、耐衝撃性に優れており、さらに上記特性が使用環
境に依り変化することが少ない。従って、自転車の構造
部材、ゴルフシャフトや釣竿などのスポーツレジャー分
野、航空宇宙分野の構造部材等として好適な繊維強化樹
脂製パイプが得られる。
EFFECTS OF THE INVENTION The pipe of the present invention is a substance in which a thermosetting resin and a thermoplastic resin or both resins and reinforcing fibers are mixed at the boundary between the fiber reinforced thermosetting resin and the fiber reinforced thermoplastic resin. It has excellent strength, rigidity, and durability, as well as excellent vibration damping and impact resistance, and the above characteristics rarely change depending on the operating environment. Therefore, a fiber-reinforced resin pipe suitable as a structural member of a bicycle, a sports and leisure field such as a golf shaft and a fishing rod, and a structural member in the aerospace field can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1におけるパイプの断面図である。FIG. 1 is a sectional view of a pipe according to a first embodiment.

【図2】実施例1におけるパイプ断面の繊維強化熱硬化
性樹脂と繊維強化熱可塑性樹脂の境界の拡大模式図であ
る。
FIG. 2 is an enlarged schematic view of a boundary between a fiber-reinforced thermosetting resin and a fiber-reinforced thermoplastic resin in a pipe cross section in Example 1.

【図3】実施例3におけるパイプ断面の繊維強化熱硬化
性樹脂と繊維強化熱可塑性樹脂の境界の拡大模式図であ
る。
FIG. 3 is an enlarged schematic view of a boundary between a fiber-reinforced thermosetting resin and a fiber-reinforced thermoplastic resin in a pipe cross section in Example 3.

【符号の説明】[Explanation of symbols]

1 繊維強化熱硬化性樹脂 2 繊維強化熱可塑性樹脂 3 熱硬化性樹脂 4 熱可塑性樹脂 5 炭素繊維 6 中空部 7 熱硬化性樹脂、熱可塑性樹脂または熱硬化性樹脂、
熱可塑性樹脂、炭素繊維が混在している領域
DESCRIPTION OF SYMBOLS 1 Fiber-reinforced thermosetting resin 2 Fiber-reinforced thermoplastic resin 3 Thermosetting resin 4 Thermoplastic resin 5 Carbon fiber 6 Hollow part 7 Thermosetting resin, thermoplastic resin or thermosetting resin,
Area where thermoplastic resin and carbon fiber are mixed

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 繊維強化熱硬化性樹脂と繊維強化熱可塑
性樹脂とからなる繊維強化樹脂製パイプにおいて、少な
くとも繊維強化熱硬化性樹脂と繊維強化熱可塑性樹脂の
境界で熱硬化性樹脂と熱可塑性樹脂が混在することを特
徴とする繊維強化樹脂製パイプ。
1. A pipe made of a fiber-reinforced resin comprising a fiber-reinforced thermosetting resin and a fiber-reinforced thermoplastic resin, wherein the thermosetting resin and the thermoplastic resin are at least at the boundary between the fiber-reinforced thermosetting resin and the fiber-reinforced thermoplastic resin. A fiber-reinforced resin pipe characterized by a mixture of resins.
【請求項2】 繊維強化熱硬化性樹脂と繊維強化熱可塑
性樹脂とからなる繊維強化樹脂製パイプにおいて、少な
くとも繊維強化熱硬化性樹脂と繊維強化熱可塑性樹脂の
境界で熱硬化性樹脂と熱可塑性樹脂と強化繊維が混在す
ることを特徴とする繊維強化樹脂製パイプ。
2. A pipe made of a fiber-reinforced resin comprising a fiber-reinforced thermosetting resin and a fiber-reinforced thermoplastic resin, wherein the thermosetting resin and the thermoplastic resin are at least at the boundary between the fiber-reinforced thermosetting resin and the fiber-reinforced thermoplastic resin. A fiber-reinforced resin pipe characterized by a mixture of resin and reinforcing fibers.
JP5250659A 1993-10-06 1993-10-06 Pipe made of fiber-reinforced resin Withdrawn JPH07100943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5250659A JPH07100943A (en) 1993-10-06 1993-10-06 Pipe made of fiber-reinforced resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5250659A JPH07100943A (en) 1993-10-06 1993-10-06 Pipe made of fiber-reinforced resin

Publications (1)

Publication Number Publication Date
JPH07100943A true JPH07100943A (en) 1995-04-18

Family

ID=17211143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5250659A Withdrawn JPH07100943A (en) 1993-10-06 1993-10-06 Pipe made of fiber-reinforced resin

Country Status (1)

Country Link
JP (1) JPH07100943A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002130544A (en) * 2000-10-18 2002-05-09 Ube Nitto Kasei Co Ltd Pipe for fluid transportation
JP2006044262A (en) * 2004-07-08 2006-02-16 Toray Ind Inc Hollow molded article and its production method
JP2008506894A (en) * 2004-06-04 2008-03-06 エプシロン コンポジット サルル "High-rigidity composite tube and its manufacturing method"

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002130544A (en) * 2000-10-18 2002-05-09 Ube Nitto Kasei Co Ltd Pipe for fluid transportation
JP4649034B2 (en) * 2000-10-18 2011-03-09 宇部日東化成株式会社 Pipe for fluid conveyance
JP2008506894A (en) * 2004-06-04 2008-03-06 エプシロン コンポジット サルル "High-rigidity composite tube and its manufacturing method"
JP2006044262A (en) * 2004-07-08 2006-02-16 Toray Ind Inc Hollow molded article and its production method

Similar Documents

Publication Publication Date Title
Masuelli Introduction of fibre-reinforced polymers− polymers and composites: concepts, properties and processes
US5301940A (en) Baseball bat and production thereof
US5597631A (en) Prepreg, composite molding body, and method of manufacture of the composite molded body
CN101156983B (en) Composite bat having a single, hollow primary tube
JP5117779B2 (en) Composite material
US10071528B2 (en) Stiffened thin-walled fibre composite products and method of making same
JPH0742664B2 (en) Fiber reinforced composite cable
JPH0747152A (en) Fiber-reinforced resin racket frame
CN103237649A (en) Compatible carrier for secondary toughening
JPH07100943A (en) Pipe made of fiber-reinforced resin
JP2004229869A (en) Golf club head
JPH0687903B2 (en) Tennis racket frame
JPH0747155A (en) Fiber reinforced resin bat
JP2515222B2 (en) Racket frame
CA3096604A1 (en) Layered article
JPH05309750A (en) Method for reinforcing fiber-reinforced thermoplastic resin bar body
JP2004202004A (en) Bat made of fiber reinforced plastic
CA2125343C (en) Hockey stick shaft
CN109263168A (en) A kind of more structural composite material precast bodies and its combined shaping manufacturing method
JP2004202001A (en) Racket frame
US20220250335A1 (en) Lightweight thermoplastic composite products and methods of making same
JP2008169514A (en) Base material for preform
Aoki et al. US PATENTS
JPH02286323A (en) Resin fiber-reinforced composite material
KR930011632B1 (en) Composite sheet for fiber-rein forced material and manufacturing process therefor

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001226