JP4543696B2 - FIBER-REINFORCED COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND INTEGRATED MOLDED ARTICLE - Google Patents

FIBER-REINFORCED COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND INTEGRATED MOLDED ARTICLE Download PDF

Info

Publication number
JP4543696B2
JP4543696B2 JP2004045963A JP2004045963A JP4543696B2 JP 4543696 B2 JP4543696 B2 JP 4543696B2 JP 2004045963 A JP2004045963 A JP 2004045963A JP 2004045963 A JP2004045963 A JP 2004045963A JP 4543696 B2 JP4543696 B2 JP 4543696B2
Authority
JP
Japan
Prior art keywords
fiber
composite material
reinforced composite
resin composition
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004045963A
Other languages
Japanese (ja)
Other versions
JP2004269878A (en
Inventor
敦岐 土谷
春夫 尾原
雅登 本間
壮一 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2004045963A priority Critical patent/JP4543696B2/en
Publication of JP2004269878A publication Critical patent/JP2004269878A/en
Application granted granted Critical
Publication of JP4543696B2 publication Critical patent/JP4543696B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4805Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
    • B29C65/481Non-reactive adhesives, e.g. physically hardening adhesives
    • B29C65/4815Hot melt adhesives, e.g. thermoplastic adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/50Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like
    • B29C65/5057Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like positioned between the surfaces to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8207Testing the joint by mechanical methods
    • B29C65/8215Tensile tests
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7212Fibre-reinforced materials characterised by the composition of the fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7214Fibre-reinforced materials characterised by the length of the fibres
    • B29C66/72143Fibres of discontinuous lengths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7394General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoset
    • B29C66/73941General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoset characterised by the materials of both parts being thermosets

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Description

本発明は、マトリクス樹脂が連続した強化繊維で強化された繊維強化複合材料(FRP)およびその製造方法に関し、詳しくはこの繊維強化複合材料を用いた一体化成形品が、廃棄するときに、成形品を容易に剥離・分解ができ、再利用のための分別が極めて容易にできる繊維強化複合材料およびその製造方法を提供するものである。この繊維強化複合材料を用いた一体化成形品は電気・電子機器、OA機器、家電機器、自動車あるいは建材の、部品、部材あるいは筐体などに用いられる。   The present invention relates to a fiber reinforced composite material (FRP) in which a matrix resin is reinforced with continuous reinforcing fibers and a method for producing the same, and more particularly, when an integrated molded product using the fiber reinforced composite material is discarded. The present invention provides a fiber-reinforced composite material that can be easily peeled and disassembled and can be separated very easily for reuse, and a method for producing the same. The integrated molded product using the fiber reinforced composite material is used for parts, members, or casings of electric / electronic devices, OA devices, home appliances, automobiles or building materials.

繊維強化プラスチックは、成形性、薄肉、軽量、高剛性、生産性、経済性に優れ、電気・電子機器部品、自動車機器部品、パソコン、OA機器、AV機器、携帯電話、電話機、ファクシミリ、家電製品、玩具用品などの電気・電子機器の部品や筐体に頻繁に使用されている。しかし、例えば強化繊維の長繊維群が層状に積層されて配置された形態の繊維強化プラスチック板は、特に薄肉、軽量、高剛性に優れた素材であるが、複雑形状の成形品を量産性よく容易に生産するのには不向きであった。   Fiber reinforced plastics are excellent in moldability, thin wall, light weight, high rigidity, productivity, and economical efficiency. Electrical / electronic equipment parts, automotive equipment parts, personal computers, OA equipment, AV equipment, mobile phones, telephones, facsimiles, home appliances. It is frequently used for parts and casings of electrical and electronic equipment such as toy supplies. However, for example, fiber reinforced plastic plates in a form in which long fiber groups of reinforcing fibers are arranged in layers are materials that are particularly thin-walled, lightweight, and highly rigid. It was unsuitable for easy production.

一方、Mg合金などの金属材料も、複雑形状化が容易であるなどの利点から、パソコン、携帯電話、携帯情報端末、OA機器などの電子機器や自動車や建材などの部品、部材や筐体に用いられるようになった。しかし、全ての部品等に金属材料を採用しようとしても、Mg合金でも繊維強化プラスチックよりも比重が大きく十分な軽量化効果が得られない、またコスト高になるなどの問題があった。   On the other hand, metal materials such as Mg alloys can be used for electronic devices such as personal computers, mobile phones, personal digital assistants, office automation equipment, automobiles, building materials, etc. It came to be used. However, even when trying to use metal materials for all parts, Mg alloy has a problem that the specific gravity is larger than fiber reinforced plastic and a sufficient weight reduction effect cannot be obtained, and the cost is increased.

そこで、繊維強化プラスチック板などの複合材料を、金属部材や他の射出成型品等と一体的に接合させる技術が求められている。このような異なる材質からなる部材同士を一体化させた成形品は、接合部における接着性がその機能上極めて重要な問題となる。   Therefore, there is a demand for a technique for integrally bonding a composite material such as a fiber reinforced plastic plate to a metal member or another injection molded product. In a molded product in which members made of different materials are integrated, the adhesiveness at the joint becomes a very important problem in terms of function.

一体化方法としては、接着剤を使用したものが従来より一般に採用されていた。   As an integration method, a method using an adhesive has been generally employed.

例えば、特許文献1には、金属フレームと射出成形したリブをエポキシ樹脂系の塗料で接着した電子機器筐体が開示されている。   For example, Patent Document 1 discloses an electronic device casing in which a metal frame and an injection-molded rib are bonded with an epoxy resin-based paint.

しかし、特許文献1の接着剤を用いる方法では、接着剤の準備工程や塗布工程を必要とするため、生産コストの低減が難しく、また、接着強度の信頼性に十分な満足が得られていないのが現状である。さらに、一体化成形品の廃棄に際しても、異なる材料ごとの分別が困難であり、仮に分離できたとしても、残存する接着剤のコンタミネーションにより再利用が困難となるという問題があった。
特開2001−298277号公報(第1頁、第4行)
However, the method using the adhesive of Patent Document 1 requires an adhesive preparation step and a coating step, so that it is difficult to reduce the production cost and sufficient reliability of the adhesive strength is not obtained. is the current situation. Furthermore, when disposing of the integrally molded product, it is difficult to separate different materials, and even if they can be separated, there is a problem that reuse is difficult due to contamination of the remaining adhesive.
JP 2001-298277 A (first page, fourth line)

本発明は、かかる従来技術の問題点を解消し、他の部材との接着性と力学特性とに優れた繊維強化複合材料および一体化成形品を提供することを目的とする。また、一体化成形品の部材が使用済み後に容易に分解できて再利用可能であることをも目的とする。   The object of the present invention is to provide a fiber-reinforced composite material and an integrally molded article that are free from such problems of the prior art and excellent in adhesion to other members and mechanical properties. It is another object of the present invention to be able to easily disassemble and reuse a member of an integrally molded product after it has been used.

すなわち本発明は、強化繊維と熱硬化性樹脂組成物とを含んでなる繊維強化複合材料であって、その表面の少なくとも一部分に熱可塑性樹脂組成物からなる被膜が形成され、かつ、当該被膜の熱可塑性樹脂組成物を構成する熱可塑性樹脂の溶解度パラメータδ(SP値)が9〜16であり、前記強化繊維のうちの少なくとも一部が、同一の繊維について前記熱硬化性樹脂組成物に埋没する部分と前記熱可塑性樹脂組成物に埋没する部分との双方を有する繊維強化複合材料である That is, the present invention is a fiber reinforced composite material comprising a reinforced fiber and a thermosetting resin composition , wherein a film made of the thermoplastic resin composition is formed on at least a part of the surface of the fiber reinforced composite material . The solubility parameter δ (SP value) of the thermoplastic resin constituting the thermoplastic resin composition is 9 to 16, and at least a part of the reinforcing fibers is embedded in the thermosetting resin composition with respect to the same fiber. a fiber-reinforced composite material that have a both a part portion to be buried in the thermoplastic resin composition.

また本発明は、強化繊維と熱硬化性樹脂組成物を含む熱硬化性プリプレグ積層体の表面の少なくとも一部分に、溶解度パラメータδ(SP値)が9〜16の熱可塑性樹脂を含む熱可塑性樹脂組成物を配置する積層工程と、前記熱硬化性樹脂組成物を構成する熱硬化性樹脂の硬化反応と並行して前記熱可塑性樹脂組成物を溶融し被膜を形成させることにより、前記強化繊維のうちの少なくとも一部が、同一の繊維について前記熱硬化性樹脂組成物に埋没する部分と前記熱可塑性樹脂組成物に埋没する部分との双方を有する構造を設ける加熱成形工程とを含むことを特徴とする繊維強化複合材料の製造方法である。 The present invention also relates to a thermoplastic resin composition comprising a thermoplastic resin having a solubility parameter δ (SP value) of 9 to 16 on at least a part of the surface of a thermosetting prepreg laminate comprising reinforcing fibers and a thermosetting resin composition. a lamination step of placing an object, by forming a parallel with the curing reaction of the thermosetting resin constituting the thermosetting resin composition by melting the thermoplastic resin composition film, among the reinforcing fibers Characterized in that at least a part thereof includes a thermoforming step of providing a structure having both a portion embedded in the thermosetting resin composition and a portion embedded in the thermoplastic resin composition with respect to the same fiber. A method for producing a fiber-reinforced composite material.

また本発明は、本発明の繊維強化複合材料と別の構造部材とが一体に結合されてなることを特徴とする一体化成形品である。   In addition, the present invention is an integrally molded product in which the fiber-reinforced composite material of the present invention and another structural member are integrally bonded.

本発明の繊維強化複合材料は、他の部材と容易に一体化でき、かつ、接合される部材間の優れた接着強度を有する。   The fiber-reinforced composite material of the present invention can be easily integrated with other members and has excellent adhesive strength between the members to be joined.

また本発明の一体化成形品は、力学特性、軽量性に優れ、かつ、廃棄時には容易に解体ができる。さらに、優れた電磁波シールド性の他、薄型、軽量、高剛性を有しており、パソコン、ディスプレイや携帯情報端末などの電気・電子機器の筐体や自動車や建材の部品、部材、筐体として好適である。   Further, the integrally molded product of the present invention is excellent in mechanical properties and light weight, and can be easily disassembled when discarded. In addition to excellent electromagnetic shielding properties, it is thin, lightweight, and highly rigid. As a casing for electrical and electronic devices such as personal computers, displays, and personal digital assistants, and parts, members, and casings for automobiles and building materials. Is preferred.

本発明の繊維強化複合材料は、強化繊維と熱硬化性樹脂組成物とを含んでなる。   The fiber-reinforced composite material of the present invention comprises reinforcing fibers and a thermosetting resin composition.

強化繊維としては例えば、アルミニウム、黄銅、ステンレスなどの金属繊維や、ポリアクリロニトリル系、レーヨン系、リグニン系、ピッチ系の炭素繊維や、黒鉛繊維や、ガラスなどの絶縁性繊維や、アラミド、PBO、ポリフェニレンスルフィド、ポリエステル、アクリル、ナイロン、ポリエチレンなどの有機繊維や、シリコンカーバイト、シリコンナイトライドなどの無機繊維が挙げられる。また、これらの繊維に表面処理が施されているものであっても良い。表面処理としては、導電体として金属の被着処理のほかに、カップリング剤による処理、サイジング剤による処理、添加剤の付着処理などがある。また、これらの強化繊維は1種類を単独で用いてもよいし、2種類以上を併用してもよい。   Examples of reinforcing fibers include metal fibers such as aluminum, brass, and stainless steel, polyacrylonitrile-based, rayon-based, lignin-based, pitch-based carbon fibers, graphite fibers, insulating fibers such as glass, aramid, PBO, Examples thereof include organic fibers such as polyphenylene sulfide, polyester, acrylic, nylon, and polyethylene, and inorganic fibers such as silicon carbide and silicon nitride. These fibers may be subjected to a surface treatment. Examples of the surface treatment include a treatment with a coupling agent, a treatment with a sizing agent, and an adhesion treatment of an additive in addition to a treatment for depositing a metal as a conductor. Moreover, these reinforcing fibers may be used individually by 1 type, and may use 2 or more types together.

中でも、比強度、比剛性、軽量性や導電性のバランスの観点から炭素繊維、とりわけ安価なコストを実現できる点でポリアクリロニトリル系炭素繊維が好適に用いられる。   Among these, carbon fiber, particularly polyacrylonitrile-based carbon fiber is preferably used from the viewpoint of the balance of specific strength, specific rigidity, light weight, and conductivity, and in particular, at a low cost.

また炭素繊維としては、X線光電子分光法により測定されるその繊維表面の酸素(O)と炭素(C)の原子数の比である表面酸素濃度{O/C}が0.05〜0.3であるものが好ましく、より好ましくは0.06〜0.25、さらに好ましくは0.07〜0.2である。表面酸素濃度{O/C}が0.05以上であることにより、炭素繊維表面の極性官能基量を確保し、熱可塑性樹脂組成物との親和性が高くなり強固な接着を得ることができる。また0.3以下であることにより、酸化による炭素繊維自体の強度の低下が少ない。   The carbon fiber has a surface oxygen concentration {O / C}, which is a ratio of the number of oxygen (O) and carbon (C) atoms on the fiber surface measured by X-ray photoelectron spectroscopy, of 0.05 to 0.00. 3 is preferable, more preferably 0.06 to 0.25, and still more preferably 0.07 to 0.2. When the surface oxygen concentration {O / C} is 0.05 or more, the amount of polar functional groups on the surface of the carbon fiber can be secured, and the affinity with the thermoplastic resin composition can be increased and strong adhesion can be obtained. . Moreover, since it is 0.3 or less, the fall of the intensity | strength of carbon fiber itself by oxidation is small.

また、強化繊維の形態としては、平均長さが10mm以上のものが層状に積層され配置されているものが、強化繊維の補強効果を効率的に発現するうえで好ましい。強化繊維の層の形態としては、クロスや、フィラメント、ブレイド、フィラメント束、紡績糸等を一方向にひきそろえた形態を好適に使用できる。一方向にひきそろえた形態の層を積層する場合には、その方向を層ごとにずらしながら積層することが積層体の強度の異方性を小さくする上で好ましい。また、これらの層の形態は、1種類を単独で使用しても2種類以上を併用してもよい。   Moreover, as a form of a reinforced fiber, what has an average length of 10 mm or more is laminated | stacked and arrange | positioned at a layer form is preferable when expressing the reinforcement effect of a reinforced fiber efficiently. As the form of the reinforcing fiber layer, a form in which cloths, filaments, blades, filament bundles, spun yarns and the like are arranged in one direction can be suitably used. In the case of stacking layers in a form aligned in one direction, it is preferable to stack the layers while shifting the direction for each layer in order to reduce the strength anisotropy of the stacked body. Moreover, the form of these layers may be used individually by 1 type, or may use 2 or more types together.

本発明の繊維強化複合材料に対する強化繊維の割合としては、成形性、力学特性と電磁波シールド性の観点から5〜75体積%が好ましく、10〜65体積%がより好ましい。   The ratio of the reinforcing fiber to the fiber-reinforced composite material of the present invention is preferably 5 to 75% by volume, more preferably 10 to 65% by volume from the viewpoints of moldability, mechanical properties, and electromagnetic shielding properties.

熱硬化性樹脂を構成する熱硬化性樹脂としては、ガラス転移温度が60℃以上であることが好ましく、80℃以上であることがより好ましく、100℃以上であることがさらに好ましい。一体化した成形品はその機能が主に発熱体を収納する筐体であることから、通常40℃近辺がその使用環境であり、ガラス転移温度を60℃以上とすることで、力学特性に優れた繊維強化複合材料とすることができる。   As a thermosetting resin which comprises a thermosetting resin, it is preferable that a glass transition temperature is 60 degreeC or more, It is more preferable that it is 80 degreeC or more, It is further more preferable that it is 100 degreeC or more. Since the integrated molded product is a housing that mainly stores the heating element, its use environment is usually around 40 ° C, and the glass transition temperature is 60 ° C or higher, so it has excellent mechanical properties. Fiber reinforced composite material.

熱硬化性樹脂としては例えば、不飽和ポリエステル、ビニルエステル、エポキシ、フェノール(レゾール型)、ユリア・メラミン、ポリイミド等や、これらの共重合体、変性体、あるいは2種類以上ブレンドした樹脂などを使用することができる。中でも、少なくともエポキシ樹脂を含有するものが、繊維強化複合材料の力学特性の観点から好ましい。   Examples of thermosetting resins include unsaturated polyesters, vinyl esters, epoxies, phenols (resol type), urea melamine, polyimides, copolymers, modified products, or resins blended with two or more. can do. Among these, those containing at least an epoxy resin are preferable from the viewpoint of mechanical properties of the fiber-reinforced composite material.

また、耐衝撃性向上のために、熱硬化性樹脂組成物中にエラストマーあるいはゴム成分を添加してもよい。   In order to improve impact resistance, an elastomer or a rubber component may be added to the thermosetting resin composition.

本発明の繊維強化複合材料は、その表面の少なくとも一部に熱可塑性樹脂組成物からなる被膜が形成されてなることが重要である。当該被膜により、他の部材に対する優れた接着性を得ることができる。   It is important that the fiber-reinforced composite material of the present invention has a film formed of a thermoplastic resin composition formed on at least a part of its surface. By the said film, the outstanding adhesiveness with respect to another member can be obtained.

また、発明の繊維強化複合材料は、被膜の熱可塑性樹脂組成物を構成する熱可塑性樹脂の溶解度パラメータδ(SP値)が9〜16であることが重要であり、好ましくは10〜15、より好ましくは11〜14である。上記範囲内とすることにより、熱可塑性樹脂の分子鎖の凝集力が大きく、熱可塑性樹脂組成物自体が容易には破壊しにくくなり、さらに強化繊維との親和性が高まることで強固な接着力を発現することができる。 In the fiber-reinforced composite material of the present invention, it is important that the solubility parameter δ (SP value) of the thermoplastic resin constituting the thermoplastic resin composition of the coating is 9 to 16, preferably 10 to 15, More preferably, it is 11-14. By making it within the above range, the cohesive strength of the molecular chain of the thermoplastic resin is large, the thermoplastic resin composition itself is not easily broken, and the affinity with the reinforcing fiber is further increased, thereby providing a strong adhesive strength. Can be expressed.

かかる溶解度パラメータδを達成しうる熱可塑性樹脂としては例えば、アミド結合、エステル結合、ウレタン結合、エーテル結合、アミノ基、水酸基、カルボキシル基、芳香環などの炭化水素骨格よりも極性の高い結合、官能基あるいは構造を持つものを挙げることができる。かかる熱可塑性樹脂組成物として、アミド結合、エステル結合、ウレタン結合、水酸基等を含むものとしては例えば、ポリアミド系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、EVA樹脂等が挙げられる。芳香環を含むものとしてはスチレン系樹脂やPPS系樹脂等が挙げられる。前記樹脂は、単体での使用だけでなく、これらの共重合体、変性体、およびこれらの少なくとも2種類をブレンドした樹脂等などでもよい。   Examples of the thermoplastic resin that can achieve the solubility parameter δ include bonds having higher polarity than hydrocarbon skeletons such as amide bonds, ester bonds, urethane bonds, ether bonds, amino groups, hydroxyl groups, carboxyl groups, and aromatic rings, and functional groups. Mention may be made of groups or structures. Examples of the thermoplastic resin composition containing an amide bond, an ester bond, a urethane bond, a hydroxyl group, and the like include polyamide resins, polyester resins, polycarbonate resins, and EVA resins. Examples of those containing an aromatic ring include styrene resins and PPS resins. The resin is not limited to being used alone, but may be a copolymer, a modified body, a resin blended with at least two of these, or the like.

また、被膜の熱可塑性樹脂組成物を構成する熱可塑性樹脂の重量平均分子量としては、2,000〜200,000が好ましく、5,000〜150,000がより好ましく、10,000〜100,000が更に好ましい。上記範囲内とすることにより、分子間力や分子鎖の絡み合いが多くなり、熱可塑性樹脂自体の強度が大きくなるため、容易に熱可塑性樹脂自体が破壊しにくくなり、さらに熱可塑性樹脂が溶融時に強化繊維へ含浸しやすくなり、強固な接着力を発現することができる。   Moreover, as a weight average molecular weight of the thermoplastic resin which comprises the thermoplastic resin composition of a film, 2,000-200,000 are preferable, 5,000-150,000 are more preferable, 10,000-100,000 are preferable. Is more preferable. By making it within the above range, intermolecular forces and entanglement of molecular chains increase, and the strength of the thermoplastic resin itself increases, making it difficult for the thermoplastic resin itself to be easily broken, and when the thermoplastic resin melts. It becomes easy to impregnate the reinforcing fiber, and a strong adhesive force can be expressed.

また、被膜の熱可塑性樹脂組成物を構成する熱可塑性樹脂のガラス転移温度としては、15〜300℃が好ましく、より好ましくは40〜250℃、さらに好ましくは80〜200℃である。ガラス転移温度が上記温度範囲内であれば、通常の使用温度である室温付近では熱可塑性樹脂組成物がゴム状態になりにくく、強固な接着性を発現し、高温においてはゴム状態となり接着強度を低くすることができる。   Moreover, as a glass transition temperature of the thermoplastic resin which comprises the thermoplastic resin composition of a film, 15-300 degreeC is preferable, More preferably, it is 40-250 degreeC, More preferably, it is 80-200 degreeC. If the glass transition temperature is within the above temperature range, the thermoplastic resin composition is unlikely to be in a rubber state near room temperature, which is a normal use temperature, and exhibits strong adhesiveness. Can be lowered.

また、被膜の熱可塑性樹脂組成物を構成する熱可塑性樹脂の融点としては、成形品の実用性から100℃以上が好ましく、また、熱硬化性樹脂を硬化させる温度において溶融していることが好ましいので350℃以下が好ましい。より好ましくは100℃〜250℃、さらに好ましくは150〜220℃である。   Further, the melting point of the thermoplastic resin constituting the thermoplastic resin composition of the coating is preferably 100 ° C. or higher from the practicality of the molded product, and preferably melted at a temperature at which the thermosetting resin is cured. Therefore, 350 degrees C or less is preferable. More preferably, it is 100-250 degreeC, More preferably, it is 150-220 degreeC.

本発明の繊維強化複合材料は、強化繊維のうちの少なくとも一部が、同一繊維について熱硬化性樹脂組成物に埋没する部分と被膜の熱可塑性樹脂組成物に埋没する部分との双方を有している。同一の繊維が熱可塑性樹脂組成物と熱可塑性樹脂組成物との両層に埋没し、いわば串刺しの効果により接着界面が補強され、強固な接着を得ることができる。 In the fiber-reinforced composite material of the present invention, at least a part of the reinforcing fibers has both a portion embedded in the thermosetting resin composition and a portion embedded in the thermoplastic resin composition of the coating with respect to the same fiber. Tei Ru. The same fiber is buried in both layers of the thermoplastic resin composition and the thermoplastic resin composition, so that the adhesion interface is reinforced by the effect of skewering, so that strong adhesion can be obtained.

接着界面近傍の様子は、光学顕微鏡、SEMあるいはTEMにより観察することが可能である。観察にあたり、目視による区別を容易にするために、樹脂を染色するなどしてもよい。   The state in the vicinity of the adhesive interface can be observed with an optical microscope, SEM, or TEM. In observation, in order to facilitate visual distinction, resin may be dyed.

また本発明の繊維強化複合材料は、熱可塑性樹脂組成物のトータル表面自由エネルギーEpと前記熱硬化性樹脂組成物のトータル表面自由エネルギーEsとの差の絶対値(|Ep−Es|)が10mJ/m2以下であることが好ましく、より好ましくは7mJ/m2以下、さらに好ましくは5mJ/m2以下である。接着する両者のトータル表面自由エネルギーが近いということは、互いの親和性が高いということになり、10mJ/m2以下とすることで、熱可塑性樹脂組成物が熱硬化性樹脂組成物から剥離してしまうのを防ぐことができる。 In the fiber reinforced composite material of the present invention, the absolute value (| Ep-Es |) of the difference between the total surface free energy Ep of the thermoplastic resin composition and the total surface free energy Es of the thermosetting resin composition is 10 mJ. preferably / m 2 or less and more preferably 7 mJ / m 2, more preferably not more than 5 mJ / m 2. The fact that the total surface free energy of the two to be bonded is close means that the affinity for each other is high, and the thermoplastic resin composition peels from the thermosetting resin composition by setting it to 10 mJ / m 2 or less. Can be prevented.

また本発明の繊維強化複合材料は、熱可塑性樹脂組成物のトータル表面自由エネルギーEpと前記強化繊維のトータル表面自由エネルギーEfとの差の絶対値(|Ep−Ef|)が10mJ/m2以下であることが好ましく、より好ましくは7mJ/m2以下、さらに好ましくは5mJ/m2以下である。10mJ/m2以下とすることで、熱可塑性樹脂組成物が強化繊維から剥離してしまうのを防ぐことができる。 In the fiber-reinforced composite material of the present invention, the absolute value (| Ep−Ef |) of the difference between the total surface free energy Ep of the thermoplastic resin composition and the total surface free energy Ef of the reinforcing fiber is 10 mJ / m 2 or less. Preferably, it is 7 mJ / m 2 or less, more preferably 5 mJ / m 2 or less. By setting it as 10 mJ / m < 2 > or less, it can prevent that a thermoplastic resin composition will peel from a reinforced fiber.

被膜の熱可塑性樹脂組成物には、用途等に応じて充填剤や添加剤が含まれていてもよい。充填剤あるいは添加剤としては、無機充填剤、難燃剤、導電性付与剤、結晶核剤、紫外線吸収剤、酸化防止剤、制振剤、抗菌剤、防虫剤、防臭剤、着色防止剤、熱安定剤、離型剤、帯電防止剤、可塑剤、滑剤、着色剤、顔料、発泡剤、カップリング剤などがある。   The thermoplastic resin composition for the film may contain a filler or an additive depending on the application. As fillers or additives, inorganic fillers, flame retardants, conductivity imparting agents, crystal nucleating agents, ultraviolet absorbers, antioxidants, vibration damping agents, antibacterial agents, insect repellents, deodorants, coloring inhibitors, heat There are stabilizers, mold release agents, antistatic agents, plasticizers, lubricants, colorants, pigments, foaming agents, coupling agents and the like.

特に、難燃性が要求される用途向けに難燃剤の添加や、導電性が要求される用途向けに導電性付与剤の添加が好ましく採用される。難燃剤としては例えば、ハロゲン化合物、アンチモン化合物、リン化合物、窒素化合物、シリコーン化合物、フッ素化合物、フェノール化合物、金属水酸化物などの難燃剤を使用することができる。中でも、環境負荷を抑えるという観点から、ポリリン酸アンモニウム、ポリホスファゼン、ホスフェート、ホスホネート、ホスフィネート、ホスフィンオキシド、赤リンなどのリン化合物が、好ましく使用できる。導電性付与剤としては例えば、カーボンブラック、アモルファスカーボン粉末、天然黒鉛粉末、人造黒鉛粉末、膨張黒鉛粉末、ピッチマイクロビーズ、気相成長炭素繊維、カーボンナノチューブ等を採用することができる。   In particular, the addition of a flame retardant for applications that require flame retardancy, and the addition of a conductivity imparting agent for applications that require electrical conductivity are preferably employed. Examples of flame retardants that can be used include flame retardants such as halogen compounds, antimony compounds, phosphorus compounds, nitrogen compounds, silicone compounds, fluorine compounds, phenol compounds, and metal hydroxides. Among these, from the viewpoint of suppressing environmental burden, phosphorus compounds such as ammonium polyphosphate, polyphosphazene, phosphate, phosphonate, phosphinate, phosphine oxide, and red phosphorus can be preferably used. Examples of the conductivity-imparting agent that can be used include carbon black, amorphous carbon powder, natural graphite powder, artificial graphite powder, expanded graphite powder, pitch microbeads, vapor grown carbon fiber, and carbon nanotube.

被膜の平均厚みとしては、0.1〜1000μmが好ましく、より好ましくは0.5〜500μmであり、さらに好ましくは1〜100μmである。被膜の平均厚みが上記範囲内であれば、強固な接着を得るのに十分である。被膜の平均厚みは、被膜の断面を光学顕微鏡、SEMあるいはTEMにて観察することにより測定できる。   As an average thickness of a film, 0.1-1000 micrometers is preferable, More preferably, it is 0.5-500 micrometers, More preferably, it is 1-100 micrometers. If the average thickness of the coating is within the above range, it is sufficient to obtain strong adhesion. The average thickness of the coating can be measured by observing the cross section of the coating with an optical microscope, SEM, or TEM.

発明の繊維強化複合材料は、被膜上に炭素繊維の単繊維を30重量%含有するナイロン6樹脂を射出成型したときの垂直接着強度が、40℃において10MPa以上であり、かつ140℃において10MPa未満であると良い。例えば、本発明の一体化成形品の主な用途の一つとして、発熱体を収納する筐体では、通常40℃近辺がその使用環境であるから、その環境での使用に耐える接着強度として10MPa以上を確保することが重要であり、好ましくは13MPa以上、より好ましくは18MPa以上である。一方、通常の使用環境よりも高い温度として140℃における接着強度が10MPa未満、好ましくは8MPa以下、より好ましくは6MPa以下とすることにより、一体化成形品の使用済時に予熱することで異なる部材同士を容易に分別して回収・再利用することができる。通常の大気雰囲気下(常圧、50%RH)における熱硬化性樹脂のガラス転移温度は、およそ130〜150℃であって、それ以上の温度においては一般的に使用しないので、その温度領域において接着強度を下げ、繊維強化複合材料と他の成形品が分解しやすくしたことが本発明の大きな特徴である。また、本発明の繊維強化複合材料と接着させる他の部材としての標準材料として、炭素繊維の短繊維を30重量%含有するナイロン6樹脂を採用する。その更なる詳細は、実施例にて後述する。 The fiber-reinforced composite material of the present invention has a vertical adhesive strength of 10 MPa or more at 40 ° C. and 10 MPa at 140 ° C. when a nylon 6 resin containing 30% by weight of carbon fiber single fiber is injection molded on the coating. It is good that it is less than. For example, as one of the main applications of the integrally molded product of the present invention, in a housing that stores a heating element, since the use environment is usually around 40 ° C., the adhesive strength that can withstand use in that environment is 10 MPa. It is important to ensure the above, preferably 13 MPa or more, more preferably 18 MPa or more. On the other hand, the adhesive strength at 140 ° C. as the temperature higher than the normal use environment is less than 10 MPa, preferably 8 MPa or less, more preferably 6 MPa or less, so that different members are preheated when the integrally molded product is used. Can be easily separated and collected and reused. The glass transition temperature of the thermosetting resin under normal atmospheric conditions (normal pressure, 50% RH) is approximately 130 to 150 ° C., and is generally not used at higher temperatures. A major feature of the present invention is that the bond strength is lowered and the fiber-reinforced composite material and other molded articles are easily decomposed. Further, as a standard material as another member to be bonded to the fiber-reinforced composite material of the present invention, nylon 6 resin containing 30% by weight of carbon fiber short fibers is adopted. Further details will be described later in Examples.

本発明の繊維強化複合材料は、その主な用途の一つが例えば電磁波シールド成形品としての電気・電子機器の筐体であるので、その形状に適合させるため、少なくとも1つの略平面部を有していることが好ましく、さらには繊維強化複合材料の最大面積を持つ面の50%以上が略平面を形成していることがより好ましい。用途として電気、電子機器の筐体を想定した場合は、薄肉・軽量性の観点から、積層体の平均厚みは0.1〜3mmであることが好ましく、0.3〜2mmであることがより好ましく、0.4〜1.6mmであることがさらに好ましく、0.5〜1.2mmであることがとりわけ好ましい。ここで、積層体の平均厚みは、上記略平面部における均等に分布した少なくとも5点の測定値の平均値である。なお、平均厚みの測定に当たっては、リブ部、ヒンジ部、凸凹部など意図的に形状を付与した部位は除くものとする。   The fiber-reinforced composite material of the present invention has at least one substantially flat portion in order to adapt to its shape, because one of its main uses is, for example, a casing of an electric / electronic device as an electromagnetic wave shield molded product. Furthermore, it is more preferable that 50% or more of the surface having the maximum area of the fiber-reinforced composite material forms a substantially flat surface. When a case of an electric or electronic device is assumed as an application, the average thickness of the laminate is preferably 0.1 to 3 mm, more preferably 0.3 to 2 mm from the viewpoint of thinness and lightness. Preferably, it is 0.4 to 1.6 mm, more preferably 0.5 to 1.2 mm. Here, the average thickness of the laminated body is an average value of measured values of at least five points evenly distributed in the substantially planar portion. In the measurement of the average thickness, parts that are intentionally given a shape such as a rib part, a hinge part, and a convex concave part are excluded.

また、本発明の繊維強化複合材料は、電気・電子機器の筐体としての用途を想定すると、成形品の破損、撓み、変形から実装する部材を保護するという観点から、ASTM D790に基づく曲げ弾性率が20GPa以上であることが好ましく、より好ましくは30GPa以上である。繊維強化複合材料が面内に曲げ弾性率の異方性を有するときは、その最小値をとり評価する。測定方法の更なる詳細は、実施例にて後述する。   In addition, the fiber-reinforced composite material of the present invention assumes flexural elasticity based on ASTM D790 from the viewpoint of protecting a member to be mounted from breakage, bending, and deformation of a molded product, assuming use as a casing of an electric / electronic device. The rate is preferably 20 GPa or more, more preferably 30 GPa or more. When the fiber reinforced composite material has anisotropy of flexural modulus in the plane, the minimum value is evaluated. Further details of the measurement method will be described later in Examples.

また、本発明の繊維強化複合材料は、アドバンテスト法にて測定される周波数1GHzにおける電波シールド性が30dB以上であることが好ましく、より好ましくは40dB以上、さらに好ましくは50dB以上である。その測定方法の更なる詳細は、実施例にて後述する。   The fiber reinforced composite material of the present invention preferably has a radio wave shielding property at a frequency of 1 GHz measured by the Advantest method of 30 dB or more, more preferably 40 dB or more, and further preferably 50 dB or more. Further details of the measuring method will be described later in Examples.

次に、本発明の一体化成形品は、本発明の繊維強化複合材料と別の構造部材とが熱可塑性樹脂組成物からなる被膜を介して一体に結合されてなる。被膜を介して結合されることにより、強固な一体性を得ることができる。さらには、高温、具体的には構成要素の一部である本発明の繊維強化複合材料の被膜の熱可塑性樹脂膜の融点または軟化点以上の温度、の雰囲気下での剥離・分解性があることにより、廃棄の際にもそれぞれの部材に分離分別することが極めて容易になる。このことは廃棄した成形品を再利用するための労力を大幅に低減させることができる優れた特性である。   Next, the integrally molded article of the present invention is formed by integrally bonding the fiber-reinforced composite material of the present invention and another structural member via a film made of a thermoplastic resin composition. By being coupled through the coating, it is possible to obtain strong integrity. Furthermore, it has peelability and decomposability in an atmosphere at a high temperature, specifically, at a temperature higher than the melting point or softening point of the thermoplastic resin film of the fiber-reinforced composite material of the present invention which is a part of the constituent elements. This makes it very easy to separate and separate each member during disposal. This is an excellent characteristic that can greatly reduce the effort for reusing the discarded molded product.

その接合面においては、接合面の50面積%以上に本発明の繊維強化複合材料の被膜を有していることが好ましく、接合面面積の70%以上がさらに好ましく、接合面の全面に接着層を有していることがとりわけ好ましい。   The bonded surface preferably has a coating of the fiber-reinforced composite material of the present invention on 50% by area or more of the bonded surface, more preferably 70% or more of the bonded surface area, and an adhesive layer on the entire bonded surface. It is particularly preferred to have

また、補助的に、嵌合や嵌め込みなどを併用してなることも好ましい。   In addition, it is also preferable to use a combination of fitting, fitting and the like in an auxiliary manner.

当該「別の部材」としては例えば、アルミニウム、鉄、マグネシウム、チタンおよびこれらとの合金等の金属材料によるものでもよいし、本発明の繊維強化複合材料同士でもよいし、熱可塑性樹脂組成物からなるものでよい。   The “other member” may be, for example, a metal material such as aluminum, iron, magnesium, titanium, and alloys thereof, the fiber-reinforced composite materials of the present invention, or a thermoplastic resin composition. It may be.

また、強化繊維で強化された熱可塑性樹脂組成物を「別の部材」として用いると、金属材料を採用した場合には実現できない軽量性が得られるので好ましい。   In addition, it is preferable to use a thermoplastic resin composition reinforced with reinforcing fibers as “another member” because a light weight that cannot be realized when a metal material is employed is obtained.

「別の部材」に使用される熱可塑性樹脂としては例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンナフタレート(PEN)、液晶ポリエステル等のポリエステルや、ポリエチレン(PE)、ポリプロピレン(PP)、ポリブチレン等のポリオレフィンや、スチレン系樹脂の他や、ポリオキシメチレン(POM)、ポリアミド(PA)、ポリカーボネート(PC)、ポリメチレンメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフェニレンスルフィド(PPS)、ポリフェニレンエーテル(PPE)、変性PPE、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、ポリスルホン(PSU)、変性PSU、ポリエーテルスルホン、ポリケトン(PK)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンケトン(PEKK)、ポリアリレート(PAR)、ポリエーテルニトリル(PEN)、フェノール系樹脂、フェノキシ樹脂、ポリテトラフルオロエチレンなどのフッ素系樹脂、更にポリスチレン系、ポリオレフィン系、ポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系、ポリイソプレン系、フッ素系等の熱可塑エラストマー等や、これらの共重合体、変性体、および2種類以上ブレンドした樹脂などであってもよい。とりわけ、耐熱性、耐薬品性の観点からはPPS樹脂が、成形品外観、寸法安定性の観点からはポリカーボネート樹脂やスチレン系樹脂が、成形品の強度、耐衝撃性の観点からはポリアミド樹脂がより好ましく用いられる。   Examples of the thermoplastic resin used in the “other member” include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polyethylene naphthalate (PEN), polyester such as liquid crystal polyester, In addition to polyolefins such as polyethylene (PE), polypropylene (PP), and polybutylene, and styrene resins, polyoxymethylene (POM), polyamide (PA), polycarbonate (PC), polymethylene methacrylate (PMMA), polychlorinated Vinyl (PVC), polyphenylene sulfide (PPS), polyphenylene ether (PPE), modified PPE, polyimide (PI), polyamideimide (PAI), polyetherimide (PEI), polysulfone (PSU) , Modified PSU, polyethersulfone, polyketone (PK), polyetherketone (PEK), polyetheretherketone (PEEK), polyetherketoneketone (PEKK), polyarylate (PAR), polyethernitrile (PEN), phenol Fluororesins such as polyresin, phenoxy resin, polytetrafluoroethylene, thermoplastic elastomers such as polystyrene, polyolefin, polyurethane, polyester, polyamide, polybutadiene, polyisoprene, fluorine, etc. Copolymers, modified products, and resins obtained by blending two or more of them may be used. In particular, PPS resin is used from the viewpoint of heat resistance and chemical resistance, polycarbonate resin and styrene resin are used from the viewpoint of molded product appearance and dimensional stability, and polyamide resin is used from the viewpoint of strength and impact resistance of the molded product. More preferably used.

また、耐衝撃性向上のために、他のエラストマーあるいはゴム成分を添加してもよい。また、用途等に応じ、本発明の目的を損なわない範囲で他の充填材や添加剤を含有しても良い。例えば、無機充填材、難燃剤、導電性付与剤、結晶核剤、紫外線吸収剤、酸化防止剤、制振剤、抗菌剤、防虫剤、防臭剤、着色防止剤、熱安定剤、離型剤、帯電防止剤、可塑剤、滑剤、着色剤、顔料、染料、発泡剤、制泡剤、カップリング剤などが挙げられる。導電性付与剤としては、例えばカーボンブラック、アモルファスカーボン粉末、天然黒鉛粉末、人造黒鉛粉末、膨張黒鉛粉末、ピッチマイクロビーズ、気相成長炭素繊維、カーボンナノチューブなどが例示でき、これらは電磁波シールド性をより高める目的で好ましく使用される。   Further, other elastomers or rubber components may be added to improve impact resistance. Moreover, according to a use etc., you may contain another filler and additive in the range which does not impair the objective of this invention. For example, inorganic fillers, flame retardants, conductivity imparting agents, crystal nucleating agents, ultraviolet absorbers, antioxidants, vibration damping agents, antibacterial agents, insect repellents, deodorants, anti-coloring agents, heat stabilizers, release agents , Antistatic agents, plasticizers, lubricants, colorants, pigments, dyes, foaming agents, antifoaming agents, coupling agents and the like. Examples of the conductivity-imparting agent include carbon black, amorphous carbon powder, natural graphite powder, artificial graphite powder, expanded graphite powder, pitch microbeads, vapor-grown carbon fiber, and carbon nanotube. It is preferably used for the purpose of further enhancement.

「別の構造部材」で使用する強化繊維の素材としては、前述の本発明の繊維強化複合材料における強化繊維と同様の思想により選定することができる。ただし「別の構造部材」を射出成型により形成する場合には、強化繊維は短繊維とし、熱可塑性樹脂組成物中に均一に分散していることが好ましい。この場合の熱可塑性樹脂と強化繊維との配合比率としては、強化繊維が炭素繊維のとき、成形性、強度、軽量性とのバランスの観点から、熱可塑性樹脂が25〜95重量%、炭素繊維が5〜75重量%が好ましく、より好ましくは熱可塑性樹脂が35〜85重量%、炭素繊維が15〜65重量%である。   The material of the reinforcing fiber used in “another structural member” can be selected based on the same idea as the reinforcing fiber in the above-described fiber-reinforced composite material of the present invention. However, when the “another structural member” is formed by injection molding, it is preferable that the reinforcing fibers are short fibers and are uniformly dispersed in the thermoplastic resin composition. In this case, the blending ratio of the thermoplastic resin and the reinforcing fiber is such that when the reinforcing fiber is a carbon fiber, the thermoplastic resin is 25 to 95% by weight and the carbon fiber from the viewpoint of a balance with moldability, strength, and lightness. Is preferably 5 to 75% by weight, more preferably 35 to 85% by weight of the thermoplastic resin and 15 to 65% by weight of the carbon fiber.

「別の構造部材」は、電気・電子機器の筐体としての用途を想定すると、体積固有抵抗率が100Ω・cm以下であることが好ましく、70Ω・cm以下がより好ましく、50Ω・cm以下がさらに好ましい。   Assuming an application as a casing of an electric / electronic device, “another structural member” preferably has a volume resistivity of 100 Ω · cm or less, more preferably 70 Ω · cm or less, and 50 Ω · cm or less. Further preferred.

本発明の一体化成型品において、本発明の繊維強化複合材料の好ましい一態様である強化繊維が層状に積層されたものは、電気・電子機器の筐体としての用途を想定すると、電磁波シールド性の観点から、本発明の繊維強化複合材料が筐体の天面の少なくとも一部を構成することが好ましく、天面の投影面積の50%以上を構成することがさらに好ましく、天面の投影面積の70%以上を構成することがとりわけ好ましい。ここで、投影面積とは成形品の外形寸法から求めた成形品面の大きさを表す尺度である。   In the integrally molded product of the present invention, those obtained by laminating reinforcing fibers, which is a preferred embodiment of the fiber-reinforced composite material of the present invention, have an electromagnetic shielding property, assuming use as a casing of an electric / electronic device. In view of the above, it is preferable that the fiber-reinforced composite material of the present invention constitutes at least a part of the top surface of the casing, more preferably constitutes 50% or more of the projected area of the top surface, and the projected area of the top surface. It is particularly preferable to constitute 70% or more. Here, the projected area is a scale representing the size of the molded product surface obtained from the outer dimensions of the molded product.

本発明の一体化成形品の形状としては、曲面、リブ、ヒンジ、ボス、中空部を有していてもよい。また、成形品にはメッキ、塗装、蒸着、インサート、スタンピング、レーザー照射などによる表面加飾の処理が施されていてもよい。   The shape of the integrally molded product of the present invention may include a curved surface, a rib, a hinge, a boss, and a hollow portion. Further, the molded product may be subjected to surface decoration treatment by plating, painting, vapor deposition, insert, stamping, laser irradiation, or the like.

本発明の一体化成形品の用途としては例えば、パソコン、ディスプレイ、OA機器、携帯電話、携帯情報端末、ファクシミリ、コンパクトディスク、ポータブルMD、携帯用ラジオカセット、PDA(電子手帳などの携帯情報端末)、ビデオカメラ、デジタルスチルカメラ、光学機器、オーディオ、エアコン、照明機器、娯楽用品、玩具用品、その他家電製品などの電気、電子機器の筐体及びトレイやシャーシなどの内部部材やそのケース、機構部品、パネルなどの建材用途、モーター部品、オルタネーターターミナル、オルタネーターコネクター、ICレギュレーター、ライトディヤー用ポテンショメーターベース、サスペンション部品、排気ガスバルブなどの各種バルブ、燃料関係、排気系または吸気系各種パイプ、エアーインテークノズルスノーケル、インテークマニホールド、各種アーム、各種フレーム、各種ヒンジ、各種軸受、燃料ポンプ、ガソリンタンク、CNGタンク、エンジン冷却水ジョイント、キャブレターメインボディー、キャブレタースペーサー、排気ガスセンサー、冷却水センサー、油温センサー、ブレーキパットウェアーセンサー、スロットルポジションセンサー、クランクシャフトポジションセンサー、エアーフローメーター、ブレーキバット磨耗センサー、エアコン用サーモスタットベース、暖房温風フローコントロールバルブ、ラジエーターモーター用ブラッシュホルダー、ウォーターポンプインペラー、タービンべイン、ワイパーモーター関係部品、ディストリビュター、スタータースィッチ、スターターリレー、トランスミッション用ワイヤーハーネス、ウィンドウオッシャーノズル、エアコンパネルスィッチ基板、燃料関係電磁気弁用コイル、ヒューズ用コネクター、バッテリートレイ、ATブラケット、ヘッドランプサポート、ペダルハウジング、ハンドル、ドアビーム、プロテクター、シャーシ、フレーム、アームレスト、ホーンターミナル、ステップモーターローター、ランプソケット、ランプリフレクター、ランプハウジング、ブレーキピストン、ノイズシールド、ラジエターサポート、スペアタイヤカバー、シートシェル、ソレノイドボビン、エンジンオイルフィルター、点火装置ケース、アンダーカバー、スカッフプレート、ピラートリム、プロペラシャフト、ホイール、フェンダー、フェイシャー、バンパー、バンパービーム、ボンネット、エアロパーツ、プラットフォーム、カウルルーバー、ルーフ、インストルメントパネル、スポイラーおよび各種モジュールなどの自動車、二輪車関連部品、部材および外板やランディングギアポッド、ウィングレット、スポイラー、エッジ、ラダー、エレベーター、フェイリング、リブなどの航空機関連部品、部材および外板などが挙げられる。とりわけ、本発明の一体化成型品は電磁波シールド成形品としてその優れた電磁波シールド性を生かして、電気、電子機器用の筐体や外部部材用に好適であり、さらには薄肉で広い投影面積を必要とするノート型パソコンや携帯情報端末などの筐体として好適である。   Applications of the integrally molded product of the present invention include, for example, personal computers, displays, OA equipment, mobile phones, portable information terminals, facsimile machines, compact discs, portable MDs, portable radio cassettes, PDAs (mobile information terminals such as electronic notebooks). , Video cameras, digital still cameras, optical equipment, audio equipment, air conditioners, lighting equipment, entertainment equipment, toy products, other electrical appliances such as household appliances, internal parts such as trays and chassis, cases, and mechanical parts Applications for building materials such as panels, motor parts, alternator terminals, alternator connectors, IC regulators, light meter potentiometer bases, suspension parts, exhaust gas valves and other valves, fuel-related, exhaust and intake pipes, air intakes Snorkel, intake manifold, various arms, various frames, various hinges, various bearings, fuel pump, gasoline tank, CNG tank, engine coolant joint, carburetor main body, carburetor spacer, exhaust gas sensor, coolant sensor, oil temperature sensor , Brake pad wear sensor, throttle position sensor, crankshaft position sensor, air flow meter, brake butt wear sensor, thermostat base for air conditioner, heating hot air flow control valve, brush holder for radiator motor, water pump impeller, turbine vane, Wiper motor related parts, distributor, starter switch, starter relay, transmission wire Harness, window washer nozzle, air conditioner panel switch board, coil for fuel related electromagnetic valve, connector for fuse, battery tray, AT bracket, headlamp support, pedal housing, handle, door beam, protector, chassis, frame, armrest, horn terminal, Step motor rotor, lamp socket, lamp reflector, lamp housing, brake piston, noise shield, radiator support, spare tire cover, seat shell, solenoid bobbin, engine oil filter, ignition device case, under cover, scuff plate, pillar trim, propeller shaft, Wheel, fender, fascia, bumper, bumper beam, bonnet, aero parts, platform Cars such as foam, cowl louvers, roofs, instrument panels, spoilers and various modules, aircraft-related parts, parts and skins, landing gear pods, winglets, spoilers, edges, ladders, elevators, failings, ribs, etc. Examples include related parts, members, and outer plates. In particular, the integrally molded product of the present invention is suitable as an electromagnetic shielding molded product, making use of its excellent electromagnetic shielding properties, and is suitable for casings and external members for electric and electronic equipment, and also has a thin and wide projected area. It is suitable as a casing of a required notebook type personal computer or portable information terminal.

次に、本発明の繊維強化複合材料の製造方法は、強化繊維と熱硬化性樹脂組成物を含む熱硬化性プリプレグ積層体の表面の少なくとも一部分に、溶解度パラメータδ(SP値)が9〜16の熱可塑性樹脂を含む熱可塑性樹脂組成物を配置する積層工程と、前記熱硬化性樹脂組成物を構成する熱硬化性樹脂の硬化反応と並行して前記熱可塑性樹脂組成物を溶融し被膜を形成させることにより、前記強化繊維のうちの少なくとも一部が、同一の繊維について前記熱硬化性樹脂組成物に埋没する部分と前記熱可塑性樹脂組成物に埋没する部分との双方を有する構造を設ける加熱成形工程とを含む。すなわち、硬化前の熱硬化性樹脂組成物の表層に、熱可塑性樹脂を膜状に配置してから熱可塑性樹脂の融点以上で硬化させるのであり、これにより熱硬化性樹脂組成物と熱可塑性樹脂が良く接着した状態の本発明の繊維強化複合材料を得ることができる。 Next, in the method for producing a fiber-reinforced composite material of the present invention, the solubility parameter δ (SP value) is 9 to 16 on at least a part of the surface of the thermosetting prepreg laminate including the reinforcing fiber and the thermosetting resin composition. of the laminate placing a thermoplastic resin composition comprising a thermoplastic resin, a parallel with the curing reaction of the thermosetting resin constituting the thermosetting resin composition by melting the thermoplastic resin composition film By forming , at least a part of the reinforcing fibers provides a structure having both a portion embedded in the thermosetting resin composition and a portion embedded in the thermoplastic resin composition with respect to the same fiber. A thermoforming process. That is, the thermoplastic resin is disposed in a film shape on the surface layer of the thermosetting resin composition before curing, and then cured at a temperature equal to or higher than the melting point of the thermoplastic resin, whereby the thermosetting resin composition and the thermoplastic resin are cured. It is possible to obtain the fiber-reinforced composite material of the present invention in a state of being well adhered.

強化繊維は、ドラムワインド等で引き揃えることができる。   The reinforcing fibers can be aligned with drum winds or the like.

積層体の形成手段としては例えば、ハンドレイアップ成形法、スプレーアップ成形法、真空バック成形法、加圧成形法、オートクレーブ成形法、プレス成形法、トランスファー成形法など、とりわけ、プロセス性、力学特性の観点から真空バック成形法、プレス成形法、トランスファー成形法などが好適に用いられる。   As a means for forming a laminate, for example, hand lay-up molding method, spray-up molding method, vacuum back molding method, pressure molding method, autoclave molding method, press molding method, transfer molding method, etc. From this viewpoint, a vacuum back molding method, a press molding method, a transfer molding method and the like are preferably used.

「別の構造部材」における、熱可塑性樹脂に強化繊維を分散させる方法としては例えば、熱可塑性樹脂と強化繊維を溶融混練する公知の方法を採用できる。また「別の構造部材」の成形手段としては例えば、射出成形、押出成形およびプレス成形などが挙げられ、とりわけ射出成形が生産性が高く工業的に好適であり、かつリブ、ヒンジ、ボスを有する複雑な形状の成形品を容易に量産できることから好適に用いられる。   As a method of dispersing the reinforcing fibers in the thermoplastic resin in “another structural member”, for example, a known method of melt-kneading the thermoplastic resin and the reinforcing fibers can be employed. Examples of molding means for “another structural member” include injection molding, extrusion molding, and press molding. In particular, injection molding is highly industrially suitable and has a rib, hinge, and boss. It is preferably used because a molded product having a complicated shape can be easily mass-produced.

本発明の繊維強化複合材料と「別の構造部材」とを一体化させる手順としては例えば、以下の工法1〜3を例示できる。   Examples of the procedure for integrating the fiber-reinforced composite material of the present invention and “another structural member” include the following construction methods 1 to 3.

工法1:本発明の繊維強化複合材料を予め成形しておき「別の構造部材」の成形と同時に両者を一体化させる工法。例えば、本発明の繊維強化複合材料をプレス成形にて予め製造、所定のサイズに加工、後処理し、射出成形金型にインサートした後、「別の構造部材」を射出成形することで一体化させる方法。   Construction method 1: A construction method in which the fiber-reinforced composite material of the present invention is molded in advance and both are integrated simultaneously with the molding of “another structural member”. For example, the fiber-reinforced composite material of the present invention is manufactured in advance by press molding, processed into a predetermined size, post-processed, inserted into an injection mold, and then integrated by injection molding “another structural member”. How to make.

工法2:「別の構造部材」を予め成形しておき本発明の繊維強化複合材料の成形と同時に両者を一体化させる工法。例えば、「別の構造部材」を射出成形にて予め製造、後処理したものをプレス金型にインサートし、次いで本発明の繊維強化複合材料となるプリプレグをレイアップし、熱可塑性樹脂の融点以上の温度で真空バック成形することで一体化させる方法。   Construction method 2: A construction method in which “another structural member” is formed in advance and both are integrated simultaneously with the formation of the fiber-reinforced composite material of the present invention. For example, “another structural member” manufactured in advance by injection molding and post-processed is inserted into a press die, and then a prepreg to be a fiber-reinforced composite material of the present invention is laid up, and the melting point of the thermoplastic resin or higher The method of integrating by vacuum back molding at the temperature of.

工法3:予め本発明の繊維強化複合材料と「別の構造部材」とを別個に成形し、両者を一体化させる工法。例えば、プレス成形にて予め製造、所定のサイズに加工、後処理した本発明の繊維強化複合材料と、射出成形にて予め製造、後処理した「別の構造部材」とを工法2と同様にして一体化させる方法。   Construction method 3: A construction method in which the fiber-reinforced composite material of the present invention and “another structural member” are separately separately molded and integrated with each other. For example, the fiber-reinforced composite material of the present invention that has been manufactured in advance by press molding, processed to a predetermined size, and post-processed, and “another structural member” that has been manufactured and post-processed by injection molding in the same manner as method 2 are used. To integrate them.

本発明の繊維強化複合材料と「別の構造部材」とを接合して本発明の一体化成形品を製造する手段としては例えば、本発明の繊維強化複合材料における被膜の熱可塑性樹脂組成物を構成する熱可塑性樹脂の融点以上のプロセス温度で「別の構造部材」を貼り付け、次いで冷却することにより本発明の繊維強化複合材料と「別の構造部材」とを接合することで、接着と一体化を同時に達成できる。   As a means for joining the fiber reinforced composite material of the present invention and “another structural member” to produce the integrated molded product of the present invention, for example, the thermoplastic resin composition of the coating in the fiber reinforced composite material of the present invention is used. Adhering and bonding the fiber reinforced composite material of the present invention and the “another structural member” by pasting the “another structural member” at a process temperature equal to or higher than the melting point of the thermoplastic resin to be configured and then cooling. Integration can be achieved at the same time.

以下に実施例と比較例を示す(参考例の評価・測定方法等についても同様)。実施例及び比較例中に示された配合割合において特に注釈のない「%」は全て重量%を意味する。 Examples and comparative examples are shown below (the same applies to the evaluation and measurement methods of the reference examples) . In the blending ratios shown in the examples and comparative examples, “%” without any special note means% by weight.

(評価・測定方法)
(1)垂直接着強度評価
繊維強化複合材料の目標とする接着面上に、ナイロン系樹脂をベースとする熱可塑性成形材料を射出成形にてその融点以上の温度で溶融接着させた成形品を用いて行う。以下に具体的な例を示す。
(Evaluation and measurement method)
(1) Vertical adhesive strength evaluation Using a molded product obtained by melting and bonding a thermoplastic molding material based on nylon resin at a temperature equal to or higher than its melting point on the target bonding surface of a fiber reinforced composite material. Do it. Specific examples are shown below.

(被接着部材の素材)
日本製鋼所(株)TEX−30α型2軸押出機(スクリュー直径30mm、L/D=32)に対して、熱可塑性樹脂として東レ(株)製ナイロン6樹脂CM1001をメインホッパーより供給し、次いでその下流のサイドホッパーより東レ(株)製チョップド炭素繊維“トレカ”TS−12(チョップド糸長6mm)を供給し、バレル温度260℃、スクリュー回転数150rpmにて十分に混練し、さらに下流の真空ベントより脱気を行った。供給は重量フィーダーにより炭素繊維の含有率が30重量%となるように調整した。溶融樹脂をダイス口(内径5mm)より吐出し、得られたストランドを冷却後、カッターにて切断してペレット状の成形材料とした。得られたペレットを熱風乾燥で90℃×3hr、さらに真空下で80℃×6hrの乾燥を行い、水分率0.1%以下になるよう十分に乾燥させた。
(Material of the adherend)
Nylon 6 resin CM1001 manufactured by Toray Industries, Inc. is supplied from a main hopper as a thermoplastic resin to the Nippon Steel Works TEX-30α type twin screw extruder (screw diameter 30 mm, L / D = 32). Toray Co., Ltd. chopped carbon fiber “Torayca” TS-12 (chopped yarn length 6 mm) is supplied from the downstream side hopper, kneaded sufficiently at a barrel temperature of 260 ° C. and a screw speed of 150 rpm, and further downstream vacuum Deaeration was performed from the vent. The supply was adjusted by a weight feeder so that the carbon fiber content was 30% by weight. Molten resin was discharged from a die port (inner diameter 5 mm), and the obtained strand was cooled and then cut with a cutter to obtain a pellet-shaped molding material. The obtained pellets were dried at 90 ° C. for 3 hours by hot air drying and further at 80 ° C. for 6 hours under vacuum, and sufficiently dried to a moisture content of 0.1% or less.

(射出成形)
次に日本製鋼所(株)製J350EIII型射出成形機を用い、金型内に各実施例・比較例の繊維強化複合材料を、熱可塑性樹脂組成物からなる被膜を有する表面を射出成形材料と一体化できるように載置し、上記被接着部材の素材を280℃の温度で射出成形材料部分の厚みが3mmとなるように射出成形し、図2に示すような一体化成形品とした。
(injection molding)
Next, using a J350EIII type injection molding machine manufactured by Nippon Steel Co., Ltd., the fiber reinforced composite material of each Example / Comparative Example is placed in the mold, and the surface having the coating made of the thermoplastic resin composition is used as the injection molding material. It was mounted so that it could be integrated, and the material of the adherend member was injection molded at a temperature of 280 ° C. so that the thickness of the injection molding material portion was 3 mm, to obtain an integrated molded product as shown in FIG.

(引張試験)
当該一体化成形品から垂直接着強度評価サンプル(図6中b)を10mm角で切り出した。測定装置としては“インストロン”(登録商標)5565型万能材料試験機(インストロン・ジャパン(株)製)を使用して、サンプルを治具(図6中a)で固定し、40℃と140℃との2点の温度下で、引張速度1.27mm/分にて、両者の接着面から90°方向に引っ張る引張試験を行い、その最大荷重を接着面積で割って垂直接着強度(MPa)を求めた。
試料数はn=5とした。
(Tensile test)
A vertical adhesive strength evaluation sample (b in FIG. 6) was cut out from the integrated molded product at a 10 mm square. Using an “Instron” (registered trademark) 5565 type universal material testing machine (manufactured by Instron Japan Co., Ltd.) as a measuring device, the sample is fixed with a jig (a in FIG. 6), and 40 ° C. At two temperatures of 140 ° C., a tensile test was performed by pulling the adhesive surfaces from both surfaces in a 90 ° direction at a tensile speed of 1.27 mm / min, and the maximum load was divided by the adhesion area to obtain a vertical adhesive strength (MPa )
The number of samples was n = 5.

成形品がインストロンのチャックに把持できるものはそのままチャックに挟み引張試験を行った。把持できないものは成形体に接着剤(スリーボンド1782、株式会社スリーボンド製)を塗布し23±5℃で4時間、次いで50±5%RHで4時間放置して治具と接着させた。試験結果は接着して一体化した部分が引き剥がされる値のみを採用し、治具と成形品が引き剥がされた結果は削除した。   A molded product that could be held by an Instron chuck was sandwiched between the chucks and subjected to a tensile test. For those that could not be gripped, an adhesive (ThreeBond 1782, manufactured by ThreeBond Co., Ltd.) was applied to the molded body and left at 23 ± 5 ° C. for 4 hours and then at 50 ± 5% RH for 4 hours to adhere to the jig. For the test result, only the value at which the bonded and integrated part was peeled off was adopted, and the result of peeling off the jig and the molded product was deleted.

(2)ISO4587に基づく接着強度
各実施例・比較例の繊維強化複合材料から、ISO4587の規定に基づき、試験片TP1を1試料当たり2本ずつ切り出した。その形状および寸法は、ISO4587の規定に基づき、長さ(図4中TP1L)100mm、幅(図4中TP1W)25mmとした。尚、この寸法からなる試験片の切り出しが困難な場合は、同寸法を比例的に縮小した寸法にて代用してもよい。
用意された2本の試験片TP1同士を、それぞれの熱可塑性樹脂組成物の被膜が接合部になるように向かい会わせた。この接合部の長さ(図4中BPL)は12.5mmとした。熱可塑性樹脂組成物の樹脂が十分に溶融する温度(その融点よりも10℃高い温度)まで、双方の試験片TP1を加熱して、両者を50MPaの圧力で1分間接着させ、クランプしながら冷却し、両者を接合させたものを引張試験片とした。
(2) Adhesive strength based on ISO4587 Two test pieces TP1 were cut out per sample from the fiber reinforced composite material of each Example / Comparative Example based on the provisions of ISO4587. The shape and dimensions were set to a length (TP1L in FIG. 4) of 100 mm and a width (TP1W in FIG. 4) of 25 mm in accordance with ISO4587. When it is difficult to cut out a test piece having this size, a size obtained by proportionally reducing the size may be used instead.
The prepared two test pieces TP1 were faced to each other so that the respective coatings of the thermoplastic resin composition became the joints. The length of this joint (BPL in FIG. 4) was 12.5 mm. Both test pieces TP1 are heated to a temperature at which the resin of the thermoplastic resin composition is sufficiently melted (temperature higher by 10 ° C. than the melting point), and both are bonded at a pressure of 50 MPa for 1 minute, and cooled while being clamped. And what joined both was made into the tensile test piece.

引張試験装置としては、“インストロン”(商標)5565型万能材料試験機(インストロン・ジャパン(株)製)を用い、試験の際の40℃と140℃との2点の温度下で、引張速度1.27mm/分にて、引張試験を行った。接合位置近傍(境界近傍)で破壊したことを確認し、その強力(単位:kN)を接合部表面積で除した値を接着強度(単位:MPa)とした。
試料数はn=5とした。
As a tensile tester, “Instron” (trademark) 5565 type universal material testing machine (manufactured by Instron Japan Co., Ltd.) was used, and at two temperatures of 40 ° C. and 140 ° C. during the test, A tensile test was performed at a tensile speed of 1.27 mm / min. It was confirmed that the fracture occurred in the vicinity of the joining position (near the boundary), and the value obtained by dividing the strength (unit: kN) by the surface area of the joined portion was defined as the adhesive strength (unit: MPa).
The number of samples was n = 5.

(3)曲げ弾性率
ASTM D790に準拠して評価した。繊維強化複合材料の略平面部から、繊維強化複合材料の長手方向を基準にして、0度、45度、90度、135度の異なる角度において切り出した4本の試験片を用意した。試験片にリブ部、ヒンジ部、凹凸部などの形状が意図的に付されている場合、試験片の厚みの測定は、この部位を除いて行われる。これらの試験片において得られる曲げ弾性率の内の最小値を、ここで云う曲げ弾性率として採用した。
(3) Flexural modulus Evaluated according to ASTM D790. Four test pieces cut out from substantially flat portions of the fiber reinforced composite material at different angles of 0 degrees, 45 degrees, 90 degrees, and 135 degrees with respect to the longitudinal direction of the fiber reinforced composite material were prepared. When the shape of a rib part, a hinge part, an uneven | corrugated | grooved part, etc. is attached | subjected to the test piece intentionally, the measurement of the thickness of a test piece is performed except this part. The minimum value of the flexural modulus obtained from these test pieces was adopted as the flexural modulus referred to herein.

(4)電磁波シールド性
アドバンテスト法にて評価を行った。各実施例・比較例の繊維強化複合材料から120mm×120mmの平板を切出して試験片とした。評価にあたり、試験片を絶乾状態(水分率0.1%以下)とし、四辺に導電性ペースト(藤倉化成(株)製ドータイト)を塗布し、十分に導電性ペーストを乾燥させた。
(4) Electromagnetic wave shielding property It evaluated by the Advantest method. A 120 mm × 120 mm flat plate was cut out from the fiber-reinforced composite material of each Example / Comparative Example to obtain a test piece. In the evaluation, the test piece was in an absolutely dry state (moisture content of 0.1% or less), and a conductive paste (Dotite manufactured by Fujikura Kasei Co., Ltd.) was applied to the four sides to sufficiently dry the conductive paste.

シールドボックス中に試験片をはさみこんで、スペクトラムアナライザーにて周波数1GHzでの電波シールド性(単位:dB)を測定し、電磁波シールド性とした。電波シールド性が高いほど、電磁波シールド性に優れていることを表している。   The test piece was sandwiched in a shield box, and the radio wave shielding property (unit: dB) at a frequency of 1 GHz was measured with a spectrum analyzer to obtain an electromagnetic wave shielding property. The higher the radio wave shielding property, the better the electromagnetic wave shielding property.

(5)体積固有電気抵抗
「別の構造部材」から幅12.7mm×長さ65mmの試験片を切り出し、絶乾状態(水分率0.1%以下)で測定に供した。測定は、まず、試験片の両端の断面に導電性ペースト(藤倉化成株式会社製ドータイト)を塗布し、十分に導電性ペーストを乾燥させてから、その両面を電極に圧着し、電極間の電気抵抗値をデジタルマルチメーター(FLUKE社製)にて測定した。前記電気抵抗値から測定機器、治具等の接触抵抗を減じた値に、導電性ペースト塗布面の面積を乗じ、その値を試験片長さで除したものを体積固有電気抵抗値(単位:Ω・cm)とした。
(5) Volume Specific Electrical Resistance A test piece having a width of 12.7 mm and a length of 65 mm was cut out from “another structural member” and subjected to measurement in an absolutely dry state (moisture content of 0.1% or less). First, apply a conductive paste (Dotite manufactured by Fujikura Kasei Co., Ltd.) to the cross-sections at both ends of the test piece, dry the conductive paste sufficiently, and press both sides of the test piece to the electrode. The resistance value was measured with a digital multimeter (manufactured by FLUKE). The value obtained by subtracting the contact resistance of the measuring instrument, jig, etc. from the electrical resistance value, multiplied by the area of the conductive paste coating surface, and dividing that value by the length of the test piece is the volume specific electrical resistance value (unit: Ω Cm).

(6)溶解度パラメータδ(SP値)の決定
本発明において、溶解度パラメータδ(SP値)は、フェダーズ(Fedors)の方法により決定される25℃におけるポリマーの繰り返し単位の値を指す。当該方法は、R.F.Fedors,Polym.Eng.Sci.,14(2),147(1974)に記載されている。即ち、求める化合物の構造式において、原子および原子団の蒸発エネルギーとモル体積のデータより次式により決定される。
δ=(ΣΔei/ΣΔvi)1/2
ただし、式中、ΔeiおよびΔviは、それぞれ原子または原子団の蒸発エネルギーおよびモル体積を表す。求める化合物の構造式はIR、NMR、マススペクトルなどの通常の構造分析手法を用いて決定する。
(6) Determination of Solubility Parameter δ (SP Value) In the present invention, the solubility parameter δ (SP value) refers to the value of the repeating unit of the polymer at 25 ° C. determined by the method of Fedors. The method is described in RFFedors, Polym. Eng. Sci., 14 (2), 147 (1974). That is, in the structural formula of the desired compound, it is determined by the following formula from the evaporation energy and molar volume data of atoms and atomic groups.
δ = (ΣΔei / ΣΔvi) 1/2
In the formula, Δei and Δvi represent the evaporation energy and molar volume of an atom or atomic group, respectively. The structural formula of the compound to be determined is determined using a general structural analysis technique such as IR, NMR, and mass spectrum.

(7)トータル表面自由エネルギー
トータル表面自由エネルギーは、以下のように評価した。
(7) Total surface free energy Total surface free energy was evaluated as follows.

(A)熱硬化性樹脂組成物のトータル表面自由エネルギー(Es)
各実施例・比較例で用いた熱硬化性樹脂組成物の未硬化のもの40gを、“テフロン(登録商標)”製容器(50×50×50mm)に入れて150℃で30分間加熱して硬化させ、樹脂硬化物とした。
(A) Total surface free energy (Es) of thermosetting resin composition
40 g of an uncured thermosetting resin composition used in each example and comparative example was placed in a “Teflon (registered trademark)” container (50 × 50 × 50 mm) and heated at 150 ° C. for 30 minutes. Cured to obtain a cured resin.

このエポキシ樹脂硬化物を長さ30mm、幅15mmの大きさに切り出した後、表面を研磨機(リファインテック(株)社製リファイン・ポリッシャー200とオートマックスAMO−210)を使用して粒度#600のサンドペーパーで5分間、粒度#800で5分間、粒度#1000で15分間、粒度#1200で20分間、粒度#1500で30分間、それぞれ回転速度100rpmで順に乾式研磨した。その後、研磨バフのパンクロス(リファインテック(株)社製)で研磨粒子METAPOLISH(フジミインコーポレーテッド(株)社製No.1)を水と同時に流しながら100rpmで5分間研磨した。その後、研磨バフのスエードクロス(リファインテック(株)社製)で研磨粒子METAPOLISH(フジミインコーポレーテッド(株)社製No.5)を前記同様に水と同時に流しながら100rpmで5分間研磨した。   After this epoxy resin cured product was cut into a size of 30 mm in length and 15 mm in width, the surface was polished using a polishing machine (Refine Tech Co., Ltd. Refine Polisher 200 and Automax AMO-210) to obtain a particle size of # 600. For 5 minutes, particle size # 800 for 5 minutes, particle size # 1000 for 15 minutes, particle size # 1200 for 20 minutes, particle size # 1500 for 30 minutes, and dry polishing in order at a rotational speed of 100 rpm. Thereafter, the abrasive particles METAPOLISH (Fujimi Incorporated No. 1) were polished with a polishing buff pan cloth (Refinetech Co., Ltd.) for 5 minutes while flowing simultaneously with water. Thereafter, polishing particles METAPOLISH (Fujimi Incorporated No. 5) were polished with a polishing buff suede cloth (Refinetech Co., Ltd.) at 100 rpm for 5 minutes while flowing simultaneously with water.

この平板上に水、エチレングリコール、燐酸トリクレゾールの各液体を50μl滴下し、各々平板上に形成される液滴を観察し、平板と液滴のなす接触角θsを測定した(図5参照)。   50 μl of each liquid of water, ethylene glycol, and tricresol phosphate was dropped on the flat plate, and the droplets formed on the flat plate were observed, and the contact angle θs formed between the flat plate and the droplets was measured (see FIG. 5). .

得られた接触角θsをオーエンスの近似式(各液体固有の表面張力の極性成分と非極性成分、さらに接触角θsにより構成させる式)に各液体の表面張力の成分とともに代入しX、Yにプロットした後、最小自乗法により直線近似したときの傾きaの自乗により熱硬化性樹脂組成物表面自由エネルギーの極性成分が求められる。   Substituting the obtained contact angle θs together with the surface tension component of each liquid into the approximate expression of Owens (the polar component and the nonpolar component of the surface tension unique to each liquid, and the formula constituted by the contact angle θs) to X and Y After plotting, the polar component of the surface free energy of the thermosetting resin composition is determined by the square of the slope a when linearly approximated by the least square method.

同様にそのときのY切片より熱硬化性樹脂組成物の表面自由エネルギーの非極性成分が求められる。両者を加えたものを、熱硬化性樹脂組成物を構成する熱可塑性樹脂のトータル表面自由エネルギーとした。
Y=a・X+b
X=(液体の表面張力の極性成分(単位:mJ/m2))1/2/(液体の表面張力の非極性成分(単位:mJ/m2))1/2
Y=(1+COSθs)・(液体の表面張力の極性成分(単位:mJ/m2))/2(液体の表面張力の非極性成分(mJ/m2))1/2
熱硬化性樹脂組成物の表面自由エネルギーの極性成分=a2
熱硬化性樹脂組成物の表面自由エネルギーの非極性成分=b2
熱硬化性樹脂組成物のトータル表面自由エネルギー
(Es)=a2+b2
各液体の表面張力の極性成分および非極性成分は、次のとおりである。
・精製水
表面張力72.8mJ/m2 、極性成分51.0mJ/m2 、非極性成分21.8mJ/m2
・エチレングリコール
表面張力48.0mJ/m2 、極性成分19.0mJ/m2 、非極性成分29.0mJ/m2
・燐酸トリクレゾール
表面張力40.9mJ/m2 、極性成分1.7mJ/m2 、非極性成分39.2mJ/m2
(B)熱可塑性樹脂組成物のトータル表面自由エネルギー(Ep)
各実施例・比較例で被膜の形成に用いた熱可塑性樹脂組成物を180℃で6MPaの圧力をかけながら、3分間加熱後、冷却して長さ30mm、幅15mm、厚み2mmの平板を作製した。
Similarly, the nonpolar component of the surface free energy of the thermosetting resin composition is determined from the Y section at that time. What added both was made into the total surface free energy of the thermoplastic resin which comprises a thermosetting resin composition.
Y = a · X + b
X = (polar component of liquid surface tension (unit: mJ / m 2 )) 1/2 / (nonpolar component of liquid surface tension (unit: mJ / m 2 )) 1/2
Y = (1 + COSθs) · (polar component of liquid surface tension (unit: mJ / m 2 )) / 2 (nonpolar component of liquid surface tension (mJ / m 2 )) 1/2
Polar component of surface free energy of thermosetting resin composition = a 2
Nonpolar component of surface free energy of thermosetting resin composition = b 2
Total surface free energy (Es) of thermosetting resin composition = a 2 + b 2
The polar component and nonpolar component of the surface tension of each liquid are as follows.
Purified water Surface tension 72.8 mJ / m 2 , polar component 51.0 mJ / m 2 , nonpolar component 21.8 mJ / m 2
・ Ethylene glycol surface tension 48.0 mJ / m 2 , polar component 19.0 mJ / m 2 , nonpolar component 29.0 mJ / m 2
・ Tricresol phosphate surface tension 40.9mJ / m 2 , polar component 1.7mJ / m 2 , nonpolar component 39.2mJ / m 2
(B) Total surface free energy (Ep) of thermoplastic resin composition
The thermoplastic resin composition used for forming the coating film in each Example / Comparative Example was heated for 3 minutes while applying a pressure of 6 MPa at 180 ° C. and then cooled to produce a flat plate having a length of 30 mm, a width of 15 mm, and a thickness of 2 mm. did.

この平板を上記(A)と同様の条件で表面を研磨した。この平板上に水、エチレングリコール、燐酸トリクレゾールの各液体50μlを滴下し、各々平板上に形成される液滴を観察し、平板と液滴のなす接触角θpを測定する。   The surface of this flat plate was polished under the same conditions as in (A) above. 50 μl of each liquid of water, ethylene glycol, and tricresol phosphate is dropped on the flat plate, and the droplets formed on the flat plate are observed, and the contact angle θp formed by the flat plate and the droplets is measured.

上記(A)と同様に、得られた接触角θpをもとにオーエンスの近似式に代入して算出し、熱可塑性樹脂組成物のトータル表面自由エネルギーとする。   In the same manner as in the above (A), calculation is performed by substituting the obtained contact angle θp into an approximate expression of Owens to obtain the total surface free energy of the thermoplastic resin composition.

(C)強化繊維の表面自由エネルギー(Ef)
強化繊維に炭素繊維を用いた場合について記載する。
(C) Surface free energy of reinforcing fiber (Ef)
It describes about the case where carbon fiber is used for reinforcement fiber.

炭素繊維の単繊維を、精製水、エチレングリコール、燐酸トリクレゾールの各液体においてウィルヘルミ法によって測定される各接触角をもとに、オーエンスの近似式を用いて算出した。   A single fiber of carbon fiber was calculated by using an Owens approximate expression based on each contact angle measured by Wilhelmi method in each liquid of purified water, ethylene glycol, and tricresol phosphate.

DataPhysics社製DCAT11を用いて、まず炭素繊維束から1本の単繊維を取り出し、長さ12±2mmに8本にカットした後、専用ホルダーFH12(表面が粘着物質でコーティングされた平板)に単繊維間隔が2〜3mmで平行に貼り付ける。その後、単繊維の先端を切り揃えてホルダーのDCAT11にセットする。測定は、各液体の入ったセルを8本の単繊維の下端に0.2mm/sの速度で近づけ、単繊維の先端から5mmまで浸漬させる。その後、0.2mm/sの速度で単繊維を引き上げる。この操作を4回以上繰り返す。液中に浸漬している時の単繊維の受ける力Fを電子天秤で測定する。この値を用いて次式で接触角θfを算出する。   First, one single fiber was taken out from the carbon fiber bundle using DataPhysics DCAT11, cut into 8 pieces with a length of 12 ± 2 mm, and then placed in a dedicated holder FH12 (a flat plate whose surface was coated with an adhesive substance). Affixed in parallel with a fiber spacing of 2 to 3 mm. Thereafter, the tips of the single fibers are cut and set on the DCAT 11 of the holder. In the measurement, the cell containing each liquid is brought close to the lower ends of the eight single fibers at a speed of 0.2 mm / s and immersed from the tip of the single fibers to 5 mm. Thereafter, the single fiber is pulled up at a speed of 0.2 mm / s. Repeat this operation four or more times. The force F received by the single fiber when immersed in the liquid is measured with an electronic balance. Using this value, the contact angle θf is calculated by the following equation.

COSθf=(8本の単繊維が受ける力F(単位:mN))/((8(単繊維の数)×単繊維の円周(単位:m)×液体の表面張力(単位:mJ/m2))
なお、測定は、3箇所の炭素繊維束の異なる場所から抜き出した単繊維について実施した。すなわち、一つの炭素繊維束に対して合計24本の単繊維についての接触角の平均値を求めた。
COSθf = (force F (unit: mN) received by eight single fibers) / ((8 (number of single fibers) × circumference of single fibers (unit: m)) × surface tension of liquid (unit: mJ / m) 2 ))
In addition, the measurement was implemented about the single fiber extracted from the different place of three carbon fiber bundles. That is, the average value of contact angles for a total of 24 single fibers was obtained for one carbon fiber bundle.

得られた接触角θfをオーエンスの近似式(各液体固有の表面張力の極性成分と非極性成分、さらに接触角θfにより構成される式)に各液体の表面張力の成分とともに代入しX、Yにプロットした後、最小自乗法により直線近似したときの傾きaの自乗により強化繊維の表面自由エネルギーの極性成分が求められる。   Substituting the obtained contact angle θf into the Owens approximate expression (polar and nonpolar components of the surface tension specific to each liquid, and further the contact angle θf) together with the surface tension component of each liquid X, Y Then, the polar component of the surface free energy of the reinforcing fiber is obtained by the square of the slope a when linearly approximated by the least square method.

同様にそのときのY切片より強化繊維の表面自由エネルギーの非極性成分が求められる。両者を加えたものを、強化繊維のトータル表面自由エネルギーとする。
Y=a・X+b
X=(液体の表面張力の極性成分(単位:mJ/m2))1/2/(液体の表面張力の非極性成分(単位:mJ/m2))1/2
Y=(1+COSθf)・(液体の表面張力の極性成分(単位:mJ/m2))/2(液体の表面張力の非極性成分(単位:mJ/m2))1/2
強化繊維の表面自由エネルギーの極性成分=a2
強化繊維の表面自由エネルギーの非極性成分=b2
強化繊維の表面自由エネルギー(Ef)=a2+b2
以上より求められるEs、Ep、Efを用いてトータル表面エネルギーの差の絶対値を算出した。
Similarly, the nonpolar component of the surface free energy of the reinforcing fiber is obtained from the Y section at that time. The sum of both is defined as the total surface free energy of the reinforcing fiber.
Y = a · X + b
X = (polar component of liquid surface tension (unit: mJ / m 2 )) 1/2 / (nonpolar component of liquid surface tension (unit: mJ / m 2 )) 1/2
Y = (1 + COSθf). (Polar component of liquid surface tension (unit: mJ / m 2 )) / 2 (nonpolar component of liquid surface tension (unit: mJ / m 2 )) 1/2
Polar component of surface free energy of reinforcing fiber = a 2
Nonpolar component of surface free energy of reinforcing fiber = b 2
Surface free energy (Ef) of reinforcing fiber = a 2 + b 2
The absolute value of the difference in total surface energy was calculated using Es, Ep, and Ef obtained from the above.

(8)ガラス転移温度、融点の評価
JIS K7121に準拠して示差走査熱量測定(DSC)により、昇温速度10℃/分で測定し、その測定片の吸熱ピークから、ガラス転移温度を特定した。試料の採取に当たっては、繊維強化複合材料の熱硬化樹脂層を、強化繊維群を分離せずに切り出した。
(8) Evaluation of glass transition temperature and melting point Measured by differential scanning calorimetry (DSC) according to JIS K7121 at a heating rate of 10 ° C./min, and the glass transition temperature was specified from the endothermic peak of the measurement piece. . In collecting the sample, the thermosetting resin layer of the fiber reinforced composite material was cut out without separating the reinforcing fiber group.

(9)炭素繊維表面の{O/C}評価
X線光電子分光法による公知の技術にて評価した。
(9) {O / C} evaluation of carbon fiber surface Evaluation was made by a known technique by X-ray photoelectron spectroscopy.

(10)重量平均分子量評価
ゲルパーミエーションクロマトグラフィーによる公知の技術を用いて評価した。
(10) Weight average molecular weight evaluation It evaluated using the well-known technique by a gel permeation chromatography.

(11)被膜の平均厚み評価
第7図に積層体断面の模式図を示す。積層体の断面のTEM観察写真より、熱可塑性樹脂組成物層cの表面から熱硬化性樹脂組成物の界面fまでの厚みを測定する。測定は10箇所で行い、その平均値をもって、平均の被膜厚みとする。
(11) Evaluation of average thickness of coating FIG. 7 shows a schematic diagram of a cross section of the laminate. From the TEM observation photograph of the cross section of the laminate, the thickness from the surface of the thermoplastic resin composition layer c to the interface f of the thermosetting resin composition is measured. The measurement is performed at 10 locations, and the average value is taken as the average film thickness.

参考例1)
本発明の繊維強化複合材料の製造方法の一実施例を、図3の電気・電子機器用モデル筐体の分解斜視図を用いて説明する。
( Reference Example 1)
An embodiment of the method for producing a fiber-reinforced composite material of the present invention will be described with reference to the exploded perspective view of the model housing for electric / electronic equipment shown in FIG.

図において、繊維強化複合材料として次のものを作成した。すなわち、長さ350mm×幅300mmの炭素繊維織物(東レ(株)製トレカ織物CO6343)にエポキシ樹脂を含浸させた炭素繊維量57体積%のプリプレグを積層し、さらにその最外面にナイロン系スパンボンド不織布シート(商品名:ダイナックLNS−0050 目付50g/m2、融点135℃、溶解度パラメータδ(SP値)13.0、重量平均分子量18000 呉羽化学社(株)製)を積層した。次いで真空バッグ成形し、140℃で1時間加熱して硬化させ厚さ0.9mmの繊維強化複合材料(I)とした。この繊維強化複合材料の表面は不織布が溶融して膜状に付着しており、その膜厚は25μmであった。また繊維強化複合材料のカラス転移温度は130℃であった。繊維強化複合材料の熱硬化性樹脂組成物と被膜状の熱可塑性樹脂組成物のトータル表面自由エネルギーの差の絶対値は9であった。また繊維強化複合材料の強化繊維と被膜状の熱可塑性樹脂組成物のトータル表面自由エネルギーの差の絶対値は8であった。この繊維強化複合材料の垂直接着強度は、40℃雰囲気では21MPaであり、さらに140℃雰囲気では2MPaであった。 In the figure, the following was prepared as a fiber reinforced composite material. That is, a carbon fiber woven fabric having a length of 350 mm and a width of 300 mm (Toray Industries Co., Ltd., TORAYCA fabric CO6343) is laminated with a 57% by volume carbon fiber prepreg impregnated with an epoxy resin, and a nylon spunbond is further formed on the outermost surface. A nonwoven fabric sheet (trade name: Dynac LNS-0050 basis weight 50 g / m 2 , melting point 135 ° C., solubility parameter δ (SP value) 13.0, weight average molecular weight 18000 manufactured by Kureha Chemical Co., Ltd.) was laminated. Next, a vacuum bag was formed, and cured by heating at 140 ° C. for 1 hour to obtain a fiber-reinforced composite material (I) having a thickness of 0.9 mm. On the surface of this fiber reinforced composite material, the nonwoven fabric was melted and adhered in the form of a film, and the film thickness was 25 μm. The crow transition temperature of the fiber reinforced composite material was 130 ° C. The absolute value of the difference in total surface free energy between the thermosetting resin composition of the fiber reinforced composite material and the film-like thermoplastic resin composition was 9. The absolute value of the difference in total surface free energy between the reinforcing fiber of the fiber-reinforced composite material and the film-shaped thermoplastic resin composition was 8. The fiber-reinforced composite material had a vertical adhesive strength of 21 MPa in a 40 ° C. atmosphere and 2 MPa in a 140 ° C. atmosphere.

次に日本製鋼所(株)製J350EIII型射出成形機を用い、金型内に繊維強化複合材料(I)を載置し、上記供試用熱可塑性樹脂製ペレットの項で説明した熱可塑性樹脂を使用し、図3に示す別の構造部材(II)を射出成形した。得られた一体化成形品(III)は(I)と(II)が強固に一体に接合された筐体が得られた。   Next, using a J350EIII type injection molding machine manufactured by Nippon Steel Co., Ltd., the fiber reinforced composite material (I) was placed in the mold, and the thermoplastic resin described in the section of the thermoplastic resin pellet for the test was used. In use, another structural member (II) shown in FIG. 3 was injection molded. The obtained integrally molded product (III) obtained a casing in which (I) and (II) were firmly and integrally joined.

そして、この筐体の曲げ弾性率、電磁波シールド性等を上述した方法で測定したところ、曲げ弾性率は55GPa、電磁波シールド性は55dB、別の構造部材(II)である筐体立ち壁部の体積固有抵抗は4.5Ω・cmであった。   And when the bending elastic modulus, electromagnetic wave shielding property, etc. of this housing were measured by the above-mentioned method, the bending elastic modulus was 55 GPa, the electromagnetic wave shielding property was 55 dB, and the housing standing wall portion which is another structural member (II). The volume resistivity was 4.5 Ω · cm.

参考例2)
180℃硬化型プリプレグ(一方向に配列された多数本の炭素フィラメント(東レ(株)製トレカ、{O/C}=0.08)からなる強化繊維群からなり、強化繊維群の含有量が、重量割合(Wf)で70%、体積割合(Vf)で61%のプリプレグ)を積層し、その最外層にナイロンフィルム(タイプ1401 厚み50μm、融点210℃、溶解度パラメータδ(SP値)13.4、重量平均分子量20000、東レ合成フィルム(株)製)を用いて、プレス成形の前に、ホットプレートにて、225℃で3分間予熱して、ナイロンフィルムを溶融させた後、プレス成形機にて、6MPaの圧力をかけながら、150℃で30分間加熱して、平均の厚さ0.9mmの繊維強化複合材料(I)を得た。この繊維強化複合材料の表面はナイロンフィルムが溶融して膜状に付着しており、その膜厚は40μmであった。また繊維強化複合材料のカラス転移温度は180℃であった。繊維強化複合材料の熱硬化性樹脂組成物と被膜状の熱可塑性樹脂組成物のトータル表面自由エネルギーの差の絶対値は8であった。また繊維強化複合材料の強化繊維と被膜状の熱可塑性樹脂組成物のトータル表面自由エネルギーの差の絶対値は7であった。この繊維強化複合材料の垂直接着強度は、40℃雰囲気では15MPaでありさらに140℃雰囲気では8MPaであった。
( Reference Example 2)
180 ° C. curable prepreg (consisting of a reinforcing fiber group consisting of a large number of carbon filaments arranged in one direction (Toray Industries, Inc., {O / C} = 0.08), and the content of the reinforcing fiber group is , A prepreg having a weight ratio (Wf) of 70% and a volume ratio (Vf) of 61%) and a nylon film (type 1401 thickness 50 μm, melting point 210 ° C., solubility parameter δ (SP value) 13. 4. Using a weight average molecular weight of 20000, manufactured by Toray Synthetic Film Co., Ltd.), before press molding, preheat at 225 ° C. for 3 minutes on a hot plate to melt the nylon film, and then press molding machine The mixture was heated at 150 ° C. for 30 minutes while applying a pressure of 6 MPa to obtain a fiber-reinforced composite material (I) having an average thickness of 0.9 mm. On the surface of this fiber reinforced composite material, the nylon film was melted and adhered in the form of a film, and the film thickness was 40 μm. The crow transition temperature of the fiber reinforced composite material was 180 ° C. The absolute value of the difference in total surface free energy between the thermosetting resin composition of the fiber reinforced composite material and the film-like thermoplastic resin composition was 8. The absolute value of the difference in total surface free energy between the reinforcing fiber of the fiber-reinforced composite material and the film-shaped thermoplastic resin composition was 7. The fiber-reinforced composite material had a vertical adhesive strength of 15 MPa in a 40 ° C. atmosphere and 8 MPa in a 140 ° C. atmosphere.

この繊維強化複合材料から参考例1と同様にして筐体を成形し、強固に一体に接合された筐体が得られた。参考例1と同様にして筐体の曲げ弾性率 、電磁波シールド性を測定したところ、曲げ弾性率は54GPa、電磁波シールド性は53dB、別の構造部材(II)である筐体立ち壁部の体積固有抵抗は4.0Ω・cmであった。 A casing was molded from this fiber-reinforced composite material in the same manner as in Reference Example 1, and a casing that was firmly joined integrally was obtained. When the bending elastic modulus and electromagnetic wave shielding property of the housing were measured in the same manner as in Reference Example 1, the bending elastic modulus was 54 GPa, the electromagnetic wave shielding property was 53 dB, and the volume of the standing wall portion of the housing which is another structural member (II). The specific resistance was 4.0 Ω · cm.

(実施例
マトリックス樹脂がエポキシ樹脂(熱硬化性樹脂)で、一方向に配列された多数本の炭素フィラメント(東レ(株)製トレカ、{O/C}=0.08)からなる強化繊維群からなり、強化繊維群の含有量が、重量割合(Wf)で70%、体積割合(Vf)で61%のプリプレグから、長さ方向を0°方向として、繊維方向が45°、−45°、90°、−45°、45°となるような長さ350mm、幅300mmに切り出したプリプレグシート5枚を準備し、繊維方向が、上から45°、−45°、90°、−45°、45°となるように積層し、積層プリプレグシートを作製した。
(Example 1 )
The matrix resin is an epoxy resin (thermosetting resin) and consists of a group of reinforcing fibers composed of a large number of carbon filaments (Toray Industries, Inc., trading card, {O / C} = 0.08) arranged in one direction. From the prepreg in which the content of the reinforcing fiber group is 70% by weight (Wf) and 61% by volume (Vf), the fiber direction is 45 °, −45 °, 90 ° with the length direction as 0 ° direction. 5 sheets of prepreg sheets cut into a length of 350 mm and a width of 300 mm so as to be −45 ° and 45 ° are prepared, and the fiber directions are 45 °, −45 °, 90 °, −45 °, and 45 ° from the top. Then, a laminated prepreg sheet was produced.

一方、熱可塑性樹脂組成物として、3元共重合ポリアミド樹脂(東レ(株)製、3元共重合ポリアミド樹脂CM4000、ポリアミド6/66/610、融点150℃、溶解度パラメータδ(SP値)13.3、重量平均分子量20000)製の幅1,000mmの不織布を用いた。この不織布の目付は、30g/m2であった。この熱接着用基材から、長さ350mm、幅300mmの長方形状の熱接着用基材を作成した。熱接着用基材を2枚重ね、上記積層プリプレグシートの上面に長さ方向および幅方向が一致するように積層した。 On the other hand, as a thermoplastic resin composition, a terpolymer polyamide resin (manufactured by Toray Industries, Inc., ternary copolymer polyamide resin CM4000, polyamide 6/66/610, melting point 150 ° C., solubility parameter δ (SP value) 13. 3, a non-woven fabric having a width of 1,000 mm made of a weight average molecular weight of 20000). The basis weight of this nonwoven fabric was 30 g / m 2 . From this heat bonding substrate, a rectangular heat bonding substrate having a length of 350 mm and a width of 300 mm was prepared. Two base materials for thermal bonding were stacked and laminated on the upper surface of the laminated prepreg sheet so that the length direction and the width direction coincided with each other.

次に、プレス成形を行った。プレス成形機にて、160℃で5分間予熱して、熱接着用基材を溶融させた後、6MPaの圧力をかけながら、150℃で30分間加熱して熱硬化性樹脂を硬化させた。硬化終了後、室温で冷却し、脱型して、平均の厚み0.7mmの積層体に熱可塑性樹脂組成物層が表面に形成された繊維強化複合材料を製造した。この繊維強化複合材料のガラス転移温度は130℃であった。また繊維強化複合材料の熱硬化性樹脂組成物と被膜状の熱可塑性樹脂組成物のトータル表面自由エネルギーの差の絶対値は5であった。また繊維強化複合材料の強化繊維と被膜状の熱可塑性樹脂組成物のトータル表面自由エネルギーの差の絶対値は4であった。この繊維強化複合材料のISO4587に基づく接着強度は、40℃雰囲気では20MPa、140℃雰囲気では8MPaであった。さらにこの繊維強化複合材料の曲げ弾性率は25GPa、電磁波シールド性は55dBであった。   Next, press molding was performed. In a press molding machine, preheating was performed at 160 ° C. for 5 minutes to melt the base material for thermal bonding, and then the thermosetting resin was cured by heating at 150 ° C. for 30 minutes while applying a pressure of 6 MPa. After completion of curing, the mixture was cooled at room temperature and demolded to produce a fiber-reinforced composite material having a thermoplastic resin composition layer formed on the surface of a laminate having an average thickness of 0.7 mm. The glass transition temperature of this fiber reinforced composite material was 130 ° C. The absolute value of the difference in total surface free energy between the thermosetting resin composition of the fiber reinforced composite material and the film-like thermoplastic resin composition was 5. The absolute value of the difference in total surface free energy between the reinforced fiber of the fiber reinforced composite material and the film-like thermoplastic resin composition was 4. The bond strength of this fiber reinforced composite material based on ISO4587 was 20 MPa in a 40 ° C. atmosphere and 8 MPa in a 140 ° C. atmosphere. Furthermore, this fiber reinforced composite material had a flexural modulus of 25 GPa and an electromagnetic wave shielding property of 55 dB.

得られた繊維強化複合材料についてTEMおよびSEMによる断面観察を行ったところ、熱可塑性樹脂層に、連続したフィラメントが配置されていることが分かった。つまり、繊維強化複合材料の熱硬化性樹脂層と熱可塑性樹脂層に強化繊維が存在し、両樹脂の界面を補強していることが示された。   When the obtained fiber reinforced composite material was subjected to cross-sectional observation by TEM and SEM, it was found that continuous filaments were arranged in the thermoplastic resin layer. That is, it was shown that the reinforced fiber exists in the thermosetting resin layer and the thermoplastic resin layer of the fiber reinforced composite material and reinforces the interface between the two resins.

(実施例
マトリックス樹脂がエポキシ樹脂(熱硬化性樹脂)で、一方向に配列された多数本の炭素フィラメント(東レ(株)製トレカ、{O/C}=0.08)からなる強化繊維群からなり、強化繊維群の含有量が、重量割合(Wf)で70%、体積割合(Vf)で61%のプリプレグから、長さ方向を0°方向として、繊維方向が45°、−45°、90°、−45°、45°となるような長さ350mm、幅300mmに切り出したプリプレグシート5枚を準備し、繊維方向が、上から45°、−45°、90°、−45°、45°となるように積層し、積層プリプレグシートを作製した。
(Example 2 )
The matrix resin is an epoxy resin (thermosetting resin) and consists of a group of reinforcing fibers composed of a large number of carbon filaments (Toray Industries, Inc., trading card, {O / C} = 0.08) arranged in one direction. From the prepreg in which the content of the reinforcing fiber group is 70% by weight (Wf) and 61% by volume (Vf), the fiber direction is 45 °, −45 °, 90 ° with the length direction as 0 ° direction. 5 sheets of prepreg sheets cut into a length of 350 mm and a width of 300 mm so as to be −45 ° and 45 ° are prepared, and the fiber directions are 45 °, −45 °, 90 °, −45 °, and 45 ° from the top. Then, a laminated prepreg sheet was produced.

一方、熱可塑性樹脂組成物として、共重合ポリエステル樹脂(東洋紡(株)製、共重合ポリエステル樹脂バイロンGM400、融点143℃、溶解度パラメータδ(SP値)10.7、重量平均分子量25000)のペレットを用い、18MPaの圧力をかけながら200℃で3分間プレスして目付80g/m2のフィルム状熱接着用基材を作製した。この熱接着用基材を長さ350mm、幅300mmの長方形状に切り取り、上記積層プリプレグシートの上面に1枚、長さ方向および幅方向が一致するように積層した。 On the other hand, as a thermoplastic resin composition, pellets of a copolyester resin (manufactured by Toyobo Co., Ltd., copolyester resin Byron GM400, melting point 143 ° C., solubility parameter δ (SP value) 10.7, weight average molecular weight 25000) are used. A film-like base material for thermal bonding having a basis weight of 80 g / m 2 was produced by pressing at 200 ° C. for 3 minutes while applying a pressure of 18 MPa. This heat bonding base material was cut into a rectangular shape having a length of 350 mm and a width of 300 mm, and was laminated on the upper surface of the laminated prepreg sheet so that the length direction and the width direction coincided.

次に、プレス成形を行った。プレス成形機にて、160℃で5分間予熱して、熱接着用基材を溶融させた後、6MPaの圧力をかけながら、150℃で30分間加熱して熱硬化性樹脂を硬化させた。硬化終了後、室温で冷却し、脱型して、平均の厚み0.7mmの積層体に熱可塑性樹脂組成物層が表面に形成された繊維強化複合材料を製造した。この繊維強化複合材料のガラス転移温度は130℃であった。また繊維強化複合材料の熱硬化性樹脂組成物と被膜状の熱可塑性樹脂組成物のトータル表面自由エネルギーの差の絶対値は5であった。また繊維強化複合材料の強化繊維と被膜状の熱可塑性樹脂組成物のトータル表面自由エネルギーの差の絶対値は4であった。この繊維強化複合材料のISO4587に基づく接着強度は、40℃雰囲気では18MPa、140℃雰囲気では6MPaであった。さらにこの繊維強化複合材料の曲げ弾性率は25GPa、電磁波シールド性は55dBであった。   Next, press molding was performed. In a press molding machine, preheating was performed at 160 ° C. for 5 minutes to melt the base material for thermal bonding, and then the thermosetting resin was cured by heating at 150 ° C. for 30 minutes while applying a pressure of 6 MPa. After completion of curing, the mixture was cooled at room temperature and demolded to produce a fiber-reinforced composite material having a thermoplastic resin composition layer formed on the surface of a laminate having an average thickness of 0.7 mm. The glass transition temperature of this fiber reinforced composite material was 130 ° C. The absolute value of the difference in total surface free energy between the thermosetting resin composition of the fiber reinforced composite material and the film-like thermoplastic resin composition was 5. The absolute value of the difference in total surface free energy between the reinforced fiber of the fiber reinforced composite material and the film-like thermoplastic resin composition was 4. The bond strength based on ISO4587 of this fiber-reinforced composite material was 18 MPa in a 40 ° C. atmosphere and 6 MPa in a 140 ° C. atmosphere. Furthermore, this fiber reinforced composite material had a flexural modulus of 25 GPa and an electromagnetic wave shielding property of 55 dB.

得られた繊維強化複合材料についてTEMおよびSEMによる断面観察を行ったところ、熱可塑性樹脂層に、連続したフィラメントが配置されていることが分かった。つまり、繊維強化複合材料の熱硬化性樹脂層と熱可塑性樹脂層に強化繊維が存在し、両樹脂の界面を補強していることが示された。   When the obtained fiber reinforced composite material was subjected to cross-sectional observation by TEM and SEM, it was found that continuous filaments were arranged in the thermoplastic resin layer. That is, it was shown that the reinforced fiber exists in the thermosetting resin layer and the thermoplastic resin layer of the fiber reinforced composite material and reinforces the interface between the two resins.

(比較例1)
ナイロン系スパンボンド不織布を使用しなかった以外は全て参考例1と同様にして繊維強化複合材料(I)を得た。得られた繊維強化複合材料(I)同士を接着剤としてスリーボンド(株)製二液型アクリル系接着剤3921/3926を塗布し接着後、常温で24hr放置し接合して、強固に接着した接着強度試験片が得られた。垂直接着強度は、40℃雰囲気では25MPa、140℃では17MPaであった。
(Comparative Example 1)
A fiber-reinforced composite material (I) was obtained in the same manner as in Reference Example 1 except that a nylon spunbond nonwoven fabric was not used. Adhesion obtained by applying and bonding two-part acrylic adhesive 3921/3926 manufactured by ThreeBond Co., Ltd. using the obtained fiber reinforced composite material (I) as an adhesive, leaving it to stand for 24 hours at room temperature, and bonding firmly A strength specimen was obtained. The vertical adhesive strength was 25 MPa at 40 ° C. and 17 MPa at 140 ° C.

また別に射出成形金型に繊維強化複合材料(I)の代わりに繊維強化複合材料(I)と同じ形状の金属製のスペーサーを載置して参考例1と同様にして別の構造部材(II)を射出成形した。得られた繊維強化複合材料(I)と別の構造部材(II)に接着剤としてスリーボンド(株)製二液型アクリル系接着剤3921/3926を塗布し接着後、常温で24hr放置し接合した結果強固に接着した筐体が得られた。参考例1と同様にして評価した結果、弾性率は56GPa、電磁波シールド性は55dB、立ち壁部の体積固有抵抗は4.0Ω・cmであった。 Separately another structural member by placing a metal spacer having the same shape as the fiber reinforced composite material (I) in the same manner as in Reference Example 1 in place of the fiber-reinforced composite material (I) in an injection molding die (II ) Was injection molded. The two-component acrylic adhesive 3921/3926 manufactured by ThreeBond Co., Ltd. was applied as an adhesive to the obtained fiber-reinforced composite material (I) and another structural member (II), and then bonded and left to stand for 24 hours at room temperature. As a result, a strongly bonded housing was obtained. As a result of evaluation in the same manner as in Reference Example 1, the elastic modulus was 56 GPa, the electromagnetic wave shielding property was 55 dB, and the volume resistivity of the standing wall portion was 4.0 Ω · cm.

(比較例2)
前記実施例において、予熱することなしに、6MPaの圧力をかけながら、150℃で30分間加熱して、プレス成形を行い、硬化終了後、室温で冷却し、脱型して、平均の厚み0.7mmの積層体に熱可塑性樹脂組成物が形成された繊維強化複合材料を製造した。この繊維強化複合材料のガラス転移温度は130℃であった。また繊維強化複合材料の熱硬化性樹脂組成物と被膜状の熱可塑性樹脂組成物のトータル表面自由エネルギーの差の絶対値は5であった。また繊維強化複合材料の強化繊維と被膜状の熱可塑性樹脂組成物のトータル表面自由エネルギーの差の絶対値は4であった。この繊維強化複合材料の垂直接着強度は、40℃雰囲気では1MPa、140℃雰囲気では0.4MPaであった。さらにこの繊維強化複合材料の曲げ弾性率は25GPa、電磁波シールド性は55dBであった。
(Comparative Example 2)
In Example 1 , without applying preheating, while applying a pressure of 6 MPa, heating was performed at 150 ° C. for 30 minutes to perform press molding, and after curing, cooling at room temperature, demolding, and average thickness A fiber-reinforced composite material in which a thermoplastic resin composition was formed on a 0.7 mm laminate was produced. The glass transition temperature of this fiber reinforced composite material was 130 ° C. The absolute value of the difference in total surface free energy between the thermosetting resin composition of the fiber reinforced composite material and the film-like thermoplastic resin composition was 5. The absolute value of the difference in total surface free energy between the reinforced fiber of the fiber reinforced composite material and the film-like thermoplastic resin composition was 4. The vertical adhesive strength of this fiber reinforced composite material was 1 MPa in a 40 ° C. atmosphere and 0.4 MPa in a 140 ° C. atmosphere. Furthermore, this fiber reinforced composite material had a flexural modulus of 25 GPa and an electromagnetic wave shielding property of 55 dB.

得られた繊維強化複合材料を、実施例の場合と同じ要領で、TEMおよびSEMによる断面観察を行ったが、熱可塑性樹脂層には、連続したフィラメントが配置されていないことが分かった。 The obtained fiber-reinforced composite material was subjected to cross-sectional observation by TEM and SEM in the same manner as in Example 1 , but it was found that continuous filaments were not arranged in the thermoplastic resin layer.

(比較例3)
マトリックス樹脂がエポキシ樹脂(熱硬化性樹脂)で、一方向に配列された多数本の炭素フィラメント(東レ(株)製トレカ、{O/C}=0.08)からなる強化繊維群からなり、強化繊維群の含有量が、重量割合(Wf)で70%、体積割合(Vf)で61%のプリプレグから、長さ方向を0°方向として、繊維方向が45°、−45°、90°、−45°、45°となるような長さ350mm、幅300mmに切り出したプリプレグシート5枚を準備し、繊維方向が、上から45°、−45°、90°、−45°、45°となるように積層し、積層プリプレグシートを作製した。
一方、熱可塑性樹脂組成物として、ポリプレピレン樹脂(三井住友ポリオレフィン(株)製、融点165℃、溶解度パラメータδ(SP値)8.3)のペレットを用い、18MPaの圧力をかけながら200℃で3分間プレスして目付80g/m2のフィルム状熱接着用基材を作製した。この熱接着用基材を長さ350mm、幅300mmの長方形状に切り取り、上記積層プリプレグシートの上面に1枚、長さ方向および幅方向が一致するように積層した。
(Comparative Example 3)
The matrix resin is an epoxy resin (thermosetting resin) and consists of a group of reinforcing fibers composed of a large number of carbon filaments (Toray Industries, Inc., trading card, {O / C} = 0.08) arranged in one direction. From the prepreg in which the content of the reinforcing fiber group is 70% by weight (Wf) and 61% by volume (Vf), the fiber direction is 45 °, −45 °, 90 ° with the length direction as 0 ° direction. 5 sheets of prepreg sheets cut into a length of 350 mm and a width of 300 mm so as to be −45 ° and 45 ° are prepared, and the fiber directions are 45 °, −45 °, 90 °, −45 °, and 45 ° from the top. Then, a laminated prepreg sheet was produced.
On the other hand, pellets of polypropylene resin (manufactured by Mitsui Sumitomo Polyolefin Co., Ltd., melting point 165 ° C., solubility parameter δ (SP value) 8.3) were used as the thermoplastic resin composition, and 3 at 200 ° C. while applying a pressure of 18 MPa. The substrate was pressed for a minute to produce a film-like base material for thermal bonding having a basis weight of 80 g / m 2 . This heat bonding base material was cut into a rectangular shape having a length of 350 mm and a width of 300 mm, and was laminated on the upper surface of the laminated prepreg sheet so that the length direction and the width direction coincided.

次に、プレス成形を行った。プレス成形機にて、180℃で5分間予熱して、熱接着用基材を溶融させた後、6MPaの圧力をかけながら、150℃で30分間加熱して熱硬化性樹脂を硬化させた。硬化終了後、室温で冷却し、脱型して、平均の厚み0.7mmの積層体に熱可塑性樹脂組成物が形成された繊維強化複合材料を製造した。この繊維強化複合材料のガラス転移温度は130℃であった。また繊維強化複合材料の熱硬化性樹脂組成物と被膜状の熱可塑性樹脂組成物のトータル表面自由エネルギーの差の絶対値は7であった。また繊維強化複合材料の強化繊維と被膜状の熱可塑性樹脂組成物のトータル表面自由エネルギーの差の絶対値は7であった。この繊維強化複合材料の垂直接着強度は、40℃雰囲気では1.5MPa、140℃雰囲気では1MPaであった。さらにこの繊維強化複合材料の曲げ弾性率は25GPa、電磁波シールド性は55dBであった。   Next, press molding was performed. In a press molding machine, preheating was performed at 180 ° C. for 5 minutes to melt the base material for thermal bonding, and then the thermosetting resin was cured by heating at 150 ° C. for 30 minutes while applying a pressure of 6 MPa. After completion of curing, the mixture was cooled at room temperature and demolded to produce a fiber-reinforced composite material in which a thermoplastic resin composition was formed on a laminate having an average thickness of 0.7 mm. The glass transition temperature of this fiber reinforced composite material was 130 ° C. The absolute value of the difference in total surface free energy between the thermosetting resin composition of the fiber reinforced composite material and the film-like thermoplastic resin composition was 7. The absolute value of the difference in total surface free energy between the reinforcing fiber of the fiber-reinforced composite material and the film-shaped thermoplastic resin composition was 7. The vertical adhesive strength of this fiber reinforced composite material was 1.5 MPa in a 40 ° C. atmosphere and 1 MPa in a 140 ° C. atmosphere. Furthermore, this fiber reinforced composite material had a flexural modulus of 25 GPa and an electromagnetic wave shielding property of 55 dB.

得られた繊維強化複合材料についてTEMおよびSEMによる断面観察を行ったところ、熱可塑性樹脂層に、連続したフィラメントが配置されていることが分かった。つまり、繊維強化複合材料の熱硬化性樹脂層と熱可塑性樹脂層に強化繊維が存在し、両樹脂の界面を補強していることが示された。   When the obtained fiber reinforced composite material was subjected to cross-sectional observation by TEM and SEM, it was found that continuous filaments were arranged in the thermoplastic resin layer. That is, it was shown that the reinforced fiber exists in the thermosetting resin layer and the thermoplastic resin layer of the fiber reinforced composite material and reinforces the interface between the two resins.

実施例1,2、参考例1,2および比較例1〜3より以下のことが明らかになった。 From Examples 1 and 2, Reference Examples 1 and 2 and Comparative Examples 1 to 3, the following was revealed.

実施例1,2、参考例1,2の一体化成形品は、繊維強化複合材料が強固に接着し、室温における接着強度の値も優れている。また、140℃雰囲気ではその接着強度が大幅にダウンし、剥離分解しやすくなり、熱硬化性樹脂組成物と熱可塑性樹脂組成物が各々分別しやすく再利用性に優れていることが明らかである。比較例1のアクリル系接着剤で接着させた筐体は40℃での接着強度には優れているが、140℃でもなお接着強度が高く、各々の樹脂組成物に分解が困難であり分別して再利用が容易でない。 In the integrated molded products of Examples 1 and 2 and Reference Examples 1 and 2, the fiber-reinforced composite material is firmly bonded, and the adhesive strength value at room temperature is also excellent. In addition, it is clear that the adhesive strength is greatly reduced in a 140 ° C. atmosphere, and is easily peeled and decomposed, and the thermosetting resin composition and the thermoplastic resin composition are easily separated and excellent in reusability. . The case bonded with the acrylic adhesive of Comparative Example 1 is excellent in adhesive strength at 40 ° C., but still has high adhesive strength even at 140 ° C., and it is difficult to disassemble each resin composition. It is not easy to reuse.

実施例1、2の繊維強化複合材料は、二つの繊維強化複合材料が強固に接着し、接着強度の値も優れている。比較例2、3の繊維強化複合材料は、二つの繊維強化複合材料の接着が弱く、接着強度の値も低い。 In the fiber reinforced composite materials of Examples 1 and 2 , the two fiber reinforced composite materials are firmly bonded, and the adhesive strength value is also excellent. In the fiber reinforced composite materials of Comparative Examples 2 and 3, the adhesion between the two fiber reinforced composite materials is weak, and the value of the adhesive strength is also low.

本発明の一体化成形品(III)を電磁波シールド成形品である電子機器筐体とした一実施例の斜視図である。It is a perspective view of one Example which used the integrated molded product (III) of this invention as the electronic device housing | casing which is an electromagnetic wave shield molded product. 本発明の垂直接着強度評価に用いる成形品の斜視図である。It is a perspective view of the molded product used for vertical adhesive strength evaluation of this invention. 本発明の電磁波シールド成形品(III)を電気・電子機器のモデル筐体とした一実施例の製造工程を説明するための分解斜視図である。It is a disassembled perspective view for demonstrating the manufacturing process of one Example which used the electromagnetic wave shield molded article (III) of this invention as the model housing | casing of an electrical / electronic device. 本発明の繊維強化複合材料のISO4587に基づく接着強度評価試験片形状である。It is an adhesive strength evaluation test piece shape based on ISO4587 of the fiber reinforced composite material of the present invention. 平板と溶媒のなす接触角θを図示したものである。The contact angle θ between the flat plate and the solvent is illustrated. 本発明の繊維強化複合材料の垂直接着強度評価装置の模式図である。It is a schematic diagram of the vertical adhesive strength evaluation apparatus of the fiber reinforced composite material of this invention. 本発明の繊維強化複合材料の被膜の平均厚みを模式的に図示したものである。The average thickness of the film of the fiber reinforced composite material of this invention is typically illustrated.

符号の説明Explanation of symbols

I:電磁波シールド成形品を構成する繊維強化複合材料(I)
II:電磁波シールド成形品を構成する別の構造部材(II)
III:電磁波シールド一体化成形品(III)
TP1:試験片
TP1L:試験片TP1の長さ
TP1W:試験片TP1の幅
BP:試験片の接合部
BPL:試験片の接合部の長さ
a:引張治具
b:一体化成形品
c:熱可塑性樹脂組成物
d:強化繊維
e:熱硬化性樹脂組成物
f:熱可塑性樹脂組成物と熱硬化性樹脂組成物との界面
I: Fiber reinforced composite material constituting electromagnetic wave shield molding (I)
II: Another structural member constituting the electromagnetic wave shield molding (II)
III: Integrated electromagnetic shield (III)
TP1: Specimen TP1L: Length TP1W of Specimen TP1: Width of Specimen TP1 BP: Test piece joint BPL: Specimen joint length a: Tensile jig b: Integrated molded product c: Heat Plastic resin composition d: Reinforcing fiber e: Thermosetting resin composition f: Interface between thermoplastic resin composition and thermosetting resin composition

Claims (23)

強化繊維と熱硬化性樹脂組成物とを含んでなる繊維強化複合材料であって、その表面の少なくとも一部分に熱可塑性樹脂組成物からなる被膜が形成され、かつ、当該被膜の熱可塑性樹脂組成物を構成する熱可塑性樹脂の溶解度パラメータδ(SP値)が9〜16であり、前記強化繊維のうちの少なくとも一部が、同一の繊維について前記熱硬化性樹脂組成物に埋没する部分と前記熱可塑性樹脂組成物に埋没する部分との双方を有する繊維強化複合材料。 A fiber reinforced composite material comprising a reinforced fiber and a thermosetting resin composition, wherein a film made of the thermoplastic resin composition is formed on at least a part of the surface thereof, and the thermoplastic resin composition of the film The solubility parameter δ (SP value) of the thermoplastic resin constituting the resin is 9 to 16, and at least a part of the reinforcing fibers is embedded in the thermosetting resin composition with respect to the same fibers and the heat A fiber-reinforced composite material having both a portion embedded in a plastic resin composition. 前記熱可塑性樹脂が、ポリアミド系樹脂、および/またはポリエステル系樹脂である、請求項1記載の繊維強化複合材料。 The fiber-reinforced composite material according to claim 1, wherein the thermoplastic resin is a polyamide-based resin and / or a polyester-based resin. 前記強化繊維が炭素繊維である、請求項1または2記載の繊維強化複合材料。 The fiber-reinforced composite material according to claim 1 or 2, wherein the reinforcing fibers are carbon fibers. 前記炭素繊維のX線光電子分光法により測定される炭素繊維表面の酸素(O)と炭素(C)との原子数の比である表面酸素濃度{O/C}が0.05〜0.3である、請求項3記載の繊維強化複合材料。 The surface oxygen concentration {O / C} which is the ratio of the number of oxygen (O) and carbon (C) atoms on the surface of the carbon fiber measured by X-ray photoelectron spectroscopy of the carbon fiber is 0.05 to 0.3. The fiber-reinforced composite material according to claim 3, wherein 前記強化繊維の平均長さが10mm以上であって、当該長繊維群が層状に積層され配置されている、請求項1〜4のいずれか記載の繊維強化複合材料。 The fiber reinforced composite material according to any one of claims 1 to 4, wherein an average length of the reinforcing fibers is 10 mm or more, and the long fiber group is laminated and arranged in a layered manner. 前記強化繊維の含有量が5〜75体積%である、請求項1〜5のいずれか記載の繊維強化複合材料。 The fiber-reinforced composite material according to any one of claims 1 to 5, wherein a content of the reinforcing fiber is 5 to 75% by volume. 前記熱硬化性樹脂組成物を構成する熱硬化性樹脂のガラス転移温度が60℃以上である、請求項1〜6のいずれか記載の繊維強化複合材料。 The fiber reinforced composite material according to any one of claims 1 to 6, wherein a glass transition temperature of a thermosetting resin constituting the thermosetting resin composition is 60 ° C or higher. 前記熱硬化性樹脂組成物が少なくともエポキシ樹脂を含有する、請求項1〜7のいずれか記載の繊維強化複合材料。 The fiber-reinforced composite material according to any one of claims 1 to 7, wherein the thermosetting resin composition contains at least an epoxy resin. 前記熱可塑性樹脂組成物を構成する熱可塑性樹脂のガラス転移温度が15〜300℃である、請求項1〜8のいずれか記載の繊維強化複合材料。 The fiber reinforced composite material according to any one of claims 1 to 8, wherein a glass transition temperature of a thermoplastic resin constituting the thermoplastic resin composition is 15 to 300 ° C. 前記熱可塑性樹脂組成物を構成する熱可塑性樹脂の融点が100〜350℃である、請求項1〜9のいずれか記載の繊維強化複合材料。 The fiber-reinforced composite material according to any one of claims 1 to 9, wherein a melting point of the thermoplastic resin constituting the thermoplastic resin composition is 100 to 350 ° C. 前記熱可塑性樹脂組成物を構成する熱可塑性樹脂の重量平均分子量が2,000〜200,000である、請求項1〜10のいずれか記載の繊維強化複合材料。 The fiber reinforced composite material according to any one of claims 1 to 10, wherein the thermoplastic resin constituting the thermoplastic resin composition has a weight average molecular weight of 2,000 to 200,000. 前記熱可塑性樹脂組成物からなる被膜の平均厚みが0.1〜1000μmである、請求項1〜11のいずれか記載の繊維強化複合材料。 The fiber reinforced composite material according to any one of claims 1 to 11, wherein an average thickness of a film made of the thermoplastic resin composition is 0.1 to 1000 µm. 平均厚みが0.1〜3mmである、請求項1〜12のいずれか記載の繊維強化複合材料。 The fiber-reinforced composite material according to any one of claims 1 to 12, having an average thickness of 0.1 to 3 mm. ASTM D790に基づく曲げ弾性率が20GPa以上である、請求項1〜13のいずれか記載の繊維強化複合材料。 The fiber-reinforced composite material according to any one of claims 1 to 13, wherein the flexural modulus based on ASTM D790 is 20 GPa or more. アドバンテスト法にて測定される周波数1GHzにおける電波シールド性が30dB以上である請求項1〜14のいずれか記載の繊維強化複合材料。 The fiber-reinforced composite material according to any one of claims 1 to 14, wherein the radio wave shielding property at a frequency of 1 GHz measured by the Advantest method is 30 dB or more. 強化繊維と熱硬化性樹脂組成物を含む熱硬化性プリプレグ積層体の表面の少なくとも一部分に、溶解度パラメータδ(SP値)が9〜16の熱可塑性樹脂を含む熱可塑性樹脂組成物を配置する積層工程と、前記熱硬化性樹脂組成物を構成する熱硬化性樹脂の硬化反応と並行して前記熱可塑性樹脂組成物を溶融し被膜を形成させることにより、前記強化繊維のうちの少なくとも一部が、同一の繊維について前記熱硬化性樹脂組成物に埋没する部分と前記熱可塑性樹脂組成物に埋没する部分との双方を有する構造を設ける加熱成形工程とを含むことを特徴とする繊維強化複合材料の製造方法。 Lamination in which a thermoplastic resin composition containing a thermoplastic resin having a solubility parameter δ (SP value) of 9 to 16 is disposed on at least a part of the surface of a thermosetting prepreg laminate including reinforcing fibers and a thermosetting resin composition At least a part of the reinforcing fibers is formed by melting the thermoplastic resin composition and forming a coating in parallel with the step and the curing reaction of the thermosetting resin constituting the thermosetting resin composition. And a thermoforming step of providing a structure having both a portion embedded in the thermosetting resin composition and a portion embedded in the thermoplastic resin composition with respect to the same fiber. Manufacturing method. 請求項1〜15のいずれか記載の繊維強化複合材料と別の構造部材とが前記熱可塑性樹脂組成物からなる被膜を介して一体に結合されてなることを特徴とする一体化成形品。 An integrated molded article, wherein the fiber-reinforced composite material according to any one of claims 1 to 15 and another structural member are integrally bonded through a film made of the thermoplastic resin composition. 前記「別の構造部材」が金属材料である、請求項17に記載の一体化成形品。 The integrally molded article according to claim 17, wherein the “another structural member” is a metal material. 前記「別の構造部材」が請求項1〜15のいずれか記載の繊維強化複合材料である、請求項17記載の一体化成形品。 The integrated molded article according to claim 17 , wherein the “another structural member” is the fiber-reinforced composite material according to claim 1. 前記「別の構造部材」が熱可塑性樹脂組成物からなる成形品である、請求項17記載の一体化成形品。 The integrated molded article according to claim 17 , wherein the “another structural member” is a molded article made of a thermoplastic resin composition. 熱可塑性樹脂組成物からなる成形品がさらに炭素繊維を含有する、請求項20記載の一体化成形品。 The integrated molded article according to claim 20, wherein the molded article made of the thermoplastic resin composition further contains carbon fibers. 前記「別の構造部材」の体積固有抵抗率が100Ω・cm以下である、請求項17〜21のいずれか記載の一体化成形品。 The integral molded article according to any one of claims 17 to 21, wherein the volume resistivity of the "other structural member" is 100 Ω · cm or less. 電気・電子機器、OA機器、家電機器、自動車または建材の、部品、部材または筐体のいずれかに用いられる、請求項17〜22のいずれか記載の一体化成形品。 The integrated molded product according to any one of claims 17 to 22, which is used for any one of a part, a member or a casing of an electric / electronic device, an OA device, a home appliance, an automobile or a building material.
JP2004045963A 2003-02-21 2004-02-23 FIBER-REINFORCED COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND INTEGRATED MOLDED ARTICLE Expired - Lifetime JP4543696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004045963A JP4543696B2 (en) 2003-02-21 2004-02-23 FIBER-REINFORCED COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND INTEGRATED MOLDED ARTICLE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003043920 2003-02-21
JP2004045963A JP4543696B2 (en) 2003-02-21 2004-02-23 FIBER-REINFORCED COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND INTEGRATED MOLDED ARTICLE

Publications (2)

Publication Number Publication Date
JP2004269878A JP2004269878A (en) 2004-09-30
JP4543696B2 true JP4543696B2 (en) 2010-09-15

Family

ID=33134224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004045963A Expired - Lifetime JP4543696B2 (en) 2003-02-21 2004-02-23 FIBER-REINFORCED COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND INTEGRATED MOLDED ARTICLE

Country Status (1)

Country Link
JP (1) JP4543696B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006044261A (en) * 2004-07-08 2006-02-16 Toray Ind Inc Fiber-reinforced composite material, its production method and integrally structured material using it
WO2012137554A1 (en) 2011-04-05 2012-10-11 東レ株式会社 Composite molded body and method for producing same

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101197524B1 (en) * 2004-02-27 2012-11-09 도레이 카부시키가이샤 Epoxy resin composition for carbon-fiber-reinforced composite material, prepreg, integrated molding, sheet of fiber-reinforced composite material and cabinet for electrical/electronic equipment
EP1724098A1 (en) * 2005-05-20 2006-11-22 Carbo Tech Composites GmbH Process for the production of a laminated composite product and a composite product made by the lamination process
JP2007044665A (en) * 2005-08-12 2007-02-22 Daicen Membrane Systems Ltd Hollow fiber membrane module
CN101495307B (en) 2006-07-28 2013-04-03 东丽株式会社 Molded article and method for producing the same
WO2009010046A2 (en) * 2007-07-13 2009-01-22 David Linden Bicycle pedal
JP5525781B2 (en) * 2009-08-12 2014-06-18 三菱樹脂株式会社 Laminated body
KR101743198B1 (en) * 2010-12-16 2017-06-15 엘지전자 주식회사 Display Apparatus
JPWO2013089228A1 (en) * 2011-12-16 2015-04-27 東レ株式会社 Frame structure and automotive parts using the same
JP6251485B2 (en) * 2012-03-01 2017-12-20 東洋樹脂株式会社 Optical inspection base with optical inspection window
GB2518208B (en) * 2013-09-13 2016-06-01 Yasa Motors Ltd Stator-plate Overmoulding
GB2518209B (en) * 2013-09-13 2016-08-03 Yasa Motors Ltd Pole-piece Bonding
JP6704229B2 (en) 2015-09-14 2020-06-03 リンテック オブ アメリカ インコーポレーテッドLintec of America, Inc. Flexible sheet, heat conductive member, conductive member, antistatic member, heating element, electromagnetic wave shield, and method for manufacturing flexible sheet
KR101746026B1 (en) 2015-12-11 2017-06-13 주식회사 엑시아머티리얼스 Multilayer hybrid prepreg and its manufacturing method
KR101843006B1 (en) 2016-04-20 2018-03-29 주식회사 한국카본 Structure applying the glass fiber-reinforced resin foam having excellent fatigue resistance and insulating properties
US11993688B2 (en) 2019-03-28 2024-05-28 Toray Industries, Inc. Molded article of carbon fiber composite material and production method for molded article of carbon fiber composite material
CN113767007A (en) * 2019-05-23 2021-12-07 东丽株式会社 Method for producing fiber-reinforced resin base material, and integrated molded article thereof
EP3974141A4 (en) * 2019-05-23 2023-06-21 Toray Industries, Inc. Prepreg, layered body, and molded article
CN117944283A (en) * 2019-05-23 2024-04-30 东丽株式会社 Fiber-reinforced resin base material, integrated molded article, and method for producing fiber-reinforced resin base material
US20230001651A1 (en) * 2019-12-11 2023-01-05 Toray Industries, Inc. Prepreg, laminate, and integrated product
US20230017689A1 (en) * 2019-12-11 2023-01-19 Toray Industries, Inc. Prepreg, laminate, and integrated product
TW202132438A (en) * 2019-12-11 2021-09-01 日商東麗股份有限公司 Prepreg, laminate and integrated molded article
KR102326467B1 (en) * 2019-12-20 2021-11-16 (주)동희산업 Manufacturing method of trailing arm and trailing arm manufactured using the same
KR20230019429A (en) * 2020-06-03 2023-02-08 도레이 카부시키가이샤 Fibre-reinforced plastics, monoliths and prepregs

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01320146A (en) * 1988-06-23 1989-12-26 Toho Rayon Co Ltd Molding intermediate product and moldings
JPH0747152A (en) * 1993-08-06 1995-02-21 Asahi Chem Ind Co Ltd Fiber-reinforced resin racket frame
JPH07205171A (en) * 1994-01-10 1995-08-08 Shin Kobe Electric Mach Co Ltd Production of abrasive laminated sheet
JPH07214680A (en) * 1994-02-07 1995-08-15 Kanebo Ltd Production of fiber reinforced resin composite material
JPH09277420A (en) * 1996-04-19 1997-10-28 Toray Ind Inc Fiber reinforced plastic structure and its production
JPH10201882A (en) * 1997-01-23 1998-08-04 Sumitomo Rubber Ind Ltd Racket frame and its production
JP2005297417A (en) * 2004-04-14 2005-10-27 Toray Ind Inc Industrial structure member and its manufacturing method
JP2006044259A (en) * 2004-07-07 2006-02-16 Toray Ind Inc Integrated molded product and its manufacturing method
JP2006044261A (en) * 2004-07-08 2006-02-16 Toray Ind Inc Fiber-reinforced composite material, its production method and integrally structured material using it

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01320146A (en) * 1988-06-23 1989-12-26 Toho Rayon Co Ltd Molding intermediate product and moldings
JPH0747152A (en) * 1993-08-06 1995-02-21 Asahi Chem Ind Co Ltd Fiber-reinforced resin racket frame
JPH07205171A (en) * 1994-01-10 1995-08-08 Shin Kobe Electric Mach Co Ltd Production of abrasive laminated sheet
JPH07214680A (en) * 1994-02-07 1995-08-15 Kanebo Ltd Production of fiber reinforced resin composite material
JPH09277420A (en) * 1996-04-19 1997-10-28 Toray Ind Inc Fiber reinforced plastic structure and its production
JPH10201882A (en) * 1997-01-23 1998-08-04 Sumitomo Rubber Ind Ltd Racket frame and its production
JP2005297417A (en) * 2004-04-14 2005-10-27 Toray Ind Inc Industrial structure member and its manufacturing method
JP2006044259A (en) * 2004-07-07 2006-02-16 Toray Ind Inc Integrated molded product and its manufacturing method
JP2006044261A (en) * 2004-07-08 2006-02-16 Toray Ind Inc Fiber-reinforced composite material, its production method and integrally structured material using it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006044261A (en) * 2004-07-08 2006-02-16 Toray Ind Inc Fiber-reinforced composite material, its production method and integrally structured material using it
WO2012137554A1 (en) 2011-04-05 2012-10-11 東レ株式会社 Composite molded body and method for producing same

Also Published As

Publication number Publication date
JP2004269878A (en) 2004-09-30

Similar Documents

Publication Publication Date Title
JP4543696B2 (en) FIBER-REINFORCED COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND INTEGRATED MOLDED ARTICLE
KR101156516B1 (en) Layered product, united molded object, and processes for producing these
JP4023515B2 (en) Preform using a base material for thermal bonding, and method for producing laminate
EP2527139B1 (en) Sandwich structure and integrated formed article using the same
JP6406011B2 (en) Sandwich structure, integrated molded product using the same, and manufacturing method thereof
JP4774839B2 (en) Manufacturing method of fiber reinforced composite material
JP2006044259A (en) Integrated molded product and its manufacturing method
WO2007037260A1 (en) Fiber-reinforced thermoplastic resin composition, method for producing same, and carbon fiber for thermoplastic resin
JP2007110138A (en) Molded object for electromagnetic wave shielding and method of manufacturing the same
JP2006089734A (en) Thermoplastic resin composition
JP2006205436A (en) Fiber reinforced composite material sheet and molded product using it
JP2005297417A (en) Industrial structure member and its manufacturing method
JP2008169344A (en) Thermoplastic resin composition
JP2008120879A (en) Thermoplastic resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4543696

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140709

Year of fee payment: 4

EXPY Cancellation because of completion of term