JP2014105245A - Method for producing thermoplastic molding - Google Patents
Method for producing thermoplastic molding Download PDFInfo
- Publication number
- JP2014105245A JP2014105245A JP2012257771A JP2012257771A JP2014105245A JP 2014105245 A JP2014105245 A JP 2014105245A JP 2012257771 A JP2012257771 A JP 2012257771A JP 2012257771 A JP2012257771 A JP 2012257771A JP 2014105245 A JP2014105245 A JP 2014105245A
- Authority
- JP
- Japan
- Prior art keywords
- thermoplastic
- prepreg
- heating
- mpa
- thermoplastic resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Reinforced Plastic Materials (AREA)
Abstract
Description
本発明は、熱可塑性プリプレグを用いた熱可塑性成形体の製造方法に関するものである。 The present invention relates to a method for producing a thermoplastic molded article using a thermoplastic prepreg.
近年、強化繊維材料である炭素繊維は、各種のマトリックス樹脂と複合化され、得られる繊維強化プラスチックは種々の分野・用途に広く利用されるようになってきた。そして、高度の機械的特性や耐熱性等を要求される航空・宇宙分野や、一般産業分野では、従来、マトリックス樹脂として、不飽和ポリエステル樹脂、エポキシ樹脂、ポリイミド樹脂等の熱硬化性樹脂が使用されてきた。しかし、特に航空・宇宙分野では、これらのマトリックス樹脂は、脆く、耐衝撃性に劣るという欠点を有するため、その改善が求められてきた。また、熱硬化性樹脂の場合、これをプリプレグとしたとき、樹脂のライフタイムが短いために保存管理上に問題があること、製品形状に対して追従性が乏しいこと、成形時間が長く生産性が低いこと等の問題もあった。これに対して、熱可塑性樹脂プリプレグの場合は、複合材料としたときの耐衝撃性が優れ、プリプレグの保存管理が容易で、かつ成形時間が短く、成形コスト低減の可能性もある。 In recent years, carbon fibers, which are reinforcing fiber materials, have been compounded with various matrix resins, and the resulting fiber-reinforced plastics have been widely used in various fields and applications. And in the aerospace field and general industrial fields where high mechanical properties and heat resistance are required, conventionally, thermosetting resins such as unsaturated polyester resin, epoxy resin, and polyimide resin have been used as matrix resins. It has been. However, especially in the aerospace field, these matrix resins have the drawbacks of being brittle and inferior in impact resistance, and therefore, improvement has been demanded. In the case of a thermosetting resin, when this is used as a prepreg, there is a problem in storage management due to the short lifetime of the resin, poor followability to the product shape, long molding time and productivity There were also problems such as low. On the other hand, in the case of a thermoplastic resin prepreg, the impact resistance when made into a composite material is excellent, the storage management of the prepreg is easy, the molding time is short, and the molding cost may be reduced.
熱可塑性樹脂をマトリックスとした熱可塑性プリプレグ及びそれらを成形して得られる熱可塑性成形体には、熱可塑性プリプレグ中の炭素繊維の形態及びその配向性の面から次の様なものが存在する。(1)連続性の炭素繊維を使用し、一方向配列繊維シートを作成し、これらに熱可塑性樹脂を加熱含浸させた熱可塑性プリプレグ。かかる熱可塑性プリプレグを用いた熱可塑性成形体は、前記熱可塑性プリプレグは機械物性が等方的であるため、厚み方向繊維軸方向が重ならないように積層させることで、機械強度に優れ、面内等方性を有するという特徴がある。(2)非連続の炭素繊維を使用するものとして、一方向配列ストランドや一方向配列繊維シートに熱可塑性樹脂を加熱含浸させた熱可塑性プリプレグを、例えば25mm〜50mm程度の繊維長に切断した小片の熱可塑性プリプレグがある。かかる熱可塑性プリプレグを用いた成形体の一例として、成形型に小片の熱可塑性プリプレグを自由落下により積層・成形して得る熱可塑性成形体があり、そのような成形体は小片の熱可塑性プリプレグをランダムに積層させているため、機械物性の面内等方性があり、成形性に優れるという特徴がある。
これらのような熱可塑性プリプレグの成形は、従来公知の方法で成形される場合が多く、特にガラス繊維材料と同様の成形条件で成形されているのが実情である。
The thermoplastic prepreg using a thermoplastic resin as a matrix and the thermoplastic molded article obtained by molding them include the following in terms of the form of carbon fibers in the thermoplastic prepreg and the orientation thereof. (1) A thermoplastic prepreg in which continuous carbon fibers are used, unidirectionally aligned fiber sheets are prepared, and these are heated and impregnated with a thermoplastic resin. The thermoplastic molded body using such a thermoplastic prepreg is excellent in mechanical strength and in-plane by laminating the thermoplastic prepreg so that the thickness direction fiber axis direction does not overlap because the thermoplastic physical property is isotropic. It is characterized by having isotropic properties. (2) As a non-continuous carbon fiber, a small piece obtained by cutting a thermoplastic prepreg obtained by heat impregnating a unidirectionally arranged strand or a unidirectionally arranged fiber sheet with a thermoplastic resin into a fiber length of, for example, about 25 mm to 50 mm There is a thermoplastic prepreg. As an example of a molded body using such a thermoplastic prepreg, there is a thermoplastic molded body obtained by laminating and molding small pieces of a thermoplastic prepreg on a mold by free-falling, and such a molded body is a small piece of a thermoplastic prepreg. Since the layers are randomly laminated, the mechanical properties are in-plane isotropic and the moldability is excellent.
Such thermoplastic prepreg is often molded by a conventionally known method, and in particular, it is actually molded under the same molding conditions as the glass fiber material.
例えば、特許文献1には、熱可塑性樹脂と強化繊維からなる繊維強化熱可塑性樹脂シートが提案されている。しかしながら、特許文献1は、強化繊維としてガラス繊維を用いたプリプレグからなる成形板の製造条件の記載はあるが、炭素繊維を用いたプリプレグからなる成形板の製造条件の記載は無い。ガラス繊維は、炭素繊維と比較して繊維径が大きい傾向にあるため、プリプレグを成形せしめて得られる成形品の機械物性と成形時の製造条件との依存が低い傾向にあり、一方、炭素繊維を用いた熱可塑性プリプレグを成形せしめて得られる熱可塑性成形板の製造条件としては、最適とは言えず改善の必要がある。また、熱可塑性プリプレグ含め一般的なプリプレグからなる成形体は、常に製造中に生じてしまうボイドの問題を有しており、ボイドを発生させることなく製造させること、生じたボイドを排除する方法が切望させている。 For example, Patent Document 1 proposes a fiber-reinforced thermoplastic resin sheet made of a thermoplastic resin and reinforcing fibers. However, although patent document 1 has description of the manufacturing conditions of the shaping | molding board which consists of a prepreg using glass fiber as a reinforced fiber, there is no description of the manufacturing conditions of the shaping | molding board which consists of prepregs using carbon fiber. Glass fibers tend to have a larger fiber diameter than carbon fibers, and therefore tend to be less dependent on the mechanical properties of the molded product obtained by molding a prepreg and the manufacturing conditions during molding. The manufacturing conditions of the thermoplastic molded plate obtained by molding a thermoplastic prepreg using the above are not optimal and need to be improved. In addition, molded articles made of general prepregs including thermoplastic prepregs always have the problem of voids that occur during production, and there is a method of producing them without generating voids and eliminating the generated voids. It is anxious.
例えば、特許文献2には、複数本の強化繊維束を一方向に引き揃えた強化繊維シートに熱可塑性樹脂繊維を不織状態で布帛とした熱可塑性樹脂不織布を重ね合わせて加熱しつつ加圧することにより、ボイドが少ない繊維強化熱可塑性樹脂シートを得る手法が提案されている。しかし、本手法は供給する樹脂量を減らすことでボイドの低減を試みた例であり、根本的なボイド解消策とはいえない。即ち、ボイドが残ってしまった場合の対策についての記載は無く、プリプレグ製造時に微小ボイドが残ってしまった場合に、そのようなプリプレグから得られる熱可塑性成形板にもプリプレグ由来の微小ボイドが残る可能性がある。 For example, in Patent Document 2, a thermoplastic fiber nonwoven fabric in which a thermoplastic resin fiber is a nonwoven fabric in a non-woven state is superposed on a reinforcing fiber sheet in which a plurality of reinforcing fiber bundles are aligned in one direction, and pressure is applied while heating. Thus, a technique for obtaining a fiber-reinforced thermoplastic resin sheet with few voids has been proposed. However, this method is an example of trying to reduce voids by reducing the amount of resin to be supplied, and is not a fundamental void elimination measure. That is, there is no description about the countermeasure when a void remains, and when a micro void remains at the time of manufacture of a prepreg, the micro void derived from a prepreg remains also in a thermoplastic molded board obtained from such a prepreg. there is a possibility.
本発明の目的は、熱可塑性プリプレグ成形させる際に生じるプリプレグ由来の微小ボイドを防止することにある。 An object of the present invention is to prevent prepreg-derived microvoids that are generated when thermoplastic prepreg is formed.
本発明が要旨するところは、 複数の炭素繊維をシート状に並べ、熱可塑性樹脂を含浸率が50%〜90%にとなるように含浸させた熱可塑性プリプレグを、以下の(1)〜(3)の工程によって、熱可塑性成形体とする熱可塑性成形体の製造方法。
(1)予熱工程:熱可塑性樹脂の融点よりも、5〜30℃高い温度で、熱可塑性プリプレグを加熱する工程、
(2)熱可塑性樹脂の融点よりも30〜80℃高い温度まで、0.4MPa以上10.0MPa以下の圧力をかけながら熱可塑性プリプレグを加熱する工程、
(3)冷却加圧工程:温度設定を30〜80℃として、0.4MPa以上10.0MPa以下の圧力を熱可塑性プリプレグに加える工程
ここで、含浸率は、熱可塑性プリプレグをポリエステル樹脂(クルツァー社製、製品名:テクノビット4000)に包埋し、断面を耐水ペーパーの番手#200、400、600、800、1000の順に、各番手で5分間研磨後、デジタルマイクロスコープ(キーエンス社製、製品名:VHX−100)を用いて150倍で断面の撮影を行い、撮影した断面の正常部とボイドの面積率を測定し、100%からボイド率を減じることで得られる。
The gist of the present invention is that a thermoplastic prepreg in which a plurality of carbon fibers are arranged in a sheet shape and impregnated with a thermoplastic resin so as to have an impregnation rate of 50% to 90% is obtained by the following (1) to ( A method for producing a thermoplastic molded article obtained by the step 3) as a thermoplastic molded article.
(1) Preheating step: a step of heating the thermoplastic prepreg at a temperature 5 to 30 ° C. higher than the melting point of the thermoplastic resin,
(2) heating the thermoplastic prepreg while applying a pressure of 0.4 MPa or more and 10.0 MPa or less to a temperature 30 to 80 ° C. higher than the melting point of the thermoplastic resin;
(3) Cooling and pressurization step: Step of adding a pressure of 0.4 MPa or more and 10.0 MPa or less to the thermoplastic prepreg with a temperature setting of 30 to 80 ° C. Here, the impregnation ratio is determined by using a thermoplastic resin prepreg with a polyester resin (Kurzer) Manufactured, product name: Technobit 4000), and the cross-sections were polished with water-resistant paper counts # 200, 400, 600, 800, 1000 in order of each count for 5 minutes, and then a digital microscope (manufactured by Keyence Corporation, product) Name: VHX-100) is used to photograph the cross section at 150 times, measure the area ratio of the normal part and void of the photographed cross section, and subtract the void ratio from 100%.
本発明の熱可塑性成形体の製造方法によれば、含浸率が50%〜90%になるように含浸させた熱可塑性プリプレグを特定の成形条件で成形することで、従来残存しやすかった微小ボイドも無く、機械強度の優れた熱可塑性成形板を提供することができる。 According to the method for producing a thermoplastic molded body of the present invention, a fine void that has been easily retained by molding a thermoplastic prepreg impregnated so as to have an impregnation rate of 50% to 90% under specific molding conditions. In addition, a thermoplastic molded plate having excellent mechanical strength can be provided.
本発明の熱可塑性成形体の製造方法に用いることができる熱可塑性プリプレグは、複数の炭素繊維をシート状に並べ、熱可塑性樹脂を含浸させたプリプレグのことを指し、熱可塑性成形板とは、前記熱可塑性プリプレグを(1)予熱工程、(2)加熱加圧工程、(3)冷却加圧工程、からなる成形工程を介して得られる成形板のことを指す。 The thermoplastic prepreg that can be used in the method for producing a thermoplastic molded body of the present invention refers to a prepreg in which a plurality of carbon fibers are arranged in a sheet shape and impregnated with a thermoplastic resin. The thermoplastic prepreg refers to a molded plate obtained through a molding process comprising (1) a preheating process, (2) a heating and pressing process, and (3) a cooling and pressing process.
(熱可塑性樹脂)
本発明の熱可塑性成形体の製造方法に用いることができる熱可塑性樹脂は、ポリプロピレン及びポリプロピレン酸変性物、ポリスルホン、ポリエーテルスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、芳香族又は脂肪族ポリアミド、芳香族ポリエステル、芳香族ポリカーボネート、ポリエーテルイミド、ポリアリーレンオキシド、熱可塑性ポリイミド、ポリアミドイミド、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリエチレン、アクリロニトリルブタジエンスチレンなる群から選ばれた樹脂が挙げられ、単独で使用しても良く2種以上を混合して使用してもよい。用途によっては、熱硬化性樹脂と混合して使用することもできる。特に、耐熱性、弾性率、耐薬品性に優れたポリアミド、ポリプロピレン及びポリプロピレン酸変性物、ポリカーボネートやアクリロニトリルブタジエンスチレン(ABS)樹脂が、特に好ましい。
(Thermoplastic resin)
The thermoplastic resin that can be used in the method for producing the thermoplastic molded article of the present invention includes polypropylene and polypropylene acid-modified products, polysulfone, polyethersulfone, polyetherketone, polyetheretherketone, aromatic or aliphatic polyamide, aromatic Resin selected from the group consisting of aromatic polyester, aromatic polycarbonate, polyetherimide, polyarylene oxide, thermoplastic polyimide, polyamideimide, polybutylene terephthalate, polyethylene terephthalate, polyethylene, acrylonitrile butadiene styrene, and used alone. It is also possible to use a mixture of two or more. Depending on the application, it can be used by mixing with a thermosetting resin. Particularly preferred are polyamides, polypropylenes and polypropylene acid modified products, polycarbonates and acrylonitrile butadiene styrene (ABS) resins, which are excellent in heat resistance, elastic modulus and chemical resistance.
これらの熱可塑性樹脂には、通常用いられる難燃剤、耐候性改良剤、その他酸化防止剤、熱安定剤、紫外線吸収剤、可塑剤、滑剤、着色剤、相溶化剤、充填剤、導電性フィラー、カーボンブラック等を適宜添加してもよい。 These thermoplastic resins include commonly used flame retardants, weather resistance improvers, other antioxidants, heat stabilizers, UV absorbers, plasticizers, lubricants, colorants, compatibilizers, fillers, and conductive fillers. Carbon black or the like may be added as appropriate.
本発明の熱可塑性成形体の製造方法に用いることができる炭素繊維は、撚の有無は問わず、引き揃えに際しては、できるだけ開繊させることが好ましい。 The carbon fibers that can be used in the method for producing the thermoplastic molded article of the present invention are preferably opened as much as possible when they are aligned, regardless of whether or not they are twisted.
本発明の熱可塑性成形体の製造方法に用いることができる熱可塑性プリプレグの製造方法は、特に限定されず従来公知の方法をとることができ、例えば、直接溶融した熱可塑性樹脂を複数の炭素繊維をシート状に並べたものに含浸する方法、複数の炭素繊維をシート状に並べたものの片面もしくは両面にフィルム状の熱可塑性樹脂を積層させ、フィルム状の熱可塑性樹脂を溶融して、含浸させる方法、粉体状の熱可塑性樹脂を溶融して、含浸させる方法などがあるが、含浸性や開繊自由度の観点や、得られるプリプレグの外観品位の観点から、複数の炭素繊維をシート状に並べたものの片面もしくは両面にフィルム状の熱可塑性樹脂を積層させて、フィルム状の熱可塑性樹脂を溶融して含浸させる方法が好ましい。特に、得られる熱可塑性プリプレグの反りの発生を防げる観点から、炭素繊維ストランドの両面からフィルム状の熱可塑性樹脂を積層させ、ロール温度150〜400℃、ロール圧力10〜1000MPaの条件下で溶融含浸させる方法が特に好ましい。 The method for producing a thermoplastic prepreg that can be used in the method for producing a thermoplastic molded article of the present invention is not particularly limited, and a conventionally known method can be used. For example, a directly melted thermoplastic resin is made from a plurality of carbon fibers. A method of impregnating a sheet-like material, a film-like thermoplastic resin is laminated on one or both sides of a plurality of carbon fibers arranged in a sheet shape, and the film-like thermoplastic resin is melted and impregnated. There are methods, such as a method of melting and impregnating a powdered thermoplastic resin, but from the viewpoint of impregnation and degree of freedom of opening, and from the viewpoint of the appearance quality of the resulting prepreg, a plurality of carbon fibers are formed into a sheet. A method of laminating a film-like thermoplastic resin on one side or both sides of those arranged in order to melt and impregnate the film-like thermoplastic resin is preferable. In particular, from the viewpoint of preventing warping of the resulting thermoplastic prepreg, a film-like thermoplastic resin is laminated from both sides of the carbon fiber strand, and melt impregnation under conditions of a roll temperature of 150 to 400 ° C. and a roll pressure of 10 to 1000 MPa. Particularly preferred is a method of making them.
本発明の熱可塑性成形体の製造方法に用いることができる熱可塑性プリプレグの含浸率は、50%以上90%以下である必要がある。含浸率を前記範囲内に収めることで、空気のパスラインを意図的に設けることが可能となり、引き続き行われる加圧工程を施した際に、微小なボイドの残存を防ぐことができ、かかる熱可塑性プリプレグから得られる熱可塑性成形板は、ボイドが無く機械物性に優れるという特徴を有する。さらに、繊維体積含有率(Vf)が10%以上60%以下であることが好ましい。繊維体積含有率(Vf)が60%を超えると、残存する微小ボイドを抜けるパスラインを炭素繊維が阻害してしまう傾向にあり、このような熱可塑性プリプレグから得られる熱可塑性成形板の機械物性が低下する傾向にある。さらに、炭素繊維は従来公知の他の強化繊維と比較して高価な繊維であるためコスト的な観点からも好ましくない。一方、繊維体積含有率(Vf)が10%未満となると、ボイドが抜けるのを阻害されるケースが減り炭素繊維コストも低減することができるが、そのようなプリプレグから得られる熱可塑性成形板の機械的物性が不十分となる傾向がある。 The impregnation rate of the thermoplastic prepreg that can be used in the method for producing a thermoplastic molded body of the present invention needs to be 50% or more and 90% or less. By keeping the impregnation rate within the above range, it becomes possible to intentionally provide an air pass line, and when a subsequent pressurizing step is performed, it is possible to prevent the presence of minute voids, and such heat A thermoplastic molded plate obtained from a plastic prepreg has a feature that it has no voids and has excellent mechanical properties. Furthermore, the fiber volume content (Vf) is preferably 10% or more and 60% or less. If the fiber volume content (Vf) exceeds 60%, the carbon fiber tends to inhibit the pass line through the remaining microvoids, and the mechanical properties of the thermoplastic molded plate obtained from such a thermoplastic prepreg. Tend to decrease. Furthermore, since carbon fiber is expensive compared with other conventionally known reinforcing fibers, it is not preferable from the viewpoint of cost. On the other hand, when the fiber volume content (Vf) is less than 10%, the number of cases where voids are hindered from being reduced and the carbon fiber cost can be reduced, but the thermoplastic molded plate obtained from such a prepreg Mechanical properties tend to be insufficient.
本発明の熱可塑性成形体の製造方法に用いることができる熱可塑性プリプレグの厚さは、0.03mm以上0.50mm以下である必要がある。熱可塑性プリプレグの厚さが0.50mmを超えるとプリプレグ内の炭素繊維ストランドの分散が不完全となる傾向があり、そのような熱可塑性プリプレグを用いて熱可塑性成形板を作成した場合には、機械物性が低下し、物性値のバラツキが増加する傾向にある。より好ましい厚さの上限は0.40mm以下であり、さらに好ましくは、0.35mm以下である。一方、プリプレグの厚さが0.03mm未満となると、プリプレグの剛性の低下が著しい傾向にあり、またそのようなプリプレグを製造するための炭素繊維ストランドのシート状化や熱可塑性樹脂の付与が困難となり、品質の良いプリプレグを得るのが困難な傾向がある。より好ましい厚さの下限は0.04mm以上であり、さらに好ましくは0.05以上である。 The thickness of the thermoplastic prepreg that can be used in the method for producing a thermoplastic molded article of the present invention needs to be 0.03 mm or more and 0.50 mm or less. When the thickness of the thermoplastic prepreg exceeds 0.50 mm, the dispersion of the carbon fiber strands in the prepreg tends to be incomplete, and when a thermoplastic molded plate is prepared using such a thermoplastic prepreg, There is a tendency for mechanical properties to decrease and variations in physical properties to increase. The upper limit of the thickness is more preferably 0.40 mm or less, and still more preferably 0.35 mm or less. On the other hand, when the thickness of the prepreg is less than 0.03 mm, the rigidity of the prepreg tends to decrease significantly, and it is difficult to form a sheet of carbon fiber strand or to apply a thermoplastic resin for producing such a prepreg. Therefore, it tends to be difficult to obtain a high-quality prepreg. The lower limit of the more preferable thickness is 0.04 mm or more, and more preferably 0.05 or more.
本発明の熱可塑性成形体の製造方法に用いることができる熱可塑性プリプレグは、1枚以上積層された後、次の(1)〜(3)の各工程を経て、熱可塑性成形板となる。
(1)予熱工程、(2)加熱加圧工程、(3)冷却加圧工程
One or more thermoplastic prepregs that can be used in the method for producing a thermoplastic molded body of the present invention are laminated, and then processed through the following steps (1) to (3) to become a thermoplastic molded plate.
(1) Preheating step, (2) Heating and pressing step, (3) Cooling and pressing step
熱可塑性成形体の製造方法が、回分式工程である場合、用いる熱可塑性樹脂により各種温度は異なるが、例えば成形機加熱部温度を熱可塑性樹脂の融点よりも、5〜30℃高い温度で、加熱しておき、熱可塑性プリプレグを1枚以上積層した積層体を成形機加熱部に導入して、例えば前記積層体の温度が熱可塑性樹脂の融点よりも、30〜80℃高い温度の範囲内になる程度まで予熱を行う。その後、加熱加圧工程として、成形機加熱部温度を保持したまま熱可塑性プリプレグを1分〜10分加圧を行い、その後、冷却加圧工程として、熱可塑性プリプレグを成形機冷却部に移し加圧を行い、熱可塑性成形板を得る方法などがある。 When the production method of the thermoplastic molded body is a batch process, various temperatures are different depending on the thermoplastic resin to be used. For example, the temperature of the heating part of the molding machine is higher by 5 to 30 ° C. than the melting point of the thermoplastic resin. A laminated body in which one or more thermoplastic prepregs are laminated is introduced into a molding machine heating section, and the temperature of the laminated body is within a range of 30 to 80 ° C. higher than the melting point of the thermoplastic resin, for example. Preheat to the extent that Thereafter, as the heating and pressing step, the thermoplastic prepreg is pressurized for 1 to 10 minutes while maintaining the temperature of the heating unit of the molding machine, and then the thermoplastic prepreg is transferred to the cooling unit of the molding machine and added as a cooling and pressing step. There is a method of obtaining a thermoplastic molded plate by applying pressure.
一方連続式工程である場合、熱可塑性プリプレグを1枚以上積層させた積層体をスチールベルトに乗せ、用いる熱可塑性樹脂により温度は異なるが、熱可塑性樹脂の融点よりも、5〜30℃高い温度まで予熱を行った後、予め熱可塑性樹脂の融点よりも、30〜80℃高い温度まで昇温させておいた熱ロール間を通すことによって加熱・加圧し、その後冷却加圧させることで熱可塑性成形板を得る方法がある。その他、例えば、加熱加圧・冷却加圧をベルトプレスで行ったり、予熱を遠赤外線ヒータ方式や電磁誘導方式やジュール加熱方式によって行うなど、適宜材料によって工程を選択することができる。 On the other hand, in the case of a continuous process, a laminate obtained by laminating one or more thermoplastic prepregs is placed on a steel belt, and the temperature varies depending on the thermoplastic resin to be used, but is 5 to 30 ° C higher than the melting point of the thermoplastic resin. After preheating up to, it is heated and pressurized by passing between hot rolls that have been heated to 30 to 80 ° C. higher than the melting point of the thermoplastic resin in advance, and then cooled and pressurized to make thermoplasticity There is a method for obtaining a molded plate. In addition, for example, the process can be appropriately selected depending on the material, for example, heating / pressurization / cooling / pressurization is performed by a belt press, or preheating is performed by a far infrared heater method, an electromagnetic induction method, or a Joule heating method.
本発明の熱可塑性成形体の製造方法の加熱加圧工程における圧力の設定範囲は、得られる熱可塑性成形体の加熱面辺りの圧力が、0.4MPa以上10.0MPaとする必要がある。0.4MPa未満であると熱可塑性プリプレグ内の未含浸部分の空気を系外に完全に追い出すことが困難となるため、そのような成形条件で得られた熱可塑性成形板の機械物性が低下するため好ましくない。より好ましい圧力の下限は0.6MPa以上である。一方、10.0MPaを超えると加熱加圧工程中に生じる熱可塑性樹脂の流動が増加してしまい、仕込みに対して得られる熱可塑性成形板の繊維体積含有率などがずれてしまうため好ましくない。より好ましい圧力の上限は8.0MPaである。
同様に、加熱加圧工程における温度は、熱可塑性樹脂の融点よりも30〜80℃高い温度で加熱する必要がある。30℃よりも低い温度の場合は樹脂が成型するに十分な溶融状態ではないため、熱可塑性プリプレグ内の未含浸部分の空気を系外に完全に追い出すことが困難となるため、そのような成形条件で得られた熱可塑性成形板の機械物性が低下するため好ましくない。一方、80℃を越える温度領域で成形を行うと、変性ポリプロピレンなどの汎用熱可塑性樹脂を用いる場合、分解温度に達する場合がある。また、そのような温度で加熱を行うと樹脂の粘度が必要以上に低くなってしまい、バリが生じたり、生じたバリのため仕込みに対して得られる熱可塑性成形板の繊維体積含有率がずれてしまうため好ましくない。
The pressure setting range in the heating and pressing step of the method for producing a thermoplastic molded body of the present invention requires that the pressure around the heating surface of the obtained thermoplastic molded body be 0.4 MPa or more and 10.0 MPa. If it is less than 0.4 MPa, it becomes difficult to completely expel the air of the unimpregnated portion in the thermoplastic prepreg out of the system, so that the mechanical properties of the thermoplastic molded plate obtained under such molding conditions deteriorate. Therefore, it is not preferable. A more preferable lower limit of the pressure is 0.6 MPa or more. On the other hand, if it exceeds 10.0 MPa, the flow of the thermoplastic resin generated during the heating and pressurizing step increases, and the fiber volume content of the thermoplastic molded plate obtained with respect to the charging is not preferable. A more preferable upper limit of the pressure is 8.0 MPa.
Similarly, the temperature in the heating and pressing step needs to be heated at a temperature 30 to 80 ° C. higher than the melting point of the thermoplastic resin. When the temperature is lower than 30 ° C, the resin is not in a molten state sufficient for molding, and it is difficult to completely expel the air in the unimpregnated portion in the thermoplastic prepreg out of the system. It is not preferable because the mechanical properties of the thermoplastic molded plate obtained under the conditions are lowered. On the other hand, when molding is performed in a temperature range exceeding 80 ° C., when a general-purpose thermoplastic resin such as modified polypropylene is used, the decomposition temperature may be reached. Also, if heating at such a temperature, the viscosity of the resin becomes unnecessarily low, and burrs are generated, or the fiber volume content of the thermoplastic molded plate obtained for the preparation is shifted due to the generated burrs. This is not preferable.
加熱加圧工程での加圧時間は、用いる成形型の材質や大きさ等により異なるが、例えば、1分以上10分以下であることが好ましい。加圧時間が1分未満となる、加熱加圧工程後の成形機加熱部温度と熱可塑性プリプレグの積層体の温度との乖離が著しく、加熱不十分となる傾向にある。一方加圧時間が10分を超えると、加熱加圧工程後の成形機加熱部温度と熱可塑性プリプレグの積層体の温度との乖離がなく加熱十分となるが、トータルでの成形時間が長くなるため生産性の悪化を招く傾向にある。 The pressurization time in the heating and pressurizing step varies depending on the material and size of the mold used, but is preferably 1 minute or more and 10 minutes or less, for example. The pressurization time is less than 1 minute, and the difference between the temperature of the heating part of the molding machine after the heating and pressurizing step and the temperature of the laminated body of the thermoplastic prepreg is remarkable, and the heating tends to be insufficient. On the other hand, if the pressurization time exceeds 10 minutes, there will be no difference between the temperature of the heating section of the molding machine after the heating and pressurizing step and the temperature of the laminate of the thermoplastic prepreg, but the heating will be sufficient, but the total molding time will be longer. Therefore, the productivity tends to deteriorate.
本発明の熱可塑性成形体の製造方法の冷却加圧工程での加圧圧力は、得られる熱可塑性成形体の加熱面辺りの圧力が、0.4MPa以上10.0MPaである必要がある。0.4MPa未満であると、冷却時に生じる熱可塑性樹脂の熱収縮に追従することができず、系内に微小ボイドが新たに生成される傾向があり、そのような成形条件で得られた熱可塑性成形板は機械物性が低下する傾向にある。一方、10.0MPaを超えると加熱加圧工程中に生じるバリの量が増加してしまい、結果仕込みに対して得られる熱可塑性成形板の繊維体積含有率などがずれてしまう傾向にある。
冷却加圧工程での冷却温度は、用いる成形型の材質や大きさや、用いる熱可塑性樹脂の種類、さらには用いる成形型と成形機冷却部の熱容量の差によって異なるが、30℃以上80℃以下である必要がある。30℃未満となると、急速な冷却により、成形体外表面と内部との温度差が顕著になり、熱膨張差による微小ボイドの生成が発生したり、成形体に反りが生じる可能性があるため好ましくない。また、結晶性樹脂を用いる場合は急速な冷却により結晶化を阻害してしまう傾向にあるため、そのような製造条件で得られる熱可塑性成形板の機械物性を低下させてしまう可能性がある。一方、80℃を超えると冷却速度が遅く、特に材料内部の冷却速度は劇的に遅くなるため、結晶化促進以上に内部での応力緩和が起こり易い傾向にあり、局所的な炭素繊維や樹脂の自由度のため応力緩和時に微小ボイドの発生や、樹脂繊維界面の剥離が発生する傾向にある。その他、製造に時間がかかる点や成形体取り出しの際に高温物体の取扱となるため、安全性の観点から好ましくない。
The pressurizing pressure in the cooling and pressurizing step of the method for producing a thermoplastic molded body of the present invention requires that the pressure around the heating surface of the obtained thermoplastic molded body be 0.4 MPa or more and 10.0 MPa. If the pressure is less than 0.4 MPa, the thermal shrinkage of the thermoplastic resin that occurs during cooling cannot be followed, and microvoids tend to be newly generated in the system, and the heat obtained under such molding conditions. The plastic molded plate tends to have lower mechanical properties. On the other hand, if the pressure exceeds 10.0 MPa, the amount of burrs generated during the heating and pressing step increases, and the fiber volume content of the thermoplastic molded plate obtained as a result tends to shift.
The cooling temperature in the cooling and pressurizing step varies depending on the material and size of the mold used, the type of thermoplastic resin used, and the difference in heat capacity between the mold used and the molding machine cooling section, but is 30 ° C. or higher and 80 ° C. or lower. Need to be. When the temperature is less than 30 ° C., the temperature difference between the outer surface and the inside of the molded body becomes noticeable due to rapid cooling, which may cause generation of microvoids due to a difference in thermal expansion or warpage of the molded body. Absent. Further, when a crystalline resin is used, there is a tendency that crystallization is hindered by rapid cooling, and therefore there is a possibility that the mechanical properties of the thermoplastic molded plate obtained under such production conditions may be lowered. On the other hand, when the temperature exceeds 80 ° C., the cooling rate is slow, and particularly the cooling rate inside the material is dramatically slowed. Therefore, internal stress relaxation tends to occur more easily than crystallization promotion, and local carbon fibers and resins Due to the degree of freedom, microvoids tend to occur during stress relaxation, and peeling at the resin fiber interface tends to occur. In addition, it is not preferable from the viewpoint of safety because it takes time to manufacture and handles a high-temperature object when the molded body is taken out.
以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではない。
以降の実施例および比較例においては、原材料として下記のものを用いた。
(炭素繊維)
炭素繊維(三菱レイヨン株式会社製、製品名:TR50S15L、12000本、密度1.82g/cm2)
(熱可塑性樹脂フィルム)
変性ポリプロピレン(三菱化学株式会社製、製品名:モディック<登録商標>P958)を用い、以下の方法により作成した。
十分に乾燥させた変性ポリプロピレンを、加熱冷却二段プレス(神藤金属工業所社製、F−37)を用いて、220℃まで昇温させた加熱盤で挟み込み、加圧して薄く引き延ばした。その後、冷却盤で冷却することにより、熱可塑性樹脂フィルムを得た。
得られた熱可塑性樹脂フィルムの目付けは、28.0g/m2であった。
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited at all by these Examples.
In the following examples and comparative examples, the following were used as raw materials.
(Carbon fiber)
Carbon fiber (Mitsubishi Rayon Co., Ltd., product name: TR50S15L, 12,000, density 1.82 g / cm 2 )
(Thermoplastic resin film)
Using modified polypropylene (Mitsubishi Chemical Corporation, product name: Modic <registered trademark> P958), it was prepared by the following method.
The modified polypropylene which had been sufficiently dried was sandwiched by a heating plate heated to 220 ° C. using a heating and cooling two-stage press (F-37, manufactured by Shinfuji Metal Industry Co., Ltd.), pressed and thinned. Then, the thermoplastic resin film was obtained by cooling with a cooling board.
The basis weight of the obtained thermoplastic resin film was 28.0 g / m 2 .
[製造例1]
炭素繊維を一方向に配向した炭素繊維のシート状物(目付98.0g/m2)の両面に樹脂フィルムを積層させて積層体を得た。この積層体を200〜250℃に加熱して、熱可塑性樹脂フィルムを炭素繊維のシート状物に溶融含浸させ、熱可塑性プリプレグを得た。得られた熱可塑性プリプレグの厚みは115μm、目付けは153.0g/m2、繊維堆積含有率は47.0%、含浸率は75%であった。
[Production Example 1]
A resin film was laminated on both surfaces of a carbon fiber sheet-like material (basis weight 98.0 g / m 2 ) in which carbon fibers were oriented in one direction to obtain a laminate. This laminate was heated to 200 to 250 ° C., and a thermoplastic resin film was melt-impregnated into a carbon fiber sheet to obtain a thermoplastic prepreg. The obtained thermoplastic prepreg had a thickness of 115 μm, a basis weight of 153.0 g / m 2 , a fiber deposition content of 47.0%, and an impregnation rate of 75%.
[実施例1]
製造例1で得られた熱可塑性プリプレグを、繊維軸方向が一致するようにして18枚積層させ、その積層体を成形型に入れた。さらに、予め加熱盤を220℃とした加熱冷却二段プレス機(神藤金属工業所社製、製品名:F−37)に投入し金型の内温が180℃になるまで予熱を行った。続いて、220℃の加熱盤で、圧力0.6MPa、7分間加熱加圧プレスを行った後、圧力0.6MPaで30℃の冷却盤で冷却プレスを行い、成形板1を得た。なお、冷却盤は成形型からの熱移動で成形終了時は50℃まで昇温していた。得られた成形板1の繊維体積含有率Vf、厚み、機械物性及びボイド率は表1に示した。
[Example 1]
Eighteen thermoplastic prepregs obtained in Production Example 1 were laminated so that the fiber axis directions coincided, and the laminate was placed in a mold. Furthermore, it was put into a heating / cooling two-stage press machine (product name: F-37, manufactured by Shindo Metal Industry Co., Ltd.) with a heating plate set at 220 ° C. in advance, and preheating was performed until the internal temperature of the mold reached 180 ° C. Subsequently, after heating and pressing with a pressure plate of 0.6 MPa for 7 minutes using a heating plate at 220 ° C., a cooling press was performed with a cooling plate at 30 ° C. at a pressure of 0.6 MPa to obtain a molded plate 1. The cooling disk was heated to 50 ° C. at the end of molding due to heat transfer from the mold. The fiber volume content Vf, thickness, mechanical properties, and void ratio of the obtained molded plate 1 are shown in Table 1.
[実施例2〜3]
加熱冷却プレス及び冷却プレスの圧力を実施例2では1.0MPa、実施例3では2.0MPaに変更した以外は実施例1に記載の方法と同様の方法により、成形板2〜3を得た。得られた成形板2〜3の繊維体積含有率Vf、厚み、機械物性及びボイド率は表1に示した。
[Examples 2-3]
Molded plates 2-3 were obtained by the same method as described in Example 1 except that the pressure of the heating / cooling press and the cooling press was changed to 1.0 MPa in Example 2 and 2.0 MPa in Example 3. . Table 1 shows the fiber volume content Vf, thickness, mechanical properties, and void ratio of the obtained molded plates 2 to 3.
[比較例1]
加熱冷却プレス及び冷却プレスの圧力を0.3MPaに変更した以外は実施例1に記載の方法と同様の方法により、成形板4を得た。得られた成形板4の繊維体積含有率Vf、厚み、機械物性及びボイド率は表1に示した。
[Comparative Example 1]
A molded plate 4 was obtained by the same method as described in Example 1 except that the pressure of the heating / cooling press and the cooling press was changed to 0.3 MPa. The fiber volume content Vf, thickness, mechanical properties, and void ratio of the obtained molded plate 4 are shown in Table 1.
(評価方法)
(繊維体積含有率の測定)
曲げ試験用の試験片の密度をJIS K7112に準じた方法にて測定を行った。その後、炭素繊維及び樹脂フィルムの密度から繊維堆積含有率を算出した。
(Evaluation method)
(Measurement of fiber volume content)
The density of the test piece for the bending test was measured by a method according to JIS K7112. Thereafter, the fiber deposition content was calculated from the density of the carbon fiber and the resin film.
(0°曲げ試験)
得られた成形板を湿式ダイヤモンドカッターにより、長さ100.0mm(0°方向)×幅12.7mm(90°方向)の寸法に切断して試験片を作製した。得られた試験片にて、万能試験機(Instron社製、製品名:Instron5565)と解析ソフト(製品名:Bluehill)を用い、ASTM D790準拠(圧子R=5.0、L/D=40)で3点曲げ試験を行い、強度と弾性率を得た。
(0 ° bending test)
The obtained molded plate was cut into a size of 100.0 mm (0 ° direction) × 12.7 mm width (90 ° direction) with a wet diamond cutter to prepare a test piece. The obtained test piece was compliant with ASTM D790 (indenter R = 5.0, L / D = 40) using a universal testing machine (manufactured by Instron, product name: Instron 5565) and analysis software (product name: Bluehill). A three-point bending test was performed to obtain strength and elastic modulus.
(90°曲げ試験)
得られた成形板を湿式ダイヤモンドカッターにより、長さ60.0mm(0°方向)×幅12.7mm(90°方向)の寸法に切断して試験片を作製した。得られた試験片にて、万能試験機(Instron社製、製品名:Instron5565)と解析ソフト(製品名:Bluehill)を用い、ASTM D790準拠(圧子R=5.0、L/D=16)で3点曲げ試験を行い、強度と弾性率を得た。
(90 ° bending test)
The obtained molded plate was cut into a size of 60.0 mm (0 ° direction) × 12.7 mm width (90 ° direction) with a wet diamond cutter to prepare a test piece. The obtained test piece was compliant with ASTM D790 (indenter R = 5.0, L / D = 16) using a universal testing machine (manufactured by Instron, product name: Instron 5565) and analysis software (product name: Bluehill). A three-point bending test was performed to obtain strength and elastic modulus.
(含浸率)
プリプレグをポリエステル樹脂(クルツァー社製、製品名:テクノビット4000)に包埋し、断面を耐水ペーパーの番手#200、400、600、800、1000の順に、各番手で5分間研磨後、デジタルマイクロスコープ(キーエンス社製、製品名:VHX−100)を用いて150倍で断面の撮影を行った。撮影した断面の正常部とボイドの面積率を測定し、100%からボイド率を減じることで得られる。
(Impregnation rate)
The prepreg is embedded in a polyester resin (product name: Technobit 4000, manufactured by Kultzer), and the cross section is polished for 5 minutes with each count in the order of water-resistant paper counts # 200, 400, 600, 800, 1000, then digital micro Using a scope (manufactured by Keyence Corporation, product name: VHX-100), a cross section was photographed at 150 times. It is obtained by measuring the area ratio of the normal part and void of the photographed cross section and subtracting the void ratio from 100%.
(ボイド発生率)
得られた成形板をポリエステル樹脂(クルツァー社製、製品名:テクノビット4000)に包埋し、断面を耐水ペーパーの番手#200、400、600、800、1000の順に、各番手で5分間研磨後、デジタルマイクロスコープ(キーエンス社製、製品名:VHX−100)を用いて150倍で断面の撮影を行った。撮影した断面の正常部とボイドの面積率を測定しボイド発生率を算出した。評価指標は、ボイド発生率が1%未満のものを○○、1%以上4%以下のものを○、4%超7%以下のものを△、7%超のものを×とした。
(Void occurrence rate)
The resulting molded plate was embedded in a polyester resin (product name: Technobit 4000, manufactured by Kultzer), and the sections were polished for 5 minutes with each count in the order of counts of water-resistant paper # 200, 400, 600, 800, 1000 Thereafter, a cross section was photographed at a magnification of 150 using a digital microscope (manufactured by Keyence Corporation, product name: VHX-100). The area ratio of the normal part and void of the photographed cross section was measured, and the void generation rate was calculated. The evaluation index is ◯ when the void generation rate is less than 1%, ◯ when it is 1% or more and 4% or less, Δ when it is more than 4% and 7% or less, and × when it is more than 7%.
(融点の測定)
熱可塑性樹脂の融点は、DSC(TAインスツルメント社製、製品名:Q1000)と、解析ソフト(TA Universal Analysis)を用いて測定と解析を行い融点を得た。DSCの操作条件は、熱可塑性樹脂を5mg計量して、5℃/minで昇温を行い室温から300℃の範囲で測定を行った。
(Measurement of melting point)
The melting point of the thermoplastic resin was measured and analyzed using DSC (TA Instruments, product name: Q1000) and analysis software (TA Universal Analysis) to obtain a melting point. The operating conditions of the DSC were 5 mg of a thermoplastic resin, heated at 5 ° C./min, and measured from room temperature to 300 ° C.
Claims (1)
(1)予熱工程:熱可塑性樹脂の融点よりも5〜30℃高い温度まで、熱可塑性プリプレグを加熱する工程、
(2)加熱加圧工程:熱可塑性樹脂の融点よりも30〜80℃高い温度まで、0.4MPa以上10.0MPa以下の圧力をかけながら熱可塑性プリプレグを加熱する工程、
(3)冷却加圧工程:温度設定を30〜80℃として、0.4MPa以上10.0MPa以下の圧力を熱可塑性プリプレグに加える工程
ここで、含浸率は、熱可塑性プリプレグをポリエステル樹脂(クルツァー社製、製品名:テクノビット4000)に包埋し、断面を耐水ペーパーの番手#200、400、600、800、1000の順に、各番手で5分間研磨後、デジタルマイクロスコープ(キーエンス社製、製品名:VHX−100)を用いて150倍で断面の撮影を行い、撮影した断面の正常部とボイドの面積率を測定し、100%からボイド率を減じることで得られる。 A thermoplastic prepreg in which a plurality of carbon fibers are arranged in a sheet form and impregnated with a thermoplastic resin so as to have an impregnation rate of 50% to 90% is formed into a thermoplastic article by the following steps (1) to (3). A method for producing a thermoplastic molded body.
(1) Preheating step: a step of heating the thermoplastic prepreg to a temperature 5-30 ° C. higher than the melting point of the thermoplastic resin,
(2) Heating and pressing step: a step of heating the thermoplastic prepreg while applying a pressure of 0.4 MPa or more and 10.0 MPa or less to a temperature 30 to 80 ° C. higher than the melting point of the thermoplastic resin,
(3) Cooling and pressurizing step: a step of setting the temperature to 30 to 80 ° C. and applying a pressure of 0.4 MPa or more and 10.0 MPa or less to the thermoplastic prepreg
Here, the impregnation rate is obtained by embedding the thermoplastic prepreg in a polyester resin (product name: Technobit 4000, manufactured by Kultzer Co.), and the cross-sections in the order of water resistant paper counts # 200, 400, 600, 800, 1000, respectively. After polishing for 5 minutes with a count, a cross section was photographed at a magnification of 150 times using a digital microscope (manufactured by Keyence Corporation, product name: VHX-100), and the area ratio of normal portions and voids of the photographed cross section was measured. It is obtained by subtracting the void ratio from%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012257771A JP2014105245A (en) | 2012-11-26 | 2012-11-26 | Method for producing thermoplastic molding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012257771A JP2014105245A (en) | 2012-11-26 | 2012-11-26 | Method for producing thermoplastic molding |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014105245A true JP2014105245A (en) | 2014-06-09 |
Family
ID=51027030
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012257771A Pending JP2014105245A (en) | 2012-11-26 | 2012-11-26 | Method for producing thermoplastic molding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014105245A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2990185A1 (en) | 2014-08-28 | 2016-03-02 | Teijin Limited | Composite material including unidirectional continuous fibers thermoplastic resin |
-
2012
- 2012-11-26 JP JP2012257771A patent/JP2014105245A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2990185A1 (en) | 2014-08-28 | 2016-03-02 | Teijin Limited | Composite material including unidirectional continuous fibers thermoplastic resin |
KR20160026747A (en) | 2014-08-28 | 2016-03-09 | 데이진 가부시키가이샤 | Composite material including unidirectional continuous fibers and thermoplastic resin |
US10889070B2 (en) | 2014-08-28 | 2021-01-12 | Teijin Limited | Composite material including unidirectional continuous fibers and thermoplastic resin |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4789940B2 (en) | Isotropic fiber reinforced thermoplastic resin sheet, method for producing the same and molded plate | |
JP6020612B2 (en) | Sheet for fiber-reinforced plastic molded body and molded body thereof | |
CA2775053C (en) | Thermoplastic composites and methods of making and using same | |
JP5551386B2 (en) | Fiber / resin composite sheet and FRP molded body | |
JP5900663B2 (en) | Fiber reinforced resin laminate | |
JP6965957B2 (en) | Laminated base material, its manufacturing method, and carbon fiber reinforced resin base material | |
JP2013208725A (en) | Carbon fiber-reinforced thermoplastic resin laminated body and method of producing the same | |
JP2014004797A (en) | Composite material for molding and method for producing the same | |
JP2014105310A (en) | Method of manufacturing prepreg | |
JP6086161B2 (en) | Manufacturing method of fiber reinforced thermoplastic resin composite, manufacturing method of fiber reinforced thermoplastic resin tape, manufacturing method of press molding material, manufacturing supplement of molded product, unidirectional prepreg, and molded product | |
JPWO2016084824A1 (en) | Carbon fiber mats, preforms, sheet materials and molded products | |
JP2013221040A (en) | Chopped strand prepreg, fiber reinforced thermoplastic resin sheet, molded plate using the sheet, and method for manufacturing fiber reinforced thermoplastic resin sheet | |
JP2014105245A (en) | Method for producing thermoplastic molding | |
JP2015224297A (en) | Production method of prepreg | |
JP2013203944A (en) | Prepreg and molded product thereof | |
Liu et al. | Non-isothermal forming of glass fiber/polypropylene commingled yarn fabric composites | |
KR101348948B1 (en) | Thermoplastic composite for easy impregnation and manufacture method thereof | |
WO2015076283A1 (en) | Fiber-reinforced thermoplastic resin sheet | |
JPH0485337A (en) | Intermediate material for composite material | |
JP6458589B2 (en) | Sheet material, integrated molded product, and integrated molded product manufacturing method | |
JP6477114B2 (en) | Fiber reinforced thermoplastic resin laminate and method for producing the same | |
JP5958360B2 (en) | Manufacturing method of FRP sheet | |
JP2008308626A (en) | Sheet-like fiber-reinforced composite material and production method therefor | |
AU2010298260B2 (en) | Thermoplastic composites and methods of making and using same | |
JP2021178882A (en) | Fiber-reinforced composite material, and production method thereof |