JP2006044261A - Fiber-reinforced composite material, its production method and integrally structured material using it - Google Patents

Fiber-reinforced composite material, its production method and integrally structured material using it Download PDF

Info

Publication number
JP2006044261A
JP2006044261A JP2005199740A JP2005199740A JP2006044261A JP 2006044261 A JP2006044261 A JP 2006044261A JP 2005199740 A JP2005199740 A JP 2005199740A JP 2005199740 A JP2005199740 A JP 2005199740A JP 2006044261 A JP2006044261 A JP 2006044261A
Authority
JP
Japan
Prior art keywords
composite material
continuous reinforcing
reinforcing fiber
thermoplastic resin
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005199740A
Other languages
Japanese (ja)
Other versions
JP4774839B2 (en
Inventor
Shiyouji Murai
彰児 村井
Atsuki Tsuchiya
敦岐 土谷
Yoshibumi Nakayama
義文 中山
Masato Honma
雅登 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2005199740A priority Critical patent/JP4774839B2/en
Publication of JP2006044261A publication Critical patent/JP2006044261A/en
Application granted granted Critical
Publication of JP4774839B2 publication Critical patent/JP4774839B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a fiber-reinforced composite material to which another material can easily and strongly be adhered by an RTM molding method using a continuous reinforcing fiber material and to provide a continuous reinforcing fiber material. <P>SOLUTION: The method comprises a lamination process setting a thermoplastic material mainly composed of a thermoplastic resin on at least a part of the surface of a continuous reinforcing fiber material, a preheating process melting the thermoplastic material to form a film of a thermoplastic resin on a surface of the continuous reinforcing fiber material and a curing process introducing/curing a thermosetting resin. In the continuous reinforcing fiber material, a thermoplastic coating layer is formed on at least a part of the surface of the continuous reinforcing fiber material, and this material is useful as a material for coating a surface of a composite material for forming a thermoplastic resin layer on a surface of a molded article obtained from a continuous reinforcing fiber material. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、強化繊維基材に未硬化マトリクス樹脂を含浸・硬化させてなる繊維強化複合材料の製造方法に関するものである。さらに本発明は繊維強化複合材料ならびにその繊維強化複合材料と別の部材とを接合させてなる一体化構造部材およびその製造方法に関するものである。   The present invention relates to a method for producing a fiber reinforced composite material obtained by impregnating and curing an uncured matrix resin in a reinforced fiber base material. Furthermore, the present invention relates to a fiber reinforced composite material, an integrated structure member obtained by joining the fiber reinforced composite material and another member, and a method for manufacturing the same.

繊維強化複合材料は、成形性、薄肉、軽量、高剛性、生産性、経済性に優れ、電気・電子機器部品、自動車機器部品、パソコン、OA機器、AV機器、携帯電話、電話機、ファクシミリ、家電製品、玩具用品などの電気・電子機器の部品や筐体に頻繁に使用されている。   Fiber reinforced composite materials are excellent in moldability, thin wall, light weight, high rigidity, productivity, and economical efficiency. Electrical / electronic equipment parts, automotive equipment parts, personal computers, OA equipment, AV equipment, mobile phones, telephones, facsimiles, home appliances. It is frequently used in parts and casings of electrical and electronic equipment such as products and toy supplies.

従来より薄肉、軽量、高剛性に優れた素材として、連続した強化繊維を用いた繊維強化複合材料がある。繊維強化複合材料の代表的な製造方法として、連続した強化繊維に未硬化の樹脂を含浸させた繊維強化プリプレグを積層配置して硬化させる方法があるが、複雑形状の成形品を量産性よく容易に生産するのには不向きであった。   As a material superior in thickness, light weight, and high rigidity, there is a fiber-reinforced composite material using continuous reinforcing fibers. A typical method for manufacturing fiber reinforced composite materials is a method of stacking and curing fiber reinforced prepregs in which continuous reinforced fibers are impregnated with uncured resin, but it is easy to mass-produce molded products with complex shapes. It was unsuitable for production.

また別の製造方法として、繊維基材を金型に賦形して未硬化の樹脂を注入し、基材に含浸させた後に硬化させる、いわゆるレジントランスファーモールディング(RTM)成形法がある。この成形方法は樹脂が未含浸の基材を賦形するため、比較的複雑な形状の成形品を作成することが可能である。しかし射出成形品や金属成形品などに比較すると、複雑形状への対応は困難である場合が多い。   As another manufacturing method, there is a so-called resin transfer molding (RTM) molding method in which a fiber base material is shaped into a mold, an uncured resin is injected, the base material is impregnated, and then cured. Since this molding method forms a base material that is not impregnated with resin, it is possible to produce a molded product having a relatively complicated shape. However, it is often difficult to cope with complex shapes as compared to injection molded products and metal molded products.

そこで複雑な形状の成形品を得るため、繊維強化プラスチック板や金属板などを、他の成形品等と一体的に接合させる技術が求められている。特許文献1には、少なくとも表面の一部を熱可塑性樹脂で被覆した強化繊維基材を金型に充填し、熱硬化性樹脂を注入して成形する方法が記載されているが、これは基本的に繊維強化複合材料に靱性を付与することを目的としており、成形品の内部に熱可塑性樹脂が含まれるため、別の部材との接合などには別途接着剤が必要となる。一般に公知の接着剤を使用すると、接着工程に要する工数とリードタイムがコストの増大と生産性低下に繋がり、何より接着強度が十分に発現できず、高強度・高剛性という繊維強化複合材料の特徴を損なうことが問題である。また、ボルト、ネジなどの機械接合法では、別途機械加工工程が必要であるだけでなく、デザイン上の制約があり適用が限定されること、何より軽量性という繊維強化複合材料の特徴を損なう点で問題がある。
特開平8−300395号公報
Therefore, in order to obtain a molded product having a complicated shape, a technique for integrally joining a fiber-reinforced plastic plate, a metal plate, or the like with another molded product or the like is required. Patent Document 1 describes a method of filling a mold with a reinforcing fiber base having at least a part of the surface coated with a thermoplastic resin, and injecting a thermosetting resin. In particular, it is intended to impart toughness to the fiber reinforced composite material, and since a thermoplastic resin is contained inside the molded product, a separate adhesive is required for joining with another member. In general, when using known adhesives, the man-hours and lead time required for the bonding process increase costs and reduce productivity, and above all, the bond strength cannot be fully expressed, and the characteristics of fiber-reinforced composite materials with high strength and high rigidity Is a problem. In addition, mechanical joining methods such as bolts and screws not only require a separate machining process, but are limited in design and limited in application, and above all, the characteristics of fiber-reinforced composite materials such as lightness are impaired. There is a problem.
JP-A-8-300395

本発明は、かかる従来技術の問題点を解消し、別の部材と容易にかつ強固に接着させることのできる、RTM成形等に代表される、強化繊維基材に未硬化マトリクス樹脂を含浸・硬化する繊維強化複合材料の製造方法および連続強化繊維基材を得んとするものである。     The present invention eliminates the problems of the prior art, and can be easily and firmly bonded to another member. The reinforced fiber base material is impregnated with an uncured matrix resin, represented by RTM molding. A method for producing a fiber-reinforced composite material and a continuous reinforcing fiber substrate are obtained.

本発明は係る課題を解決するために以下の手段を採るものである。すなわち、
(1)連続強化繊維基材の表面の少なくとも一部分に熱可塑性樹脂を主成分とする熱可塑性基材を配置する積層工程と、前記熱可塑性基材を溶融し連続強化繊維基材表面に熱可塑性樹脂の被膜を形成させ、同時に熱硬化性樹脂組成物の注入・硬化反応させる硬化工程とを含む繊維強化複合材料の製造方法。
(2)連続強化繊維基材の表面の少なくとも一部分に熱可塑性樹脂を主成分とする熱可塑性基材を配置する積層工程と、前記熱可塑性基材を溶融させ連続強化繊維基材表面に熱可塑性樹脂の被膜を形成させる予熱工程と、熱硬化性樹脂の注入・硬化反応させる硬化工程とを含む繊維強化複合材料の製造方法。
(3)連続強化繊維からなる基材の表面の少なくとも一部分に熱可塑性樹脂が配置されており、成形品表面に熱可塑性樹脂層の形成能を有する複合材料表層用連続強化繊維基材。
(4)前記連続強化繊維からなる基材の表面の少なくとも一部分に熱可塑性樹脂が融着されている前記(3)記載の複合材料表層用連続強化繊維基材。
(5)本明細書内に定義するガーレー秒数が100〜10000sの範囲にある前記(3)または(4)のいずれかに記載の複合材料表層用連続強化繊維基材。
(6)連続強化繊維からなる基材の表面の少なくとも一部分に熱可塑性樹脂の被膜が形成されており、成形品表面に熱可塑性樹脂層の形成能を有する複合材料表層用連続強化繊維基材。
(7)本明細書内に定義するドレープ性が5〜50cmの範囲である前記(3)〜(6)のいずれかに記載の複合材料表層用連続強化繊維基材。
(8)厚さ方向において、前記熱可塑性樹脂の被膜の入り込み面が凸凹をなす前記(6)または(7)のいずれかに記載の複合材料表層用連続強化繊維基材。
(9)前記熱可塑性樹脂の被膜の最大厚みTpfが10〜1000μmの範囲である前記(6)〜(8)のいずれかに記載の複合材料表層用連続強化繊維基材。
(10)前記熱可塑性樹脂の被膜の平均厚みが0.01〜1000μmである前記(6)〜(9)のいずれかに記載の複合材料表層用連続強化繊維基材。
(11)前記連続強化繊維が炭素繊維である前記(3)〜(10)のいずれかに記載の複合材料表層用連続強化繊維基材。
(12)前記連続強化繊維基材が織物基材である前記(3)〜(11)のいずれかに記載の複合材料表層用連続強化繊維基材。
(13)連続強化繊維からなる基材の表面の少なくとも一部分に熱可塑性樹脂が配置されている複合材料表層用連続強化繊維基材上の熱可塑性樹脂を溶融させ、0.01〜10MPaの圧力を付与して得た前記(6)〜(12)のいずれかに記載の複合材料表層用連続強化繊維基材。
(14)前記(3)〜(13)のいずれかに記載の複合材料表層用連続強化繊維基材を、熱可塑性樹脂の配置されてある側が最表面とし、所定枚数の連続強化繊維基材を配置する積層工程と、熱硬化性樹脂の注入及び硬化反応をさせる硬化工程とを含む繊維強化複合材料の製造方法。
(15)連続強化繊維からなる基材の表面の少なくとも一部分に熱可塑性樹脂の被膜が形成され、その厚さ方向において、前記熱可塑性樹脂の被膜の入り込み面が凸凹をなしており、かつ、前記熱可塑性樹脂の被膜の最大厚みTpfが10〜1000μmの範囲にある複合材料表層用連続強化繊維基材を用いる前記(1)、(2)または(14)のいずれかに記載の繊維強化複合材料の製造方法。
(16)前記被膜の平均厚みが0.01〜1000μmである複合材料表層用連続強化繊維基材を用いる前記(1)、(2)、(14)または(15)のいずれかに記載の繊維強化複合材料の製造方法。
(17)連続強化繊維が炭素繊維である複合材料表層用連続強化繊維基材を用いる前記(1)、(2)および(14)〜(16)のいずれかに記載の繊維強化複合材料の製造方法。
(18)連続強化繊維基材が織物基材である複合材料表層用連続強化繊維基材を用いる前記(1)、(2)および(14)〜(17)のいずれかに記載の繊維強化複合材料の製造方法。
(19)予熱工程を、0.01〜10MPaの圧力を付与した状態で行う前記(2)記載の繊維強化複合材料の製造方法。
(20)前記(1)、(2)、(14)〜(19)のいずれか記載の製造方法により得られる繊維強化複合材料であって、前記熱硬化性樹脂と前記熱可塑性樹脂との界面が凹凸形状をなしている繊維強化複合材料。
(21)前記(20)記載の繊維強化複合材料と、別の部材とが前記熱可塑性樹脂を介して接合されている一体化構造部材。
(22)前記繊維強化複合材料と別の部材との接合面の垂直接着強度が25℃において6MPa以上である前記(21)記載の一体化構造部材。
(23)電気・電子機器、OA機器、家電機器、自動車または建材の、部品、部材または筐体ないし外板のいずれかに用いられる前記(21)または(22)のいずれかに記載の一体化構造部材。
(24)前記(21)〜(23)のいずれかに記載の一体化構造部材における、繊維強化複合材料と別の部材との接合を、熱溶着、振動溶着、超音波溶着、レーザー溶着、インサート射出成形、アウトサート射出成形からからなる群より選択される少なくとも1つの方法にて形成する一体化構造部材の製造方法。
The present invention adopts the following means in order to solve the problems. That is,
(1) Laminating step of disposing a thermoplastic base material mainly composed of a thermoplastic resin on at least a part of the surface of the continuous reinforcing fiber base material, and melting the thermoplastic base material on the surface of the continuous reinforcing fiber base material A method for producing a fiber-reinforced composite material, comprising: a curing step of forming a resin film and simultaneously injecting and curing a thermosetting resin composition.
(2) Laminating step in which a thermoplastic base material mainly composed of a thermoplastic resin is arranged on at least a part of the surface of the continuous reinforcing fiber base material, and the thermoplastic base material is melted to thermoplastic the continuous reinforcing fiber base surface. A method for producing a fiber-reinforced composite material, comprising: a preheating step for forming a resin film; and a curing step for injecting and curing a thermosetting resin.
(3) A continuous reinforcing fiber base material for a composite material surface layer in which a thermoplastic resin is disposed on at least a part of the surface of a base material made of continuous reinforcing fibers and has a capability of forming a thermoplastic resin layer on the surface of a molded product.
(4) The continuous reinforcing fiber base material for a composite material surface layer according to (3), wherein a thermoplastic resin is fused to at least a part of the surface of the base material made of the continuous reinforcing fibers.
(5) The continuous reinforcing fiber substrate for a composite material surface layer according to any one of (3) and (4), wherein the Gurley seconds defined in the present specification are in the range of 100 to 10,000 s.
(6) A continuous reinforcing fiber base material for a composite material surface layer, wherein a thermoplastic resin coating is formed on at least a part of the surface of the base material made of continuous reinforcing fibers, and has the ability to form a thermoplastic resin layer on the surface of the molded product.
(7) The continuous reinforcing fiber base material for a composite material surface layer according to any one of (3) to (6), wherein the drapeability defined in the present specification is in the range of 5 to 50 cm.
(8) The continuous reinforcing fiber base material for a composite material surface layer according to any one of (6) and (7), wherein an intrusion surface of the thermoplastic resin film is uneven in a thickness direction.
(9) The continuous reinforcing fiber base material for a composite material surface layer according to any one of (6) to (8), wherein the maximum thickness Tpf of the thermoplastic resin coating is in the range of 10 to 1000 μm.
(10) The continuous reinforcing fiber base material for a composite material surface layer according to any one of (6) to (9), wherein an average thickness of the thermoplastic resin coating is 0.01 to 1000 μm.
(11) The continuous reinforcing fiber base material for a composite material surface layer according to any one of (3) to (10), wherein the continuous reinforcing fiber is a carbon fiber.
(12) The continuous reinforcing fiber substrate for a composite material surface layer according to any one of (3) to (11), wherein the continuous reinforcing fiber substrate is a woven fabric substrate.
(13) The thermoplastic resin on the continuous reinforcing fiber base material for the composite material surface layer in which the thermoplastic resin is disposed on at least a part of the surface of the base material made of continuous reinforcing fibers is melted, and a pressure of 0.01 to 10 MPa is applied. The continuous reinforcing fiber base material for a composite material surface layer according to any one of (6) to (12), which is obtained by applying.
(14) The continuous reinforcing fiber base material for a composite material surface layer according to any one of (3) to (13) is a surface on which a thermoplastic resin is disposed as an outermost surface, and a predetermined number of continuous reinforcing fiber base materials are used. The manufacturing method of the fiber reinforced composite material including the lamination process to arrange | position, and the hardening process to inject | pour and cure reaction of thermosetting resin.
(15) A film of a thermoplastic resin is formed on at least a part of the surface of the base material made of continuous reinforcing fibers, and the entering surface of the film of the thermoplastic resin is uneven in the thickness direction, and The fiber reinforced composite material according to any one of (1), (2), and (14), wherein a continuous reinforcing fiber base material for a composite material surface layer having a maximum thickness Tpf of a thermoplastic resin coating in the range of 10 to 1000 μm is used. Manufacturing method.
(16) The fiber according to any one of (1), (2), (14), and (15), wherein a continuous reinforcing fiber base material for a composite material surface layer having an average thickness of 0.01 to 1000 μm is used. A method for producing a reinforced composite material.
(17) Production of a fiber-reinforced composite material according to any one of (1), (2) and (14) to (16) using a continuous reinforcing fiber base material for a composite material surface layer, wherein the continuous reinforcing fibers are carbon fibers. Method.
(18) The fiber-reinforced composite according to any one of (1), (2), and (14) to (17), wherein the continuous reinforcing fiber base material is a woven base material. Material manufacturing method.
(19) The method for producing a fiber-reinforced composite material according to (2), wherein the preheating step is performed in a state where a pressure of 0.01 to 10 MPa is applied.
(20) A fiber-reinforced composite material obtained by the production method according to any one of (1), (2), and (14) to (19), wherein the interface between the thermosetting resin and the thermoplastic resin Is a fiber-reinforced composite material with an irregular shape.
(21) An integrated structural member in which the fiber-reinforced composite material according to (20) and another member are joined via the thermoplastic resin.
(22) The integrated structural member according to (21), wherein a vertical adhesive strength of a joint surface between the fiber-reinforced composite material and another member is 6 MPa or more at 25 ° C.
(23) Integration according to any one of (21) or (22) used for any one of a part, member, casing or outer plate of an electrical / electronic device, OA device, home appliance, automobile or building material. Structural member.
(24) In the integrated structural member according to any one of (21) to (23), bonding of the fiber-reinforced composite material and another member may be performed by heat welding, vibration welding, ultrasonic welding, laser welding, or insert. A method for manufacturing an integrated structural member formed by at least one method selected from the group consisting of injection molding and outsert injection molding.

本発明の製造方法によれば、RTM成形等に代表される、強化繊維基材に未硬化マトリクス樹脂を含浸・硬化した繊維強化複合材料を用いて、別の部材と接合させた接着強度の高い一体化構造部材を容易に得ることができる。   According to the production method of the present invention, a fiber reinforced composite material obtained by impregnating and curing an uncured matrix resin on a reinforced fiber base material represented by RTM molding or the like is used and bonded to another member with high adhesive strength. An integrated structural member can be obtained easily.

以下に、本発明の繊維強化複合材料の製造方法および複合材料表層用連続強化繊維基材について、望ましい実施の形態とともに詳細に説明する。   Below, the manufacturing method of the fiber reinforced composite material of this invention and the continuous reinforcement fiber base material for composite material surface layers are demonstrated in detail with desirable embodiment.

図1は本発明の一実施態様に係る繊維強化複合材料の成形方法を示している。1は金型を示しており、上型1aと下型1bとの型締めにより、内部に凹凸形状のキャビティ2が形成されている。このキャビティ2内には、繊維強化複合材料の成形に際し、連続強化繊維基材3や熱可塑性基材4が所定の形態で配置される。積層後に熱硬化性樹脂を注入口より注入し、所定の温度で硬化反応させる。連続強化繊維基材3の形態としては特に限定されず、多数本の強化繊維からなる強化繊維束、この繊維束から構成された織物、多数本の強化繊維が一方向に配列された強化繊維束(一方向性繊維束)、この一方向性繊維束から構成された一方向性織物など、それらを組み合わせたもの、複数層配置したものなどである。なかでも基材の生産性の観点から、織物、一方向性繊維束が好ましい。強化繊維群は、同一の形態の複数本の繊維束から構成されていても、あるいは、異なる形態の複数本の繊維束から構成されていても良い。一つの強化繊維群を構成する強化繊維数は、通常、300〜48,000であるが、基材の製造を考慮すると、好ましくは、300〜24,000であり、より好ましくは、1,000〜12,000である。   FIG. 1 shows a method for molding a fiber-reinforced composite material according to an embodiment of the present invention. Reference numeral 1 denotes a mold, and an uneven cavity 2 is formed inside by clamping the upper mold 1a and the lower mold 1b. In the cavity 2, the continuous reinforcing fiber base 3 and the thermoplastic base 4 are arranged in a predetermined form when the fiber reinforced composite material is molded. After the lamination, a thermosetting resin is injected from the injection port, and a curing reaction is performed at a predetermined temperature. The form of the continuous reinforcing fiber base 3 is not particularly limited, and a reinforcing fiber bundle composed of a large number of reinforcing fibers, a woven fabric composed of the fiber bundle, and a reinforcing fiber bundle in which a large number of reinforcing fibers are arranged in one direction. (Unidirectional fiber bundles), unidirectional woven fabrics composed of the unidirectional fiber bundles, and the like, combinations thereof, and multi-layer arrangements. Of these, woven fabrics and unidirectional fiber bundles are preferred from the viewpoint of substrate productivity. The reinforcing fiber group may be composed of a plurality of fiber bundles having the same form, or may be composed of a plurality of fiber bundles having different forms. The number of reinforcing fibers constituting one reinforcing fiber group is usually 300 to 48,000, but considering the production of the base material, it is preferably 300 to 24,000, more preferably 1,000. ~ 12,000.

ここで、強化繊維群は、少なくとも一方向に、10mm以上、好ましくは20mm以上の長さにわたり連続した多数本の強化繊維から構成されている。強化繊維群は、繊維強化複合材料の長さ方向の全長さにわたりあるいは、繊維強化複合材料の幅方向の全幅にわたり、連続している必要はなく、途中で分断されていても良い。   Here, the reinforcing fiber group is composed of a large number of reinforcing fibers continuous in a length of 10 mm or more, preferably 20 mm or more in at least one direction. The reinforcing fiber group does not need to be continuous over the entire length in the length direction of the fiber reinforced composite material or the entire width in the width direction of the fiber reinforced composite material, and may be divided in the middle.

また使用される強化繊維群の繊維素材としては、例えば、ガラス繊維、炭素繊維、金属繊維、芳香族ポリアミド繊維、ポリアラミド繊維、アルミナ繊維、炭化珪素繊維、ボロン繊維、玄武岩繊維がある。これらは、単独または2種以上併用して用いられる。これらの繊維素材は、表面処理が施されているものであっても良い。表面処理としては、加熱や電気分解等による酸化処理、金属の被着処理、カップリング剤による処理、サイジング剤による処理、添加剤の付着処理などがある。これらの繊維素材の中には、導電性を有する繊維素材も含まれている。繊維素材としては、比重が小さく、高強度、高弾性率である炭素繊維が、好ましく使用される。     Examples of the fiber material of the reinforcing fiber group used include glass fiber, carbon fiber, metal fiber, aromatic polyamide fiber, polyaramid fiber, alumina fiber, silicon carbide fiber, boron fiber, and basalt fiber. These are used alone or in combination of two or more. These fiber materials may be subjected to surface treatment. Examples of the surface treatment include oxidation treatment by heating, electrolysis and the like, metal deposition treatment, treatment with a coupling agent, treatment with a sizing agent, and additive adhesion treatment. Among these fiber materials, conductive fiber materials are also included. As the fiber material, carbon fiber having a small specific gravity, high strength and high elastic modulus is preferably used.

また熱可塑性基材を構成する熱可塑性樹脂としては、溶解度パラメーターδ(SP値)が8〜16であることが好ましく、より好ましくは9〜16、さらに好ましくは10〜15、とりわけ好ましくは11〜14である。上記範囲内とすることにより、熱可塑性樹脂の凝集力が大きく、本発明の目的の1つである接着強度を高める上で有効である。     Moreover, as a thermoplastic resin which comprises a thermoplastic base material, it is preferable that solubility parameter (delta) (SP value) is 8-16, More preferably, it is 9-16, More preferably, it is 10-15, Most preferably, it is 11-11. 14. By setting it within the above range, the cohesive force of the thermoplastic resin is large, and it is effective in increasing the adhesive strength which is one of the objects of the present invention.

かかる溶解度パラメーターδを達成しうる熱可塑性樹脂としては例えば、アミド結合、エステル結合、ウレタン結合、エーテル結合、アミノ基、水酸基、カルボキシル基、酸無水物基、スルホン酸基、芳香環、イミド環などの炭化水素骨格よりも極性の高い結合、官能基あるいは構造を持つものを挙げることができる。かかる熱可塑性樹脂組成物として、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンナフタレート(PEN)、液晶ポリエステル等のポリエステルや、スチレン系樹脂の他や、ポリアミド(PA)、ポリカーボネート(PC)、ポリメチレンメタクリレート(PMMA)、ポリフェニレンスルフィド(PPS)、ポリフェニレンエーテル(PPE)、変性PPE、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、ポリスルホン(PSU)、変性PSU、ポリエーテルスルホン(PES)、ポリケトン(PK)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンケトン(PEKK)、ポリアリレート(PAR)、ポリエーテルニトリル(PEN)、変性ポリプロピレン、これらの少なくとも2種類をブレンドした樹脂がある。   Examples of the thermoplastic resin that can achieve the solubility parameter δ include amide bonds, ester bonds, urethane bonds, ether bonds, amino groups, hydroxyl groups, carboxyl groups, acid anhydride groups, sulfonic acid groups, aromatic rings, imide rings, and the like. And those having a bond, functional group or structure having a polarity higher than that of the hydrocarbon skeleton. Examples of the thermoplastic resin composition include, for example, polyesters such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polyethylene naphthalate (PEN), liquid crystal polyester, and other styrene resins. And polyamide (PA), polycarbonate (PC), polymethylene methacrylate (PMMA), polyphenylene sulfide (PPS), polyphenylene ether (PPE), modified PPE, polyimide (PI), polyamideimide (PAI), polyetherimide (PEI) ), Polysulfone (PSU), modified PSU, polyethersulfone (PES), polyketone (PK), polyetherketone (PEK), polyetheretherketone (PEEK), polyether Ketonketon (PEKK), polyarylate (PAR), polyether nitrile (PEN), modified polypropylene, these resins obtained by blending at least two kinds.

熱可塑性樹脂には、耐衝撃性向上のために、エラストマーもしくはゴム成分が添加されていても良いし、機能性を高める観点から、充填材や添加剤が添加されていても良い。例えば、難燃剤、導電性付与剤、結晶核剤、紫外線吸収剤、酸化防止剤、制振剤、抗菌剤、防虫剤、防臭剤、着色防止剤、熱安定剤、離型剤、帯電防止剤、可塑剤、滑剤、着色剤、顔料、染料、発泡剤、制泡剤、カップリング剤である。とりわけ、無機物を添加する場合には、その分散サイズが小さい方が、強化繊維群への含浸の観点からより好ましい。特にナノオーダーの分散サイズを有するものは、少量添加で効果を発現できる点からさらに好ましい。   In order to improve impact resistance, the thermoplastic resin may be added with an elastomer or a rubber component, and from the viewpoint of enhancing functionality, a filler or an additive may be added. For example, flame retardants, conductivity imparting agents, crystal nucleating agents, ultraviolet absorbers, antioxidants, vibration damping agents, antibacterial agents, insect repellents, deodorants, coloring inhibitors, heat stabilizers, mold release agents, antistatic agents Plasticizers, lubricants, colorants, pigments, dyes, foaming agents, antifoaming agents, and coupling agents. In particular, when an inorganic substance is added, a smaller dispersion size is more preferable from the viewpoint of impregnation into the reinforcing fiber group. In particular, those having a nano-order dispersion size are more preferable from the viewpoint that the effect can be exhibited by addition of a small amount.

前記熱可塑性樹脂からなる基材の形態としては、不織布、織物、粒子、フィルムがあり、これらは単独または2種以上併用して用いることが好ましい。上記形態とすることにより、強化繊維基材に熱可塑性樹脂が十分に含浸し、かつ繊維強化複合材料の表面を適切に覆うことができ、別の部材との強固な接着力を発現することができる。   As a form of the base material made of the thermoplastic resin, there are a nonwoven fabric, a woven fabric, particles and a film, and these are preferably used alone or in combination of two or more. By adopting the above form, the reinforced fiber base material can be sufficiently impregnated with the thermoplastic resin, and the surface of the fiber reinforced composite material can be appropriately covered, and a strong adhesive force with another member can be expressed. it can.

前記不織布あるいは織物の空隙面積が0〜50mmであることが好ましい。より好ましくは0〜40mm、とりわけ好ましくは0〜30mmである。空隙面積とは、不織布および織物における、熱可塑性基材を形成する繊維で囲まれ空隙部分の面積のことである。空隙面積は、光学顕微鏡やSEM観察から測定することができる。空隙面積を上記範囲とすることにより、成形時に注入した熱硬化性樹脂が表面ににじみ出すことなく、均一に熱可塑性樹脂で被膜された繊維強化複合材料を得ることができる。空隙面積の下限値は特に限定されることはなく、空隙面積が0mmであるフィルム形態であっても均一に熱可塑性樹脂で被膜された繊維強化複合材料を得ることができる。 It is preferable that the non-woven fabric or woven fabric has a void area of 0 to 50 mm 2 . More preferably 0~40mm 2, especially preferably 0~30mm 2. The void area is an area of a void portion surrounded by fibers forming a thermoplastic base material in a nonwoven fabric and a woven fabric. The void area can be measured from an optical microscope or SEM observation. By setting the void area in the above range, a fiber-reinforced composite material uniformly coated with a thermoplastic resin can be obtained without causing the thermosetting resin injected at the time of molding to exude to the surface. The lower limit of the void area is not particularly limited, and a fiber-reinforced composite material that is uniformly coated with a thermoplastic resin can be obtained even in the form of a film having a void area of 0 mm 2 .

前記粒子の平均粒子径は1000μm以下であることが好ましく、より好ましくは700μm以下、とりわけ好ましくは500μm以下である。上記範囲内とすることにより、強化繊維基材に熱可塑性樹脂が斑なく含浸し、かつ繊維強化複合材料の表面を適切に覆うことができる。   The average particle diameter of the particles is preferably 1000 μm or less, more preferably 700 μm or less, and particularly preferably 500 μm or less. By setting it within the above range, the reinforcing fiber base material can be impregnated with the thermoplastic resin without unevenness, and the surface of the fiber-reinforced composite material can be appropriately covered.

前記粒子の、隣り合う粒子の間隔が5mm以下であることが好ましく、より好ましくは4mm以下、とりわけ好ましくは3mm以下である。隣り合う粒子の間隔とは、隣り合う粒子の間隔を100個以上測定し、測定値の和を測定個数で除した値(mm)のことである。隣り合う粒子の間隔は、光学顕微鏡やSEM観察から測定することができる。隣り合う粒子の間隔を上記範囲とすることにより、成形時に注入した熱硬化性樹脂が表面ににじみ出すことなく、均一に熱可塑性樹脂で被膜された繊維強化複合材料を得ることができる。さらに前記熱可塑性基材の目付は10〜500g/mであることが好ましく、より好ましくは20〜400g/m、さらに好ましくは40〜200g/mである。上記範囲内とすることにより、強化繊維基材に熱可塑性樹脂が十分に含浸し、かつ繊維強化複合材料の表面を適切に覆うことができ、別の部材との強固な接着力を発現することができる。 The interval between adjacent particles of the particles is preferably 5 mm or less, more preferably 4 mm or less, and particularly preferably 3 mm or less. The interval between adjacent particles is a value (mm) obtained by measuring 100 or more intervals between adjacent particles and dividing the sum of the measurement values by the number of measurements. The interval between adjacent particles can be measured from an optical microscope or SEM observation. By setting the interval between adjacent particles in the above range, a fiber-reinforced composite material uniformly coated with a thermoplastic resin can be obtained without causing the thermosetting resin injected at the time of molding to exude to the surface. Preferably further the basis weight of the thermoplastic base material is 10 to 500 g / m 2, more preferably 20 to 400 g / m 2, more preferably from 40~200g / m 2. By making it within the above range, the reinforcing fiber base material can be sufficiently impregnated with the thermoplastic resin, and the surface of the fiber reinforced composite material can be properly covered, and a strong adhesive force with another member can be expressed. Can do.

また、使用される熱硬化性樹脂としては、例えば、不飽和ポリエステル、ビニルエステル、エポキシ、フェノール(レゾール型)、ユリア・メラミン、ポリイミド、ウレタン、これらの共重合体、変性体などがある。特に、エポキシ樹脂は力学特性の観点から好ましい。   Examples of the thermosetting resin used include unsaturated polyester, vinyl ester, epoxy, phenol (resol type), urea / melamine, polyimide, urethane, copolymers thereof, and modified products. In particular, an epoxy resin is preferable from the viewpoint of mechanical properties.

本発明の第1の製造方法は、熱可塑性基材4を連続強化繊維基材の表面5側の少なくとも一部分に配置する積層工程があり、次いで熱可塑性基材の溶融と熱硬化性樹脂の注入・硬化反応を同工程で行うことが重要である。熱硬化性樹脂の注入・硬化と熱可塑性基材の溶融を同時に行うことで、連続強化繊維基材に熱可塑性樹脂が含浸し、かつ表面に被膜を形成するため、別の部材と強固に接着可能な繊維強化複合材料が作成できる。
本発明の第2の製造方法は、熱可塑性基材4を連続強化繊維基材の表面5側の少なくとも一部分に配置する積層工程があり、次いで熱可塑性基材を溶融させ、連続強化繊維基材に熱可塑性樹脂の被膜を形成させる予熱工程を有し、次いで熱硬化性樹脂を注入・硬化する工程を有することが重要である。予熱工程にて連続強化繊維基材に熱可塑性樹脂が含浸し、かつ表面に被膜を形成するため、次いで熱硬化性樹脂を注入・硬化させることで別の部材と強固に接着可能な繊維強化複合材料が作成できる。
The first production method of the present invention includes a lamination step in which the thermoplastic substrate 4 is disposed on at least a part of the surface 5 side of the continuous reinforcing fiber substrate, and then the thermoplastic substrate is melted and a thermosetting resin is injected. -It is important to perform the curing reaction in the same process. By simultaneously injecting and curing the thermosetting resin and melting the thermoplastic base material, the continuous reinforcing fiber base material is impregnated with the thermoplastic resin and a film is formed on the surface. Possible fiber-reinforced composite materials can be created.
The second production method of the present invention includes a lamination step in which the thermoplastic base material 4 is disposed on at least a part of the surface 5 side of the continuous reinforcing fiber base material, and then the thermoplastic base material is melted to obtain a continuous reinforcing fiber base material. It is important to have a preheating step of forming a thermoplastic resin film on the substrate, and then a step of injecting and curing the thermosetting resin. Fiber reinforced composite that can be firmly bonded to another member by injecting and curing the thermosetting resin in order to impregnate the continuous reinforcing fiber substrate with the thermoplastic resin in the preheating process and form a film on the surface. Materials can be created.

また、予熱工程では熱可塑性樹脂を連続強化繊維基材に効率よく含浸させるために、圧力を0.01〜10MPa付与した状態で行うのが好ましい。より好ましくは0.03〜5MPaである。圧力は金型を一時的に締めるなどの方法により付与することができる。   Moreover, in a preheating process, in order to efficiently impregnate a continuous reinforcement fiber base material with a thermoplastic resin, it is preferable to carry out in the state which applied 0.01-10 Mpa of pressure. More preferably, it is 0.03-5 MPa. The pressure can be applied by a method such as temporarily closing the mold.

本発明の第1の複合材料表層用連続強化繊維基材は、連続強化繊維からなる基材の表面の少なくとも一部分に熱可塑性樹脂が配置されており、連続強化繊維基材から得られる成形品の表面に熱可塑性樹脂の層を形成することが重要である。熱可塑性樹脂の層を表面を有する複合材料を得ることで、別の部材との強固な接着が可能となる。また基材の取り扱い性の観点から、連続強化繊維からなる基材の表面の少なくとも一部分に熱可塑性樹脂が融着していると好ましい。   In the first continuous reinforcing fiber base material for a composite material surface layer of the present invention, a thermoplastic resin is disposed on at least a part of the surface of the base material composed of continuous reinforcing fibers, and the molded article obtained from the continuous reinforcing fiber base material It is important to form a layer of thermoplastic resin on the surface. By obtaining a composite material having a surface of a thermoplastic resin layer, it is possible to firmly adhere to another member. Further, from the viewpoint of handling of the substrate, it is preferable that the thermoplastic resin is fused to at least a part of the surface of the substrate made of continuous reinforcing fibers.

本発明の第2の複合材料表層用連続強化繊維基材は、連続強化繊維基材から得られる成形品の表面に熱可塑性樹脂の層を形成させるための基材であって、連続強化繊維からなる基材の表面の少なくとも一部分において、連続強化繊維からなる基材に熱可塑性樹脂が含浸し、かつ表面に熱可塑性樹脂の被膜が形成されていることが重要である。連続強化繊維からなる基材に熱可塑性樹脂が含浸し、かつ表面に熱可塑性樹脂の被膜が形成されていることにより、次いで強化繊維基材に未硬化マトリクス樹脂を含浸・硬化させることで、熱可塑性樹脂の表面を有する繊維強化複合材料を得ることができ、別の部材との強固な接着が可能となる。   The continuous reinforcing fiber base material for the second composite material surface layer of the present invention is a base material for forming a layer of a thermoplastic resin on the surface of a molded product obtained from the continuous reinforcing fiber base material. It is important that at least a part of the surface of the base material, the base material made of continuous reinforcing fibers is impregnated with the thermoplastic resin, and a film of the thermoplastic resin is formed on the surface. A base material made of continuous reinforcing fibers is impregnated with a thermoplastic resin, and a thermoplastic resin film is formed on the surface. Then, the reinforcing fiber base material is impregnated with an uncured matrix resin and cured. A fiber-reinforced composite material having a surface of a plastic resin can be obtained, and strong adhesion to another member becomes possible.

第1の複合材料表層用連続強化繊維基材は、第2の複合材料表層用連続強化繊維基材の前駆体として好ましく用いることができる。   The first continuous reinforcing fiber base material for the composite material surface layer can be preferably used as a precursor of the second continuous reinforcing fiber base material for the composite material surface layer.

第1の複合材料表層用連続強化繊維基材から第2の複合材料表層用連続強化繊維基材を形成する好ましい方法として、例えば、第1の複合材料表層用連続強化繊維基材を加熱し、熱可塑性樹脂を溶融させ、圧力を0.01〜10MPa付与することで、連続強化繊維基材に熱可塑性樹脂が含浸し、かつ表面に被膜を形成することができる。   As a preferred method of forming the second continuous reinforcing fiber base material for the composite material surface layer from the continuous reinforcing fiber base material for the first composite material surface layer, for example, heating the continuous reinforcing fiber base material for the first composite material surface layer, By melting the thermoplastic resin and applying a pressure of 0.01 to 10 MPa, the continuous reinforcing fiber base material can be impregnated with the thermoplastic resin and a film can be formed on the surface.

本発明の第3の製造方法は、連続強化繊維からなる基材の表面の少なくとも一部分に熱可塑性樹脂が配置されている連続強化繊維基材であって、連続強化繊維基材から得られる成形品の表面に熱可塑性樹脂の層を形成させるための複合材料表層用連続強化繊維基材を、前記複合材料表層用連続強化繊維基材の熱可塑性樹脂の配置されてある側が最表面となるよう配置し、続いて所定枚数の連続強化繊維基材を配置する積層工程と、熱硬化性樹脂の注入及び硬化反応させる硬化工程とを含むことで、別の部材と強固に接着可能な繊維強化複合材料を得ることができる。   The third production method of the present invention is a continuous reinforcing fiber base material in which a thermoplastic resin is disposed on at least a part of the surface of the base material made of continuous reinforcing fibers, and is a molded article obtained from the continuous reinforcing fiber base material. The continuous reinforcing fiber base material for the composite material surface layer for forming a thermoplastic resin layer on the surface of the composite material is disposed so that the side on which the thermoplastic resin of the continuous reinforcing fiber base material for the composite material surface layer is disposed is the outermost surface Subsequently, a fiber reinforced composite material that can be firmly bonded to another member by including a laminating step of arranging a predetermined number of continuous reinforcing fiber bases and a curing step of injecting and curing a thermosetting resin. Can be obtained.

図2に前記複合材料表層用連続強化繊維基材6の模式図を示す。連続強化繊維7に熱可塑性樹脂8が含浸し、表面に熱可塑性樹脂の被膜が予め形成されていることが重要である。ここで前記熱可塑性樹脂の被膜が存在している領域の最大厚みTpf−maxが、10μm以上であることが好ましく、20μm以上であることがより好ましく、40μm以上であることが更に好ましい。この最大厚みTpf−maxは、熱可塑性樹脂8の厚さ方向において、熱可塑性樹脂8の樹脂に接している一番外側(表面側)の強化繊維9b−outと、熱可塑性樹脂8の樹脂の表面から連続強化繊維基材への入り込み厚さが最も大きい部位において、熱可塑性樹脂8の樹脂に接している一番内側の強化繊維9b−in−maxとの間の距離(Tpf−max)と定義される。最大厚みTpf−maxは、連続強化繊維基材の断面をSEMあるいはTEM写真において、測定することができる。最大厚みTpf−maxは、最大で、1,000μmあれば、本発明の効果が十分に達成される。   FIG. 2 shows a schematic view of the continuous reinforcing fiber base 6 for the composite material surface layer. It is important that the continuous reinforcing fiber 7 is impregnated with the thermoplastic resin 8 and a film of the thermoplastic resin is previously formed on the surface. Here, the maximum thickness Tpf-max of the region where the thermoplastic resin coating is present is preferably 10 μm or more, more preferably 20 μm or more, and even more preferably 40 μm or more. The maximum thickness Tpf-max is the outermost (surface side) reinforcing fiber 9b-out in contact with the thermoplastic resin 8 resin in the thickness direction of the thermoplastic resin 8 and the thermoplastic resin 8 resin. The distance (Tpf-max) between the innermost reinforcing fiber 9b-in-max in contact with the resin of the thermoplastic resin 8 at the portion where the penetration thickness from the surface to the continuous reinforcing fiber base is the largest Defined. The maximum thickness Tpf-max can be measured in a SEM or TEM photograph of a cross section of the continuous reinforcing fiber base material. If the maximum thickness Tpf-max is 1,000 μm at the maximum, the effect of the present invention is sufficiently achieved.

熱可塑性樹脂8の厚さ方向における、熱可塑性樹脂8の樹脂の表面から連続強化繊維基材へ入り込んだ部位において、入り込み面が凹凸であることが重要である。入り込み面が凹凸であることで、別の部材と強固に接着可能な繊維強化複合材料が作成できる。被膜の入り込み面は、連続強化繊維基材の断面をSEMあるいはTEM写真において、測定することができる。   In the thickness direction of the thermoplastic resin 8, it is important that the entering surface is uneven at the site where the surface of the thermoplastic resin 8 enters the continuous reinforcing fiber base. Since the entry surface is uneven, a fiber-reinforced composite material that can be firmly bonded to another member can be created. The entering surface of the coating can be measured by SEM or TEM photograph of the cross section of the continuous reinforcing fiber substrate.

また形成される被膜の平均厚みは、0.01〜1,000μmであることが好ましく、0.1〜200μmであることがより好ましく、1〜50μmであることが更に好ましい。被膜の平均厚みは、図2に示される熱可塑性樹脂8の樹脂に接している一番外側(表面側)の強化繊維9b−outと、被膜表面10との距離で定義される。被膜の厚みが一定でない場合は、任意の数点において測定し、得られた測定値の平均値を被膜の平均厚みとする。平均厚みが、上記の好ましい範囲にあると、より確実に接着力を発現できる繊維強化複合材料となる。被膜の平均厚みは連続繊維強化基材の断面観察以外にも、繊維強化複合材料の断面観察でも評価することができる。   Moreover, it is preferable that the average thickness of the film formed is 0.01-1,000 micrometers, it is more preferable that it is 0.1-200 micrometers, and it is still more preferable that it is 1-50 micrometers. The average thickness of the coating is defined by the distance between the outermost (surface side) reinforcing fiber 9b-out in contact with the thermoplastic resin 8 shown in FIG. When the thickness of the film is not constant, measurement is performed at an arbitrary number of points, and the average value of the obtained measured values is taken as the average thickness of the film. When the average thickness is in the above-mentioned preferable range, a fiber-reinforced composite material that can express adhesive force more reliably is obtained. The average thickness of the coating can be evaluated not only by observing the cross section of the continuous fiber reinforced base material but also by observing the cross section of the fiber reinforced composite material.

第3の製造方法において、生産性の観点から、予め連続強化繊維基材表面に熱可塑性樹脂が含浸し、さらに熱可塑性樹脂の被膜を形成してなる第2の複合材料表層用連続強化繊維基材を用いることが好ましい。   In the third production method, from the viewpoint of productivity, a continuous reinforcing fiber base for a second composite material surface layer, which is obtained by impregnating a surface of a continuous reinforcing fiber base with a thermoplastic resin in advance and further forming a film of the thermoplastic resin. It is preferable to use a material.

また、第1〜3のいずれかの製造方法において、生産性の観点から、第2の複合材料表層用連続強化繊維基材を、熱可塑性樹脂の被膜が最表面となるよう配置する積層工程とすることも、好ましい製造方法である。   Further, in any one of the first to third manufacturing methods, from the viewpoint of productivity, a lamination step of arranging the second continuous reinforcing fiber base material for the composite material surface layer so that the coating film of the thermoplastic resin becomes the outermost surface; It is also a preferable manufacturing method.

また前記被膜を形成している連続強化繊維基材は、そのガーレー秒数が100〜10000sの範囲にあることが好ましい。ガーレー秒数とは、B型ガーレー式電祖メーターを用いて、圧力600mmHO、温度23℃の条件下で、直径2.5cmの繊維強化基材面より10mlの空気が通過するのに要する時間と定義する。ガーレー秒数は繊維基材の繊維密度と相関する指標であり、これが短いことは繊維基材の繊維間の隙間が大きいことと対応し、長いことは繊維基材の繊維間の隙間が詰まっていることと対応する。つまり、100s以上であれば、繊維間の隙間が適度に詰まっている(開きすぎていない)ため熱可塑性樹脂が被膜を形成しやすく、10000s以下であれば、繊維間の隙間が適度に開いている(詰まりすぎていない)ため、繊維基材への熱可塑性樹脂の含浸が速やかに行えることから好ましい。かかる理由から、より好ましくは120〜7500s、とりわけ好ましいのは150〜5000sである。上記範囲にあることで、成形時に注入した熱硬化性樹脂が表面ににじみ出すことなく、均一に熱可塑性樹脂で被膜された繊維強化複合材料を得ることができる。 Moreover, it is preferable that the continuous reinforcement fiber base material which forms the said film exists in the range whose Gurley second number is 100-10000 s. The Gurley seconds are required for 10 ml of air to pass from the surface of the fiber-reinforced substrate having a diameter of 2.5 cm under the conditions of a pressure of 600 mmH 2 O and a temperature of 23 ° C. using a B-type Gurley type electrometer. Defined as time. The Gurley seconds is an index that correlates with the fiber density of the fiber base material. A short time corresponds to a large gap between the fibers of the fiber base material, and a long time indicates a gap between the fibers of the fiber base material. Corresponds to being. That is, if it is 100 s or more, the gaps between the fibers are moderately clogged (not opened too much), so that the thermoplastic resin can easily form a coating, and if it is 10000 s or less, the gaps between the fibers are moderately opened. Therefore, the fiber base material is preferably impregnated with the thermoplastic resin quickly. For this reason, 120 to 7500 s is more preferable, and 150 to 5000 s is particularly preferable. By being in the above range, a fiber-reinforced composite material uniformly coated with a thermoplastic resin can be obtained without causing the thermosetting resin injected at the time of molding to ooze out to the surface.

また前記被膜を形成している連続強化繊維基材は、ドレープ性が5〜50cmの範囲にあることが好ましい。より好ましくは5〜40cm、さらに好ましくは5〜30cmである。ドレープ性が上記範囲にあると、連続強化繊維基材の取り扱い性が良く、成形時の連続強化繊維基材の賦形性が良好なため成形性に優れる。かかるドレープ性の測定は、以下のように実施する。強化繊維基材を幅1cm、長さ100cmに切り出し、図4の測定用台座15の上辺の測定開始点(16)より強化繊維基材17を1cm/秒の速さで長手方向に押し出していく。サンプルの先端が自重で撓み、斜辺(18)に接したときの測定開始点からのサンプルの押し出し量(cm)をドレープ性とする。   Moreover, it is preferable that the continuous reinforcement fiber base material which forms the said film exists in the range whose drape property is 5-50 cm. More preferably, it is 5-40 cm, More preferably, it is 5-30 cm. When the drapability is within the above range, the continuous reinforcing fiber base material is easy to handle, and the formability of the continuous reinforcing fiber base material at the time of molding is good, so that the moldability is excellent. Such drape measurement is performed as follows. The reinforcing fiber base material is cut into a width of 1 cm and a length of 100 cm, and the reinforcing fiber base material 17 is extruded in the longitudinal direction at a speed of 1 cm / second from the measurement start point (16) on the upper side of the measurement base 15 in FIG. . The amount of extrusion (cm) of the sample from the measurement start point when the tip of the sample is bent by its own weight and comes into contact with the hypotenuse (18) is defined as drape.

本発明の一体化成形品は、上記製造方法により成形された繊維強化複合材料11と別の部材を接合したものであるが、図3に、繊維強化複合材料と別の部材12との接合部分の断面を拡大した図が示される。図3は走査型電子顕微鏡写真(SEM)を用いて撮影して得られた写真に基づき作成された図である。図3において、繊維強化複合材料11は、多数の連続した強化繊維9a、9bと、熱硬化性樹脂8が主成分である。そして別の部材12との接合部分において熱可塑性樹脂8を有しており、この熱可塑性樹脂8が一群の強化繊維5bを包含している。ここで、熱可塑性樹脂8は、熱硬化性樹脂13とその界面14で凸凹形状を有して一体化していることが好ましい。   The integrally molded product of the present invention is obtained by joining the fiber reinforced composite material 11 molded by the above manufacturing method and another member. FIG. 3 shows a joint portion between the fiber reinforced composite material and another member 12. The figure which expanded the cross section of is shown. FIG. 3 is a diagram created based on a photograph obtained by using a scanning electron micrograph (SEM). In FIG. 3, the fiber reinforced composite material 11 includes a large number of continuous reinforcing fibers 9 a and 9 b and a thermosetting resin 8 as main components. And it has the thermoplastic resin 8 in the junction part with another member 12, and this thermoplastic resin 8 includes the group of reinforcing fibers 5b. Here, it is preferable that the thermoplastic resin 8 has an uneven shape at the thermosetting resin 13 and its interface 14 and is integrated.

また本発明の一体化成形体は、別の部材と接合させ一体化成形品とする際に、優れた接着効果を得るためには、繊維強化複合材料の表面に設けられている前記熱可塑性樹脂において別の部材と接合されることが好ましい。   In order to obtain an excellent adhesive effect when the integrated molded body of the present invention is joined to another member to form an integrally molded product, the thermoplastic resin provided on the surface of the fiber-reinforced composite material is used. It is preferable to join with another member.

本発明の一体化成形品において、別の部材としては、繊維強化複合材料との接合部において、熱接着性を有する素材からなるものであれば特に制限はない。   In the integrally molded product of the present invention, the other member is not particularly limited as long as it is made of a material having thermal adhesiveness at the joint portion with the fiber reinforced composite material.

例えば、別の部材が、繊維強化複合材料と同一の構成を有する部材で、接合部に熱可塑性樹脂が配置されたものは力学特性に優れた一体化成形品を製造する観点から好ましい。   For example, another member having the same configuration as that of the fiber reinforced composite material and having a thermoplastic resin disposed at the joint is preferable from the viewpoint of manufacturing an integrally molded product having excellent mechanical properties.

また、別の部材が、熱可塑性樹脂組成物から構成された部材であれば、より複雑な形状を成形できる観点から好ましい。使用される熱可塑性樹脂としては、特に制限はない。熱可塑性樹脂としては、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンナフタレート(PEN)、液晶ポリエステル等のポリエステルや、ポリエチレン(PE)、ポリプロピレン(PP)、ポリブチレン等のポリオレフィンや、スチレン系樹脂の他や、ポリオキシメチレン(POM)、ポリアミド(PA)、ポリカーボネート(PC)、ポリメチレンメタクリレート(PMMA)、ポリ塩化ビニル(PVC)、ポリフェニレンスルフィド(PPS)、ポリフェニレンエーテル(PPE)、変性PPE、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエーテルイミド(PEI)、ポリスルホン(PSU)、変性PSU、ポリエーテルスルホン(PES)、ポリケトン(PK)、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンケトン(PEKK)、ポリアリレート(PAR)、ポリエーテルニトリル(PEN)、フェノール系樹脂、フェノキシ樹脂、ポリテトラフルオロエチレンなどのフッ素系樹脂、更にポリスチレン系、ポリオレフィン系、ポリウレタン系、ポリエステル系、ポリアミド系、ポリブタジエン系、ポリイソプレン系、フッ素系等の熱可塑エラストマー等や、これらの共重合体、変性体、および、これらの少なくとも2種類をブレンドした樹脂がある。 熱可塑性樹脂には、耐衝撃性向上のために、エラストマーもしくはゴム成分が添加されていても良い。とりわけ、耐熱性、耐薬品性の観点から、PPS樹脂が、成形品外観、寸法安定性の観点から、ポリカーボネート樹脂やスチレン系樹脂が、成形品の強度、耐衝撃性の観点から、ポリアミド樹脂が好ましく用いられる。   Moreover, if another member is a member comprised from the thermoplastic resin composition, it is preferable from a viewpoint which can shape | mold a more complicated shape. There is no restriction | limiting in particular as a thermoplastic resin to be used. Examples of the thermoplastic resin include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polyethylene naphthalate (PEN), polyester such as liquid crystal polyester, polyethylene (PE), polypropylene ( PP), polyolefins such as polybutylene, styrene resins, polyoxymethylene (POM), polyamide (PA), polycarbonate (PC), polymethylene methacrylate (PMMA), polyvinyl chloride (PVC), polyphenylene sulfide ( PPS), polyphenylene ether (PPE), modified PPE, polyimide (PI), polyamideimide (PAI), polyetherimide (PEI), polysulfone (PSU), modified PSU, polyester Tersulfone (PES), polyketone (PK), polyetherketone (PEK), polyetheretherketone (PEEK), polyetherketoneketone (PEKK), polyarylate (PAR), polyethernitrile (PEN), phenolic resin, Fluoropolymers such as phenoxy resin and polytetrafluoroethylene, polystyrene-based, polyolefin-based, polyurethane-based, polyester-based, polyamide-based, polybutadiene-based, polyisoprene-based, fluorine-based thermoplastic elastomers, etc. There are coalesced, modified and blended resins of at least two of these. An elastomer or a rubber component may be added to the thermoplastic resin in order to improve impact resistance. In particular, from the viewpoint of heat resistance and chemical resistance, PPS resin is used from the viewpoint of molded product appearance and dimensional stability, polycarbonate resin and styrene resin are used, and polyamide resin is used from the viewpoint of strength and impact resistance of the molded product. Preferably used.

また、熱可塑性樹脂には力学特性向上の観点から強化繊維が添加されていることがより好ましい。かかる強化繊維としては、例えば、ポリアクリロニトリル系、レーヨン系、リグニン系、ピッチ系の炭素繊維、黒鉛繊維、ガラス繊維、アルミニウム繊維、黄銅繊維、ステンレス繊維などの金属繊維、シリコンカーバイト繊維、シリコンナイトライド繊維などの無機繊維がある。さらに、熱可塑性樹脂には機能性を高める観点から、充填材や添加剤が添加されていても良い。例えば、難燃剤、導電性付与剤、結晶核剤、紫外線吸収剤、酸化防止剤、制振剤、抗菌剤、防虫剤、防臭剤、着色防止剤、熱安定剤、離型剤、帯電防止剤、可塑剤、滑剤、着色剤、顔料、染料、発泡剤、制泡剤、カップリング剤である。   Further, it is more preferable that reinforcing fibers are added to the thermoplastic resin from the viewpoint of improving the mechanical properties. Examples of such reinforcing fibers include polyacrylonitrile-based, rayon-based, lignin-based, pitch-based carbon fibers, graphite fibers, glass fibers, aluminum fibers, brass fibers, stainless fibers, and other metal fibers, silicon carbide fibers, and siliconite. There are inorganic fibers such as ride fibers. Furthermore, a filler and an additive may be added to the thermoplastic resin from the viewpoint of enhancing the functionality. For example, flame retardants, conductivity imparting agents, crystal nucleating agents, ultraviolet absorbers, antioxidants, vibration damping agents, antibacterial agents, insect repellents, deodorants, coloring inhibitors, heat stabilizers, mold release agents, antistatic agents Plasticizers, lubricants, colorants, pigments, dyes, foaming agents, antifoaming agents, and coupling agents.

さらに、別の部材が、金属材料からなる部材であれば、堅牢性を高める観点から好ましい。金属材料としては、アルミニウム、鉄、マグネシウム、チタン、銅およびこれらとの合金等に、熱接着性の表面処理を施した金属材料であっても良い。   Furthermore, if another member is a member made of a metal material, it is preferable from the viewpoint of enhancing the fastness. The metal material may be a metal material obtained by subjecting aluminum, iron, magnesium, titanium, copper, an alloy thereof, or the like to a thermal adhesive surface treatment.

本発明の一体化成形品の一体化方法は、特に制限されない。例えば、その製造方法は、繊維強化複合材料を構成している熱可塑性樹脂被膜の融点または軟化点以上の温度で、別の部材を接合させ、貼り付け、次いで冷却することからなる。   The method for integrating the integrally molded product of the present invention is not particularly limited. For example, the manufacturing method includes joining, attaching, and cooling another member at a temperature equal to or higher than the melting point or softening point of the thermoplastic resin film constituting the fiber-reinforced composite material.

その接合における手順は、特に限定されない。例えば、(i)繊維強化複合材料を予め成形しておき、別の部材の成形と同時に、両者を接合し、一体化させる手法、あるいは、(ii)繊維強化複合材料と別の部材とをそれぞれ別々に予め成形しておき、両者を接合し、一体化させる手法がある。   The procedure in the joining is not particularly limited. For example, (i) a method in which a fiber reinforced composite material is preliminarily molded and the two members are simultaneously molded and joined together, or (ii) a fiber reinforced composite material and another member There is a method in which they are separately molded in advance, and both are joined and integrated.

一体化の手法として、繊維強化複合材料と別の部材とを、機械的に嵌合させ、一体化する手法、両者をボルト、ネジ、リベットなどの機械的結合手段を用いて一体化する手法、両者を接着剤などの化学的結合手段を用いて一体化する手法もある。これらの一体化する手法は、必要に応じて、併用されても良い。   As a method of integration, a method of mechanically fitting and integrating a fiber reinforced composite material and another member, a method of integrating both using mechanical coupling means such as bolts, screws, rivets, There is also a method of integrating the two using chemical bonding means such as an adhesive. These methods for integrating may be used in combination as necessary.

前記一体化手法(i)の具体例としては、繊維強化複合材料を成形し、必要に応じ所定のサイズに加工あるいは後処理し、次いで射出成形金型にインサートし、その後、別の部材を形成する材料を金型に射出成形する手法がある。   As a specific example of the integration method (i), a fiber reinforced composite material is molded, processed or post-processed to a predetermined size as necessary, then inserted into an injection mold, and then another member is formed. There is a technique of injection molding a material to be molded into a mold.

前記一体化手法(ii)の具体例としては、繊維強化複合材料を成形し、必要に応じ所定のサイズに加工あるいは後処理して用意し、別途、別の部材を予め成形しておき、それぞれを熱溶着、振動溶着、超音波溶着などで一体化させる方法がある。また、いずれかの部材がレーザー透過性を有すると、レーザー溶着にて一体化することもできる。   As a specific example of the integration method (ii), a fiber reinforced composite material is molded, prepared by processing or post-processing to a predetermined size as necessary, and separately molding another member, Are integrated by thermal welding, vibration welding, ultrasonic welding, or the like. Further, if any member has laser permeability, it can be integrated by laser welding.

上記、一体化手法の中でも、一体化成形品の量産性の観点から、前記一体化手法(i)におけるインサート射出成形やアウトサート射出成形が好ましく使用される。形状安定性や接着部分の精密性の観点から、前記一体化手法(ii)が好ましく使用され、熱溶着、振動溶着、超音波溶着、レーザー溶着が好ましく使用できる。   Among the above-mentioned integration methods, insert injection molding and outsert injection molding in the integration method (i) are preferably used from the viewpoint of mass productivity of an integrated molded product. From the viewpoint of shape stability and precision of the bonded portion, the integration method (ii) is preferably used, and heat welding, vibration welding, ultrasonic welding, and laser welding can be preferably used.

さらに必要に応じ、前記一体化手法として、繊維強化複合材料と別の部材とを、機械的に嵌合させ一体化する手法、両者をボルト、ネジ、リベットなどの機械的結合手段を用いて一体化する手法、両者を接着剤などの化学的結合手段を用いて一体化する手法もある。これら一体化する手法は、必要に応じて、併用されても良い。   Further, if necessary, as the integration method, a method in which the fiber reinforced composite material and another member are mechanically fitted and integrated, and both are integrated using a mechanical coupling means such as a bolt, a screw, and a rivet. There is also a technique for integrating the two using chemical bonding means such as an adhesive. These methods of integrating may be used together as necessary.

一体化成形品は、その用途が主に強度を必要とする分野であることから、その使用に耐える接着強度という観点からして、25℃における垂直接着強度は、6MPa以上であることが好ましく、8MPa以上であることがより好ましく、10MPa以上であることが更に好ましい。25℃における垂直接着強度が6MPa未満では、落下させるなどの強い衝撃を受けたとき、繊維強化複合材料と別の部材との接合部で、一体化成形品が破壊する場合がある。25℃における垂直接着強度の上限については、特に制限はないが、30MPa以下であれば本発明の効果を十分に達成できる。   Since the integrated molded product is a field in which the application mainly requires strength, the vertical adhesive strength at 25 ° C. is preferably 6 MPa or more from the viewpoint of adhesive strength that can withstand its use. The pressure is more preferably 8 MPa or more, and further preferably 10 MPa or more. When the vertical adhesive strength at 25 ° C. is less than 6 MPa, the integrated molded product may be destroyed at the joint between the fiber-reinforced composite material and another member when subjected to a strong impact such as dropping. Although there is no restriction | limiting in particular about the upper limit of the perpendicular | vertical adhesive strength in 25 degreeC, if it is 30 Mpa or less, the effect of this invention can fully be achieved.

本発明の一体化成形品の用途としては、軽量で力学特性が要求される分野における製品がある。例えば、燃料タンク、インテークマニホールドなどの燃料パイプ、燃料ポンプ、インパネ、内装材、スポイラー、ピラー、ドアパネル、ボンネット、エンジンカバー、各種ビームや衝撃吸収材などの自動車部材、風車ブレードなどの構造体、カウル、自転車クランクなどの二輪車、自転車の部材、ランディングギアポッド、モノコック、ウィングレット、スポイラー、エッジ、ラダー、エレベーター、フェイリング、リブなどの航空機関連部品、パラボラアンテナ、ノートパソコン、携帯電話、デジタルスチルカメラ、PDA、ポータブルMD、プラズマディスプレーなどの電気または電子機器の部品、部材および筐体、電話、ファクシミリ、VTR、コピー機、テレビ、アイロン、ヘアードライヤー、炊飯器、電子レンジ、音響機器、掃除機、トイレタリー用品、レーザーディスク、コンパクトディスク、照明、冷蔵庫、エアコン、タイプライター、ワードプロセッサーなどに代表される家庭または事務製品部品、部材および筐体、パチンコ、スロットマシン、ゲーム機などの遊技または娯楽製品部品、部材および筐体、顕微鏡、双眼鏡、カメラ、時計などの光学機器、精密機械関連部品、部材および筐体、X線カセッテなどの医療用途、テニスラケット、ゴルフクラブヘッド、ボード、ヨットなどのスポーツ関連部品、建材用の部品やパネルなどがあげられる。   As an application of the integrally molded product of the present invention, there is a product in a field where mechanical properties are required with light weight. For example, fuel pipes such as fuel tanks, intake manifolds, fuel pumps, instrument panels, interior materials, spoilers, pillars, door panels, bonnets, engine covers, automobile parts such as various beams and shock absorbers, structures such as windmill blades, cowls Bicycles such as bicycle cranks, bicycle parts, landing gear pods, monocoques, winglets, spoilers, edges, ladders, elevators, failings, ribs and other aircraft related parts, parabolic antennas, laptop computers, mobile phones, digital still cameras , Parts of PDA, portable MD, plasma or other electrical or electronic equipment, components and housing, telephone, facsimile, VTR, copy machine, TV, iron, hair dryer, rice cooker, microwave oven, audio equipment, cleaning , Toiletries, laser discs, compact discs, lighting, refrigerators, air conditioners, typewriters, home or office product parts such as word processors, parts and housings, pachinko machines, slot machines, game machines and other entertainment or entertainment product parts , Members and housings, microscopes, binoculars, cameras, watches and other optical equipment, precision machine parts, members and housings, medical applications such as X-ray cassettes, sports related to tennis rackets, golf club heads, boards, yachts, etc. These include parts, building materials and panels.

特に軽量・高剛性の要求のある電気・電子機器、OA機器、家電機器、自動車または建材の、部品、部材または筐体に好適に使用される。   In particular, it is suitably used for parts, members or casings of electric / electronic devices, OA devices, home appliances, automobiles or building materials that require light weight and high rigidity.

[評価・測定方法]
(1)ガーレー秒
ガーレーデンソメーター(東洋精機製作所製:B型ガーレー式電祖メーター)を用いて、圧力600mmHO、温度23℃の条件下で、直径2.5cmの繊維強化基材面より10mlの空気が通過するのに要する時間をガーレー秒として測定した。
(2)被膜の最大厚みTpf
強化繊維基材の断面をTEMにて観察し、以下のように測定した。強化繊維基材に含浸している熱可塑性樹脂の厚さ方向において、熱可塑性樹脂(図2中8)の表面(図2中10)からみて、熱可塑性樹脂に埋没している強化繊維のうち最も表面に近いもの(図2中9b−out)と、熱可塑性樹脂の表面からの入り込み厚さが最も大きい部位において、熱可塑性樹脂に埋没して・あるいは接している強化繊維のうち最も表面から離れたもの(図2中9b−in)との厚さ方向の距離をTpfとして測定する。
(3)被膜の平均厚み
強化繊維基材の断面をTEMにて観察し、以下のように測定した。強化繊維基材に含浸している熱可塑性樹脂の厚さ方向において、熱可塑性樹脂(図2中8)の表面(図2中10)からみて、熱可塑性樹脂に埋没している強化繊維のうち最も表面に近いもの(図2中9b−out)と、熱可塑性樹脂(図2中8)の表面(図2中10)との厚さ方向の距離を被膜の平均厚みとして測定する。
(4)ドレープ性
強化繊維基材を幅1cm、長さ100cmに切り出し、評価用サンプルとする。強化繊維基材の長さが足りない場合は、比例配分でサンプルの幅、長さを調節する。図4の測定用台座15の上辺の測定開始点(図4中16)より強化繊維基材17を1cm/秒の速さで長手方向に押し出していく。サンプルの先端が自重で撓み、斜辺(図4中18)に接したときの測定開始点からのサンプルの押し出し量(cm)をドレープ性とする。サンプルの幅を調節した場合は、サンプルの押し出し距離も調節幅に応じて比例配分して算出する。
(5)垂直接着強度
一体化構造部材から、繊維強化複合材料と別の部材が接合している部分より、垂直接着強度評価サンプル(図5)を10mm×10mmの大きさで切り出した。
[Evaluation / Measurement Method]
(1) Gurley Second Using a Gurley Densometer (manufactured by Toyo Seiki Seisakusho: B-type Gurley-type Denso Meter) under a pressure of 600 mmH 2 O and a temperature of 23 ° C. The time required for 10 ml of air to pass through was measured as Gurley seconds.
(2) Maximum film thickness Tpf
The cross section of the reinforcing fiber substrate was observed with a TEM and measured as follows. Among the reinforcing fibers embedded in the thermoplastic resin in the thickness direction of the thermoplastic resin impregnated in the reinforcing fiber base, as viewed from the surface (10 in FIG. 2) of the thermoplastic resin (8 in FIG. 2) From the surface closest to the surface (9b-out in FIG. 2) and the reinforcing fiber buried or in contact with the thermoplastic resin at the portion where the penetration depth from the surface of the thermoplastic resin is the largest. The distance in the thickness direction from a distance (9b-in in FIG. 2) is measured as Tpf.
(3) Average thickness of coating The cross section of the reinforcing fiber substrate was observed with TEM and measured as follows. Among the reinforcing fibers embedded in the thermoplastic resin in the thickness direction of the thermoplastic resin impregnated in the reinforcing fiber base, as viewed from the surface (10 in FIG. 2) of the thermoplastic resin (8 in FIG. 2) The distance in the thickness direction between the closest surface (9b-out in FIG. 2) and the surface (8 in FIG. 2) of the thermoplastic resin (8 in FIG. 2) is measured as the average thickness of the coating.
(4) Drapability A reinforcing fiber base material is cut into a width of 1 cm and a length of 100 cm to obtain a sample for evaluation. If the length of the reinforcing fiber base is not enough, adjust the width and length of the sample by proportional distribution. The reinforcing fiber base 17 is extruded in the longitudinal direction at a speed of 1 cm / sec from the measurement start point (16 in FIG. 4) on the upper side of the measurement base 15 in FIG. The amount of extrusion (cm) of the sample from the measurement start point when the tip of the sample is bent by its own weight and touches the hypotenuse (18 in FIG. 4) is defined as drape. When the width of the sample is adjusted, the push-out distance of the sample is also calculated by proportional distribution according to the adjustment width.
(5) Vertical Adhesive Strength A vertical adhesive strength evaluation sample (FIG. 5) was cut out in a size of 10 mm × 10 mm from the portion where the fiber reinforced composite material and another member were joined from the integrated structural member.

次いでサンプルを測定装置の治具(図6中23a、23b)に固定した。測定装置としては“インストロン(登録商標)”5565型万能材料試験機(インストロン・ジャパン(株)製)を使用した。尚、サンプルの固定は、サンプルがインストロンのチャックに把持できるものはそのままチャックに挟み引張試験を行うが、把持できないものはサンプルに接着剤(スリーボンド1782、株式会社スリーボンド製)を塗布し、23±5℃、50±5%RHで4時間放置して治具と接着させてもよい。   Next, the sample was fixed to a jig (23a and 23b in FIG. 6) of the measuring apparatus. As the measuring apparatus, “Instron (registered trademark)” 5565 type universal material testing machine (manufactured by Instron Japan Co., Ltd.) was used. For fixing the sample, if the sample can be held by an Instron chuck, the sample is held in the chuck as it is and a tensile test is performed. If the sample cannot be held, an adhesive (ThreeBond 1782, manufactured by ThreeBond Co., Ltd.) is applied to the sample. It may be allowed to stand for 4 hours at ± 5 ° C. and 50 ± 5% RH to adhere to the jig.

引張試験は、雰囲気温度が調節可能な試験室において、25℃の雰囲気温度で行った。   The tensile test was performed at an ambient temperature of 25 ° C. in a test chamber in which the ambient temperature can be adjusted.

試験開始前に、サンプルは、試験室内において、少なくとも5分間、引張試験の負荷がかからない状態を維持し、また、サンプルに熱電対を配置して、雰囲気温度と同等になったことを確認した後に、引張試験を行った。  Before starting the test, after the sample has been kept in the test chamber for at least 5 minutes without being subjected to a tensile test load, and a thermocouple is placed on the sample to ensure that it is equivalent to the ambient temperature A tensile test was performed.

引張試験は、引張速度1.27mm/分にて、両者の接着面から90°方向に引っ張って行い、その最大荷重を接着面積で除した値を垂直接着強度(単位:MPa)とした。また、試料数はn=5とした。
(6)溶解度パラメータδ(SP値)の決定
本発明において、溶解度パラメータδ(SP値)は、フェダーズ(Fedors)の方法により決定される25℃におけるポリマーの繰り返し単位の値を指す。該方法は文献1、2に記載されている。即ち、求める化合物の構造式において、原子および原子団の蒸発エネルギーとモル体積のデータより次式により決定される。
溶解度パラメータδ(SP値)=(ΣΔei/ΣΔvi)1/2ただし、式中、ΔeiおよびΔviは、それぞれ原子または原子団の蒸発エネルギーおよびモル体積を表す。求める化合物の構造式はIR、NMR、マススペクトルなどの通常の構造分析手法を用いて決定する。
R.F.Fedors,Polym.Eng.Sci.,14(2),147(1974) 向井淳二及び金城徳幸著「技術者のための実学高分子」 (講談社,1981年10月1日発行)第66〜87頁(7)連続強化繊維基材の目付および厚さ JIS R 7602に記載の測定方法に従い、連続強化繊維基材の単位面積当たりの質量(以下目付と略す)および厚さ測定した。(8)不織布、織物の空隙面積 不織布、織物の表面を光学顕微鏡にて観察する。続いて得られた表面写真を画像処理により、2値化し、繊維部分(図7中25)を白に、それ以外の部分を黒とする。繊維で囲まれ独立した黒い部分(図7中26)の面積を一つの空隙面積とした。空隙面積は100個以上測定し、測定値の和を測定個数で除した値を空隙面積(mm2)とした。(9)隣り合う粒子の間隔 熱可塑樹脂表面形成用連続強化繊維基材(図8中27)の表面を光学顕微鏡にて観察する。続いて得られた表面写真から隣り合う粒子(図8中28)間の長さ(図8中29)を測定し、隣り合う粒子の間隔(mm)とした。隣り合う粒子の間隔は100個以上測定し、測定値の和を測定個数で除した値を隣り合う粒子の間隔(mm)とした。(10)マトリックス樹脂”エピコート(登録商標)”828(ジャパンエポキシレジン社製)90重量部、”ERISYS(登録商標)”GE−20(CVC社製)10重量部、”アンカミン(登録商標)”2049(PTIジャパン社製)32重量部を混合した樹脂を用いた。[実施例1]板状一体化構造部材 (繊維強化複合材料) 東レ(株)製“トレカ(登録商標)織物”CO6343(目付(W)200g/m2、繊維強化基材の厚み(t)0.29mm)を所定の大きさにカットした強化繊維基材を金型内に6枚積層し、最表面に熱可塑性樹脂組成物として東レ(株)製、3元共重合ポリアミド樹脂CM4000(ナイロン6/66/610、融点150℃、溶解度パラメータδ(SP値)13.3)のフィルム(目付60g/m2)を成形体と同様の大きさにカットしたものを重ねて積層し、型締めを行った。次に、金型温度を155℃に加温した後、予め60℃に加温したマトリックス樹脂を樹脂注入装置を用い、注入圧0.2MPaで金型内に注入し、強化繊維基材に含浸させた。成形品厚みは強化繊維の体積含有量が60%となるよう1.1mmに調節した。含浸後、155℃の温度で2時間保持した後、30℃の温度まで降温し、脱型して繊維強化複合材料を得た。得られた繊維強化複合材料は厚さ1.1mm、Tpfは30μm、被膜の平均厚みは10μmであった。
The tensile test was performed by pulling from the adhesion surface of both at 90 ° direction at a tensile speed of 1.27 mm / min, and the value obtained by dividing the maximum load by the adhesion area was defined as the vertical adhesion strength (unit: MPa). The number of samples was n = 5.
(6) Determination of Solubility Parameter δ (SP Value) In the present invention, the solubility parameter δ (SP value) refers to the value of the polymer repeating unit at 25 ° C. determined by the method of Fedors. This method is described in documents 1 and 2. That is, in the structural formula of the desired compound, it is determined by the following formula from the evaporation energy and molar volume data of atoms and atomic groups.
Solubility parameter δ (SP value) = (ΣΔei / ΣΔvi) 1/2 where Δei and Δvi represent the evaporation energy and molar volume of the atom or atomic group, respectively. The structural formula of the compound to be determined is determined using a general structural analysis technique such as IR, NMR, and mass spectrum.
RFFedors, Polym.Eng.Sci., 14 (2), 147 (1974) Mukai Shinji and Kaneshiro Noriyuki “Practical Polymers for Engineers” (Kodansha, published on October 1, 1981), pp. 66-87 (7) Fabrication and thickness of continuous reinforcing fiber substrate JIS R 7602 According to the measurement method, the mass per unit area (hereinafter abbreviated as basis weight) and thickness of the continuous reinforcing fiber substrate were measured. (8) Non-woven fabric and void area of woven fabric The surface of the nonwoven fabric and woven fabric is observed with an optical microscope. Subsequently, the obtained surface photograph is binarized by image processing, and the fiber portion (25 in FIG. 7) is set to white and the other portions are set to black. The area of an independent black part (26 in FIG. 7) surrounded by fibers was defined as one void area. More than 100 void areas were measured, and the value obtained by dividing the sum of the measured values by the number of measurements was defined as the void area (mm2). (9) Spacing between adjacent particles The surface of the continuous reinforcing fiber substrate for forming a thermoplastic resin surface (27 in FIG. 8) is observed with an optical microscope. Subsequently, the length (29 in FIG. 8) between adjacent particles (28 in FIG. 8) was measured from the obtained surface photograph, and set as the interval (mm) between adjacent particles. The interval between adjacent particles was measured at 100 or more, and the value obtained by dividing the sum of the measured values by the measured number was defined as the interval (mm) between adjacent particles. (10) 90 parts by weight of matrix resin “Epicoat (registered trademark)” 828 (manufactured by Japan Epoxy Resin), 10 parts by weight of “ERISYS (registered trademark)” GE-20 (manufactured by CVC), “Ancamine (registered trademark)” A resin mixed with 32 parts by weight of 2049 (manufactured by PTI Japan) was used. [Example 1] Plate-like integrated structural member (fiber reinforced composite material) "Torayca (registered trademark) woven fabric" CO6343 (weight per unit area (W) 200 g / m 2, thickness (t) 0 of fiber reinforced base material) .29 mm) are cut into a predetermined size and six reinforcing fiber base materials are laminated in a mold, and a terpolymer polyamide resin CM4000 (nylon 6) manufactured by Toray Industries, Inc. as a thermoplastic resin composition on the outermost surface. / 66/610, melting point 150 ° C., solubility parameter δ (SP value) 13.3) film (weight per unit 60 g / m 2) cut into the same size as the molded product, stacked and laminated It was. Next, after the mold temperature is heated to 155 ° C., the matrix resin preheated to 60 ° C. is injected into the mold at an injection pressure of 0.2 MPa using a resin injection device and impregnated into the reinforcing fiber base I let you. The thickness of the molded product was adjusted to 1.1 mm so that the volume content of the reinforcing fiber was 60%. After impregnation, it was held at a temperature of 155 ° C. for 2 hours, then cooled to a temperature of 30 ° C., and demolded to obtain a fiber-reinforced composite material. The obtained fiber reinforced composite material was 1.1 mm in thickness, Tpf was 30 μm, and the average thickness of the coating was 10 μm.

(別の部材)
上記と同じ繊維強化複合材料を別の部材として使用した。
(Other parts)
The same fiber reinforced composite material as above was used as another member.

(一体化)
上記繊維強化複合材料および別の部材を、熱板にて160℃で3分間加熱後、熱可塑性樹脂組成物を有する面同士を接合面として張り合わせ、20MPaの圧力にて2分間保持して一体化し、板状の一体化構造部材とした。得られた一体化構造部材の垂直接着強度の評価を試みたところ、6MPaにおいて、接合部分が剥離するよりも前に試料と治具との接着剤による固定部分が剥離したことから、6MPa以上であると評価された。
[実施例2]板状一体化構造部材
(繊維強化複合材料)
東レ(株)製“トレカ(登録商標)織物”CO6343(目付(W)200g/m2、繊維強化基材の厚み(t)0.29mm)を所定の大きさにカットした強化繊維基材を金型内に6枚積層し、最表面に熱可塑性樹脂組成物として東レ(株)製、3元共重合ポリアミド樹脂CM4000(ナイロン6/66/610、融点150℃、溶解度パラメータδ(SP値)13.3)のフィルム(目付60g/m)を成形体と同様の大きさにカットしたものを重ねて積層し、型締めを行った。次に、金型温度を155℃に加温して5分間保持した後、予め60℃に加温したマトリックス樹脂を樹脂注入装置を用い、注入圧0.2MPaで金型内に注入し、強化繊維基材に含浸させた。成形品厚みは強化繊維の体積含有量が60%となるよう1.1mmに調節した。含浸後、155℃の温度で2時間保持した後、30℃の温度まで降温し、脱型して繊維強化複合材料を得た。得られた繊維強化複合材料は厚さ1.1mm、Tpfは40μm、被膜の平均厚みは10μmであった。
(Integrated)
The above fiber-reinforced composite material and another member are heated on a hot plate at 160 ° C. for 3 minutes, and then the surfaces having the thermoplastic resin composition are bonded together as a joining surface and held at a pressure of 20 MPa for 2 minutes to be integrated. A plate-like integrated structural member was obtained. Attempts were made to evaluate the vertical bond strength of the obtained integrated structural member. At 6 MPa, the fixed part by the adhesive between the sample and the jig peeled off before the bonded part peeled off. It was evaluated that there was.
[Example 2] Plate-like integrated structural member (fiber reinforced composite material)
Toray Industries, Inc. “Torayca (registered trademark)” CO6343 (weight per unit area (W) 200 g / m 2, fiber reinforced base material thickness (t) 0.29 mm) cut to a predetermined size with a reinforcing fiber base material made of gold Six sheets are laminated in the mold, and a terpolymer polyamide resin CM4000 (nylon 6/66/610, melting point 150 ° C., solubility parameter δ (SP value) 13 manufactured by Toray Industries, Inc. as a thermoplastic resin composition on the outermost surface. .3) films (weight per unit area: 60 g / m 2 ) cut into the same size as the molded body were stacked and laminated, and the molds were clamped. Next, after the mold temperature is heated to 155 ° C. and held for 5 minutes, the matrix resin preheated to 60 ° C. is injected into the mold at an injection pressure of 0.2 MPa using a resin injection device and strengthened. The fiber substrate was impregnated. The thickness of the molded product was adjusted to 1.1 mm so that the volume content of the reinforcing fibers was 60%. After impregnation, it was held at a temperature of 155 ° C. for 2 hours, then cooled to a temperature of 30 ° C., and demolded to obtain a fiber-reinforced composite material. The obtained fiber reinforced composite material was 1.1 mm in thickness, Tpf was 40 μm, and the average thickness of the coating was 10 μm.

(別の部材)
上記と同じ繊維強化複合材料を別の部材として使用した。
(Other parts)
The same fiber reinforced composite material as above was used as another member.

(一体化)
上記繊維強化複合材料および別の部材を、熱板にて160℃で3分間加熱後、熱可塑性樹脂組成物を有する面同士を接合面として張り合わせ、20MPaの圧力にて2分間保持して一体化し、板状の一体化構造部材とした。得られた一体化構造部材の垂直接着強度の評価を試みたところ、6MPaにおいて、接合部分が剥離するよりも前に試料と治具との接着剤による固定部分が剥離したことから、6MPa以上であると評価された。
[実施例3]電子機器筐体
(連続強化繊維基材)
東レ(株)製“トレカ(登録商標)織物”CO6343(目付(W)200g/m2、繊維強化基材の厚み(t)0.29mm)を所定の大きさにカットした強化繊維基材1枚に、熱可塑性樹脂として東レ(株)製、3元共重合ポリアミド樹脂CM4000(ナイロン6/66/610、融点150℃、溶解度パラメータδ(SP値)13.3)のフィルム(目付60g/m)を1枚積層し配置した。続いて160℃の温度で2分間、1MPaの圧力でプレス成形し、片方の表面に熱可塑性樹脂が予め被膜した繊維強化基材を得た。この繊維強化基材のガーレー秒数は1000s、Tpfは50μm、被膜の平均厚みは10μm、ドレープ性は8cmであった。
(Integrated)
The above fiber-reinforced composite material and another member are heated on a hot plate at 160 ° C. for 3 minutes, and then the surfaces having the thermoplastic resin composition are bonded together as a joining surface and held at a pressure of 20 MPa for 2 minutes to be integrated. A plate-like integrated structural member was obtained. Attempts were made to evaluate the vertical bond strength of the obtained integrated structural member. At 6 MPa, the fixed part by the adhesive between the sample and the jig peeled off before the bonded part peeled off. It was evaluated that there was.
[Example 3] Electronic equipment casing (continuous reinforcing fiber base)
One reinforced fiber base material obtained by cutting “Torayca (registered trademark) fabric” CO6343 (weight per unit area (W) 200 g / m 2, thickness of fiber reinforced base material (t) 0.29 mm) manufactured by Toray Industries, Inc. Further, as a thermoplastic resin, a film of a terpolymer polyamide resin CM4000 (nylon 6/66/610, melting point 150 ° C., solubility parameter δ (SP value) 13.3) manufactured by Toray Industries, Inc. (weight per unit: 60 g / m 2) ) Was laminated and arranged. Subsequently, it was press-molded at a pressure of 1 MPa for 2 minutes at a temperature of 160 ° C. to obtain a fiber reinforced base material in which a thermoplastic resin was previously coated on one surface. The fiber-reinforced substrate had a Gurley second of 1000 s, a Tpf of 50 μm, an average thickness of the coating of 10 μm, and a drape property of 8 cm.

(繊維強化複合材料)
東レ(株)製“トレカ(登録商標)織物”CO6343(目付(W)200g/m2、繊維強化基材の厚み(t)0.29mm)を所定の大きさにカットした強化繊維基材を金型内に5枚積層し、上記強化繊維基材を、最表面に連続的に含浸した熱可塑性樹脂が配置されるように重ねて積層し、型締めを行った。次に、金型温度を155℃に加温した後、予め60℃に加温したマトリックス樹脂を樹脂注入装置を用い、注入圧0.2MPaで金型内に注入し、強化繊維基材に含浸させた。成形品厚みは強化繊維の体積含有量が60%となるよう1.1mmに調節した。含浸後、155℃の温度で2時間保持した後、30℃の温度まで降温し、脱型して繊維強化複合材料を得た。得られた繊維強化複合材料は厚さ1.1mmであった。
(Fiber reinforced composite material)
Toray Industries, Inc. “Torayca (registered trademark)” CO6343 (weight per unit area (W) 200 g / m 2, fiber reinforced base material thickness (t) 0.29 mm) cut to a predetermined size with a reinforcing fiber base material made of gold Five sheets were laminated in the mold, and the above-mentioned reinforcing fiber base material was laminated and laminated so that the thermoplastic resin continuously impregnated on the outermost surface was disposed, and the mold was clamped. Next, after the mold temperature is heated to 155 ° C., the matrix resin preheated to 60 ° C. is injected into the mold at an injection pressure of 0.2 MPa using a resin injection device and impregnated into the reinforcing fiber base I let you. The thickness of the molded product was adjusted to 1.1 mm so that the volume content of the reinforcing fibers was 60%. After impregnation, it was held at a temperature of 155 ° C. for 2 hours, then cooled to a temperature of 30 ° C., and demolded to obtain a fiber-reinforced composite material. The resulting fiber reinforced composite material was 1.1 mm thick.

(別の部材・一体化)
上記繊維強化複合材料を射出成形用金型にインサートし、繊維強化複合材料の熱可塑性樹脂を有する面に対して、別の部材として、東レ(株)製長繊維ペレットTLP1146(ポリアミド樹脂マトリックス、炭素繊維含有量20重量%)を射出成形にて成形、一体化し、図9に示すような電子機器筐体とした。射出成形機は日本製鋼所(株)製J350EIIIを使用し、射出成形は、スクリュー回転数60rpm、シリンダー温度280℃、射出速度90mm/sec、射出圧力200MPa、背圧0.5MPa、金型温度55℃で行った。得られた一体化構造部材である電子機器筐体の垂直接着強度の評価を試みたところ、6MPaにおいて、接合部分が剥離するよりも前に試料と治具との接着剤による固定部分が剥離したことから、6MPa以上であると評価された。
[実施例4]板状一体化構造部材
(連続強化繊維基材)
東レ(株)製“トレカ(登録商標)織物”CO6343(目付(W)200g/m2、繊維強化基材の厚み(t)0.29mm)を所定の大きさにカットした強化繊維基材A1枚に、熱可塑性樹脂として東レ(株)製、3元共重合ポリアミド樹脂CM4000(ナイロン6/66/610、融点150℃、溶解度パラメータδ(SP値)13.3)の粒子(平均粒子径200μm)を80g/mを散布、配置し、連続強化繊維基材Bを得た。続いて160℃の温度で2分間加熱し、熱可塑性樹脂が連続強化繊維基材に融着することで、取り扱い性に優れた連続強化繊維基材C(隣り合う粒子の間隔2mmであった。続いて160℃の温度で2分間、1MPaの圧力でプレス成形し、片方の表面に熱可塑性樹脂が予め被膜した繊維強化基材Dを得た。この繊維強化基材のガーレー秒数は700s、Tpfは70μm、被膜の平均厚みは15μm、ドレープ性は18cmであった。
(Other parts / integration)
The fiber reinforced composite material is inserted into a mold for injection molding, and as a separate member, the fiber reinforced composite material having a thermoplastic resin has a long fiber pellet TLP1146 (polyamide resin matrix, carbon 9) was molded and integrated by injection molding to obtain an electronic device casing as shown in FIG. The injection molding machine uses J350EIII manufactured by Nippon Steel, Ltd., and the injection molding is screw rotation 60 rpm, cylinder temperature 280 ° C., injection speed 90 mm / sec, injection pressure 200 MPa, back pressure 0.5 MPa, mold temperature 55 Performed at ° C. Attempts were made to evaluate the vertical adhesive strength of the electronic device casing, which is an integrated structural member, and the fixed portion by the adhesive between the sample and the jig peeled before the joint portion peeled at 6 MPa. Therefore, it was evaluated as 6 MPa or more.
[Example 4] Plate-like integrated structural member (continuous reinforcing fiber base material)
Toray Industries, Inc. “Torayca (registered trademark)” CO6343 (weight per unit (W) 200 g / m 2, fiber reinforced base material thickness (t) 0.29 mm) cut to a predetermined size A1 reinforcing fiber base material Further, particles of terpolymer polyamide resin CM4000 (nylon 6/66/610, melting point 150 ° C., solubility parameter δ (SP value) 13.3) manufactured by Toray Industries, Inc. as a thermoplastic resin (average particle diameter 200 μm) 80 g / m 2 was sprayed and arranged to obtain a continuous reinforcing fiber substrate B. Then, it heated for 2 minutes at the temperature of 160 degreeC, and the thermoplastic resin fuse | melted to the continuous reinforcement fiber base material, It was the continuous reinforcement fiber base material C (2 mm of adjacent particle | grains) excellent in the handleability. Subsequently, press molding was performed at a pressure of 1 MPa for 2 minutes at a temperature of 160 ° C. to obtain a fiber reinforced base D in which a thermoplastic resin was previously coated on one surface, and the Gurley second number of the fiber reinforced base was 700 s, Tpf was 70 μm, the average thickness of the coating was 15 μm, and the drapability was 18 cm.

(繊維強化複合材料)
東レ(株)製“トレカ(登録商標)織物”CO6343(目付(W)200g/m2、繊維強化基材の厚み(t)0.29mm)を所定の大きさにカットした強化繊維基材Aを金型内に5枚積層し、上記強化繊維基材Dを、最表面に連続的に含浸した熱可塑性樹脂が配置されるように重ねて積層し、型締めを行った。次に、金型温度を155℃に加温した後、予め60℃に加温したマトリックス樹脂を樹脂注入装置を用い、注入圧0.2MPaで金型内に注入し、強化繊維基材に含浸させた。成形品厚みは強化繊維の体積含有量が60%となるよう1.1mmに調節した。含浸後、155℃の温度で2時間保持した後、30℃の温度まで降温し、脱型して繊維強化複合材料を得た。得られた繊維強化複合材料は厚さ1.1mmであった。
(Fiber reinforced composite material)
Toray Industries, Inc. “Torayca (registered trademark)” CO6343 (weight per unit area (W) 200 g / m 2, fiber reinforced base material thickness (t) 0.29 mm) is reinforced fiber base material A cut to a predetermined size Five sheets were laminated in a mold, and the above-mentioned reinforcing fiber base D was laminated and laminated so that the thermoplastic resin continuously impregnated on the outermost surface was disposed, and the mold was clamped. Next, after the mold temperature is heated to 155 ° C., the matrix resin preheated to 60 ° C. is injected into the mold at an injection pressure of 0.2 MPa using a resin injection device and impregnated into the reinforcing fiber base I let you. The thickness of the molded product was adjusted to 1.1 mm so that the volume content of the reinforcing fibers was 60%. After impregnation, it was held at a temperature of 155 ° C. for 2 hours, then cooled to a temperature of 30 ° C., and demolded to obtain a fiber-reinforced composite material. The resulting fiber reinforced composite material was 1.1 mm thick.

(別の部材)
上記と同じ繊維強化複合材料を別の部材として使用した。
(Other parts)
The same fiber reinforced composite material as above was used as another member.

(一体化)
上記繊維強化複合材料および別の部材を、熱板にて160℃で3分間加熱後、熱可塑性樹脂組成物を有する面同士を接合面として張り合わせ、20MPaの圧力にて2分間保持して一体化し、板状の一体化構造部材とした。得られた一体化構造部材の垂直接着強度の評価を試みたところ、6MPaにおいて、接合部分が剥離するよりも前に試料と治具との接着剤による固定部分が剥離したことから、6MPa以上であると評価された。
(Integrated)
The above fiber-reinforced composite material and another member are heated on a hot plate at 160 ° C. for 3 minutes, and then the surfaces having the thermoplastic resin composition are bonded together as a joining surface and held at a pressure of 20 MPa for 2 minutes to be integrated. A plate-like integrated structural member was obtained. Attempts were made to evaluate the vertical bond strength of the obtained integrated structural member. At 6 MPa, the fixed part by the adhesive between the sample and the jig peeled off before the bonded part peeled off. It was evaluated that there was.

本発明の繊維強化複合材料を作成する金型の一実施態様図示である。It is one embodiment illustration of the metal mold | die which produces the fiber reinforced composite material of this invention. 本発明の被膜を有する複合材料表層用連続強化繊維基材の模式図である。It is a schematic diagram of the continuous reinforcement fiber base material for composite material surface layers which has a film of this invention. 本発明の一体化成形品の断面模式図である。It is a cross-sectional schematic diagram of the integrally molded product of this invention. 本発明におけるドレープ性評価冶具の模式図である。It is a schematic diagram of the drape property evaluation jig in this invention. 垂直接着強度評価サンプルの模式図である。It is a schematic diagram of a vertical adhesive strength evaluation sample. 垂直接着強度評価用冶具の模式図である。It is a schematic diagram of the jig for vertical adhesive strength evaluation. 本発明における不織布の空隙部分の模式図である。It is a schematic diagram of the space | gap part of the nonwoven fabric in this invention. 本発明の熱可塑性樹脂が粒子からなる、第2の熱可塑樹脂表面形成用連続強化繊維基材の模式図である。It is a schematic diagram of the 2nd continuous reinforcement fiber base material for thermoplastic resin surface formation which the thermoplastic resin of this invention consists of particle | grains. 本発明の実施例にかかる電子機器筐体の斜視図である。It is a perspective view of the electronic device housing | casing concerning the Example of this invention.

符号の説明Explanation of symbols

1a:上型
1b:下型
2:キャビティ
3:連続強化繊維基材
4:熱可塑性基材
5:表面
6:被膜を有する連続繊維強化基材
7:連続強化繊維
8:熱可塑性樹脂
9a:強化繊維
9b:強化繊維
9b−out:熱可塑性樹脂8の樹脂に接している一番外側(表面側)の強化繊維
9bーin−max:熱可塑性樹脂8の樹脂に接している一番内側の強化繊維
10:被膜表面
11:繊維強化複合材料
12:別の部材
13:熱硬化性樹脂
14:熱可塑性樹脂と熱硬化性樹脂の界面
15:測定用台座
16:測定開始点
17:強化繊維基材
18:測定用台座の斜辺
19:垂直接着強度評価用サンプル
20:繊維強化複合材料
21:別の部材
22:接着面
23a:引張冶具
23b:引張冶具
24a:引張方向矢印
24b:引張方向矢印
25:繊維部分
26:繊維で囲まれ独立した部分
27:連続強化繊維基材
28:熱可塑性樹脂からなる粒子
29:繊維強化複合材料
30:別の部材
DESCRIPTION OF SYMBOLS 1a: Upper mold | type 1b: Lower mold | type 2: Cavity 3: Continuous reinforcement fiber base material 4: Thermoplastic base material 5: Surface 6: Continuous fiber reinforcement base material 7 with a film | membrane: Continuous reinforcement fiber 8: Thermoplastic resin 9a: Reinforcement Fiber 9b: Reinforcing fiber 9b-out: Outermost (surface side) reinforcing fiber 9b-in-max in contact with the resin of the thermoplastic resin 8: Innermost reinforcement in contact with the resin of the thermoplastic resin 8 Fiber 10: Coating surface 11: Fiber reinforced composite material 12: Another member 13: Thermosetting resin 14: Interface between thermoplastic resin and thermosetting resin 15: Measurement base 16: Measurement start point 17: Reinforced fiber substrate 18: hypotenuse of measurement pedestal 19: vertical adhesive strength evaluation sample 20: fiber reinforced composite material 21: another member 22: bonding surface 23a: tension jig 23b: tension jig 24a: tension direction arrow 24b: tension direction arrow 25: Fiber part 26: fiber Enclosed independent part 27: continuous reinforcing fiber base material 28: thermoplastic composed of a resin particle 29: the fiber reinforced composite material 30: Another member

Claims (24)

連続強化繊維基材の表面の少なくとも一部分に熱可塑性樹脂を主成分とする熱可塑性基材を配置する積層工程と、前記熱可塑性基材を溶融し連続強化繊維基材表面に熱可塑性樹脂の被膜を形成させ、同時に熱硬化性樹脂組成物の注入・硬化反応させる硬化工程とを含む繊維強化複合材料の製造方法。 A lamination step of disposing a thermoplastic base material mainly composed of a thermoplastic resin on at least a part of the surface of the continuous reinforcing fiber base; and a coating of the thermoplastic resin on the surface of the continuous reinforcing fiber base by melting the thermoplastic base And a curing step in which a thermosetting resin composition is injected and cured at the same time. 連続強化繊維基材の表面の少なくとも一部分に熱可塑性樹脂を主成分とする熱可塑性基材を配置する積層工程と、前記熱可塑性基材を溶融させ連続強化繊維基材表面に熱可塑性樹脂の被膜を形成させる予熱工程と、熱硬化性樹脂の注入・硬化反応させる硬化工程とを含む繊維強化複合材料の製造方法。 Laminating step of disposing a thermoplastic base material mainly composed of a thermoplastic resin on at least a part of the surface of the continuous reinforcing fiber base, and coating the thermoplastic resin on the surface of the continuous reinforcing fiber base by melting the thermoplastic base A method for producing a fiber-reinforced composite material, which includes a preheating step for forming a resin and a curing step for injecting and curing a thermosetting resin. 連続強化繊維からなる基材の表面の少なくとも一部分に熱可塑性樹脂が配置されており、成形品表面に熱可塑性樹脂層の形成能を有する複合材料表層用連続強化繊維基材。 A continuous reinforcing fiber base material for a composite material surface layer in which a thermoplastic resin is disposed on at least a part of the surface of a base material made of continuous reinforcing fibers and has a capability of forming a thermoplastic resin layer on the surface of a molded product. 前記連続強化繊維からなる基材の表面の少なくとも一部分に熱可塑性樹脂が融着されている請求項3記載の複合材料表層用連続強化繊維基材。 The continuous reinforcing fiber base material for a composite material surface layer according to claim 3, wherein a thermoplastic resin is fused to at least a part of the surface of the base material made of the continuous reinforcing fibers. 本明細書内に定義するガーレー秒数が100〜10000sの範囲にある請求項3または4のいずれかに記載の複合材料表層用連続強化繊維基材。 The continuous reinforcing fiber base material for a composite material surface layer according to any one of claims 3 and 4, wherein the Gurley seconds defined in the present specification are in the range of 100 to 10,000 s. 連続強化繊維からなる基材の表面の少なくとも一部分に熱可塑性樹脂の被膜が形成されており、成形品表面に熱可塑性樹脂層の形成能を有する複合材料表層用連続強化繊維基材。 A continuous reinforcing fiber base material for a composite material surface layer, wherein a thermoplastic resin film is formed on at least a part of the surface of a base material made of continuous reinforcing fibers, and has the ability to form a thermoplastic resin layer on the surface of a molded product. 本明細書内に定義するドレープ性が5〜50cmの範囲である請求項3〜6のいずれかに記載の複合材料表層用連続強化繊維基材。 The continuous reinforcing fiber base material for a composite material surface layer according to any one of claims 3 to 6, wherein the drapeability defined in the present specification is in the range of 5 to 50 cm. 厚さ方向において、前記熱可塑性樹脂の被膜の入り込み面が凸凹をなす請求項6または7のいずれかに記載の複合材料表層用連続強化繊維基材。 The continuous reinforcing fiber base material for a composite material surface layer according to any one of claims 6 and 7, wherein an intrusion surface of the thermoplastic resin coating film is uneven in a thickness direction. 前記熱可塑性樹脂の被膜の最大厚みTpfが10〜1000μmの範囲である請求項6〜8のいずれかに記載の複合材料表層用連続強化繊維基材。 The continuous reinforcing fiber base material for a composite material surface layer according to any one of claims 6 to 8, wherein a maximum thickness Tpf of the thermoplastic resin coating is in a range of 10 to 1000 µm. 前記熱可塑性樹脂の被膜の平均厚みが0.01〜1000μmである請求項6〜9のいずれかに記載の複合材料表層用連続強化繊維基材。 10. The continuous reinforcing fiber substrate for a composite material surface layer according to claim 6, wherein an average thickness of the thermoplastic resin coating is 0.01 to 1000 μm. 前記連続強化繊維が炭素繊維である請求項3〜10のいずれかに記載の複合材料表層用連続強化繊維基材。 The continuous reinforcing fiber base material for a composite material surface layer according to any one of claims 3 to 10, wherein the continuous reinforcing fiber is a carbon fiber. 前記連続強化繊維基材が織物基材である請求項3〜11のいずれかに記載の複合材料表層用連続強化繊維基材。 The continuous reinforcing fiber substrate for a composite material surface layer according to any one of claims 3 to 11, wherein the continuous reinforcing fiber substrate is a woven fabric substrate. 連続強化繊維からなる基材の表面の少なくとも一部分に熱可塑性樹脂が配置されている複合材料表層用連続強化繊維基材上の熱可塑性樹脂を溶融させ、0.01〜10MPaの圧力を付与して得た請求項6〜12のいずれかに記載の複合材料表層用連続強化繊維基材。 The thermoplastic resin on the continuous reinforcing fiber base material for the composite material surface layer in which the thermoplastic resin is arranged on at least a part of the surface of the base material made of continuous reinforcing fibers is melted, and a pressure of 0.01 to 10 MPa is applied. The continuous reinforcing fiber base material for a composite material surface layer according to any one of claims 6 to 12. 請求項3〜13のいずれかに記載の複合材料表層用連続強化繊維基材を、熱可塑性樹脂の配置されてある側が最表面とし、所定枚数の連続強化繊維基材を配置する積層工程と、熱硬化性樹脂の注入及び硬化反応をさせる硬化工程とを含む繊維強化複合材料の製造方法。 A lamination step in which the continuous reinforcing fiber substrate for the composite material surface layer according to any one of claims 3 to 13 is the outermost surface on which the thermoplastic resin is disposed, and a predetermined number of continuous reinforcing fiber substrates are disposed. A method for producing a fiber-reinforced composite material, comprising injection of a thermosetting resin and a curing step for causing a curing reaction. 連続強化繊維からなる基材の表面の少なくとも一部分に熱可塑性樹脂の被膜が形成され、その厚さ方向において、前記熱可塑性樹脂の被膜の入り込み面が凸凹をなしており、かつ、前記熱可塑性樹脂の被膜の最大厚みTpfが10〜1000μmの範囲にある複合材料表層用連続強化繊維基材を用いる請求項1、2または14のいずれかに記載の繊維強化複合材料の製造方法。 A thermoplastic resin coating is formed on at least a part of the surface of the base material made of continuous reinforcing fibers, and the surface of the thermoplastic resin coating is uneven in the thickness direction, and the thermoplastic resin The manufacturing method of the fiber reinforced composite material in any one of Claims 1, 2, or 14 using the continuous reinforcement fiber base material for composite material surface layers in which the maximum thickness Tpf of the film of this is the range of 10-1000 micrometers. 前記被膜の平均厚みが0.01〜1000μmである複合材料表層用連続強化繊維基材を用いる請求項1、2、14または15のいずれかに記載の繊維強化複合材料の製造方法。 The manufacturing method of the fiber reinforced composite material in any one of Claims 1, 2, 14, or 15 using the continuous reinforcing fiber base material for composite material surface layers whose average thickness of the said film is 0.01-1000 micrometers. 連続強化繊維が炭素繊維である複合材料表層用連続強化繊維基材を用いる請求項1、2および14〜16のいずれかに記載の繊維強化複合材料の製造方法。 The manufacturing method of the fiber reinforced composite material in any one of Claims 1, 2, and 14-16 using the continuous reinforcing fiber base material for composite material surface layers whose continuous reinforcing fiber is carbon fiber. 連続強化繊維基材が織物基材である複合材料表層用連続強化繊維基材を用いる請求項1、2および14〜17のいずれかに記載の繊維強化複合材料の製造方法。 The manufacturing method of the fiber reinforced composite material in any one of Claims 1, 2, and 14-17 using the continuous reinforcing fiber base material for composite material surface layers whose continuous reinforcing fiber base material is a textile base material. 予熱工程を、0.01〜10MPaの圧力を付与した状態で行う請求項2記載の繊維強化複合材料の製造方法。 The manufacturing method of the fiber reinforced composite material of Claim 2 which performs a preheating process in the state which provided the pressure of 0.01-10 Mpa. 請求項1、2、14〜19のいずれか記載の製造方法により得られる繊維強化複合材料であって、前記熱硬化性樹脂と前記熱可塑性樹脂との界面が凹凸形状をなしている繊維強化複合材料。 20. A fiber-reinforced composite material obtained by the production method according to claim 1, wherein the interface between the thermosetting resin and the thermoplastic resin has an uneven shape. material. 請求項20記載の繊維強化複合材料と、別の部材とが前記熱可塑性樹脂を介して接合されている一体化構造部材。 21. An integrated structural member in which the fiber-reinforced composite material according to claim 20 and another member are joined via the thermoplastic resin. 前記繊維強化複合材料と別の部材との接合面の垂直接着強度が25℃において6MPa以上である請求項21記載の一体化構造部材。 The integrated structural member according to claim 21, wherein a vertical adhesive strength of a joint surface between the fiber-reinforced composite material and another member is 6 MPa or more at 25 ° C. 電気・電子機器、OA機器、家電機器、自動車または建材の、部品、部材または筐体ないし外板のいずれかに用いられる請求項21または22のいずれかに記載の一体化構造部材。 The integrated structural member according to any one of claims 21 and 22, which is used for any one of a part, a member, a casing, or an outer plate of an electric / electronic device, an OA device, a household electrical appliance, an automobile, or a building material. 請求項21〜23のいずれかに記載の一体化構造部材における、繊維強化複合材料と別の部材との接合を、熱溶着、振動溶着、超音波溶着、レーザー溶着、インサート射出成形、アウトサート射出成形からからなる群より選択される少なくとも1つの方法にて形成する一体化構造部材の製造方法。 24. The joint between the fiber-reinforced composite material and another member in the integrated structure member according to any one of claims 21 to 23, including thermal welding, vibration welding, ultrasonic welding, laser welding, insert injection molding, and outsert injection. A method for producing an integrated structural member formed by at least one method selected from the group consisting of molding.
JP2005199740A 2004-07-08 2005-07-08 Manufacturing method of fiber reinforced composite material Expired - Fee Related JP4774839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005199740A JP4774839B2 (en) 2004-07-08 2005-07-08 Manufacturing method of fiber reinforced composite material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004201796 2004-07-08
JP2004201796 2004-07-08
JP2005199740A JP4774839B2 (en) 2004-07-08 2005-07-08 Manufacturing method of fiber reinforced composite material

Publications (2)

Publication Number Publication Date
JP2006044261A true JP2006044261A (en) 2006-02-16
JP4774839B2 JP4774839B2 (en) 2011-09-14

Family

ID=36023351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005199740A Expired - Fee Related JP4774839B2 (en) 2004-07-08 2005-07-08 Manufacturing method of fiber reinforced composite material

Country Status (1)

Country Link
JP (1) JP4774839B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004269878A (en) * 2003-02-21 2004-09-30 Toray Ind Inc Fiber-reinforced composite material, method for producing the same and integrally molded product
WO2007041782A1 (en) * 2005-10-11 2007-04-19 Crc For Advanced Composite Structures Limited A method of binding dry reinforcement fibres
JP2007269308A (en) * 2006-03-07 2007-10-18 Toray Ind Inc Interior trimming material for aircraft
JP2009533238A (en) * 2006-02-17 2009-09-17 ロジャーズ、ウィリアム COMPOSITE STRUCTURE ARTICLE AND METHOD FOR PRODUCING COMPOSITE STRUCTURE ARTICLE
JP2010517829A (en) * 2007-02-13 2010-05-27 エアバス・ユ―ケ―・リミテッド Method for processing composite materials
WO2012105717A1 (en) * 2011-02-03 2012-08-09 帝人株式会社 Vehicle skeleton member
WO2013176059A1 (en) * 2012-05-21 2013-11-28 帝人株式会社 Manufacturing method for molded resin product with metal insert
US20140174641A1 (en) * 2012-12-21 2014-06-26 Cytec Industries Inc. Curable prepregs with surface openings
US9010839B2 (en) 2012-10-24 2015-04-21 Sabic Global Technologies B.V. Vehicle side door structure and method of making and using the same
CN105082567A (en) * 2015-03-27 2015-11-25 中国商用飞机有限责任公司 Curing method for large-thickness fiber-reinforced epoxy resin matrix composite material
JP2016003257A (en) * 2014-06-16 2016-01-12 東レ株式会社 Fiber-reinforced resin sheet, integrally molded product and method for producing them
JP2016505699A (en) * 2013-01-30 2016-02-25 ザ・ボーイング・カンパニーTheBoeing Company Bale stabilized composites with improved tensile strength
JP2017109502A (en) * 2014-01-17 2017-06-22 東レ株式会社 Coated fiber-reinforced resin molding
JP2018158482A (en) * 2017-03-22 2018-10-11 アイシン高丘株式会社 Production method for composite structure
CN110154421A (en) * 2019-05-22 2019-08-23 湖州守真新材料科技有限公司 The tinuous production and production method of glue-injection box and fiber forced foamed composite material
WO2020235488A1 (en) 2019-05-23 2020-11-26 東レ株式会社 Method for producing fiber-reinforced resin substrate, fiber-reinforced resin substrate, and molded article integrated therewith
CN112566964A (en) * 2018-08-22 2021-03-26 东丽株式会社 Fiber-reinforced thermoplastic resin base material and laminate using same
WO2021131382A1 (en) 2019-12-23 2021-07-01 東レ株式会社 Composite prepreg and fiber-reinforced resin molded product
CN113910641A (en) * 2021-10-11 2022-01-11 成都锐美特新材料科技有限公司 Carbon fiber composite material product, preparation method thereof and wearable seat
US11572124B2 (en) 2021-03-09 2023-02-07 Guerrilla Industries LLC Composite structures and methods of forming composite structures
US11745443B2 (en) 2017-03-16 2023-09-05 Guerrilla Industries LLC Composite structures and methods of forming composite structures

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2601308C1 (en) * 2015-07-20 2016-11-10 Открытое акционерное общество "Композит" (ОАО "Композит") Thermal-protective coating composition
WO2018225271A1 (en) * 2017-06-09 2018-12-13 日産自動車株式会社 Method for molding composite material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0747152A (en) * 1993-08-06 1995-02-21 Asahi Chem Ind Co Ltd Fiber-reinforced resin racket frame
JPH09277420A (en) * 1996-04-19 1997-10-28 Toray Ind Inc Fiber reinforced plastic structure and its production
JP3906319B2 (en) * 2002-12-27 2007-04-18 東レ株式会社 LAMINATE, INTEGRATED MOLDED ARTICLE, AND METHOD FOR PRODUCING THEM
JP4543696B2 (en) * 2003-02-21 2010-09-15 東レ株式会社 FIBER-REINFORCED COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND INTEGRATED MOLDED ARTICLE

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0747152A (en) * 1993-08-06 1995-02-21 Asahi Chem Ind Co Ltd Fiber-reinforced resin racket frame
JPH09277420A (en) * 1996-04-19 1997-10-28 Toray Ind Inc Fiber reinforced plastic structure and its production
JP3906319B2 (en) * 2002-12-27 2007-04-18 東レ株式会社 LAMINATE, INTEGRATED MOLDED ARTICLE, AND METHOD FOR PRODUCING THEM
JP4543696B2 (en) * 2003-02-21 2010-09-15 東レ株式会社 FIBER-REINFORCED COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND INTEGRATED MOLDED ARTICLE

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4543696B2 (en) * 2003-02-21 2010-09-15 東レ株式会社 FIBER-REINFORCED COMPOSITE MATERIAL, ITS MANUFACTURING METHOD, AND INTEGRATED MOLDED ARTICLE
JP2004269878A (en) * 2003-02-21 2004-09-30 Toray Ind Inc Fiber-reinforced composite material, method for producing the same and integrally molded product
EP1945430A1 (en) * 2005-10-11 2008-07-23 Cooperative Research Centre For Advanced Composite Structures Limited A method of binding dry reinforcement fibres
EP1945430A4 (en) * 2005-10-11 2011-06-29 Cooperative Res Ct For Advanced Composite Structures Ltd A method of binding dry reinforcement fibres
WO2007041782A1 (en) * 2005-10-11 2007-04-19 Crc For Advanced Composite Structures Limited A method of binding dry reinforcement fibres
JP2009533238A (en) * 2006-02-17 2009-09-17 ロジャーズ、ウィリアム COMPOSITE STRUCTURE ARTICLE AND METHOD FOR PRODUCING COMPOSITE STRUCTURE ARTICLE
JP2007269308A (en) * 2006-03-07 2007-10-18 Toray Ind Inc Interior trimming material for aircraft
JP2010517829A (en) * 2007-02-13 2010-05-27 エアバス・ユ―ケ―・リミテッド Method for processing composite materials
US9132859B2 (en) 2011-02-03 2015-09-15 Teijin Limited Vehicle skeleton member
WO2012105717A1 (en) * 2011-02-03 2012-08-09 帝人株式会社 Vehicle skeleton member
WO2013176059A1 (en) * 2012-05-21 2013-11-28 帝人株式会社 Manufacturing method for molded resin product with metal insert
CN104334300A (en) * 2012-05-21 2015-02-04 帝人株式会社 Manufacturing method for molded resin product with metal insert
JPWO2013176059A1 (en) * 2012-05-21 2016-01-12 帝人株式会社 Manufacturing method of metal resin molded product
US9272606B2 (en) 2012-10-24 2016-03-01 Sabic Global Technologies B.V. Vehicle side door structure and method of making and using the same
US9868339B2 (en) 2012-10-24 2018-01-16 Sabic Global Technologies B.V. Vehicle side door structure and method of making and using the same
US9010839B2 (en) 2012-10-24 2015-04-21 Sabic Global Technologies B.V. Vehicle side door structure and method of making and using the same
US10821680B2 (en) * 2012-12-21 2020-11-03 Cytec Industries Inc. Curable prepregs with surface openings
US20140174641A1 (en) * 2012-12-21 2014-06-26 Cytec Industries Inc. Curable prepregs with surface openings
US10329696B2 (en) * 2012-12-21 2019-06-25 Cytec Industries Inc. Curable prepregs with surface openings
US9802358B2 (en) * 2012-12-21 2017-10-31 Cytec Industries Inc. Curable prepregs with surface openings
JP2016505699A (en) * 2013-01-30 2016-02-25 ザ・ボーイング・カンパニーTheBoeing Company Bale stabilized composites with improved tensile strength
JP2017109502A (en) * 2014-01-17 2017-06-22 東レ株式会社 Coated fiber-reinforced resin molding
JP2016003257A (en) * 2014-06-16 2016-01-12 東レ株式会社 Fiber-reinforced resin sheet, integrally molded product and method for producing them
CN105082567B (en) * 2015-03-27 2018-08-21 中国商用飞机有限责任公司 The curing of big thickness fiber reinforced epoxy resin based composites
CN105082567A (en) * 2015-03-27 2015-11-25 中国商用飞机有限责任公司 Curing method for large-thickness fiber-reinforced epoxy resin matrix composite material
US11745443B2 (en) 2017-03-16 2023-09-05 Guerrilla Industries LLC Composite structures and methods of forming composite structures
JP2018158482A (en) * 2017-03-22 2018-10-11 アイシン高丘株式会社 Production method for composite structure
EP3842478A4 (en) * 2018-08-22 2022-05-11 Toray Industries, Inc. Fiber-reinforced thermoplastic resin substrate and laminate using same
CN112566964A (en) * 2018-08-22 2021-03-26 东丽株式会社 Fiber-reinforced thermoplastic resin base material and laminate using same
CN110154421A (en) * 2019-05-22 2019-08-23 湖州守真新材料科技有限公司 The tinuous production and production method of glue-injection box and fiber forced foamed composite material
CN110154421B (en) * 2019-05-22 2023-12-22 湖州守真新材料科技有限公司 Continuous production line and production method of glue injection box and fiber reinforced foam composite material
WO2020235488A1 (en) 2019-05-23 2020-11-26 東レ株式会社 Method for producing fiber-reinforced resin substrate, fiber-reinforced resin substrate, and molded article integrated therewith
WO2021131382A1 (en) 2019-12-23 2021-07-01 東レ株式会社 Composite prepreg and fiber-reinforced resin molded product
US11572124B2 (en) 2021-03-09 2023-02-07 Guerrilla Industries LLC Composite structures and methods of forming composite structures
CN113910641A (en) * 2021-10-11 2022-01-11 成都锐美特新材料科技有限公司 Carbon fiber composite material product, preparation method thereof and wearable seat
CN113910641B (en) * 2021-10-11 2023-06-02 成都锐美特新材料科技有限公司 Carbon fiber composite material product, preparation method thereof and wearable seat

Also Published As

Publication number Publication date
JP4774839B2 (en) 2011-09-14

Similar Documents

Publication Publication Date Title
JP4774839B2 (en) Manufacturing method of fiber reinforced composite material
EP2527139B1 (en) Sandwich structure and integrated formed article using the same
TWI636879B (en) Sandwich structure, integrated molded product using the same, and manufacturing method thereof
KR101001192B1 (en) Electromagnetic-shielding molded object and process for producing the same
JP2006044262A (en) Hollow molded article and its production method
JP4023515B2 (en) Preform using a base material for thermal bonding, and method for producing laminate
EP3222418B1 (en) Laminate, integrated molding, and method for producing same
JP2008230238A (en) Fiber-reinforced composite material plate and molded article using the same
JP2006044259A (en) Integrated molded product and its manufacturing method
JP2004269878A (en) Fiber-reinforced composite material, method for producing the same and integrally molded product
JP2010253937A (en) Integrally molded product
JP2007110138A (en) Molded object for electromagnetic wave shielding and method of manufacturing the same
JP2006205436A (en) Fiber reinforced composite material sheet and molded product using it
EP3808521A1 (en) Fiber-reinforced resin composite body, production method therefor, and non-woven fabric for use in fiber-reinforced resin composite body
EP3778174A1 (en) Method for manufacturing molded article
JP2006044260A (en) Integrated structural member and its manufacturing method
JP2005297417A (en) Industrial structure member and its manufacturing method
JP2010046941A (en) Method for producing integrated molding
JP2006130862A (en) Composite molded component and manufacturing method of composite molded component
JP2010046939A (en) Method for producing integrated molding
JP2018104481A (en) Structure and composite article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20110329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110613

R151 Written notification of patent or utility model registration

Ref document number: 4774839

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees