JP2013176876A - Manufacturing method of molding - Google Patents

Manufacturing method of molding Download PDF

Info

Publication number
JP2013176876A
JP2013176876A JP2012041655A JP2012041655A JP2013176876A JP 2013176876 A JP2013176876 A JP 2013176876A JP 2012041655 A JP2012041655 A JP 2012041655A JP 2012041655 A JP2012041655 A JP 2012041655A JP 2013176876 A JP2013176876 A JP 2013176876A
Authority
JP
Japan
Prior art keywords
base material
fiber
thermoplastic resin
manufacturing
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012041655A
Other languages
Japanese (ja)
Inventor
Hironori Nagakura
裕規 長倉
Motoomi Arakawa
源臣 荒川
Yasuyuki Yokoe
泰幸 横江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2012041655A priority Critical patent/JP2013176876A/en
Publication of JP2013176876A publication Critical patent/JP2013176876A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a molding, in which other composite material sheet materials containing a continuous fiber, and a composite material sheet material containing a noncontinuous reinforced fiber having an average fiber length within a specific range are laminated and integrated by a simple method excellent in productivity.SOLUTION: A substrate 2 containing a continuous reinforced fiber B and a thermoplastic resin Q is one of constituents, and a substrate 1 containing a noncontinuous reinforced fiber (A) having an average fiber length within a range of 5-100 mm and a thermoplastic resin P is the other constituent. In the manufacturing method of a molding, the substrate 1 of at least one layer and the substrate 2 in which when a thickness of the one layer of the substrate 1 is 1, the thickness of one layer is below 1 are laminated, and the molding is manufactured by a specific process.

Description

本発明は、成形体の製造方法に関する。特に詳しくは、不連続な強化繊維を含む不連続繊維基材と連続の強化繊維を含む連続繊維基材とを積層してコールドプレスすることで製造する一体化された成形体の製造方法に関するものである。   The present invention relates to a method for producing a molded body. More particularly, the present invention relates to a method for producing an integrated molded body produced by laminating a discontinuous fiber base material containing discontinuous reinforcing fibers and a continuous fiber base material containing continuous reinforcing fibers and then cold pressing. It is.

強化繊維と熱可塑性樹脂を複合化した複合材料シート材(単に基材ということがある)をプレスして賦形する代表的な成形加工法にはコールドプレス法がある。この方法ではあらかじめ、熱可塑性樹脂を用いてなる、ある大きさの複合材料を赤外線ヒーター等で溶融状態まで加熱しておき、その後金型内でプレスし、成形品を得ることができる。そしてこの方法は、成形サイクルは金型内での樹脂の固化時間により左右され、通常数十秒から数分のサイクルでの成形が可能であり、熱硬化性樹脂を用いた複合材料と比較して生産性が高いという利点がある。   There is a cold press method as a typical forming method for forming by pressing a composite sheet material (which may be simply referred to as a base material) in which reinforcing fibers and a thermoplastic resin are combined. In this method, a composite material having a certain size using a thermoplastic resin is heated in advance to a molten state with an infrared heater or the like, and then pressed in a mold to obtain a molded product. In this method, the molding cycle depends on the solidification time of the resin in the mold, and it is usually possible to mold in a cycle of several tens of seconds to several minutes. Compared with a composite material using a thermosetting resin. And has the advantage of high productivity.

ところで、かかる方法を用いると、熱硬化性樹脂を用いた場合では薄いプリプレグを複数枚積層させ硬化させることで複数枚ある各層を一体化させることが出来た。しかしながら、熱可塑性樹脂を用いたコールドプレス成形では熱可塑性樹脂の溶融温度以上の温度域で成形する必要がある。そのため、複合材料を積層している間に該複合材料が冷えて固化してしまうという問題がある。該複合材料の厚みが特に厚く熱容量が大きい場合には材料の冷却固化の影響は小さくそれほど問題にならないのが現状である。   By the way, when such a method is used, when a thermosetting resin is used, a plurality of thin prepregs can be laminated and cured to integrate the respective layers. However, in cold press molding using a thermoplastic resin, it is necessary to mold in a temperature range higher than the melting temperature of the thermoplastic resin. Therefore, there is a problem that the composite material is cooled and solidified while the composite materials are laminated. In the present situation, when the thickness of the composite material is particularly large and the heat capacity is large, the influence of the cooling and solidification of the material is small and does not matter so much.

一方、高い強度・剛性が必要な部材に関しては、前記のような複合材料に薄い連続繊維層を有した他の材料を貼り合わせることで、材料コストを抑えて強度・剛性を向上させることが出来るため、このような材料は大量生産品には必要不可欠である。しかしながら、前述したように、成形用材料として前記基材の厚みが薄い場合にはコールドプレス法では冷却固化するまでの時間が極端に短くなる。そのため、かかる基材に上記他の材料を貼り合わせて成形・一体化することは非常に困難であった。   On the other hand, for members that require high strength and rigidity, the material cost can be reduced and the strength and rigidity can be improved by bonding other materials having a thin continuous fiber layer to the composite material as described above. Therefore, such materials are essential for mass-produced products. However, as described above, when the base material is thin as a molding material, the time until cooling and solidification is extremely shortened by the cold press method. For this reason, it is very difficult to form and integrate the other materials on the base material.

上記課題を解決するために、貼り合わせる材料の一方の表面を凹凸に成形しておき、後工程でもう一方を成形することで一体化する方法がある(特許文献1)。しかしながら、かかる方法では、工程が2工程以上必要であり、かつ、射出成形によって形成される面では強化繊維を長繊維または、連続繊維の状態で残すことが難しいという課題がある。また、あらかじめ異種層を積層させておきホットプレスで一体化と成形を行う方法や、事前にホットプレスで異種層を貼り合わせておき、その後コールドプレスをするという方法も知られている(特許文献2)。しかしながら、かかる方法では、ホットプレスの成形タクトが熱可塑性樹脂の融点以上の高温でプレスして、固化温度以下まで温度を下げるという工程を含むため成形時間が長くなってしまうという課題がある。   In order to solve the above-mentioned problem, there is a method in which one surface of a material to be bonded is formed into a concavo-convex shape, and the other is formed in a later process to be integrated (Patent Document 1). However, in this method, there are problems that two or more steps are required and it is difficult to leave the reinforcing fibers in the state of long fibers or continuous fibers on the surface formed by injection molding. Also known are a method in which different layers are laminated in advance and integration and molding are performed by hot press, and a method in which different layers are bonded in advance by hot pressing and then cold pressed is performed (Patent Document). 2). However, in this method, there is a problem that the molding time becomes longer because the molding tact of the hot press includes a step of pressing at a high temperature not lower than the melting point of the thermoplastic resin and lowering the temperature to the solidification temperature or lower.

特開2010−274508号公報JP 2010-274508 A 特開2011−241338号公報JP 2011-241338 A

本発明の目的は、上記課題を解決し、連続繊維を含む他の複合材料シート材と、平均繊維長が特定範囲にある不連続な強化繊維を含有する複合材料シート材とを、生産性に優れた簡略な方法で積層し一体化した成形体を製造する方法を提供することにある。   The object of the present invention is to solve the above-mentioned problems, and to improve productivity of other composite material sheet materials containing continuous fibers and composite material sheet materials containing discontinuous reinforcing fibers whose average fiber length is in a specific range. An object of the present invention is to provide a method for producing a molded body laminated and integrated by an excellent simple method.

本発明は、コールドプレス法において、連続基材が不連続基材に比べて厚みが薄いために、加熱・積層・プレスの工程の間に樹脂の溶融温度以下に温度が下がってしまう連続基材において、熱容量が比較的大きく、熱伝導が良好な等方性の不連続基材と重ねた状態で加熱することで積層の工程を簡略化することが出来、かつ等方性の不連続基材からの伝熱により、複合材の温度低下を最小限に留めコールドプレス成形による一体化を可能とする成形体の製造方法である。   In the cold press method, the present invention is a continuous base material whose thickness is lower than the melting temperature of the resin during the heating, laminating and pressing processes because the continuous base material is thinner than the discontinuous base material. Can be simplified by laminating with an isotropic discontinuous substrate having a relatively large heat capacity and good heat conduction, and isotropic discontinuous substrate. This is a method for producing a molded body that can be integrated by cold press molding while minimizing the temperature drop of the composite material by heat transfer from.

すなわち本発明は、連続の強化繊維Bと熱可塑性樹脂Qとを含む基材ロを構成成分の1つとする成形体を製造するに際し、
平均繊維長が5mm〜100mmの範囲にある不連続の強化繊維Aと熱可塑性樹脂Pとを含む基材イを他の構成成分とし、以下の工程1)〜5)を有することを特徴とする成形体の製造方法。
1)少なくとも1層の基材イと、該基材イの1層の厚みを1としたときの1層の厚みが1未満である基材ロとを準備する準備工程
2)基材イと基材ロを重ねる積層工程
3)工程2)で重ねられた積層材料を熱可塑性樹脂PまたはQの溶融温度以上に加熱する加熱工程
4)工程3)で加熱された積層材料を金型を用いて成形する成形工程
5)工程4)で成形された成形体を金型から取り出す脱型工程、
である。
That is, the present invention, when producing a molded body having a base material B containing the continuous reinforcing fiber B and the thermoplastic resin Q as one of the constituent components,
It has the following steps 1) to 5) with the base material A containing discontinuous reinforcing fibers A and thermoplastic resin P having an average fiber length in the range of 5 mm to 100 mm as other components. Manufacturing method of a molded object.
1) Preparatory step for preparing at least one layer of base material a and a base material having a thickness of less than 1 when the thickness of one layer of the base material is 1, 2) Laminating step 3) for stacking the base materials 2) Heating step 4) for heating the layered material stacked in step 2) above the melting temperature of the thermoplastic resin P or Q 4) Using the mold for the layered material heated in step 3) Molding step 5) to remove the molded body molded in step 4) from the mold,
It is.

本発明の製造方法により、薄い連続繊維基材層の冷却固化の影響を最小限に抑えコールドプレス成形により、不連続繊維基材と連続繊維基材との積層の精度がより高くなった一体化が可能となる。そして効率的に強化したい箇所に高強度・高剛性の連続繊維基材を挿入することが出来、材料コストを抑え、生産性も高く、さらに、意匠性に優れた成形体を提供できるものである。   Integrated with the manufacturing method of the present invention, the effect of cooling and solidification of a thin continuous fiber base layer is minimized, and cold press molding is used to increase the accuracy of lamination of discontinuous fiber base and continuous fiber base. Is possible. And, it is possible to insert a high-strength and high-rigidity continuous fiber base material at a location where it is desired to efficiently reinforce, to suppress the material cost, to improve the productivity, and to provide a molded body with excellent design. .

さらには、連続繊維基材に賦形性が良好である特定の不連続繊維基材を積層することで、連続繊維基材のみを使用した場合と比べて、3次元的な形状の賦形性に優れたものとなる。したがって、複雑な形状の成形体の製造も可能となり、成形の自由度が広がる。   Furthermore, by laminating a specific discontinuous fiber base material with good formability on the continuous fiber base material, the three-dimensional shape shapeability compared to the case where only the continuous fiber base material is used. It will be excellent. Therefore, it is possible to manufacture a molded body having a complicated shape, and the degree of freedom in molding is increased.

不連続繊維基材と連続繊維基材の具体的な積層方法の一例を表わす基材配置図である。It is a base-material arrangement | positioning figure showing an example of the specific lamination | stacking method of a discontinuous fiber base material and a continuous fiber base material. 実施例1、3、4の不連続繊維基材と一方向連続繊維基材の加熱配置と積層方法を表わす基材配置図である。It is a base-material arrangement | positioning figure showing the heating arrangement | positioning and lamination | stacking method of the discontinuous fiber base material of Examples 1, 3, and 4 and a one-way continuous fiber base material. 実施例2の不連続繊維基材と一方向連続繊維基材の加熱配置と積層方法を表わす基材配置図である。It is a base material arrangement | positioning figure showing the heating arrangement | positioning and lamination | stacking method of the discontinuous fiber base material of Example 2, and a unidirectional continuous fiber base material. 実施例5の不連続繊維基材と織物連続繊維基材の加熱配置と積層方法を表わす基材配置図である。It is a base-material arrangement | positioning figure showing the heating arrangement | positioning of the discontinuous fiber base material of Example 5, and a textile continuous fiber base material, and the lamination | stacking method. 実施例6の不連続繊維基材と一方向連続繊維基材の加熱配置と積層方法を表わす基材配置図である。It is a base material arrangement | positioning figure showing the heating arrangement | positioning and lamination | stacking method of the discontinuous fiber base material of Example 6, and a unidirectional continuous fiber base material. 実施例7の不連続繊維基材と一方向連続繊維基材の加熱配置と積層方法を表わす基材配置図である。It is a base material arrangement | positioning figure showing the heating arrangement | positioning and lamination | stacking method of the discontinuous fiber base material of Example 7, and a unidirectional continuous fiber base material. 実施例6、7で使用した金型の形状概略図である。It is the shape schematic of the metal mold | die used in Example 6, 7. FIG.

[基材の構成]
本発明においては、連続の強化繊維Bと熱可塑性樹脂Qとを含む基材ロと、不連続の強化繊維Aと熱可塑性樹脂Pとを含む基材イとを用いる。基材ロと基材イとを積層し、最終的に成形体が製造される。
本発明で用いる基材イ(以下、「不連続繊維基材」という)と基材ロ(以下、「連続繊維基材」という)を構成する強化繊維A、Bは特に制限はなく、例えば、炭素繊維、ガラス繊維、アラミド繊維などの繊維が例示される。なかでも炭素繊維が、軽量でありながら強度に優れた成形体が提供できる点で好ましい。また、リサイクルの観点から、強化繊維AとBは同じ材料であることが有利である。
強化繊維A、Bの平均繊維径には特に限定はないが、例えば、炭素繊維の場合、好ましい平均繊維径は3〜12μmであり、より好ましくは5〜7μmである。
[Structure of substrate]
In the present invention, the base material B including the continuous reinforcing fiber B and the thermoplastic resin Q and the base material A including the discontinuous reinforcing fiber A and the thermoplastic resin P are used. The base material B and the base material A are laminated, and a molded body is finally produced.
The reinforcing fibers A and B constituting the base material (hereinafter referred to as “discontinuous fiber base material”) and the base material (hereinafter referred to as “continuous fiber base material”) used in the present invention are not particularly limited. Examples thereof include carbon fibers, glass fibers, and aramid fibers. Among these, carbon fiber is preferable in that it can provide a molded body that is lightweight and excellent in strength. Further, from the viewpoint of recycling, it is advantageous that the reinforcing fibers A and B are the same material.
The average fiber diameter of the reinforcing fibers A and B is not particularly limited. For example, in the case of carbon fiber, the preferable average fiber diameter is 3 to 12 μm, and more preferably 5 to 7 μm.

不連続繊維基材と連続繊維基材を構成する熱可塑性樹脂P、Qの種類としては、例えば塩化ビニル樹脂、塩化ビニリデン樹脂、酢酸ビニル樹脂、ポリビニルアルコール樹脂、ポリスチレン樹脂、アクリロニトリル−スチレン樹脂(AS樹脂)、アクリロニトリル−ブタジエン−スチレン樹脂(ABS樹脂)、アクリル樹脂、メタクリル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリアミド6樹脂、ポリアミド11樹脂、ポリアミド12樹脂、ポリアミド46樹脂、ポリアミド66樹脂、ポリアミド610樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ボリブチレンテレフタレート樹脂、ポリアリレート樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリ乳酸樹脂などが挙げられる。   Examples of the types of thermoplastic resins P and Q constituting the discontinuous fiber base material and the continuous fiber base material include vinyl chloride resin, vinylidene chloride resin, vinyl acetate resin, polyvinyl alcohol resin, polystyrene resin, acrylonitrile-styrene resin (AS Resin), acrylonitrile-butadiene-styrene resin (ABS resin), acrylic resin, methacrylic resin, polyethylene resin, polypropylene resin, polyamide 6 resin, polyamide 11 resin, polyamide 12 resin, polyamide 46 resin, polyamide 66 resin, polyamide 610 resin, Polyacetal resin, polycarbonate resin, polyethylene terephthalate resin, polyethylene naphthalate resin, boribylene terephthalate resin, polyarylate resin, polyphenylene ether resin, polyphenylene sulfate De resins, polysulfone resins, polyethersulfone resins, polyether ether ketone resins, such as polylactic acid resins.

この中で、ポリアミド系の樹脂、ポリカーボネート樹脂、ポリプロピレン樹脂が好ましい。また、成形性(樹脂の加熱条件)、成形体の界面の密着性等の観点から、熱可塑性樹脂PとQとは同じ樹脂であることが好ましい。
また、上記熱可塑性樹脂と上記強化繊維との量比に特に限定はないが、強化繊維100容量部に対し、熱可塑性樹脂50〜1000容量部であることが生産性と機械的強度のバランスの点で好ましい。100〜1000容量部であることがより好ましく、熱可塑性樹脂150〜500容量部であることがさらに好ましい。
Of these, polyamide resins, polycarbonate resins, and polypropylene resins are preferred. In view of moldability (resin heating conditions), adhesion at the interface of the molded body, and the like, the thermoplastic resins P and Q are preferably the same resin.
In addition, the amount ratio of the thermoplastic resin and the reinforcing fiber is not particularly limited, but 50 to 1000 parts by volume of the thermoplastic resin with respect to 100 parts by volume of the reinforcing fiber is a balance between productivity and mechanical strength. This is preferable. The amount is more preferably 100 to 1000 parts by volume, and further preferably 150 to 500 parts by volume of the thermoplastic resin.

[連続繊維基材]
本発明における連続繊維基材は強化繊維Bが連続繊維であり、連続繊維Bと前記した熱可塑性樹脂Qとから構成されるものである。ここで連続繊維基材は、特定の一方向(例えば基材面内方向)の弾性率・強度が高いといった異方性を有するものであってもよい。例えば、連続繊維Bとしては一方向材や織物を挙げることができるが、強度・剛性を効果的に補強するために一方向材を好ましく使用することが出来、意匠性を付与する場合に織物を好ましく使用することが出来る。
[Continuous fiber substrate]
In the continuous fiber base material in the present invention, the reinforcing fiber B is a continuous fiber, and is composed of the continuous fiber B and the thermoplastic resin Q described above. Here, the continuous fiber base material may have anisotropy such as a high elastic modulus and strength in a specific direction (for example, the in-plane direction of the base material). For example, the continuous fiber B can include a unidirectional material and a woven fabric. However, the unidirectional material can be preferably used to effectively reinforce the strength and rigidity, and the woven fabric can be used for design. It can be preferably used.

また、一方向材は、一方向に引き揃えられた強化繊維を使用することが好ましいが、複数の一方向材同士を積層したものであっても良く、また、一方向に引き揃えた強化繊維をシート状にして、それらを角度を変えて積層したもの(多軸織物基材)をナイロン糸、ポリエステル糸、ガラス繊維糸等のステッチ糸で、この積層体を厚さ方向に貫通しているものであっても良い。かかる一方向材は、連続繊維基材の一部分に1つまたは2つ以上有していてもよく、連続繊維基材の全体を占めることもできる。連続繊維基材の一部分に2つ有している場合には、一方向材は各々が平行関係(部分配置)でも非平行(例えばV字)関係でも、あるいは交差(例えばX字)関係であってもよい(交差配置)。   The unidirectional material preferably uses reinforcing fibers aligned in one direction, but may be a laminate of a plurality of unidirectional materials, and reinforcing fibers aligned in one direction. Is made into a sheet and laminated at different angles (multiaxial woven fabric base material) with stitch yarns such as nylon yarn, polyester yarn, glass fiber yarn, etc., and this laminate is penetrated in the thickness direction It may be a thing. One or two or more such unidirectional materials may be provided in a part of the continuous fiber base material, and may occupy the entire continuous fiber base material. When two continuous fiber bases are provided, the unidirectional members are each in a parallel relationship (partial arrangement), a non-parallel (for example, V-shaped) relationship, or a crossed (for example, X-shaped) relationship. It may be (crossed arrangement).

また、本発明における織物とは経糸と緯糸が交錯(織る)して1枚のシートを形成しているものであり、使用する強化繊維の繊維束の本数として500本〜30000本のものを好ましく使用することができる。特に意匠性を優先する場合には1000本〜6000本のものを使用することが好ましい。また、織物は1枚のシートで使用することもできるし、複数枚を重ねて使用することも可能であるが、1枚のシートで使用する方がコストメリットが大きいため、より好ましい。   Further, the woven fabric in the present invention is one in which warp and weft are interwoven (woven) to form one sheet, and preferably 500 to 30,000 fiber bundles of reinforcing fibers to be used. Can be used. In particular, when priority is given to design properties, it is preferable to use 1000 to 6000. In addition, the woven fabric can be used as a single sheet, or a plurality of sheets can be used in a stacked manner. However, it is more preferable to use a single sheet because the cost merit is larger.

連続繊維基材を構成する強化繊維Bとしては炭素繊維を使用することが特に好ましく、当該炭素繊維Bの平均繊維径は3μm〜12μmであり、より好ましくは5μm〜7μmである。
なお、連続繊維基材を製造する方法は特に制限されず、従来の公知の方法によって製造することができる。例えば、熱可塑性樹脂と連続繊維基材を積層させ、熱可塑性樹脂の融点以上に加熱されたローラーやプレスにより、加圧し、熱可塑性樹脂と連続繊維基材を一体化(含浸)することで製造することが出来る。
As the reinforcing fiber B constituting the continuous fiber base material, it is particularly preferable to use carbon fiber, and the average fiber diameter of the carbon fiber B is 3 μm to 12 μm, more preferably 5 μm to 7 μm.
In addition, the method in particular of manufacturing a continuous fiber base material is not restrict | limited, It can manufacture by the conventionally well-known method. For example, it is manufactured by laminating a thermoplastic resin and a continuous fiber base material, pressurizing with a roller or press heated above the melting point of the thermoplastic resin, and integrating (impregnating) the thermoplastic resin and the continuous fiber base material. I can do it.

[不連続繊維基材]
本発明における不連続繊維基材は、平均繊維長5〜100mmの強化繊維Aと熱可塑性樹脂Pとから構成され、不連続繊維基材はある程度長い強化繊維を含んで強化機能が発現できる事を特徴とするため、好ましくは強化繊維Aの平均繊維長が8mm以上50mm以下であり、より好ましくは10mm以上80mm以下である。更には10mm以上30mm以下が好ましい。
[Discontinuous fiber substrate]
The discontinuous fiber base material in the present invention is composed of reinforcing fiber A having an average fiber length of 5 to 100 mm and thermoplastic resin P, and the discontinuous fiber base material includes a long reinforcing fiber to some extent and can exhibit a reinforcing function. In order to make it a feature, the average fiber length of the reinforcing fibers A is preferably 8 mm or more and 50 mm or less, and more preferably 10 mm or more and 80 mm or less. Furthermore, 10 mm or more and 30 mm or less are preferable.

さらに、本発明で用いる強化繊維Aは、25〜3000g/mの目付けであって、下記式(1)で定義される臨界単糸数以上で構成される強化繊維束を、強化繊維A全量に対する割合が20Vol%以上99Vol%未満の範囲で含有することが好ましく、さらに強化繊維束中の平均繊維数(N)が下記式(2)を満たすことがより好ましい。
臨界単糸数=600/D (1)
0.7×10/D<N<1×10/D (2)
ここでDは強化繊維の平均繊維径(μm)である。
Furthermore, the reinforcing fiber A used in the present invention has a basis weight of 25 to 3000 g / m 2, and a reinforcing fiber bundle composed of the number of critical single yarns defined by the following formula (1) is based on the total amount of the reinforcing fiber A. It is preferable to contain in the range of 20 Vol% or more and less than 99 Vol%, and it is more preferable that the average number of fibers (N) in the reinforcing fiber bundle satisfies the following formula (2).
Critical number of single yarns = 600 / D (1)
0.7 × 10 4 / D 2 <N <1 × 10 5 / D 2 (2)
Here, D is the average fiber diameter (μm) of the reinforcing fibers.

さらにより好ましい態様として、本発明における不連続繊維基材には、上記範囲で含有する強化繊維束の他の強化繊維として、単糸の状態または臨界単糸数未満で構成される開繊された繊維束が存在するのがよい。すなわち本発明で用いられる不連続繊維基材には、平均繊維径に依存して定義される臨界単糸数以上で構成される強化繊維束の存在量を20Vol%以上99Vol%未満とする、強化繊維の開繊程度がコントロールされた特定本数以上の強化繊維からなる強化繊維束と、それ以外の開繊された強化繊維を特定の比率で含むことが望ましい。ここで、強化繊維A全量に対する強化繊維束の割合が20Vol%未満になると、表面品位に優れる成形体が得られるという利点はあるものの、機械物性に優れた成形体が得にくくなる。当該強化繊維束の割合が99Vol%以上になると、繊維の交絡部が局部的に厚くなり、薄肉のものが得られにくくなる。好ましくは30Vol%以上90Vol%未満である。   As a still more preferable aspect, the discontinuous fiber base material in the present invention includes, as the other reinforcing fiber of the reinforcing fiber bundle contained in the above range, a fiber that is opened in a single yarn state or less than the critical single yarn number. There should be a bunch. That is, in the discontinuous fiber base material used in the present invention, the reinforcing fiber bundle is composed of 20 Vol% or more and less than 99 Vol% of the reinforcing fiber bundle composed of the critical single yarn number or more defined depending on the average fiber diameter. It is desirable to include a reinforcing fiber bundle composed of a specific number or more of reinforcing fibers whose degree of opening is controlled and other opened reinforcing fibers in a specific ratio. Here, when the ratio of the reinforcing fiber bundle to the total amount of the reinforcing fibers A is less than 20 Vol%, there is an advantage that a molded body having excellent surface quality can be obtained, but it becomes difficult to obtain a molded body having excellent mechanical properties. When the proportion of the reinforcing fiber bundle is 99 Vol% or more, the entangled portion of the fibers is locally thick, and it is difficult to obtain a thin-walled one. Preferably they are 30 Vol% or more and less than 90 Vol%.

また本発明で用いられる不連続繊維基材では、臨界単糸数以上で構成される強化繊維束中の平均繊維数(N)が上記式(2)を満たすことが好ましい。
上記強化繊維束中の平均繊維数(N)が0.7×10/D以下の場合、高い繊維体積含有率(Vf)を得る事が困難となる。またかかる強化繊維束中の平均繊維数(N)が1×10/D以上の場合、局部的に厚い部分が生じ、ボイドの原因となりやすい。1mm以下の薄肉な成形体を得ようとした場合、単純に分繊しただけの繊維を用いたのでは、疎密が大きく、良好な物性が得られないことがある。又、全ての繊維を開繊した場合には、より薄いものを得る事は容易になるが、繊維の交絡が多くなり、繊維体積含有率の高いものが得られない場合がある。上記式(1)で定義される臨界単糸以上の強化繊維束と、単糸の状態又は臨界単糸数未満の強化繊維を成形体内に同時に存在させることにより、薄肉であり、物性発現率の高い成形体を実現することが可能である。本発明では、各種の厚みとすることが可能であるが、好ましくは0.5mm〜5.0mmであり、厚みが0.5〜1mm程度の薄肉品も好適に得ることができる。
Moreover, in the discontinuous fiber base material used by this invention, it is preferable that the average fiber number (N) in the reinforcing fiber bundle comprised by more than a critical single yarn satisfy | fills said Formula (2).
When the average number of fibers (N) in the reinforcing fiber bundle is 0.7 × 10 4 / D 2 or less, it is difficult to obtain a high fiber volume content (Vf). In addition, when the average number of fibers (N) in the reinforcing fiber bundle is 1 × 10 5 / D 2 or more, a locally thick portion is generated, which tends to cause voids. When trying to obtain a thin molded body having a thickness of 1 mm or less, the use of simply split fibers may result in large density and poor physical properties. Moreover, when all the fibers are opened, it becomes easy to obtain a thinner one, but there are cases where the fiber entanglement increases and a fiber with a high fiber volume content cannot be obtained. By making the reinforcing fiber bundle of the critical single yarn or more defined by the above formula (1) and the reinforcing fiber of the single yarn state or less than the critical single yarn simultaneously exist in the molded body, it is thin and has a high physical property expression rate. It is possible to realize a molded body. In the present invention, various thicknesses are possible, but preferably 0.5 mm to 5.0 mm, and a thin product having a thickness of about 0.5 to 1 mm can also be suitably obtained.

本発明で用いる不連続繊維基材は、良好な賦形性を有する点で、全体として等方性であることが有利である。ここで等方性とは、不連続の炭素繊維が、全体的にみて無秩序でバラバラの方向を向いていることを意味する。本発明で用いる不連続繊維基材の製造方法としては、特に制限はないが、例えば、炭素繊維束を所望の長さに切断し、ついでこれを適当に散布することで得ることができる。具体的には、炭素繊維束を所望の長さにカットし、次にこの炭素繊維束をテーパー管内等に導入して、テーパー管内等で空気を該炭素繊維束に吹き付けて、該炭素繊維束を部分的に開繊させ散布する方法が挙げられる。   The discontinuous fiber base material used in the present invention is advantageously isotropic as a whole in that it has good formability. Here, isotropic means that the discontinuous carbon fibers are disordered as a whole and are oriented in a disjoint direction. Although there is no restriction | limiting in particular as a manufacturing method of the discontinuous fiber base material used by this invention, For example, it can obtain by cut | disconnecting a carbon fiber bundle to desired length, and spreading this suitably. Specifically, the carbon fiber bundle is cut to a desired length, and then the carbon fiber bundle is introduced into a tapered tube or the like, and air is blown to the carbon fiber bundle or the like in the tapered tube or the like. A method of partially spreading and spraying the powder.

なお、本発明の目的を損なわない範囲で、前記不連続繊維基材及び連続繊維基材に機能性の充填材や添加剤を含有させても良い。例えば、有機/無機フィラー、難燃剤、耐UV剤、顔料、離型剤、軟化剤、可塑剤、界面活性剤などが挙げられるが、この限りではない。特に電子・電気機器用途や自動車用途においては、高い難燃性が要求されることがあるため、熱可塑性樹脂に難燃剤を含有させることが好ましい。難燃剤の例としては、公知のものが使用でき、難燃性を付与できる物であれば特に限定はされない。具体的には、リン系難燃剤、窒素系難燃剤、シリコーン化合物、有機アルカリ金属塩、有機アルカリ土類金属塩、臭素系難燃剤等を挙げることができ、これらの難燃剤は単独で使用しても良いし、複数を併用して用いても良い。難燃剤の含有量は、物性、成形性、難燃性のバランスから熱可塑性樹脂100質量部に対して1〜40質量部とすることが好ましく、1〜20質量部とすることがさらに好ましい。   In addition, you may make the said discontinuous fiber base material and a continuous fiber base material contain a functional filler and additive in the range which does not impair the objective of this invention. Examples include organic / inorganic fillers, flame retardants, UV-resistant agents, pigments, mold release agents, softeners, plasticizers, surfactants, and the like, but are not limited thereto. Particularly in electronic / electric equipment applications and automotive applications, high flame retardancy may be required, so it is preferable to include a flame retardant in the thermoplastic resin. As an example of a flame retardant, a well-known thing can be used and will not be specifically limited if it can provide a flame retardance. Specific examples include phosphorus flame retardants, nitrogen flame retardants, silicone compounds, organic alkali metal salts, organic alkaline earth metal salts, bromine flame retardants, etc. These flame retardants can be used alone. Alternatively, a plurality of them may be used in combination. The content of the flame retardant is preferably 1 to 40 parts by mass and more preferably 1 to 20 parts by mass with respect to 100 parts by mass of the thermoplastic resin from the balance of physical properties, moldability, and flame retardancy.

[積層方法(準備工程)]
本発明においては、不連続繊維基材1層の厚みを1とした時に連続繊維基材1層の厚みが1.0未満であり、好ましくは0.5未満である。具体的には、不連続繊維基材1層の厚みが0.5mm〜5.0mmであり、1.0mm〜3.0mmであることがより好ましい。0.5mmよりも薄いと加熱後に成形するまでの不連続繊維基材の冷却速度が速くなりすぎて、良品が得にくくなる。5.0mmよりも厚くなると、コールドプレス成形時に不連続繊維基材を中心部分まで均一に加熱することが難くなる。連続繊維基材1層の厚みは0.1mm〜3.0mmであり、0.1mm〜1.0mmであることがより好ましい。0.1mmよりも薄いと実質的に目隙のない良好な連続繊維基材を作製することが困難であり、3.0mmよりも厚いと、コールドプレス成形時に重ねられた連続繊維基材と不連続繊維基材を均一に加熱することが難しくなる。連続繊維基材の厚みが増すにつれて金型への賦形性の面で好都合とはいえず、所望の形状の成形体が得にくくなる。
[Lamination method (preparation step)]
In the present invention, when the thickness of one layer of the discontinuous fiber base material is 1, the thickness of the single continuous fiber base material is less than 1.0, preferably less than 0.5. Specifically, the thickness of one layer of the discontinuous fiber base material is 0.5 mm to 5.0 mm, and more preferably 1.0 mm to 3.0 mm. If the thickness is less than 0.5 mm, the cooling rate of the discontinuous fiber base until it is molded after heating becomes too fast, and it becomes difficult to obtain good products. If it is thicker than 5.0 mm, it becomes difficult to uniformly heat the discontinuous fiber substrate to the center during cold press molding. The thickness of one continuous fiber base material is 0.1 mm to 3.0 mm, and more preferably 0.1 mm to 1.0 mm. If it is thinner than 0.1 mm, it is difficult to produce a good continuous fiber base material having substantially no voids. If it is thicker than 3.0 mm, it is difficult to produce a continuous fiber base material that is overlapped during cold press molding. It becomes difficult to heat the continuous fiber substrate uniformly. As the thickness of the continuous fiber base increases, it cannot be said that it is advantageous in terms of formability to the mold, and it becomes difficult to obtain a molded body having a desired shape.

本発明では、不連続繊維基材と連続繊維基材とを、プレスする直前に積層することなく、両者を重ね合わせた後に加熱し、続いて金型に配置しプレスする。こうした順序とすることにより、積層するための時間をある程度設けることができるため、所望の位置に精度よく正確に積層された、高品質な成形体を得ることができる。   In the present invention, the discontinuous fiber base material and the continuous fiber base material are heated after being overlapped without being laminated immediately before pressing, and then placed in a mold and pressed. By adopting such an order, it is possible to provide a certain amount of time for stacking, and thus it is possible to obtain a high-quality molded body that is accurately and accurately stacked at a desired position.

不連続繊維基材と連続繊維基材の積層においては、加熱時に重ねられていれば積層方法や積層枚数に制限は無いが、例えば、基材ロと基材イとの2層構成であってもよく、基材ロが基材イの両方の表面に配置されていたり、基材ロの両方の表面に基材イが配置されている3層構成でもよい。所望の強度、形状等を有するために、全体として3層以上の構成が好ましい。より具体的に述べれば、不連続繊維基材と連続繊維基材の積層方法は以下のa)〜c)を含む、図1に示す方法を好ましく適用することが出来る。また、連続繊維基材は不連続基材の片面に重ねられた状態でも良いし、両面に重ねられた状態でも良い。
a)不連続繊維基材層の間に連続繊維基材層が存在しているものであり、連続繊維基材層が不連続繊維基材層の全面に配置されているものや、部分的に配置されているもの、積層の角度を有して配置されているもの等を具体的に挙げることができる。
b)連続繊維基材層の間に不連続繊維基材層が存在しているものであり、連続繊維基材層が不連続繊維基材層の全面に配置されているものや、部分的に配置されているもの、積層の角度を有して配置されているもの等を具体的に挙げることができる。
c)不連続繊維基材層と連続繊維基材層が非対称に配置されているものであり、連続繊維基材層が不連続繊維基材層の全面に配置されているものや、部分的に配置されているもの、積層の角度を有して配置されているもの等を具体的に挙げることができる。
In the lamination of the discontinuous fiber base material and the continuous fiber base material, there is no limitation on the laminating method and the number of laminated layers as long as they are stacked at the time of heating. Alternatively, the three-layer configuration in which the base material B is disposed on both surfaces of the base material A, or the base material A is disposed on both surfaces of the base material B may be employed. In order to have desired strength, shape, and the like, a configuration of three or more layers as a whole is preferable. More specifically, the method shown in FIG. 1 including the following a) to c) can be preferably applied to the lamination method of the discontinuous fiber substrate and the continuous fiber substrate. Further, the continuous fiber base material may be overlaid on one side of the discontinuous base material, or may be overlaid on both sides.
a) A continuous fiber base layer is present between the discontinuous fiber base layers, and the continuous fiber base layer is disposed on the entire surface of the discontinuous fiber base layer, or partially Specific examples include those that are arranged, those that are arranged with an angle of lamination, and the like.
b) A discontinuous fiber base layer is present between the continuous fiber base layers, and the continuous fiber base layer is disposed on the entire surface of the discontinuous fiber base layer, or partially Specific examples include those that are arranged, those that are arranged with an angle of lamination, and the like.
c) The discontinuous fiber base layer and the continuous fiber base layer are disposed asymmetrically, and the continuous fiber base layer is disposed on the entire surface of the discontinuous fiber base layer, or partially Specific examples include those that are arranged, those that are arranged with an angle of lamination, and the like.

[コールドプレス成形]
本発明における成形体は、具体的には以下のコールドプレス工程2)〜5)を含む方法を順に行うことで、好ましく得ることができる。
[Cold press molding]
Specifically, the molded body in the present invention can be preferably obtained by sequentially performing the method including the following cold pressing steps 2) to 5).

2)上記、不連続繊維基材と連続繊維基材を重ねる。この時、不連続繊維基材と連続繊維基材は前記[積層方法]に記載されたように重ねる。この時、不連続繊維基材と連続繊維基材の界面(境界)は特に接着させる必要はなく、不連続繊維基材と連続繊維基材が接触するようにして重なっていれば良い。金型内に配置するときではなくこの工程で積層するので、所望の位置に高い精度で積層できる。   2) The discontinuous fiber base material and the continuous fiber base material are stacked. At this time, the discontinuous fiber base material and the continuous fiber base material are overlapped as described in [Lamination method]. At this time, the interface (boundary) between the discontinuous fiber base and the continuous fiber base does not need to be particularly bonded, and it is sufficient that the discontinuous fiber base and the continuous fiber base are in contact with each other. Since the layers are laminated in this step instead of being placed in the mold, the layers can be laminated with high accuracy at a desired position.

3)重ねられた不連続繊維基材と連続繊維基材を熱可塑性樹脂の溶融温度以上に加熱する工程では、加熱方法として、例えば赤外線ヒーター、熱風循環式ヒーター、誘導加熱を用いることができるが、均一な加熱と加熱速度を迅速にすることができる赤外線ヒーターを使用することが好ましい。また、溶融温度以上とは、熱可塑性樹脂が結晶性の場合は融点以上、非晶性樹脂の場合はガラス転移温度以上である。不連続繊維基材と連続繊維基材で異なった樹脂を用いている場合はどちらか高い溶融温度を持つ樹脂に加熱条件を合わせる必要がある。   3) In the step of heating the laminated discontinuous fiber base material and the continuous fiber base material to a temperature higher than or equal to the melting temperature of the thermoplastic resin, for example, an infrared heater, a hot air circulation heater, or induction heating can be used. It is preferable to use an infrared heater capable of rapid uniform heating and heating rate. The melting temperature or higher is higher than the melting point when the thermoplastic resin is crystalline, or higher than the glass transition temperature when the thermoplastic resin is amorphous. When different resins are used for the discontinuous fiber base and the continuous fiber base, it is necessary to adjust the heating conditions to the resin having the higher melting temperature.

4)所望の温度に加熱後、不連続繊維基材と連続繊維基材との積層体を好ましくは50℃〜180℃の温度に保温された金型へ搬送し配して型締めをし、成形を行なう。この時の金型温度は成形体の固化温度以下であれば良く、上記温度の範囲内で一定温度で保持されていてもよく、任意のタイミングで温度の上げ下げを行っても良い。型締め完了後、金型内に配された積層体の熱交換を行い十分に固化をさせるため、所定の圧力を加え一定時間、例えば通常数秒〜数分間保持する。圧力としては例えば0.5〜30MPaである。不連続繊維基材の熱可塑性樹脂と連続繊維基材の熱可塑性樹脂は、溶融状態で金型内へ搬送されるため、流動し、最終的に両基材は金型の形状に賦形される。その後熱可塑性樹脂は金型の温度に冷却され固化し、最終的に両基材は一体化する。連続繊維のみを使用した連続繊維基材のみを用いてプレス成形した場合、金型の形状にもよるが、賦形性が十分とは言えない場合が多く、3次元的な形状の賦形は制限が大きかったが、本発明で使用する不連続繊維基材は賦形性が非常に良好であるため、不連続繊維基材と連続繊維基材との積層体は連続繊維基材のみを使用した場合と比べて、より3次元的な形状の賦形が可能となる。   4) After heating to a desired temperature, the laminate of the discontinuous fiber base material and the continuous fiber base material is preferably transported to a mold kept at a temperature of 50 ° C. to 180 ° C., and clamped. Perform molding. The mold temperature at this time should just be below the solidification temperature of a molded object, may be hold | maintained at the fixed temperature within the said temperature range, and may raise / lower temperature at arbitrary timings. After completion of mold clamping, a predetermined pressure is applied and held for a certain period of time, for example, usually several seconds to several minutes, in order to sufficiently heat and heat the laminated body arranged in the mold. The pressure is, for example, 0.5 to 30 MPa. The thermoplastic resin of the discontinuous fiber base and the thermoplastic resin of the continuous fiber base flow into the mold in a molten state, so that they flow and finally both bases are shaped into the shape of the mold. The Thereafter, the thermoplastic resin is cooled to the temperature of the mold and solidified, and finally the two substrates are integrated. When it is press-molded using only a continuous fiber base material that uses only continuous fibers, depending on the shape of the mold, there are many cases where the shapeability is not sufficient. Although the restriction was large, the discontinuous fiber base material used in the present invention has very good formability, so the laminate of discontinuous fiber base material and continuous fiber base material uses only continuous fiber base material. Compared to the case, it is possible to form a three-dimensional shape.

5)最後に、金型内の成形体が変形しないような状態まで冷却されたのち、型開きをし、脱型して、成形体を取り出す。   5) Finally, after cooling to a state in which the molded body in the mold does not deform, the mold is opened, the mold is removed, and the molded body is taken out.

[成形体]
本発明により製造された成形体は、不連続繊維基材と連続繊維基材とが、熱可塑性樹脂の加熱による溶解、プレス圧着、冷却による固化を経て、一体化された複合積層成形体である。かかる複合積層成形体は連続繊維基材が所望の部分に存在するので、かかる部分において密着性、接着性が良好であり、十分な機械強度を有するものである。
したがって、かかる成形体は、パソコンなどの電子機器筐体や自動車部品、例えば内板(内装パネル等)、外板(ルーフ、ボンネット、バンパー等)、構成部材(ピラー、フロア等)等に広く適用することが可能であり、特に高い強度・剛性が求められる、ピラーやフロア等に好ましく使用することが出来る。また、自動車用内装材やパソコン、電子機器の筐体等の意匠性部品にも好ましく使用することが出来る。
[Molded body]
The molded body produced according to the present invention is a composite laminated molded body in which a discontinuous fiber base material and a continuous fiber base material are integrated through melting of a thermoplastic resin by heating, press-bonding, and solidification by cooling. . In such a composite laminate molded body, since the continuous fiber base is present in a desired portion, the adhesiveness and adhesiveness are good in such a portion, and the mechanical strength is sufficient.
Therefore, such molded products are widely applied to electronic equipment casings such as personal computers and automobile parts, for example, inner plates (interior panels, etc.), outer plates (roofs, bonnets, bumpers, etc.), and structural members (pillars, floors, etc.). It can be used preferably for pillars, floors, etc., which require particularly high strength and rigidity. Moreover, it can be preferably used also for design interior parts, such as a vehicle interior material, a personal computer, and the housing | casing of an electronic device.

[参考例1]
強化繊維Aとして炭素繊維束(東邦テナックス社製:テナックスIMS60−12K(平均繊維径5μm、繊維幅6mm))を長さ20mmにカットし、この炭素繊維束をテーパー管内に導入し、テーパー管内で空気を該炭素繊維束に吹き付けて部分的に開繊しつつ、テーパー管出口の下部に設置したテーブル上に散布した。散布された不連続の炭素繊維は無秩序でバラバラの方向を向いていた。また熱可塑性樹脂Pとして、2mmにドライカットしたPA66繊維(旭化成せんい製のポリアミド66繊維:T5ナイロン(繊度1400dtex))をテーパー管内に供給し、上記炭素繊維束と同時に散布することで、平均繊維長20mmの炭素繊維とポリアミド66が混合されてなるマットを得た。得られたマットの臨界単糸数は120であり、強化繊維束について、マットの繊維全量に対する割合は86%、強化繊維束中の平均繊維数(N)は900であった。
得られたマットを平板形状の金型へ配置し、310℃、3MPaで5分加圧し、ついで100℃まで金型を冷却して、厚み1.7mm、Vf=35%と厚み1.0mm、Vf=35%の2種類の厚みの不連続繊維基材を作製した。
[Reference Example 1]
A carbon fiber bundle (manufactured by Toho Tenax Co., Ltd .: Tenax IMS 60-12K (average fiber diameter 5 μm, fiber width 6 mm)) is cut into a length of 20 mm as the reinforcing fiber A, and the carbon fiber bundle is introduced into the taper tube. Air was sprayed onto the carbon fiber bundle and partially spread to spread it on a table installed at the lower part of the tapered tube outlet. Dispersed discontinuous carbon fibers were disordered and faced apart. Also, PA66 fiber (polyamide 66 fiber manufactured by Asahi Kasei Fiber: T5 nylon (fineness: 1400 dtex)) dry-cut to 2 mm is supplied as a thermoplastic resin P into a tapered tube, and dispersed simultaneously with the carbon fiber bundle to obtain an average fiber. A mat formed by mixing carbon fibers having a length of 20 mm and polyamide 66 was obtained. The number of critical single yarns of the obtained mat was 120, the ratio of the reinforcing fiber bundle to the total amount of fibers of the mat was 86%, and the average number of fibers (N) in the reinforcing fiber bundle was 900.
The obtained mat was placed in a flat plate-shaped mold, pressurized at 310 ° C. and 3 MPa for 5 minutes, and then cooled to 100 ° C. to obtain a thickness of 1.7 mm, Vf = 35% and a thickness of 1.0 mm, Two types of discontinuous fiber substrates with Vf = 35% were prepared.

[参考例2]
強化繊維Aとして炭素繊維束(東邦テナックス社製:テナックスSTS40−24K(繊維径7μm、繊維幅10mm))を20mm幅に開繊しながら、繊維長10mmにカットし、この炭素繊維束をテーパー管内に導入し、テーパー管内で空気を該炭素繊維束に吹き付けて部分的に開繊しつつ、テーパー管出口の下部に設置したテーブル上に散布した。散布された不連続の炭素繊維は無秩序でバラバラの方向を向いていた。
また、熱可塑性樹脂Pとして、平均粒径が約710μmに冷凍粉砕したポリカーボネート樹脂(帝人化成社製のポリカーボネート:パンライトL−1225L)をテーパー管内に供給し、上記炭素繊維束と同時に散布することで、平均繊維長10mmの炭素繊維とポリカーボネートが混合されてなるマットを得た。得られたマットの臨界単糸数は86であり、強化繊維束について、マットの繊維全量に対する割合は35%、強化繊維束中の平均繊維数(N)は240であった。
得られたマットを平板形状の金型へ配置し、300℃、3MPaで5分加圧し、100℃まで金型を冷却して、厚み1.7mm、Vf=35%と厚み1mmでVf=35%の2種類の厚みの不連続繊維基材を作製した。
[Reference Example 2]
A carbon fiber bundle (manufactured by Toho Tenax Co., Ltd .: Tenax STS40-24K (fiber diameter 7 μm, fiber width 10 mm)) was cut to a fiber length of 10 mm as the reinforcing fiber A, and the carbon fiber bundle was cut into a taper tube. The air was blown onto the carbon fiber bundle in the taper tube and partially spread to spread it on a table installed at the lower part of the taper tube outlet. Dispersed discontinuous carbon fibers were disordered and faced apart.
Further, as the thermoplastic resin P, a polycarbonate resin (polycarbonate manufactured by Teijin Kasei Co., Ltd .: Panlite L-1225L) frozen and pulverized to an average particle size of about 710 μm is supplied into the tapered tube and sprayed simultaneously with the carbon fiber bundle. Thus, a mat formed by mixing carbon fibers having an average fiber length of 10 mm and polycarbonate was obtained. The number of critical single yarns of the obtained mat was 86, and the ratio of the reinforcing fiber bundle to the total amount of fibers of the mat was 35%, and the average number of fibers (N) in the reinforcing fiber bundle was 240.
The obtained mat was placed in a flat plate-shaped mold, pressurized at 300 ° C. and 3 MPa for 5 minutes, and cooled to 100 ° C. to obtain a thickness of 1.7 mm, Vf = 35% and a thickness of 1 mm, and Vf = 35. % Discontinuous fiber substrates with two different thicknesses were produced.

[参考例3]
強化繊維Aとして炭素繊維束(東邦テナックス社製:テナックスIMS60−12K(平均繊維径5μm、繊維幅6mm))を長さ20mmにカットし、この炭素繊維束をテーパー管内に導入し、テーパー管内で空気を該炭素繊維束に吹き付けて部分的に開繊しつつ、テーパー管出口の下部に設置したテーブル上に散布した。散布された不連続の炭素繊維は無秩序でバラバラの方向を向いていた。
また、熱可塑性樹脂Pとして、平均粒径が約1mmに冷凍粉砕したPP樹脂(プライム
ポリマー製のポリプロピレン:プライムポリプロJ108M)をテーパー管内に供給し、上記炭素繊維束と同時に散布することで、平均繊維長20mmの炭素繊維とPPが混合されてなるマットを得た。得られたマットの臨界単糸数は120であり、強化繊維束について、マットの繊維全量に対する割合は86%、強化繊維束中の平均繊維数(N)は900であった。
得られたマットを平板形状の金型へ配置し、230℃、2MPaで5分加圧し、80℃まで金型を冷却して、厚み1.7mm、Vf=35%と厚み1mmでVf=35%の2種類の厚みの不連続繊維基材を作製した。
[Reference Example 3]
A carbon fiber bundle (manufactured by Toho Tenax Co., Ltd .: Tenax IMS 60-12K (average fiber diameter 5 μm, fiber width 6 mm)) is cut into a length of 20 mm as the reinforcing fiber A, and the carbon fiber bundle is introduced into the taper tube. Air was sprayed onto the carbon fiber bundle and partially spread to spread it on a table installed at the lower part of the tapered tube outlet. Dispersed discontinuous carbon fibers were disordered and faced apart.
Further, as the thermoplastic resin P, a PP resin (polypropylene made of prime polymer: Prime Polypro J108M) frozen and pulverized to an average particle diameter of about 1 mm is supplied into the tapered tube and dispersed simultaneously with the carbon fiber bundle. A mat obtained by mixing carbon fiber having a fiber length of 20 mm and PP was obtained. The number of critical single yarns of the obtained mat was 120, the ratio of the reinforcing fiber bundle to the total amount of fibers of the mat was 86%, and the average number of fibers (N) in the reinforcing fiber bundle was 900.
The obtained mat was placed in a flat plate-shaped mold, pressurized at 230 ° C. and 2 MPa for 5 minutes, and cooled down to 80 ° C. to obtain a thickness of 1.7 mm, Vf = 35% and a thickness of 1 mm, and Vf = 35. % Discontinuous fiber substrates with two different thicknesses were produced.

[参考例4]
強化繊維Bとして炭素繊維(東邦テナックス(株)製、テナックス(登録商標)STS40−24K(繊維径7μm)を連続繊維からなる一方向材と熱可塑性樹脂Q(PA66樹脂(宇部ナイロン2015B))を炭素繊維100容量部に対してPA66樹脂80容量部で、バレル温度300℃でプルトリュージョン成形し、幅200mm、厚み0.25mm、Vf=40%のシート状にした一方向連続繊維基材を作製した。
[Reference Example 4]
Carbon fiber (manufactured by Toho Tenax Co., Ltd., Tenax (registered trademark) STS40-24K (fiber diameter: 7 μm) as reinforced fiber B is a unidirectional material made of continuous fibers and thermoplastic resin Q (PA66 resin (Ube nylon 2015B)). A unidirectional continuous fiber base material formed into a sheet shape having a width of 200 mm, a thickness of 0.25 mm, and a Vf of 40% by using 80 parts by volume of PA66 resin and 100 parts by volume of carbon fiber and pulling at a barrel temperature of 300 ° C. Produced.

[参考例5]
強化繊維Bとして炭素繊維(東邦テナックス(株)製、テナックス(登録商標)STS40−24K(繊維径7μm)を連続繊維からなる一方向材と熱可塑性樹脂Q(ポリカーボネート樹脂(帝人化成社製のポリカーボネート:パンライトL−1225L))を炭素繊維100容量部に対してポリカーボネート樹脂80容量部で、バレル温度320℃でプルトリュージョン成形し、幅200mm、厚み0.25mm、Vf=40%のシート状にした一方向連続繊維基材を作製した。
[Reference Example 5]
Carbon fiber (manufactured by Toho Tenax Co., Ltd., Tenax (registered trademark) STS40-24K (fiber diameter 7 μm)) as reinforced fiber B and unidirectional material made of continuous fibers and thermoplastic resin Q (polycarbonate resin (polycarbonate manufactured by Teijin Chemicals Ltd.) : Panlite L-1225L)) with 100 parts by volume of carbon fiber and 80 parts by volume of polycarbonate resin, and pultrusion-molded at a barrel temperature of 320 ° C., having a width of 200 mm, a thickness of 0.25 mm, and Vf = 40%. A unidirectional continuous fiber substrate was prepared.

[参考例6]
強化繊維Bとして炭素繊維(東邦テナックス(株)製、テナックス(登録商標)STS40−24K(繊維径7μm)を連続繊維からなる一方向材と熱可塑性樹脂Q(PP樹脂(プライムポリマー製のポリプロピレン:プライムポリプロJ108M))を炭素繊維100容量部に対してPP樹脂80容量部で、バレル温度230℃でプルトリュージョン成形し、幅200mm、厚み0.25mm、Vf=40%のシート状にした一方向連続繊維基材を作製した。
[Reference Example 6]
As the reinforcing fiber B, carbon fiber (manufactured by Toho Tenax Co., Ltd., Tenax (registered trademark) STS40-24K (fiber diameter 7 μm)) and a unidirectional material composed of continuous fibers and a thermoplastic resin Q (PP resin (polypropylene made of prime polymer: Prime Polypropylene J108M)) was pultrusion molded at a barrel temperature of 230 ° C. with 80 parts by volume of PP resin with respect to 100 parts by volume of carbon fiber to form a sheet having a width of 200 mm, a thickness of 0.25 mm, and Vf = 40%. A directional continuous fiber substrate was prepared.

[参考例7]
強化繊維Bとして炭素繊維織物(東邦テナックス(株)製、テナックス(登録商標)HTS40−3K)1枚と厚さ125μmにフィルム状に加工された熱可塑性樹脂Q(ポリカーボネート樹脂(帝人化成社製のポリカーボネート:パンライトL−1225L))を炭素繊維織物の両面に積層させ、310℃、2MPaで7分加圧し、100℃まで金型を冷却し厚み0.3mmでVf=35%の織物連続繊維基材を作製した。
[Reference Example 7]
Reinforcing fiber B is a carbon fiber fabric (manufactured by Toho Tenax Co., Ltd., Tenax (registered trademark) HTS40-3K) and a thermoplastic resin Q (polycarbonate resin (manufactured by Teijin Kasei Co., Ltd.) processed to a film thickness of 125 μm. Polycarbonate: Panlite L-1225L)) is laminated on both sides of carbon fiber woven fabric, pressurized at 310 ° C. and 2 MPa for 7 minutes, the mold is cooled to 100 ° C., and the thickness is 0.3 mm and Vf = 35%. A substrate was prepared.

[実施例1]
参考例1で作製した等方性基材1.7mmと参考例4で作製した一方向連続繊維基材4枚を図2a)のようにぴったりと重ね、赤外線ヒーターで300℃まで加熱した。次いで、図2b)に示す通り、加熱された状態のまま、金型内へ搬送し圧縮成形を行った。この時の金型温度は120℃であり、圧縮条件は加圧力10MPa、加圧時間30秒で行った。得られた成形体を目視したところ、不連続繊維基材と一方向連続繊維基材は一体化されていた。かかる成形体を適当な大きさに切り出してJIS−K7074に則り、一方向連続繊維基材が0°になる方向(補強効果が最大となる角度)で曲げ試験を行った結果を表1に示す。
[Example 1]
The isotropic base material 1.7 mm produced in Reference Example 1 and four unidirectional continuous fiber base materials produced in Reference Example 4 were closely stacked as shown in FIG. 2 a), and heated to 300 ° C. with an infrared heater. Next, as shown in FIG. 2 b), it was conveyed into a mold while being heated and subjected to compression molding. The mold temperature at this time was 120 ° C., and the compression conditions were a pressure of 10 MPa and a pressurization time of 30 seconds. When the obtained molded object was visually observed, the discontinuous fiber base material and the unidirectional continuous fiber base material were integrated. Table 1 shows the results of cutting the molded body into an appropriate size and performing a bending test in a direction in which the unidirectional continuous fiber base becomes 0 ° (an angle at which the reinforcing effect is maximized) in accordance with JIS-K7074. .

[実施例2]
参考例1で作製した不連続繊維基材1.0mmと参考例4で作製した一方向連続繊維基材2枚を図3a)のようにぴったりと重ね、赤外線ヒーターで300℃まで加熱した。次いで、図3b)に示す通り、加熱された状態のまま金型内へ搬送し圧縮成形を行った。この時の金型温度は120℃であり、圧縮条件は加圧力10MPa、加圧時間30秒で行った。得られた成形体を目視したところ、不連続繊維基材と一方向連続繊維基材は一体化されていた。かかる成形体を適当な大きさに切り出してJIS−K7074に則り、一方向連続基材が0°になる方向(補強効果が最大となる角度)曲げ試験を行った結果を表1に示す。
[Example 2]
The discontinuous fiber base material 1.0 mm prepared in Reference Example 1 and the two unidirectional continuous fiber base materials prepared in Reference Example 4 were overlapped exactly as shown in FIG. 3 a) and heated to 300 ° C. with an infrared heater. Next, as shown in FIG. 3 b), it was conveyed into a mold while being heated and subjected to compression molding. The mold temperature at this time was 120 ° C., and the compression conditions were a pressure of 10 MPa and a pressurization time of 30 seconds. When the obtained molded object was visually observed, the discontinuous fiber base material and the unidirectional continuous fiber base material were integrated. Table 1 shows the results of cutting the molded body into an appropriate size and performing a bending test in a direction in which the unidirectional continuous substrate becomes 0 ° (an angle at which the reinforcing effect is maximized) in accordance with JIS-K7074.

[比較例1]
参考例1で作製した不連続繊維基材1.0mm、2枚を赤外線ヒーターで300℃まで加熱した。次いで、積層し、金型内へ搬送し圧縮成形を行った。この時の金型温度は120℃であり、圧縮条件は加圧力10MPa、加圧時間30秒で行った。得られた成形体から試験片を切り出しJIS−K7074に則り曲げ試験を行った結果を表1に示す。
[Comparative Example 1]
Two discontinuous fiber substrates of 1.0 mm produced in Reference Example 1 were heated to 300 ° C. with an infrared heater. Subsequently, it laminated | stacked and conveyed in the metal mold | die and compression molding was performed. The mold temperature at this time was 120 ° C., and the compression conditions were a pressure of 10 MPa and a pressurization time of 30 seconds. Table 1 shows the results of cutting out a test piece from the obtained molded body and conducting a bending test according to JIS-K7074.

[実施例3]
参考例2で作製した不連続繊維基材1.7mmと参考例5で作製した一方向連続繊維基材2枚を図2a)のようにぴったりと重ね、赤外線ヒーターで300℃まで加熱した。次いで、図2b)に示す通り、加熱された状態のまま金型内へ搬送し圧縮成形を行った。この時の金型温度は120℃であり、圧縮条件は加圧力10MPa、加圧時間30秒で行った。得られた成形体を目視したところ、不連続繊維基材と一方向連続繊維基材は一体化されていた。
[Example 3]
The discontinuous fiber base material 1.7 mm prepared in Reference Example 2 and two unidirectional continuous fiber base materials prepared in Reference Example 5 were closely overlapped as shown in FIG. 2 a) and heated to 300 ° C. with an infrared heater. Next, as shown in FIG. 2 b), it was conveyed into a mold while being heated and subjected to compression molding. The mold temperature at this time was 120 ° C., and the compression conditions were a pressure of 10 MPa and a pressurization time of 30 seconds. When the obtained molded object was visually observed, the discontinuous fiber base material and the unidirectional continuous fiber base material were integrated.

[実施例4]
参考例3で作製した不連続繊維基材1.7mmと参考例6で作製した一方向連続繊維基材2枚を図2a)のようにぴったりと重ね、赤外線ヒーターで250℃まで加熱した。次いで、図2b)に示す通り、加熱された状態のまま金型内へ搬送し圧縮成形を行った。この時の金型温度は80℃であり、圧縮条件は加圧力10MPa、加圧時間30秒で行った。得られた成形体を目視したところ、不連続繊維基材と一方向連続繊維基材は一体化されていた。
[Example 4]
The discontinuous fiber base material 1.7 mm prepared in Reference Example 3 and the two unidirectional continuous fiber base materials prepared in Reference Example 6 were closely overlapped as shown in FIG. 2 a) and heated to 250 ° C. with an infrared heater. Next, as shown in FIG. 2 b), it was conveyed into a mold while being heated and subjected to compression molding. The mold temperature at this time was 80 ° C., and the compression conditions were a pressure of 10 MPa and a pressurization time of 30 seconds. When the obtained molded object was visually observed, the discontinuous fiber base material and the unidirectional continuous fiber base material were integrated.

[実施例5]
参考例2で作製した不連続繊維基材1.0mmと参考例7で作製した織物連続繊維基材1枚を図4a)のようにぴったりと重ね、赤外線ヒーターで300℃まで加熱した。次いで、図4b)に示す通り、加熱された状態のまま金型内へ搬送し圧縮成形を行った。この時の金型温度は160℃であり、圧縮条件は加圧力10MPa、加圧時間2分で行った。加圧中に金型温度を冷却し、成形体取り出し時には金型温度は80℃であった。得られた成形体を目視したところ、不連続繊維基材と織物連続繊維基材は一体化されていた。
[Example 5]
The discontinuous fiber base material 1.0 mm prepared in Reference Example 2 and one woven continuous fiber base material prepared in Reference Example 7 were exactly stacked as shown in FIG. 4 a), and heated to 300 ° C. with an infrared heater. Next, as shown in FIG. 4 b), it was conveyed into a mold while being heated and subjected to compression molding. The mold temperature at this time was 160 ° C., and the compression conditions were a pressure of 10 MPa and a pressurization time of 2 minutes. The mold temperature was cooled during pressurization, and the mold temperature was 80 ° C. when the molded body was taken out. When the obtained molded object was visually observed, the discontinuous fiber base material and the woven continuous fiber base material were integrated.

[実施例6]
参考例1で作製した不連続繊維基材1.7mmと参考例4で作製した一方向連続繊維基材を図5a)のように配置し、赤外線ヒーターで300℃まで加熱した。次いで、図5b)に示す通り、加熱された状態のまま図7の立体形状を有する金型内へ搬送し圧縮成形を行った。この時の金型温度は120℃であり、圧縮条件は加圧力10MPa、加圧時間30秒で行った。得られた成形体を目視したところ、不連続繊維基材と一方向連続繊維基材は一体化されており、一方向材も金型の形状に沿って賦形されており、繊維の流動や目開きもほとんど確認されなかった。
[Example 6]
The discontinuous fiber base material 1.7 mm prepared in Reference Example 1 and the unidirectional continuous fiber base material prepared in Reference Example 4 were arranged as shown in FIG. 5 a), and heated to 300 ° C. with an infrared heater. Next, as shown in FIG. 5 b), it was conveyed into a mold having the three-dimensional shape of FIG. 7 while being heated and compression molded. The mold temperature at this time was 120 ° C., and the compression conditions were a pressure of 10 MPa and a pressurization time of 30 seconds. When the obtained molded body was visually observed, the discontinuous fiber base material and the unidirectional continuous fiber base material were integrated, and the unidirectional material was shaped along the shape of the mold. Almost no opening was confirmed.

[実施例7]
参考例1で作製した不連続繊維基材1.7mmと参考例4で作製した一方向連続繊維基材を図6a)のように配置し、赤外線ヒーターで300℃まで加熱した。次いで、図6b)に示す通り、加熱された状態のまま図7の立体形状を有する金型内へ搬送し圧縮成形を行った。この時の金型温度は120℃であり、圧縮条件は加圧力10MPa、加圧時間30秒で行った。得られた成形体は不連続繊維基材と一方向連続繊維基材は一体化されており、一方向材も金型の形状に沿って賦形されており、繊維の流動や目開きもほとんど確認されなかった。
[Example 7]
The discontinuous fiber base material 1.7 mm prepared in Reference Example 1 and the unidirectional continuous fiber base material prepared in Reference Example 4 were arranged as shown in FIG. 6 a), and heated to 300 ° C. with an infrared heater. Next, as shown in FIG. 6 b), it was conveyed and compressed into a mold having the three-dimensional shape of FIG. 7 while being heated. The mold temperature at this time was 120 ° C., and the compression conditions were a pressure of 10 MPa and a pressurization time of 30 seconds. In the obtained molded body, the discontinuous fiber base material and the unidirectional continuous fiber base material are integrated, and the unidirectional material is shaped along the shape of the mold. It was not confirmed.

[比較例2]
参考例4で作製した一方向連続繊維基材10枚を赤外線ヒーターで300℃まで加熱した。次いで、積層し、図7の立体形状を有する金型内へ搬送し圧縮成形を行った。この時の金型温度は120℃であり、圧縮条件は加圧力10MPa、加圧時間30秒で行った。得られた成形体は金型の形状に沿って賦形されてはいたが、繊維の流動や目開きが大きく、また、成形体の外周の一部は十分に材料が流動せずに一部欠けている個所がみられ、成形体として良品は得られなかった。
[Comparative Example 2]
Ten unidirectional continuous fiber base materials prepared in Reference Example 4 were heated to 300 ° C. with an infrared heater. Subsequently, it laminated | stacked and conveyed into the metal mold | die which has the three-dimensional shape of FIG. 7, and compression molding was performed. The mold temperature at this time was 120 ° C., and the compression conditions were a pressure of 10 MPa and a pressurization time of 30 seconds. Although the obtained molded body was shaped along the shape of the mold, the flow and opening of the fibers were large, and part of the outer periphery of the molded body was not fully flowed. The lacking part was seen and the good product was not obtained as a molded object.

Claims (16)

連続の強化繊維Bと熱可塑性樹脂Qとを含む基材ロを構成成分の1つとする成形体を製造するに際し、
平均繊維長が5mm〜100mmの範囲にある不連続の強化繊維Aと熱可塑性樹脂Pとを含む基材イを他の構成成分とし、以下の工程1)〜5)を有することを特徴とする成形体の製造方法。
1)少なくとも1層の基材イと、該基材イの1層の厚みを1としたときの1層の厚みが1未満である基材ロとを準備する準備工程
2)基材イと基材ロを重ねる積層工程
3)工程2)で重ねられた積層材料を熱可塑性樹脂PまたはQの溶融温度以上に加熱する加熱工程
4)工程3)で加熱された積層材料を金型を用いて成形する成形工程
5)工程4)で成形された成形体を金型から取り出す脱型工程
In producing a molded body having a base material B containing the continuous reinforcing fiber B and the thermoplastic resin Q as one of the constituent components,
It has the following steps 1) to 5) with the base material A containing discontinuous reinforcing fibers A and thermoplastic resin P having an average fiber length in the range of 5 mm to 100 mm as other components. Manufacturing method of a molded object.
1) Preparatory step for preparing at least one layer of base material a and a base material having a thickness of less than 1 when the thickness of one layer of the base material is 1, 2) Laminating step 3) for stacking the base materials 2) Heating step 4) for heating the layered material stacked in step 2) above the melting temperature of the thermoplastic resin P or Q 4) Using the mold for the layered material heated in step 3) Molding process 5) Demolding process for removing the molded body molded in step 4) from the mold
配置成形工程において、成形時の金型の温度が50〜180℃の範囲である、請求項1に記載の成形体の製造方法。   The manufacturing method of the molded object of Claim 1 whose temperature of the metal mold | die at the time of shaping | molding is the range of 50-180 degreeC in an arrangement | positioning shaping | molding process. 基材イ1層の厚みが0.5mm〜5.0mmの範囲であり、かつ基材ロ1層の厚みは0.1mm〜3.0mmの範囲である、請求項1または2に記載の成形体の製造方法。   The molding according to claim 1 or 2, wherein the thickness of one layer of the base material is in the range of 0.5 mm to 5.0 mm, and the thickness of the single layer of the base material is in the range of 0.1 mm to 3.0 mm. Body manufacturing method. 基材イが基材ロの全面または一部分に配置されている、請求項1〜3のいずれかに記載の成形体の製造方法。   The manufacturing method of the molded object in any one of Claims 1-3 by which the base material (a) is arrange | positioned in the whole surface or a part of base material (B). 基材ロが基材イの全面または一部分に配置されている、請求項1〜3のいずれかに記載の成形体の製造方法。   The manufacturing method of the molded object in any one of Claims 1-3 by which the base material b is arrange | positioned in the whole surface or a part of base material a. 基材ロが基材イの両方の表面に配置されていることを特徴とする請求項1〜5のいずれかに記載の製造方法。   6. The production method according to claim 1, wherein the base material B is disposed on both surfaces of the base material A. 基材ロの両方の表面に基材イが配置されていることを特徴とする請求項1〜5のいずれかに記載の製造方法。   The manufacturing method according to any one of claims 1 to 5, wherein the base material (a) is disposed on both surfaces of the base material (b). 基材イに含まれる強化繊維Aは、下記式(1)で定義される臨界単糸数以上で構成される強化繊維束を含み、かつ、当該基材中の繊維全量に対する割合が20Vol%以上99Vol%未満である、請求項1〜7のいずれかに記載の成形体の製造方法。
臨界単糸数=600/D (1)
(ここで、Dは強化繊維の平均繊維径(μm)である)
The reinforcing fiber A contained in the base material A includes a reinforcing fiber bundle composed of the number of critical single yarns defined by the following formula (1), and the ratio to the total amount of fibers in the base material is 20 Vol% or more and 99 Vol%. The manufacturing method of the molded object in any one of Claims 1-7 which is less than%.
Critical number of single yarns = 600 / D (1)
(Here, D is the average fiber diameter (μm) of the reinforcing fibers)
強化繊維束中の平均繊維数(N)が下記式(2)を満たす請求項8記載の成形体の製造方法。
0.7×10/D<N<1×10/D (2)
(ここで、Dは強化繊維の平均繊維径(μm)である)
The manufacturing method of the molded object of Claim 8 with which average fiber number (N) in a reinforcing fiber bundle satisfy | fills following formula (2).
0.7 × 10 4 / D 2 <N <1 × 10 5 / D 2 (2)
(Here, D is the average fiber diameter (μm) of the reinforcing fibers)
熱可塑性樹脂Pと熱可塑性樹脂Qとは同一の熱可塑性樹脂である、請求項1〜9のいずれかに記載の成形体の製造方法。   The method for producing a molded body according to any one of claims 1 to 9, wherein the thermoplastic resin P and the thermoplastic resin Q are the same thermoplastic resin. 強化繊維Aと強化繊維Bとは同一の材料からなるものである、請求項1〜10のいずれかに記載の成形体の製造方法。   The manufacturing method of the molded object in any one of Claims 1-10 in which the reinforced fiber A and the reinforced fiber B consist of the same material. 強化繊維が、炭素繊維、ガラス繊維、またはアラミド繊維である請求項1〜11のいずれかに記載の成形体の製造方法。   The method for producing a molded body according to any one of claims 1 to 11, wherein the reinforcing fibers are carbon fibers, glass fibers, or aramid fibers. 基材イおよび基材ロにおける強化繊維と熱可塑性樹脂の存在比が強化繊維100容量部に対して、熱可塑性樹脂50〜1000容量部であることを特徴とする請求項1〜12のいずれかに記載の成形体の製造方法。   The ratio of the reinforcing fiber and the thermoplastic resin in the base material (a) and the base material (b) is 50 to 1000 parts by volume of the thermoplastic resin with respect to 100 parts by volume of the reinforcing fiber. The manufacturing method of the molded object of description. 請求項1〜13のいずれかに記載の製造方法によって製造された、基材イと基材ロとからなる成形体。   The molded object which consists of the base material A and the base material B manufactured by the manufacturing method in any one of Claims 1-13. 基材ロを構成する強化繊維Bが一方向材もしくは一方向材を同一方向および/または異なる方向に重ねたものであることを特徴とする請求項14に記載の成形体。   15. The molded body according to claim 14, wherein the reinforcing fibers B constituting the base material B are unidirectional materials or unidirectional materials laminated in the same direction and / or different directions. 基材ロを構成する強化繊維Bが経糸と緯糸を交錯させた織物であることを特徴とする請求項14に記載の成形体。   The molded product according to claim 14, wherein the reinforcing fiber B constituting the base material B is a woven fabric in which warp and weft are interlaced.
JP2012041655A 2012-02-28 2012-02-28 Manufacturing method of molding Pending JP2013176876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012041655A JP2013176876A (en) 2012-02-28 2012-02-28 Manufacturing method of molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012041655A JP2013176876A (en) 2012-02-28 2012-02-28 Manufacturing method of molding

Publications (1)

Publication Number Publication Date
JP2013176876A true JP2013176876A (en) 2013-09-09

Family

ID=49269061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012041655A Pending JP2013176876A (en) 2012-02-28 2012-02-28 Manufacturing method of molding

Country Status (1)

Country Link
JP (1) JP2013176876A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5749868B1 (en) * 2014-08-28 2015-07-15 帝人株式会社 Composite material containing unidirectional continuous fiber and thermoplastic resin
WO2016017080A1 (en) * 2014-07-31 2016-02-04 小松精練株式会社 Molded object and process for producing same
JP2016183248A (en) * 2015-03-26 2016-10-20 東レ株式会社 Sheet material, integrated molding and method for producing integrated molding
JP2016221885A (en) * 2015-06-01 2016-12-28 富士重工業株式会社 Fiber-reinforced resin structure and manufacturing process thereof
WO2018003433A1 (en) * 2016-06-28 2018-01-04 児玉化学工業株式会社 Press-molded article molding method
WO2018142962A1 (en) 2017-02-02 2018-08-09 東レ株式会社 Method for producing fiber-reinforced plastic
JP2020131827A (en) * 2019-02-15 2020-08-31 三菱ケミカル株式会社 Bumper beam for automobile
JP2020152091A (en) * 2018-06-19 2020-09-24 旭化成株式会社 Method for producing molded product, molded body and mold for resin molding
WO2020194013A1 (en) * 2019-03-26 2020-10-01 日産自動車株式会社 Forming-use base material
CN112740469A (en) * 2018-09-20 2021-04-30 乐金华奥斯株式会社 Battery case for electric automobile
CN115581815A (en) * 2022-10-12 2023-01-10 江苏君华特种工程塑料制品有限公司 Continuous carbon fiber CF/PAEK thermoplastic composite femoral bone fracture plate and preparation method thereof
WO2023182258A1 (en) * 2022-03-25 2023-09-28 倉敷紡績株式会社 Rib-reinforced molding and method for producing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002127114A (en) * 2000-10-26 2002-05-08 Nichiha Corp Fiber-molded board and method for manufacturing the same
JP2005324340A (en) * 2004-05-12 2005-11-24 Honda Motor Co Ltd Fiber reinforced plastic and its manufacturing method
WO2009142291A1 (en) * 2008-05-22 2009-11-26 東洋紡績株式会社 Molded fiber-reinforced thermoplastic resin
JP2011241338A (en) * 2010-05-20 2011-12-01 Teijin Ltd Carbon fiber composite material
JP2013067051A (en) * 2011-09-21 2013-04-18 Mitsubishi Rayon Co Ltd Method for manufacturing fiber-reinforced thermoplastic resin molded article, mold used by this manufacturing method, and molded object manufactured by this manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002127114A (en) * 2000-10-26 2002-05-08 Nichiha Corp Fiber-molded board and method for manufacturing the same
JP2005324340A (en) * 2004-05-12 2005-11-24 Honda Motor Co Ltd Fiber reinforced plastic and its manufacturing method
WO2009142291A1 (en) * 2008-05-22 2009-11-26 東洋紡績株式会社 Molded fiber-reinforced thermoplastic resin
JP2011241338A (en) * 2010-05-20 2011-12-01 Teijin Ltd Carbon fiber composite material
JP2013067051A (en) * 2011-09-21 2013-04-18 Mitsubishi Rayon Co Ltd Method for manufacturing fiber-reinforced thermoplastic resin molded article, mold used by this manufacturing method, and molded object manufactured by this manufacturing method

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016017080A1 (en) * 2014-07-31 2017-05-18 小松精練株式会社 Molded body and manufacturing method thereof
WO2016017080A1 (en) * 2014-07-31 2016-02-04 小松精練株式会社 Molded object and process for producing same
US10889070B2 (en) 2014-08-28 2021-01-12 Teijin Limited Composite material including unidirectional continuous fibers and thermoplastic resin
CN105385183B (en) * 2014-08-28 2019-05-31 帝人株式会社 Composite material comprising unidirectional continuous fiber and thermoplastic resin
WO2016031005A1 (en) * 2014-08-28 2016-03-03 帝人株式会社 Composite material comprising unidirectional continuous fibers and thermoplastic resin
CN105385183A (en) * 2014-08-28 2016-03-09 帝人株式会社 Composite material including unidirectional continuous fibers and thermoplastic resin
JP5749868B1 (en) * 2014-08-28 2015-07-15 帝人株式会社 Composite material containing unidirectional continuous fiber and thermoplastic resin
JP2016183248A (en) * 2015-03-26 2016-10-20 東レ株式会社 Sheet material, integrated molding and method for producing integrated molding
JP2016221885A (en) * 2015-06-01 2016-12-28 富士重工業株式会社 Fiber-reinforced resin structure and manufacturing process thereof
WO2018003433A1 (en) * 2016-06-28 2018-01-04 児玉化学工業株式会社 Press-molded article molding method
JP6301030B1 (en) * 2016-06-28 2018-03-28 児玉化学工業株式会社 Molding method for press-molded products
WO2018142962A1 (en) 2017-02-02 2018-08-09 東レ株式会社 Method for producing fiber-reinforced plastic
KR20190104988A (en) 2017-02-02 2019-09-11 도레이 카부시키가이샤 Manufacturing method of fiber reinforced plastic
US11951695B2 (en) 2017-02-02 2024-04-09 Toray Industries, Inc. Method for producing fiber-reinforced plastic
JP2020152091A (en) * 2018-06-19 2020-09-24 旭化成株式会社 Method for producing molded product, molded body and mold for resin molding
CN112740469A (en) * 2018-09-20 2021-04-30 乐金华奥斯株式会社 Battery case for electric automobile
JP2020131827A (en) * 2019-02-15 2020-08-31 三菱ケミカル株式会社 Bumper beam for automobile
JP7223261B2 (en) 2019-02-15 2023-02-16 三菱ケミカル株式会社 automotive bumper beam
WO2020194013A1 (en) * 2019-03-26 2020-10-01 日産自動車株式会社 Forming-use base material
JP7347496B2 (en) 2019-03-26 2023-09-20 日産自動車株式会社 Base material for molding
WO2023182258A1 (en) * 2022-03-25 2023-09-28 倉敷紡績株式会社 Rib-reinforced molding and method for producing same
CN115581815A (en) * 2022-10-12 2023-01-10 江苏君华特种工程塑料制品有限公司 Continuous carbon fiber CF/PAEK thermoplastic composite femoral bone fracture plate and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2013176876A (en) Manufacturing method of molding
JP5658176B2 (en) Fiber-reinforced resin sheet and fiber-reinforced resin molded body using the same
TWI547371B (en) Carbon fiber reinforced thermoplastic resin composite material, molded body using the same and electronic equipment case
JP5926947B2 (en) Fiber-reinforced resin molded body and vehicle interior material using the same
JP6161108B2 (en) Fiber-reinforced composite material and method for producing the same
JP5920690B2 (en) Pre-preg sheet material and manufacturing method thereof
JP5417631B2 (en) Molding method of thermoplastic resin composite material molded product
JP6085798B2 (en) COMPOSITE MATERIAL FOR 3D SHAPE FORMING AND ITS MANUFACTURING METHOD
JP2014125532A5 (en)
JP5968600B2 (en) Fiber-reinforced thermoplastic resin molded article and method for producing the same, and composite and method for producing the same
TW201235388A (en) Formed body constituted by reinforcing fiber composite material
JPWO2005095079A1 (en) Preform, FRP, and production method thereof
JP2020062893A (en) Fiber-reinforced resin molded product and method for producing fiber-reinforced resin molded product
JPWO2013094702A1 (en) Method for producing molded body and molded body
JP2013221114A (en) Resin sheet made of carbon fiber composite resin material, resin molded product and method for manufacturing the same
JP6801321B2 (en) Laminated base material for rib molding
JP2015063018A (en) Polyolefin laminate sheet and production method of the same
JP7087337B2 (en) Reinforced fiber base material, reinforcing fiber laminate and fiber reinforced resin
CN106881931A (en) Thermoplas tic resin composite and the preparation method of thermoplas tic resin composite
JP2010214704A (en) Base material for preform using binder including superfine fiber, and method of manufacturing the same
JP6305714B2 (en) Thermoplastic laminated sheet and method for producing the same
TW202112917A (en) Fiber-reinforced resin substrate, integrated molded article, and method for manufacturing fiber-reinforced resin substrate
TW202019707A (en) Reinforced fiber tape material and production method therefor, fiber reinforced resin molded body and reinforced fiber layered body using reinforced fiber tape material
JP2014162858A (en) Prepreg and production method of the same, and fiber reinforced composite material
JP2006001035A (en) Polypropylene resin laminating and molding material and laminate thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150714

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160126