JP2018062119A - Carbon fiber-reinforced plastic laminate and method for producing the same - Google Patents
Carbon fiber-reinforced plastic laminate and method for producing the same Download PDFInfo
- Publication number
- JP2018062119A JP2018062119A JP2016201369A JP2016201369A JP2018062119A JP 2018062119 A JP2018062119 A JP 2018062119A JP 2016201369 A JP2016201369 A JP 2016201369A JP 2016201369 A JP2016201369 A JP 2016201369A JP 2018062119 A JP2018062119 A JP 2018062119A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- fiber
- reinforced plastic
- resin
- thermoplastic resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- 239000004918 carbon fiber reinforced polymer Substances 0.000 title 1
- 229920002430 Fibre-reinforced plastic Polymers 0.000 claims abstract description 94
- 239000011151 fibre-reinforced plastic Substances 0.000 claims abstract description 94
- 239000000835 fiber Substances 0.000 claims abstract description 71
- 239000012783 reinforcing fiber Substances 0.000 claims abstract description 48
- 229920005992 thermoplastic resin Polymers 0.000 claims abstract description 40
- 239000000463 material Substances 0.000 claims abstract description 32
- 239000000945 filler Substances 0.000 claims abstract description 11
- 239000010410 layer Substances 0.000 claims description 158
- 238000000465 moulding Methods 0.000 claims description 9
- 230000009477 glass transition Effects 0.000 claims description 6
- 238000002844 melting Methods 0.000 claims description 6
- 230000008018 melting Effects 0.000 claims description 6
- 229920006038 crystalline resin Polymers 0.000 claims description 5
- 239000002344 surface layer Substances 0.000 claims description 5
- 229920006127 amorphous resin Polymers 0.000 claims description 4
- 238000001746 injection moulding Methods 0.000 claims description 4
- 239000002990 reinforced plastic Substances 0.000 claims description 3
- 239000004033 plastic Substances 0.000 abstract 1
- 229920003023 plastic Polymers 0.000 abstract 1
- 230000003014 reinforcing effect Effects 0.000 abstract 1
- 229920005989 resin Polymers 0.000 description 43
- 239000011347 resin Substances 0.000 description 43
- 238000000034 method Methods 0.000 description 15
- 229920000049 Carbon (fiber) Polymers 0.000 description 14
- 239000004917 carbon fiber Substances 0.000 description 14
- 239000011159 matrix material Substances 0.000 description 14
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 10
- -1 polypropylene Polymers 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 7
- 238000001816 cooling Methods 0.000 description 6
- 229920002292 Nylon 6 Polymers 0.000 description 5
- 229920002302 Nylon 6,6 Polymers 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 229920005672 polyolefin resin Polymers 0.000 description 5
- 238000007493 shaping process Methods 0.000 description 5
- 229920001169 thermoplastic Polymers 0.000 description 5
- 239000004416 thermosoftening plastic Substances 0.000 description 5
- 239000004743 Polypropylene Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 229920006015 heat resistant resin Polymers 0.000 description 4
- 229920005668 polycarbonate resin Polymers 0.000 description 4
- 239000004431 polycarbonate resin Substances 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- 239000004696 Poly ether ether ketone Substances 0.000 description 3
- 239000004734 Polyphenylene sulfide Substances 0.000 description 3
- 229920000297 Rayon Polymers 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 238000005470 impregnation Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229920006122 polyamide resin Polymers 0.000 description 3
- 229920001707 polybutylene terephthalate Polymers 0.000 description 3
- 239000004645 polyester resin Substances 0.000 description 3
- 229920001225 polyester resin Polymers 0.000 description 3
- 229920002530 polyetherether ketone Polymers 0.000 description 3
- 229920000069 polyphenylene sulfide Polymers 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000004420 Iupilon Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- JUPQTSLXMOCDHR-UHFFFAOYSA-N benzene-1,4-diol;bis(4-fluorophenyl)methanone Chemical compound OC1=CC=C(O)C=C1.C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 JUPQTSLXMOCDHR-UHFFFAOYSA-N 0.000 description 2
- 238000000748 compression moulding Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 239000012784 inorganic fiber Substances 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 1
- 229920003354 Modic® Polymers 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- 229920000007 Nylon MXD6 Polymers 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 229920013629 Torelina Polymers 0.000 description 1
- 239000004742 Torelina™ Substances 0.000 description 1
- 229920000690 Tyvek Polymers 0.000 description 1
- 229920004695 VICTREX™ PEEK Polymers 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000011231 conductive filler Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000012765 fibrous filler Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Moulding By Coating Moulds (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
- Reinforced Plastic Materials (AREA)
- Laminated Bodies (AREA)
Abstract
Description
本発明は、耐熱性を有する繊維強化プラスチック積層体およびその製造方法に関する。 The present invention relates to a fiber-reinforced plastic laminate having heat resistance and a method for producing the same.
航空機部材、自動車部材、風力発電用風車部材、スポーツ用具等の様々な分野において、シート状の繊維強化プラスチックをスタンピング成形により賦形した構造材が広く用いられている。該繊維強化プラスチックは、例えば、強化繊維に熱可塑性樹脂を含浸したプリプレグ基材が複数枚積層されて一体化されることで形成される。 In various fields such as aircraft members, automobile members, wind turbine members for wind power generation, and sports equipment, structural materials formed by stamping molding sheet-like fiber reinforced plastics are widely used. The fiber reinforced plastic is formed, for example, by stacking and integrating a plurality of prepreg base materials in which a reinforced fiber is impregnated with a thermoplastic resin.
プリプレグ基材としては、例えば、連続した繊維長の長い強化繊維を一方向に引き揃えたものに、熱可塑性樹脂を含浸してシート状にしたもの知られている。このような連続した長い強化繊維を用いたプリプレグ基材で形成した繊維強化プラスチックでは、優れた機械物性を有する構造材を製造できる。 As a prepreg base material, for example, a sheet in which continuous reinforcing fibers having a long fiber length are aligned in one direction and impregnated with a thermoplastic resin is known. With a fiber reinforced plastic formed with a prepreg base material using such continuous long reinforcing fibers, a structural material having excellent mechanical properties can be produced.
しかし、該繊維強化プラスチックでは、連続した強化繊維であるがゆえに賦形時の流動性が低く、3次元形状等の複雑な形状に賦形することが難しい。そのため、該繊維強化プラスチックを用いる場合、製造する構造材は主として平面形状に近いものに限られる。 However, since the fiber reinforced plastic is a continuous reinforcing fiber, the fluidity at the time of shaping is low, and it is difficult to form into a complicated shape such as a three-dimensional shape. Therefore, when using this fiber reinforced plastic, the structural material to manufacture is mainly limited to the thing close | similar to a planar shape.
繊維強化プラスチックを3次元形状等の複雑な形状に賦形して構造材を製造する場合には、賦形時の流動性を確保するために、一般に繊維長が100mm以下の比較的短い強化繊維が用いられる。しかし、強化繊維の繊維長が短くなると、賦形後の構造材の機械物性が低下しやすい。そのため繊維長が短い強化繊維を用いつつ、機械物性の高い構造材が得られるプリプレグ基材が提案されている(特許文献1)。 When manufacturing a structural material by shaping a fiber reinforced plastic into a complicated shape such as a three-dimensional shape, a relatively short reinforcing fiber generally having a fiber length of 100 mm or less is required to ensure fluidity during shaping. Is used. However, when the fiber length of the reinforcing fiber is shortened, the mechanical properties of the structural material after shaping tend to be lowered. Therefore, a prepreg base material has been proposed in which a structural material having high mechanical properties is obtained while using reinforcing fibers having a short fiber length (Patent Document 1).
このような熱可塑性繊維強化プラスチックを自動車部材の塗装工程などの高い温度に一定時間さらされる部材に用いる場合には、マトリックス樹脂に耐熱性の高いものが用いられる。例えば特許文献2には高耐熱樹脂をマトリックスとすることで塗装の耐熱性を持つ熱可塑性繊維強化プラスチックが示されている。 When such a thermoplastic fiber reinforced plastic is used for a member exposed to a high temperature for a certain period of time, such as a coating process of an automobile member, a matrix resin having high heat resistance is used. For example, Patent Document 2 discloses a thermoplastic fiber reinforced plastic having heat resistance of coating by using a high heat resistant resin as a matrix.
しかしながら、繊維強化プラスチックの耐熱性を向上のために、耐熱性の高いマトリックス樹脂を用いるためには、プリプレグ基材を製造する温度を高く設定する必要がある。強化繊維中に樹脂を含浸させることは、一般的に難易度が高く、さらに高温化が必要な場合には、加熱用の設備コストが増加するだけでなく、高温による樹脂の分解が生じやすく、逆に分解を抑制すべく温度上昇を抑制した場合には加熱不足による含浸不良が生じる。 However, in order to use a highly heat-resistant matrix resin in order to improve the heat resistance of the fiber reinforced plastic, it is necessary to set a high temperature for producing the prepreg base material. It is generally difficult to impregnate the resin in the reinforcing fiber, and when a higher temperature is required, not only the heating equipment cost is increased, but the resin is easily decomposed due to the high temperature, Conversely, when the temperature rise is suppressed to suppress decomposition, impregnation failure occurs due to insufficient heating.
本発明は、上記のプリプレグ基材の製造時の問題を生じることなく、耐熱性を持つ熱可塑性繊維強化プラスチックを提供することを目的とする。 An object of this invention is to provide the thermoplastic fiber reinforced plastic which has heat resistance, without producing the problem at the time of manufacture of said prepreg base material.
本発明者等は、上記課題を解決すべく鋭意検討した結果、本発明を完成するに至った。即ち本発明の要旨は、下記の[1]〜[9]に存する。 As a result of intensive studies to solve the above problems, the present inventors have completed the present invention. That is, the gist of the present invention resides in the following [1] to [9].
[1] 少なくとも2層構造を有する積層体であって、下記A層と下記B層を有し、B層の軟化点がA層より高く、かつB層の軟化点が230℃以上、300℃以下である、繊維強化プラスチック積層体。
A層:強化繊維と熱可塑性樹脂とを含む繊維強化プラスチックあって、前記強化繊維の平均繊維長が10mm以上である。
B層:熱可塑性樹脂、もしくはフィラー含有物と熱可塑性樹脂とを含む強化プラスチックである。
軟化点:層を構成する熱可塑性樹脂が結晶性樹脂の場合は、当該熱可塑性樹脂の融点が当該層の軟化点であり、層を構成する熱可塑性樹脂が非晶性樹脂の場合は、当該熱可塑性樹脂のガラス転移点が当該層の軟化点である。
[1] A laminate having at least a two-layer structure, comprising the following A layer and the following B layer, the softening point of the B layer being higher than that of the A layer, and the softening point of the B layer being 230 ° C. or higher and 300 ° C. A fiber reinforced plastic laminate which is the following.
Layer A: a fiber-reinforced plastic containing reinforcing fibers and a thermoplastic resin, wherein the average fiber length of the reinforcing fibers is 10 mm or more.
B layer: a thermoplastic resin, or a reinforced plastic containing a filler-containing material and a thermoplastic resin.
Softening point: When the thermoplastic resin constituting the layer is a crystalline resin, the melting point of the thermoplastic resin is the softening point of the layer, and when the thermoplastic resin constituting the layer is an amorphous resin, The glass transition point of the thermoplastic resin is the softening point of the layer.
[2] 繊維強化プラスチック積層体の全厚みに対して、B層の厚みの割合が0.5以上、0.9以下である、上記[1]に記載の繊維強化プラスチック積層体。
[3] A層における強化繊維の繊維体積含有率が10〜60体積%である、上記[1]または[2]に記載の繊維強化プラスチック積層体。
[4] A層中の強化繊維の平均繊維長が10〜50mmであり、繊維がランダム配向をしている、上記[1]〜[3]のいずれかに記載の繊維強化プラスチック積層体。
[5] A層が、一方向連続繊維プリプレグ複数枚の積層体である、上記[1]〜[3]のいずれかに記載の繊維強化プラスチック積層体。
[2] The fiber-reinforced plastic laminate according to the above [1], wherein the ratio of the thickness of the B layer is 0.5 or more and 0.9 or less with respect to the total thickness of the fiber-reinforced plastic laminate.
[3] The fiber-reinforced plastic laminate according to the above [1] or [2], wherein the fiber volume content of the reinforcing fibers in the A layer is 10 to 60% by volume.
[4] The fiber-reinforced plastic laminate according to any one of [1] to [3], wherein the average fiber length of the reinforcing fibers in the A layer is 10 to 50 mm, and the fibers are randomly oriented.
[5] The fiber-reinforced plastic laminate according to any one of [1] to [3], wherein the A layer is a laminate of a plurality of unidirectional continuous fiber prepregs.
[6] B層のフィラーが、平均繊維長10mm以下の繊維状である、上記[1]〜[5]のいずれかに記載の繊維強化プラスチック積層体。
[7] 少なくとも3層構造を有する積層体であって、両表面層にA層を有し、両表面層の間に下記B層を有する、上記[1]〜[6]のいずれかに記載の繊維強化プラスチック積層体。
[8] A層とB層を、プレス成形で一体化する、上記[1]〜[7]のいずれかに記載の繊維強化プラスチック積層体の製造方法。
[9] A層とB層を、射出成形で一体化する、上記[1]〜〔7〕のいずれかに記載の繊維強化プラスチック積層体の製造方法。
[6] The fiber-reinforced plastic laminate according to any one of the above [1] to [5], wherein the filler of the B layer is a fiber having an average fiber length of 10 mm or less.
[7] The laminate according to any one of the above [1] to [6], which is a laminate having at least a three-layer structure, having A layers on both surface layers, and having the following B layers between both surface layers. Fiber reinforced plastic laminate.
[8] The method for producing a fiber-reinforced plastic laminate according to any one of [1] to [7], wherein the A layer and the B layer are integrated by press molding.
[9] The method for producing a fiber-reinforced plastic laminate according to any one of [1] to [7], wherein the A layer and the B layer are integrated by injection molding.
熱分解や含浸不良などの製造時の問題を生じることなく優れた耐熱性もつ繊維強化プラスチック積層体を提供することができる。 It is possible to provide a fiber-reinforced plastic laminate having excellent heat resistance without causing problems during production such as thermal decomposition and impregnation failure.
本発明の繊維強化プラスチック積層体は、少なくとも2層構造を有する積層体であって、下記A層と下記B層を有し、B層の軟化点がA層より高く、かつB層の軟化点が230℃以上、300℃以下である、繊維強化プラスチック積層体である。 The fiber reinforced plastic laminate of the present invention is a laminate having at least a two-layer structure, and includes the following A layer and the following B layer, the softening point of the B layer being higher than that of the A layer, and the softening point of the B layer. Is a fiber reinforced plastic laminate having a temperature of 230 ° C. or higher and 300 ° C. or lower.
B層の軟化点がA層よりも高いことにより、生産性を維持しつつ低コストで耐熱性をもつ繊維強化繊維強化プラスチック積層体を得ることができる。 When the softening point of the B layer is higher than that of the A layer, it is possible to obtain a fiber reinforced fiber reinforced plastic laminate having heat resistance at low cost while maintaining productivity.
また、成形後の塗装時の焼付温度に耐えるためには、軟化点は230℃以上が好ましく、かつ優れた成形加工性を維持するために軟化点は300℃以下が好ましい。さらにはこの軟化点は230℃以上280℃以下が好ましい。
<A層>
強化繊維と熱可塑性樹脂とを含む繊維強化プラスチックあって、前記強化繊維の平均繊維長が10mm以上である。
<B層>
熱可塑性樹脂、もしくはフィラー含有物と熱可塑性樹脂とを含む強化プラスチックである。
Moreover, in order to endure the baking temperature at the time of coating after molding, the softening point is preferably 230 ° C. or higher, and the softening point is preferably 300 ° C. or lower in order to maintain excellent molding processability. Further, the softening point is preferably 230 ° C. or higher and 280 ° C. or lower.
<A layer>
A fiber reinforced plastic including reinforced fibers and a thermoplastic resin, wherein the average fiber length of the reinforced fibers is 10 mm or more.
<B layer>
It is a reinforced plastic containing a thermoplastic resin or a filler-containing material and a thermoplastic resin.
なお、本発明における層の軟化点とは、層を構成する熱可塑性樹脂が結晶性樹脂の場合は、当該熱可塑性樹脂の融点が当該層の軟化点であり、層を構成する熱可塑性樹脂が非晶性樹脂の場合は、当該熱可塑性樹脂のガラス転移点が当該層の軟化点である。 In the present invention, the softening point of the layer means that when the thermoplastic resin constituting the layer is a crystalline resin, the melting point of the thermoplastic resin is the softening point of the layer, and the thermoplastic resin constituting the layer is In the case of an amorphous resin, the glass transition point of the thermoplastic resin is the softening point of the layer.
本発明の繊維強化プラスチック積層体は2層以上の層構造を有するものであれば良いが、強度の観点から、3層以上の層構造を有することが好ましい。また、3層以上の層構造を有する場合は、強度の観点から、両表面層にA層を有し、当該両表面の間にB層を有することが好ましい。また、強度や耐熱性の関連から、繊維強化プラスチック積層体の全厚みに対して、B層の厚みの割合が0.5以上、0.9以下であることが好ましい。 The fiber reinforced plastic laminate of the present invention may have any layer structure of two or more layers, but preferably has a layer structure of three or more layers from the viewpoint of strength. Moreover, when it has a layer structure of three or more layers, it is preferable from a viewpoint of intensity | strength to have A layer in both surface layers, and to have B layer between the said both surfaces. Moreover, it is preferable that the ratio of the thickness of B layer is 0.5 or more and 0.9 or less with respect to the total thickness of a fiber reinforced plastic laminated body from a relation of strength or heat resistance.
(強化繊維)
A層に用いられる強化繊維としては、特に限定されず、例えば、無機繊維、有機繊維、金属繊維、又はこれらを組み合わせたハイブリッド構成の強化繊維が使用できる。無機繊維としては、炭素繊維、黒鉛繊維、炭化珪素繊維、アルミナ繊維、タングステンカーバイド繊維、ボロン繊維、ガラス繊維等が挙げられる。有機繊維としては、アラミド繊維、高密度ポリエチレン繊維、その他一般のナイロン繊維、ポリエステル繊維等が挙げられる。金属繊維としては、ステンレス、鉄等の繊維が挙げられ、また金属を被覆した炭素繊維でもよい。これらの中では、最終成形物である構造材の強度等の機械物性を考慮すると、炭素繊維が好ましい。
(Reinforced fiber)
The reinforcing fibers used in the A layer are not particularly limited, and for example, reinforcing fibers having inorganic fibers, organic fibers, metal fibers, or a hybrid structure in which these are combined can be used. Examples of the inorganic fiber include carbon fiber, graphite fiber, silicon carbide fiber, alumina fiber, tungsten carbide fiber, boron fiber, and glass fiber. Examples of the organic fibers include aramid fibers, high density polyethylene fibers, other general nylon fibers, and polyester fibers. Examples of metal fibers include fibers such as stainless steel and iron, and carbon fibers coated with metal may be used. Among these, carbon fibers are preferable in view of mechanical properties such as strength of the structural material that is the final molded product.
炭素繊維としては、特に限定されず、ポリアクリロニトリル(PAN)系炭素繊維、PICH系炭素繊維等が挙げられる。好ましい炭素繊維は、JIS R7601(1986)に準じて測定したストランド引張強度が1.0GPa以上9.0GPa以下で、かつストランド引張弾性率が150GPa以上1000GPa以下の炭素繊維である。より好ましい炭素繊維は、JIS R7601(1986)に準じて測定したストランド引張強度が1.5GPa以上9.0GPa以下で、かつストランド引張弾性率が200GPa以上1000GPa以下の炭素繊維である。 The carbon fiber is not particularly limited, and examples thereof include polyacrylonitrile (PAN) -based carbon fiber and PICH-based carbon fiber. A preferred carbon fiber is a carbon fiber having a strand tensile strength measured in accordance with JIS R7601 (1986) of 1.0 GPa or more and 9.0 GPa or less and a strand tensile elastic modulus of 150 GPa or more and 1000 GPa or less. More preferred carbon fibers are carbon fibers having a strand tensile strength of 1.5 GPa or more and 9.0 GPa or less measured according to JIS R7601 (1986) and a strand tensile modulus of 200 GPa or more and 1000 GPa or less.
A層に用いられる強化繊維の平均繊維長は、10mm以上が好ましい。スタンピング成形に用いられる場合には10〜100mmが好ましく、10〜50mmがさらに好ましく、20〜50mmが特に好ましい。一般に強化繊維が長いほど機械物性に優れた構造材が得られるが、特にスタンピング成形時において、流動性が低下するために複雑な3次元形状の構造材が得られにくくなる。強化繊維の平均繊維長が上限値以下であれば、賦形時に優れた流動性が得られ、強化繊維とマトリックス樹脂が流動しやすい。そのため、リブやボス等の複雑な3次元形状の構造材を得ることが容易である。また、強化繊維の平均繊維長が下限値以上であれば、機械物性に優れた構造材を製造できる。 The average fiber length of the reinforcing fibers used in the A layer is preferably 10 mm or more. When used for stamping molding, 10 to 100 mm is preferable, 10 to 50 mm is more preferable, and 20 to 50 mm is particularly preferable. In general, the longer the reinforcing fiber, the more structural material excellent in mechanical properties can be obtained. However, the fluidity is lowered particularly during stamping molding, so that it becomes difficult to obtain a structural material having a complicated three-dimensional shape. When the average fiber length of the reinforcing fibers is not more than the upper limit value, excellent fluidity can be obtained at the time of shaping, and the reinforcing fibers and the matrix resin can easily flow. Therefore, it is easy to obtain a complicated three-dimensional structural material such as a rib or a boss. Moreover, if the average fiber length of the reinforcing fibers is not less than the lower limit value, a structural material having excellent mechanical properties can be produced.
繊維強化プラスチック中に強化繊維の平均繊維長は、以下の方法で測定できる。繊維強化プラスチック中のマトリックス樹脂を焼き飛ばして、強化繊維のみを取り出し、該強化繊維の繊維長をノギス等で測定する。測定は無作為に選択した100本の強化繊維について行い、平均繊維長はそれらの質量平均として算出する。
強化繊維の平均繊維直径は、1〜50μmが好ましく、5〜20μmがより好ましい。
The average fiber length of the reinforcing fiber in the fiber reinforced plastic can be measured by the following method. The matrix resin in the fiber reinforced plastic is burned off, and only the reinforcing fiber is taken out, and the fiber length of the reinforcing fiber is measured with a caliper or the like. The measurement is performed on 100 randomly selected reinforcing fibers, and the average fiber length is calculated as the mass average of them.
1-50 micrometers is preferable and, as for the average fiber diameter of a reinforced fiber, 5-20 micrometers is more preferable.
(A層中の強化繊維の繊維体積含有率)
本発明の繊維強化プラスチック中の強化繊維の繊維体積含有率(Vf)は、10〜60体積%が好ましく、15〜55体積%がより好ましく、20〜50体積%がさらに好ましい。強化繊維のVfが上限値以下であれば、靭性低下による界面強度の低下が生じにくく、また賦型時の流動性も低下しにくい。強化繊維のVfが下限値以上であれば、繊維強化プラスチックとして必要とされる機械物性が得られやすい。
(Fiber volume content of reinforcing fibers in layer A)
10-60 volume% is preferable, as for the fiber volume content (Vf) of the reinforced fiber in the fiber reinforced plastics of this invention, 15-55 volume% is more preferable, and 20-50 volume% is further more preferable. If the Vf of the reinforcing fiber is not more than the upper limit value, the interface strength is not easily lowered due to a decrease in toughness, and the fluidity at the time of molding is hardly lowered. If Vf of the reinforcing fiber is equal to or higher than the lower limit value, mechanical properties required as a fiber reinforced plastic are easily obtained.
なお、繊維強化プラスチックのVf値は、繊維強化プラスチックにおける強化繊維、マトリックス樹脂、及びボイド(気体)を除く添加剤等のその他の成分の合計体積に対する強化繊維の割合を意味する。JIS K7075に基づいて測定されたVf値は繊維強化プラスチック中のボイドの存在量により変動する値であるため、本発明においてはボイドの存在量に依存しない繊維体積含有率を採用する。 The Vf value of the fiber reinforced plastic means the ratio of the reinforced fiber to the total volume of the reinforced fiber, the matrix resin, and other components such as additives excluding voids (gas) in the fiber reinforced plastic. Since the Vf value measured based on JIS K7075 varies depending on the amount of voids present in the fiber reinforced plastic, the present invention employs a fiber volume content that does not depend on the amount of voids present.
(A層のマトリックス樹脂)
A層に用いられるマトリックス樹脂は、1種を単独で使用してもよく、2種以上を併用してもよい。マトリックス樹脂としては、熱可塑性樹脂が好ましい。熱可塑性樹脂は一般的に熱硬化性樹脂よりも靱性値が高いため、マトリックス樹脂として熱可塑性樹脂を用いることで、強度、特に耐衝撃性に優れた構造材が得られやすくなる。また、熱可塑性樹脂は化学反応を伴うことなく冷却固化により形状が定まる。そのため、熱可塑性樹脂を用いる場合は短時間成形が可能となり、繊維強化プラスチックや構造材の生産性に優れる。
(Matrix resin for layer A)
The matrix resin used for the A layer may be used alone or in combination of two or more. As the matrix resin, a thermoplastic resin is preferable. Since a thermoplastic resin generally has a higher toughness value than a thermosetting resin, it is easy to obtain a structural material having excellent strength, particularly impact resistance, by using a thermoplastic resin as a matrix resin. In addition, the shape of the thermoplastic resin is determined by cooling and solidification without chemical reaction. Therefore, when a thermoplastic resin is used, molding can be performed in a short time, and the productivity of fiber reinforced plastic and structural material is excellent.
熱可塑性樹脂としては、特に限定されず、ポリアミド樹脂(ナイロン6、ナイロン66、ナイロン12、ナイロンMXD6等)、ポリオレフィン樹脂(低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン等)、変性ポリオレフィン樹脂(変性ポリプロピレン樹脂等)、ポリエステル樹脂(ポリエチレンテレフタレート、ポリブチレンテレフタレート等)、ポリカーボネート樹脂、ポリアミドイミド樹脂、ポリフェニレンオキシド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルイミド樹脂、ポリスチレン樹脂、ABS樹脂、ポリフェニレンサルファイド樹脂、液晶ポリエステル樹脂、アクリロニトリルとスチレンの共重合体、ナイロン6とナイロン66の共重合体等が挙げられる。変性ポリオレフィン樹脂としては、例えば、マレイン酸等の酸によりポリオレフィン樹脂を変性した樹脂等が挙げられる。熱可塑性樹脂は、1種を単独で使用してもよく、2種以上を併用してもよい。 The thermoplastic resin is not particularly limited, and polyamide resin (nylon 6, nylon 66, nylon 12, nylon MXD6, etc.), polyolefin resin (low density polyethylene, high density polyethylene, polypropylene, etc.), modified polyolefin resin (modified polypropylene resin) Etc.), polyester resin (polyethylene terephthalate, polybutylene terephthalate, etc.), polycarbonate resin, polyamideimide resin, polyphenylene oxide resin, polysulfone resin, polyethersulfone resin, polyetheretherketone resin, polyetherimide resin, polystyrene resin, ABS resin , Polyphenylene sulfide resin, liquid crystal polyester resin, copolymer of acrylonitrile and styrene, copolymer of nylon 6 and nylon 66, and the like. . Examples of the modified polyolefin resin include a resin obtained by modifying a polyolefin resin with an acid such as maleic acid. A thermoplastic resin may be used individually by 1 type, and may use 2 or more types together.
A層に用いられる熱可塑性樹脂としては、強化繊維との接着性、強化繊維への含浸性及び熱可塑性樹脂の原料コストの各々のバランスの点から、ポリオレフィン樹脂、変性ポリプロピレン樹脂、ポリアミド樹脂、ポリエステル樹脂及びポリカーボネート樹脂からなる群から選ばれる少なくとも1種を含むことが好ましい。 The thermoplastic resin used for the A layer is a polyolefin resin, a modified polypropylene resin, a polyamide resin, a polyester from the viewpoint of the balance between the adhesion to the reinforcing fiber, the impregnation into the reinforcing fiber, and the raw material cost of the thermoplastic resin. It is preferable to include at least one selected from the group consisting of a resin and a polycarbonate resin.
(A層)
A層の具体例としては、A層中の強化繊維の平均繊維長が10〜50mmであり、繊維がランダム配向をしているランダム材や、一方向連続繊維プリプレグ複数枚の積層体等が挙げられる。
(A layer)
Specific examples of the A layer include a random material in which the average fiber length of the reinforcing fibers in the A layer is 10 to 50 mm and the fibers are randomly oriented, a laminate of a plurality of unidirectional continuous fiber prepregs, and the like. It is done.
(B層の熱可塑性樹脂)
B層に用いられる熱可塑性樹脂としては、A層より耐熱性に優れることが好ましい。結晶性樹脂の場合は、塗装時の焼付温度に耐えるためには軟化点は230℃以上が好ましく、かつ優れた成形加工性を維持するために軟化点は300℃以下が好ましい。さらにはこの軟化点は230℃以上280℃以下が好ましい。このような軟化点を持つ熱可塑性樹脂としては、ポリアミド樹脂、ポリエステル樹脂及びポリフェニレンサルファイド樹脂からなる群から選ばれる少なくとも1種を含むことが好ましい。
(B layer thermoplastic resin)
The thermoplastic resin used for the B layer is preferably superior in heat resistance to the A layer. In the case of a crystalline resin, the softening point is preferably 230 ° C. or higher in order to withstand the baking temperature during coating, and the softening point is preferably 300 ° C. or lower in order to maintain excellent moldability. Further, the softening point is preferably 230 ° C. or higher and 280 ° C. or lower. The thermoplastic resin having such a softening point preferably includes at least one selected from the group consisting of polyamide resin, polyester resin, and polyphenylene sulfide resin.
(B層に含有されるフィラー)
B層はフィラーを含有していなくてもよいが、強度や耐熱性の観点から、フィラーを含有してもよい。
B層に含有されるフィラーとしては、ガラス繊維や炭素繊維等を挙げることができる。製造が容易であるとの観点から、B層に含有されるフィラーは、平均繊維長が10mm以下の繊維状であることが好ましく、平均繊維長が0.01〜5.0mmの繊維状であることがより好ましい。
(Filler contained in layer B)
The layer B may not contain a filler, but may contain a filler from the viewpoint of strength and heat resistance.
Examples of the filler contained in the B layer include glass fiber and carbon fiber. From the viewpoint of easy production, the filler contained in the B layer is preferably fibrous with an average fiber length of 10 mm or less, and is fibrous with an average fiber length of 0.01 to 5.0 mm. It is more preferable.
(他の成分)
本発明のB層には、目的の構造材の要求特性に応じて、難燃剤、耐候性改良剤、酸化防止剤、熱安定剤、紫外線吸収剤、可塑剤、滑剤、着色剤、相溶化剤、非繊維状フィラー、導電性フィラー、離型剤、界面活性剤等の添加剤が配合されていてもよい。なおこれらは、A層に配合されていてもよい。
(Other ingredients)
In the B layer of the present invention, a flame retardant, a weather resistance improver, an antioxidant, a heat stabilizer, an ultraviolet absorber, a plasticizer, a lubricant, a colorant, a compatibilizer depending on the required characteristics of the target structural material In addition, additives such as non-fibrous fillers, conductive fillers, mold release agents, and surfactants may be blended. In addition, these may be mix | blended with A layer.
(一方向配向繊維強化プラスチックの製造方法)
本発明の一方向配向繊維強化プラスチックの製造方法としては、下記工程(i)〜(iii)を有する方法が好ましい。
工程(i):一方向に引き揃えた強化繊維を開繊し、均一目付のシート状の強化繊維束を形成する工程。
工程(ii):フィルム状のマトリックス樹脂でこのシート状の強化繊維束を両側から挟み込み、加熱加圧ロールを通して、マトリックス樹脂を含浸する工程。
工程(iii):前記マトリックス樹脂を含浸した繊維強化束を冷却固化することにより、一方向配向繊維強化プラスチックを得る工程。
(Method for producing unidirectionally oriented fiber reinforced plastic)
As a manufacturing method of the unidirectionally oriented fiber reinforced plastic of the present invention, a method having the following steps (i) to (iii) is preferable.
Step (i): A step of opening the reinforcing fibers aligned in one direction to form a sheet-like reinforcing fiber bundle having a uniform basis weight.
Step (ii): A step of sandwiching the sheet-like reinforcing fiber bundle from both sides with a film-like matrix resin and impregnating the matrix resin through a heating and pressing roll.
Step (iii): A step of obtaining a unidirectionally oriented fiber reinforced plastic by cooling and solidifying the fiber reinforced bundle impregnated with the matrix resin.
(ランダム配向繊維強化プラスチックの製造方法)
本発明のランダム配向繊維強化プラスチックの製造方法としては、下記工程(iv)〜(vi)を有する方法が好ましい。
工程(iv):前記工程(i)〜(iii)で得られた一方向配向繊維強化プラスチックの繊維軸に交差するように切込みが形成されたプリプレグ基材を含む材料を得る工程。
工程(v):前記材料の走行方向に対する直交方向に略均一に加圧する加圧装置を用い、前記強化繊維の繊維軸の方向が前記走行方向と交差するようにして、前記材料を一方向に走行させつつ、前記マトリックス樹脂の融点以上、又は融点を有しないときはガラス転移温度以上の温度Tに加熱した状態で加圧する工程。
工程(vi):前記加圧装置で加圧された前記材料を冷却してランダム配向繊維強化プラスチックを得る工程。
(Production method of randomly oriented fiber reinforced plastic)
As a method for producing the randomly oriented fiber-reinforced plastic of the present invention, a method having the following steps (iv) to (vi) is preferable.
Step (iv): A step of obtaining a material including a prepreg base material in which cuts are formed so as to intersect the fiber axis of the unidirectionally oriented fiber reinforced plastic obtained in the steps (i) to (iii).
Step (v): Using a pressurizing device that presses substantially uniformly in a direction orthogonal to the traveling direction of the material, the direction of the fiber axis of the reinforcing fiber intersects the traveling direction, and the material is unidirectional The process of pressurizing in the state heated to the temperature T more than a glass transition temperature, when not having melting | fusing point or more of the said matrix resin, making it run.
Step (vi): A step of cooling the material pressed by the pressing device to obtain a randomly oriented fiber reinforced plastic.
(繊維強化プラスチック積層体の製造方法)
上記により得られた繊維強化プラスチック(A層)と耐熱樹脂(B層)を積層することにより繊維強化プラスチック積層体を得るが、その製造方法としては下記のいずれかの方法で行うことが好ましい。いずれの場合もA層の前記繊維強化プラスチックは1枚で利用しても良いし、適当な厚みになるように積層して用いても良い。
(1)耐熱樹脂(B層)をあらかじめシート状に加工しておき、前記繊維強化プラスチック(A層)と積層したものを加熱プレスにより積層する方法。
(2)前記繊維強化プラスチック(A層)を金型内に仕込み、射出成形により残りの空間に耐熱樹脂(B層)を充填させることにより積層体得る方法。
繊維強化プラスチック積層体を評価する方法としては、以下の方法が挙げられる。
(Manufacturing method of fiber reinforced plastic laminate)
A fiber reinforced plastic laminate is obtained by laminating the fiber reinforced plastic (A layer) and heat-resistant resin (B layer) obtained as described above, and the production method is preferably any of the following methods. In any case, the fiber reinforced plastic of the A layer may be used alone or may be used by being laminated so as to have an appropriate thickness.
(1) A method in which a heat-resistant resin (B layer) is processed into a sheet shape in advance and laminated with the fiber reinforced plastic (A layer) by a hot press.
(2) A method of obtaining a laminate by charging the fiber reinforced plastic (A layer) into a mold and filling the remaining space with a heat resistant resin (B layer) by injection molding.
Examples of methods for evaluating the fiber reinforced plastic laminate include the following methods.
(軟化点の測定方法)
結晶性樹脂の場合、軟化点とは融点と同義であり、JISK7121に記載の融解ピーク温度(Tpm)とする。また非晶性樹脂の場合には、軟化点とはガラス転移温度と同義であり、JISK7121に記載の中間点ガラス転移温度(Tmg)とする。
(Measurement method of softening point)
In the case of a crystalline resin, the softening point is synonymous with the melting point, and is the melting peak temperature (Tpm) described in JIS K7121. In the case of an amorphous resin, the softening point is synonymous with the glass transition temperature, and is defined as the intermediate point glass transition temperature (Tmg) described in JIS K7121.
(荷重たわみ温度の測定方法)
JISK7191−2に記載の方法のうち、フラットワイズでの試験とする。試験片サイズは、長さ80mm、幅10mm、厚さ4mmとし、荷重はB法である0.45MPa、規定たわみ量0.34mmに到達する温度を、荷重たわみ温度と定義する。
(Measurement method of deflection temperature under load)
Among the methods described in JISK7191-2, a flat-wise test is used. The test piece size is 80 mm in length, 10 mm in width, and 4 mm in thickness. The temperature at which the load reaches 0.45 MPa as defined by the B method and the specified deflection amount is 0.34 mm is defined as the deflection temperature under load.
(耐熱性の評価)
前記荷重たわみ温度が200℃以上であるものを耐熱性がある繊維強化プラスチック積層体と判断する。
(Evaluation of heat resistance)
Those having a deflection temperature under load of 200 ° C. or higher are judged to be heat-resistant fiber-reinforced plastic laminates.
以下、実施例により本発明をさらに具体的に説明するが、本発明は、実施例に記載の発明に限定されるものではない。
[実施例1]
(A層)
一方向に炭素繊維(三菱レイヨン社製、製品名:パイロフィル(登録商標)TR−50S15L)を平面状に引き揃えて目付が72.0g/m2となる強化繊維シートとし、強化繊維シートの両面を、ポリアミド6樹脂(宇部興産社製、製品名:1013B)からなる目付が45.6g/m2のフィルムで挟み、280℃に加熱したカレンダロールを通して、熱可塑性樹脂を繊維シートに含浸し、繊維体積含有率(Vf)が33%、厚さが、0.12mmの一方向繊維強化プラスチックを得た。得られた一方向繊維強化プラスチックを300mm角に切り出し、8層を疑似等方([0/45/90/−45]s)に重ねた。
EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited to the invention as described in an Example.
[Example 1]
(A layer)
Carbon fiber (product name: Pyrofil (registered trademark) TR-50S15L manufactured by Mitsubishi Rayon Co., Ltd.) is aligned in one direction to form a reinforcing fiber sheet having a basis weight of 72.0 g / m 2, and both sides of the reinforcing fiber sheet Is sandwiched between films of polyamide 6 resin (manufactured by Ube Industries, product name: 1013B) having a basis weight of 45.6 g / m 2 , and a fiber sheet is impregnated with a thermoplastic sheet through a calender roll heated to 280 ° C., A unidirectional fiber reinforced plastic having a fiber volume content (Vf) of 33% and a thickness of 0.12 mm was obtained. The obtained unidirectional fiber reinforced plastic was cut into a 300 mm square, and 8 layers were stacked in a pseudo isotropic manner ([0/45/90 / −45] s).
(B層)
次いでポリアミド66樹脂(デュポン社製、製品名:ザイデル101F)のペレット250gを300mm角で深さ5.0mmの印籠型内に配置して加熱し圧縮成形機(神藤金属工業所製、製品名:SFA−50HH0)を用いて、高温側プレスにて280℃、油圧指示0MPaの条件で7分間保持し、次いで同一温度にて油圧指示2MPa(プレス圧0.55MPa)の条件で7分間保持後、型を冷却プレスに移動させ、80℃,油圧指示5MPa(プレス圧1.38MPa)にて3分間保持することで約2mm厚みのシート状成形品を得た。
(B layer)
Next, 250 g of pellets of polyamide 66 resin (manufactured by DuPont, product name: Seidel 101F) are placed in a 300 mm square and 5.0 mm deep stamping mold and heated to form a compression molding machine (manufactured by Shinto Metal Industry, product name: SFA-50HH0), held at high temperature side press at 280 ° C. and hydraulic pressure instruction of 0 MPa for 7 minutes, then held at the same temperature for hydraulic pressure instruction of 2 MPa (press pressure 0.55 MPa) for 7 minutes, The mold was moved to a cooling press and held for 3 minutes at 80 ° C. and a hydraulic pressure instruction of 5 MPa (press pressure 1.38 MPa) to obtain a sheet-like molded product having a thickness of about 2 mm.
このようにして得たA層とB層をA層/B層/A層の順に重ね、前記型内に配置して加熱し前記圧縮成形機を用いて、高温側プレスにて280℃、油圧指示0MPaの条件で7分間保持し、次いで同一温度にて油圧指示2MPa(プレス圧0.55MPa)の条件で7分間保持後、型を冷却プレスに移動させ、80℃,油圧指示5MPa(プレス圧1.38MPa)にて3分間保持することで、厚み4mmの繊維強化プラスチック積層体を得た。 The A layer and the B layer thus obtained were stacked in the order of A layer / B layer / A layer, placed in the mold, heated, and heated at 280 ° C. with a high temperature side press using the compression molding machine. Hold for 7 minutes under the condition of 0MPa, then hold at the same temperature for 7 minutes under the condition of hydraulic pressure indication 2MPa (press pressure 0.55MPa), then move the mold to the cooling press, 80 ℃, hydraulic pressure indication 5MPa (press pressure 1.38 MPa) for 3 minutes to obtain a fiber reinforced plastic laminate having a thickness of 4 mm.
[評価結果]
A層の軟化温度は220℃、B層の軟化温度は263℃、またA層とB層を積層した繊維強化プラスチック積層体の荷重たわみ温度は200℃と十分に高いものであった。
[Evaluation results]
The softening temperature of the A layer was 220 ° C., the softening temperature of the B layer was 263 ° C., and the deflection temperature under load of the fiber reinforced plastic laminate in which the A layer and the B layer were laminated was sufficiently high at 200 ° C.
[実施例2]
(A層)
実施例1に記載の方法で得られた一方向繊維強化プラスチックを、300mm(繊維軸に対して0゜方向)×900mm(繊維軸に対して90゜方向)の矩形に切り出し、その後カッティングプロッター(レザック製L−2500カッティングプロッター)を用いて、切込みと強化繊維の繊維軸となす角度φの絶対値が45゜、強化繊維の繊維長Lが25mmになるように、一方向繊維強化プラスチックに強化繊維を切断する深さの切込みを入れ、切込入り一方向繊維強化プラスチックを得た。該切込入りプリプレグ基材を強化繊維の繊維軸が同一方向となるように4枚積層してプリプレグ積層体を得た。該プリプレグ積層体を、上下のベルトが1.0m/分で駆動する図2で例示したダブルベルト式加熱加圧機に、プレスロールの軸線方向に対してプリプレグ積層体における強化繊維の繊維軸の方向がなす角度θが0°となるように、投入した。該ダブルベルト式加熱加圧機では、ロール温度310℃、ロール直下のベルト間クリアランス300μmの条件の2段式のプレスロールにより、プリプレグ積層体を加熱して熱可塑性樹脂を溶融させた状態で加圧した。その後、ロール温度30℃、ロール直下のベルト間クリアランス300μmの条件の1段式の温水ロールを備えた1.5mの冷却区間を通過させ、熱可塑性樹脂を固化させて繊維強化プラスチックを得た。
[Example 2]
(A layer)
The unidirectional fiber reinforced plastic obtained by the method described in Example 1 was cut into a rectangle of 300 mm (0 ° direction with respect to the fiber axis) × 900 mm (90 ° direction with respect to the fiber axis), and then a cutting plotter ( Rezac L-2500 cutting plotter) is used to reinforce the unidirectional fiber reinforced plastic so that the absolute value of the angle φ between the cut and the fiber axis of the reinforcing fiber is 45 ° and the fiber length L of the reinforcing fiber is 25 mm. A notch having a depth for cutting the fiber was made to obtain a notched unidirectional fiber-reinforced plastic. Four sheets of the prepreg base material with cuts were laminated so that the fiber axes of the reinforcing fibers were in the same direction to obtain a prepreg laminate. The direction of the fiber axis of the reinforcing fiber in the prepreg laminate with respect to the axial direction of the press roll is applied to the double belt type heating and pressing machine illustrated in FIG. 2 in which the upper and lower belts are driven at 1.0 m / min. Was added so that the angle θ formed by In the double belt type heating and pressurizing machine, the prepreg laminate is heated by a two-stage press roll having a roll temperature of 310 ° C. and a belt clearance of 300 μm immediately below the roll to melt the thermoplastic resin. did. After that, a 1.5 m cooling section provided with a one-stage hot water roll having a roll temperature of 30 ° C. and a clearance between belts of 300 μm immediately below the roll was passed, and the thermoplastic resin was solidified to obtain a fiber reinforced plastic.
(B層)
実施例と同様の方法にて2mm厚みのシート状成形品を得た。
このようにして得たA層とB層を、実施例1と同一の方法で積層、加熱プレスして、厚み4mmの繊維強化プラスチック積層体を得た。
(B layer)
A sheet-like molded product having a thickness of 2 mm was obtained in the same manner as in the example.
The A layer and B layer thus obtained were laminated and heated and pressed in the same manner as in Example 1 to obtain a fiber reinforced plastic laminate having a thickness of 4 mm.
[評価結果]
A層の軟化温度は220℃、B層の軟化温度は263℃、A層とB層を積層した繊維強化プラスチック積層体の荷重たわみ温度は200℃と十分に高いものであった。
[Evaluation results]
The softening temperature of the A layer was 220 ° C., the softening temperature of the B layer was 263 ° C., and the deflection temperature under load of the fiber reinforced plastic laminate in which the A layer and the B layer were laminated was sufficiently high, 200 ° C.
[比較例1]
実施例1と同一の方法でA層を得た後、実施例1と同一方法でポリアミド6樹脂(宇部興産社製,製品名:1013B)を用いて2mm厚みのシートを作成した。次いで実施例1と同一の方法で積層、加熱プレスを行い4mm厚みの繊維強化プラスチック積層体を得た。
その結果、A層の軟化温度は220℃、B層の軟化温度は220℃、A層とB層を積層した繊維強化プラスチック積層体の荷重たわみ温度は155℃と不十分であった。
[Comparative Example 1]
After obtaining A layer by the same method as Example 1, the sheet | seat of 2 mm thickness was created using the polyamide 6 resin (the Ube Industries, product name: 1013B) by the same method as Example 1. FIG. Next, lamination and heating press were performed in the same manner as in Example 1 to obtain a fiber reinforced plastic laminate having a thickness of 4 mm.
As a result, the softening temperature of the A layer was 220 ° C., the softening temperature of the B layer was 220 ° C., and the deflection temperature under load of the fiber reinforced plastic laminate in which the A layer and the B layer were laminated was 155 ° C., which was insufficient.
[実施例3]
A層のフィルムにポリカーボネート樹脂(三菱エンジニアリング社製,製品名:ユーピロンH−4000)とポリブチレンテレフタレート樹脂(三菱エンジニアリング社製,製品名:ノバデュラン5010R5)を80:20のブレンド比で混ぜた樹脂を用いた以外は実施例1と全く同一の方法で、A層とB層を得、ついでそれらを積層して加熱プレスを行い、4mm厚みの繊維強化プラスチック積層体を得た。
その結果、A層の軟化温度は222℃、B層の軟化温度は263℃、A層とB層を積層した繊維強化プラスチック積層体の荷重たわみ温度は200℃と十分高いものであった。
[Example 3]
A resin in which polycarbonate resin (product name: Iupilon H-4000, manufactured by Mitsubishi Engineering Co., Ltd.) and polybutylene terephthalate resin (product name: manufactured by Mitsubishi Engineering Corp., product name: NOVADURAN 5010R5) is mixed with the A layer film at a blend ratio of 80:20. Except for the use, the A and B layers were obtained in exactly the same manner as in Example 1, and then they were laminated and heated and pressed to obtain a 4 mm thick fiber reinforced plastic laminate.
As a result, the softening temperature of the A layer was 222 ° C., the softening temperature of the B layer was 263 ° C., and the deflection temperature under load of the fiber reinforced plastic laminate in which the A layer and the B layer were laminated was sufficiently high, 200 ° C.
[比較例2]
A層のフィルムにポリカーボネート樹脂(三菱エンジニアリング社製,製品名:ユーピロンH−4000)とポリブチレンテレフタレート樹脂(三菱エンジニアリング社製,製品名:ノバデュラン5010R5)を80:20のブレンド比で混ぜた樹脂を用いた以外は実施例2と全く同一の方法で、A層とB層を得、ついでそれらを積層して加熱プレスを行い、4mm厚みの繊維強化プラスチック積層体を得た。
その結果A層の軟化温度は222℃、B層の軟化温度は220℃、A層とB層を積層した繊維強化プラスチック積層体の荷重たわみ温度は155℃と不十分であった。
[Comparative Example 2]
A resin in which polycarbonate resin (product name: Iupilon H-4000, manufactured by Mitsubishi Engineering Co., Ltd.) and polybutylene terephthalate resin (product name: manufactured by Mitsubishi Engineering Corp., product name: NOVADURAN 5010R5) is mixed with the A layer film at a blend ratio of 80:20. Except for the use, the A layer and the B layer were obtained in exactly the same manner as in Example 2, and then they were laminated and heated and pressed to obtain a 4 mm thick fiber reinforced plastic laminate.
As a result, the softening temperature of the A layer was 222 ° C., the softening temperature of the B layer was 220 ° C., and the deflection temperature under load of the fiber reinforced plastic laminate in which the A layer and the B layer were laminated was 155 ° C., which was insufficient.
[実施例4]
一方向に炭素繊維(三菱レイヨン社製、製品名:パイロフィル(登録商標)TR−50S15L)を平面状に引き揃えて目付が72.0g/m2となる強化繊維シートとし、強化繊維シートの両面を、変性ポリプロピレン樹脂(三菱化学社製、製品名:モディックP958)からなる目付が36.4g/m2のフィルムで挟み、250℃に加熱したカレンダロールを通して、熱可塑性樹脂を繊維シートに含浸し、繊維体積含有率(Vf)が33%、厚さが、0.12mmの一方向繊維強化プラスチックを得た。得られた一方向繊維強化プラスチックを300mm角に切り出し、4層を疑似等方([0/45/90/−45])に重ねた(A層)。
[Example 4]
Carbon fiber (product name: Pyrofil (registered trademark) TR-50S15L manufactured by Mitsubishi Rayon Co., Ltd.) is aligned in one direction to form a reinforcing fiber sheet having a basis weight of 72.0 g / m 2, and both sides of the reinforcing fiber sheet Is impregnated with a film made of a modified polypropylene resin (product name: Modic P958, manufactured by Mitsubishi Chemical Corporation) with a basis weight of 36.4 g / m 2 , and the fiber sheet is impregnated with a thermoplastic sheet through a calender roll heated to 250 ° C. A fiber volume content (Vf) of 33% and a thickness of 0.12 mm were obtained. The obtained unidirectional fiber-reinforced plastic was cut into a 300 mm square, and four layers were stacked in a pseudo isotropic manner ([0/45/90 / -45]) (A layer).
ついで実施例1と同一の方法ポリアミド66のペレット375gを加熱プレスして、厚み3mmのB層を得た後、実施例1と全く同一の方法でA層/B層/A層の順に積層し、加熱プレスを行い、4mm厚みの繊維強化プラスチック積層体を得た。
その結果A層の軟化温度は165℃、B層の軟化温度は263℃、A層とB層を積層した繊維強化プラスチック積層体の荷重たわみ温度は200℃と十分であった。
Next, the same method as in Example 1 375 g of polyamide 66 pellets were hot-pressed to obtain a B layer having a thickness of 3 mm, and then layered in the order of A layer / B layer / A layer in the same manner as in Example 1. Then, a hot press was performed to obtain a fiber reinforced plastic laminate having a thickness of 4 mm.
As a result, the softening temperature of the A layer was 165 ° C., the softening temperature of the B layer was 263 ° C., and the deflection temperature under load of the fiber reinforced plastic laminate in which the A layer and the B layer were laminated was 200 ° C.
[比較例3]
B層にポリアミド6を用いたいた以外は、実施例4と全く同一の方法で4mm厚みの繊維強化プラスチック積層体を得た。
その結果A層の軟化温度は165℃、B層の軟化温度は220℃、A層とB層を積層した繊維強化プラスチック積層体の荷重たわみ温度は155℃と不十分であった。
[Comparative Example 3]
A fiber-reinforced plastic laminate having a thickness of 4 mm was obtained in the same manner as in Example 4 except that polyamide 6 was used for layer B.
As a result, the softening temperature of the A layer was 165 ° C., the softening temperature of the B layer was 220 ° C., and the deflection temperature under load of the fiber reinforced plastic laminate in which the A layer and the B layer were laminated was 155 ° C., which was insufficient.
[実施例5]
実施例1と同様の方法で一方向配向繊維強化プラスチックを得た後に、加熱プレスを行って1mm厚みの疑似等方積層の繊維強化プラスチックを得た(A層)。その後、その繊維強化プラスチックを100mm×100mmに切り出し、キャビティサイズが100mm×100mm、厚み4mmの射出成形用金型に挿入した。その後、インサートしたA層の片側に樹脂が充填するように、シリンダ温度330℃、金型温度110℃にてPPS樹脂(東レ社製、製品名:トレリナA504X90)を射出成形した。
その結果A層の軟化温度は220℃、B層の軟化温度は278℃、A層とB層を積層した繊維強化プラスチック積層体の荷重たわみ温度は250℃以上で十分に高いものであった。
[Example 5]
After obtaining a unidirectionally oriented fiber reinforced plastic in the same manner as in Example 1, heat pressing was performed to obtain a 1 mm thick pseudo-isotropic laminated fiber reinforced plastic (layer A). Thereafter, the fiber reinforced plastic was cut into 100 mm × 100 mm, and inserted into an injection mold having a cavity size of 100 mm × 100 mm and a thickness of 4 mm. Thereafter, PPS resin (product name: Torelina A504X90, manufactured by Toray Industries, Inc.) was injection molded at a cylinder temperature of 330 ° C. and a mold temperature of 110 ° C. so that the resin was filled on one side of the inserted A layer.
As a result, the softening temperature of the A layer was 220 ° C., the softening temperature of the B layer was 278 ° C., and the deflection temperature under load of the fiber reinforced plastic laminate in which the A layer and the B layer were laminated was 250 ° C. or higher.
[比較例4]
B層の射出樹脂をPEEK樹脂(VICTREX社製、製品名:450G)、シリンダ温度380℃、金型温度150℃に設定した以外は、実施例5と同一の方法で繊維強化プラスチック積層体を得た。しかしながら射出成形の際にPEEK樹脂が高温のために、界面に存在するA層が分解し、評価を行うことができなかった。
[Comparative Example 4]
A fiber reinforced plastic laminate is obtained in the same manner as in Example 5 except that the injection resin of layer B is set to PEEK resin (product name: 450G manufactured by VICTREX), cylinder temperature 380 ° C., mold temperature 150 ° C. It was. However, since the PEEK resin was at a high temperature during injection molding, the A layer existing at the interface was decomposed and evaluation could not be performed.
[比較例5]
(A層)
一方向に炭素繊維(三菱レイヨン社製、製品名:パイロフィル(登録商標)TR−50S15L)を平面状に引き揃えて目付が72.0g/m2となる強化繊維シートとし、強化繊維シートの両面を、ポリアミド66樹脂(デュポン社製、製品名:ザイデル101F)からなる目付が45.6g/m2のフィルムで挟み、280℃に加熱したカレンダロールを通したが、繊維束中に樹脂を十分に含浸することはできなかった。
[Comparative Example 5]
(A layer)
Carbon fiber (product name: Pyrofil (registered trademark) TR-50S15L manufactured by Mitsubishi Rayon Co., Ltd.) is aligned in one direction to form a reinforcing fiber sheet having a basis weight of 72.0 g / m 2, and both sides of the reinforcing fiber sheet Is sandwiched between films of polyamide 66 resin (manufactured by DuPont, product name: Seidel 101F) with a basis weight of 45.6 g / m 2 and passed through a calender roll heated to 280 ° C., but the resin is sufficiently contained in the fiber bundle. Could not be impregnated.
1 ダブルベルト式加熱加圧機
10 プレスロール
12 ベルト
14 IRヒータ
16 温水ロール
18 巻取りロール
20 駆動ロール
22 従動ロール
24 ガイドロール
100 一方向繊維強化プラスチック
110 強化繊維
120 繊維強化プラスチック(A層)
DESCRIPTION OF SYMBOLS 1 Double belt type heat press machine 10 Press roll 12 Belt 14 IR heater 16 Hot water roll 18 Winding roll 20 Drive roll 22 Driven roll 24 Guide roll 100 Unidirectional fiber reinforced plastic 110 Reinforced fiber 120 Fiber reinforced plastic (A layer)
Claims (9)
A層:強化繊維と熱可塑性樹脂とを含む繊維強化プラスチックあって、前記強化繊維の平均繊維長が10mm以上である。
B層:熱可塑性樹脂、もしくはフィラー含有物と熱可塑性樹脂とを含む強化プラスチックである。
軟化点:層を構成する熱可塑性樹脂が結晶性樹脂の場合は、当該熱可塑性樹脂の融点が当該層の軟化点であり、層を構成する熱可塑性樹脂が非晶性樹脂の場合は、当該熱可塑性樹脂のガラス転移点が当該層の軟化点である。 A laminate having at least a two-layer structure, comprising the following A layer and B layer, the softening point of the B layer being higher than that of the A layer, and the softening point of the B layer being 230 ° C. or higher and 300 ° C. or lower. , Fiber reinforced plastic laminate.
Layer A: a fiber-reinforced plastic containing reinforcing fibers and a thermoplastic resin, wherein the average fiber length of the reinforcing fibers is 10 mm or more.
B layer: a thermoplastic resin, or a reinforced plastic containing a filler-containing material and a thermoplastic resin.
Softening point: When the thermoplastic resin constituting the layer is a crystalline resin, the melting point of the thermoplastic resin is the softening point of the layer, and when the thermoplastic resin constituting the layer is an amorphous resin, The glass transition point of the thermoplastic resin is the softening point of the layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016201369A JP7039823B2 (en) | 2016-10-13 | 2016-10-13 | Carbon fiber reinforced plastic laminate and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016201369A JP7039823B2 (en) | 2016-10-13 | 2016-10-13 | Carbon fiber reinforced plastic laminate and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018062119A true JP2018062119A (en) | 2018-04-19 |
JP7039823B2 JP7039823B2 (en) | 2022-03-23 |
Family
ID=61966294
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016201369A Active JP7039823B2 (en) | 2016-10-13 | 2016-10-13 | Carbon fiber reinforced plastic laminate and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7039823B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021059637A (en) * | 2019-10-03 | 2021-04-15 | 宇部興産株式会社 | Polyamide resin film for bonding to prepreg, and laminate |
JP2021173305A (en) * | 2020-04-22 | 2021-11-01 | 積水化学工業株式会社 | Multilayer pipe |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1016069A (en) * | 1996-06-28 | 1998-01-20 | Sekisui Chem Co Ltd | Manufacture of fiber-reinforced thermoplastic resin foam |
JP2002105223A (en) * | 2000-09-29 | 2002-04-10 | Toho Tenax Co Ltd | Paperless prepreg and manufacturing method |
JP2006205436A (en) * | 2005-01-26 | 2006-08-10 | Toray Ind Inc | Fiber reinforced composite material sheet and molded product using it |
JP2008221833A (en) * | 2007-02-15 | 2008-09-25 | Fukui Prefecture | Thermoplastic resin reinforced sheet material, its manufacturing method, and thermoplastic-resin multilayer reinforced sheet material |
JP2012246442A (en) * | 2011-05-30 | 2012-12-13 | Fukui Prefecture | Prepreg sheet material and method for producing the same |
JP2013543803A (en) * | 2010-10-29 | 2013-12-09 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Composite structure with improved heat aging and interlayer bond strength |
JP2014113715A (en) * | 2012-12-07 | 2014-06-26 | Mitsubishi Rayon Co Ltd | Molded article, and method for producing the same |
WO2014162873A1 (en) * | 2013-04-02 | 2014-10-09 | 東レ株式会社 | Sandwich laminate, sandwich structure and unified molded product using same and processes for producing both |
JP2015039842A (en) * | 2013-08-22 | 2015-03-02 | 東レ株式会社 | Fiber-reinforced resin sheet, integrated molding, and method for producing them |
WO2015083707A1 (en) * | 2013-12-03 | 2015-06-11 | 三菱レイヨン株式会社 | Fiber-reinforced resin laminate |
US20160090689A1 (en) * | 2014-09-30 | 2016-03-31 | E I Du Pont De Nemours And Company | Acoustic emission reduction of composites containing semi-aromatic polyamides |
WO2016159365A1 (en) * | 2015-04-02 | 2016-10-06 | 三菱レイヨン株式会社 | Laminated body |
JP2016179627A (en) * | 2015-03-25 | 2016-10-13 | 三菱レイヨン株式会社 | Fiber-reinforced thermoplastic resin laminate |
JP2017114107A (en) * | 2015-05-20 | 2017-06-29 | 王子ホールディングス株式会社 | Fiber-reinforced plastic molded body and base material for fiber-reinforced plastic molded body |
-
2016
- 2016-10-13 JP JP2016201369A patent/JP7039823B2/en active Active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1016069A (en) * | 1996-06-28 | 1998-01-20 | Sekisui Chem Co Ltd | Manufacture of fiber-reinforced thermoplastic resin foam |
JP2002105223A (en) * | 2000-09-29 | 2002-04-10 | Toho Tenax Co Ltd | Paperless prepreg and manufacturing method |
JP2006205436A (en) * | 2005-01-26 | 2006-08-10 | Toray Ind Inc | Fiber reinforced composite material sheet and molded product using it |
JP2008221833A (en) * | 2007-02-15 | 2008-09-25 | Fukui Prefecture | Thermoplastic resin reinforced sheet material, its manufacturing method, and thermoplastic-resin multilayer reinforced sheet material |
JP2013543803A (en) * | 2010-10-29 | 2013-12-09 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Composite structure with improved heat aging and interlayer bond strength |
JP2012246442A (en) * | 2011-05-30 | 2012-12-13 | Fukui Prefecture | Prepreg sheet material and method for producing the same |
JP2014113715A (en) * | 2012-12-07 | 2014-06-26 | Mitsubishi Rayon Co Ltd | Molded article, and method for producing the same |
WO2014162873A1 (en) * | 2013-04-02 | 2014-10-09 | 東レ株式会社 | Sandwich laminate, sandwich structure and unified molded product using same and processes for producing both |
JP2015039842A (en) * | 2013-08-22 | 2015-03-02 | 東レ株式会社 | Fiber-reinforced resin sheet, integrated molding, and method for producing them |
WO2015083707A1 (en) * | 2013-12-03 | 2015-06-11 | 三菱レイヨン株式会社 | Fiber-reinforced resin laminate |
US20160090689A1 (en) * | 2014-09-30 | 2016-03-31 | E I Du Pont De Nemours And Company | Acoustic emission reduction of composites containing semi-aromatic polyamides |
JP2016179627A (en) * | 2015-03-25 | 2016-10-13 | 三菱レイヨン株式会社 | Fiber-reinforced thermoplastic resin laminate |
WO2016159365A1 (en) * | 2015-04-02 | 2016-10-06 | 三菱レイヨン株式会社 | Laminated body |
JP2017114107A (en) * | 2015-05-20 | 2017-06-29 | 王子ホールディングス株式会社 | Fiber-reinforced plastic molded body and base material for fiber-reinforced plastic molded body |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021059637A (en) * | 2019-10-03 | 2021-04-15 | 宇部興産株式会社 | Polyamide resin film for bonding to prepreg, and laminate |
JP7395923B2 (en) | 2019-10-03 | 2023-12-12 | Ube株式会社 | Polyamide resin film and laminate for bonding with prepreg |
JP2021173305A (en) * | 2020-04-22 | 2021-11-01 | 積水化学工業株式会社 | Multilayer pipe |
JP7453840B2 (en) | 2020-04-22 | 2024-03-21 | 積水化学工業株式会社 | multilayer pipe |
Also Published As
Publication number | Publication date |
---|---|
JP7039823B2 (en) | 2022-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4789940B2 (en) | Isotropic fiber reinforced thermoplastic resin sheet, method for producing the same and molded plate | |
JP6161108B2 (en) | Fiber-reinforced composite material and method for producing the same | |
JP5167953B2 (en) | Laminated substrate, fiber reinforced plastic, and production method thereof | |
US11584835B2 (en) | Laminated substrate and method for manufacturing the same | |
JP6245362B2 (en) | Fiber-reinforced composite material molded article and method for producing the same | |
JP5691699B2 (en) | Press molding method and molded body thereof | |
JP5551386B2 (en) | Fiber / resin composite sheet and FRP molded body | |
US20090004460A1 (en) | Nanoparticle-Containing Thermoplastic Composites and Methods of Preparing Same | |
US9193840B2 (en) | Carbon fiber composite material | |
JP2013208725A (en) | Carbon fiber-reinforced thermoplastic resin laminated body and method of producing the same | |
US20160297185A1 (en) | Fiber-reinforced resin laminate | |
TW201545866A (en) | Preform, sheet material, and integrated sheet material | |
WO2019220914A1 (en) | Composite material production method and composite material | |
KR20170112396A (en) | Three Dimensional Fiber-Reinforced Plastics and Manufacturing Method thereof | |
JP2018062119A (en) | Carbon fiber-reinforced plastic laminate and method for producing the same | |
JP2015051630A (en) | Method for producing laminate substrate and laminate substrate | |
JP2014104641A (en) | Laminate substrate and fiber-reinforced composite material | |
JP2016108348A (en) | Laminated base material and method for manufacturing the same | |
JP5395385B2 (en) | Method for producing carbon fiber reinforced thermoplastic resin molded body and carbon fiber reinforced thermoplastic resin molded body | |
JP2013010255A (en) | Thermoplastic resin composite material | |
TW202231739A (en) | Fiber-reinforced resin substrate, preform, integrated molded article, and method for producing fiber-reinforced resin substrate | |
JP2014227610A (en) | Woven fabric made of frp, and molding material obtained by using woven fabric made of frp | |
JP2013203834A (en) | Fiber-reinforced thermoplastic resin sheet and method for producing the same | |
JP2016172346A (en) | Method for producing fiber reinforced plastic and laminated sheet | |
JP2008308626A (en) | Sheet-like fiber-reinforced composite material and production method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190731 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200626 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200714 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200911 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210203 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20210402 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210531 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210824 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211021 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220208 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220221 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7039823 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |