JP2013010255A - Thermoplastic resin composite material - Google Patents

Thermoplastic resin composite material Download PDF

Info

Publication number
JP2013010255A
JP2013010255A JP2011144426A JP2011144426A JP2013010255A JP 2013010255 A JP2013010255 A JP 2013010255A JP 2011144426 A JP2011144426 A JP 2011144426A JP 2011144426 A JP2011144426 A JP 2011144426A JP 2013010255 A JP2013010255 A JP 2013010255A
Authority
JP
Japan
Prior art keywords
nylon
thermoplastic resin
random mat
unidirectional
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011144426A
Other languages
Japanese (ja)
Inventor
Yasuyuki Yokoe
泰幸 横江
Toru Kaneko
徹 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2011144426A priority Critical patent/JP2013010255A/en
Publication of JP2013010255A publication Critical patent/JP2013010255A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composite molding having superior rigidity, in a carbon fiber composite molding comprising a carbon fiber and a thermoplastic resin.SOLUTION: This composite material comprises: a random mat material comprising a reinforced fiber having a fiber length of 10 to 100 mm and a thermoplastic resin (A), wherein the amount of thermoplastic resin (A) is 10 to 1,000 pts.wt. based on 100 pts.wt. of the reinforced fiber, and the reinforced fiber is substantially two dimensionally and randomly oriented; and a unidirectional material provided on at least one surface of the random mat material and obtained by impregnating the reinforced fiber drawn and aligned in one direction with a thermoplastic resin (B) including semi-aromatic polyamide.

Description

本発明は、剛性に優れた、炭素繊維と熱可塑性樹脂とから構成される炭素繊維強化複合成形体に関する。   The present invention relates to a carbon fiber reinforced composite molded article composed of carbon fibers and a thermoplastic resin having excellent rigidity.

炭素繊維やアラミド繊維、ガラス繊維などを強化繊維として用いた繊維強化複合成形体として、等方性を有するランダムマットが、賦形性や工程の簡便さより用いられている。
近年、ランダムマットを用いた複合成形体の機械物性を向上させる手段として、繊維束を斜めに裁断し、断面積を変化させたチョップド繊維束を用いる方法が提案されている(特許文献1、2)。しかしながら、これらは実質的に熱硬化性樹脂をマトリックスとした複合成形体についての提案に留まっている。
As a fiber reinforced composite molded body using carbon fiber, aramid fiber, glass fiber or the like as a reinforcing fiber, an isotropic random mat is used because of formability and simplicity of the process.
In recent years, as means for improving the mechanical properties of a composite molded body using a random mat, a method using a chopped fiber bundle in which a fiber bundle is cut obliquely and a cross-sectional area is changed has been proposed (Patent Documents 1 and 2). ). However, these are only proposals for composite molded bodies having a thermosetting resin as a matrix.

また、熱可塑性樹脂をマトリックスとする複合成形体について、炭素繊維を含む長繊維ペレットを射出成形する技術も提案されているが(特許文献3)、長繊維ペレットとはいえペレットの長さに制限があり、さらに混練により熱可塑性樹脂中で炭素繊維が切断されてしまい、炭素繊維の長さを保てないなどの課題があった。また、このような射出成形による成形方法では炭素繊維が配向してしまい、等方性のものが得られないなどの課題があった。
さらに、特許文献3、4には、半芳香族ポリアミドをマトリックス樹脂とする強化繊維複合材料について、かかる強化繊維複合材料が高い剛性を有することが開示されている。しかしながら、これらは何れも強化繊維短繊維を用いた射出成形用のものであり、半芳香族ポリアミドと強化繊維の連続繊維を用いた強化繊維複合材料については開示されていない。
In addition, a technique for injection-molding long fiber pellets containing carbon fibers has been proposed for a composite molded body using a thermoplastic resin as a matrix (Patent Document 3), but the length of the pellets is limited to the length of the long fiber pellets. Furthermore, the carbon fibers are cut in the thermoplastic resin by kneading, and there is a problem that the length of the carbon fibers cannot be maintained. Further, such a molding method by injection molding has a problem that the carbon fibers are oriented and an isotropic material cannot be obtained.
Further, Patent Documents 3 and 4 disclose that a reinforcing fiber composite material having a semi-aromatic polyamide as a matrix resin has high rigidity. However, these are all for injection molding using reinforcing fiber short fibers, and a reinforcing fiber composite material using continuous fibers of semi-aromatic polyamide and reinforcing fibers is not disclosed.

特開2009−114611号公報JP 2009-114611 A 特開2009−114612号公報JP 2009-114612 A 特開平9−286036号公報Japanese Patent Laid-Open No. 9-286036 特許第4609984号公報Japanese Patent No. 4609984 特開平7−109421号公報JP-A-7-109421

上記の背景技術より、炭素繊維と熱可塑性樹脂とから構成され、剛性に優れた炭素繊維複合材料の開発が望まれていた。
そこで、本発明は、炭素繊維と熱可塑性樹脂とから構成される炭素繊維複合成形体において、剛性に優れた複合成形体を提供することを目的とする。
From the background art described above, it has been desired to develop a carbon fiber composite material composed of carbon fiber and thermoplastic resin and having excellent rigidity.
Accordingly, an object of the present invention is to provide a composite molded body having excellent rigidity in a carbon fiber composite molded body composed of carbon fibers and a thermoplastic resin.

上記課題を解決するために、本発明は、繊維長10〜100mmの炭素繊維と熱可塑性樹脂(A)とから構成され、該熱可塑性樹脂(A)の存在量が炭素繊維100重量部に対し10〜1000重量部であり、炭素繊維が実質的に2次元ランダムに配向したランダムマット基材と、
該ランダムマット基材の少なくとも片面に設けられ、一方向に引き揃えられた炭素繊維に半芳香族ポリアミドを含有する熱可塑性樹脂(B)が含浸されてなる一方向材と、からなる複合成形体を提供する。
In order to solve the above problems, the present invention is composed of carbon fibers having a fiber length of 10 to 100 mm and a thermoplastic resin (A), and the abundance of the thermoplastic resin (A) is 100 parts by weight of carbon fibers. 10 to 1000 parts by weight, a random mat base material in which carbon fibers are substantially two-dimensionally oriented;
A composite molded body comprising: a unidirectional material formed by impregnating a thermoplastic resin (B) containing a semi-aromatic polyamide into carbon fibers provided on at least one side of the random mat base material and aligned in one direction. I will provide a.

また、本発明の複合成形体は、前記熱可塑性樹脂(A)が、脂肪族ポリアミド及び半芳香族ポリアミドからなる群kなら選ばれる少なくとも1種を含むものであるのが好ましい。
さらに、本発明の複合成形体は、前記熱可塑性樹脂(B)における前記半芳香族ポリアミドが、MXDナイロン及びナイロン6Tからなる群から選ばれる少なくとも1種であることが好ましい。
そして、本発明の複合成形体は、プレス成形によって得られるものであることが好ましい。
The composite molded body of the present invention preferably contains at least one selected from the group consisting of aliphatic polyamide and semi-aromatic polyamide as the thermoplastic resin (A).
Furthermore, in the composite molded body of the present invention, the semi-aromatic polyamide in the thermoplastic resin (B) is preferably at least one selected from the group consisting of MXD nylon and nylon 6T.
And it is preferable that the composite molded object of this invention is a thing obtained by press molding.

本発明によれば、炭素繊維と熱可塑性樹脂とから構成される複合成形体であって、剛性に優れた複合成形体を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, it is a composite molded object comprised from carbon fiber and a thermoplastic resin, Comprising: The composite molded object excellent in rigidity can be provided.

実施例16で作成した成形体の概略図(斜視図と断面図)である。It is the schematic (perspective view and sectional drawing) of the molded object created in Example 16.

以下、本発明を詳細に説明する。
[炭素繊維]
本発明の複合成形体を構成する炭素繊維は、ポリアクリロニトリル(PAN)系、石油・石炭ピッチ系、レーヨン系、リグニン系など、何れの炭素繊維も使用することができる。特に、PANを原料としたPAN系炭素繊維が、工業規模における生産性及び機械的特性に優れており好ましい。
具体的に、PAN系炭素繊維は、平均直径5〜10μmのものを使用できる。PAN系炭素繊維は、1000〜50000本の短繊維が繊維束となったものを使用できる。
炭素繊維とマトリックス樹脂との接着性を高めるため、表面処理によって炭素繊維の表面に含酸素官能基を導入したものを使用することも好ましい。表面処理方法としては、公知の方法として液相及び気相処理等があるが、生産性、安定性、価格面等の点から液相電解表面処理が好ましい。
また、上記炭素繊維にサイジング剤を付与して炭素繊維束とすることで、炭素繊維束の取扱性を向上させ、本発明の複合成形体を好ましく得ることができる。
Hereinafter, the present invention will be described in detail.
[Carbon fiber]
Any carbon fiber such as polyacrylonitrile (PAN), petroleum / coal pitch, rayon, and lignin can be used as the carbon fiber constituting the composite molded body of the present invention. In particular, PAN-based carbon fibers using PAN as a raw material are preferable because they are excellent in productivity and mechanical properties on an industrial scale.
Specifically, PAN-based carbon fibers having an average diameter of 5 to 10 μm can be used. As the PAN-based carbon fiber, a fiber bundle of 1000 to 50000 short fibers can be used.
In order to enhance the adhesion between the carbon fiber and the matrix resin, it is also preferable to use a material in which an oxygen-containing functional group is introduced on the surface of the carbon fiber by a surface treatment. As the surface treatment method, known methods include liquid phase and gas phase treatment, but liquid phase electrolytic surface treatment is preferable from the viewpoint of productivity, stability, price and the like.
Moreover, the handleability of a carbon fiber bundle can be improved by giving a sizing agent to the carbon fiber to make a carbon fiber bundle, and the composite molded body of the present invention can be preferably obtained.

[ランダムマット基材]
本発明の複合成形体を構成するランダムマット基材は、繊維長10〜100mmの炭素繊維と熱可塑性樹脂(A)とから構成され、該熱可塑性樹脂(A)の存在量が炭素繊維100重量部に対し10〜1000重量部であり、炭素繊維が実質的に2次元ランダムに配向したものである。
本発明の複合成形体は、炭素繊維が実質的に2次元ランダムに配向しているランダムマット基材を有するため、ねじり剛性に優れていることを特徴とする。
[Random mat substrate]
The random mat base material constituting the composite molded body of the present invention is composed of carbon fibers having a fiber length of 10 to 100 mm and a thermoplastic resin (A), and the abundance of the thermoplastic resin (A) is 100 weights of carbon fibers. 10 to 1000 parts by weight with respect to parts, and carbon fibers are substantially two-dimensionally oriented randomly.
The composite molded body of the present invention is characterized by excellent torsional rigidity because it has a random mat base material in which carbon fibers are oriented substantially two-dimensionally at random.

ランダムマット基材を構成する熱可塑性樹脂(A)の種類は特に限定されず、例えば、ナイロン6、ナイロン66、ナイロン11、ナイロン12、ナイロン6,9、ナイロン6,10、ナイロン6,12などの脂肪族ポリアミド、MXDナイロン、ナイロン6T、ナイロン9T、ナイロン6I、ナイロン9Iなどの半芳香族ポリアミド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリブチレンナフタレートなどのポリエステル、ポリプロピレンなどのポリオレフィンからなる群から選ばれる少なくとも1種を用いることができる。また、各種共重合体を用いることもできる。熱可塑性樹脂(A)として、機械特性、耐熱性及びコスト等の面から脂肪族ポリアミド又は半芳香族ポリアミドの少なくともいずれかを含むものが好ましく用いられる。この際、熱可塑性樹脂(A)における脂肪族ポリアミド又は半芳香族ポリアミドの少なくともいずれかの配合割合は、熱可塑性樹脂(A)100重量部中20重量部以上とするのが好ましい。   The type of the thermoplastic resin (A) constituting the random mat base material is not particularly limited. For example, nylon 6, nylon 66, nylon 11, nylon 12, nylon 6,9, nylon 6,10, nylon 6,12, etc. Selected from the group consisting of aliphatic polyamides, MXD nylon, nylon 6T, nylon 9T, nylon 6I, nylon 9I and other semi-aromatic polyamides, polyethylene terephthalate, polybutylene terephthalate, polyester such as polybutylene naphthalate, and polyolefins such as polypropylene. Can be used. Various copolymers can also be used. As the thermoplastic resin (A), those containing at least one of an aliphatic polyamide and a semi-aromatic polyamide are preferably used in terms of mechanical properties, heat resistance, cost, and the like. At this time, the blending ratio of at least one of aliphatic polyamide or semi-aromatic polyamide in the thermoplastic resin (A) is preferably 20 parts by weight or more in 100 parts by weight of the thermoplastic resin (A).

ランダムマット基材におけ熱可塑性樹脂(A)の存在量は、炭素繊維100重量部に対し10〜1000重量部であることが好ましい。より好ましくは、炭素繊維100重量部に対し50〜500重量部、さらに好ましくは炭素繊維100重量部に対し50〜100重量部である。
ランダムマット基材の厚みは特に限定されず、用途に応じて適宜選択できる。また、必要に応じてランダムマット基材を複数枚積み重ねて用いることができる。
The abundance of the thermoplastic resin (A) in the random mat substrate is preferably 10 to 1000 parts by weight with respect to 100 parts by weight of the carbon fibers. More preferably, it is 50-500 weight part with respect to 100 weight part of carbon fibers, More preferably, it is 50-100 weight part with respect to 100 weight part of carbon fiber.
The thickness of the random mat substrate is not particularly limited, and can be appropriately selected depending on the application. Further, a plurality of random mat substrates can be stacked and used as necessary.

なお、ランダムマット基材には、本発明の目的を損なわない範囲で、ガラス繊維や有機繊維等の各種繊維状又は非繊維状フィラー、難燃剤、耐UV剤、顔料、離型剤、軟化剤、可塑剤、界面活性剤などの添加剤を含んでも良い。
本発明で用いられるランダムマット基材において、熱可塑性樹脂(A)は、繊維状、粉末状、又は粒状で存在することが好ましい。
For the random mat base material, various fibrous or non-fibrous fillers such as glass fibers and organic fibers, flame retardants, UV-resistant agents, pigments, mold release agents, and softening agents are used within the range not impairing the object of the present invention. In addition, additives such as a plasticizer and a surfactant may be included.
In the random mat substrate used in the present invention, the thermoplastic resin (A) is preferably present in the form of fibers, powders, or granules.

また、本発明で用いられるランダムマット基材は、
1.炭素繊維束をカットする工程
2.カットされた炭素繊維を管内に導入し、空気を繊維に吹き付けることにより、繊維束を開繊させる工程
3.開繊させた炭素繊維を拡散させると同時に、熱可塑性樹脂と共に吸引しつつ、炭素繊維と熱可塑性樹脂を同時に散布する工程
4.散布された炭素繊維及び熱可塑性樹脂を定着させる工程
により好ましく得ることができる。
In addition, the random mat substrate used in the present invention,
1. 1. Step of cutting the carbon fiber bundle 2. Step of opening the fiber bundle by introducing the cut carbon fiber into the tube and blowing air onto the fiber. 3. Step of simultaneously spreading carbon fiber and thermoplastic resin while diffusing the opened carbon fiber and simultaneously sucking it together with the thermoplastic resin It can preferably be obtained by a step of fixing the dispersed carbon fibers and thermoplastic resin.

[一方向材]
本発明の複合成形体を構成する一方向材は、前記ランダムマット基材の少なくとも片面に設けられ、一方向に引き揃えられた炭素繊維に半芳香族ポリアミドを含有する熱可塑性樹脂(B)が含浸されてなるものである。本発明において、一方向材は、複数の一方向材を積層したものであってもよく、一方向に引き揃えられた炭素繊維束をシート状にして角度を変えて積層したもの(多軸織物基材)を、ナイロン糸、ポリエステル糸、ガラス繊維糸等のステッチ糸で、この積層体を厚さ方向に貫通して、積層体の表面と裏面との間を表面方向に沿って往復しステッチしたような多軸織物であっても良い。
[One-way material]
The unidirectional material constituting the composite molded body of the present invention is a thermoplastic resin (B) containing a semi-aromatic polyamide in carbon fibers provided on at least one side of the random mat base material and aligned in one direction. It is impregnated. In the present invention, the unidirectional material may be a laminate of a plurality of unidirectional materials, and a laminate of carbon fiber bundles aligned in one direction in a sheet shape and changing the angle (multiaxial fabric) The base material) is stitched with nylon yarn, polyester yarn, glass fiber yarn, etc., and this laminate is passed through in the thickness direction, and stitched by reciprocating between the front and back surfaces of the laminate along the surface direction. Such a multiaxial fabric may be used.

一方向材を構成する熱可塑性樹脂(B)は、半芳香族ポリアミドを含有するものである。半芳香族ポリアミドの種類は特に限定されないが、MXDナイロン及びナイロン6Tから選ばれる少なくとも1種とするのが好ましい。これらの半芳香族ポリアミドを用いることにより、より剛性に優れた複合成形体を得ることができる。   The thermoplastic resin (B) constituting the unidirectional material contains semi-aromatic polyamide. Although the kind of semi-aromatic polyamide is not particularly limited, it is preferably at least one selected from MXD nylon and nylon 6T. By using these semi-aromatic polyamides, it is possible to obtain a composite molded body having higher rigidity.

熱可塑性樹脂(B)において、半芳香族ポリアミド樹脂と他の樹脂を併用することができる。この際、用いられる他の樹脂は特に限定されず、例えば、ナイロン6、ナイロン66、ナイロン11、ナイロン12、ナイロン6,9、ナイロン6,10、ナイロン6,12などの脂肪族ポリアミドなどを好ましく用いることができる。本発明において、ランダムマット基材に用いられる熱可塑性樹脂(A)と一方向材に用いられる熱可塑性樹脂(B)が異なる樹脂であっても、得られる複合成形体が高い剛性を有するものとなる点が特異的である。   In the thermoplastic resin (B), a semi-aromatic polyamide resin and another resin can be used in combination. In this case, other resins used are not particularly limited, and for example, aliphatic polyamides such as nylon 6, nylon 66, nylon 11, nylon 12, nylon 6,9, nylon 6,10, nylon 6,12 and the like are preferable. Can be used. In the present invention, even if the thermoplastic resin (A) used for the random mat base material and the thermoplastic resin (B) used for the unidirectional material are different resins, the obtained composite molded body has high rigidity. This point is specific.

熱可塑性樹脂(B)の半芳香族ポリアミドの配合割合は、熱可塑性樹脂(B)100重量部中10重量部〜100重量部であるのが好ましい。10重量部〜100重量部とすることにより、機械特性の補強効果が大きく、また耐薬品性に優れたものとなる。より好ましくは、20重量部〜100重量部である。   The blending ratio of the semi-aromatic polyamide in the thermoplastic resin (B) is preferably 10 to 100 parts by weight in 100 parts by weight of the thermoplastic resin (B). By setting it as 10 weight part-100 weight part, the reinforcement effect of a mechanical characteristic is large, and it becomes what was excellent in chemical resistance. More preferably, it is 20 to 100 parts by weight.

一方向材における熱可塑性樹脂の存在量は、炭素繊維100重量部に対し10〜1000重量部であるのが好ましい。より好ましくは、炭素繊維100重量部に対し50〜500重量部、さらに好ましくは、炭素繊維100重量部に対し50〜100重量部である。
一方向材の厚みは特に限定されず、用途に応じて適宜選択できる。また、必要に応じて一方向材を複数枚積み重ねて用いることができる。
The abundance of the thermoplastic resin in the unidirectional material is preferably 10 to 1000 parts by weight with respect to 100 parts by weight of the carbon fibers. More preferably, it is 50-500 weight part with respect to 100 weight part of carbon fibers, More preferably, it is 50-100 weight part with respect to 100 weight part of carbon fiber.
The thickness of the unidirectional material is not particularly limited and can be appropriately selected depending on the application. Further, a plurality of unidirectional materials can be stacked and used as necessary.

また、一方向材の繊維体積含有率Vfは特に限定されないが、好ましくは20%〜80%、特に好ましくは30%〜70%である。Vfをこのような範囲にすることにより、得られる複合成形体は高い剛性が得られ、かつ一方向材への樹脂の含浸が容易となる。   The fiber volume content Vf of the unidirectional material is not particularly limited, but is preferably 20% to 80%, and particularly preferably 30% to 70%. By setting Vf in such a range, the resulting composite molded body can have high rigidity and can easily be impregnated with resin in a unidirectional material.

一方向材を製造する方法は特に限定されず、例えばプルトリュージョン法などで得ることができる。プルトリュージョン法による場合は、炭素繊維が熱可塑性樹脂により含浸されているものが好適に得られる。熱可塑性樹脂による含浸を抑えたもの、すなわち半含浸とする場合には、例えば熱可塑性樹脂からなるシートの上に炭素繊維を一方向に引き揃えて、必要によりプレスしつつ加熱する方法などで好ましく得ることができる。ここで含浸あるいは半含浸の程度は、後述の製法のプレス工程にて適宜調整することができる。   The method for producing the unidirectional material is not particularly limited, and can be obtained by, for example, a pultrusion method. In the case of the pultrusion method, carbon fibers impregnated with a thermoplastic resin are preferably obtained. When the impregnation with a thermoplastic resin is suppressed, that is, when semi-impregnation is used, for example, a method in which carbon fibers are aligned in one direction on a sheet made of a thermoplastic resin and heated while pressing if necessary is preferable. Can be obtained. Here, the degree of impregnation or semi-impregnation can be appropriately adjusted in the press step of the production method described later.

[複合成形体]
本発明の複合成形体は、上述のランダムマット基材と、該ランダムマット基材の少なくとも片面に設けられた上述の一方向材と、からなるものである。
[Composite molded body]
The composite molded body of the present invention comprises the above-mentioned random mat substrate and the above-mentioned unidirectional material provided on at least one surface of the random mat substrate.

ランダムマット基材及び一方向材は所望の厚さのものを用いることができる。ランダムマット基材の厚さは特に限定されないが、好ましくは0.1〜5mmである。一方向材の厚さは特に限定されないが、0.1〜5mmである。   A random mat substrate and a unidirectional material having a desired thickness can be used. Although the thickness of a random mat base material is not specifically limited, Preferably it is 0.1-5 mm. Although the thickness of a unidirectional material is not specifically limited, It is 0.1-5 mm.

ランダムマット基材と一方向材の体積割合、面積割合及び積層部位は各種用途に合わせて適宜選択することができる。この場合、複合成形体の全体積に対し、一方向材が5〜50体積%存在することが、本発明の目的において好ましい。中でも一方向材は、所望のねじり剛性及び曲げ剛性を効果的に発現させるように配置することが好ましい。具体的には、成形体の内側をランダムマット基材、外側を一方向材とすることが望ましい。
また、一方向材の高い引張特性をより活用するためには、成形体の曲げ変形方向に対し引張側に一方向材を積層させるのが好ましい。
The volume ratio, the area ratio, and the lamination part of the random mat base material and the unidirectional material can be appropriately selected according to various uses. In this case, it is preferable for the purpose of the present invention that the unidirectional material is present in an amount of 5 to 50% by volume based on the total volume of the composite molded body. Among them, the unidirectional material is preferably arranged so as to effectively exhibit desired torsional rigidity and bending rigidity. Specifically, it is desirable that the inside of the molded body be a random mat base material and the outside be a unidirectional material.
In order to further utilize the high tensile properties of the unidirectional material, it is preferable to laminate the unidirectional material on the tensile side with respect to the bending deformation direction of the molded body.

ランダムマット基材と一方向材を複合化させる方法については特に制約はないが、ランダムマット基材と一方向材を組み合わせておいた状態でプレス成形する方法や、ランダムマット基材と一方向材を予備含浸させておいて扱いやすくした後に、両者を張り合わせてプレス成形する方法などが挙げられる。   There is no particular restriction on the method of combining the random mat base material and the unidirectional material, but the method of press molding in a state where the random mat base material and the unidirectional material are combined, or the random mat base material and the unidirectional material are combined. For example, a method of pre-impregnating and making them easy to handle and then bonding them together and press-molding may be mentioned.

また、成形時の型の形状等を選択することにより、三次元形状等の所望の形状の成形体を得ることも可能である。本発明の複合成形体は、プレス工程における樹脂の移動時間が短く、比較的短時間で樹脂の含浸が可能となり、物性に優れ且つ表面品位に優れた成形体が提供できる。また、本発明の成形体に用いられるランダムマット基材において、炭素繊維は等方的に存在するため、一方向に強化したものであっても、そりの少ない均質な成形体を容易に得ることができる。プルトリュージョン成形などによって得られた開断面形状や閉断面形状の部材の表層に、ランダムマット基材を例えばテープレイアップ法により貼り付けることで複合成形体を得ることも可能である。   It is also possible to obtain a molded body having a desired shape such as a three-dimensional shape by selecting the shape of the mold at the time of molding. The composite molded body of the present invention has a short resin transfer time in the pressing step, enables impregnation of the resin in a relatively short time, and can provide a molded body having excellent physical properties and excellent surface quality. Further, in the random mat base material used in the molded body of the present invention, carbon fibers are isotropic, so that even if reinforced in one direction, a uniform molded body with less warpage can be easily obtained. Can do. It is also possible to obtain a composite molded body by sticking a random mat base material to the surface layer of a member having an open cross-sectional shape or a closed cross-sectional shape obtained by pultrusion molding, for example, by a tape layup method.

本発明の複合成形体は、ランダムマット基材と、該ランダムマット基材の少なくとも片面に設けられた一方向材と、からなるものであれば、その積層構造は特に限定されず、ランダムマット基材と一方向材とを複数用いたサンドイッチ構造とすることも好ましい。すなわち、本発明は、ランダムマット基材をスキン層とし、一方向材をコア層とするサンドイッチ材、及びランダムマット基材をコア層とし、一方向材をスキン層とするサンドイッチ材を包含する。   As long as the composite molded body of the present invention comprises a random mat substrate and a unidirectional material provided on at least one side of the random mat substrate, the laminated structure is not particularly limited. A sandwich structure using a plurality of materials and unidirectional materials is also preferable. That is, the present invention includes a sandwich material having a random mat substrate as a skin layer and a unidirectional material as a core layer, and a sandwich material having a random mat substrate as a core layer and a unidirectional material as a skin layer.

ランダムマット基材をスキン層としたサンドイッチ材の場合は、意匠性等に優れ、衝撃荷重によるクラック防止に優れることから、とくに自転車等や鉄道等、乗り物などの構造部材用途に好適に用いられる。
また、ランダムマット基材をコア層としたサンドイッチ材の場合は、機械的特性、特に強度と剛性を両立させることが容易となることから、特に建造物などの構造部材用途に好適に用いられる。
In the case of a sandwich material having a random mat base material as a skin layer, it is excellent in design and the like, and is excellent in prevention of cracking due to impact load. Therefore, it is particularly suitable for use in structural members such as bicycles and railways.
Further, in the case of a sandwich material having a random mat base material as a core layer, it becomes easy to achieve both mechanical properties, particularly strength and rigidity, and therefore, it is particularly suitably used for structural members such as buildings.

本発明の複合成形体は、高い機械強度を発現し、各種構成部材、例えば自動車の内板、外板、また各種電気製品、機械のフレームや筐体に用いることができる。本発明の複合成形体は、特に合成に優れるため、開断面構造や閉断面構造からなる自動車の構成部材、中でもサイドメンバー、クロスメンバー、サイドピラー、フロアパンなどにも適用できる。   The composite molded article of the present invention exhibits high mechanical strength and can be used for various components such as an inner plate and an outer plate of an automobile, various electric products, a frame of a machine, and a casing. Since the composite molded body of the present invention is particularly excellent in synthesis, it can be applied to automobile components having an open section structure or a closed section structure, particularly side members, cross members, side pillars, floor pans, and the like.

以下に実施例を示すが、本発明はこれらに制限されるものではない。
[原材料]
ポリアミド樹脂
ナイロン6 ユニチカ株式会社製 エンブレムON(登録商標)
ナイロン66 宇部興産株式会社製 ナイロン2015B(登録商標)
半芳香族ポリアミド樹脂
MXDナイロン 三菱ガス化学(株)製 レニー6007(登録商標)
ナイロン6T 東洋紡績株式会社製TY−521TNs(登録商標)
Examples are shown below, but the present invention is not limited thereto.
[raw materials]
Polyamide resin Nylon 6 Made by Unitika Ltd. Emblem ON (registered trademark)
Nylon 66 Nylon 2015B (registered trademark) manufactured by Ube Industries, Ltd.
Semi-aromatic polyamide resin MXD nylon Mitsubishi Gas Chemical Co., Ltd. Reny 6007 (registered trademark)
Nylon 6T TY-521TNs (registered trademark) manufactured by Toyobo Co., Ltd.

[複合成形体成形板の曲げ物性測定方法]
以下の実施例における曲げ試験は、成形板から幅15mm×長さ100mmの試験片を切り出し、JIS K7074に準拠した中央荷重とする3点曲げにて評価した。支点間距離を80mmとしたr=2mmの支点上に試験片を置き、支点間中央部にr=5mmの圧子にて、試験速度5mm/分で荷重を与えた場合の最大荷重および中央たわみ量を測定し、曲げ強度および曲げ弾性率を測定した。なお、試験時に圧子が接触する面を圧縮側、その反対面を引張側とした。
[Method of measuring bending properties of composite molded body molded plate]
The bending tests in the following examples were evaluated by three-point bending by cutting out a test piece having a width of 15 mm and a length of 100 mm from a molded plate and using a center load in accordance with JIS K7074. Maximum load and center deflection when a test piece is placed on a fulcrum of r = 2mm with a fulcrum distance of 80mm and a load is applied at a test speed of 5mm / min with an indenter of r = 5mm in the center between the fulcrum The bending strength and the bending elastic modulus were measured. The surface that the indenter contacts during the test was the compression side, and the opposite surface was the tension side.

[参考例1]
炭素繊維として、東邦テナックス社製の炭素繊維“テナックス”(登録商標)STS40−24KS(繊維径7μm、引張強度4000MPa)を使用した。カット装置には、超硬合金を用いてナイフを形成するロータリーカッターを用いた。なお、ナイフの角度は周方向と90度であり、ナイフは刃幅を1mmのものを用いた。このナイフを周方向に16mmピッチで配置し、更に、隣り合うナイフは周方向に互いに1mmオフセットさせるように配置した。開繊装置として、小孔を有した管を用意し、コンプレッサーを用いて圧縮空気を送気した。この時、小孔からの風速は、100m/secであった。この管をロータリーカッターの直下に配置した。次に、テーパ管出口の下部にXY方向に移動可能なテーブルを設置し、テーブル下部よりブロワにて吸引を行った。そして、炭素繊維の供給量を150g/minにセットし、装置を稼動したところ、平均繊維長16mm、厚み0.5mmの炭素繊維マットを得た。
[Reference Example 1]
As the carbon fiber, carbon fiber “Tenax” (registered trademark) STS40-24KS (fiber diameter 7 μm, tensile strength 4000 MPa) manufactured by Toho Tenax Co., Ltd. was used. A rotary cutter that forms a knife using cemented carbide was used as the cutting device. The angle of the knife was 90 degrees with the circumferential direction, and a knife with a blade width of 1 mm was used. The knives were arranged at a pitch of 16 mm in the circumferential direction, and adjacent knives were arranged so as to be offset from each other by 1 mm in the circumferential direction. A tube having small holes was prepared as a fiber opening device, and compressed air was supplied using a compressor. At this time, the wind speed from the small hole was 100 m / sec. This tube was placed directly under the rotary cutter. Next, a table movable in the XY directions was installed at the lower part of the taper tube outlet, and suction was performed from the lower part of the table with a blower. And when the supply amount of carbon fiber was set to 150 g / min and the apparatus was operated, a carbon fiber mat having an average fiber length of 16 mm and a thickness of 0.5 mm was obtained.

[参考例2]
参考例1で得られたランダムマットにナイロン6樹脂フィルム(ユニチカ株式会社製 エンブレムON(登録商標))を炭素繊維100体積部に対して樹脂150体積部となるように乗せた。260℃に加熱したプレス装置にて、2.0MPaにて5分間加熱し、厚みt=0.2mm、Vf40%の成形板を得た。
[Reference Example 2]
Nylon 6 resin film (Emblem ON (registered trademark) manufactured by Unitika Co., Ltd.) was placed on the random mat obtained in Reference Example 1 so that the resin was 150 parts by volume with respect to 100 parts by volume of carbon fiber. A press apparatus heated to 260 ° C. was heated at 2.0 MPa for 5 minutes to obtain a molded plate having a thickness t = 0.2 mm and Vf of 40%.

[参考例3]
ナイロン66樹脂(宇部興産株式会社製 ナイロン2015B(登録商標))のフィルムを用い、参考例2と同様の方法にて、t=0.2mm、Vf40%の成形板を得た。
[Reference Example 3]
Using a film of nylon 66 resin (nylon 2015B (registered trademark) manufactured by Ube Industries, Ltd.), a molded plate of t = 0.2 mm and Vf 40% was obtained in the same manner as in Reference Example 2.

[参考例4]
MXDナイロン 三菱ガス化学(株)製レニー6007(登録商標)のフィルムを用い、参考例2と同様の方法にて、t=0.2mm、Vf40%の成形板を得た。
[Reference Example 4]
MXD nylon Using a Reny 6007 (registered trademark) film manufactured by Mitsubishi Gas Chemical Co., Inc., a molded plate of t = 0.2 mm and Vf 40% was obtained in the same manner as in Reference Example 2.

[参考例5]
MXDナイロン 三菱ガス化学(株)製レニー6007(登録商標)のフィルムを用い、炭素繊維と樹脂の比率を炭素繊維100体積部に対して樹脂400体積部とした以外は参考例2と同様の方法にて、t=0.2mm、Vf20%の成形板を得た。
[Reference Example 5]
MXD nylon The same method as in Reference Example 2, except that a Reny 6007 (registered trademark) film manufactured by Mitsubishi Gas Chemical Co., Ltd. was used and the ratio of carbon fiber to resin was changed to 400 parts by volume of resin with respect to 100 parts by volume of carbon fiber. Thus, a molded plate of t = 0.2 mm and Vf 20% was obtained.

[参考例6]
炭素繊維(東邦テナックス(株)製、テナックス(登録商標)STS40−24KS(繊維径7μm、引張強度4000MPa)の連続繊維からなる一方向材とし、炭素繊維100体積部に対して樹脂100体積部となるように、MXDナイロン 三菱ガス化学(株)製レニー6007(登録商標)のフィルムを乗せ、260℃の加熱ローラーにて貼り合わせ、t=0.02mm、Vf50%の一方向材を得た。
[Reference Example 6]
A unidirectional material composed of continuous fibers of carbon fiber (manufactured by Toho Tenax Co., Ltd., Tenax (registered trademark) STS40-24KS (fiber diameter 7 μm, tensile strength 4000 MPa), and 100 parts by volume of resin with respect to 100 parts by volume of carbon fiber; In this way, a film of MXD Nylon Mitsubishi Gas Chemical Co., Ltd. Reny 6007 (registered trademark) was placed and bonded with a 260 ° C. heating roller to obtain a unidirectional material with t = 0.02 mm and Vf of 50%.

[参考例7]
炭素繊維(東邦テナックス(株)製、テナックス(登録商標)STS40−24KS(繊維径7μm、引張強度4000MPa)の連続繊維からなる一方向材とし、炭素繊維100体積部に対して樹脂43体積部となるように、MXDナイロン 三菱ガス化学(株)製レニー6007(登録商標)のフィルムを乗せ、260℃に加熱したプレス装置にて、6.0MPaにて5分間加熱し、t=0.2mm、Vf70%の成形板を得た。
[Reference Example 7]
A unidirectional material composed of continuous fibers of carbon fiber (manufactured by Toho Tenax Co., Ltd., Tenax (registered trademark) STS40-24KS (fiber diameter 7 μm, tensile strength 4000 MPa), and 43 parts by volume of resin with respect to 100 parts by volume of carbon fiber; MXD Nylon Mitsubishi Gas Chemical Co., Ltd. Reny 6007 (Registered Trademark) film was placed, heated in a press apparatus heated to 260 ° C. at 6.0 MPa for 5 minutes, t = 0.2 mm, A molded plate of Vf 70% was obtained.

[参考例8] ナイロン6樹脂フィルム(ユニチカ・エンブレムON(登録商標))を用い、参考例6と同様の方法にて、t=0.02mm、Vf50%の一方向材を得た。 [Reference Example 8] A nylon 6 resin film (Unitika Emblem ON (registered trademark)) was used to obtain a unidirectional material of t = 0.02 mm and Vf 50% in the same manner as in Reference Example 6.

[参考例9]
ナイロン6T 東洋紡績株式会社製TY−521TNs(登録商標)のフィルムを用い、成形温度を320℃とした以外は参考例6と同様の方法にて、t=0.02mm、Vf50%の一方向材を得た。
[Reference Example 9]
Nylon 6T Unidirectional material with t = 0.02 mm and Vf of 50% in the same manner as in Reference Example 6 except that a film of TY-521TNs (registered trademark) manufactured by Toyobo Co., Ltd. was used and the molding temperature was 320 ° C. Got.

[参考例10]
MXDナイロン 三菱ガス化学(株)製レニー6007(登録商標)及びナイロン6樹脂 ユニチカ株式会社製 エンブレムON(登録商標)のフィルムを用い、それぞれの体積比率がMXDナイロン:ナイロン6=20:80となるように枚数を合わせて、MXDナイロンとナイロン6のブレンド樹脂が含浸されたt=0.02mm、Vf50%の一方向材を得た。
[Reference Example 10]
MXD Nylon Mitsubishi Gas Chemical Co., Ltd. Reny 6007 (registered trademark) and Nylon 6 resin Unitika Co., Ltd. Emblem ON (registered trademark) films are used, and the respective volume ratios are MXD nylon: nylon 6 = 20: 80. Thus, a unidirectional material of t = 0.02 mm and Vf of 50% impregnated with a blend resin of MXD nylon and nylon 6 was obtained.

[参考例11]
MXDナイロン 三菱ガス化学(株)製レニー6007(登録商標)及びナイロン6樹脂 ユニチカ株式会社製 エンブレムON(登録商標)のフィルムを用い、それぞれの体積比率がMXDナイロン:ナイロン6=80:20となるように枚数を合わせて、MXDナイロンとナイロン6のブレンド樹脂が含浸されたt=0.02mm、Vf50%の一方向材を得た。
[Reference Example 11]
MXD Nylon Mitsubishi Gas Chemical Co., Ltd. Reny 6007 (registered trademark) and nylon 6 resin Unitika Co., Ltd. emblem ON (registered trademark) film, each volume ratio is MXD nylon: nylon 6 = 80:20 Thus, a unidirectional material of t = 0.02 mm and Vf of 50% impregnated with a blend resin of MXD nylon and nylon 6 was obtained.

[実施例1]
コア材として参考例2で得たランダムマット基材(ナイロン6)Vf40%を、スキン材として参考例6で得られた一方向材(MXDナイロン)Vf50%を用いた。まず、ランダムマット基材(ナイロン6)を幅30cm×長さ50cmのサイズに切り出し、10枚分重ねあわせた。その両面に一方向材(MXDナイロン)を4層ずつ貼り合わせた。貼り合わせる際は、300℃に加熱したハンダゴテを用い、樹脂を溶着して固定した。それぞれの材料の厚みは、一方向材(上面側)、ランダムマット基材、一方向材(下面側)でそれぞれ、0.08mm、2.00mm、0.08mmとなる。300℃に加熱したプレス装置にて、2.0MPaにて5分間加熱し、t=約2.16mmの成形体を得た。得られた成形体について、上述の方法を用いて曲げ特性を評価した。
[Example 1]
The random mat substrate (nylon 6) Vf 40% obtained in Reference Example 2 was used as the core material, and the unidirectional material (MXD nylon) Vf 50% obtained in Reference Example 6 was used as the skin material. First, a random mat base material (nylon 6) was cut into a size of 30 cm wide × 50 cm long and overlapped by 10 sheets. Four layers of unidirectional material (MXD nylon) were bonded to both sides. At the time of bonding, a soldering iron heated to 300 ° C. was used to weld and fix the resin. The thicknesses of the respective materials are 0.08 mm, 2.00 mm, and 0.08 mm for the unidirectional material (upper surface side), the random mat base material, and the unidirectional material (lower surface side), respectively. A press apparatus heated to 300 ° C. was heated at 2.0 MPa for 5 minutes to obtain a molded article having t = 2.16 mm. About the obtained molded object, the bending characteristic was evaluated using the above-mentioned method.

[実施例2]
コア材として参考例3で得たランダムマット基材(ナイロン66)Vf40%、スキン材として参考例6で得られた一方向材(MXDナイロン)Vf50%を用い、実施例1と同様の方法で成形体を得た。得られた成形体について上述の方法を用いて曲げ特性を評価した。
[Example 2]
In the same manner as in Example 1, using the random mat base material (nylon 66) Vf 40% obtained in Reference Example 3 as the core material and the unidirectional material (MXD nylon) Vf 50% obtained in Reference Example 6 as the skin material. A molded body was obtained. The bending property was evaluated about the obtained molded object using the above-mentioned method.

[実施例3]
コア材として参考例2で得たランダムマット基材(ナイロン6)Vf40%、スキン材として参考例9で得られた一方向材(6Tナイロン)Vf50%を用い、成形温度を320℃とした以外は実施例1と同様の方法で成形体を得た。得られた成形体について上述の方法を用いて曲げ特性を評価した。
[Example 3]
Random mat base material (nylon 6) Vf 40% obtained in Reference Example 2 was used as the core material, and the unidirectional material (6T nylon) Vf 50% obtained in Reference Example 9 was used as the skin material, except that the molding temperature was 320 ° C. Obtained a molded body in the same manner as in Example 1. The bending property was evaluated about the obtained molded object using the above-mentioned method.

[実施例4]
コア材として参考例3で得たランダムマット基材(ナイロン66)Vf40%、スキン材として参考例9で得られた一方向材(6Tナイロン)Vf50%を用い、実施例3と同様の方法で成形体を得た。得られた成形体について上述の方法を用いて曲げ特性を評価した。
[Example 4]
In the same manner as in Example 3, the random mat base material (nylon 66) Vf 40% obtained in Reference Example 3 was used as the core material, and the unidirectional material (6T nylon) Vf 50% obtained in Reference Example 9 was used as the skin material. A molded body was obtained. The bending property was evaluated about the obtained molded object using the above-mentioned method.

[実施例5]
コア材として参考例5で得たランダムマット基材(MXDナイロン)Vf20%、スキン材として参考例6で得られた一方向材(MXDナイロン)Vf50%を用い、実施例1と同様の方法で成形体を得た。得られた成形体について上述の方法を用いて曲げ特性を評価した。
[Example 5]
In the same manner as in Example 1, using the random mat substrate (MXD nylon) Vf 20% obtained in Reference Example 5 as the core material and the unidirectional material (MXD nylon) Vf 50% obtained in Reference Example 6 as the skin material. A molded body was obtained. The bending property was evaluated about the obtained molded object using the above-mentioned method.

[実施例6]
コア材として参考例4で得たランダムマット基材(MXDナイロン)Vf40%、スキン材として参考例7で得られた一方向材(MXDナイロン)Vf70%を用い、実施例1と同様の方法で成形体を得た。得られた成形体について上述の方法を用いて曲げ特性を評価した。
[Example 6]
In the same manner as in Example 1, using the random mat substrate (MXD nylon) Vf 40% obtained in Reference Example 4 as the core material and the unidirectional material (MXD nylon) Vf 70% obtained in Reference Example 7 as the skin material. A molded body was obtained. The bending property was evaluated about the obtained molded object using the above-mentioned method.

[実施例7]
コア材として参考例4で得たランダムマット基材(MXDナイロン)Vf40%を、スキン材として参考例6で得られた一方向材(MXDナイロン)Vf50%を用いた。まず、ランダムマット基材(ナイロン6)を幅30cm×長さ50cmのサイズに切り出し、10枚分重ねあわせた。その下面のみに一方向材(MXDナイロン)を4層ずつ貼り合わせた。貼り合わせる際は、300℃に加熱したハンダゴテを用い、樹脂を溶着して固定した。それぞれの材料の厚みは、一方向材(上面側)、ランダムマット基材、一方向材(下面側)でそれぞれ、0mm、2.00mm、0.08mmとなる。300℃に加熱したプレス装置にて、2.0MPaにて5分間加熱し、t=約2.16mmの成形体を得た。得られた成形体について、[複合成形体成形板の曲げ物性測定方法]の項に示した方法を用いて曲げ特性を評価した。その際、一方向材を張り合わせていない面に圧子が接する形で評価した。
[Example 7]
Random mat base material (MXD nylon) Vf 40% obtained in Reference Example 4 was used as the core material, and unidirectional material (MXD nylon) Vf 50% obtained in Reference Example 6 was used as the skin material. First, a random mat base material (nylon 6) was cut into a size of 30 cm wide × 50 cm long and overlapped by 10 sheets. Four layers of unidirectional material (MXD nylon) were bonded to only the lower surface. At the time of bonding, a soldering iron heated to 300 ° C. was used to weld and fix the resin. The thicknesses of the respective materials are 0 mm, 2.00 mm, and 0.08 mm for the unidirectional material (upper surface side), the random mat base material, and the unidirectional material (lower surface side), respectively. A press apparatus heated to 300 ° C. was heated at 2.0 MPa for 5 minutes to obtain a molded article having t = 2.16 mm. About the obtained molded object, the bending characteristic was evaluated using the method shown in the section of [Measurement method of bending properties of composite molded object molded plate]. At that time, the evaluation was performed in such a manner that the indenter was in contact with the surface on which the unidirectional material was not bonded.

[実施例8]
一方向材(MXDナイロン)の貼り付けを8層とした以外は、実施例7と同様の方法で成形体を得た。得られた成形体について上述の方法を用いて曲げ特性を評価した。
[Example 8]
A molded body was obtained in the same manner as in Example 7, except that the unidirectional material (MXD nylon) was bonded to 8 layers. The bending property was evaluated about the obtained molded object using the above-mentioned method.

[実施例9]
コア材として参考例4で得たランダムマット基材(MXDナイロン)Vf40%を、スキン材として参考例6で得られた一方向材(MXDナイロン)Vf50%を用いた。まず、ランダムマット基材(ナイロン6)を幅30cm×長さ50cmのサイズに切り出し、10枚分重ねあわせた。その上面のみに一方向材(MXDナイロン)を4層ずつ貼り合わせた。貼り合わせる際は、300℃に加熱したハンダゴテを用い、樹脂を溶着して固定した。それぞれの材料の厚みは、一方向材(上面側)、ランダムマット基材、一方向材(下面側)でそれぞれ、0.08mm、2.00mm、0mmとなる。300℃に加熱したプレス装置にて、2.0MPaにて5分間加熱し、t=約2.08mmの成形体を得た。得られた成形体について上述の方法を用いて曲げ特性を評価した。その際、一方向材を張り合わせた面に圧子が接する形で評価した。
[Example 9]
Random mat base material (MXD nylon) Vf 40% obtained in Reference Example 4 was used as the core material, and unidirectional material (MXD nylon) Vf 50% obtained in Reference Example 6 was used as the skin material. First, a random mat base material (nylon 6) was cut into a size of 30 cm wide × 50 cm long and overlapped by 10 sheets. Four layers of unidirectional material (MXD nylon) were bonded to only the upper surface. At the time of bonding, a soldering iron heated to 300 ° C. was used to weld and fix the resin. The thicknesses of the respective materials are 0.08 mm, 2.00 mm, and 0 mm for the unidirectional material (upper surface side), the random mat base material, and the unidirectional material (lower surface side), respectively. A press apparatus heated to 300 ° C. was heated at 2.0 MPa for 5 minutes to obtain a molded article having t = about 2.08 mm. The bending property was evaluated about the obtained molded object using the above-mentioned method. At that time, the evaluation was performed in such a manner that the indenter was in contact with the surface on which the unidirectional material was laminated.

[実施例10]
一方向材(MXDナイロン)の貼り付けを8層とした以外は、実施例9と同様の方法で成形体を得た。得られた成形体について上述の方法を用いて曲げ特性を評価した。
[Example 10]
A molded body was obtained in the same manner as in Example 9 except that the unidirectional material (MXD nylon) was bonded to 8 layers. The bending property was evaluated about the obtained molded object using the above-mentioned method.

[実施例11]
コア材として参考例4で得たランダムマット基材(MXDナイロン)Vf40%を、スキン材として参考例6で得られた一方向材(MXDナイロン)Vf50%を用いた。まず、ランダムマット基材(ナイロン6)を幅30cm×長さ50cmのサイズに切り出し、10枚分重ねあわせた。次のその上下に一方向材(MXDナイロン)をそれぞれ8層ずつ貼り合わせた。貼り合わせる際は、300℃に加熱したハンダゴテを用い、樹脂を溶着して固定した。それぞれの材料の厚みは、一方向材(上面側)、ランダムマット基材、一方向材(下面側)でそれぞれ、0.15mm、2.00mm、0.15mmとなる。300℃に加熱したプレス装置にて、2.0MPaにて5分間加熱し、t=約2.30mmの成形体を得た。得られた成形体について上述の方法を用いて曲げ特性を評価した。その際、一方向材を張り合わせていない面に圧子が接する形で評価した。
[Example 11]
Random mat base material (MXD nylon) Vf 40% obtained in Reference Example 4 was used as the core material, and unidirectional material (MXD nylon) Vf 50% obtained in Reference Example 6 was used as the skin material. First, a random mat base material (nylon 6) was cut into a size of 30 cm wide × 50 cm long and overlapped by 10 sheets. Next, 8 layers of unidirectional material (MXD nylon) were bonded to the upper and lower sides. At the time of bonding, a soldering iron heated to 300 ° C. was used to weld and fix the resin. The thicknesses of the respective materials are 0.15 mm, 2.00 mm, and 0.15 mm for the unidirectional material (upper surface side), the random mat base material, and the unidirectional material (lower surface side), respectively. In a press apparatus heated to 300 ° C., it was heated at 2.0 MPa for 5 minutes to obtain a molded product having t = about 2.30 mm. The bending property was evaluated about the obtained molded object using the above-mentioned method. At that time, the evaluation was performed in such a manner that the indenter was in contact with the surface on which the unidirectional material was not bonded.

[実施例12]
一方向材(MXDナイロン)の貼り付けを上下それぞれ16層とした以外は、実施例11と同様の方法で成形体を得た。得られた成形体について上述の方法を用いて曲げ特性を評価した。
[Example 12]
A molded body was obtained in the same manner as in Example 11 except that the unidirectional material (MXD nylon) was attached to the upper and lower layers in 16 layers. The bending property was evaluated about the obtained molded object using the above-mentioned method.

[実施例13]
一方向材(MXDナイロン)の貼り付けを上下それぞれ32層とした以外は、実施例11と同様の方法で成形体を得た。得られた成形体について上述の方法を用いて曲げ特性を評価した。
[Example 13]
A molded body was obtained in the same manner as in Example 11 except that the unidirectional material (MXD nylon) was attached to upper and lower 32 layers. The bending property was evaluated about the obtained molded object using the above-mentioned method.

[実施例14]
コア材として参考例2で得たランダムマット基材(ナイロン6)Vf40%、スキン材として参考例10で得られた一方向材(MXDナイロン、ナイロン6 ブレンド比率20:80)Vf50%を用い、実施例1と同様の方法で成形体を得た。得られた成形体について上述の方法を用いて曲げ特性を評価した。
[Example 14]
Using the random mat base material (nylon 6) Vf 40% obtained in Reference Example 2 as the core material and the unidirectional material (MXD nylon, nylon 6 blend ratio 20:80) Vf 50% obtained in Reference Example 10 as the skin material, A molded body was obtained in the same manner as in Example 1. The bending property was evaluated about the obtained molded object using the above-mentioned method.

[実施例15]
スキン材として参考例11で得られた一方向材(MXDナイロン、ナイロン6 ブレンド比率80:20)Vf50%を用いた以外は実施例14と同様の方法で成形体を得た。得られた成形体について上述の方法を用いて曲げ特性を評価した。
[Example 15]
A molded body was obtained in the same manner as in Example 14 except that the unidirectional material (MXD nylon, nylon 6 blend ratio 80:20) Vf 50% obtained in Reference Example 11 was used as the skin material. The bending property was evaluated about the obtained molded object using the above-mentioned method.

[比較例1]
コア材として参考例2で得たランダムマット基材(ナイロン6)Vf40%、スキン材として参考例9で得られた一方向材(ナイロン6T)Vf50%を用い、実施例1と同様の方法で成形体を得た。得られた成形体について上述の方法を用いて曲げ特性を評価した。
[Comparative Example 1]
In the same manner as in Example 1, using the random mat base material (nylon 6) Vf 40% obtained in Reference Example 2 as the core material and the unidirectional material (nylon 6T) Vf 50% obtained in Reference Example 9 as the skin material. A molded body was obtained. The bending property was evaluated about the obtained molded object using the above-mentioned method.

[比較例2]
参考例2で得たランダムマット基材(ナイロン6)Vf40%を10枚分重ねあわせた。300℃に加熱したプレス装置にて、2.0MPaにて5分間加熱し、t=約2.00mmの成形体を得た。得られた成形体について上述の方法を用いて曲げ特性を評価した。
[Comparative Example 2]
Ten random mat substrates (nylon 6) Vf 40% obtained in Reference Example 2 were overlapped. A press apparatus heated to 300 ° C. was heated at 2.0 MPa for 5 minutes to obtain a molded product having t = about 2.00 mm. The bending property was evaluated about the obtained molded object using the above-mentioned method.

[比較例3]
参考例3で得たランダムマット基材(ナイロン66)Vf40%を用い、比較例2と同様の方法で成形体を得た。得られた成形体について上述の方法を用いて曲げ特性を評価した。
[Comparative Example 3]
Using the random mat substrate (nylon 66) Vf 40% obtained in Reference Example 3, a molded product was obtained in the same manner as in Comparative Example 2. The bending property was evaluated about the obtained molded object using the above-mentioned method.

実施例1〜15及び比較例1〜3の結果を表1に示す。

Figure 2013010255
The results of Examples 1 to 15 and Comparative Examples 1 to 3 are shown in Table 1.
Figure 2013010255

[実施例16]
コア材として参考例2で得たランダムマット基材(ナイロン6)Vf40%を、スキン材として参考例6で得られた一方向材(MXDナイロン)Vf50%を用いた。まず、ランダムマット基材(ナイロン6)を幅50cm×長さ50cmのサイズに切り出し、10枚分重ねあわせた。その両面に上記の一方向材を4層ずつ貼り合わせた。貼り合わせる際は、300℃に加熱したハンダゴテを用い、樹脂を溶着して固定した。それぞれの材料の厚みは、一方向材(上面側)、ランダムマット基材、一方向材(下面側)でそれぞれ、0.08mm、2.00mm、0.08mmとなる。300℃に加熱したプレス装置にて、2.0MPaにて5分間加熱し、t=約2.16mmの成形体を得た。得られたサンドイッチ板を赤外線オーブンにて240℃まで予備加熱を行い、金型温度80℃に温度調節した図1に記載の製品の断面形状を有する上下一対からなる金型へ沿わせ、コールドプレスにて30秒間加圧保持後、厚さ2.16mmの成形品を取り出した。成形品は材料の割れやシワの発生が無く、良好な炭素繊維複合材料成形体を得ることが出来た。
[Example 16]
The random mat substrate (nylon 6) Vf 40% obtained in Reference Example 2 was used as the core material, and the unidirectional material (MXD nylon) Vf 50% obtained in Reference Example 6 was used as the skin material. First, a random mat substrate (nylon 6) was cut into a size of 50 cm in width and 50 cm in length, and 10 sheets were stacked. Four layers of the above-mentioned unidirectional material were bonded to both sides. At the time of bonding, a soldering iron heated to 300 ° C. was used to weld and fix the resin. The thicknesses of the respective materials are 0.08 mm, 2.00 mm, and 0.08 mm for the unidirectional material (upper surface side), the random mat base material, and the unidirectional material (lower surface side), respectively. A press apparatus heated to 300 ° C. was heated at 2.0 MPa for 5 minutes to obtain a molded article having t = 2.16 mm. The obtained sandwich plate is preheated to 240 ° C. in an infrared oven, and adjusted to a mold temperature of 80 ° C., and is placed along a pair of upper and lower molds having the cross-sectional shape of the product shown in FIG. Then, the molded product having a thickness of 2.16 mm was taken out. The molded article was free from material cracking and wrinkling, and a good carbon fiber composite material molded body could be obtained.

Claims (4)

繊維長10〜100mmの強化繊維と熱可塑性樹脂(A)とから構成され、該熱可塑性樹脂(A)の存在量が強化繊維100重量部に対し10〜1000重量部であり、強化繊維が実質的に2次元ランダムに配向したランダムマット基材と、
該ランダムマット基材の少なくとも片面に設けられ、一方向に引き揃えられた強化繊維に半芳香族ポリアミドを含有する熱可塑性樹脂(B)が含浸されてなる一方向材と、
からなる複合材料。
It is composed of a reinforcing fiber having a fiber length of 10 to 100 mm and a thermoplastic resin (A), the abundance of the thermoplastic resin (A) is 10 to 1000 parts by weight with respect to 100 parts by weight of the reinforcing fiber, and the reinforcing fiber is substantially A random mat base material randomly oriented two-dimensionally,
A unidirectional material obtained by impregnating a thermoplastic resin (B) containing a semi-aromatic polyamide into reinforcing fibers provided on at least one surface of the random mat base material and aligned in one direction;
A composite material consisting of
前記熱可塑性樹脂(A)が、脂肪族ポリアミド及び半芳香族ポリアミドからなる群から選ばれる少なくとも1種を含む、請求項1記載の複合材料。   The composite material according to claim 1, wherein the thermoplastic resin (A) contains at least one selected from the group consisting of aliphatic polyamides and semi-aromatic polyamides. 前記熱可塑性樹脂(B)における前記半芳香族ポリアミドが、MXDナイロン及び6Tナイロンからなる群から選ばれる少なくとも1種である請求項1又は2記載の複合材料。   The composite material according to claim 1 or 2, wherein the semi-aromatic polyamide in the thermoplastic resin (B) is at least one selected from the group consisting of MXD nylon and 6T nylon. プレス成形により得られる請求項1〜3のいずれか記載の複合材料。   The composite material according to claim 1, which is obtained by press molding.
JP2011144426A 2011-06-29 2011-06-29 Thermoplastic resin composite material Withdrawn JP2013010255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011144426A JP2013010255A (en) 2011-06-29 2011-06-29 Thermoplastic resin composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011144426A JP2013010255A (en) 2011-06-29 2011-06-29 Thermoplastic resin composite material

Publications (1)

Publication Number Publication Date
JP2013010255A true JP2013010255A (en) 2013-01-17

Family

ID=47684590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011144426A Withdrawn JP2013010255A (en) 2011-06-29 2011-06-29 Thermoplastic resin composite material

Country Status (1)

Country Link
JP (1) JP2013010255A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015020020A1 (en) 2013-08-06 2015-02-12 三菱瓦斯化学株式会社 Polyimide resin composition, and (polyimide resin)-fiber composite material
JP5749868B1 (en) * 2014-08-28 2015-07-15 帝人株式会社 Composite material containing unidirectional continuous fiber and thermoplastic resin
KR20170002690A (en) 2015-03-19 2017-01-06 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Polyimide resin
KR20170027859A (en) 2015-03-19 2017-03-10 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Polyimide resin

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015020020A1 (en) 2013-08-06 2015-02-12 三菱瓦斯化学株式会社 Polyimide resin composition, and (polyimide resin)-fiber composite material
US10093789B2 (en) 2013-08-06 2018-10-09 Mitsubishi Gas Chemical Company, Inc. Polyimide resin composition, and (polyimide resin)-fiber composite material
KR20160040183A (en) 2013-08-06 2016-04-12 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Polyimide resin composition, and (polyimide resin)-fiber composite material
WO2016031005A1 (en) * 2014-08-28 2016-03-03 帝人株式会社 Composite material comprising unidirectional continuous fibers and thermoplastic resin
CN105385183A (en) * 2014-08-28 2016-03-09 帝人株式会社 Composite material including unidirectional continuous fibers and thermoplastic resin
KR20160026747A (en) * 2014-08-28 2016-03-09 데이진 가부시키가이샤 Composite material including unidirectional continuous fibers and thermoplastic resin
EP2990185A1 (en) 2014-08-28 2016-03-02 Teijin Limited Composite material including unidirectional continuous fibers thermoplastic resin
JP5749868B1 (en) * 2014-08-28 2015-07-15 帝人株式会社 Composite material containing unidirectional continuous fiber and thermoplastic resin
CN105385183B (en) * 2014-08-28 2019-05-31 帝人株式会社 Composite material comprising unidirectional continuous fiber and thermoplastic resin
US10889070B2 (en) 2014-08-28 2021-01-12 Teijin Limited Composite material including unidirectional continuous fibers and thermoplastic resin
KR102404545B1 (en) * 2014-08-28 2022-06-02 데이진 가부시키가이샤 Composite material including unidirectional continuous fibers and thermoplastic resin
KR20170002690A (en) 2015-03-19 2017-01-06 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Polyimide resin
KR20170027859A (en) 2015-03-19 2017-03-10 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Polyimide resin
US9873767B2 (en) 2015-03-19 2018-01-23 Mitsubishi Gas Chemical Company, Inc. Polyimide resin
US10174167B2 (en) 2015-03-19 2019-01-08 Mitsubishi Gas Chemical Company, Inc. Polyimide resin

Similar Documents

Publication Publication Date Title
JP4789940B2 (en) Isotropic fiber reinforced thermoplastic resin sheet, method for producing the same and molded plate
JP5926947B2 (en) Fiber-reinforced resin molded body and vehicle interior material using the same
JP2011241338A (en) Carbon fiber composite material
JP6699986B2 (en) Preform and method for manufacturing integrated sheet material
JP5551386B2 (en) Fiber / resin composite sheet and FRP molded body
US9193840B2 (en) Carbon fiber composite material
JP6965957B2 (en) Laminated base material, its manufacturing method, and carbon fiber reinforced resin base material
KR101233813B1 (en) Thermoplastic organic fiber, method for preparing the same, fiber composite board using the same and method for preparing the board
JP2013208725A (en) Carbon fiber-reinforced thermoplastic resin laminated body and method of producing the same
JP5851767B2 (en) Fiber reinforced substrate
JP6087545B2 (en) Fiber reinforced plastic molding substrate
KR20150092078A (en) Articles including high melt flow index resins
US8829103B2 (en) Carbon fiber composite material
JP2013189634A (en) Fiber-reinforced composite material and manufacturing method therefor
JP2007253573A (en) Hybrid composite material excellent in surface smoothness, and its molding method
JP6801321B2 (en) Laminated base material for rib molding
JP5932576B2 (en) Fiber reinforced plastic molding substrate
CN107002365B (en) Carbon fiber felt, blank, sheet material, and molded article
JP2013010255A (en) Thermoplastic resin composite material
JP2013221040A (en) Chopped strand prepreg, fiber reinforced thermoplastic resin sheet, molded plate using the sheet, and method for manufacturing fiber reinforced thermoplastic resin sheet
JP6224092B2 (en) Honeycomb core structure
JP2013049751A (en) Fiber reinforcement substrate
JP2013203836A (en) Carbon fiber composite molded article, carbon fiber sandwich material, and automotive floor pan containing the carbon fiber composite molded article
JP2014113715A (en) Molded article, and method for producing the same
JP2018062119A (en) Carbon fiber-reinforced plastic laminate and method for producing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140902