JP2013000933A - Fiber-reinforced thermoplastic resin molded article and method for producing the same, and composite body and method for producing the same - Google Patents

Fiber-reinforced thermoplastic resin molded article and method for producing the same, and composite body and method for producing the same Download PDF

Info

Publication number
JP2013000933A
JP2013000933A JP2011132181A JP2011132181A JP2013000933A JP 2013000933 A JP2013000933 A JP 2013000933A JP 2011132181 A JP2011132181 A JP 2011132181A JP 2011132181 A JP2011132181 A JP 2011132181A JP 2013000933 A JP2013000933 A JP 2013000933A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
fiber
reinforced thermoplastic
rib
resin molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011132181A
Other languages
Japanese (ja)
Other versions
JP5968600B2 (en
Inventor
Akinobu Sasaki
章亘 佐々木
Takahiro Hayashi
崇寛 林
Hitoshi Kitamura
仁志 北村
Hidetoshi Sonoda
秀利 園田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Toyobo Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd, Toyobo Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2011132181A priority Critical patent/JP5968600B2/en
Publication of JP2013000933A publication Critical patent/JP2013000933A/en
Application granted granted Critical
Publication of JP5968600B2 publication Critical patent/JP5968600B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fiber-reinforced thermoplastic resin molded article suitable for a material of a composite body exhibiting high mechanical characteristics, a method for producing it, a composite body exhibiting high mechanical characteristics, and a method for producing it.SOLUTION: The fiber-reinforced thermoplastic resin molded article 10 includes: a shell part 20 whose cross-section is an open cross-sectional shape, and a rib part 30 provided in the inside of the shell part 20. In the fiber-reinforced thermoplastic resin molded article 10, the shell part 20 comprises a material S with a bending modulus higher than a material R constituting the rib part 30. The method for producing it is also provided. A plurality of the fiber-reinforced thermoplastic resin molded articles are connected by making the rib parts inside to form a closed cross-sectional shape. The method for producing it is also provided.

Description

本発明は、繊維強化熱可塑性樹脂成形品とその製造方法、および複合体とその製造方法に関する。   The present invention relates to a fiber-reinforced thermoplastic resin molded article and a production method thereof, and a composite and a production method thereof.

強化繊維と熱可塑性樹脂とからなる部品(繊維強化熱可塑性樹脂成形品)は既に知られている。
例えば特許文献1〜3には、熱可塑性樹脂と短繊維からなるスタンピング成形材料や、スタンパブルシートが開示されている。
また、特許文献4には、一方向に引き揃えた補強長繊維と長繊維マットとの積層体に熱可塑性樹脂を含浸せしめたスタンパブルシートが開示されている。
Parts made of reinforced fibers and thermoplastic resins (fiber reinforced thermoplastic resin molded products) are already known.
For example, Patent Documents 1 to 3 disclose a stamping molding material composed of a thermoplastic resin and short fibers and a stampable sheet.
Patent Document 4 discloses a stampable sheet in which a laminate of reinforcing long fibers and long fiber mats aligned in one direction is impregnated with a thermoplastic resin.

特開平5−9301号公報JP-A-5-9301 特開平6−313292号公報JP-A-6-313292 特開平7−88840号公報JP-A-7-88840 特開平9−216225号公報JP-A-9-216225

ところで、繊維強化熱可塑性樹脂成形品は単独で使用される場合よりも、複数の繊維強化熱可塑性樹脂成形品を一体化させ、繊維強化熱可塑性樹脂成形品の複合体として使用される場合の方が多い。
しかしながら、特許文献1〜4には、複数のスタンピング成形材料またはスタンパブルシートを一体化させて複合体とする記載はない。また、これらを一体化させたとしても、機械的特性に優れる複合体は得られなかった。
By the way, the fiber reinforced thermoplastic resin molded product is used in a case where a plurality of fiber reinforced thermoplastic resin molded products are integrated and used as a composite of fiber reinforced thermoplastic resin molded products than when used alone. There are many.
However, Patent Documents 1 to 4 do not have a description in which a plurality of stamping molding materials or stampable sheets are integrated to form a composite. Moreover, even if these were integrated, a composite having excellent mechanical properties could not be obtained.

本発明は上記事情に鑑みてなされたもので、高い機械的特性を示す複合体の材料として好適な繊維強化熱可塑性樹脂成形品とその製造方法、および高い機械的特性を示す複合体とその製造方法を提供する。   The present invention has been made in view of the above circumstances, and is a fiber-reinforced thermoplastic resin molded article suitable as a composite material exhibiting high mechanical properties, a method for producing the same, and a composite exhibiting high mechanical properties and the production thereof. Provide a method.

本発明の繊維強化熱可塑性樹脂成形品は、断面が開断面形状であるシェル部と、該シェル部の内側に設けられたリブ部とからなる繊維強化熱可塑性樹脂成形品であって、前記シェル部が、リブ部を構成する材料Rよりも曲げ弾性率が高い材料Sを含むことを特徴とする。
ここで、前記材料Sの少なくとも一部が、一方向に引き揃えた強化繊維に熱可塑性樹脂を含浸したテープ状もしくはシート状の基材、または該基材を2枚以上積層した積層物であることが好ましい。
また、前記材料Sの少なくとも一部が、一方向に引き揃えた強化繊維に熱可塑性樹脂を含浸したテープからなる織物、または該織物を2枚以上積層した積層物であることが好ましい。
さらに、前記材料Sの少なくとも一部が、強化繊維織物に熱可塑性樹脂を含浸したシート、または該シートを2枚以上積層した積層物であることが好ましい。
また、前記材料Rが、一方向に引き揃えた強化繊維に熱可塑性樹脂を含浸したテープ状の基材を切断した切断物の複数が分散した分散体であることが好ましい。
さらに、前記シェル部が、前記材料Sのみで構成されていることが好ましい。
また、前記シェル部が、凹状部と該凹状部の両側に設けられた縁部とで開断面形状を形成し、少なくとも縁部の内側表面に、繊維長の短い強化繊維を含む材料が配置していることが好ましい。
また、本発明の繊維強化熱可塑性樹脂成形品の製造方法は、断面が開断面形状であるシェル部と、該シェル部の内側に設けられたリブ部とからなる繊維強化熱可塑性樹脂成形品の製造方法であって、前記リブ部を構成する材料Rよりも曲げ弾性率が高い材料Sを少なくとも含むシェル部構成材料と、材料Rとを積層し、リブ形状を有する金型に、前記材料Rがリブ側になるように配置してプレス成形し、材料Sを含むシェル部と材料Rより構成されるリブ部とを同時に成形することを特徴とする。
また、本発明の繊維強化熱可塑性樹脂成形品の製造方法は、断面が開断面形状になるようにシェル部を成形した後で、該シェル部の内側に、熱可塑性樹脂あるいは強化繊維を含有する熱可塑性樹脂を射出成形してリブ部を形成する繊維強化熱可塑性樹脂成形品の製造方法であって、前記リブ部を構成する、熱可塑性樹脂あるいは強化繊維を含有する熱可塑性樹脂の射出成形物よりも曲げ弾性率が高い材料Sを少なくとも用いて、前記シェル部を成形することを特徴とする。
The fiber reinforced thermoplastic resin molded product of the present invention is a fiber reinforced thermoplastic resin molded product comprising a shell portion having a cross-section of an open cross section and a rib portion provided inside the shell portion, The portion includes a material S having a higher bending elastic modulus than the material R constituting the rib portion.
Here, at least a part of the material S is a tape-like or sheet-like base material obtained by impregnating a reinforced fiber aligned in one direction with a thermoplastic resin, or a laminate in which two or more base materials are laminated. It is preferable.
Moreover, it is preferable that at least a part of the material S is a woven fabric made of a tape in which a thermoplastic fiber is impregnated with reinforcing fibers aligned in one direction, or a laminate in which two or more woven fabrics are laminated.
Furthermore, it is preferable that at least a part of the material S is a sheet in which a reinforcing fiber fabric is impregnated with a thermoplastic resin or a laminate in which two or more sheets are laminated.
Moreover, it is preferable that the material R is a dispersion in which a plurality of cut products obtained by cutting a tape-like base material in which a reinforcing fiber aligned in one direction is impregnated with a thermoplastic resin are dispersed.
Furthermore, it is preferable that the shell portion is composed of only the material S.
In addition, the shell portion forms an open cross-sectional shape with a concave portion and edges provided on both sides of the concave portion, and a material including reinforcing fibers having a short fiber length is disposed at least on the inner surface of the edge portion. It is preferable.
The method for producing a fiber-reinforced thermoplastic resin molded article of the present invention is a method for producing a fiber-reinforced thermoplastic resin molded article comprising a shell portion having an open cross-sectional shape and a rib portion provided inside the shell portion. In the manufacturing method, the material R is laminated with a shell part constituent material including at least a material S having a higher bending elastic modulus than the material R constituting the rib part, and the material R is placed on a mold having a rib shape. Is arranged so as to be on the rib side and press-molded, and a shell portion including the material S and a rib portion composed of the material R are simultaneously molded.
The method for producing a fiber-reinforced thermoplastic resin molded article of the present invention contains a thermoplastic resin or a reinforcing fiber inside the shell portion after the shell portion is molded so that the cross section has an open cross-sectional shape. A method for producing a fiber-reinforced thermoplastic resin molded article in which a thermoplastic resin is injection-molded to form a rib part, and is an injection-molded product of a thermoplastic resin or a thermoplastic resin containing a reinforced fiber constituting the rib part. The shell portion is formed using at least a material S having a higher flexural modulus than that of the shell portion.

また、本発明の複合体は、前記繊維強化熱可塑性樹脂成形品の複数が、リブ部を内側にして接合され、閉断面形状を形成していることを特徴とする。
また、本発明の複合体の製造方法は、前記繊維強化熱可塑性樹脂成形品の複数を、リブ部が内側になるように、かつ断面が閉断面形状となるように接合する複合体の製造方法であって、前記接合は、振動溶着法によりなされることを特徴とする。
The composite of the present invention is characterized in that a plurality of the fiber-reinforced thermoplastic resin molded products are joined with the rib portions inside to form a closed cross-sectional shape.
Further, the method for producing a composite of the present invention is a method for producing a composite in which a plurality of the fiber reinforced thermoplastic resin molded articles are joined so that the rib portion is on the inside and the cross section is a closed cross section. And the said joining is made | formed by the vibration welding method, It is characterized by the above-mentioned.

本発明によれば、高い機械的特性を示す複合体の材料として好適な繊維強化熱可塑性樹脂成形品とその製造方法、および高い機械的特性を示す複合体とその製造方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the fiber reinforced thermoplastic resin molded article suitable as a composite material which shows a high mechanical characteristic, its manufacturing method, and the composite which shows a high mechanical characteristic, and its manufacturing method can be provided.

本発明の繊維強化熱可塑性樹脂成形品の一例を示す斜視図である。It is a perspective view which shows an example of the fiber reinforced thermoplastic resin molded product of this invention. 図1の繊維強化熱可塑性樹脂成形品の縦断面図である。It is a longitudinal cross-sectional view of the fiber reinforced thermoplastic resin molded product of FIG. 繊維強化熱可塑性樹脂成形品の他の例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the other example of a fiber reinforced thermoplastic resin molded product. 繊維強化熱可塑性樹脂成形品の他の例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the other example of a fiber reinforced thermoplastic resin molded product. 繊維強化熱可塑性樹脂成形品の他の例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the other example of a fiber reinforced thermoplastic resin molded product. (a)は材料Rとして使用されるランダムシートを摸式的に示す斜視図であり、(b)は(a)のランダムシートの縦断面図である。(A) is a perspective view which shows typically the random sheet used as material R, (b) is a longitudinal cross-sectional view of the random sheet of (a). 本発明の複合体の一例を示す斜視図である。It is a perspective view which shows an example of the composite_body | complex of this invention. (a)は実施例1で作製した直交積層体を模式的に示す斜視図であり、(b)は(a)の直交積層体の縦断面図である。(A) is a perspective view which shows typically the orthogonal laminated body produced in Example 1, (b) is a longitudinal cross-sectional view of the orthogonal laminated body of (a). 実施例1で作製したハイブリッド材料を模式的に示す縦断面図である。1 is a longitudinal sectional view schematically showing a hybrid material produced in Example 1. FIG. 実施例1で成形品を製造する際の材料R3とハイブリッド材料の配置を模式的に説明する縦断面図である。It is a longitudinal cross-sectional view which illustrates typically arrangement | positioning of material R3 and the hybrid material at the time of manufacturing a molded article in Example 1. FIG. 実施例2で作製したハイブリッド材料を模式的に示す縦断面図である。6 is a longitudinal sectional view schematically showing a hybrid material produced in Example 2. FIG. 実施例2で成形品を製造する際の材料R3とハイブリッド材料の配置を模式的に説明する縦断面図である。It is a longitudinal cross-sectional view which illustrates typically arrangement | positioning of material R3 and the hybrid material at the time of manufacturing a molded article in Example 2. FIG.

以下、本発明を詳細に説明する。
[繊維強化熱可塑性樹脂成形品]
図1は、本発明の繊維強化熱可塑性樹脂成形品(以下、単に「成形品」という。)の一例を示す斜視図であり、図2は、図1の成形品の縦断面図である。
なお、図2〜5、7において、図1と同じ構成要素には同一の符号を付して、その説明を省略する場合がある。
Hereinafter, the present invention will be described in detail.
[Fiber-reinforced thermoplastic resin molded product]
FIG. 1 is a perspective view showing an example of a fiber-reinforced thermoplastic resin molded product (hereinafter simply referred to as “molded product”) of the present invention, and FIG. 2 is a longitudinal sectional view of the molded product of FIG.
2 to 5 and 7, the same components as those in FIG. 1 are denoted by the same reference numerals, and the description thereof may be omitted.

図1、2に示す成形品10は、断面が開断面形状であるシェル部20と、該シェル部20の内側に設けられたリブ部30とからなる。
シェル部20は成形品10の外層部に相当する部分であり、この例のシェル部20は、長手方向に沿う凹状部21と、その両側に長手方向に沿って形成された一定幅の縁部22とで、開断面形状を形成している。
一方、リブ部30は成形品10の補強や反り防止としての役割を果たし、この例のリブ部30は図1に示すように格子状に形成されている。
なお、シェル部20の形状は、断面が開断面形状であれば、図1、2に示すような形状に限定されない。また、リブ部30の形状についても、補強や反り防止の役割を果たすことができれば、図1に示すような格子状には限定されない。
The molded product 10 shown in FIGS. 1 and 2 includes a shell portion 20 whose cross section is an open cross-sectional shape, and a rib portion 30 provided inside the shell portion 20.
The shell portion 20 is a portion corresponding to the outer layer portion of the molded product 10, and the shell portion 20 in this example includes a concave portion 21 along the longitudinal direction and an edge portion having a constant width formed along the longitudinal direction on both sides thereof. 22 form an open cross-sectional shape.
On the other hand, the rib portion 30 serves to reinforce the molded product 10 and prevent warping, and the rib portion 30 in this example is formed in a lattice shape as shown in FIG.
The shape of the shell portion 20 is not limited to the shape shown in FIGS. 1 and 2 as long as the cross section is an open cross section. Further, the shape of the rib portion 30 is not limited to the lattice shape as shown in FIG. 1 as long as it can play a role of reinforcement and warpage prevention.

シェル部20は、リブ部30を構成する材料Rよりも曲げ弾性率が高い材料Sを含む。
本発明において、曲げ弾性率は万能試験機により測定される値である。
ところで、材料の曲げ弾性率は、等方性材料の場合は1つの値であるが、特に強化繊維に熱可塑性樹脂が含浸した材料の場合は、繊維の積層構成や曲げ試験方向により曲げ弾性率は異方性を示す。本発明において、シェル部20やリブ部30を構成する材料が、強化繊維に熱可塑性樹脂が含浸した材料の場合には、最も高い曲げ弾性率をその材料の曲げ弾性率とする。
The shell portion 20 includes a material S having a higher bending elastic modulus than the material R constituting the rib portion 30.
In the present invention, the flexural modulus is a value measured by a universal testing machine.
By the way, the bending elastic modulus of the material is one value in the case of an isotropic material, but particularly in the case of a material in which a reinforced fiber is impregnated with a thermoplastic resin, the bending elastic modulus depends on the laminated structure of the fiber and the bending test direction. Indicates anisotropy. In the present invention, when the material constituting the shell portion 20 and the rib portion 30 is a material in which a reinforcing fiber is impregnated with a thermoplastic resin, the highest bending elastic modulus is defined as the bending elastic modulus of the material.

材料Sとしては、強化繊維に熱可塑性樹脂が含浸した繊維強化熱可塑性樹脂を用いる。該繊維強化熱可塑性樹脂を構成する強化繊維は、非連続繊維であってもよいし、連続繊維であってもよいが、連続繊維であることが好ましい。材料Sの強化繊維を連続繊維とすることにより、非連続繊維の場合と比較して、成形品10や、詳しくは後述するが、複数の成形品10を接合して得られる複合体に、より優れた物性を与えることができる。
また、材料Sの強化繊維の繊維長は、後述する材料Rの強化繊維の繊維長よりも長いことが好ましい。材料Sの強化繊維の繊維長を、材料Rの強化繊維の繊維長よりも長くすることにより、材料Sの曲げ弾性率を材料Rの曲げ弾性率より大きくすることができ、成形品10や後述する複合体に、より優れた物性を与えることができる。
As the material S, a fiber reinforced thermoplastic resin in which a reinforced fiber is impregnated with a thermoplastic resin is used. The reinforcing fiber constituting the fiber-reinforced thermoplastic resin may be a discontinuous fiber or a continuous fiber, but is preferably a continuous fiber. By using continuous fibers as the reinforcing fibers of the material S, compared to the case of discontinuous fibers, the molded product 10 and a composite obtained by joining a plurality of molded products 10 will be described in detail later. Excellent physical properties can be given.
The fiber length of the reinforcing fiber of the material S is preferably longer than the fiber length of the reinforcing fiber of the material R described later. By making the fiber length of the reinforcing fiber of the material S longer than the fiber length of the reinforcing fiber of the material R, the bending elastic modulus of the material S can be made larger than the bending elastic modulus of the material R. More excellent physical properties can be given to the composite.

繊維強化熱可塑性樹脂を構成する強化繊維が非連続繊維である場合、材料Sとしては、熱可塑性樹脂中に強化繊維が一本一本開繊された状態で分散したもの;熱可塑性樹脂中に強化繊維の束が分散したものなどが例示される。特に、強化繊維に熱可塑性樹脂を含浸したテープ状の基材(繊維強化熱可塑性樹脂)を切断した切断物の複数が、等方的あるいは擬似等方的に分散したものが好ましい。材料Sとして、強化繊維に熱可塑性樹脂が含浸したテープ状の基材(繊維強化熱可塑性樹脂)を使用することにより、シェル部20の機械的強度を高めることができる。   When the reinforcing fiber constituting the fiber-reinforced thermoplastic resin is a discontinuous fiber, the material S is a material in which the reinforcing fibers are dispersed in the thermoplastic resin in a state of being opened one by one; in the thermoplastic resin Examples include a bundle of reinforcing fibers dispersed. In particular, it is preferable that a plurality of cut pieces obtained by cutting a tape-like base material (fiber reinforced thermoplastic resin) in which a reinforcing fiber is impregnated with a thermoplastic resin are isotropically or pseudo-isotropically dispersed. By using a tape-like base material (fiber reinforced thermoplastic resin) in which a reinforced fiber is impregnated with a thermoplastic resin as the material S, the mechanical strength of the shell portion 20 can be increased.

一方、繊維強化熱可塑性樹脂を構成する強化繊維が連続繊維である場合、材料Sとしては、一方向に引き揃えた強化繊維に熱可塑性樹脂を含浸したテープ状もしくはシート状の基材、または該基材を2枚以上積層した積層物;一方向に引き揃えた強化繊維に熱可塑性樹脂を含浸したテープからなる織物、または該織物を2枚以上積層した積層物;強化繊維織物に熱可塑性樹脂を含浸したシート、または該シートを2枚以上積層した積層物などが例示される。
積層物としては、全ての層において強化繊維の方向が同じ一方向材や、各層で強化繊維の方向が直交した直交積層体が挙げられる。また、各層の強化繊維の方向が任意の角度になるように各層を積層させてもよい。
一方、織物としては、平織、綾織、朱子織、三軸織等が例示される。
On the other hand, when the reinforcing fiber constituting the fiber reinforced thermoplastic resin is a continuous fiber, the material S includes a tape-like or sheet-like base material in which a reinforcing fiber aligned in one direction is impregnated with a thermoplastic resin, or Laminate in which two or more substrates are laminated; woven fabric made of tape in which thermoplastic fibers are impregnated with reinforced fibers aligned in one direction, or laminate in which two or more woven fabrics are laminated; thermoplastic resin in reinforced fiber fabric Or a laminate in which two or more sheets are laminated.
Examples of the laminate include a unidirectional material in which the directions of the reinforcing fibers are the same in all layers, and an orthogonal laminated body in which the directions of the reinforcing fibers are orthogonal in each layer. Moreover, you may laminate | stack each layer so that the direction of the reinforced fiber of each layer may become an arbitrary angle.
On the other hand, examples of the woven fabric include plain weave, twill weave, satin weave, and triaxial weave.

材料S中の強化繊維の体積含有率(JIS K 7052に準じて測定。)は、10〜60%であることが好ましい。
強化繊維の体積含有率が10%以上であれば、成形品10や後述する複合体に優れた物性を与えることができる。一方、強化繊維の体積含有率が60%以下であれば、プレス成形法などの方法でシェル部20を成形する際に、シェル部20が成形しやすくなる。
The volume content of the reinforcing fibers in the material S (measured according to JIS K 7052) is preferably 10 to 60%.
When the volume content of the reinforcing fibers is 10% or more, excellent physical properties can be imparted to the molded article 10 and the composite described later. On the other hand, when the volume content of the reinforcing fibers is 60% or less, the shell portion 20 is easily formed when the shell portion 20 is formed by a method such as a press molding method.

シェル部20は少なくとも材料Sを含んでいればよく、図2に示すように材料Sのみで(すなわち、材料Sからなる層23のみで)構成されていてもよいし、材料Sと材料S以外の他の材料とで構成されていてもよい。具体的には、図3に示すようにシェル部20を2層構造とし、材料Sからなる層23を外側(リブ部30が設けられていない側)に配置し、他の材料からなる層24を内側(リブ部30が設けられている側)に配置してもよいし、図4に示すように、他の材料からなる層24,24の間に材料Sからなる層23を配置してもよい。また、図5に示すように、材料Sからなる層23をシェル部20の一部に配置してもよい。
他の材料としては特に制限されないが、材料Rなどが挙げられる。
The shell portion 20 only needs to contain at least the material S, and may be composed of only the material S (that is, only the layer 23 made of the material S) as shown in FIG. You may be comprised with other materials. Specifically, as shown in FIG. 3, the shell portion 20 has a two-layer structure, the layer 23 made of the material S is arranged on the outer side (the side where the rib portion 30 is not provided), and the layer 24 made of another material. May be arranged on the inner side (side on which the rib portion 30 is provided), or as shown in FIG. 4, a layer 23 made of material S is arranged between layers 24 made of other materials. Also good. Further, as shown in FIG. 5, the layer 23 made of the material S may be disposed on a part of the shell portion 20.
Although it does not restrict | limit especially as another material, Material R etc. are mentioned.

なお、成形品10を使用する際は、詳しくは後述するが、複数の成形品10を振動溶着法などによって接合し、複合体として各種用途に使用する場合がある。複数の成形品10を接合する場合は、リブ部30が内側になるようにして、縁部22の内側表面(被接合面)22a同士が接合される。
このように複数の成形品10を接合して使用する場合には、図3〜5に示すようにシェル部20は材料Sと他の材料から構成され、かつ、縁部22の内側表面22aに存在する強化繊維の繊維長が短いことが好ましい。内側表面22aに存在する強化繊維の繊維長が短いと、複数の成形品10が溶着しやすくなる。その理由は、振動溶着や超音波溶着などの溶着方法の場合、内側表面22aの繊維同士が良好に絡み合い、高い接着強度が得られるためと考えられる。特に、内側表面22aにおいては、熱可塑性樹脂中に繊維長の短い強化繊維が等方的あるいは擬似等方的に分散していることが好ましい。熱可塑性樹脂中に強化繊維が等方的あるいは擬似等方的に分散していると、複数の成形品10を接合する際に溶着しやすくなる。
ここで、「内側表面に存在する強化繊維の繊維長が短い」とは、材料S中の強化繊維の繊維長よりも短いことを意味する。具体的には、数平均で0.2〜100mmが好ましい。
In addition, when using the molded article 10, although mentioned later in detail, the some molded article 10 may be joined by the vibration welding method etc., and it may be used for various uses as a composite_body | complex. When joining the some molded article 10, the inner surface (surface to be joined) 22a of the edge part 22 is joined so that the rib part 30 may become inside.
When a plurality of molded products 10 are joined and used in this way, the shell portion 20 is composed of the material S and another material as shown in FIGS. 3 to 5, and is formed on the inner surface 22 a of the edge portion 22. It is preferable that the fiber length of the existing reinforcing fiber is short. When the fiber length of the reinforcing fiber existing on the inner surface 22a is short, the plurality of molded articles 10 are easily welded. The reason is considered that in the case of a welding method such as vibration welding or ultrasonic welding, the fibers on the inner surface 22a are entangled well and high adhesive strength is obtained. In particular, on the inner surface 22a, it is preferable that reinforcing fibers having a short fiber length are isotropically or pseudo-isotropically dispersed in the thermoplastic resin. If the reinforcing fibers are isotropically or quasi-isotropically dispersed in the thermoplastic resin, they are easily welded when the plurality of molded articles 10 are joined.
Here, “the fiber length of the reinforcing fiber existing on the inner surface is short” means that the fiber length of the reinforcing fiber in the material S is shorter. Specifically, the number average is preferably 0.2 to 100 mm.

従って、複数の成形品10を接合させることを考慮すると、縁部22の内側表面22aに存在する強化繊維の繊維長が、材料S中の強化繊維の繊維長よりも短いことが好ましく、例えば図3〜5に示すように、他の材料として繊維長の短い強化繊維を含む材料が少なくとも内側表面22aに配置していることが特に好ましい。
また、成形品10や後述する複合体の機械的強度を向上させる観点では、図2に示すようにシェル部20が材料Sのみで構成されているのが好ましい。
Therefore, in consideration of joining a plurality of molded articles 10, it is preferable that the fiber length of the reinforcing fiber existing on the inner surface 22a of the edge 22 is shorter than the fiber length of the reinforcing fiber in the material S. As shown to 3-5, it is especially preferable that the material containing the reinforced fiber with a short fiber length is arrange | positioned at least to the inner surface 22a as another material.
Further, from the viewpoint of improving the mechanical strength of the molded article 10 and the composite described later, it is preferable that the shell portion 20 is composed of only the material S as shown in FIG.

一方、リブ部30を構成する材料Rとしては、熱可塑性樹脂や繊維強化熱可塑性樹脂を用いる。リブ部30に優れた機械的強度を付与する観点において、材料Rとしては繊維強化熱可塑性樹脂が好ましい。   On the other hand, as the material R constituting the rib portion 30, a thermoplastic resin or a fiber reinforced thermoplastic resin is used. In view of imparting excellent mechanical strength to the rib portion 30, the material R is preferably a fiber reinforced thermoplastic resin.

材料Rとして熱可塑性樹脂を用いる場合、無機フィラーなどの強化剤を含有しても構わない。また、材料Rとして繊維強化熱可塑性樹脂を用いる場合、材料Rとしては熱可塑性樹脂中に強化繊維が一本一本開繊された状態で分散したもの;熱可塑性樹脂中に強化繊維の束が分散したものなどが例示される。特に、一方向に引き揃えた強化繊維に熱可塑性樹脂が含浸したテープ状の基材(繊維強化熱可塑性樹脂)を切断した切断物の複数が、等方的あるいは擬似等方的に分散したもの(分散体)が好ましく、中でも図6に示すように、テープ状の基材を切断した切断物41の複数が擬似等方的に分散したランダムシート40が好ましい。なお、図6(a)はランダムシート(分散体)の斜視図であり、図6(b)は(a)のランダムシートの縦断面図である。
材料Rとして上述した分散体を使用することにより、リブ部30の機械的強度を高めることができる。
When a thermoplastic resin is used as the material R, a reinforcing agent such as an inorganic filler may be contained. Further, when a fiber reinforced thermoplastic resin is used as the material R, the material R is a material in which the reinforcing fibers are dispersed in the state of being opened one by one in the thermoplastic resin; a bundle of reinforcing fibers is formed in the thermoplastic resin. Examples are dispersed. In particular, a plurality of cut pieces obtained by cutting a tape-shaped base material (fiber reinforced thermoplastic resin) in which reinforced fibers aligned in one direction are impregnated with thermoplastic resin are isotropically or pseudo-isotropically dispersed. (Dispersion) is preferable, and among them, as shown in FIG. 6, a random sheet 40 in which a plurality of cut pieces 41 obtained by cutting a tape-like base material are dispersed pseudo-isotropically is preferable. 6A is a perspective view of the random sheet (dispersion), and FIG. 6B is a longitudinal sectional view of the random sheet of FIG.
By using the dispersion described above as the material R, the mechanical strength of the rib portion 30 can be increased.

材料Rとして繊維強化熱可塑性樹脂を用いる場合、該繊維強化熱可塑性樹脂を構成する強化繊維の繊維長(強化繊維長)は、材料Sの強化繊維の繊維長よりも短いことが好ましく、具体的には数平均で0.2〜100mmであることが好ましい。強化繊維長が0.2mm以上であれば、リブ部30の機械的強度がより向上する。一方、強化繊維長が100mm以下であれば、材料Rの流動性が向上し、プレス成形や射出成形などの方法でリブ部30を成形する際に、リブ部30が成形しやすくなる。   When a fiber reinforced thermoplastic resin is used as the material R, the fiber length (reinforced fiber length) of the reinforced fiber constituting the fiber reinforced thermoplastic resin is preferably shorter than the fiber length of the reinforced fiber of the material S. The number average is preferably 0.2 to 100 mm. When the reinforcing fiber length is 0.2 mm or more, the mechanical strength of the rib portion 30 is further improved. On the other hand, when the reinforcing fiber length is 100 mm or less, the fluidity of the material R is improved, and the rib portion 30 is easily formed when the rib portion 30 is formed by a method such as press molding or injection molding.

材料R中の強化繊維の体積含有率(JIS K 7052に準じて測定。)は、10〜60%であることが好ましい。
強化繊維の体積含有率を10%以上であれば、リブ部30の機械的強度がより向上する。一方、強化繊維の体積含有率を60%以下であれば、プレス成形や射出成形などの方法でリブ部30を成形する際に、リブ部30が成形しやすくなる。
The volume content of the reinforcing fibers in the material R (measured according to JIS K 7052) is preferably 10 to 60%.
When the volume content of the reinforcing fiber is 10% or more, the mechanical strength of the rib portion 30 is further improved. On the other hand, when the volume content of the reinforcing fiber is 60% or less, the rib portion 30 is easily formed when the rib portion 30 is formed by a method such as press molding or injection molding.

材料Sや材料Rに使用できる熱可塑性樹脂としては特に制限されないが、例えばポリエチレン、ポリプロピレン等のポリオレフィン、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル、ポリスチレン、ABS樹脂、アクリル樹脂、塩化ビニル、ポリアミド6等のポリアミド、ポリカーボネート、ポリフェニレンエーテル、ポリエーテルスルフォン、ポリサルフォン、ポリエーテルイミド、ポリケトン、ポリエーテルケトン、ポリエーテルエーテルケトン、およびこれらの変性体やブレンド物などが挙げられる。また、熱可塑性樹脂は、添加剤、フィラー、着色剤等を含んでいてもよい。
一方、材料Sや材料Rに使用できる強化繊維としては、例えばガラス繊維、炭素繊維、アラミド繊維などが挙げられる。
Although it does not restrict | limit especially as a thermoplastic resin which can be used for the material S and the material R, For example, polyester, such as polyolefin, such as polyethylene and a polypropylene, a polyethylene terephthalate and a polybutylene terephthalate, polystyrene, ABS resin, an acrylic resin, vinyl chloride, polyamide 6 etc. And polyamides, polycarbonates, polyphenylene ethers, polyether sulfones, polysulfones, polyether imides, polyketones, polyether ketones, polyether ether ketones, and modified products and blends thereof. Further, the thermoplastic resin may contain an additive, a filler, a colorant, and the like.
On the other hand, examples of the reinforcing fiber that can be used for the material S and the material R include glass fiber, carbon fiber, and aramid fiber.

材料Sと材料Rにおいて、繊維強化熱可塑性樹脂を構成する強化繊維や熱可塑性樹脂は、材料Sの曲げ弾性率が材料Rの曲げ弾性率よりも高ければ、同じ種類であってもよいし、異なる種類であってもよい。
強化繊維や熱可塑性樹脂が同じ種類である場合、材料Sの曲げ弾性率を材料Rの曲げ弾性率よりも大きくする方法として、材料Sの強化繊維の繊維長を材料Rの強化繊維の繊維長よりも長くする方法や、材料Sの強化繊維含有率を材料Rの強化繊維含有率よりも大きくする方法が挙げられる。また、材料Sにおいて、材料Rに使用されている強化繊維や熱可塑性樹脂よりも弾性率が大きい強化繊維や熱可塑性樹脂を使用してもよい。
なお、材料Rの強化繊維の繊維長が、材料Sの強化繊維の繊維長よりも短ければ、例えば図3〜5に示すように、シェル部20の縁部22の内側表面22aに少なくとも配置される他の材料としても材料Rは好適である。
In the material S and the material R, the reinforcing fiber and the thermoplastic resin constituting the fiber reinforced thermoplastic resin may be of the same type as long as the bending elastic modulus of the material S is higher than the bending elastic modulus of the material R. Different types may be used.
When the reinforcing fiber and the thermoplastic resin are of the same type, the fiber length of the reinforcing fiber of the material S is changed to the fiber length of the reinforcing fiber of the material R as a method for making the bending elastic modulus of the material S larger than the bending elastic modulus of the material R. And a method of making the reinforcing fiber content of the material S larger than the reinforcing fiber content of the material R. In the material S, a reinforcing fiber or a thermoplastic resin having a larger elastic modulus than that of the reinforcing fiber or the thermoplastic resin used in the material R may be used.
In addition, if the fiber length of the reinforcing fiber of the material R is shorter than the fiber length of the reinforcing fiber of the material S, for example, as shown in FIGS. 3 to 5, it is disposed at least on the inner surface 22 a of the edge portion 22 of the shell portion 20. The material R is also suitable as another material.

図1のような成形品10は、例えば次のようにして製造できる。
まず、板状の材料Sを作製する。具体的には、強化繊維として多数本の強化繊維フィラメントからなる束状の連続繊維を用意し、これを開繊した後、この繊維束に熱可塑性樹脂を含浸させ、テープ状もしくはシート状の基材、またはテープからなる織物(プリプレグ)を得る。プリプレグの厚みは、用途や目的とする物性などに応じて適宜設定されるため、所望の厚みになるように基材や織物を2枚以上積層させた積層物をプリプレグとして用いてもよい。
ついで、プリプレグ(板状の材料S)を赤外線加熱炉等の加熱手段で予熱した後、リブ形状の無い金型の上に載せて、断面が開断面形状になるようにプレス成形して、シェル部20を成形する。
ついで、シェル部20の内側に、熱可塑性樹脂あるいは強化繊維を含有する熱可塑性樹脂を射出成形してリブ部30を形成し、成形品10を得る。
The molded article 10 as shown in FIG. 1 can be manufactured as follows, for example.
First, a plate-like material S is produced. Specifically, a bundle-like continuous fiber composed of a large number of reinforcing fiber filaments is prepared as the reinforcing fiber, and after opening the fiber, the fiber bundle is impregnated with a thermoplastic resin to form a tape-like or sheet-like substrate. A woven fabric (prepreg) made of material or tape is obtained. Since the thickness of the prepreg is appropriately set according to the intended use and the intended physical properties, a laminate obtained by laminating two or more substrates or fabrics so as to have a desired thickness may be used as the prepreg.
Next, the prepreg (plate-like material S) is preheated by a heating means such as an infrared heating furnace, and then placed on a die having no rib shape, and press-molded so that the cross-section becomes an open cross-sectional shape. The part 20 is molded.
Next, a thermoplastic resin or a thermoplastic resin containing reinforcing fibers is injection-molded inside the shell portion 20 to form the rib portion 30, and the molded product 10 is obtained.

成形品10の製造方法は、上述した方法に限定されない。
上述した方法では、材料Sに含まれる強化繊維として連続繊維を用いているが、例えば熱可塑性樹脂に、非連続の強化繊維が一本一本開繊された状態あるいは束の状態で分散したものや、図6に示すような非繊維強化熱可塑性樹脂を切断した切断物41が擬似等方的に分散したランダムシート40などを板状の材料S(プリプレグ)として用いてもよい。
また、例えば図3〜5に示すように、シェル部20が材料Sと他の材料とで構成された成形品10を製造する場合は、板状の材料S(プリプレグ)と他の材料とを積層させてシェル部構成材料を作製し、このシェル部構成材料を用いてシェル部20を成形してもよい。
The manufacturing method of the molded article 10 is not limited to the method described above.
In the above-described method, continuous fibers are used as the reinforcing fibers contained in the material S. For example, discontinuous reinforcing fibers are dispersed in a thermoplastic resin in a state of being opened or bundled one by one. Alternatively, a random sheet 40 in which a cut product 41 obtained by cutting a non-fiber reinforced thermoplastic resin as illustrated in FIG. 6 is pseudo-isotropically dispersed may be used as the plate-shaped material S (prepreg).
For example, as shown in FIGS. 3 to 5, when manufacturing the molded product 10 in which the shell portion 20 is composed of the material S and other materials, the plate-shaped material S (prepreg) and other materials are used. The shell part constituent material may be produced by laminating, and the shell part 20 may be formed using the shell part constituent material.

また、上述した方法では、シェル部20を成形した後にリブ部30を成形しているが、例えば以下のような方法により、シェル部20とリブ部30とを同時に成形して、成形品10を製造してもよい。
まず、上述した方法により板状の材料Sを作製する。
別途、板状の材料Rを作製する。具体的には、強化繊維として多数本の強化繊維フィラメントからなる束状の連続繊維を用意し、これを開繊した後、この繊維束に熱可塑性樹脂を含浸させてテープ状にした後、任意の長さに切断し、得られた切断物の複数をランダムに分散させた状態で、型内で加熱、加圧、冷却して図6に示すようなランダムシート40(板状の材料R)を得る。
ついで、板状の材料Rと材料Sを積層し、赤外線加熱炉等の加熱手段で予熱した後、リブ形状を有する金型の上に、材料Rがリブ側になるように配置してプレス成形し、成形品10を得る、或いは、板状の材料Rと材料Sを別々に、赤外線加熱炉等の加熱手段で予熱した後、リブ形状を有する金型の上に、材料Rがリブ側になるように材料Rと材料Sを積層及び配置してプレス成形し、成形品10を得る。
In the above-described method, the rib portion 30 is formed after the shell portion 20 is formed. For example, the shell portion 20 and the rib portion 30 are simultaneously formed by the following method to form the molded product 10. It may be manufactured.
First, the plate-shaped material S is produced by the method described above.
Separately, a plate-like material R is produced. Specifically, a bundle-like continuous fiber composed of a large number of reinforcing fiber filaments is prepared as the reinforcing fiber, and after opening the fiber, the fiber bundle is impregnated with a thermoplastic resin to form a tape. A random sheet 40 (plate-shaped material R) as shown in FIG. 6 is heated, pressurized and cooled in a mold in a state in which a plurality of the obtained cut pieces are randomly dispersed. Get.
Next, after laminating the plate-like material R and the material S and preheating them with heating means such as an infrared heating furnace, the material R is placed on a rib-shaped mold so that the material R is on the rib side and press-molded. Then, the molded product 10 is obtained, or the plate-like material R and the material S are separately preheated by heating means such as an infrared heating furnace, and then the material R is placed on the rib side on the rib-shaped mold. Thus, the material R and the material S are laminated and arranged, and press-molded to obtain a molded product 10.

また、例えば図3〜5に示すように、シェル部20が材料Sと他の材料とで構成された成形品10を製造する場合は、予め材料Sと他の材料を積層させてシェル部構成材料を作製しておき、このシェル部構成材料と材料R(リブ部構成材料)とを積層し、赤外線加熱炉等の加熱手段で予熱した後、リブ形状を有する金型の上に、材料R(リブ部構成材料)がリブ側になるように配置してプレス成形して、シェル部20とリブ部30とを同時に成形してもよい。   For example, as shown in FIGS. 3 to 5, when manufacturing the molded product 10 in which the shell portion 20 is composed of the material S and another material, the material portion S and another material are laminated in advance to form the shell portion. A material is prepared, the shell constituent material and the material R (rib part constituent material) are laminated, preheated by heating means such as an infrared heating furnace, and then the material R is placed on a mold having a rib shape. The shell part 20 and the rib part 30 may be formed at the same time by placing the rib part constituent material on the rib side and performing press molding.

さらに、板状の材料Rを赤外線加熱炉等の加熱手段で予熱した後、リブ形状を有する金型の上に載せてプレス成形した後、板状の材料Sを張り合わせて成形品10としてもよい。   Furthermore, after preheating the plate-shaped material R with a heating means such as an infrared heating furnace, the plate-shaped material R may be put on a die having a rib shape and press-molded, and then the plate-shaped material S may be bonded to form a molded product 10. .

以上説明したように、本発明の成形品は、シェル部が、該シェル部の内側に設けられたリブ部を構成する材料Rよりも曲げ弾性率の高い材料Sを含むので、シェル部自体は高い機械的強度を有する。また、リブ部を構成する材料Rの曲げ弾性率が低いということは、材料Rが適度な流動性を有することを意味するので、任意の形状のリブ部をシェル部の内側に容易に成形することができる。従って、このリブ部によってシェル部を補強することができるので、本発明の成形品は、全体として高い機械的特性を示す。
なお、材料Sのように、曲げ弾性率の高い材料でリブ部も構成されれば、成形品の機械的強度はより高くなると考えられるが、曲げ弾性率の高い材料は流動性に乏しいため、シェル部に比べて複雑な形状であるリブ部を成形することはできない。
As described above, in the molded product of the present invention, the shell portion includes the material S having a higher bending elastic modulus than the material R constituting the rib portion provided inside the shell portion. Has high mechanical strength. Moreover, since the bending elastic modulus of the material R which comprises a rib part means that the material R has moderate fluidity | liquidity, the rib part of arbitrary shapes is easily shape | molded inside a shell part. be able to. Therefore, since the shell portion can be reinforced by the rib portion, the molded article of the present invention exhibits high mechanical characteristics as a whole.
If the rib portion is also made of a material having a high bending elastic modulus, such as the material S, the mechanical strength of the molded product is considered to be higher, but a material having a high bending elastic modulus is poor in fluidity. A rib portion having a more complicated shape than the shell portion cannot be formed.

しかし、本発明であれば、曲げ弾性率の低い材料Rでリブ部を構成し、シェル部に材料Rよりも曲げ弾性率の高い材料Sを含ませるので、高い機械的特性を示す成形品が容易に得られる。特に、材料Rの強化繊維の繊維長が、材料Sの強化繊維の繊維長よりも短ければ、材料Sの曲げ弾性率が材料Rの曲げ弾性率よりも高くなりやすく、かつ、材料Rの流動性が向上するので、高い機械的特性を示す成形品がより容易に得られる。
本発明の成形品は、複数の成形品を一体化させてなる複合体の材料として好適である。
なお、本発明において「高い機械的特性を示す」とは、破壊試験において荷重変位曲線の初期勾配が高い、すなわち、ある荷重を与えた場合の変位量が小さいことや破壊が発生するまでの最大荷重値が高いことを意味する。
However, according to the present invention, the rib portion is made of the material R having a low bending elastic modulus, and the material S having a higher bending elastic modulus than the material R is included in the shell portion. Easy to obtain. In particular, if the fiber length of the reinforcing fiber of the material R is shorter than the fiber length of the reinforcing fiber of the material S, the bending elastic modulus of the material S tends to be higher than the bending elastic modulus of the material R, and the flow of the material R Therefore, a molded product exhibiting high mechanical properties can be obtained more easily.
The molded product of the present invention is suitable as a composite material formed by integrating a plurality of molded products.
In the present invention, “high mechanical properties” means that the initial gradient of the load displacement curve is high in the destructive test, that is, the maximum amount of displacement until a certain load is applied, It means that the load value is high.

[複合体]
図7は、本発明の複合体の一例を示す斜視図である。
図7に示す複合体50は、上述した本発明の成形品10,10が、各リブ部30,30を内側にして接合され、閉断面形状を形成している。この例の成形品10,10は、同じ大きさ、形状を有するものであって、凹状部21,21同士、縁部22,22同士が互いに対向するように配置された後、対向する縁部22,22の内側表面(被接合面)22a,22a同士が振動溶着により接合され、閉断面形状とされている。
[Complex]
FIG. 7 is a perspective view showing an example of the composite of the present invention.
In the composite 50 shown in FIG. 7, the above-described molded products 10 and 10 of the present invention are joined with the rib portions 30 and 30 inside, forming a closed cross-sectional shape. The molded products 10 and 10 in this example have the same size and shape, and are arranged so that the concave portions 21 and 21 and the edge portions 22 and 22 face each other, and then the opposite edge portions. The inner surfaces (bonded surfaces) 22a and 22a of 22 and 22 are joined together by vibration welding to form a closed cross-sectional shape.

図7に示す複合体50は、例えば次のようにして製造できる。
成形品10を2つ用意し、これらを凹状部21,21同士、縁部22,22同士が対向し、閉断面形状をなすように配置して、対向する縁部22,22の内側表面(被接合面)22a,22a同士が接合するように、振動溶着法により接合する。振動溶着法は、内側表面22a,22a同士を接触させた状態で振動させることにより接合する方法であり、市販の振動溶着機により行える。
The composite 50 shown in FIG. 7 can be manufactured, for example, as follows.
Two molded products 10 are prepared, and these are arranged so that the recessed portions 21 and 21 face each other and the edge portions 22 and 22 face each other and form a closed cross-sectional shape, and the inner surfaces of the facing edge portions 22 and 22 ( Joined by vibration welding method so that the joined surfaces 22a and 22a are joined together. The vibration welding method is a method of joining by vibrating the inner surfaces 22a and 22a in contact with each other, and can be performed by a commercially available vibration welding machine.

複合体50の製造方法は、上述した方法に限定されない。
上述した方法では、成形品10,10の接合方法として、振動溶着法を例示したが、例えば熱板溶着法、抵抗溶着法、超音波溶着法などを採用してもよい。ただし、これらの中でも、振動溶着法は、他の溶着法に比べて成形品同士を良好に接合でき、好適である。
The manufacturing method of the composite 50 is not limited to the method described above.
In the above-described method, the vibration welding method is exemplified as the method for joining the molded products 10 and 10, but for example, a hot plate welding method, a resistance welding method, an ultrasonic welding method, or the like may be employed. However, among these, the vibration welding method is preferable because it can join the molded articles better than other welding methods.

また、上述した方法では、製造される複合体50として、同形の2つの成形品10,10が接合された閉断面形状のものを例示したが、成形品の数は3つ以上でもよいし、接合される成形品同士は異なる形状であってもよい。   In the above-described method, the composite 50 to be manufactured is exemplified by a closed cross-sectional shape in which two molded products 10 and 10 having the same shape are joined, but the number of molded products may be three or more, The molded products to be joined may have different shapes.

さらに、接合される成形品同士には、同じ種類の熱可塑性樹脂が使用されていると接合しやすいために好適であるが、各成形品10においてシェル部20がリブ部30の材料Rよりも曲げ弾性率が高い材料Sを含み、かつ接合性に問題がなければ、異なる種類の熱可塑性樹脂が使用されてもよい。また、接合される成形品同士には、通常、同じ種類の強化繊維が使用されるが、目的に応じて、異なる種類の強化繊維が使用されてもよい。   Furthermore, it is preferable that the same kind of thermoplastic resin is used for the molded products to be joined together. However, in each molded product 10, the shell portion 20 is more suitable than the material R of the rib portion 30. Different types of thermoplastic resins may be used as long as they include the material S having a high flexural modulus and there is no problem with the bondability. Moreover, although the same kind of reinforcing fiber is normally used for the molded articles to be joined, different kinds of reinforcing fibers may be used depending on the purpose.

以上説明したように、本発明の複合体は、上述した本発明の成形品の複数を接合させてなるので、全体として高い機械的特性を示す。   As described above, the composite of the present invention is formed by joining a plurality of the molded products of the present invention described above, and thus exhibits high mechanical properties as a whole.

このような複合体は、例えば、フロントサブフレーム、リアサブフレーム、フロントピラー、センターピラー、サイドメンバー、クロスメンバー、サイドシル、ルーフレール、プロペラシャフトなどの自動車部品や、海底油田用のパイプ、電線ケーブルコア、印刷機用ロール・パイプ、ロボットフォーク、航空機の一次構造材、二次構造材などに好適に使用される。   Such composites include, for example, automotive parts such as front subframes, rear subframes, front pillars, center pillars, side members, cross members, side sills, roof rails, propeller shafts, pipes for submarine oil fields, electric wire cable cores, etc. It is suitably used for roll pipes for printing presses, robot forks, primary structural materials for aircraft, secondary structural materials, and the like.

以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.

[実施例1]
<繊維強化熱可塑性樹脂成形品の製造>
(材料Rの作製)
連続強化繊維として、炭素繊維(三菱レイヨン社製、「TR50S」)を使用した。この炭素繊維は、1本の直径が約7μmであるフィラメントが12000本集束した束状のものである。
この炭素繊維束を開繊し、熱可塑性樹脂として無水マレイン酸変性のポリプロピレンを含浸させ、強化繊維の体積含有率が50%、幅12mm、厚み100μmの連続炭素繊維強化熱可塑樹脂テープを作成した。
[Example 1]
<Manufacture of fiber-reinforced thermoplastic resin molded products>
(Production of material R)
Carbon fibers (manufactured by Mitsubishi Rayon Co., “TR50S”) were used as continuous reinforcing fibers. This carbon fiber is a bundle of 12,000 filaments each having a diameter of about 7 μm.
The carbon fiber bundle was opened and impregnated with maleic anhydride-modified polypropylene as a thermoplastic resin, and a continuous carbon fiber reinforced thermoplastic resin tape having a volume content of reinforcing fibers of 50%, a width of 12 mm, and a thickness of 100 μm was prepared. .

前記連続炭素繊維強化熱可塑性樹脂テープを30mmにカットして、これを平板状の金型の上に面内においてランダムに分散し、所定の厚みになるように堆積させた。成形温度220℃、成形圧力1.0MPa、保持時間10分で加熱加圧成形し、金型を冷却後、図6(a)、(b)に示すような、厚み約1.5mmの材料R1を得た。
同様にして、厚み約2.7mmの材料R2と、厚み約4mmの材料R3を得た。
これら材料R1〜R3について、万能試験機(島津製作所社製、「AG−X」)を用いて曲げ弾性率を測定したところ、いずれも25GPaであった。
The continuous carbon fiber reinforced thermoplastic resin tape was cut into 30 mm, and this was randomly dispersed in a plane on a flat plate mold and deposited so as to have a predetermined thickness. A material R1 having a thickness of about 1.5 mm as shown in FIGS. 6 (a) and 6 (b) is formed by heating and pressure molding at a molding temperature of 220 ° C., a molding pressure of 1.0 MPa, and a holding time of 10 minutes. Got.
Similarly, a material R2 having a thickness of about 2.7 mm and a material R3 having a thickness of about 4 mm were obtained.
About these materials R1-R3, when the bending elastic modulus was measured using the universal testing machine (Shimadzu Corp. make, "AG-X"), all were 25 GPa.

(材料Sの作製)
材料Rと同様にして、連続炭素繊維強化熱可塑樹脂テープを作成した。
この連続炭素繊維強化熱可塑樹脂テープを、繊維目付け180g/m、厚み約0.2mmの層になるように、一定間隔に配置し引き揃えた後、成形温度190℃、成形圧力0.1MPa、保持時間5分で加熱加圧成形し、金型を冷却後、繊維が一方向に配向した層(材料S)を得た。
得られた材料Sについて、万能試験機(島津製作所社製、「AG−X」)を用いて繊維方向の曲げ弾性率を測定したところ、60GPaであった。
(Production of material S)
In the same manner as the material R, a continuous carbon fiber reinforced thermoplastic resin tape was prepared.
The continuous carbon fiber reinforced thermoplastic resin tape is arranged and arranged at regular intervals so as to form a layer having a fiber basis weight of 180 g / m 2 and a thickness of about 0.2 mm, and then a molding temperature of 190 ° C. and a molding pressure of 0.1 MPa. Then, after heating and pressing with a holding time of 5 minutes and cooling the mold, a layer (material S) in which the fibers were oriented in one direction was obtained.
With respect to the obtained material S, the bending elastic modulus in the fiber direction was measured using a universal testing machine (manufactured by Shimadzu Corporation, “AG-X”).

(繊維強化熱可塑性樹脂成形品の製造)
先に作製した材料Sを5枚用意し、図8(a)、(b)に示すような、厚み約1mmの直交積層体(材料Sの長い方向を0°方向とした場合に、0°/90°/0°/90°/0°)を作製した。なお、図8中の符号60は「直交積層体」であり、符号61は「材料S」である。
この直交積層体と、先に作製した厚み約1.5mmの材料R1を2枚組み合わせ、成形温度190℃、成形圧力0.1MPa、保持時間5分で加熱加圧成形し、図9に示すような、一方の面に材料Sが、他方の面に材料R1がそれぞれ配置された、厚み約4mmのシェル部構成材料1(ハイブリッド材料1)を得た。なお、図9中の符号60は「直交積層体」であり、符号70は「シェル部構成材料1」であり、符号71は「材料R1」である。
(Manufacture of fiber-reinforced thermoplastic resin molded products)
Five sheets of the material S prepared earlier were prepared, and an orthogonal laminated body having a thickness of about 1 mm as shown in FIGS. 8A and 8B (0 ° when the long direction of the material S was taken as the 0 ° direction) / 90 ° / 0 ° / 90 ° / 0 °). In addition, the code | symbol 60 in FIG. 8 is an "orthogonal laminated body", and the code | symbol 61 is "material S".
As shown in FIG. 9, this orthogonal laminate is combined with two pieces of the material R1 having a thickness of about 1.5 mm, which are produced in advance, and the molding temperature is 190 ° C., the molding pressure is 0.1 MPa, and the holding time is 5 minutes. In addition, a shell constituent material 1 (hybrid material 1) having a thickness of about 4 mm in which the material S was disposed on one surface and the material R1 was disposed on the other surface was obtained. In addition, the code | symbol 60 in FIG. 9 is an "orthogonal laminated body", the code | symbol 70 is the "shell part constituent material 1", and the code | symbol 71 is "material R1."

得られた厚み4mmのシェル部構成材料1と、先に作製した厚み約4mmの材料R3を、270℃に加熱された赤外線ヒーター(日本ガイシ社製)に5分入れた。赤外線ヒーターからシェル部構成材料1と材料R3を取り出し、図10に示すように、材料R3が下側になるように材料R3とシェル部構成材料1を、格子状のリブ形状を有する下金型の上に配置した。これらを、上金型温度130℃、下金型温度130℃、成形圧力30MPa、保持時間1分の条件で成形した。この成形により、図1に示すような格子状のリブ部30が開断面形状のシェル部20の内側に設けられた成形品10を得た。なお、図10中の符号60は「直交積層体」であり、符号70は「シェル部構成材料1」であり、符号71は「材料R1」であり、符号72は「材料R3」である。   The obtained shell portion constituting material 1 having a thickness of 4 mm and the material R3 having a thickness of about 4 mm prepared previously were placed in an infrared heater (manufactured by NGK Co., Ltd.) heated to 270 ° C. for 5 minutes. The shell constituent material 1 and the material R3 are taken out from the infrared heater, and as shown in FIG. 10, the material R3 and the shell constituent material 1 are made into a lower mold having a grid-like rib shape so that the material R3 is on the lower side. Placed on top. These were molded under the conditions of an upper mold temperature of 130 ° C., a lower mold temperature of 130 ° C., a molding pressure of 30 MPa, and a holding time of 1 minute. By this molding, a molded product 10 was obtained in which the grid-like rib portions 30 as shown in FIG. 1 were provided inside the shell portion 20 having an open cross-sectional shape. In addition, the code | symbol 60 in FIG. 10 is an "orthogonal laminated body", the code | symbol 70 is the "shell part constituent material 1", the code | symbol 71 is "material R1", and the code | symbol 72 is "material R3".

<複合体の製造>
先に製造した成形品10を2つ用意し、これらを凹状部21,21同士、縁部22,22同士が対向し、閉断面形状をなすように配置した。そして、振動溶着機(日本エマソン社製)を用い、対向する縁部22,22の内側表面22a,22a同士を接触させた状態で振動させ、内側表面22a,22aの樹脂を接合(溶着)させ、図7に示すような、2つの成形品10,10が、リブ部30,30を内側にして接合され、閉断面形状の複合体50を得た。なお、接合は、荷重15kN、振幅1.5mmの条件で実施し、接合部の厚み(縁部22,22の合計の厚み)が0.5mm減少した時点で振動を止めた。
接合後の複合体50を手で分離しようとしても分離できず、一体形状を保っていた。
<Manufacture of composite>
Two molded products 10 manufactured previously were prepared, and these were arranged so that the concave portions 21 and 21 and the edge portions 22 and 22 faced each other to form a closed cross-sectional shape. Then, using a vibration welding machine (manufactured by Nippon Emerson Co., Ltd.), the inner surfaces 22a and 22a of the facing edges 22 and 22 are vibrated in contact with each other, and the resins of the inner surfaces 22a and 22a are joined (welded). As shown in FIG. 7, two molded products 10 and 10 were joined with the rib portions 30 and 30 inside, and a composite 50 having a closed cross-sectional shape was obtained. The joining was performed under the conditions of a load of 15 kN and an amplitude of 1.5 mm, and the vibration was stopped when the thickness of the joined portion (total thickness of the edges 22 and 22) was reduced by 0.5 mm.
Even if it tried to isolate | separate the composite 50 after joining by hand, it was not able to isolate | separate but the integral shape was maintained.

<評価>
得られた複合体の質量を測定した。
また、複合体について、万能試験機(島津製作所社製、「AG−X」)を用いて3点曲げ試験を実施した。試験条件は、ロードセル:50kN、スパン長:350mm、試験速度:毎分5mm、圧子径:R75、支持径:R15とした。
3点曲げ試験は万能試験機の変位量が50mmに到達するまで実施し、その間の最大荷重値を測定した。結果を表1に示す。
さらに、複合体の剛性を示す値として、荷重3000N時の変位量を測定した。この値を3kN変位量として表1に示す。
また、下記式(1)より単位質量当たりの最大荷重[N/g]を求めた。結果を表1に示す。
単位質量当たりの最大荷重=最大荷重/複合体の質量 ・・・(1)
<Evaluation>
The mass of the obtained composite was measured.
Further, the composite was subjected to a three-point bending test using a universal testing machine (manufactured by Shimadzu Corporation, “AG-X”). The test conditions were: load cell: 50 kN, span length: 350 mm, test speed: 5 mm / min, indenter diameter: R75, support diameter: R15.
The three-point bending test was performed until the displacement amount of the universal testing machine reached 50 mm, and the maximum load value during that time was measured. The results are shown in Table 1.
Further, the displacement amount at a load of 3000 N was measured as a value indicating the rigidity of the composite. This value is shown in Table 1 as 3 kN displacement.
Moreover, the maximum load [N / g] per unit mass was calculated | required from following formula (1). The results are shown in Table 1.
Maximum load per unit mass = Maximum load / Mass of composite (1)

また、先の3点曲げ試験により求められた荷重−変位曲線の、荷重0Nから荷重3000Nまでの勾配の平均を下記式(2)より求め、この値を0−3kN平均勾配として表1に示す。
0−3kN平均勾配=3000N/3000N時の変位量 ・・・(2)
Moreover, the average of the gradient from the load 0N to the load 3000N of the load-displacement curve obtained by the previous three-point bending test is obtained from the following formula (2), and this value is shown in Table 1 as the 0-3 kN average gradient. .
0-3kN average gradient = displacement at 3000N / 3000N (2)

また、下記式(3)より単位質量当たりの平均勾配を求めた。結果を表1に示す。
単位質量当たりの平均勾配=0−3kN平均勾配/複合体の質量 ・・・(3)
Moreover, the average gradient per unit mass was calculated | required from following formula (3). The results are shown in Table 1.
Average gradient per unit mass = 0-3 kN average gradient / mass of complex (3)

[実施例2]
図11に示すように、直交積層体を2枚の材料R1で挟むような構成とした以外は、実施例1と同様の条件にてシェル部構成材料2(ハイブリッド材料2)を作製した。なお、図11中の符号60は「直交積層体」であり、符号71は「材料R1」であり、符号80は「シェル部構成材料2」である。
図12に示すようなシェル部構成材料2と材料R3の配置パターンにした以外は、実施例1と同様にして成形品および複合体を製造し、3点曲げ試験を実施した。結果を表1に示す。なお、図12中の符号60は「直交積層体」であり、符号71は「材料R1」であり、符号72は「材料R3」であり、符号80は「シェル部構成材料2」である。
[Example 2]
As shown in FIG. 11, a shell part constituent material 2 (hybrid material 2) was produced under the same conditions as in Example 1 except that the orthogonal laminate was sandwiched between two materials R1. In addition, the code | symbol 60 in FIG. 11 is an "orthogonal laminated body", the code | symbol 71 is "material R1", and the code | symbol 80 is "shell part constituent material 2".
Except for the arrangement pattern of the shell part constituting material 2 and the material R3 as shown in FIG. 12, a molded article and a composite were produced in the same manner as in Example 1, and a three-point bending test was performed. The results are shown in Table 1. In FIG. 12, reference numeral 60 is an “orthogonal laminate”, reference numeral 71 is “material R1”, reference numeral 72 is “material R3”, and reference numeral 80 is “shell component material 2”.

[比較例1]
成形品の製造においてシェル部構成材料1の代わりに、厚み2.7mmの材料R2を用い、かつ、内側にリブ形状を有さない金型を使用した以外は、実施例1と同様にして成形品および複合体を製造し、3点曲げ試験を実施した。結果を表1に示す。
[Comparative Example 1]
Molding is performed in the same manner as in Example 1 except that the material R2 having a thickness of 2.7 mm is used instead of the shell constituent material 1 and a die having no rib shape inside is used. Articles and composites were manufactured and a three-point bending test was performed. The results are shown in Table 1.

[比較例2]
成形品の製造においてシェル部構成材料1の代わりに、厚み4mmの材料R3を用いた以外は、実施例1と同様にして成形品および複合体を製造し、3点曲げ試験を実施した。結果を表1に示す。
[Comparative Example 2]
A molded product and a composite were produced in the same manner as in Example 1 except that the material R3 having a thickness of 4 mm was used instead of the shell constituent material 1 in the production of the molded product, and a three-point bending test was performed. The results are shown in Table 1.

[比較例3]
成形品の製造において厚み4mmの材料R3の代わりに、厚み2.7mmの材料R2を用い、かつ、内側にリブ形状を有しない金型を使用した以外は、実施例1と同様にして成形品および複合体を製造し、3点曲げ試験を実施した。結果を表1に示す。
[Comparative Example 3]
In the production of a molded product, a molded product was obtained in the same manner as in Example 1 except that a material R2 having a thickness of 2.7 mm was used instead of the material R3 having a thickness of 4 mm and a die having no rib shape inside was used. And composites were manufactured and a three point bend test was performed. The results are shown in Table 1.

Figure 2013000933
Figure 2013000933

表1から明らかなように、実施例1、2で得られた複合体は、比較例1〜3で得られた複合体と比べて、3点曲げ試験における最大荷重が11kN以上、単位質量当たりの最大荷重が30.6N/g以上、0−3kN平均勾配が3000N/mm以上、単位質量当たりの平均勾配が8.3以上と高く、かつ3kN変位量が1.0mm以下と低く、高い機械的特性を示した。
一方、比較例1〜3で得られた複合体は、実施例1、2で得られた複合体に比べて機械的特性に劣っていた。
As is clear from Table 1, the composites obtained in Examples 1 and 2 had a maximum load of 11 kN or more per unit mass in the three-point bending test, compared with the composites obtained in Comparative Examples 1 to 3. Machine with a maximum load of 30.6 N / g or more, an average gradient of 0-3 kN of 3000 N / mm or more, an average gradient per unit mass of 8.3 or more, and a low 3 kN displacement of 1.0 mm or less. The characteristic was shown.
On the other hand, the composites obtained in Comparative Examples 1 to 3 were inferior in mechanical properties as compared to the composites obtained in Examples 1 and 2.

10 繊維強化熱可塑性樹脂成形品
20 シェル部
21 凹状部
22 縁部
22a 内側表面
30 リブ部
50 複合体
61 材料S
70 シェル部構成材料1
71 材料R1
72 材料R3
80 シェル部構成材料2

DESCRIPTION OF SYMBOLS 10 Fiber reinforced thermoplastic resin molded product 20 Shell part 21 Concave part 22 Edge part 22a Inner surface 30 Rib part 50 Composite 61 Material S
70 Shell component material 1
71 Material R1
72 Material R3
80 Shell component material 2

Claims (11)

断面が開断面形状であるシェル部と、該シェル部の内側に設けられたリブ部とからなる繊維強化熱可塑性樹脂成形品であって、
前記シェル部が、リブ部を構成する材料Rよりも曲げ弾性率が高い材料Sを含むことを特徴とする繊維強化熱可塑性樹脂成形品。
A fiber-reinforced thermoplastic resin molded article comprising a shell portion having a cross-sectional open section shape and a rib portion provided inside the shell portion,
The fiber-reinforced thermoplastic resin molded article, wherein the shell portion includes a material S having a higher bending elastic modulus than the material R constituting the rib portion.
前記材料Sの少なくとも一部が、一方向に引き揃えた強化繊維に熱可塑性樹脂を含浸したテープ状もしくはシート状の基材、または該基材を2枚以上積層した積層物であることを特徴とする請求項1に記載の繊維強化熱可塑性樹脂成形品。   At least a part of the material S is a tape-like or sheet-like base material obtained by impregnating a thermoplastic resin with reinforcing fibers aligned in one direction, or a laminate in which two or more base materials are laminated. The fiber-reinforced thermoplastic resin molded article according to claim 1. 前記材料Sの少なくとも一部が、一方向に引き揃えた強化繊維に熱可塑性樹脂を含浸したテープからなる織物、または該織物を2枚以上積層した積層物であることを特徴とする請求項1に記載の繊維強化熱可塑性樹脂成形品。   2. At least a part of the material S is a woven fabric made of a tape in which a reinforced fiber aligned in one direction is impregnated with a thermoplastic resin, or a laminate in which two or more woven fabrics are laminated. The fiber-reinforced thermoplastic resin molded article described in 1. 前記材料Sの少なくとも一部が、強化繊維織物に熱可塑性樹脂を含浸したシート、または該シートを2枚以上積層した積層物であることを特徴とする請求項1に記載の繊維強化熱可塑性樹脂成形品。   2. The fiber-reinforced thermoplastic resin according to claim 1, wherein at least a part of the material S is a sheet in which a reinforced fiber fabric is impregnated with a thermoplastic resin or a laminate in which two or more sheets are laminated. Molding. 前記材料Rが、一方向に引き揃えた強化繊維に熱可塑性樹脂を含浸したテープ状の基材を切断した切断物の複数が分散した分散体であることを特徴とする請求項1〜4のいずれか一項に記載の繊維強化熱可塑性樹脂成形品。   5. The material R according to claim 1, wherein the material R is a dispersion in which a plurality of cut pieces obtained by cutting a tape-like base material impregnated with a thermoplastic resin in reinforcing fibers aligned in one direction are dispersed. The fiber-reinforced thermoplastic resin molded article according to any one of the above. 前記シェル部が、前記材料Sのみで構成されていることを特徴とする請求項1〜5のいずれか一項に記載の繊維強化熱可塑性樹脂成形品。   The fiber-reinforced thermoplastic resin molded article according to any one of claims 1 to 5, wherein the shell portion is composed of only the material S. 前記シェル部が、凹状部と該凹状部の両側に設けられた縁部とで開断面形状を形成し、少なくとも縁部の内側表面に、繊維長の短い強化繊維を含む材料が配置していることを特徴とする請求項1〜5のいずれか一項に記載の繊維強化熱可塑性樹脂成形品。   The shell portion forms an open cross-sectional shape with a concave portion and edges provided on both sides of the concave portion, and a material including reinforcing fibers having a short fiber length is disposed at least on the inner surface of the edge. The fiber-reinforced thermoplastic resin molded article according to any one of claims 1 to 5. 断面が開断面形状であるシェル部と、該シェル部の内側に設けられたリブ部とからなる繊維強化熱可塑性樹脂成形品の製造方法であって、
前記リブ部を構成する材料Rよりも曲げ弾性率が高い材料Sを少なくとも含むシェル部構成材料と、材料Rとを積層し、リブ形状を有する金型に、前記材料Rがリブ側になるように配置してプレス成形し、材料Sを含むシェル部と材料Rより構成されるリブ部とを同時に成形することを特徴とする繊維強化熱可塑性樹脂成形品の製造方法。
A method for producing a fiber-reinforced thermoplastic resin molded article comprising a shell part having an open cross-sectional shape and a rib part provided inside the shell part,
A shell part constituent material including at least a material S having a higher bending elastic modulus than the material R constituting the rib part, and the material R are laminated so that the material R is on the rib side in a mold having a rib shape. A method for producing a fiber-reinforced thermoplastic resin molded article, wherein the shell part including the material S and the rib part composed of the material R are simultaneously molded by being placed and press-molded.
断面が開断面形状になるようにシェル部を成形した後で、該シェル部の内側に、熱可塑性樹脂あるいは強化繊維を含有する熱可塑性樹脂を射出成形してリブ部を形成する繊維強化熱可塑性樹脂成形品の製造方法であって、
前記リブ部を構成する、熱可塑性樹脂あるいは強化繊維を含有する熱可塑性樹脂の射出成形物よりも曲げ弾性率が高い材料Sを少なくとも用いて、前記シェル部を成形することを特徴とする繊維強化熱可塑性樹脂成形品の製造方法。
Fiber-reinforced thermoplastic that forms a rib part by injection molding a thermoplastic resin or a thermoplastic resin containing reinforcing fiber inside the shell part after molding the shell part so that the cross-section becomes an open cross-sectional shape A method for producing a resin molded product, comprising:
Fiber reinforced, wherein the shell portion is molded using at least a material S having a higher flexural modulus than that of an injection molded product of a thermoplastic resin or a thermoplastic resin containing a reinforcing fiber constituting the rib portion. A method for producing a thermoplastic resin molded article.
請求項1〜7のいずれか一項に記載の繊維強化熱可塑性樹脂成形品の複数が、リブ部を内側にして接合され、閉断面形状を形成していることを特徴とする複合体。   A composite comprising a plurality of the fiber-reinforced thermoplastic resin molded products according to any one of claims 1 to 7 joined together with a rib portion on an inside to form a closed cross-sectional shape. 請求項1〜7のいずれか一項に記載の繊維強化熱可塑性樹脂成形品の複数を、リブ部が内側になるように、かつ断面が閉断面形状となるように接合する複合体の製造方法であって、
前記接合は、振動溶着法によりなされることを特徴とする複合体の製造方法。
The manufacturing method of the composite_body | complex which joins two or more of the fiber reinforced thermoplastic resin molded products as described in any one of Claims 1-7 so that a rib part may become an inner side and a cross section may become a closed cross-sectional shape. Because
The joining is performed by a vibration welding method.
JP2011132181A 2011-06-14 2011-06-14 Fiber-reinforced thermoplastic resin molded article and method for producing the same, and composite and method for producing the same Active JP5968600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011132181A JP5968600B2 (en) 2011-06-14 2011-06-14 Fiber-reinforced thermoplastic resin molded article and method for producing the same, and composite and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011132181A JP5968600B2 (en) 2011-06-14 2011-06-14 Fiber-reinforced thermoplastic resin molded article and method for producing the same, and composite and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013000933A true JP2013000933A (en) 2013-01-07
JP5968600B2 JP5968600B2 (en) 2016-08-10

Family

ID=47670025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011132181A Active JP5968600B2 (en) 2011-06-14 2011-06-14 Fiber-reinforced thermoplastic resin molded article and method for producing the same, and composite and method for producing the same

Country Status (1)

Country Link
JP (1) JP5968600B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014198756A (en) * 2013-03-29 2014-10-23 三菱レイヨン株式会社 Production method of carbon fiber resin composite material molding
KR20150085577A (en) * 2014-01-16 2015-07-24 (주)엘지하우시스 Roof-lack for vehicles
KR20160128504A (en) * 2015-04-28 2016-11-08 현대자동차주식회사 Roof rack for vehicle using continuous fiber thermoplastic
KR20160130816A (en) 2014-04-14 2016-11-14 미쯔비시 레이온 가부시끼가이샤 Long structural member and structural member complex using same
JP2017503691A (en) * 2013-12-24 2017-02-02 ダハー エアロスペイス Method and apparatus for hot stamping a composite blank using a thermoplastic matrix that is not joined and merged
KR101797460B1 (en) * 2017-04-05 2017-11-16 덕양산업 주식회사 High strength resin cowl cross member and manufacturing method of the same
KR101822230B1 (en) * 2015-05-12 2018-01-26 현대자동차주식회사 Roof rack for vehicle
JP2018123939A (en) * 2017-02-03 2018-08-09 三菱ケミカル株式会社 Energy absorption member and manufacturing method thereof
JP2019173274A (en) * 2018-03-26 2019-10-10 日鉄ケミカル&マテリアル株式会社 Frp lattice member having projection
WO2020129227A1 (en) 2018-12-20 2020-06-25 帝人株式会社 Method for manufacturing impact-absorbing member
KR20210124469A (en) * 2019-02-15 2021-10-14 엔오케이 가부시키가이샤 Buffer rubber and its reaction force adjustment method and pedestal
EP3778173A4 (en) * 2018-03-30 2021-12-01 Toray Industries, Inc. Press-molded article manufacturing method
JP2022137228A (en) * 2018-03-26 2022-09-21 日鉄ケミカル&マテリアル株式会社 Method of producing frp lattice material with protrusion

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6804051B2 (en) * 2017-03-01 2021-01-06 日産自動車株式会社 Carbon fiber reinforced resin molded product and method for manufacturing the carbon fiber reinforced resin molded product

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4749613A (en) * 1985-12-26 1988-06-07 Nippon Sheet Glass Co., Ltd. Composite fiber reinforced thermoplastic resin stampable sheet and bumper beam formed thereof
JPH0292756A (en) * 1988-09-28 1990-04-03 Kuraray Co Ltd Bumper beam
JPH06171441A (en) * 1992-10-09 1994-06-21 Nkk Corp Bumper beam and bumper
JPH09277387A (en) * 1996-04-16 1997-10-28 Toyobo Co Ltd Manufacture of fiber reinforced thermoplastic resin sheet
JP2001082520A (en) * 1999-09-13 2001-03-27 Idemitsu Petrochem Co Ltd Shock absorbing member, interior trim member for automobile, and door trim for automobile
JP2006044262A (en) * 2004-07-08 2006-02-16 Toray Ind Inc Hollow molded article and its production method
JP2008050598A (en) * 2006-07-28 2008-03-06 Toray Ind Inc Fiber-reinforced composite material and integrated molded article
WO2009142291A1 (en) * 2008-05-22 2009-11-26 東洋紡績株式会社 Molded fiber-reinforced thermoplastic resin
JP2010253938A (en) * 2009-03-31 2010-11-11 Toray Ind Inc Method for manufacturing integrated molding
JP2011011362A (en) * 2009-06-30 2011-01-20 Toyobo Co Ltd Stamping molding

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4749613A (en) * 1985-12-26 1988-06-07 Nippon Sheet Glass Co., Ltd. Composite fiber reinforced thermoplastic resin stampable sheet and bumper beam formed thereof
JPH0292756A (en) * 1988-09-28 1990-04-03 Kuraray Co Ltd Bumper beam
JPH06171441A (en) * 1992-10-09 1994-06-21 Nkk Corp Bumper beam and bumper
JPH09277387A (en) * 1996-04-16 1997-10-28 Toyobo Co Ltd Manufacture of fiber reinforced thermoplastic resin sheet
JP2001082520A (en) * 1999-09-13 2001-03-27 Idemitsu Petrochem Co Ltd Shock absorbing member, interior trim member for automobile, and door trim for automobile
JP2006044262A (en) * 2004-07-08 2006-02-16 Toray Ind Inc Hollow molded article and its production method
JP2008050598A (en) * 2006-07-28 2008-03-06 Toray Ind Inc Fiber-reinforced composite material and integrated molded article
WO2009142291A1 (en) * 2008-05-22 2009-11-26 東洋紡績株式会社 Molded fiber-reinforced thermoplastic resin
JP2010253938A (en) * 2009-03-31 2010-11-11 Toray Ind Inc Method for manufacturing integrated molding
JP2011011362A (en) * 2009-06-30 2011-01-20 Toyobo Co Ltd Stamping molding

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
的場 哲: "スタンパブルシート", 新日鐵技報, vol. 349号, JPN7015002754, July 1993 (1993-07-01), JP, pages 67 - 72, ISSN: 0003168229 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014198756A (en) * 2013-03-29 2014-10-23 三菱レイヨン株式会社 Production method of carbon fiber resin composite material molding
JP2017503691A (en) * 2013-12-24 2017-02-02 ダハー エアロスペイス Method and apparatus for hot stamping a composite blank using a thermoplastic matrix that is not joined and merged
KR20150085577A (en) * 2014-01-16 2015-07-24 (주)엘지하우시스 Roof-lack for vehicles
KR101727359B1 (en) * 2014-01-16 2017-04-14 (주)엘지하우시스 Roof-lack for vehicles
US11299888B2 (en) 2014-04-14 2022-04-12 Mitsubishi Chemical Corporation Long structural member and structural member complex using same
KR20160130816A (en) 2014-04-14 2016-11-14 미쯔비시 레이온 가부시끼가이샤 Long structural member and structural member complex using same
CN106084758B (en) * 2015-04-28 2020-10-23 现代自动车株式会社 Automotive roof rack made of continuous fiber thermoplastic composite
CN106084758A (en) * 2015-04-28 2016-11-09 现代自动车株式会社 The automobile roof luggage carrier being made up of continuous fiber thermo plastic composite
JP2016210398A (en) * 2015-04-28 2016-12-15 現代自動車株式会社Hyundai Motor Company Roof rack of continuous fiber composite raw material for vehicle
KR20160128504A (en) * 2015-04-28 2016-11-08 현대자동차주식회사 Roof rack for vehicle using continuous fiber thermoplastic
KR101693980B1 (en) * 2015-04-28 2017-01-09 현대자동차주식회사 Roof rack for vehicle using continuous fiber thermoplastic
US10059272B2 (en) 2015-04-28 2018-08-28 Hyundai Motor Company Automobile roof rack made of continuous fiber thermoplastic composite
KR101822230B1 (en) * 2015-05-12 2018-01-26 현대자동차주식회사 Roof rack for vehicle
JP2018123939A (en) * 2017-02-03 2018-08-09 三菱ケミカル株式会社 Energy absorption member and manufacturing method thereof
KR101797460B1 (en) * 2017-04-05 2017-11-16 덕양산업 주식회사 High strength resin cowl cross member and manufacturing method of the same
JP2019173274A (en) * 2018-03-26 2019-10-10 日鉄ケミカル&マテリアル株式会社 Frp lattice member having projection
JP2022137228A (en) * 2018-03-26 2022-09-21 日鉄ケミカル&マテリアル株式会社 Method of producing frp lattice material with protrusion
JP7149090B2 (en) 2018-03-26 2022-10-06 日鉄ケミカル&マテリアル株式会社 FRP lattice material with protrusions
JP7303354B2 (en) 2018-03-26 2023-07-04 日鉄ケミカル&マテリアル株式会社 Manufacturing method of FRP lattice material with projections
EP3778173A4 (en) * 2018-03-30 2021-12-01 Toray Industries, Inc. Press-molded article manufacturing method
WO2020129227A1 (en) 2018-12-20 2020-06-25 帝人株式会社 Method for manufacturing impact-absorbing member
KR20210124469A (en) * 2019-02-15 2021-10-14 엔오케이 가부시키가이샤 Buffer rubber and its reaction force adjustment method and pedestal
KR102661188B1 (en) 2019-02-15 2024-04-29 엔오케이 가부시키가이샤 Buffer rubber and its reaction force adjustment method and base

Also Published As

Publication number Publication date
JP5968600B2 (en) 2016-08-10

Similar Documents

Publication Publication Date Title
JP5968600B2 (en) Fiber-reinforced thermoplastic resin molded article and method for producing the same, and composite and method for producing the same
JP5844967B2 (en) Fiber-reinforced thermoplastic resin molded article and method for producing the same
JP5571869B2 (en) Lightweight composite thermoplastic sheet with reinforcing skin
JP5694386B2 (en) Bonded carbon fiber reinforced composite material
JP6161108B2 (en) Fiber-reinforced composite material and method for producing the same
JP6267468B2 (en) Polyolefin-based laminated sheet and method for producing the same
JP5920690B2 (en) Pre-preg sheet material and manufacturing method thereof
TWI697398B (en) Manufacturing method of structure
JP2013176876A (en) Manufacturing method of molding
JP2014125532A5 (en)
TWI798405B (en) Manufacturing method of molded products
JP2015178241A (en) Method of producing fiber-reinforced resin material
KR101365961B1 (en) Automobil under body manufactured thin type thermoplastics complex materials with continuous fiber
JP2017128705A (en) Carbon fiber sheet material, prepreg, laminate, molded body and method for manufacturing them
JP6435696B2 (en) Method for producing laminated substrate
JP6464063B2 (en) Polyolefin fiber reinforced resin laminated sheet and method for producing the same
JP6305714B2 (en) Thermoplastic laminated sheet and method for producing the same
JP5787150B2 (en) Joining method of fiber reinforced thermoplastic resin
JP5395385B2 (en) Method for producing carbon fiber reinforced thermoplastic resin molded body and carbon fiber reinforced thermoplastic resin molded body
JP4456938B2 (en) Polypropylene resin structure board
JP2013010255A (en) Thermoplastic resin composite material
JP2014055258A (en) Thermoplastic resin-based fiber-reinforced composite material for press molding and method for producing the material
JP6433869B2 (en) Polyolefin fiber reinforced resin laminated sheet and method for producing the same
JP2020049925A (en) Method for producing carbon fiber-reinforced thermoplastic resin composite material
JP6464062B2 (en) Polyolefin fiber reinforced resin laminated sheet and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160706

R150 Certificate of patent or registration of utility model

Ref document number: 5968600

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250