JPH0747152A - Fiber-reinforced resin racket frame - Google Patents

Fiber-reinforced resin racket frame

Info

Publication number
JPH0747152A
JPH0747152A JP5195891A JP19589193A JPH0747152A JP H0747152 A JPH0747152 A JP H0747152A JP 5195891 A JP5195891 A JP 5195891A JP 19589193 A JP19589193 A JP 19589193A JP H0747152 A JPH0747152 A JP H0747152A
Authority
JP
Japan
Prior art keywords
fiber
resin
reinforced
thermoplastic resin
thermosetting resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5195891A
Other languages
Japanese (ja)
Inventor
Kazuyuki Obara
和幸 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP5195891A priority Critical patent/JPH0747152A/en
Publication of JPH0747152A publication Critical patent/JPH0747152A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide a fiber-reinforced resin racket frame which is excellent in vibration attenuation property, better in ball hitting touch and free from environmental change while keeping a sufficient practical strength, rigidity and durability. CONSTITUTION:In this fiber-reinforced resin racket frame comprising a fiber- reinforced thermosetting resin and a fiber-reinforced thermoplastic resin, an area where a thermosetting resin and a thermoplastic resin or the thermosetting resin, the thermoplastic resin and a reinforced fiber are mixed exists on the boundary between the fiber-reinforced thermosetting resin and the fiber- reinforced thermoplastic resin.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、テニス、バトミント
ン、スカッシュ等に使用するラケットを構成するフレー
ムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a frame constituting a racket used for tennis, badminton, squash and the like.

【0002】[0002]

【従来の技術】近年、ラケットフレームは繊維強化樹脂
製のものがその軽量性、高剛性、高強度、耐久性等の特
徴を生かして主流になってきている。それに用いられる
強化用繊維の形態としては、長繊維、短繊維、ウィスカ
ー等が、マトリックス樹脂としては、エポキシ樹脂等の
熱硬化性樹脂が主流であるが、一部でナイロン、ポリフ
ェニレンエーテル等の熱可塑性樹脂が使用されている。
2. Description of the Related Art In recent years, racket frames made of fiber reinforced resin have become mainstream due to their features such as light weight, high rigidity, high strength and durability. The form of reinforcing fibers used for it is long fibers, short fibers, whiskers, etc., and as the matrix resin, thermosetting resins such as epoxy resins are the mainstream, but some of them are made of heat such as nylon or polyphenylene ether. A plastic resin is used.

【0003】通常、ラケットフレームは炭素繊維の様な
高強度、高弾性率の繊維で強化された熱硬化性樹脂から
一体的に成形されている。この材料は剛性が高く優れた
ものであるが、衝撃を受けた時に振動が発生しやすく、
人にテニスエルボー等の傷害を与え易い。近年、強化用
繊維として長繊維を使用した繊維強化熱可塑性樹脂製の
ラケットフレームも一部に見られ、熱可塑性樹脂の有す
る靭性の高さを反映して、従来の熱硬化性樹脂製ラケッ
トフレームでは達し得なかった耐衝撃性、振動減衰性な
どの特性が得られている。しかし、一般に熱可塑性樹脂
は熱硬化性樹脂に比較し、弾性率の環境依存性が大き
く、ラケットフレームの使用環境に依り、剛性等の特性
が変化し易いという欠点がある。
Usually, the racket frame is integrally formed from a thermosetting resin reinforced with fibers having high strength and high elastic modulus such as carbon fibers. This material has high rigidity and is excellent, but vibration is likely to occur when it receives an impact,
It is easy to injure a person such as a tennis elbow. In recent years, some racket frames made of fiber-reinforced thermoplastic resin using long fibers as reinforcing fibers have been found, and reflecting the high toughness of the thermoplastic resin, the racket frame made of conventional thermosetting resin is used. The characteristics such as impact resistance and vibration damping which could not be achieved by are obtained. However, in general, a thermoplastic resin has a large environmental dependency of elastic modulus as compared with a thermosetting resin, and has a drawback that characteristics such as rigidity are easily changed depending on a use environment of a racket frame.

【0004】特開平1−121074号公報には、振動
の減衰作用の高い長繊維強化熱可塑性樹脂と特性の環境
依存性が小さい長繊維強化熱硬化性樹脂とからなるラケ
ットフレームを形成する事が開示されている。マトリッ
クス樹脂として熱可塑性樹脂と熱硬化性樹脂を使用する
場合、必ずしも両樹脂の親和性が高いとは限らず、両樹
脂の界面における接着性が充分でない場合も生ずる。従
って、両樹脂の界面における接着性を確保するために、
両樹脂の親和性、界面の構造を充分に制御する必要があ
る。
In Japanese Patent Application Laid-Open No. 1-121074, a racket frame composed of a long fiber reinforced thermoplastic resin having a high vibration damping effect and a long fiber reinforced thermosetting resin having a small environmental dependency of properties is formed. It is disclosed. When a thermoplastic resin and a thermosetting resin are used as the matrix resin, the affinity between the two resins is not always high, and the adhesiveness at the interface between the two resins may not be sufficient. Therefore, in order to secure the adhesiveness at the interface between both resins,
It is necessary to sufficiently control the affinity of both resins and the structure of the interface.

【0005】しかしながら、特開平1−121074号
公報には、長繊維強化熱硬化性樹脂が硬化する際、長繊
維強化熱可塑性樹脂のマトリックス樹脂が溶融ないし軟
化するため、密着性が高くなるとの記載しかなく、衝撃
を繰り返しうけるラケットフレームの耐久性を充分に確
保できる界面の接着性が得られるとはいい難い。さらに
熱可塑性樹脂の融点ないし軟化点が熱硬化性樹脂の硬化
温度より低い場合、耐熱性に劣るラケットフレームとな
る可能性がある。
However, Japanese Patent Laid-Open No. 1-121074 describes that when the long fiber reinforced thermosetting resin is cured, the matrix resin of the long fiber reinforced thermoplastic resin is melted or softened, so that the adhesion is improved. However, it is difficult to say that the adhesiveness of the interface that can sufficiently secure the durability of the racket frame that receives repeated impacts can be obtained. Further, when the melting point or softening point of the thermoplastic resin is lower than the curing temperature of the thermosetting resin, the racket frame may have poor heat resistance.

【0006】[0006]

【発明が解決しようとする課題】本発明は、充分な実用
的強度、剛性、耐久性を有しながら、振動減衰性が優れ
ており、打球感が良くかつ使用環境に依り特性が変化し
ない繊維強化樹脂製ラケットフレームを提供するもので
ある。
DISCLOSURE OF THE INVENTION According to the present invention, while having sufficient practical strength, rigidity and durability, the vibration damping property is excellent, the feel at impact is good, and the characteristics do not change depending on the use environment. A racket frame made of reinforced resin is provided.

【0007】[0007]

【課題を解決するための手段】本発明のラケットフレー
ムは繊維強化熱硬化性樹脂と繊維強化熱可塑性樹脂とか
らなる繊維強化樹脂製ラケットフレームにおいて、繊維
強化熱硬化性樹脂と繊維強化熱可塑性樹脂の境界で熱硬
化性樹脂と熱可塑性樹脂または熱硬化性樹脂と熱可塑性
樹脂と強化繊維が混在する領域が存在することを特徴と
する繊維強化樹脂製ラケットフレームである。
The racket frame of the present invention is a fiber-reinforced resin racket frame comprising a fiber-reinforced thermosetting resin and a fiber-reinforced thermoplastic resin, which is a fiber-reinforced thermosetting resin and a fiber-reinforced thermoplastic resin. The fiber-reinforced resin racket frame is characterized in that a region in which the thermosetting resin and the thermoplastic resin or the thermosetting resin, the thermoplastic resin, and the reinforcing fiber are mixed is present at the boundary of.

【0008】本発明における繊維強化熱硬化性樹脂のマ
トリックス樹脂としては、エポキシ樹脂不飽和ポリエス
テル樹脂、フェノール樹脂、ポリイミド樹脂をはじめ各
種の熱硬化性樹脂を使用できるが中でも、エポキシ樹脂
が好ましい。本発明における繊維強化熱硬化性樹脂の強
化繊維は、炭素繊維、ガラス繊維、アラミド繊維、炭化
珪素繊維、アルミナ繊維など公知の高強度、高弾性率繊
維が単独または組み合わせて用いられるが、強化効率、
軽量化の観点から炭素繊維が最も好ましく用いられる。
強化繊維としては長繊維、短繊維、ウィスカー等が利用
できるが、強化効率の点から長繊維が好ましく用いられ
る。
As the matrix resin of the fiber-reinforced thermosetting resin in the present invention, various thermosetting resins such as epoxy resin unsaturated polyester resin, phenol resin and polyimide resin can be used, and among them, epoxy resin is preferable. The reinforcing fiber of the fiber-reinforced thermosetting resin in the present invention, carbon fiber, glass fiber, aramid fiber, silicon carbide fiber, known high strength fiber such as alumina fiber is used alone or in combination, the reinforcing efficiency ,
From the viewpoint of weight reduction, carbon fiber is most preferably used.
As the reinforcing fibers, long fibers, short fibers, whiskers and the like can be used, but long fibers are preferably used from the viewpoint of reinforcing efficiency.

【0009】本発明における繊維強化熱可塑性樹脂のマ
トリックス樹脂としては、ポリオレフィン樹脂、ポリエ
ステル樹脂、ポリアミド樹脂、アクリル樹脂、ポリオキ
シメチレン樹脂、ポリカーボネート樹脂、ポリフェニレ
ンエーテル樹脂、ポリスチレン樹脂、ポリエーテルケト
ン樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテ
ルスルホン樹脂、ポリフェニレンスルフィド樹脂、ポリ
エーテルイミド樹脂などを用いる事ができる。これらは
共重合体、アロイ、ブレンド、コンパウンドに成ってい
ても良い。
The matrix resin of the fiber-reinforced thermoplastic resin in the present invention includes polyolefin resin, polyester resin, polyamide resin, acrylic resin, polyoxymethylene resin, polycarbonate resin, polyphenylene ether resin, polystyrene resin, polyether ketone resin, poly Ether ether ketone resin, polyether sulfone resin, polyphenylene sulfide resin, polyether imide resin and the like can be used. These may be copolymers, alloys, blends, and compounds.

【0010】繊維強化熱可塑性樹脂のマトリックス樹脂
の融点または軟化点は繊維強化熱硬化性樹脂のマトリッ
クス樹脂が硬化前の状態で最低粘度となる温度以上であ
る事が好ましく、更に該最低粘度となる温度以上、30
0℃以下である事が好ましい。成形温度、成形時の界面
制御、成形体の物性により上記温度範囲が好ましい。吸
水によるラケットフレームの特性変化を抑制するため
に、繊維強化熱可塑性樹脂のマトリックス樹脂のAST
M D570に依り測定した吸水率が1.5%以下、更
に好ましくは0.5%以下である事が好ましい。
The melting point or softening point of the matrix resin of the fiber reinforced thermoplastic resin is preferably at least the temperature at which the matrix resin of the fiber reinforced thermosetting resin has the lowest viscosity before curing, and further the minimum viscosity is obtained. Above temperature, 30
It is preferably 0 ° C. or lower. The above temperature range is preferable in view of molding temperature, interface control during molding, and physical properties of the molded product. AST of the matrix resin of fiber reinforced thermoplastic resin in order to suppress the characteristic change of the racket frame due to water absorption
The water absorption measured by MD570 is preferably 1.5% or less, more preferably 0.5% or less.

【0011】繊維強化熱可塑性樹脂のマトリックス樹脂
としては、融点、吸水率が上記範囲であり、更にガラス
転移点が室温以下で、室温における振動減衰性が熱可塑
性樹脂の中でも特に優れるポリプロピレン樹脂、酸化ク
ラッキングにより変性したポリプロピレン樹脂、酸変性
ポリプロピレン樹脂、ポリプロピレン樹脂または酸化ク
ラッキングにより変性したポリプロピレン樹脂または酸
変性ポリプロピレン樹脂を成分とする共重合体、アロ
イ、ブレンド、コンパウンドが好ましく使用される。特
に他樹脂及び強化繊維との接着性に優れる酸化クラッキ
ングにより変性したポリプロピレン樹脂、酸変性ポリプ
ロピレン樹脂、酸化クラッキングにより変性したポリプ
ロピレン樹脂または酸変性ポリプロピレン樹脂を成分と
する共重合体、アロイ、ブレンド、コンパウンドが好ま
しく使用される。
The matrix resin of the fiber-reinforced thermoplastic resin has a melting point and a water absorption coefficient in the above ranges, a glass transition point of room temperature or lower, and a vibration damping property at room temperature which is particularly excellent among the thermoplastic resins. A polypropylene resin modified by cracking, an acid-modified polypropylene resin, a polypropylene resin, or a copolymer containing polypropylene as a component modified by oxidation cracking or an acid-modified polypropylene resin, an alloy, a blend, or a compound is preferably used. Particularly excellent adhesion to other resins and reinforcing fibers polypropylene resin modified by oxidation cracking, acid-modified polypropylene resin, polypropylene resin modified by oxidation cracking or copolymers containing acid-modified polypropylene resin as components, alloys, blends, compounds Is preferably used.

【0012】本発明における繊維強化熱可塑性樹脂の強
化繊維は、炭素繊維、ガラス繊維、アラミド繊維、炭化
珪素繊維、アルミナ繊維など公知の高強度、高弾性率繊
維が単独または組み合わせて用いられるが、強化効率、
軽量化の観点から炭素繊維が最も好ましく用いられる。
強化繊維としては長繊維、短繊維、ウィスカー等が利用
できるが、強化効率の点から長繊維が好ましく用いられ
る。長繊維とは実質的に連続した繊維及び長さ5mm以
上の不連続繊維のことである。強化長繊維の形態として
は実質的に繊維長方向を一方向に引き揃えて配列した
物、織物、ランダムマット等が使用でき、実質的に繊維
長方向を一方向に引き揃えて配列した物が、最も効果的
にマトリックス樹脂を強化でき、好ましい。
As the reinforcing fiber of the fiber-reinforced thermoplastic resin in the present invention, known high-strength and high-modulus fibers such as carbon fiber, glass fiber, aramid fiber, silicon carbide fiber and alumina fiber are used alone or in combination. Strengthening efficiency,
From the viewpoint of weight reduction, carbon fiber is most preferably used.
As the reinforcing fibers, long fibers, short fibers, whiskers and the like can be used, but long fibers are preferably used from the viewpoint of reinforcing efficiency. The long fibers are substantially continuous fibers and discontinuous fibers having a length of 5 mm or more. As the form of the reinforced long fibers, a product in which the fiber length direction is substantially aligned in one direction and arranged, a woven fabric, a random mat, or the like can be used, and a product in which the fiber length direction is substantially aligned in one direction is used. It is preferable since the matrix resin can be reinforced most effectively.

【0013】繊維強化熱可塑性樹脂の成形材料としては
不連続長繊維、短繊維、ウィスカー等を含有した熱可塑
性樹脂ペレット、ランダムマットに熱可塑性樹脂を含浸
したいわゆるスタンピングシート、長繊維織物に熱可塑
性樹脂を含浸した物、実質的に繊維長方向を一方向に引
き揃えて配列した物に熱可塑性樹脂を含浸した物、強化
長繊維と熱可塑性長繊維を引き揃えたまたは混繊した繊
維束を組み紐形態としたものや、すだれ状の形態にした
もの、縦糸に強化長繊維または上記の強化長繊維と熱可
塑性長繊維を引き揃えた、または混繊した繊維束を使用
し、横糸に熱可塑性長繊維を使用して製造した織物、実
質的に繊維長方向を一方向に引き揃えて配列した強化長
繊維集合体と熱可塑性繊維のシートからなる複合シート
であって、該熱可塑性繊維が該シートを構成する強化長
繊維の間に入り込んで交絡一体化している複合シート、
該複合シートを円筒形の組み紐状に加工した物等が使用
できる。ハンドリング性の良さ、成形時の熱可塑性樹脂
の含浸性の良さ、強化効率の高さから、実質的に繊維長
方向を一方向に引き揃えて配列した強化長繊維集合体と
熱可塑性繊維のシートからなる複合シートであって、該
熱可塑性繊維が該シートを構成する強化長繊維の間に入
り込んで交絡一体化している複合シート、該複合シート
を円筒形の組み紐状に加工した物を利用する事が好まし
い。上記各種の繊維強化熱可塑性樹脂の成形材料を製造
する方法は公知の方法を利用できる。
As a molding material of the fiber reinforced thermoplastic resin, thermoplastic resin pellets containing discontinuous long fibers, short fibers, whiskers, etc., a so-called stamping sheet in which a random mat is impregnated with a thermoplastic resin, and a long fiber woven fabric are thermoplastic. A resin-impregnated product, a product in which the fiber length direction is substantially aligned in one direction and a thermoplastic resin-impregnated product, or a fiber bundle in which reinforced long fibers and thermoplastic long fibers are aligned or mixed Braided form, interlaced form, warp yarns made of reinforced long fibers or the above-mentioned reinforced long fibers and thermoplastic long fibers aligned or mixed fiber bundles are used, and the wefts are made of thermoplastic A woven fabric produced using long fibers, which is a composite sheet comprising a sheet of reinforced long fiber aggregates in which the fiber length direction is substantially aligned in one direction and a sheet of thermoplastic fibers, Composite sheet sexual fibers are entangled integrally enters between the reinforcing long fibers constituting the sheet,
A product obtained by processing the composite sheet into a cylindrical braid can be used. A sheet of reinforced long-fiber aggregate and a sheet of thermoplastic fiber in which fiber length directions are substantially aligned in one direction due to good handling property, good impregnation property of thermoplastic resin during molding, and high reinforcement efficiency. A composite sheet in which the thermoplastic fibers are interlaced and integrated between the reinforcing long fibers constituting the sheet, and the composite sheet is processed into a cylindrical braided shape. Things are preferred. A known method can be used as a method for producing the above-mentioned various fiber-reinforced thermoplastic resin molding materials.

【0014】本発明においては、繊維強化熱硬化性樹脂
と繊維強化熱可塑性樹脂が同一のラケットフレームに同
時に存在する事が必要である。繊維強化熱硬化性樹脂と
繊維強化熱可塑性樹脂の存在様式は特に限定されない。
例えば、フレーム部が繊維強化熱可塑性樹脂で、グリッ
プ部が繊維強化熱硬化性樹脂とする様式、またはフレー
ム部が繊維強化熱硬化性樹脂で、グリップ部が繊維強化
熱可塑性樹脂とする様式が挙げられる。また、ラケット
フレームの断面において、内層から発泡合成樹脂−繊維
強化熱可塑性樹脂−繊維強化熱硬化性樹脂の順序で積層
された、または発泡合成樹脂−繊維強化熱硬化性樹脂−
繊維強化熱可塑性樹脂の順序で積層された存在様式、内
層から熱可塑性樹脂チューブ−繊維強化熱可塑性樹脂−
繊維強化熱硬化性樹脂の順序で積層された、または熱可
塑性樹脂チューブ−繊維強化熱硬化性樹脂−繊維強化熱
可塑性樹脂の順序で積層された存在様式、内層から繊維
強化熱可塑性樹脂−繊維強化熱硬化性樹脂の順序で積層
された、または繊維強化熱硬化性樹脂−繊維強化熱可塑
性樹脂の順序で積層された存在様式が例示される。上記
ラケットフレームの断面における存在様式がラケットフ
レーム全長にわたって存在しても良く、ラケットフレー
ムの一部、例えばセレーム部またはグリップ部のみに存
在しても良い。もちろん、存在様式は上記例示に限定さ
れない。
In the present invention, it is necessary that the fiber-reinforced thermosetting resin and the fiber-reinforced thermoplastic resin be present in the same racket frame at the same time. The mode of existence of the fiber-reinforced thermosetting resin and the fiber-reinforced thermoplastic resin is not particularly limited.
For example, the frame part is a fiber reinforced thermoplastic resin and the grip part is a fiber reinforced thermosetting resin, or the frame part is a fiber reinforced thermosetting resin and the grip part is a fiber reinforced thermoplastic resin. To be Further, in the cross section of the racket frame, laminated from the inner layer in the order of foam synthetic resin-fiber reinforced thermoplastic resin-fiber reinforced thermosetting resin, or foam synthetic resin-fiber reinforced thermosetting resin-
Mode of existence in which fiber-reinforced thermoplastic resin is laminated in order, from the inner layer to the thermoplastic resin tube-fiber-reinforced thermoplastic resin-
Existence mode laminated in the order of fiber reinforced thermosetting resin, or laminated in the order of thermoplastic resin tube-fiber reinforced thermosetting resin-fiber reinforced thermoplastic resin, inner layer to fiber reinforced thermoplastic resin-fiber reinforced Exemplified is a mode of existence in which thermosetting resins are laminated in this order or fiber-reinforced thermosetting resin-fiber-reinforced thermoplastic resin is laminated in this order. The manner of existence in the cross section of the racket frame may be present over the entire length of the racket frame, or may be present only in a part of the racket frame, for example, in the selem portion or the grip portion. Of course, the mode of existence is not limited to the above example.

【0015】存在様式としては、繊維強化熱可塑性樹脂
の有する振動減衰性、耐衝撃性を生かし、繊維強化熱硬
化性樹脂の耐環境性を最大限に生かすために、フレーム
部に繊維強化熱可塑性樹脂を用いるのが好ましく、さら
にフレーム部外層に繊維強化熱可塑性樹脂を用いるのが
特に好ましい。本発明で最も肝要な点は、繊維強化熱硬
化性樹脂と繊維強化熱可塑性樹脂の境界で、熱硬化性樹
脂と熱可塑性樹脂または熱硬化性樹脂と熱可塑性樹脂と
強化繊維が混在する事である。混在する事に依り、接着
性が必ずしもいいとは限らない繊維強化熱硬化性樹脂と
繊維強化熱可塑性樹脂の接着性が大幅に向上し、両樹脂
間での剥離等による破壊強度が向上する。従って、ラケ
ットフレームとしての耐久性、耐衝撃性も向上する。
As a mode of existence, in order to make full use of the vibration damping property and the impact resistance of the fiber reinforced thermoplastic resin and to maximize the environmental resistance of the fiber reinforced thermosetting resin, the fiber reinforced thermoplastic resin is added to the frame portion. It is preferable to use a resin, and it is particularly preferable to use a fiber reinforced thermoplastic resin for the outer layer of the frame portion. The most important point in the present invention is that the boundary between the fiber-reinforced thermosetting resin and the fiber-reinforced thermoplastic resin is that the thermosetting resin and the thermoplastic resin or the thermosetting resin and the thermoplastic resin and the reinforcing fiber are mixed. is there. Due to the mixture, the adhesiveness between the fiber-reinforced thermosetting resin and the fiber-reinforced thermoplastic resin, which do not necessarily have good adhesiveness, is significantly improved, and the breaking strength due to peeling between the two resins is improved. Therefore, the durability and impact resistance of the racket frame are also improved.

【0016】繊維強化熱硬化性樹脂と繊維強化熱可塑性
樹脂の境界で熱硬化性樹脂と熱可塑性樹脂又は熱硬化性
樹脂、熱可塑性樹脂、強化繊維を混在させる方法として
は、フレーム部を繊維強化熱可塑性樹脂で、グリップ部
を繊維強化熱硬化性樹脂で作製した後、接着剤で接合す
る方法において、接着剤として相溶性の熱硬化性樹脂と
熱可塑性樹脂が分子レベルで混在した物、或いは溶融状
態では相溶しているが、硬化または凝固が進行すると相
分離する樹脂の組み合わせで、ミクロ相分離構造を持つ
様に混在させた物を用いれば良い。また該樹脂同志とウ
ィスカー、短繊維等の強化繊維を混練した接着剤を用い
ても良い。非相溶性の熱硬化性樹脂と熱可塑性樹脂がマ
クロレベルで混在し、海島構造、ドメイン構造等をとっ
ているアロイ、ブレンドを接着剤として用いても良い
し、更に強化繊維を混練して接着剤としても良い。海島
構造、ドメイン構造を制御し、両樹脂間の接着性を高め
るために、相溶剤を併用しても良い。用いる熱硬化性樹
脂と熱可塑性樹脂はそれぞれ繊維強化熱硬化性樹脂と繊
維強化熱可塑性樹脂のマトリックス樹脂と同種の樹脂を
用いる事が好ましい。
As a method of mixing the thermosetting resin and the thermoplastic resin or the thermosetting resin, the thermoplastic resin and the reinforcing fiber at the boundary between the fiber reinforced thermosetting resin and the fiber reinforced thermoplastic resin, the frame portion is fiber reinforced. Thermoplastic resin, in which the grip part is made of fiber reinforced thermosetting resin and then bonded with an adhesive, in which a compatible thermosetting resin and a thermoplastic resin are mixed at the molecular level as an adhesive, or It is possible to use a combination of resins that are compatible with each other in a molten state but phase-separate when hardening or solidification progresses so that they have a microphase-separated structure. Further, an adhesive obtained by kneading the resin and the reinforcing fibers such as whiskers and short fibers may be used. Incompatible thermosetting resin and thermoplastic resin are mixed at macro level, alloy or blend having sea island structure, domain structure, etc. may be used as an adhesive, and further reinforcing fibers are kneaded and bonded. Good as an agent. A compatibilizer may be used in combination to control the sea-island structure and the domain structure and enhance the adhesiveness between the two resins. As the thermosetting resin and the thermoplastic resin used, it is preferable to use the same kind of resin as the matrix resin of the fiber reinforced thermosetting resin and the fiber reinforced thermoplastic resin, respectively.

【0017】また、別の混在方法としては、予め多孔構
造を持つ発泡体やスパンボンド法、メルトブロー法、ス
パンレース法等で得られた網目構造を有する不織布等を
成形前の繊維強化熱硬化性樹脂と繊維強化熱可塑性樹脂
の境界に配置し、該多孔構造、網目構造内に熱硬化性樹
脂または熱可塑性樹脂を含浸させて混在部分を造る方法
もある。成形前の繊維強化熱硬化性樹脂や繊維強化熱可
塑性樹脂がもともと多孔構造、網目構造を持つものであ
れば、その境界に別の発泡体や不織布を配置させなくて
も、混在部分を得ることができるので好ましい。発泡体
や不織布等を構成する樹脂は、熱可塑性樹脂でも熱硬化
性樹脂でも又、強化繊維を含む熱可塑性樹脂でも熱硬化
性樹脂でも良いが、熱可塑性樹脂または繊維強化熱可塑
性樹脂が好ましい。
As another mixing method, a foamed body having a porous structure, a nonwoven fabric having a network structure obtained by a spunbond method, a melt blow method, a spunlace method, or the like in advance may be fiber-reinforced thermosetting before molding. There is also a method of arranging at the boundary between the resin and the fiber-reinforced thermoplastic resin and impregnating the thermosetting resin or the thermoplastic resin in the porous structure or the network structure to form a mixed portion. If the fiber-reinforced thermosetting resin or fiber-reinforced thermoplastic resin before molding originally has a porous structure or a network structure, it is possible to obtain a mixed part without disposing another foam or nonwoven fabric at the boundary. Is preferable because it can The resin constituting the foam or the nonwoven fabric may be a thermoplastic resin, a thermosetting resin, a thermoplastic resin containing reinforcing fibers or a thermosetting resin, but a thermoplastic resin or a fiber reinforced thermoplastic resin is preferable.

【0018】より具体的には、耐熱性チューブ(例えば
シリコーンゴム、フッソゴムなどの大きな伸びを有する
ゴムチューブやポリイミド、パラ配向アラミドなどの不
融耐熱性重合体のチューブなど)を芯材にし、該耐熱性
チューブに繊維強化熱可塑性樹脂を被覆し、さらに、そ
の外層に連通多孔性の熱可塑性樹脂シート、繊維強化熱
硬化性樹脂で被覆した後、金型内にセットし、耐熱性チ
ューブに液体または気体を送り圧力をかけるとともに成
形材料を加熱成形し、耐熱性チューブを取り除く方法が
挙げられる。連通多孔性の熱可塑性樹脂シートは繊維強
化熱可塑性樹脂のマトリックス樹脂と同種の樹脂である
事が好ましい。連通多孔に繊維強化熱硬化性樹脂のマト
リックス樹脂が含浸するためには、連通多孔性の熱可塑
性樹脂は融点または軟化点が繊維強化熱硬化性樹脂のマ
トリックス樹脂が硬化前の状態で最低粘度となる温度以
上である事が好ましく、更に該最低粘度となる温度以
上、300℃以下である事が好ましい。連通多孔に繊維
強化熱硬化性樹脂のマトリックス樹脂が含浸しすぎ、繊
維強化熱可塑性樹脂にまで達すると多孔性シートを配置
した効果が低下するので、成形条件を最適化するととも
に、硬化前の繊維強化熱硬化性樹脂のマトリックス樹脂
は一定昇温速度で加熱しながら粘度測定した際、30℃
での粘度と最低粘度との比が100以下、好ましくは5
0以下、更に好ましくは10以下である事が好ましい。
このような樹脂は、公知の増粘効果を有する成分或いは
粒子を適宜添加する事で得られる。例えば、アエロジル
の添加による増粘により、所望の樹脂が得られる。30
℃における粘度は1000〜50000ポイズ、好まし
くは5000〜20000ポイズである。熱硬化性繊維
強化樹脂の室温でのハンドリング性と硬化時の流動挙動
制御を両立させるには上記粘度であることが好ましい。
上記した接着剤を用いる方法では、このような問題はお
こらないので、粘度比を特に限定する必要はない。連通
多孔性の熱可塑性樹脂シートの代わりに網目構造を有す
る不織布を用いても良い。
More specifically, a heat-resistant tube (for example, a rubber tube having a large elongation such as silicone rubber or fluorine rubber or a tube of a non-melting heat-resistant polymer such as polyimide or para-oriented aramid) is used as a core material, The heat-resistant tube is coated with fiber-reinforced thermoplastic resin, and the outer layer is covered with a continuous porous thermoplastic resin sheet and fiber-reinforced thermosetting resin, then set in a mold and the liquid is put into the heat-resistant tube. Alternatively, a method may be mentioned in which a heat-resistant tube is removed by feeding a gas to apply pressure and thermoforming a molding material. The continuous porous thermoplastic resin sheet is preferably the same resin as the matrix resin of the fiber reinforced thermoplastic resin. In order to impregnate the continuous pores with the matrix resin of the fiber-reinforced thermosetting resin, the continuous porous thermoplastic resin has a melting point or a softening point of which the matrix resin of the fiber-reinforced thermosetting resin has the minimum viscosity in the state before curing. It is preferable that the temperature is not lower than the above temperature, and it is more preferable that the temperature is not less than the temperature at which the minimum viscosity is reached and not higher than 300 ° C. The matrix resin of the fiber-reinforced thermosetting resin is overly impregnated into the communicating pores, and when the fiber-reinforced thermoplastic resin is reached, the effect of placing the porous sheet decreases, so the molding conditions are optimized and the fiber before curing is The matrix resin of the reinforced thermosetting resin is 30 ° C when the viscosity is measured while heating at a constant temperature rising rate.
The ratio of the minimum viscosity to the minimum viscosity is 100 or less, preferably 5
It is preferably 0 or less, more preferably 10 or less.
Such a resin can be obtained by appropriately adding a known component or particle having a thickening effect. For example, the desired resin can be obtained by thickening by adding Aerosil. Thirty
The viscosity at 1000C is 1000 to 50,000 poise, preferably 5000 to 20,000 poise. It is preferable that the viscosity is in the above range in order to make the handling property of the thermosetting fiber-reinforced resin at room temperature compatible with the flow behavior control during curing.
In the method using the above-mentioned adhesive, such a problem does not occur, so that it is not necessary to particularly limit the viscosity ratio. Instead of the continuous porous thermoplastic resin sheet, a nonwoven fabric having a mesh structure may be used.

【0019】耐熱性チューブの代わりに発泡合成樹脂、
熱可塑性樹脂チューブを芯材として用いても良い。芯材
へ被覆する順序は上記例示の順序に限定されるものでは
ない。実質的に繊維長方向を一方向に引き揃えて配列し
た強化長繊維集合体と熱可塑性繊維のシートからなる複
合シートであって、該熱可塑性繊維が該シートを構成す
る強化長繊維の間に入り込んで交絡一体化している複合
シートで、該熱可塑性繊維のシートが網目構造を有する
不織布である複合シート、該複合シートを円筒形の組み
紐状に加工した物を繊維強化熱可塑性樹脂の成形材料と
して用いる事は好ましく、この場合、予め多孔構造,網
目構造とした熱硬化性樹脂または熱可塑性樹脂を成形前
の繊維強化熱硬化性樹脂と繊維強化熱可塑性樹脂の境界
に配置する必要はない。さらに熱可塑性繊維のシートを
強化長繊維集合体の片面のみに配し交絡一体化した、片
面で強化長繊維が露出した複合シートを用いると、熱可
塑性樹脂、熱硬化性樹脂の両方が強化長繊維集合体に含
浸するため、熱可塑性樹脂と熱硬化性樹脂と強化長繊維
が混在した領域ができ、優れた接着性が得られ、特に好
ましい。
Foamed synthetic resin instead of the heat-resistant tube,
You may use a thermoplastic resin tube as a core material. The order of coating the core material is not limited to the above-exemplified order. A composite sheet comprising a sheet of reinforced long fiber aggregates in which fiber length directions are substantially aligned in one direction and a sheet of thermoplastic fibers, wherein the thermoplastic fibers are present between the reinforced long fibers constituting the sheet. A composite sheet in which the thermoplastic fiber sheet is a non-woven fabric having a mesh structure, and a composite sheet in which the thermoplastic fiber sheet is entangled and integrated with each other; In this case, it is not necessary to dispose a thermosetting resin or a thermoplastic resin having a porous structure or a network structure in advance at the boundary between the fiber-reinforced thermosetting resin and the fiber-reinforced thermoplastic resin before molding. Furthermore, by using a composite sheet in which a sheet of thermoplastic fibers is arranged on only one side of the reinforced long fiber aggregate and entangled and integrated, and the reinforced long fibers are exposed on one side, both the thermoplastic resin and the thermosetting resin are reinforced. Since the fiber aggregate is impregnated, a region in which the thermoplastic resin, the thermosetting resin, and the reinforced long fibers are mixed is formed, and excellent adhesiveness is obtained, which is particularly preferable.

【0020】[0020]

【実施例】以下実施例により本発明を説明するが、本発
明は、実施例により限定されるものではない。尚表1,
2に以下の方法により得られた各ラケットフレームの特
性を示す。 1):フレーム部頭部とグリップ部を固定し、グリップ
部上部に曲げ荷重を加えた時の曲げ破壊強度。 2):ハンマーでフレーム部を叩いた時、グリップ部で
検出される振幅が初期振幅の1/10になるまでの時間
の逆数。 3):1.5mの高さからフレーム部を下にして落下さ
せた時、破壊するまでの落下回数。 4):クリップ部を固定し、ラケットフレーム部先端の
変位が30mmとなるように荷重を繰返し加えて破壊す
るまでの回数。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to the examples. Table 1
2 shows the characteristics of each racket frame obtained by the following method. 1): Bending fracture strength when the frame head and the grip are fixed and a bending load is applied to the upper part of the grip. 2): The reciprocal of the time until the amplitude detected by the grip becomes 1/10 of the initial amplitude when the frame is hit with a hammer. 3): The number of drops until the frame is destroyed when the frame part is dropped from a height of 1.5 m. 4): The number of times until the clip part is fixed and the racket frame part is destroyed by repeatedly applying a load so that the displacement of the tip of the racket frame part is 30 mm.

【0021】[0021]

【実施例1、2】図1に示すテニス用ラケットフレーム
において、フレーム部2を炭素繊維を30wt%混練し
たポリブチレンテレフタレート樹脂を用い、シリンダ温
度260℃、射出圧力1000kg/cm2 、金型温度
70℃で射出成形した。また、グリップ部を炭素繊維強
化エポキシ樹脂を用い、空気で10kg/cm2 加圧
し、160℃×20分で硬化させ、内圧成形した。エポ
キシ樹脂に相溶の共重合ポリエステル樹脂を20wt%
混合した接着剤で上記フレーム部とグリップ部を接合し
て、ラケットフレームを作製した。(実施例1)さらに
上記接着剤に気相成長法炭素繊維(繊維径0.1μm、
繊維長20μm)を10wt%混練した接着剤で上記フ
レーム部とグリップ部を接合して、ラケットフレームを
作製した。(実施例2)
Examples 1 and 2 In the tennis racket frame shown in FIG. 1, the frame portion 2 is made of polybutylene terephthalate resin in which 30 wt% of carbon fiber is kneaded, the cylinder temperature is 260 ° C., the injection pressure is 1000 kg / cm 2 , and the mold temperature is Injection molded at 70 ° C. Further, the grip portion was made of a carbon fiber reinforced epoxy resin, was pressurized with air at 10 kg / cm 2 , was cured at 160 ° C. for 20 minutes, and was molded by internal pressure. 20 wt% of copolyester resin compatible with epoxy resin
The frame portion and the grip portion were joined with the mixed adhesive to produce a racket frame. (Example 1) Furthermore, a carbon fiber (fiber diameter 0.1 μm,
The frame portion and the grip portion were joined with an adhesive obtained by kneading 10 wt% of a fiber length of 20 μm) to produce a racket frame. (Example 2)

【0022】[0022]

【比較例1】接着剤としてエポキシ樹脂を単独で用いた
以外は実施例1と同様にして、ラケットフレームを作製
した。
Comparative Example 1 A racket frame was produced in the same manner as in Example 1 except that epoxy resin was used alone as an adhesive.

【0023】[0023]

【実施例3】シリコンチューブに炭素繊維強化エポキシ
樹脂プリプレグをシートワインディング法で被覆した
後、フレーム部2に相当する部分にマレイン酸変性ポリ
プロピレン樹脂のメルトブロー法による不織布を被覆
し、更に実質的に繊維長方向を一方向に配列した炭素繊
維集合体にマレイン酸変性ポリプロピレン樹脂を溶融含
浸したシートをフレーム部2に相当する部分にシートワ
インディング法で被覆した。
Example 3 A silicon tube was coated with a carbon fiber reinforced epoxy resin prepreg by a sheet winding method, and then a portion corresponding to the frame portion 2 was coated with a non-woven fabric of a maleic acid-modified polypropylene resin by a melt blow method, and further, a fiber was substantially formed. A sheet obtained by melt impregnating a maleic acid-modified polypropylene resin in a carbon fiber aggregate in which the long direction was arranged in one direction was coated on a portion corresponding to the frame portion 2 by a sheet winding method.

【0024】このプリフォームをラケットフレーム金型
に装着した。シリコンチューブの両端より10kg/m
2 の空気圧をかけ、200℃で20分加熱した後、1
30℃で30分加熱してラケットフレームを作製した。
シリコンチューブは室温まで冷却した後、ラケットフレ
ームから取り除いた。炭素繊維強化エポキシ樹脂プリプ
レグのマトリックス樹脂は最低粘度を示す温度が約12
0℃であり、30℃での粘度と最低粘度の比が約25で
あるため、200℃までの昇温過程で軟化流動して、上
記不織布の網目構造内に含浸するが最低粘度が高い為、
繊維強化熱可塑性樹脂シートまでは到達せず不織布内に
留まる。さらに約160℃で該不織布と繊維強化熱可塑
性樹脂シートのマトリックス樹脂が溶融し一体化する。
従って、繊維強化熱硬化性樹脂と繊維強化熱可塑性樹脂
の境界に網目構造に由来する三次元的に熱硬化性樹脂と
熱可塑性樹脂が絡まりあって混在する領域が生成する。
This preform was mounted on a racket frame mold. 10 kg / m from both ends of the silicon tube
After applying air pressure of m 2 and heating at 200 ° C. for 20 minutes, 1
A racket frame was manufactured by heating at 30 ° C. for 30 minutes.
The silicon tube was cooled to room temperature and then removed from the racket frame. The matrix resin of carbon fiber reinforced epoxy resin prepreg has a minimum viscosity of about 12
Since it is 0 ° C. and the ratio of the viscosity at 30 ° C. to the minimum viscosity is about 25, it softens and flows during the temperature rising process up to 200 ° C. and is impregnated into the mesh structure of the nonwoven fabric, but the minimum viscosity is high. ,
It does not reach the fiber-reinforced thermoplastic resin sheet and stays in the nonwoven fabric. Further, at about 160 ° C., the nonwoven fabric and the matrix resin of the fiber-reinforced thermoplastic resin sheet are melted and integrated.
Therefore, at the boundary between the fiber-reinforced thermosetting resin and the fiber-reinforced thermoplastic resin, a region where the thermosetting resin and the thermoplastic resin are three-dimensionally entangled and mixed with each other is generated.

【0025】図2にラケットフレームのフレーム部A−
Aの断面、図3に繊維強化熱硬化性樹脂と繊維強化熱可
塑性樹脂の境界の拡大模式図を示す。
FIG. 2 shows the frame portion A- of the racket frame.
FIG. 3 shows an enlarged schematic view of a boundary between the fiber-reinforced thermosetting resin and the fiber-reinforced thermoplastic resin in a cross section of A.

【0026】[0026]

【比較例2】マレイン酸変性ポリプロピレン樹脂のメル
トブロー法による不織布を被覆しない以外は実施例3と
同様にしてラケットフレームを作製した。繊維強化熱硬
化性樹脂と繊維強化熱可塑性樹脂は明瞭な界面を示し、
熱硬化性樹脂と熱可塑性樹脂の混在する領域は存在しな
かった。
[Comparative Example 2] A racket frame was produced in the same manner as in Example 3 except that the nonwoven fabric of the maleic acid-modified polypropylene resin was not coated by the melt blow method. Fiber-reinforced thermosetting resin and fiber-reinforced thermoplastic resin show a clear interface,
There was no region where the thermosetting resin and the thermoplastic resin were mixed.

【0027】[0027]

【実施例4、5】シリコンチューブに炭素繊維強化エポ
キシ樹脂プリプレグをシートワインディング法で被覆し
た後、更に実質的に繊維長方向を一方向に配列した炭素
繊維集合体にマレイン酸変性ポリプロピレン樹脂のメル
トブロー法による不織布を両面に配置し(実施例4)ま
たは、片面のみに配置し(実施例5)、高圧水流により
炭素繊維集合体の間にマレイン酸変性ポリプロピレン樹
脂の繊維が入り込んで一体化した複合シートをフレーム
部2に相当する部分にシートワインディング法で被覆し
た。このプリフォームをラケットフレーム金型に装着し
た。シリコンチューブの両端より10kg/mm2 の空
気圧をかけ、200℃で20分加熱した後、130℃で
30分加熱してラケットフレームを作製した。シリコン
チューブは室温まで冷却した後、ラケットフレームから
取り除いた。炭素繊維強化エポキシ樹脂プリプレグのマ
トリックス樹脂は最低粘度を示す温度が約120℃であ
り、30℃での粘度と最低粘度の比が約25であった。
実施例4では200℃までの昇温過程で該マトリックス
樹脂が軟化流動して、上記不織布の網目構造内に含浸す
るが最低粘度が高い為、熱可塑性繊維強化樹脂シート内
の炭素繊維までは到達せず不織布内に留まる。さらに約
160℃で繊維強化熱可塑性樹脂シートのマトリックス
樹脂が溶融し、炭素繊維内に含浸するとともに、繊維強
化熱硬化性樹脂と繊維強化熱可塑性樹脂が一体化する。
従って、繊維強化熱硬化性樹脂と繊維強化熱可塑性樹脂
の境界に網目構造に由来する三次元的に熱硬化性樹脂と
熱可塑性樹脂が絡まりあって混在する領域が生成する。
実施例5では炭素繊維が露出した繊維強化熱可塑性樹脂
シートの炭素繊維露出面に繊維強化熱硬化性樹脂プリプ
レグが接しているため、三次元的に熱硬化性樹脂と熱可
塑性樹脂が絡まりあって混在する領域に炭素繊維も共存
し、より強固な境界が形成される。図4に実施例5にお
ける繊維強化熱硬化性樹脂と繊維強化熱可塑性樹脂の境
界の拡大模式図を示す。
[Examples 4 and 5] A silicon tube was coated with a carbon fiber reinforced epoxy resin prepreg by a sheet winding method, and then a carbon fiber aggregate in which the fiber length direction was substantially arranged in one direction was melt-blown with a maleic acid-modified polypropylene resin. The non-woven fabric prepared by the method is arranged on both sides (Example 4) or only on one side (Example 5), and the fibers of the maleic acid-modified polypropylene resin are intercalated and integrated between the carbon fiber aggregates by the high-pressure water flow. The sheet was coated on the portion corresponding to the frame portion 2 by the sheet winding method. This preform was attached to a racket frame mold. Air pressure of 10 kg / mm 2 was applied from both ends of the silicon tube, and after heating at 200 ° C. for 20 minutes, it was heated at 130 ° C. for 30 minutes to produce a racket frame. The silicon tube was cooled to room temperature and then removed from the racket frame. The matrix resin of the carbon fiber reinforced epoxy resin prepreg had a minimum viscosity temperature of about 120 ° C. and a viscosity-minimum ratio at 30 ° C. of about 25.
In Example 4, the matrix resin softens and flows in the process of heating up to 200 ° C. and is impregnated into the network structure of the nonwoven fabric, but since the minimum viscosity is high, the carbon fiber in the thermoplastic fiber reinforced resin sheet is reached. Not stay in the non-woven fabric. Further, at about 160 ° C., the matrix resin of the fiber reinforced thermoplastic resin sheet is melted and impregnated into the carbon fibers, and the fiber reinforced thermosetting resin and the fiber reinforced thermoplastic resin are integrated.
Therefore, at the boundary between the fiber-reinforced thermosetting resin and the fiber-reinforced thermoplastic resin, a region where the thermosetting resin and the thermoplastic resin are three-dimensionally entangled and mixed with each other is generated.
In Example 5, since the fiber reinforced thermosetting resin prepreg is in contact with the carbon fiber exposed surface of the fiber reinforced thermoplastic resin sheet where the carbon fibers are exposed, the thermosetting resin and the thermoplastic resin are entangled three-dimensionally. Carbon fibers also coexist in the mixed region, and a stronger boundary is formed. FIG. 4 shows an enlarged schematic view of the boundary between the fiber-reinforced thermosetting resin and the fiber-reinforced thermoplastic resin in Example 5.

【0028】[0028]

【比較例3】炭素繊維強化エポキシ樹脂のみでラケット
フレームを作製した。
[Comparative Example 3] A racket frame was made only of carbon fiber reinforced epoxy resin.

【0029】[0029]

【発明の効果】本発明は、繊維強化熱可塑性樹脂が有す
る優れた振動減衰性、耐衝撃性を充分生かしながら、繊
維強化熱硬化性樹脂の有する優れた耐環境性等の特性を
損なうことなく存在させるために、境界の成分、構造を
制御する事で境界の接着性及び強度を大幅に向上させる
物である。従って、本発明の繊維強化樹脂製ラケットフ
レームは充分な実用的な強度、剛性、耐久性を有しなが
ら、振動減衰性が優れており、内球感が良くかつ使用環
境に依り変化しない。
INDUSTRIAL APPLICABILITY The present invention makes full use of the excellent vibration damping properties and impact resistance of the fiber-reinforced thermoplastic resin, without impairing the excellent environment resistance and other properties of the fiber-reinforced thermosetting resin. In order to exist, by controlling the composition and structure of the boundary, the adhesiveness and strength of the boundary are greatly improved. Accordingly, the fiber-reinforced resin racket frame of the present invention has sufficient practical strength, rigidity, and durability, but also has excellent vibration damping properties, a good feeling of inner sphere, and no change depending on the use environment.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【図面の簡単な説明】[Brief description of drawings]

【図1】テニスラケットの正面図である。FIG. 1 is a front view of a tennis racket.

【図2】実施例3におけるA−A線断面図である。FIG. 2 is a sectional view taken along line AA in the third embodiment.

【図3】実施例3におけるA−A線断面図の繊維強化熱
硬化性樹脂と繊維強化熱可塑性樹脂の境界の拡大模式図
である。
FIG. 3 is an enlarged schematic view of a boundary between a fiber reinforced thermosetting resin and a fiber reinforced thermoplastic resin in a cross-sectional view taken along the line AA in Example 3.

【図4】実施例5におけるA−A線断面の繊維強化熱硬
化性樹脂と繊維強化熱可塑性樹脂の境界の拡大模式図で
ある。
FIG. 4 is an enlarged schematic view of a boundary between a fiber-reinforced thermosetting resin and a fiber-reinforced thermoplastic resin taken along a line AA in Example 5.

【符号の説明】[Explanation of symbols]

1 ラケットフレーム 2 フレーム部 3 グリップ部 4 繊維強化熱硬化性樹脂 5 繊維強化熱可塑性樹脂 6 熱硬化性樹脂 7 熱可塑性樹脂 8 炭素繊維 9 中空部 10 熱硬化性樹脂、熱可塑性樹脂又は熱硬化性樹脂、
熱可塑性樹脂、炭素繊維が混在している領域
1 Racket Frame 2 Frame Part 3 Grip Part 4 Fiber Reinforced Thermosetting Resin 5 Fiber Reinforced Thermoplastic Resin 6 Thermosetting Resin 7 Thermoplastic Resin 8 Carbon Fiber 9 Hollow Part 10 Thermosetting Resin, Thermoplastic Resin, or Thermosetting Resin resin,
Area where thermoplastic resin and carbon fiber are mixed

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 繊維強化熱硬化性樹脂と繊維強化熱可塑
性樹脂とからなる繊維強化樹脂製ラケットフレームにお
いて、少なくとも繊維強化熱硬化性樹脂と繊維強化熱可
塑性樹脂の境界で熱硬化性樹脂と熱可塑性樹脂が混在す
ることを特徴とする繊維強化樹脂製ラケットフレーム。
1. A racket frame made of a fiber-reinforced thermosetting resin and a fiber-reinforced thermoplastic resin, the racket frame being made of the fiber-reinforced resin, and the thermosetting resin and the heat being applied at least at the boundary between the fiber-reinforced thermosetting resin and the fiber-reinforced thermoplastic resin. A racket frame made of fiber reinforced resin, which is characterized by a mixture of plastic resins.
【請求項2】 繊維強化熱硬化性樹脂と繊維強化熱可塑
性樹脂とからなる繊維強化樹脂製ラケットフレームにお
いて、少なくとも繊維強化熱硬化性樹脂と繊維強化熱可
塑性樹脂の境界で熱硬化性樹脂と熱可塑性樹脂と強化繊
維が混在することを特徴とする繊維強化樹脂製ラケット
フレーム。
2. A racket frame made of a fiber reinforced thermosetting resin and a fiber reinforced thermoplastic resin, the racket frame being made of the fiber reinforced resin, and the thermosetting resin and the heat at least at the boundary between the fiber reinforced thermosetting resin and the fiber reinforced thermoplastic resin. A racket frame made of fiber reinforced resin, characterized in that a plastic resin and reinforcing fibers are mixed.
JP5195891A 1993-08-06 1993-08-06 Fiber-reinforced resin racket frame Withdrawn JPH0747152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5195891A JPH0747152A (en) 1993-08-06 1993-08-06 Fiber-reinforced resin racket frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5195891A JPH0747152A (en) 1993-08-06 1993-08-06 Fiber-reinforced resin racket frame

Publications (1)

Publication Number Publication Date
JPH0747152A true JPH0747152A (en) 1995-02-21

Family

ID=16348712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5195891A Withdrawn JPH0747152A (en) 1993-08-06 1993-08-06 Fiber-reinforced resin racket frame

Country Status (1)

Country Link
JP (1) JPH0747152A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004060658A1 (en) * 2002-12-27 2004-07-22 Toray Industries, Inc. Layered product, electromagnetic-shielding molded object, and processes for producing these
JP2004269878A (en) * 2003-02-21 2004-09-30 Toray Ind Inc Fiber-reinforced composite material, method for producing the same and integrally molded product
JP2006044264A (en) * 2004-07-08 2006-02-16 Toray Ind Inc Decorative molded article and its production method
JP2006044261A (en) * 2004-07-08 2006-02-16 Toray Ind Inc Fiber-reinforced composite material, its production method and integrally structured material using it
CN100421924C (en) * 2002-12-27 2008-10-01 东丽株式会社 Layered product, electromagnetic-shielding molded object, and processes for producing these
JP2009533238A (en) * 2006-02-17 2009-09-17 ロジャーズ、ウィリアム COMPOSITE STRUCTURE ARTICLE AND METHOD FOR PRODUCING COMPOSITE STRUCTURE ARTICLE
US8877330B2 (en) 2004-02-27 2014-11-04 Toray Industries, Inc. Fiber-reinforced composite sheet
JP2016124182A (en) * 2014-12-26 2016-07-11 日産自動車株式会社 Bonded structure bonding method
US10751957B2 (en) 2014-11-18 2020-08-25 Toray Industries, Inc. Laminate, integrated molding, and method of producing same
WO2020235486A1 (en) * 2019-05-23 2020-11-26 東レ株式会社 Prepreg, multilayer body and molded article

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004060658A1 (en) * 2002-12-27 2004-07-22 Toray Industries, Inc. Layered product, electromagnetic-shielding molded object, and processes for producing these
US8415007B2 (en) 2002-12-27 2013-04-09 Toray Industries, Inc. Layered product
CN100421924C (en) * 2002-12-27 2008-10-01 东丽株式会社 Layered product, electromagnetic-shielding molded object, and processes for producing these
US8092897B2 (en) 2002-12-27 2012-01-10 Toray Industries, Inc. Layered product, electromagnetic-shielding molded object, and processes for producing these
JP4543696B2 (en) * 2003-02-21 2010-09-15 東レ株式会社 FIBER-REINFORCED COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND INTEGRATED MOLDED ARTICLE
JP2004269878A (en) * 2003-02-21 2004-09-30 Toray Ind Inc Fiber-reinforced composite material, method for producing the same and integrally molded product
US8877330B2 (en) 2004-02-27 2014-11-04 Toray Industries, Inc. Fiber-reinforced composite sheet
TWI464199B (en) * 2004-02-27 2014-12-11 Toray Industries Plate-like carbon fiber-reinforced composite material plate, fiber-reinforced composite material plate and integrated molded article
US9963576B2 (en) 2004-02-27 2018-05-08 Toray Industríes, Inc. Fiber-reinforced composite sheet and integrated molding
JP2006044261A (en) * 2004-07-08 2006-02-16 Toray Ind Inc Fiber-reinforced composite material, its production method and integrally structured material using it
JP2006044264A (en) * 2004-07-08 2006-02-16 Toray Ind Inc Decorative molded article and its production method
JP2009533238A (en) * 2006-02-17 2009-09-17 ロジャーズ、ウィリアム COMPOSITE STRUCTURE ARTICLE AND METHOD FOR PRODUCING COMPOSITE STRUCTURE ARTICLE
US10751957B2 (en) 2014-11-18 2020-08-25 Toray Industries, Inc. Laminate, integrated molding, and method of producing same
JP2016124182A (en) * 2014-12-26 2016-07-11 日産自動車株式会社 Bonded structure bonding method
WO2020235486A1 (en) * 2019-05-23 2020-11-26 東レ株式会社 Prepreg, multilayer body and molded article

Similar Documents

Publication Publication Date Title
US5301940A (en) Baseball bat and production thereof
US4443507A (en) Heat-moldable laminate and process for molding said laminated structures
CA2366584C (en) Composite comprising structural and non structural fibers
US4612241A (en) Impact resistant composites with elastomeric fibers
KR20140079819A (en) Composite laminate having improved impact strength and the use thereof
JPH0747152A (en) Fiber-reinforced resin racket frame
US20050233824A1 (en) Golf club shaft
US5114145A (en) Tennis racket frame
JP2004229869A (en) Golf club head
JPH0747155A (en) Fiber reinforced resin bat
JPH07100943A (en) Pipe made of fiber-reinforced resin
JP2515222B2 (en) Racket frame
CA3096604A1 (en) Layered article
JPH09216958A (en) Prepreg
JPH0533645B2 (en)
JP3831039B2 (en) Racket frame and manufacturing method thereof
CA2125343C (en) Hockey stick shaft
JP2004202004A (en) Bat made of fiber reinforced plastic
JP3709716B2 (en) racket
JP2004202001A (en) Racket frame
JP3810142B2 (en) Epoxy resin composition for fiber reinforced composite materials
JPH10174729A (en) Racket and production of this racket
JPH0314205Y2 (en)
JP2621399B2 (en) Glass fiber reinforced plastic
JPH0281624A (en) Long article such as fishing rod

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001031