JP5417631B2 - Molding method of thermoplastic resin composite material molded product - Google Patents

Molding method of thermoplastic resin composite material molded product Download PDF

Info

Publication number
JP5417631B2
JP5417631B2 JP2007289785A JP2007289785A JP5417631B2 JP 5417631 B2 JP5417631 B2 JP 5417631B2 JP 2007289785 A JP2007289785 A JP 2007289785A JP 2007289785 A JP2007289785 A JP 2007289785A JP 5417631 B2 JP5417631 B2 JP 5417631B2
Authority
JP
Japan
Prior art keywords
thermoplastic resin
molding
sheet material
mold
reinforcing fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007289785A
Other languages
Japanese (ja)
Other versions
JP2009113369A (en
Inventor
和正 川邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukui Prefecture
Original Assignee
Fukui Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2007289785A priority Critical patent/JP5417631B2/en
Application filed by Fukui Prefecture filed Critical Fukui Prefecture
Priority to CN2007800221661A priority patent/CN101466535B/en
Priority to KR1020137004019A priority patent/KR101411169B1/en
Priority to KR1020097001138A priority patent/KR20090091104A/en
Priority to KR1020127034415A priority patent/KR101321651B1/en
Priority to CA002658572A priority patent/CA2658572A1/en
Priority to PCT/JP2007/072520 priority patent/WO2008062818A1/en
Priority to EP07832250.0A priority patent/EP2090423B1/en
Priority to CN2012102479308A priority patent/CN102815062A/en
Priority to KR1020127034414A priority patent/KR101295936B1/en
Priority to US12/376,525 priority patent/US20100215887A1/en
Priority to BRPI0716399-1A2A priority patent/BRPI0716399A2/en
Publication of JP2009113369A publication Critical patent/JP2009113369A/en
Priority to US13/486,779 priority patent/US10322530B2/en
Priority to US13/486,854 priority patent/US20120270030A1/en
Application granted granted Critical
Publication of JP5417631B2 publication Critical patent/JP5417631B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

本発明は、炭素繊維、ガラス繊維等の補強繊維材料に、ポリプロピレン樹脂、ポリアミド6樹脂、ポリエーテルイミド樹脂等の熱可塑性樹脂材料を含浸させて成形する熱可塑性樹脂複合材料成形品を成形する方法に関する。   The present invention relates to a method for molding a thermoplastic resin composite material molded by impregnating a reinforcing fiber material such as carbon fiber or glass fiber with a thermoplastic resin material such as polypropylene resin, polyamide 6 resin, or polyetherimide resin. About.

繊維補強複合材料は、繊維材料とマトリクス材料を組み合せたもので、軽量で剛性が高く多様な機能設計が可能な材料であり、航空宇宙分野、輸送分野、土木建築分野、運動器具分野等の幅広い分野で用いられている。現在、炭素繊維又はガラス繊維といった補強繊維材料を熱硬化性樹脂材料と組み合せた繊維強化プラスチック(FRP)が主流となっている。   Fiber reinforced composite materials are a combination of fiber materials and matrix materials, and are lightweight, rigid, and capable of diverse functional designs. They are widely used in aerospace, transportation, civil engineering, and exercise equipment. Used in the field. Currently, fiber reinforced plastic (FRP) in which a reinforcing fiber material such as carbon fiber or glass fiber is combined with a thermosetting resin material has become the mainstream.

しかし、リサイクル性、短時間成形性、成形品の耐衝撃特性の向上等の利点から、マトリクス樹脂に熱可塑性樹脂材料を用いた成形品に関する技術開発が進められている。例えば、特許文献1では、材料の上下表面に平面形状および凹凸形状の板状体を重ね合わせて、加熱プレス盤に挿入し熱可塑性樹脂を溶融させた後、材料を板状体にて重ね合わせた状態で取り出し、冷却プレス盤に挿入し冷却を行い、成形品を取り出す方法が記載されている。また、特許文献2では、繊維強化熱可塑性複合材料を雌型のオープンモールドに設置し、耐熱性バッグ材によってオープンモールド全体を覆った後、バッグ材とオープンモールドの間の空気を排出し、加熱加圧成形を行うことにより、繊維強化熱可塑性複合成形品を得る製造方法が記載されている。
特開平6−320655号公報 特開2004―276471号公報
However, due to advantages such as recyclability, short-time moldability, and improved impact resistance characteristics of molded products, technological development relating to molded products using a thermoplastic resin material as a matrix resin is being promoted. For example, in Patent Document 1, planar and concavo-convex plate-like bodies are superposed on the upper and lower surfaces of a material, inserted into a hot press machine, and a thermoplastic resin is melted, and then the material is superposed on the plate-like body. The method of taking out in the state, inserting in a cooling press board, cooling, and taking out a molded article is described. In Patent Document 2, the fiber reinforced thermoplastic composite material is placed in a female open mold, and the entire open mold is covered with a heat-resistant bag material, and then air between the bag material and the open mold is discharged and heated. A production method for obtaining a fiber-reinforced thermoplastic composite molded article by performing pressure molding is described.
JP-A-6-320655 JP 2004-276471 A

上述した熱可塑性樹脂複合材料成形品では、炭素繊維、ガラス繊維等の補強繊維材料に、ポリプロピレン樹脂、ポリアミド6樹脂、ポリエーテルイミド樹脂等の熱可塑性樹脂材料を、いかに空隙(ボイド)なく、かつ繊維分散性よく短時間で含浸させるか、そして、成形する際に三次元の形状に成形反りなどがない良好な成形を行うかといった課題がある。   In the thermoplastic resin composite material molded article described above, a thermoplastic resin material such as polypropylene resin, polyamide 6 resin, or polyetherimide resin is used as a reinforcing fiber material such as carbon fiber or glass fiber. There are problems of impregnating in a short time with good fiber dispersibility and whether to perform good forming without forming warp in a three-dimensional shape when forming.

特許文献1では、板状体の形状が材料側のみが凹凸加工されており、プレス盤にあたる側は平板形状になっているため、加熱および冷却の際に板状体の厚みが均一ではないため、材料への伝熱にムラが生じ、均一な状態での加熱および冷却が行われない。これにより、成形時間を短縮することが難しく、また、樹脂の部分的な含浸不足などによる成形そりなどを発生させてしまう。   In Patent Document 1, since the shape of the plate-like body is processed to be uneven only on the material side, and the side corresponding to the press plate has a flat plate shape, the thickness of the plate-like body is not uniform during heating and cooling. Unevenness occurs in the heat transfer to the material, and heating and cooling in a uniform state are not performed. As a result, it is difficult to shorten the molding time, and a molding warp due to partial impregnation of the resin or the like is generated.

通常、プレス装置のプレス盤は平面二形成されており、成形型もプレス盤面に接する方は平板形状、材料側は成形品形状に併せて凹凸を成す構造になっている。このため、成形型はプレス中に凹凸部分などに変形が生じないよう鉄などの金属で厚みをもたせて作製され、成形型自体を加熱および冷却させる時間がかかるようになる。   Usually, the press disk of the press apparatus is formed in two planes, and the mold also has a structure in which the plate is in contact with the surface of the press disk and the material side is uneven in accordance with the shape of the molded product. For this reason, the mold is made with a metal such as iron so as not to be deformed in the uneven portion during pressing, and it takes time to heat and cool the mold itself.

特許文献2のように加熱真空用バッグ等を使用する従来の成形方法では、バッグをモールド(成形型)にセットする、バッグからモールド(成形型)を取り出すといった作業において時間がかかる。また、バッグは耐熱性に課題があるため300度以上の高温成形が困難である。さらに、こうしたバッグは再利用が難しいため、成形処理毎にバッグを交換する必要があり、コスト負担が大きいといった課題がある。   In the conventional molding method using a heating vacuum bag or the like as in Patent Document 2, it takes time to set the bag in the mold (mold) and take out the mold (mold) from the bag. Moreover, since a bag has a subject in heat resistance, it is difficult to form at a high temperature of 300 degrees or more. Furthermore, since such a bag is difficult to reuse, there is a problem that it is necessary to replace the bag for each molding process, and the cost burden is high.

そこで、本発明は、空隙がほとんどなく繊維分散性のよい熱可塑性樹脂複合材料成形品を短時間で成形反りを発生させることなく成形できる成形方法を提供することを目的とするものである。   Therefore, an object of the present invention is to provide a molding method capable of molding a thermoplastic resin composite material molded article having almost no voids and good fiber dispersibility in a short time without generating molding warpage.

本発明に係る熱可塑性樹脂複合材料成形品の成形方法は、補強繊維材料及び熱可塑性樹脂材料から構成される被成形材料を用いて熱可塑性樹脂複合材料成形品を成形する成形方法であって、前記被成形材料に対する当接部において均一な厚さに形成された一対の成形型体を用いて当該成形型体の間に前記被成形材料を配置し、前記被成形材料の周囲から内部の気体が排気可能となるように前記被成形材料の両側から前記成形型体により挟持して圧接した状態に設定し、前記被成形材料を挟持する前記成形型体の内部を減圧又は真空状態に設定し、前記成形型体の当接面と密着するように当接面が形成された一対の加熱プレス型体を用いて当該加熱プレス型体の間に前記成形型体を設置し、前記被成形材料を挟持するとともに内部を減圧又は真空状態に設定された前記成形型体を加熱・加圧処理して前記補強繊維材料の内部に溶融した前記熱可塑性樹脂材料を含浸させ、前記成形型体の当接面と密着するように当接面が形成された一対の冷却プレス型体を用いて当該冷却プレス型体の間に加熱・加圧処理した前記成形型体を設置し、前記被成形材料を挟持するとともに内部を減圧又は真空状態に設定された前記成形型体を冷却・加圧処理して前記補強繊維材料の内部に溶融含浸させた前記熱可塑性樹脂材料を固化させて成形することを特徴とする。さらに、前記被成形材料を挟持した前記成形型体を複数積層して加熱・加圧処理及び冷却・加圧処理を行うことを特徴とする。さらに、記加熱・加圧処理は、設定温度の異なる複数の加熱プレス型体を用いて順次加熱・加圧処理を行うことを特徴とする。さらに、前記冷却・加圧処理は、設定温度の異なる複数の冷却プレス型体を用いて順次冷却・加圧処理を行うことを特徴とする。さらに、前記成形型体は、当接部が薄肉状に形成されていることを特徴とする。さらに、前記成形型体は、炭素繊維炭素複合体材料からなることを特徴とする。さらに、前記成形型体は、前記被成形材料に当接する当接面が離型処理されていることを特徴とする。さらに、前記被成形材料は、前記成形型体に当接する部分に離型シート材が設けられていることを特徴とする。さらに、前記被成形材料は、前記補強繊維材料を配列した層の間にマトリクスとなる前記熱可塑性樹脂材料が偏在していることを特徴とする。さらに、前記被成形材料は、複数の補強繊維が所定方向に引き揃えられてシート状に形成された補強繊維シート材と、当該補強繊維シート材の片面又は両面に付着した熱可塑性樹脂シート材により構成されている熱可塑性樹脂補強シート材を複数枚積層して構成されていることを特徴とする。さらに、前記補強繊維シート材及び前記熱可塑性樹脂シート材を当該熱可塑性樹脂シート材の溶融温度より低い温度で溶融又は軟化する接着用熱可塑性樹脂材によって付着させていることを特徴とする。

A molding method of a thermoplastic resin composite material molded article according to the present invention is a molding method of molding a thermoplastic resin composite material molded article using a molding material composed of a reinforcing fiber material and a thermoplastic resin material, The molding material is disposed between the molding dies using a pair of molding dies formed at a uniform thickness at the contact portion with the molding material, and the gas from the periphery of the molding material to the inside. Is set in a state of being pressed and pressed by the mold from both sides of the material to be evacuated, and the inside of the mold that holds the material to be pressed is set to a reduced pressure or a vacuum state. The molding material is placed between the heat press mold bodies using a pair of heat press mold bodies having contact surfaces formed so as to be in close contact with the contact surfaces of the mold dies. And hold the pressure inside or And heating and pressurizing treatment to the mold body, which is set in a state impregnated with the thermoplastic resin material which is melted inside the reinforcing fiber material, abut in close contact with the abutment surface of the mold body Using the pair of cooling press molds on which the surfaces are formed, the molding mold body heated and pressurized is placed between the cooling press mold bodies, the material to be molded is sandwiched, and the inside is decompressed or vacuumed cooling and pressure treatment to solidify the thermoplastic resin material inside the melted impregnation of the reinforcing fiber material to set the mold body, characterized in that molding. Furthermore, a plurality of the molds sandwiching the material to be molded are stacked to perform heating / pressurizing treatment and cooling / pressurizing treatment. Furthermore, before Symbol heating and pressing process, and performing a sequential heating and pressurizing treatment using a plurality of heated press mold body having different set temperatures. Further, the cooling / pressurizing process is characterized in that the cooling / pressurizing process is sequentially performed using a plurality of cooling press molds having different set temperatures. Further, the molding die is characterized in that the contact portion is formed in a thin shape. Furthermore, the mold is made of a carbon fiber carbon composite material. Further, the mold body is characterized in that a contact surface that contacts the material to be molded is subjected to a mold release process. Further, the molding material is characterized in that a release sheet material is provided at a portion in contact with the molding die. Further, the molding material is characterized in that the thermoplastic resin material serving as a matrix is unevenly distributed between the layers in which the reinforcing fiber materials are arranged. Further, the molding material includes a reinforcing fiber sheet material in which a plurality of reinforcing fibers are aligned in a predetermined direction and formed into a sheet shape, and a thermoplastic resin sheet material attached to one or both surfaces of the reinforcing fiber sheet material. A plurality of the thermoplastic resin reinforcing sheet materials that are configured are laminated and configured. Further, the reinforcing fiber sheet material and the thermoplastic resin sheet material are adhered by an adhesive thermoplastic resin material that melts or softens at a temperature lower than the melting temperature of the thermoplastic resin sheet material.

本発明は、上記のような構成を有することで、補強繊維材料及び熱可塑性樹脂材料から構成される被成形材料を加圧しながら加熱及び冷却し熱可塑性樹脂材料を均一に溶融含浸させ固化させて一体化して、空隙がほとんどなく繊維分散性のよい熱可塑性樹脂複合材料成形品を成形そりの発生しない状態で成形することができる。   The present invention has the above-described configuration, and heats and cools the molding material composed of the reinforcing fiber material and the thermoplastic resin material while heating and cooling the material, and the thermoplastic resin material is uniformly melt-impregnated and solidified. It is possible to form a thermoplastic resin composite material molded article having a good fiber dispersibility with almost no voids in a state in which molding warpage does not occur.

すなわち、被成形材料に対する当接部において均一な厚さに形成された一対の成形型体を用いてその間に被成形材料を配置して成形型体を圧接した状態に設定し、成形型体の当接面と密着するように当接面が形成された一対の加熱プレス型体の間にその成形型体を設置し加熱・加圧処理するので、加熱プレス型体からの熱が均一な厚さの成形型体の当接部を介して被成形材料全体に均一に伝導されるようになる。   That is, using a pair of molding dies formed at a uniform thickness at the contact portion with the molding material, the molding material is placed between them and the molding die is set in a pressure-contacted state. Since the mold is placed between a pair of heat press molds with contact surfaces formed so as to be in intimate contact with the contact surfaces, the heat from the heat press molds has a uniform thickness. Through the contact portion of the mold body, the entire material to be molded is uniformly conducted.

そのため、被成形材料を構成する熱可塑性樹脂材料が全体としてより均一に溶融して含浸されるようなる。そして、被成形材料の周囲から内部の気体が排気可能となるように被成形材料の両側から成形型体により挟持して圧接した状態に設定しているので、熱可塑性樹脂材料の含浸に伴い被成形材料中の気体が排気されるようになり、空隙が発生することなく熱可塑性樹脂材料が含浸していくようになる。また、成形型体の当接面により被成形材料を常に圧接した状態としているので、熱可塑性樹脂材料の含浸の際の流動に伴う補強繊維材料の配列が乱れることがなく、繊維の分散性が維持されるようになる。   Therefore, the thermoplastic resin material constituting the molding material is melted and impregnated more uniformly as a whole. Since the gas inside the molding material can be evacuated from both sides of the molding material, it is set in a state of being sandwiched and pressed by the mold from both sides. The gas in the molding material is exhausted, and the thermoplastic resin material is impregnated without generating voids. In addition, since the material to be molded is always in pressure contact with the abutting surface of the mold body, the arrangement of the reinforcing fiber material is not disturbed due to the flow during the impregnation of the thermoplastic resin material, and the dispersibility of the fibers is improved. Will be maintained.

次に、加熱・加圧処理した成形型体を当該成形型体の当接面と密着するように当接面が形成された一対の冷却プレス型体の間に設置し均一な厚さの成形型体の当接部を介して冷却・加圧処理するので、被成形材料全体を均一に冷却することができ、溶融・含浸した熱可塑性樹脂材料を全体として同じように固化させてムラのない成形をすることが可能となり、成形反りのない良好な成形品を製造できる。   Next, a mold having a uniform thickness is formed by placing the heated and pressure-treated mold body between a pair of cooling press mold bodies having contact surfaces so as to be in close contact with the contact surface of the mold body. Cooling and pressurizing treatment is performed through the contact part of the mold body, so that the entire molding material can be cooled uniformly, and the thermoplastic resin material that has been melted and impregnated is solidified in the same way, and there is no unevenness. It becomes possible to mold, and a good molded product without molding warp can be manufactured.

そして、加熱処理及び冷却処理を別のプレス型体でそれぞれ行うことにより各処理を効率よく行うことができ、1つのプレス型体で両方の処理を行う場合に比べて成形時間を大幅に短縮することが可能となる。   And each process can be performed efficiently by performing each of the heat treatment and the cooling process with separate press mold bodies, and the molding time is significantly shortened compared with the case where both processes are performed with one press mold body. It becomes possible.

また、成形型体の間に被成形材料の内部の気体が排気される空間を形成して被成形材料を圧接した状態に設定するとともに当該排気空間を減圧又は真空状態にすれば、熱可塑性樹脂材料が溶融して含浸される際に熱可塑性樹脂材料の補強繊維材料への含浸を促進して含浸時間を大幅に短縮することができる。さらに、得られた成形品中の空隙を減少させることができ、高品質な成形品を得ることが可能となる。   Further, a thermoplastic resin can be obtained by forming a space in which a gas inside the molding material is exhausted between the molding dies and setting the molding material in a pressure-contacted state and reducing the exhaust space to a reduced pressure or a vacuum state. When the material is melted and impregnated, the impregnation of the thermoplastic resin material into the reinforcing fiber material can be promoted to greatly reduce the impregnation time. Furthermore, voids in the obtained molded product can be reduced, and a high-quality molded product can be obtained.

また、成形型体の内部を真空状態または減圧状態に設定することで、成形型体の外表面全体に大気圧による加圧状態が生じるようになる。そのため、成形型体を加熱プレス型体又は冷却プレス型体に設置する際に、成形型体により挟持された被成形材料を常時圧接状態に維持することができ、補強繊維材料の真直性や分散性等が維持された品質の良い成形品を得ることが可能となる。   Further, by setting the inside of the mold body to a vacuum state or a reduced pressure state, a pressure state due to atmospheric pressure is generated on the entire outer surface of the mold body. Therefore, when the molding die is placed on the heating press die or the cooling press die, the molding material sandwiched by the molding die can be always kept in the pressure contact state, and the straightness and dispersion of the reinforcing fiber material can be maintained. It is possible to obtain a molded article with good quality and the like maintained.

また、被成形材料を挟持した成形型体を複数積層して加熱・加圧処理及び冷却・加圧処理を行うことで、一度に複数の熱可塑性樹脂複合材料成形品を成形することができ、成形時間を短縮することが可能となる。成形型体を複数積層した場合、各成形型体の排気空間を1つにまとめて真空状態又は減圧状態に設定すれば、各成形型体を効率よく真空状態又は減圧状態にすることができる。   In addition, by stacking a plurality of molds sandwiching the material to be molded and performing heating / pressurizing treatment and cooling / pressurizing treatment, a plurality of thermoplastic resin composite material molded products can be molded at once, The molding time can be shortened. When a plurality of mold dies are stacked, the mold dies can be efficiently put into a vacuum state or a reduced pressure state if the exhaust spaces of the respective mold bodies are combined into one and set in a vacuum state or a reduced pressure state.

また、設定温度の異なる複数の加熱プレス型体を用いて順次加熱・加圧処理を行なったり、設定温度の異なる複数の冷却プレス型体を用いて順次冷却・加熱処理を行うことで、徐々に加熱・加圧処理又は冷却・加圧処理を行うことができる。そのため、熱可塑性樹脂材料の加熱又は冷却を制御することが可能となり、補強繊維材料中への含浸をスムーズに行うとともに熱可塑性樹脂材料の急激な収縮などを防止して、繊維真直性の良好な高品質の熱可塑性樹脂複合材料成形品を得ることが可能となる。   In addition, by performing sequential heating / pressurization processing using a plurality of heating press mold bodies having different set temperatures, or by sequentially performing cooling / heating processing using a plurality of cooling press mold bodies having different set temperatures, Heating / pressurizing treatment or cooling / pressurizing treatment can be performed. Therefore, it becomes possible to control the heating or cooling of the thermoplastic resin material, smoothly impregnating into the reinforcing fiber material and preventing rapid shrinkage of the thermoplastic resin material, etc., and good fiber straightness A high-quality thermoplastic resin composite material molded article can be obtained.

また、成形型体の当接部が薄肉状に形成されていることで、加熱及び冷却の際の成形型体の熱伝導性が向上して成形時間の短縮を図ることができる。   In addition, since the contact portion of the mold body is formed in a thin shape, the thermal conductivity of the mold body during heating and cooling is improved, and the molding time can be shortened.

また、成形型体を炭素繊維炭素複合体材料から構成することで、加熱及び冷却の際の熱変形がほとんどなく熱伝導性にも優れているため、成形反りのほとんどない熱可塑性樹脂複合材料成形品を成形することができる。   In addition, by forming the mold from a carbon fiber carbon composite material, there is almost no thermal deformation during heating and cooling, and excellent thermal conductivity, so molding of thermoplastic resin composite material with almost no molding warpage The product can be molded.

また、成形型体の被成形材料に当接する当接面を離型処理したり、被成形材料の成形型体に当接する部分に離型シート材を設けることで、成形した成形品を成形型体から容易に取り出すことができる。   In addition, the molded product can be molded by removing the contact surface of the molding die that comes into contact with the molding material or by providing a release sheet material at the portion of the molding material that comes into contact with the molding die. Can be easily removed from the body.

被成形材料として、補強繊維材料を配列した層の間にマトリクスとなる熱可塑性樹脂材料が偏在しているものを用いた場合、層方向に沿って熱可塑性樹脂材料が分布することから加熱・加圧処理の際に熱可塑性樹脂材料が同時に加熱されて層方向と直交する方向に溶融含浸するようになり、スムーズな含浸処理を行うことができる。そして、層の両側から熱可塑性樹脂材料が含浸するため、層の内部の空気は補強繊維材料の配列方向に沿って効率よく排気されるようになり、層の内部に空気がほとんど残留しなくなる。   If a thermoplastic resin material that is a matrix is unevenly distributed between layers in which reinforcing fiber materials are arranged as the molding material, the thermoplastic resin material is distributed along the layer direction. During the pressure treatment, the thermoplastic resin material is simultaneously heated and melt impregnated in a direction perpendicular to the layer direction, so that a smooth impregnation treatment can be performed. Since the thermoplastic resin material is impregnated from both sides of the layer, the air inside the layer is efficiently exhausted along the arrangement direction of the reinforcing fiber material, and almost no air remains inside the layer.

また、被成形材料を、複数の補強繊維が所定方向に引き揃えられてシート状に形成された補強繊維シート材と、当該補強繊維シート材の片面又は両面に付着した熱可塑性樹脂シート材により構成されている熱可塑性樹脂補強シート材を複数枚積層して構成すれば、製造が容易で成形の際の力学的特性及びドレープ性に優れた被成形材料を使用することができる。   Further, the material to be molded is composed of a reinforcing fiber sheet material in which a plurality of reinforcing fibers are aligned in a predetermined direction and formed into a sheet shape, and a thermoplastic resin sheet material attached to one or both surfaces of the reinforcing fiber sheet material If a plurality of the thermoplastic resin reinforced sheet materials that are used are laminated, it is possible to use a molding material that is easy to manufacture and excellent in mechanical properties and drapeability during molding.

以下、本発明に係る実施形態について詳しく説明する。なお、以下に説明する実施形態は、本発明を実施するにあたって好ましい具体例であるから、技術的に種々の限定がなされているが、本発明は、以下の説明において特に本発明を限定する旨明記されていない限り、これらの形態に限定されるものではない。   Hereinafter, embodiments according to the present invention will be described in detail. The embodiments described below are preferable specific examples for carrying out the present invention, and thus various technical limitations are made. However, the present invention is particularly limited in the following description. Unless otherwise specified, the present invention is not limited to these forms.

本発明に係る成形方法では、被成形材料としては、少なくとも補強繊維材料及び熱可塑性樹脂材料から構成されるものを用いる。補強繊維材料とは、炭素繊維、ガラス繊維、セラミック繊維、アラミド繊維、ポリオキシメチレン繊維、アロマティック・ポリアミド繊維、PBO(ポリパラフェニレンベンゾビスオキサゾール)繊維、金属繊維等のFRPに用いられる高強度・高弾性率の無機繊維や有機繊維等の補強繊維が複数本集束した材料である。また、種々の繊維束を複数組み合せてもよい。なお、繊度については特に限定されない。   In the molding method according to the present invention, a material composed of at least a reinforcing fiber material and a thermoplastic resin material is used as a material to be molded. Reinforcing fiber materials are high strength used for FRP such as carbon fiber, glass fiber, ceramic fiber, aramid fiber, polyoxymethylene fiber, aromatic polyamide fiber, PBO (polyparaphenylene benzobisoxazole) fiber, metal fiber, etc. A material in which a plurality of reinforcing fibers such as inorganic fibers and organic fibers having a high elastic modulus are bundled. A plurality of various fiber bundles may be combined. The fineness is not particularly limited.

熱可塑性樹脂材料としては、ポリプロピレン、ポリエチレン、ポリスチレン、ポリアミド(ナイロン6、ナイロン66、ナイロン12など)、ポリアセタール、ポリカーボネート、アクリロニトリル−ブタジエン−スチレン共重合体(ABS)、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエーテルイミド、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルケトン、ポリエーテルエーテルケトン等が挙げられる。また、これらの熱可塑性樹脂を2種類以上混合して、ポリマーアロイにして使用してもよい。   Examples of thermoplastic resin materials include polypropylene, polyethylene, polystyrene, polyamide (nylon 6, nylon 66, nylon 12, etc.), polyacetal, polycarbonate, acrylonitrile-butadiene-styrene copolymer (ABS), polyethylene terephthalate, polybutylene terephthalate, poly Examples include ether imide, polyether sulfone, polyphenylene sulfide, polyether ketone, and polyether ether ketone. Further, two or more of these thermoplastic resins may be mixed and used as a polymer alloy.

熱可塑性樹脂材料は、液状、粉末状、粒状、繊維状、布帛状、シート状といったいずれの形態でもよく特に限定されない。   The thermoplastic resin material may be in any form such as liquid, powder, granular, fiber, fabric, or sheet, and is not particularly limited.

被成形材料の形態としては、例えば、補強繊維材料中に熱可塑性樹脂材料が含浸したプレプリグシートを用いてもよい。しかし、本発明に係る成形方法に適した被成形材料の形態としては、補強繊維材料を配列した層の間に熱可塑性樹脂材料が偏在しているものが特に好ましい。以下にそうした被成形材料の具体例を説明する。   As a form of the molding material, for example, a prepreg sheet in which a reinforcing fiber material is impregnated with a thermoplastic resin material may be used. However, as a form of the molding material suitable for the molding method according to the present invention, a material in which the thermoplastic resin material is unevenly distributed between the layers in which the reinforcing fiber materials are arranged is particularly preferable. Specific examples of such molding materials will be described below.

図1は、本発明に用いる被成形材料の一例である熱可塑性樹脂多層補強シート材1の一部を示す模式図である。熱可塑性樹脂多層補強シート材1は、複数の補強繊維3fが引き揃えられてシート状に形成された補強繊維シート材3の片面に熱可塑性樹脂シート材4が付着して構成された熱可塑性樹脂補強シート材21〜24が積層された状態に、前記熱可塑性樹脂シート材4と同一材料の一体化用熱可塑性樹脂繊維束5により一体化されている。図1では、熱可塑性樹脂補強シート材21〜24が、各熱可塑性樹脂補強シート材の補強繊維が異なる軸方向に配列するように積層されている。そして、一体化用熱可塑性樹脂繊維束5を使用してステッチにより各熱可塑性樹脂補強シート材を縫合一体化している。   FIG. 1 is a schematic diagram showing a part of a thermoplastic resin multilayer reinforcing sheet material 1 which is an example of a molding material used in the present invention. The thermoplastic resin multilayer reinforcing sheet material 1 is a thermoplastic resin formed by adhering a thermoplastic resin sheet material 4 to one side of a reinforcing fiber sheet material 3 formed into a sheet shape by arranging a plurality of reinforcing fibers 3f. In the state where the reinforcing sheet materials 21 to 24 are laminated, the thermoplastic resin sheet material 4 and the thermoplastic resin fiber bundle 5 for integration are integrated. In FIG. 1, the thermoplastic resin reinforcing sheet materials 21 to 24 are laminated so that the reinforcing fibers of the respective thermoplastic resin reinforcing sheet materials are arranged in different axial directions. Each thermoplastic resin reinforcing sheet material is stitched and integrated by stitching using the thermoplastic resin fiber bundle 5 for integration.

補強繊維シート材3は、例えば、複数の補強繊維がサイジング剤等によりばらけないように集束している補強繊維束を複数本、シート状に引き揃えて形成されている。そして、補強繊維3fとしては、上述したように、炭素繊維、ガラス繊維、セラミック繊維、等のFRPに用いられる高強度・高弾性率の無機繊維や有機繊維などが挙げられる。   The reinforcing fiber sheet material 3 is formed by, for example, arranging a plurality of reinforcing fiber bundles that are bundled so that the plurality of reinforcing fibers are not separated by a sizing agent or the like into a sheet shape. As the reinforcing fiber 3f, as described above, high-strength and high-modulus inorganic fiber or organic fiber used for FRP such as carbon fiber, glass fiber, and ceramic fiber can be used.

熱可塑性樹脂シート材4は母材(マトリクス)樹脂となるもので、上述したような熱可塑性樹脂材料が使用される。また、これらの熱可塑性樹脂材料を2種類以上混合して、ポリマーアロイにして母材(マトリクス)樹脂として使用してもよい。   The thermoplastic resin sheet material 4 serves as a base material (matrix) resin, and the above-described thermoplastic resin material is used. Also, two or more of these thermoplastic resin materials may be mixed to form a polymer alloy and used as a base material (matrix) resin.

一体化用熱可塑性樹脂繊維束5は、使用されたマトリクス樹脂と同一材料から成る熱可塑性樹脂繊維を用いる。同一材料とは主たる高分子の化学組成が同じであるものでよく、その分子量、結晶化度及び配合物の種類等については異なっていてもよい。成型品を得る際に樹脂を加熱溶融するため、主たる高分子の化学組成が同じであれば、熱可塑性樹脂シート材4と一体化用熱可塑性樹脂繊維束5は溶融混合され、母材(マトリクス)となるのである。   The thermoplastic resin fiber bundle 5 for integration uses thermoplastic resin fibers made of the same material as the used matrix resin. The same material may have the same main chemical composition, and the molecular weight, crystallinity, type of compound, and the like may be different. Since the resin is heated and melted when a molded product is obtained, the thermoplastic resin sheet material 4 and the thermoplastic resin fiber bundle 5 for integration are melt-mixed and the base material (matrix) if the main polymer has the same chemical composition. ).

さらに、熱可塑性樹脂シート材4がポリマーアロイされたものであるとき、当該ポリマーアロイ樹脂による一体化用熱可塑性樹脂繊維束を使用することが望ましいが、当該ポリマーアロイ樹脂を得るために混合されたどれか一種類の熱可塑性樹脂による一体化用熱可塑性樹脂繊維束を使用しても良い。成型品を得るための加熱溶融によって、ポリマーアロイを構成する熱可塑性樹脂の混合比率が局部的には若干変化するが、母材(マトリクス)となる熱可塑性樹脂シート材4と一体化用熱可塑性樹脂繊維束5は溶融混合して繊維としての形状は消滅するため、力学的特性の低下がない、補強繊維の均一分散性と表面平滑性が向上した成型品を得ることが可能となる。   Furthermore, when the thermoplastic resin sheet material 4 is a polymer alloy, it is desirable to use a thermoplastic resin fiber bundle for integration with the polymer alloy resin, but it was mixed to obtain the polymer alloy resin. You may use the thermoplastic resin fiber bundle for integration by any one kind of thermoplastic resin. Although the mixing ratio of the thermoplastic resin constituting the polymer alloy is slightly changed locally by heating and melting to obtain a molded product, the thermoplastic resin for integration with the thermoplastic resin sheet material 4 serving as a base material (matrix). Since the resin fiber bundle 5 is melt-mixed and the shape of the fiber disappears, it is possible to obtain a molded product in which the uniform dispersibility and the surface smoothness of the reinforcing fiber are improved without deterioration of the mechanical properties.

図1の熱可塑性樹脂多層補強シート材1は、熱可塑性樹脂補強シート材21〜24の4枚を積層して形成されているが、積層枚数は4枚に限定されるものではなく、2枚以上の積層枚数であれば良い。そして、このとき、前記熱可塑性樹脂補強シート材の補強方向は同方向、または異方向、どの方向に積層しても良い。図1の場合、熱可塑性樹脂補強シート材21は0度方向、熱可塑性樹脂補強シート材22は45度方向、熱可塑性樹脂補強シート材23は90度方向そして熱可塑性樹脂補強シート材24は−45度方向に繊維補強している。   The thermoplastic resin multilayer reinforcing sheet material 1 in FIG. 1 is formed by laminating four sheets of thermoplastic resin reinforcing sheet materials 21 to 24, but the number of laminated sheets is not limited to four, and two sheets It is sufficient if the number of stacked layers is the above. At this time, the thermoplastic resin reinforcing sheet material may be laminated in the same direction or in different directions. In the case of FIG. 1, the thermoplastic resin reinforcing sheet material 21 is in the 0 degree direction, the thermoplastic resin reinforcing sheet material 22 is in the 45 degree direction, the thermoplastic resin reinforcing sheet material 23 is in the 90 degree direction, and the thermoplastic resin reinforcing sheet material 24 is − The fiber is reinforced in the 45 degree direction.

図2及び図3は、熱可塑性樹脂多層補強シート材に用いる熱可塑性樹脂補強シート材2の一部を示す模式図である。図2における熱可塑性樹脂補強シート材2は、複数の補強繊維3fがサイジング剤等により集束した補強繊維束3tを幅方向に複数本引き揃えシート状の補強繊維シート材3に形成した片面に、熱可塑性樹脂シート材4を付着した構成になっている。熱可塑性樹脂シート材4は補強繊維シート材3の両面に付着させても良い。さらに、熱可塑性樹脂シート材4の両面に補強繊維シート材3を付着させても良い。   FIG.2 and FIG.3 is a schematic diagram which shows a part of the thermoplastic resin reinforcement sheet material 2 used for a thermoplastic resin multilayer reinforcement sheet material. The thermoplastic resin reinforcing sheet material 2 in FIG. 2 has a reinforcing fiber bundle 3t, in which a plurality of reinforcing fibers 3f are bundled by a sizing agent or the like, formed in a single-sided sheet-like reinforcing fiber sheet material 3 in the width direction. The thermoplastic resin sheet material 4 is attached. The thermoplastic resin sheet material 4 may be attached to both surfaces of the reinforcing fiber sheet material 3. Further, the reinforcing fiber sheet material 3 may be attached to both surfaces of the thermoplastic resin sheet material 4.

なお、当該熱可塑性樹脂補強シート材は、複数の補強繊維がサイジング剤等によりばらけないように集束している補強繊維束を複数本、シート状に引き揃えて形成された補強繊維シート材の片面又は両面に、熱可塑性樹脂シート材を付着させて形成されている。このため、補強繊維束の引き揃えられた状態が維持され、かつ、ばらけないようになるとともに、補強繊維束を構成する各補強繊維においても、サイジング剤等が付着している効果により、各補強繊維がばらけず、繊維の配向乱れが抑制されるとともに、毛羽が生じ難い状態となっている。   The thermoplastic resin reinforcing sheet material is a reinforcing fiber sheet material formed by aligning a plurality of reinforcing fiber bundles that are bundled so that a plurality of reinforcing fibers are not scattered by a sizing agent or the like in a sheet shape. It is formed by attaching a thermoplastic resin sheet material to one side or both sides. For this reason, the aligned state of the reinforcing fiber bundle is maintained and does not come apart, and also in each reinforcing fiber constituting the reinforcing fiber bundle, due to the effect that the sizing agent or the like adheres, The reinforcing fibers are not scattered, the fiber orientation disorder is suppressed, and fluff is hardly generated.

ここで、付着とは、補強繊維シート材の片面又は両面の全面又は複数部分に、熱可塑性樹脂シート材を熱融着させる、又は成型品になった際に力学的特性等に影響を与えない接着剤を薄く塗布して接着させる等して、補強繊維シート材と熱可塑性樹脂シート材をばらけないように一体化させることである。補強繊維シート材に熱可塑性樹脂シート材を熱融着させる場合、補強繊維シート材の表層部分に熱可塑性樹脂シート材がわずかに含浸することもあるが、その場合においてもシートとしてのドレープ性は十分にあり、付着の状態にあるといえる。   Here, adhesion means that the thermoplastic resin sheet material is thermally fused to one surface or both surfaces of the reinforcing fiber sheet material or a plurality of portions, or does not affect the mechanical properties when the molded product is formed. For example, the reinforcing fiber sheet material and the thermoplastic resin sheet material are integrated so as not to be separated by, for example, thinly applying and bonding an adhesive. When the thermoplastic resin sheet material is heat-sealed to the reinforcing fiber sheet material, the thermoplastic resin sheet material may be slightly impregnated in the surface portion of the reinforcing fiber sheet material, but even in that case, the draping property as a sheet is It is enough and it can be said that it is in the state of adhesion.

図3における熱可塑性樹脂補強シート材2は、補強繊維3fが複数本引き揃えられた細幅形状の補強繊維シート材3の片面に細幅形状の熱可塑性樹脂シート材4が付着した細幅熱可塑性樹脂補強シート材2Hを用いて、当該細幅熱可塑性樹脂補強シート材2Hを幅方向に複数本シート状に引き揃えて構成されている。このようにして、細幅熱可塑性樹脂補シート材2Hを幅方向及び厚み方向に複数本引き揃えることにより、一方向補強された熱可塑性樹脂補強シート材を得る。また、細幅熱可塑性樹脂補強シート材2Hを織糸に用い製織することにより、例えば、0度と90度方向の二方向があらかじめ補強された熱可塑性樹脂補強シート材を得ることもできる。   The thermoplastic resin reinforcing sheet material 2 in FIG. 3 has a narrow width heat in which a narrow-width thermoplastic resin sheet material 4 is attached to one side of a narrow-width reinforcing fiber sheet material 3 in which a plurality of reinforcing fibers 3f are aligned. By using the plastic resin reinforcing sheet material 2H, a plurality of the narrow thermoplastic resin reinforcing sheet material 2H are arranged in a sheet shape in the width direction. In this way, by aligning a plurality of the narrow thermoplastic resin auxiliary sheet materials 2H in the width direction and the thickness direction, a reinforced thermoplastic resin reinforcing sheet material is obtained. Further, by weaving using the narrow thermoplastic resin reinforcing sheet material 2H as a woven yarn, for example, it is possible to obtain a thermoplastic resin reinforcing sheet material in which two directions of 0 degrees and 90 degrees are reinforced in advance.

図3における細幅熱可塑性樹脂補強シート材2Hにおいても、細幅形状の補強繊維シート材3の片面に細幅形状の熱可塑性樹脂シート材4を付着させているが、細幅形状の補強繊維シート材の両面に細幅形状の熱可塑性樹脂シート材を付着させても良い。さらに、細幅形状の熱可塑性樹脂シート材の両面に細幅形状の補強繊維シート材を付着させても良い。   Also in the narrow thermoplastic resin reinforcing sheet material 2H in FIG. 3, the narrow thermoplastic resin sheet material 4 is attached to one side of the narrow reinforcing fiber sheet material 3, but the narrow reinforcing fiber sheet A narrow-width thermoplastic resin sheet material may be adhered to both surfaces of the sheet material. Furthermore, a narrow reinforcing fiber sheet material may be attached to both surfaces of the narrow thermoplastic resin sheet material.

補強繊維シート材3の厚みを補強繊維3fの直径の10倍以内にすることにより、成型品にする際、熱可塑性樹脂シート材が補強繊維間を含浸のために流れる距離がより短くなる。複合材料の補強繊維として代表的な炭素繊維は単糸直径が0.005〜0.007mmである。よって、補強繊維シート材3の厚さは0.05〜0.07mm以下となる。このような厚みになれば、数秒程度で熱可塑性樹脂シート材が補強繊維束中に含浸することが期待され、短時間での成形加工が実現できるようになる。また、熱可塑性樹脂シート材の補強繊維間を流れる距離をより短くすることにより、樹脂流れによる補強繊維の配向乱れが抑制され、補強繊維の均一分散性が向上した、ボイド(空隙)の少ない状態を得ることができる。   By making the thickness of the reinforcing fiber sheet material 3 within 10 times the diameter of the reinforcing fiber 3f, the distance that the thermoplastic resin sheet material flows between the reinforcing fibers for impregnation becomes shorter when forming a molded product. A carbon fiber representative as a reinforcing fiber of the composite material has a single yarn diameter of 0.005 to 0.007 mm. Therefore, the thickness of the reinforcing fiber sheet material 3 is 0.05 to 0.07 mm or less. With such a thickness, it is expected that the thermoplastic resin sheet material will be impregnated into the reinforcing fiber bundle in about several seconds, and a molding process can be realized in a short time. In addition, by shortening the distance that flows between the reinforcing fibers of the thermoplastic resin sheet material, the disturbance of orientation of the reinforcing fibers due to the resin flow is suppressed, the uniform dispersibility of the reinforcing fibers is improved, and there are few voids Can be obtained.

補強繊維シート材3の厚さを補強繊維3fの直径の10倍以内の状態にするためには、集束本数の少ない繊維束を用いる方法、又は繊維束を開繊させる方法等がある。開繊による方法は、集束本数の多い繊維束(太繊度繊維束)を幅広く薄い状態にすることができる。太繊度繊維束は、比較的材料コストが安いため、低コストの成形品を得ることを可能とする。なお、原糸の状態で使用されているサイジング剤等の効果により、開繊糸の形態は安定する。   In order to make the thickness of the reinforcing fiber sheet material 3 within 10 times the diameter of the reinforcing fiber 3f, there are a method using a fiber bundle with a small number of bundles, a method of opening the fiber bundle, and the like. The method by opening can make a fiber bundle having a large number of bundles (thick fiber bundle) into a thin and wide state. Since the thick fiber bundle has a relatively low material cost, it is possible to obtain a low-cost molded product. In addition, the form of the spread yarn is stabilized by the effect of the sizing agent used in the state of the raw yarn.

なお、補強繊維シート材3に付着させる熱可塑性樹脂シート材4の厚み又は重量は、補強繊維シート材の目付け(単位面積あたりの繊維重量)、及び成形品にしたときの繊維体積含有率等と関係して決められる。   The thickness or weight of the thermoplastic resin sheet material 4 attached to the reinforcing fiber sheet material 3 is the basis weight of the reinforcing fiber sheet material (fiber weight per unit area), the fiber volume content when forming a molded product, and the like. Decided in relation.

図4は、熱可塑性樹脂多層補強シート材に用いるさらに別の例である熱可塑性樹脂補強シート材11の一部を示す模式図である。熱可塑性樹脂補強シート材11は、複数の補強繊維12fがサイジング剤等により集束した補強繊維束12tを幅方向に複数本引き揃えシート状の補強繊維シート材12に形成した片面に、熱可塑性樹脂シート材13を付着し、当該熱可塑性樹脂シート材13の溶融温度より低い温度で溶融又は軟化する接着用熱可塑性樹脂材14が熱可塑性樹脂シート材13の補強繊維シート材12が付着していない面の表面に付着した構成になっている。なお、接着用熱可塑性樹脂材14は補強繊維シート材12の熱可塑性樹脂シート材13が付着していない面の表面に付着しても良い。また、熱可塑性樹脂シート材は補強繊維シート材の両面に付着させても良い。この場合は、一方もしくは両方の熱可塑性樹脂シート材の補強繊維シート材が付着していない面の表面に接着用熱可塑性樹脂材を付着させる。さらに、熱可塑性樹脂シート材の両面に補強繊維シート材を付着させて構成しても良い。この場合は、一方もしくは両方の補強繊維シート材の熱可塑性樹脂シート材が付着していない面の表面に接着用熱可塑性樹脂材を付着させる。   FIG. 4 is a schematic view showing a part of a thermoplastic resin reinforcing sheet material 11 which is still another example used for the thermoplastic resin multilayer reinforcing sheet material. The thermoplastic resin reinforcing sheet material 11 has a thermoplastic resin on one side formed on a reinforcing fiber sheet material 12 in the form of a plurality of reinforcing fiber bundles 12t in which a plurality of reinforcing fibers 12f are converged by a sizing agent or the like in the width direction. Adhesive thermoplastic resin material 14 that adheres sheet material 13 and melts or softens at a temperature lower than the melting temperature of thermoplastic resin sheet material 13 does not adhere to reinforcing fiber sheet material 12 of thermoplastic resin sheet material 13. It is configured to adhere to the surface of the surface. Note that the adhesive thermoplastic resin material 14 may be attached to the surface of the reinforcing fiber sheet material 12 on which the thermoplastic resin sheet material 13 is not attached. Further, the thermoplastic resin sheet material may be attached to both surfaces of the reinforcing fiber sheet material. In this case, the adhesive thermoplastic resin material is adhered to the surface of one or both of the thermoplastic resin sheet materials to which the reinforcing fiber sheet material is not adhered. Further, the reinforcing fiber sheet material may be adhered to both surfaces of the thermoplastic resin sheet material. In this case, the adhesive thermoplastic resin material is adhered to the surface of one or both of the reinforcing fiber sheet materials to which the thermoplastic resin sheet material is not adhered.

接着用熱可塑性樹脂材14が表面に付着した構成となっているため、熱可塑性樹脂補強シート材を切断して、所要の方向で積層を行った際、接着用熱可塑性樹脂材が溶融又は軟化する温度で加熱又は加熱加圧することにより、積層された熱可塑性樹脂補強シート材の各層間を接着用熱可塑性樹脂材によって接着して一体化することができる。つまり、積層された熱可塑性樹脂補強シート材の取り扱いが行い易くなり、成形のための成形型体内への設置に際し、補強繊維の補強方向、補強繊維の引き揃え状態を維持したまま、積層された熱可塑性樹脂補強シート材を成形型体内に容易に設置することが可能となる。   Since the adhesive thermoplastic resin material 14 is attached to the surface, when the thermoplastic resin reinforcing sheet material is cut and laminated in the required direction, the adhesive thermoplastic resin material melts or softens. By heating or heating and pressurizing at a temperature to be applied, the respective layers of the laminated thermoplastic resin reinforcing sheet material can be bonded and integrated with the adhesive thermoplastic resin material. In other words, it becomes easier to handle the laminated thermoplastic resin reinforced sheet material, and it is laminated while maintaining the reinforcing fiber reinforcement direction and the reinforcing fiber alignment state when installed in the mold for molding. It becomes possible to easily install the thermoplastic resin reinforcing sheet material in the mold.

なお、熱可塑性樹脂補強シート材を構成する補強繊維シート材は、複数の補強繊維がサイジング剤等によりばらけないように集束している補強繊維束を使用して形成されることが多い。この場合、母材(マトリクス)樹脂が熱可塑性樹脂であることから、補強繊維束を集束させるサイジング剤は母材樹脂との接着性等を考慮したサイジング剤が使用されていることが望ましい。そして、サイジング剤等が付着している効果により、各補強繊維のばらけ、配向乱れ、そして、毛羽の生じ難い状態を得ながら、各補強繊維の移動や各補強繊維同士のずれ等を可能としてドレープ性に優れた補強繊維シート材を得ることができる。   The reinforcing fiber sheet material constituting the thermoplastic resin reinforcing sheet material is often formed using a reinforcing fiber bundle in which a plurality of reinforcing fibers are bundled so as not to be scattered by a sizing agent or the like. In this case, since the base material (matrix) resin is a thermoplastic resin, it is desirable to use a sizing agent in consideration of adhesiveness to the base material resin and the like as the sizing agent for bundling the reinforcing fiber bundle. And, by the effect that the sizing agent or the like adheres, it is possible to move each reinforcing fiber, shift each reinforcing fiber, etc. A reinforcing fiber sheet material excellent in drapeability can be obtained.

補強繊維と母材樹脂との接着性を考慮して、サイジング剤が付着していない、もしくは付着量の大変少ない補強繊維束を使用する場合、または、補強繊維束に付着するサイジング剤を除去して補強繊維シート材にする場合等がある。この場合においても、補強繊維シート材と熱可塑性樹脂シート材を付着させることにより、補強繊維がばらけることを抑えることができる。特に、補強繊維束を開繊等して厚み方向に並ぶ補強繊維本数を減らすと、補強繊維のばらけをより抑えることが可能となる。   Considering the adhesion between the reinforcing fiber and the base resin, when using a reinforcing fiber bundle that does not adhere to the sizing agent or has a very small amount attached, or remove the sizing agent that adheres to the reinforcing fiber bundle. In some cases, a reinforcing fiber sheet material is used. Even in this case, it is possible to prevent the reinforcing fibers from being scattered by attaching the reinforcing fiber sheet material and the thermoplastic resin sheet material. In particular, if the number of reinforcing fibers arranged in the thickness direction is reduced by opening the reinforcing fiber bundle or the like, it is possible to further suppress the dispersion of the reinforcing fibers.

図4における補強繊維シート材12と熱可塑性樹脂シート材13の付着とは、補強繊維シート材の片面又は両面の全面又は複数部分に熱可塑性樹脂シート材を熱融着させた形態、または、成型品になった際に力学的特性等に影響を与えない接着剤を薄く塗布して補強繊維シート材と熱可塑性樹脂シート材を接着させた形態等がある。なお、補強繊維シート材に熱可塑性樹脂シート材を熱融着させる場合、補強繊維シート材の表層部分に熱可塑性樹脂シート材がわずかに含浸することもあるが、その場合においてもシートとしてのドレープ性は十分にあり、付着の形態にあるといえる。   The adhesion of the reinforcing fiber sheet material 12 and the thermoplastic resin sheet material 13 in FIG. 4 is a form in which the thermoplastic resin sheet material is thermally fused to one surface or both surfaces of the reinforcing fiber sheet material or a plurality of portions, or molding. There is a form in which a reinforcing fiber sheet material and a thermoplastic resin sheet material are bonded to each other by thinly applying an adhesive that does not affect the mechanical properties and the like when it becomes a product. In addition, when the thermoplastic resin sheet material is heat-sealed to the reinforcing fiber sheet material, the thermoplastic resin sheet material may be slightly impregnated in the surface layer portion of the reinforcing fiber sheet material. It can be said that it has sufficient properties and is in the form of adhesion.

図5は、熱可塑性樹脂多層補強シート材に用いるさらに別の例である熱可塑性樹脂補強シート材11の一部を示す模式図である。熱可塑性樹脂補強シート材11は、複数の補強繊維12fがサイジング剤等により集束した補強繊維束12tを幅方向に複数本引き揃えシート状とした補強繊維シート材12の片面に、熱可塑性樹脂シート材13を、当該熱可塑性樹脂シート材の溶融温度より低い温度で溶融又は軟化する接着用熱可塑性樹脂材14によって付着させて構成されている。なお、熱可塑性樹脂シート材13は補強繊維シート材12の両面に付着させても良い。さらに、熱可塑性樹脂シート材13の両面に補強繊維シート材12を付着させて構成しても良い。   FIG. 5 is a schematic view showing a part of a thermoplastic resin reinforcing sheet material 11 which is still another example used for the thermoplastic resin multilayer reinforcing sheet material. The thermoplastic resin reinforcing sheet material 11 has a thermoplastic resin sheet on one surface of a reinforcing fiber sheet material 12 in which a plurality of reinforcing fiber bundles 12t, in which a plurality of reinforcing fibers 12f are bundled with a sizing agent, are arranged in a width direction. The material 13 is made to adhere by the thermoplastic resin material 14 for adhesion | attachment which fuse | melts or softens at the temperature lower than the melting temperature of the said thermoplastic resin sheet material. The thermoplastic resin sheet material 13 may be attached to both surfaces of the reinforcing fiber sheet material 12. Further, the reinforcing fiber sheet material 12 may be attached to both surfaces of the thermoplastic resin sheet material 13.

図5では、補強繊維シート材12と熱可塑性樹脂シート材13を接着用熱可塑性樹脂材4によって接着して、ばらけないように一体化させることにより、補強繊維シート材12と熱可塑性樹脂シート材13を付着させている。つまり、熱可塑性樹脂シート材の溶融温度まで加熱せず、補強繊維シート材と熱可塑性樹脂シート材を付着させているため、補強繊維シート材の形態及び熱可塑性樹脂シート材の形態が維持されている。よって、当該熱可塑性樹脂補強シート材のドレープ性、補強繊維の真直な状態及び均一な分散状態等が優れたシート材となる。   In FIG. 5, the reinforcing fiber sheet material 12 and the thermoplastic resin sheet material 13 are bonded together by the bonding thermoplastic resin material 4 and integrated so as not to be separated, whereby the reinforcing fiber sheet material 12 and the thermoplastic resin sheet are integrated. The material 13 is adhered. That is, since the reinforcing fiber sheet material and the thermoplastic resin sheet material are adhered without being heated to the melting temperature of the thermoplastic resin sheet material, the form of the reinforcing fiber sheet material and the form of the thermoplastic resin sheet material are maintained. Yes. Therefore, the drapeability of the thermoplastic resin reinforced sheet material, the straight state of the reinforcing fiber, the uniform dispersed state, and the like are excellent sheet materials.

図6は、熱可塑性樹脂多層補強シート材に用いるさらに別の例である熱可塑性樹脂補強シート材11の一部を示す模式図である。熱可塑性樹脂補強シート材11は、補強繊維12fが複数本引き揃えられた細幅形状の補強繊維シート材12の片面に細幅形状の熱可塑性樹脂シート材13が当該熱可塑性樹脂シート材の溶融温度より低い温度で溶融又は軟化する接着用熱可塑性樹脂材14によって付着して構成されている細幅熱可塑性樹脂補強シート材11Hを用いて、当該細幅熱可塑性樹脂補強シート材1Hを幅方向に複数本シート状に引き揃えて構成されている。このようにして、細幅熱可塑性樹脂補シート材1Hを幅方向及び厚み方向に複数本引き揃えることにより、一方向補強された熱可塑性樹脂補強シート材11を得る。また、細幅熱可塑性樹脂補強シート材1Hを織糸に用い製織することにより、例えば、0度と90度方向の二方向があらかじめ補強された熱可塑性樹脂補強シート材を得ることもできる。   FIG. 6 is a schematic view showing a part of a thermoplastic resin reinforcing sheet material 11 which is still another example used for the thermoplastic resin multilayer reinforcing sheet material. In the thermoplastic resin reinforcing sheet material 11, the narrow thermoplastic resin sheet material 13 is melted on one surface of the narrow reinforcing fiber sheet material 12 in which a plurality of reinforcing fibers 12f are aligned. The narrow thermoplastic resin reinforced sheet material 1H is used in the width direction by using the narrow thermoplastic resin reinforced sheet material 11H formed by adhering with an adhesive thermoplastic resin material 14 that melts or softens at a temperature lower than the temperature. Are arranged in a plurality of sheets. Thus, the thermoplastic resin reinforcement sheet material 11 reinforced in one direction is obtained by aligning a plurality of the narrow thermoplastic resin auxiliary sheet materials 1H in the width direction and the thickness direction. Further, by weaving using the narrow thermoplastic resin reinforcing sheet material 1H as a woven yarn, for example, it is possible to obtain a thermoplastic resin reinforcing sheet material in which two directions of 0 degrees and 90 degrees are reinforced in advance.

図6における細幅熱可塑性樹脂補強シート材1Hにおいても、細幅形状の補強繊維シート材12の片面に細幅形状の熱可塑性樹脂シート材13を接着用熱可塑性樹脂材14によって付着させているが、細幅形状の補強繊維シート材の両面に細幅形状の熱可塑性樹脂シート材を接着用熱可塑性樹脂材によって付着させても良い。さらに、細幅形状の熱可塑性樹脂シート材の両面に細幅形状の補強繊維シート材を接着用熱可塑性樹脂材によって付着させても良い。   Also in the narrow thermoplastic resin reinforcing sheet material 1 </ b> H in FIG. 6, the narrow thermoplastic resin sheet material 13 is adhered to one surface of the narrow reinforcing fiber sheet material 12 by the adhesive thermoplastic resin material 14. However, a narrow thermoplastic resin sheet material may be adhered to both surfaces of the narrow reinforcing fiber sheet material by an adhesive thermoplastic resin material. Further, a narrow reinforcing fiber sheet material may be attached to both surfaces of a narrow-shaped thermoplastic resin sheet material by an adhesive thermoplastic resin material.

なお、図5及び図6では、熱可塑性樹脂補強シート材11の表面には接着用熱可塑性樹脂材が付着していない図となっているが、熱可塑性樹脂補強シート材11の片面もしくは両面の表面に接着用熱可塑性樹脂材を分布させて付着させても良い。   In FIGS. 5 and 6, the thermoplastic resin reinforcing sheet material 11 is not attached to the surface of the thermoplastic resin reinforcing sheet material 11. A thermoplastic resin material for adhesion may be distributed and adhered to the surface.

当該熱可塑性樹脂補強シート材は、補強繊維シート材と熱可塑性樹脂シート材を接着させる接着用熱可塑性樹脂材の単位面積あたりの付着量と当該熱可塑性樹脂補強シート材の片面又は両面に付着されている接着用熱可塑性樹脂材の単位面積あたりの付着量を異ならせることや、また、補強繊維シート材と熱可塑性樹脂シート材を接着させる接着用熱可塑性樹脂材と熱可塑性樹脂補強シート材の片面又は両面に付着されている接着用熱可塑性樹脂材を異ならせたりすることができる。   The thermoplastic resin reinforced sheet material is adhered to one or both sides of the adhesion amount per unit area of the adhesive thermoplastic resin material for bonding the reinforcing fiber sheet material and the thermoplastic resin sheet material. Different adhesion amounts per unit area of the adhesive thermoplastic resin material, and the adhesive thermoplastic resin material and the thermoplastic resin reinforcing sheet material for adhering the reinforcing fiber sheet material and the thermoplastic resin sheet material. The thermoplastic resin material for adhesion adhered to one side or both sides can be made different.

補強繊維シート材と熱可塑性樹脂シート材を接着させる接着用熱可塑性樹脂材の単位面積あたりの付着量を、当該熱可塑性樹脂補強シート材の片面又は両面に付着されている接着用熱可塑性樹脂材の単位面積あたりの付着量より多くすること、または、補強繊維シート材と熱可塑性樹脂シート材を接着させる接着用熱可塑性樹脂材の付着力が熱可塑性樹脂補強シート材の片面又は両面に付着されている接着用熱可塑性樹脂材の付着力より大きいものを選択することにより、補強繊維シート材と熱可塑性樹脂シート材層間の付着力を熱可塑性樹脂補強シート材同士間の付着力よりも大きくした熱可塑性樹脂多層補強シート材を得ることができる。   The adhesion amount per unit area of the adhesive thermoplastic resin material for adhering the reinforcing fiber sheet material and the thermoplastic resin sheet material to the adhesive thermoplastic resin material attached to one or both surfaces of the thermoplastic resin reinforcing sheet material More than the amount of adhesion per unit area, or the adhesive force of the adhesive thermoplastic resin material that bonds the reinforcing fiber sheet material and the thermoplastic resin sheet material is adhered to one or both surfaces of the thermoplastic resin reinforced sheet material. By selecting a material larger than the adhesive strength of the adhesive thermoplastic resin material, the adhesive strength between the reinforcing fiber sheet material and the thermoplastic resin sheet material is made larger than the adhesive strength between the thermoplastic resin reinforced sheet materials. A thermoplastic resin multilayer reinforcing sheet material can be obtained.

これにより、補強繊維シート材を熱可塑性樹脂シート材に付着させたまま、熱可塑性樹脂補強シート材の各積層間のずれを実現できる。つまり、複数枚の熱可塑性樹脂補強シート材が接着一体化した取り扱いの行い易い熱可塑性樹脂多層補強シート材でありながら、成形のために当該熱可塑性樹脂多層補強シート材を成形型体に設置したときは、型体の内面の曲面形状部分等において、補強繊維の引き揃え状態、分散状態等を損なうことなく、熱可塑性樹脂補強シート材の各層間の付着を局部的にはずし、熱可塑性樹脂補強シート材の各層間をずらしながら型形状に適応することができる、ドレープ性がさらに優れた熱可塑性樹脂多層補強シート材となる。つまり、複雑な形状の積層成型品を品質良く得ることが可能となる。   Thereby, the shift | offset | difference between each lamination | stacking of a thermoplastic resin reinforcement sheet material is realizable, making the reinforcement fiber sheet material adhere to the thermoplastic resin sheet material. In other words, the thermoplastic resin multilayer reinforcing sheet material is easy to handle, in which a plurality of thermoplastic resin reinforcing sheet materials are bonded and integrated, and the thermoplastic resin multilayer reinforcing sheet material is installed in a mold for molding. Sometimes, in the curved surface shape part of the inner surface of the mold body, the adhesion between the layers of the thermoplastic resin reinforcing sheet material is locally removed without impairing the alignment state and dispersion state of the reinforcing fibers, and the thermoplastic resin reinforcement The thermoplastic resin multilayer reinforcing sheet material can be adapted to the mold shape while shifting the respective layers of the sheet material, and is further excellent in drapeability. That is, it is possible to obtain a laminated molded product having a complicated shape with high quality.

ここでの付着力とは、接着用熱可塑性樹脂材によって補強繊維シート材と熱可塑性樹脂シート材が、または補強繊維シート材と補強繊維シート材が、または熱可塑性樹脂シート材と熱可塑性樹脂シート材が接着する力のことを表し、付着力が大きいとは接着する力が強いことを表す。なお、補強繊維シート材と熱可塑性樹脂シート材が付着するとは、通常の取り扱い、例えば、シート材を搬送する、持ち上げる、シート材を切断する等の扱いにおいて補強繊維シート材と熱可塑性樹脂シート材が剥離しばらけない状態をいう。   Here, the adhesion force means that the reinforcing fiber sheet material and the thermoplastic resin sheet material, or the reinforcing fiber sheet material and the reinforcing fiber sheet material, or the thermoplastic resin sheet material and the thermoplastic resin sheet are used. It represents the force with which the material adheres, and a large adhesion means that the force to adhere is strong. Note that the reinforcing fiber sheet material and the thermoplastic resin sheet material adhere to each other when the reinforcing fiber sheet material and the thermoplastic resin sheet material are used in normal handling, for example, handling the sheet material, lifting, cutting the sheet material, etc. Refers to a state in which peeling does not occur.

補強繊維シート材12に付着させる熱可塑性樹脂シート材13の厚み又は重量は、補強繊維シート材の目付け(単位面積あたりの繊維重量)、及び成形品にしたときの繊維体積含有率等と関係して決められる。   The thickness or weight of the thermoplastic resin sheet material 13 to be adhered to the reinforcing fiber sheet material 12 is related to the basis weight of the reinforcing fiber sheet material (fiber weight per unit area), the fiber volume content when formed into a molded product, and the like. Can be decided.

補強繊維シート材12は、例えば、複数の補強繊維12fがサイジング剤等によりばらけないように集束している補強繊維束12tを複数本、シート状に引き揃えて形成されている。そして、補強繊維12fとしては、上述したように、炭素繊維、ガラス繊維、セラミック繊維、アラミド繊維、PBO(ポリパラフェニレンベンゾビスオキサゾール)繊維、金属繊維等のFRPに用いられる高強度・高弾性率の無機繊維や有機繊維等が挙げられる。   The reinforcing fiber sheet material 12 is formed, for example, by arranging a plurality of reinforcing fiber bundles 12t that are bundled so that the plurality of reinforcing fibers 12f are not separated by a sizing agent or the like into a sheet shape. Further, as described above, the reinforcing fiber 12f has high strength and high elastic modulus used for FRP such as carbon fiber, glass fiber, ceramic fiber, aramid fiber, PBO (polyparaphenylene benzobisoxazole) fiber, and metal fiber. Inorganic fibers and organic fibers.

補強繊維シート材12の厚みを補強繊維12fの直径の10倍以内にすることにより、成型品にする際、熱可塑性樹脂シート材が補強繊維間を含浸のために流れる距離がより短くなる。複合材料の補強繊維として代表的な炭素繊維は単糸直径が0.005〜0.007mmである。よって、補強繊維シート材13の厚さは0.05〜0.07mm以下となる。このような厚みになれば、数秒程度で熱可塑性樹脂 BR>Vート材が補強繊維束中に含浸することが期待され、短時間での成型加工が実現できるようになる。また、熱可塑性樹脂シート材の補強繊維間を流れる距離をより短くすることにより、樹脂流れによる補強繊維の配向乱れが抑制され、補強繊維の均一分散性が向上した、ボイド(空隙)の少ない状態を得ることができる。   By making the thickness of the reinforcing fiber sheet material 12 within 10 times the diameter of the reinforcing fiber 12f, the distance that the thermoplastic resin sheet material flows between the reinforcing fibers for impregnation becomes shorter when forming a molded product. A carbon fiber representative as a reinforcing fiber of the composite material has a single yarn diameter of 0.005 to 0.007 mm. Therefore, the thickness of the reinforcing fiber sheet material 13 is 0.05 to 0.07 mm or less. With such a thickness, it is expected that the thermoplastic resin BR> V material will be impregnated in the reinforcing fiber bundle in about several seconds, and a molding process can be realized in a short time. In addition, by shortening the distance that flows between the reinforcing fibers of the thermoplastic resin sheet material, the disturbance of orientation of the reinforcing fibers due to the resin flow is suppressed, the uniform dispersibility of the reinforcing fibers is improved, and there are few voids Can be obtained.

補強繊維シート材12の厚さを補強繊維12fの直径の10倍以内の状態にするためには、集束本数の少ない繊維束を用いる方法、又は繊維束を開繊させる方法等がある。開繊による方法は、集束本数の多い繊維束(太繊度繊維束)を幅広く薄い状態にすることができる。太繊度繊維束は、比較的材料コストが安いため、低コストの成形品を得ることを可能とする。なお、原糸の状態で使用されているサイジング剤等の効果により、開繊糸の形態は安定する。   In order to make the thickness of the reinforcing fiber sheet material 12 within 10 times the diameter of the reinforcing fiber 12f, there are a method using a fiber bundle with a small number of bundles, a method of opening the fiber bundle, and the like. The method by opening can make a fiber bundle having a large number of bundles (thick fiber bundle) into a thin and wide state. Since the thick fiber bundle has a relatively low material cost, it is possible to obtain a low-cost molded product. In addition, the form of the spread yarn is stabilized by the effect of the sizing agent used in the state of the raw yarn.

熱可塑性樹脂シート材13は母材(マトリクス)樹脂となるもので、上述したような熱可塑性樹脂材料が使用される。また、これらの熱可塑性樹脂を2種類以上混合して、ポリマーアロイにして母材(マトリクス)樹脂として使用してもよい。   The thermoplastic resin sheet material 13 becomes a base material (matrix) resin, and the above-described thermoplastic resin material is used. Further, two or more of these thermoplastic resins may be mixed to form a polymer alloy and used as a base material (matrix) resin.

接着用熱可塑性樹脂材14は、補強繊維シート材12と熱可塑性樹脂シート材13を接着させ一体化させるもので、構成される熱可塑性樹脂シート材の溶融温度より低い温度で溶融又は軟化して、補強繊維シート材と熱可塑性樹脂シート材、及び補強繊維シート材又は熱可塑性樹脂シート材と離型用シート材を接着させることができる熱可塑性樹脂が用いられる。接着用熱可塑性樹脂材14は、補強繊維シート材12及び熱可塑性樹脂シート材13の少なくともどちらか一方の片面又は両面に付着する。好ましくは、補強繊維シート材12及び熱可塑性樹脂シート材13の少なくともどちらか一方の片面又は両面の表面に付着し、さらには、均一にばらけていることが望ましい。これにより、補強繊維シート材12と熱可塑性樹脂シート材13を確実に接着して、補強繊維シート材に熱可塑性樹脂シート材を付着させた状態、または熱可塑性樹脂補強シート材を複数枚積層して接着一体化させた状態にする。   The adhesive thermoplastic resin material 14 is a material that bonds and integrates the reinforcing fiber sheet material 12 and the thermoplastic resin sheet material 13, and melts or softens at a temperature lower than the melting temperature of the thermoplastic resin sheet material that is configured. The reinforcing fiber sheet material and the thermoplastic resin sheet material, and the reinforcing fiber sheet material or the thermoplastic resin sheet material and the thermoplastic resin capable of bonding the release sheet material are used. The adhesive thermoplastic resin material 14 adheres to at least one of the reinforcing fiber sheet material 12 and the thermoplastic resin sheet material 13. Preferably, it is desirable that the reinforcing fiber sheet material 12 and the thermoplastic resin sheet material 13 adhere to the surface of one or both surfaces of the thermoplastic resin sheet material 13 and are evenly dispersed. As a result, the reinforcing fiber sheet material 12 and the thermoplastic resin sheet material 13 are securely bonded, and the thermoplastic resin sheet material is adhered to the reinforcing fiber sheet material, or a plurality of thermoplastic resin reinforcing sheet materials are laminated. To make the united and integrated.

接着用熱可塑性樹脂材14は、粉体形状、繊維形状のどちらの形状を用いても良い。さらに、繊維形状の場合、長繊維又は短繊維がばらけた状態及び織物、編物、不織布等の布帛状態等の形態を用いることができる。   The adhesive thermoplastic resin material 14 may be in either a powder shape or a fiber shape. Furthermore, in the case of a fiber shape, forms such as a state in which long fibers or short fibers are scattered and a fabric state such as a woven fabric, a knitted fabric, and a non-woven fabric can be used.

さらに、接着用熱可塑性樹脂材14として、融点が80〜250度の範囲にある樹脂が好ましく、例えば、ポリアミド、共重合ポリアミド、ポリウレタン等が選択される。特に、共重合ポリアミドは、融点が低く、かつ母材となる熱可塑性樹脂シート材との接着性が良好であり接着用熱可塑性樹脂材として好ましい。さらに、接着用熱可塑性樹脂材は、構成される熱可塑性樹脂シート材と相溶性が良いものを選択することが望ましい。これにより、母材となる熱可塑性樹脂材料に接着用熱可塑性樹脂材が溶融した際、母材となる熱可塑性樹脂材料に接着用熱可塑性樹脂材がなじみよく存在することができる。   Further, as the adhesive thermoplastic resin material 14, a resin having a melting point in the range of 80 to 250 degrees is preferable, and for example, polyamide, copolymer polyamide, polyurethane, or the like is selected. In particular, the copolymerized polyamide has a low melting point and good adhesiveness with a thermoplastic resin sheet material as a base material, and is preferable as an adhesive thermoplastic resin material. Furthermore, it is desirable to select a thermoplastic resin material for bonding that is compatible with the thermoplastic resin sheet material to be formed. Thereby, when the adhesive thermoplastic resin material is melted in the thermoplastic resin material serving as the base material, the adhesive thermoplastic resin material can be well present in the thermoplastic resin material serving as the base material.

接着用熱可塑性樹脂材14の単位面積あたり付着量は、前記補強繊維シート材の単位面積あたり重量の3%以内にすることが望ましく、さらには、0.5〜2%の範囲にすることがより好ましい。接着用熱可塑性樹脂材4の使用量を少なくすることにより、接着用熱可塑性樹脂材が得られる複合材料成型品の力学的特性、熱的特性に与える影響を少なくすることができる。   The adhesion amount per unit area of the adhesive thermoplastic resin material 14 is preferably within 3% of the weight per unit area of the reinforcing fiber sheet material, and more preferably within the range of 0.5 to 2%. More preferred. By reducing the amount of the adhesive thermoplastic resin material 4 used, it is possible to reduce the influence on the mechanical properties and thermal properties of the composite material molded product from which the adhesive thermoplastic resin material is obtained.

接着用熱可塑性樹脂材14は、補強繊維シート材12及び熱可塑性樹脂シート材13の少なくともどちらか一方の片面又は両面の表面に分布していることが望ましく、さらには、表面に均一に分布していることがより望ましい。これにより、接着用熱可塑性樹脂材が3%以下、より好ましくは0.5〜2%の範囲であっても補強繊維シート材と熱可塑性樹脂シート材を確実に接着つまり付着させることができる。補強繊維シート材が熱可塑性樹脂シート材に付着することにより、補強繊維シート材を構成する各繊維束の形態、つまり補強繊維の真直に引き揃った状態や均一に分散した状態等を維持することができるとともに、熱可塑性樹脂シート材の形態もシートとしての形態を維持し、取り扱いに優れたシート材となる。   Desirably, the adhesive thermoplastic resin material 14 is distributed on the surface of one or both surfaces of at least one of the reinforcing fiber sheet material 12 and the thermoplastic resin sheet material 13, and is further distributed uniformly on the surface. It is more desirable. Thereby, even if the thermoplastic resin material for adhesion is 3% or less, more preferably in the range of 0.5 to 2%, the reinforcing fiber sheet material and the thermoplastic resin sheet material can be reliably adhered, that is, adhered. By attaching the reinforcing fiber sheet material to the thermoplastic resin sheet material, it is possible to maintain the form of each fiber bundle constituting the reinforcing fiber sheet material, that is, the state in which the reinforcing fibers are straightly arranged or uniformly dispersed In addition, the form of the thermoplastic resin sheet material maintains the form as a sheet, and the sheet material is excellent in handling.

図7は、本発明に用いる被成形材料である別の熱可塑性樹脂多層補強シート材15の一部を示す模式図である。熱可塑性樹脂多層補強シート材15は、図4又は図5に示される熱可塑性樹脂補強シート材11A、11B、11C及び11Dの4枚を積層して接着用熱可塑性樹脂材によって接着一体化された構成になっている。図7では、熱可塑性樹脂補強シート材11A、11B、11C及び11Dが、各熱可塑性樹脂補強シート材の補強繊維が異なる軸方向に配列するように積層されている。   FIG. 7 is a schematic view showing a part of another thermoplastic resin multilayer reinforcing sheet material 15 which is a molding material used in the present invention. The thermoplastic resin multilayer reinforcing sheet material 15 was laminated by bonding the four thermoplastic resin reinforcing sheet materials 11A, 11B, 11C, and 11D shown in FIG. 4 or FIG. 5 by the adhesive thermoplastic resin material. It is configured. In FIG. 7, the thermoplastic resin reinforcing sheet materials 11A, 11B, 11C and 11D are laminated so that the reinforcing fibers of the respective thermoplastic resin reinforcing sheet materials are arranged in different axial directions.

図8は、本発明に用いる被成形材料であるさらに別の熱可塑性樹脂多層補強シート材15の一部を示す模式図である。熱可塑性樹脂多層補強シート材15は、図4又は図5に示される熱可塑性樹脂補強シート材11A、11B、11C及び11Dの4枚を積層した状態に、前記熱可塑性樹脂シート材と同一材料の一体化用熱可塑性樹脂繊維束16により一体化されている。図8では、熱可塑性樹脂補強シート材11A、11B、11C及び11Dが、各熱可塑性樹脂補強シート材の補強繊維が異なる軸方向に配列するように積層されている。そして、一体化用熱可塑性樹脂繊維束16を使用してステッチにより各熱可塑性樹脂補強シート材を縫合一体化している。   FIG. 8 is a schematic view showing a part of still another thermoplastic resin multilayer reinforcing sheet material 15 which is a molding material used in the present invention. The thermoplastic resin multilayer reinforcing sheet material 15 is made of the same material as the thermoplastic resin sheet material in a state in which the four thermoplastic resin reinforcing sheet materials 11A, 11B, 11C and 11D shown in FIG. They are integrated by a thermoplastic resin fiber bundle 16 for integration. In FIG. 8, the thermoplastic resin reinforcing sheet materials 11A, 11B, 11C and 11D are laminated so that the reinforcing fibers of the respective thermoplastic resin reinforcing sheet materials are arranged in different axial directions. Each thermoplastic resin reinforcing sheet material is stitched and integrated by stitching using the thermoplastic resin fiber bundle 16 for integration.

図7及び図8の熱可塑性樹脂多層補強シート材15は、熱可塑性樹脂補強シート材11A、11B、11C及び11Dの4枚を積層して形成されているが、積層枚数は4枚に限定されるものではなく、2枚以上の積層枚数であれば良い。そして、このとき、熱可塑性樹脂補強シート材の補強方向は同方向、または異方向、どの方向に積層しても良い。図7及び図8の場合、熱可塑性樹脂補強シート材11Aは0度方向、熱可塑性樹脂補強シート材11Bは45度方向、熱可塑性樹脂補強シート材11Cは90度方向そして熱可塑性樹脂補強シート材11Dは−45度方向に繊維補強している。   The thermoplastic resin multilayer reinforcing sheet material 15 of FIGS. 7 and 8 is formed by stacking four sheets of thermoplastic resin reinforcing sheet materials 11A, 11B, 11C, and 11D, but the number of stacked sheets is limited to four. What is necessary is just a lamination | stacking number of sheets of 2 or more. At this time, the reinforcing direction of the thermoplastic resin reinforcing sheet material may be laminated in the same direction or in different directions. In the case of FIGS. 7 and 8, the thermoplastic resin reinforcing sheet material 11A is in the 0 degree direction, the thermoplastic resin reinforcing sheet material 11B is in the 45 degree direction, the thermoplastic resin reinforcing sheet material 11C is in the 90 degree direction, and the thermoplastic resin reinforcing sheet material. 11D is fiber reinforced in the -45 degree direction.

本発明に用いる被成形材料としては、補強繊維材料を配列した層の間にマトリクスとなる熱可塑性樹脂材料が偏在するものであり、上述した熱可塑性樹脂多層補強シート材以外にも、補強繊維材料を配列した層の間に粉末状又は短繊維状の熱可塑性樹脂材料を分布させたものを用いたり、層の間に不織布や布帛に形成された熱可塑性樹脂材料を積層したものを用いることもできる。   As a molding material used in the present invention, a thermoplastic resin material serving as a matrix is unevenly distributed between layers in which reinforcing fiber materials are arranged. In addition to the above-described thermoplastic resin multilayer reinforcing sheet material, the reinforcing fiber material It is also possible to use a material in which a powdered or short fiber thermoplastic resin material is distributed between the layers in which the layers are arranged, or a material in which a thermoplastic resin material formed on a nonwoven fabric or fabric is laminated between the layers. it can.

次に、本発明に係る実施形態について説明する。図9は、一対の成形型体100及び101の間に被成形材料1を設置した状態を示す断面図である。一対の成形型体100及び101は、同じ厚さの薄板を加工して形成されており、この例ではそれぞれ中央部分が下方に凹むように湾曲して段差部100a及び101aが形成されている。成形型体100及び101の材料としては、加熱・冷却の際に熱変形が小さく熱伝導性の良好な材料が好ましく、鉄等の金属材料やCCコンポジットと称される炭素繊維炭素複合材料といったものが挙げられるが、特に炭素繊維炭素複合材料が好ましい。   Next, an embodiment according to the present invention will be described. FIG. 9 is a cross-sectional view showing a state in which the molding material 1 is installed between the pair of molding dies 100 and 101. The pair of molds 100 and 101 are formed by processing thin plates having the same thickness. In this example, the step portions 100a and 101a are formed by bending so that the central portion is recessed downward. The material of the molds 100 and 101 is preferably a material that is small in thermal deformation during heating / cooling and has good thermal conductivity, such as a metal material such as iron or a carbon fiber carbon composite material called CC composite. Among them, a carbon fiber carbon composite material is particularly preferable.

なお、この例では、成形型体として薄板を用いているが、被成形材料1が当接する当接部が均一の厚さに形成されていればよく、当接部以外の厚さが異なっていてもよい。また、成形型体の被成形材料に対する当接部において熱伝導性が均一になるように厚さを均一にすればよく、厚さを薄くすることで熱伝導性を高めることができる。   In this example, a thin plate is used as the molding die. However, it is only necessary that the contact portion with which the molding material 1 contacts has a uniform thickness, and the thickness other than the contact portion is different. May be. Further, it is only necessary to make the thickness uniform so that the thermal conductivity is uniform at the contact portion of the mold body with the material to be molded, and the thermal conductivity can be increased by reducing the thickness.

被成形材料1は、補強繊維材料からなる層の間に熱可塑性樹脂材料が偏在しており、この例では、補強繊維シート材3及び熱可塑性樹脂シート材4からなる熱可塑性補強シート材2を複数積層したもので、ドレープ性に優れており、その層方向が成形型体100及び101の型面に沿うように配置されている。そして、被成形材料1の周囲には、成形型体100及び101の周縁部100b及び101bの間に排気空間102が形成され、被成形材料1の周縁部が密閉されることなく開放されている。   In the molding material 1, the thermoplastic resin material is unevenly distributed between the layers made of the reinforcing fiber material. In this example, the thermoplastic reinforcing sheet material 2 made of the reinforcing fiber sheet material 3 and the thermoplastic resin sheet material 4 is used. A plurality of stacked layers are excellent in drapability, and are arranged so that the layer direction is along the mold surfaces of the mold bodies 100 and 101. Then, around the molding material 1, an exhaust space 102 is formed between the peripheral portions 100 b and 101 b of the mold bodies 100 and 101, and the peripheral portion of the molding material 1 is opened without being sealed. .

被成形材料1を挟持した一対の成形型体100及び101は、図示しない係止具により所定の間隔で被成形材料1を圧接した状態に設定される。被成形材料1を成形型体101の自重により所定の間隔で安定した圧接状態に挟持可能であれば、係止具を使用しなくてもよい。   The pair of molding dies 100 and 101 holding the molding material 1 is set in a state in which the molding material 1 is press-contacted at a predetermined interval by a locking tool (not shown). If the molding material 1 can be clamped in a stable pressure contact state at a predetermined interval by the weight of the molding die 101, the locking tool may not be used.

なお、成形加工後の成形品の離型性を向上させるために、成形型体100及び101の被成形材料1に対する当接面に公知の離型剤を付与する離型処理をしておくとよい。また、離型性を向上させるために、被成形材料の成形型体に対する当接部分に離型シート材を設けるようにしてもよい。離型シート材として、ポリオレフィン系樹脂シート、熱硬化性ポリイミド樹脂シート、フッ素樹脂シート等の離型用フィルム、または離型紙等を選択することができる。   In addition, in order to improve the mold release property of the molded product after the molding process, it is preferable to perform a mold release process for applying a known mold release agent to the contact surfaces of the mold bodies 100 and 101 with respect to the molding material 1. Good. Moreover, in order to improve mold release property, you may make it provide a release sheet material in the contact part with respect to the shaping | molding die body of a to-be-molded material. As the release sheet material, a release film such as a polyolefin resin sheet, a thermosetting polyimide resin sheet, a fluororesin sheet, or a release paper can be selected.

図10は、成形型体100及び101の間にセットした被成形材料1を成形する工程を示す説明図である。まず、図9で説明したように被成形材料1を一対の成形型体100及び101の間に設置し所定の間隔で圧接した状態にセットする(図10(a))。   FIG. 10 is an explanatory diagram illustrating a process of molding the molding material 1 set between the mold bodies 100 and 101. First, as described with reference to FIG. 9, the material 1 to be molded is set between the pair of molds 100 and 101 and set in a state in which it is pressed at a predetermined interval (FIG. 10A).

次に、加熱プレス機103に被成形材料1を挟持した成形型体100及び101をセットする(図10(b))。加熱プレス型体104及び105は、型面が成形型体100及び101と同じ形状に形成されており、下方の加熱プレス型体104は成形型体100の当接面と密着するように型面に段差部が形成され、同様に上方の加熱プレス型体105は成形型体101の当接面と密着するように型面に段差部が形成されている。   Next, the molds 100 and 101 holding the material 1 to be molded are set in the hot press machine 103 (FIG. 10B). The hot press mold bodies 104 and 105 have a mold surface formed in the same shape as the mold bodies 100 and 101, and the lower heat press mold body 104 is in close contact with the contact surface of the mold body 100. A step portion is formed on the mold surface so that the upper heated press die 105 is in close contact with the contact surface of the mold 101.

加熱プレス型体104及び105は内蔵するヒータにより予め所定の加熱温度に加熱されており、加熱プレス型体104及び105の間にセットされた成形型体100及び101を上下方向の両側から、つまり被成形材料の厚さ方向の両側から圧接して加熱・加圧処理を行う。加熱温度及びプレス圧力は、被成形材料の材質に応じて適宜設定すればよい。   The heating press molds 104 and 105 are heated in advance to a predetermined heating temperature by a built-in heater, and the molds 100 and 101 set between the heating press molds 104 and 105 are moved from both sides in the vertical direction, that is, Heating / pressurizing treatment is performed by pressing from both sides in the thickness direction of the molding material. What is necessary is just to set a heating temperature and a press pressure suitably according to the material of a to-be-molded material.

加熱プレス型体により加圧して加熱する際に、加熱プレス型体と成形型体が密着した状態となっているため熱伝導が良好となり、成形型体が均一な厚さに形成されているため伝導された熱が被成形材料全体にほぼ均一に加えられるようになる。そのため、被成形材料全体がほぼ同じ加熱状態となり、成形型体の当接面とほぼ平行に配置された熱可塑性樹脂シート材4は、全体がほぼ同時に加熱されて溶融状態となり、両側の補強繊維シート材3全体に含浸されていくようになる。   When heat is applied by heating with a hot press mold body, the heat press mold body and the mold body are in close contact with each other, so that heat conduction is good and the mold body is formed with a uniform thickness. The conducted heat is applied almost uniformly to the entire molding material. Therefore, the entire material to be molded is heated substantially in the same state, and the thermoplastic resin sheet material 4 arranged substantially parallel to the contact surface of the molding die is heated almost simultaneously and melted, and the reinforcing fibers on both sides The entire sheet material 3 is impregnated.

そして、各補強繊維シート材3は両側から熱可塑性樹脂材料が次第に含浸していくと内部の空気が流れ、被成形材料1の周縁部から排気空間102に排気されるようになる。そのため、補強繊維シート材3の内部の空気が効率よく排気されて内部に残留することなく熱可塑性樹脂材料の含浸が行われるようになる。   Then, as each of the reinforcing fiber sheet materials 3 is gradually impregnated with the thermoplastic resin material from both sides, the internal air flows and is exhausted from the peripheral portion of the molding material 1 to the exhaust space 102. For this reason, the air inside the reinforcing fiber sheet material 3 is efficiently exhausted and impregnated with the thermoplastic resin material without remaining inside.

加熱・加圧処理を行った後成形型体100及び101を加熱プレス機から取り出し、冷却プレス機106にセットする(図10(c))。冷却プレス型体107及び108は、型面が成形型体100及び101と同じ形状に形成されており、下方の冷却プレス型体107は成形型体100の当接面と密着するように型面に段差部が形成され、同様に上方の加熱プレス型体108は成形型体101の当接面と密着するように型面に段差部が形成されている。   After performing the heating / pressurizing treatment, the molds 100 and 101 are taken out from the heating press and set in the cooling press 106 (FIG. 10C). The cooling press mold bodies 107 and 108 are formed in the same shape as the mold bodies 100 and 101, and the lower cooling press mold body 107 is in contact with the contact surface of the mold body 100. Similarly, a step portion is formed on the mold surface so that the upper heating press mold 108 is in close contact with the contact surface of the mold 101.

冷却プレス型体107及び108は図示せぬ冷却装置により予め所定の冷却温度(例えば、常温状態)に設定されており、冷却プレス型体107及び108の間にセットされた成形型体100及び101を上下方向の両側、つまり被成形材料の厚さ方向の両側から圧接して冷却・加圧処理を行う。冷却温度及びプレス圧力は、被成形材料の材質に応じて適宜設定すればよい。   The cooling press mold bodies 107 and 108 are set in advance to a predetermined cooling temperature (for example, a normal temperature state) by a cooling device (not shown), and the molding mold bodies 100 and 101 set between the cooling press mold bodies 107 and 108. Is subjected to cooling / pressurizing treatment by pressing from both sides in the vertical direction, that is, from both sides in the thickness direction of the molding material. What is necessary is just to set a cooling temperature and a press pressure suitably according to the material of a molding material.

冷却プレス型体により加圧しながら冷却することで、被成形材料1の内部で溶融含浸した熱可塑性樹脂材料が加圧状態の中で固化されるようになる。その際に、上述したように成形型体100及び101の厚さが均一に設定されているので、被成形材料1全体に対する熱伝導性がほぼ均一となり、被成形材料1全体をほぼ同じように冷却する。そのため熱可塑性樹脂材料がムラなく冷却固化し、成形反りのない成形品Aに仕上げることができる(図10(d))。   The thermoplastic resin material melt-impregnated inside the molding material 1 is solidified in the pressurized state by cooling while being pressurized by the cooling press mold. At that time, since the thicknesses of the molds 100 and 101 are set to be uniform as described above, the thermal conductivity with respect to the entire molding material 1 becomes substantially uniform, and the entire molding material 1 is almost the same. Cooling. Therefore, the thermoplastic resin material can be cooled and solidified without unevenness and finished into a molded product A having no molding warp (FIG. 10D).

図11は、成形型体100及び101を用いて被成形材料1を成形するための別の実施形態に関する工程説明図である。この例では、成形型体100の周縁部に全周にわたってリング状のシール部材110が接着固定されている。そして、成形型体101には、図示せぬ空気吸引装置に接続された配管109が連通している。   FIG. 11 is a process explanatory diagram relating to another embodiment for forming the molding material 1 using the molding dies 100 and 101. In this example, a ring-shaped seal member 110 is bonded and fixed to the peripheral edge of the mold 100 over the entire circumference. A pipe 109 connected to an air suction device (not shown) communicates with the mold body 101.

まず、成形型体100に被成形材料1を設置して被成形材料1の上面に成形型体101をセットし、図示せぬ係止具により成形型体100及び101を係止して被成形材料1を圧接した状態で挟持するように設定する(図11(a))。その際に、シール部材110は両成形型体に圧縮されるようになり、内部を気密状態に保持する。配管109は、成形型体100及び101の周縁部に形成された排気空間102に連通するように取り付けられており、両成形型体の内部がシール部材110により気密状態に設定された後空気吸引装置を作動させて内部を真空又は減圧状態に設定する(図11(b))。この場合、減圧状態とは真空に近い圧力状態であり、例えば10Torr以下の圧力状態である。   First, the molding material 1 is set on the molding die 100, the molding die 101 is set on the upper surface of the molding material 1, and the molding die 100 and 101 are locked by a locking tool (not shown). It sets so that the material 1 may be clamped in the state pressed (FIG. 11 (a)). At that time, the seal member 110 is compressed by both molds, and the inside is kept airtight. The pipe 109 is attached so as to communicate with the exhaust space 102 formed at the peripheral edge portions of the mold bodies 100 and 101, and the air suction after the inside of both mold bodies is set in an airtight state by the seal member 110. The apparatus is operated to set the inside to a vacuum or a reduced pressure state (FIG. 11 (b)). In this case, the reduced pressure state is a pressure state close to vacuum, for example, a pressure state of 10 Torr or less.

そして、真空又は減圧状態に設定した成形型体100及び101を図10で説明した実施形態と同様の加熱プレス機103にセットして加熱・加圧処理を行う(図11(c))。加熱により被成形材料内の熱可塑性樹脂材料は溶融含浸するようになるが、成形型体の内部が真空又は減圧状態となっているので、溶融した熱可塑性樹脂材料は吸引されて補強繊維シート材の内部への含浸が促進されるようになり、内部に空気が残留することなく短時間で含浸処理を行うことができるようになる。   Then, the molds 100 and 101 set in a vacuum or reduced pressure state are set in the heating press machine 103 similar to the embodiment described with reference to FIG. 10, and a heating / pressurizing process is performed (FIG. 11C). The thermoplastic resin material in the molding material is melted and impregnated by heating, but since the inside of the molding die is in a vacuum or reduced pressure state, the molten thermoplastic resin material is sucked and reinforced fiber sheet material Impregnation into the inside of the glass is promoted, and the impregnation treatment can be performed in a short time without air remaining inside.

そして、加熱・加圧処理を行った後図10で説明した実施形態と同様の冷却プレス機106にセットして冷却・加圧処理を行う(図11(d))。冷却により溶融含浸した熱可塑性樹脂材料がムラなく固化して成形反りのない成形品Aに仕上げることができる(図11(e))。   And after performing a heating and pressurizing process, it sets to the cooling press machine 106 similar to embodiment described in FIG. 10, and performs a cooling and pressurizing process (FIG.11 (d)). The thermoplastic resin material melt-impregnated by cooling is solidified without unevenness and can be finished into a molded product A without molding warp (FIG. 11 (e)).

シール部材110を成形型体に取り付ける場合、図12に示すように、成形型体100及び110の周縁部に溝部100c及び101cを形成しておき、溝部100c及び101cにシール部材110を嵌合して気密状態に設定すれば、成形型体内部にさらに確実に気密構造を実現することができる。   When the seal member 110 is attached to the molding die, as shown in FIG. 12, grooves 100c and 101c are formed in the peripheral portions of the molds 100 and 110, and the seal member 110 is fitted into the grooves 100c and 101c. By setting the airtight state, an airtight structure can be realized more reliably inside the mold body.

図13は、複数の被成形材料を一度に成形加工するための実施形態に関する工程説明図である。この例では、平板状の成形型体111を4枚用い、各成形型体111の間に被成形材料1A、1B及び1Cを設置して成形型体111を図示せぬ係止具で係止して各被成形材料を所定間隔で圧接するようにセットする(図13(a))。   FIG. 13 is a process explanatory diagram relating to an embodiment for molding a plurality of molding materials at a time. In this example, four plate-shaped mold bodies 111 are used, the molding materials 1A, 1B, and 1C are installed between the mold bodies 111, and the mold body 111 is locked with a locking tool (not shown). Then, each material to be molded is set so as to be pressed at a predetermined interval (FIG. 13A).

そして、加熱プレス機103の加熱プレス型体104’及び105’の間に成形型体111を設置する(図13(b))。加熱プレス型体104’及び105’は型面が平面状に形成されており、成形型体111に密着した状態で当接して加熱・加圧処理が行われる。成形型体111の被成形材料に対する当接部の厚さがすべて均一に設定されているため、加熱プレス型体104’及び105’から各被成形材料への熱伝導性がほぼ均一になり、各被成形材料内部の熱可塑性樹脂材料全体がほぼ同時に溶融含浸するようになる。   Then, the mold body 111 is installed between the heat press mold bodies 104 ′ and 105 ′ of the heat press machine 103 (FIG. 13B). The heating press molds 104 ′ and 105 ′ have a flat mold surface, and are in contact with the mold 111 in a state of being in close contact with each other, and are subjected to heating / pressurizing treatment. Since the thickness of the contact portion of the molding body 111 with respect to the molding material is all set uniformly, the thermal conductivity from the heating press mold bodies 104 ′ and 105 ′ to each molding material becomes substantially uniform, The entire thermoplastic resin material inside each molding material is melted and impregnated almost simultaneously.

次に、加熱・加圧処理した成形型体111を冷却プレス機106の冷却プレス型体107’及び108’の間に成形型体111を設置する(図13(c))。冷却プレス型体107’及び108’は型面が平面状に形成されており、成形型体111に密着した状態で当接して冷却・加圧処理が行われる。溶融含浸した熱可塑性樹脂材料は、冷却・加圧処理によりムラなく固化して成形され、各被成形材料は成形反りのない成形品Bに仕上げられる。   Next, the mold 111 is placed between the cooling press molds 107 ′ and 108 ′ of the cooling press machine 106 for the heated and pressurized mold 111 (FIG. 13C). The cooling press mold bodies 107 ′ and 108 ′ have a flat mold surface, and contact with the mold body 111 in close contact with each other to perform cooling and pressurizing processes. The melt-impregnated thermoplastic resin material is solidified and molded uniformly by cooling / pressurizing treatment, and each molding material is finished into a molded product B having no molding warpage.

このように、同じ形状の成形型体を複数使用することで、複数の被成形材料を一度に成形することも可能となり、生産効率を大幅に向上させることができる。そして、図11に示すようなシール部材を各成形型体の間にセットして、内部を真空又は減圧状態することで、溶融した熱可塑性樹脂材料の含浸を促進することができる。   In this way, by using a plurality of molding bodies having the same shape, it becomes possible to mold a plurality of molding materials at once, and production efficiency can be greatly improved. And the impregnation of the molten thermoplastic resin material can be promoted by setting a seal member as shown in FIG.

また、上述した実施形態では、加熱プレス機及び冷却プレス機をそれぞれ1台ずつ用いているが、加熱プレス機又は冷却プレス機を複数台使用して成形するようにしてもよい。その場合には、各加熱プレス機の加熱温度を異なるように設定しておき、低い加熱温度から順次高い加熱温度に加熱・加圧処理を繰り返すことで、被成形材料内部の熱可塑性樹脂材料の溶融含浸処理を確実に行うことができる。また、各冷却プレス機の冷却温度を異なるように設定しておき、高い冷却温度から順次低い冷却温度に冷却・加圧処理を繰り返すことで、被成形材料内部に含浸した熱可塑性樹脂材料の固化を確実に行うことができる。   In the above-described embodiment, one heating press and one cooling press are used. However, a plurality of heating presses or cooling presses may be used for molding. In that case, the heating temperature of each heating press is set to be different, and the heating / pressurizing treatment is repeated from a lower heating temperature to a higher heating temperature in order, so that the thermoplastic resin material inside the molding material A melt impregnation process can be performed reliably. In addition, the cooling temperature of each cooling press machine is set to be different and the cooling and pressurizing treatment is repeated from a high cooling temperature to a low cooling temperature in order to solidify the thermoplastic resin material impregnated inside the molding material. Can be performed reliably.

[実施例1]
以下の材料を用いて、図10で説明した成形工程により凹型の熱可塑性樹脂多層補強成形品を製造した。
<使用材料>
(補強繊維束)
炭素繊維束
三菱レイヨン株式会社製;TR50S―15K、繊維直径約7μm、繊維本数15000本
(熱可塑性樹脂)
ポリアミド樹脂
三菱化学株式会社製;ナイロン6樹脂フィルム、フィルム厚み20μm
[Example 1]
A concave thermoplastic multilayer reinforced molded product was manufactured by the molding process described with reference to FIG. 10 using the following materials.
<Materials used>
(Reinforcing fiber bundle)
Carbon fiber bundle manufactured by Mitsubishi Rayon Co., Ltd .; TR50S-15K, fiber diameter of about 7 μm, number of fibers of 15000 (thermoplastic resin)
Polyamide resin Mitsubishi Chemical Corporation; nylon 6 resin film, film thickness 20 μm

<製造工程>
(1)補強繊維束TR50S―15Kを1本、20mm間隔でセットし、多数本を同時に空気開繊する公知の方法(特表2007−518890号公報参照)により、各々の補強繊維束を幅約20mmに開繊した。
(2)幅20mmに開繊された各補強繊維開繊糸を、幅方向に振動させて、補強繊維開繊糸間に隙間がない補強繊維シート材とした。得られた補強繊維シート材は、幅約320mm、繊維目付け(単位面積あたりの繊維重量)約50g/m2であった。
(3)得られた補強繊維シート材に、熱可塑性樹脂シート材を加熱しながら連続して貼り合わせを行った。このとき、加熱温度は約270℃に制御を行った。また、補強繊維シート材とともに熱硬化性ポリイミド樹脂フィルム(製品名;ユーピレックスS、厚み;25μm、製造会社;宇部興産株式会社)を離型フィルムとして供給した。なお、補強繊維シート材に熱可塑性樹脂補強シート材を貼り合わせる速度は10m/分で行った。
(4)加熱後、冷却して、基材から離型フィルムを剥がすことにより、補強繊維シート材の片面に熱可塑性樹脂シート材が付着した、熱可塑性樹脂補強シート材を得た。
(5)得られた熱可塑性樹脂補強シート材から、繊維方向を0度方向として、0度方向、90度方向、45度方向、そして−45度方向に繊維が配した320mm角のシートを切り出し、[(45度/0度/−45度/90度)3Sに積層した積層シート材を製作した。
(6)厚み1mmの鉄製の凹型成形型体(下型)に、積層シート材を設置した後、厚み1mmの鉄製の凸型成形型体(上型)を設置した。なお、成形型体の型面には離型処理として離型剤(Frekote 44-NC;ヘンケル社製)を吹き付けた。その後、積層シート材が設置された一対の成形型体を加熱プレス機にセットした。予め270℃に昇温された加熱プレス型体の下型に成形型体を設置し、直ちに加熱プレス型体の上型を下降させて加圧を行った。このとき、加熱プレス型体の下型は凹型成形型体が密着して設置できる形状に、加熱プレス型体の上型は凸型成形型体を密着して加圧できるような形状となっている。加圧圧力2MPaで、5分間の加熱・加圧処理を行った。
(7)加熱・加圧処理後、加熱プレス機から成形型体を取り出し、冷却プレス機にセットした。予め水冷により約20度に冷却された冷却プレス型体の下型に一対の成形型体を設置し、直ちに冷却プレス型体の上型を下降させて加圧を行った。冷却プレス型体は、加熱プレス型同様、下型は凹型成形型体が密着して設置できる形状に、冷却プレス体の上型は凸型成形型体を密着して加圧できるような形状となっている。加圧圧力2MPaで、3分間の冷却・加圧処理を行った。その後、冷却プレス機から成形型体を取り出し、熱可塑性樹脂複合材料成形品を得た。
<Manufacturing process>
(1) One reinforcing fiber bundle TR50S-15K is set at an interval of 20 mm, and each reinforcing fiber bundle is reduced to a width by a known method (see Japanese Patent Publication No. 2007-518890) in which a large number of fibers are opened simultaneously. The fiber was opened to 20 mm.
(2) Each reinforcing fiber spread yarn opened to a width of 20 mm was vibrated in the width direction to obtain a reinforcing fiber sheet material having no gap between the reinforcing fiber spread yarns. The obtained reinforcing fiber sheet material had a width of about 320 mm and a fiber basis weight (fiber weight per unit area) of about 50 g / m 2 .
(3) The obtained reinforcing fiber sheet material was continuously bonded while heating the thermoplastic resin sheet material. At this time, the heating temperature was controlled at about 270 ° C. A thermosetting polyimide resin film (product name: Upilex S, thickness: 25 μm, manufacturer: Ube Industries, Ltd.) was supplied as a release film together with the reinforcing fiber sheet material. The speed at which the thermoplastic resin reinforcing sheet material was bonded to the reinforcing fiber sheet material was 10 m / min.
(4) After heating, it was cooled and the release film was peeled off from the substrate to obtain a thermoplastic resin reinforced sheet material in which the thermoplastic resin sheet material adhered to one side of the reinforced fiber sheet material.
(5) Cut out a 320 mm square sheet in which fibers are arranged in the 0 degree direction, 90 degree direction, 45 degree direction, and -45 degree direction from the obtained thermoplastic resin reinforced sheet material with the fiber direction as 0 degree direction. , [(45 ° / 0 ° / −45 ° / 90 °) 3 ] A laminated sheet material laminated on S was produced.
(6) After the laminated sheet material was installed on an iron concave mold (lower mold) having a thickness of 1 mm, an iron convex mold (upper mold) having a thickness of 1 mm was installed. A mold release agent (Frekote 44-NC; manufactured by Henkel) was sprayed on the mold surface of the mold body as a mold release treatment. Thereafter, the pair of molding dies on which the laminated sheet material was installed were set in a hot press machine. The mold was placed on the lower mold of the hot press mold that had been heated to 270 ° C. in advance, and the upper mold was immediately lowered to apply pressure. At this time, the lower mold of the hot press mold body is shaped so that the concave mold body can be installed in close contact, and the upper mold of the hot press mold body is shaped so as to be able to press the convex mold mold in close contact. Yes. Heating / pressurizing treatment was performed for 5 minutes at a pressure of 2 MPa.
(7) After the heating / pressurizing treatment, the molding die was taken out from the heating press and set in a cooling press. A pair of molds were placed on the lower mold of the cooling press mold that had been cooled to about 20 degrees by water cooling in advance, and the upper mold of the cooling press mold was immediately lowered and pressurized. Like the hot press mold, the cooling press mold body has a shape that allows the concave mold body to be placed in close contact with the lower mold, and the upper mold of the cooling press body has a shape that allows the convex mold body to be in close contact with pressure. It has become. Cooling and pressurizing treatment was performed for 3 minutes at a pressurizing pressure of 2 MPa. Thereafter, the molding die was taken out from the cooling press machine to obtain a thermoplastic resin composite material molded product.

<評価>
得られた熱可塑性樹脂複合材料成形品は、厚さ約1.2mmで繊維体積含有率約60%の、成型反り等が生じていない凹型形状の成形品に仕上げられた。成形品の一部を切断し、断面観察を行ったところ、繊維束中に熱可塑性樹脂が均一に含浸した状態となっていること、繊維が均一に分散していることなどが確認できた。さらに、成形品の湾曲形状、角部の形状等においても成形型体の型面に沿った良好な形状で成形加工が行われていた。
<Evaluation>
The obtained thermoplastic resin composite material molded article was finished into a concave-shaped molded article having a thickness of about 1.2 mm and a fiber volume content of about 60%, in which no molding warp occurred. When a part of the molded product was cut and the cross section was observed, it was confirmed that the thermoplastic resin was uniformly impregnated in the fiber bundle and that the fibers were uniformly dispersed. Further, in the curved shape and the corner shape of the molded product, the molding process has been performed with a good shape along the mold surface of the molding die.

[実施例2]
実施例1の(1)から(5)により得られた積層シート材を用いて成形を行った。
[Example 2]
Molding was performed using the laminated sheet material obtained in (1) to (5) of Example 1.

<製造工程>
(1)実施例1の(1)から(5)により320mm角の[(45度/0度/−45度/90度)3Sに積層した積層シート材を製作した。
(2)厚み1mmの鉄製の凹型成形型体(下型)に、積層シート材を設置した後、厚み1mmの鉄製の凸型成形型体(上型)を設置し、上下成形型体の周縁部の間を耐熱ゴム製のシール部材によりシールして気密構造を形成した。なお、成形型体の表面には離型処理として(Frekote 44-NC;ヘンケル社製)を吹き付けた。その後、成形型体内の空気を吸引(排出)し、成形型体内を10Torr以下の減圧状態に設定した。
(3)積層シート材が設置されて内部が減圧状態の凹凸成形型体を、加熱プレス機にセットした。予め270℃に昇温された加熱プレス型体の下型に成形型体を設置し、直ちに加熱プレス型体の上型を下降させて加圧を行った。このとき、実施例1の場合と同様に、加熱プレス型体の下型は凹型成形型体が密着して設置できる形状に、加熱プレス型体の上型は凸型成形型体を密着して加圧できるような形状となっている。加圧圧力2MPaで、3分間の加熱・加圧処理を行った。なお、加熱プレス機による加熱・加圧処理の間においても、成形型体内の空気は吸引(排出)し続け、成形型体内を10Torr以下の減圧状態に維持した。
(4)加熱・加圧処理後、加熱プレス機から成形型体を内部が減圧状態のままで取り出し、冷却プレス機にセットした。予め水冷により約20度に冷却された冷却プレス型体の下型に成形型体を設置し、直ちに冷却プレス型体の上型を下降させて加圧を行った。このとき、実施例1と同様に、冷却プレス型体の下型は凹型成形型体が密着して設置できる形状に、冷却プレス型体の上型は凸型成形型体を密着して加圧できるような形状となっている。加圧圧力2MPaで、3分間の冷却・加圧処理を行った。なお、冷却プレス機によって成形型体を冷却・加圧処理する間においても、成形型体内の空気は吸引(排出)し続け、成形型体内を10Torr以下の減圧状態に維持した。
(5)その後、冷却プレス機から成形型体を取り出し、成形型体内の減圧状態を大気圧状態に戻した後、成形型体内から熱可塑性樹脂複合材料成形品を得た。
<Manufacturing process>
(1) A laminated sheet material laminated on 320 mm square [(45 ° / 0 ° / −45 ° / 90 °) 3 ] S according to (1) to (5) of Example 1 was manufactured.
(2) After placing the laminated sheet material on the iron concave mold (lower mold) having a thickness of 1 mm, the iron convex mold (upper mold) having a thickness of 1 mm is installed, and the peripheral edges of the upper and lower molds The space between the parts was sealed with a heat-resistant rubber sealing member to form an airtight structure. In addition, (Frekote 44-NC; manufactured by Henkel) was sprayed on the surface of the mold body as a mold release treatment. Thereafter, air in the mold was sucked (exhausted), and the mold was set in a reduced pressure state of 10 Torr or less.
(3) The concavo-convex mold body in which the laminated sheet material was installed and the inside was in a reduced pressure state was set in a heating press. The mold was placed on the lower mold of the hot press mold that had been heated to 270 ° C. in advance, and the upper mold was immediately lowered to apply pressure. At this time, as in the case of Example 1, the lower mold of the hot press mold body has a shape that allows the concave mold body to be installed in close contact, and the upper mold of the hot press mold body has the convex mold mold in close contact. The shape can be pressurized. A heating / pressurizing treatment for 3 minutes was performed at a pressure of 2 MPa. Even during the heating / pressurizing process by the heating press, the air in the mold was continuously sucked (discharged), and the mold was maintained at a reduced pressure of 10 Torr or less.
(4) After the heating / pressurizing treatment, the mold was taken out from the heating press while the inside was in a reduced pressure state, and set in a cooling press. The forming die was placed on the lower die of the cooling press die that had been cooled to about 20 degrees by water cooling in advance, and the upper die was immediately lowered to pressurize. At this time, as in Example 1, the lower mold of the cooling press mold was shaped so that the concave mold could be placed in close contact with the upper mold, and the upper mold of the cooling press mold was pressed against the convex mold. It has a shape that can be done. Cooling and pressurizing treatment was performed for 3 minutes at a pressurizing pressure of 2 MPa. Even during the cooling and pressurizing treatment of the mold body by the cooling press, the air in the mold body was continuously sucked (discharged), and the mold body was maintained at a reduced pressure of 10 Torr or less.
(5) Then, after removing the molding die from the cooling press machine and returning the reduced pressure state in the molding die to the atmospheric pressure state, a thermoplastic resin composite material molded product was obtained from the molding die.

<評価>
得られた熱可塑性樹脂複合材料成形品は、厚さ約1.2mmで繊維体積含有率約60%の、成形反り等の生じていない凹型形状の成形品に仕上げられた。成形品の一部を切断し、断面観察を行ったところ、加熱・加圧時間を短縮した成形であったにもかかわらず、繊維束中に熱可塑性樹脂が均一に含浸した状態となっていること、繊維が均一に分散していることなどが確認できた。さらに、成形品の湾曲形状や角部の形状等においても成形型体の型面に沿った良好な形状で成形加工が行われていた。
<Evaluation>
The obtained thermoplastic resin composite material molded article was finished into a concave-shaped molded article having a thickness of about 1.2 mm and a fiber volume content of about 60% and in which no molding warp occurred. When a part of the molded product was cut and the cross section was observed, the fiber bundle was uniformly impregnated with the thermoplastic resin even though the heating / pressurization time was shortened. In addition, it was confirmed that the fibers were uniformly dispersed. Further, in the curved shape and the corner shape of the molded product, the molding process has been performed with a good shape along the mold surface of the molding die.

[実施例3]
以下の材料を用いて、図13で説明した成形方法により平板状の熱可塑性樹脂多層補強成形品を製造した。
<使用材料>
(補強繊維束)
炭素繊維束
三菱レイヨン株式会社製;MR60H―24K、繊維直径約5.4μm、繊維本数24000本
(熱可塑性樹脂)
ポリエーテルイミド(PEI)樹脂フィルム
三菱樹脂株式会社製;スペリオUT、厚さ15μm
(接着用熱可塑性樹脂材に使用した樹脂)
共重合ポリアミド樹脂パウダー
東レ株式会社製;CM842P48、低融点(115℃)樹脂
[Example 3]
A flat plate-shaped thermoplastic resin multilayer reinforced molded article was produced by the molding method described in FIG. 13 using the following materials.
<Materials used>
(Reinforcing fiber bundle)
Carbon fiber bundle manufactured by Mitsubishi Rayon Co., Ltd .; MR60H-24K, fiber diameter of about 5.4 μm, number of fibers of 24,000 (thermoplastic resin)
Polyetherimide (PEI) resin film manufactured by Mitsubishi Plastics, Inc .; Superior UT, thickness 15 μm
(Resin used for adhesive thermoplastic resin)
Copolymer polyamide resin powder manufactured by Toray Industries, Inc .; CM842P48, low melting point (115 ° C) resin

<製造工程>
(1)補強繊維束MR60H―24Kを1本、24mm間隔でセットし、多数本を同時に空気開繊する公知の方法(特表2007−518890号公報参照)にて、各々の補強繊維束を幅約24mmに開繊した。
(2)幅24mmに開繊された各補強繊維開繊糸を、幅方向に振動させて、補強繊維開繊糸間に隙間がない補強繊維シート材とした。得られた補強繊維シート材は、幅約310mm、繊維目付け(単位面積当りの繊維重量)約40g/m2であった。
(3)熱可塑性樹脂シート材であるPEI樹脂フィルムの片側表面に、粉体散布装置を用いて、接着用熱可塑性樹脂材である共重合ポリアミド樹脂パウダーを均一に分散付着させた。分散量は約0.4g/m2で、補強繊維束重量の約1%の量であった。
(4)得られた補強繊維シート材の片側表面に、接着用熱可塑性樹脂材が付着した熱可塑性樹脂シート材を加熱しながら連続して貼り合わせを行った。このとき、加熱温度は約150℃に制御を行った。また、補強繊維シート材とともに離型紙(リンテック社製)を供給した。なお、補強繊維シート材に熱可塑性樹脂補強シート材を貼り合わせる速度は10m/分で行った。
(5)得られた熱可塑性樹脂補強シート材から、繊維方向を0度方向として、0度方向、90度方向、45度方向、そして−45度方向に繊維が配した320mm角のシートを切り出し、[(45度/0度/−45度/90度)3Sに積層した積層シート材を製作した。
(6)厚み1mmのCCコンポジット製の平板状の成形型体に積層シート材を設置し、その上面に厚み1mmの鉄製の平板状の成形型体を設置した後その上面に別の積層シート材を設置するようにして交互に3段に積み上げた後、最上面の成形型体と最下面の成形型体の周縁部を耐熱ゴム製のシール部材によりシールして気密構造を形成した。なお、積層シート材と成形型体との間には離型シート材(熱硬化性ポリイミドフィルム;宇部興産株式会社製、厚さ50μm)を設けた。その後、成形型体内の空気を吸引(排出)し、成形型内を10Torr以下の減圧状態に設定した。
(7)積層シート材が設置されて内部が減圧状態の成形型体を、加熱プレス機にセットした。予め370℃に昇温された加熱プレス型体の下型に成形型体を設置し、直ちに加熱プレス型体の上型を下降させて加圧を行った。このとき、加熱プレス型体の上型及び下型の型面は平面状に形成されて成形型体に対して密着して加圧するできる形状となっている。加圧圧力2MPaで、3分間の加熱・加圧処理を行った。なお、加熱プレス機によって成形型体を加熱・加圧処理する間においても、成形型体内の空気は吸引(排出)し続け、成形型体内を10Torr以下の減圧状態に維持した。
(8)加熱・加圧処理後、内部を減圧状態のまま成形型体を加熱プレス機から取り出し、冷却プレス機にセットした。予め水冷により約20℃に冷却された冷却プレス型体の下型に成形型体を設置し、直ちに冷却プレス型体の上型を下降させて加圧を行った。このとき、加熱プレス型体と同様に、冷却プレス型体の上型及び下型の型面は平面状に形成されて成形型体に対して密着して加圧できる形状となっている。加圧圧力2MPaで、3分間の冷却・加圧処理を行った。なお、冷却プレス機によって成形型体を冷却・加圧処理する間においても、成形型体内の空気は吸引(排出)し続け、成形型体内を10Torr以下の減圧状態に維持した。
(9)その後、冷却プレス機から成形型体を取り出し、成形型体内の減圧状態を大気圧状態に戻した後、成形型体内から熱可塑性樹脂複合材料成形品3枚を得た。
<Manufacturing process>
(1) The reinforcing fiber bundles MR60H-24K are set at intervals of 24 mm, and a number of the reinforcing fiber bundles are widened by a known method (see Japanese Patent Publication No. 2007-518890). The fiber was opened to about 24 mm.
(2) Each reinforcing fiber spread yarn opened to a width of 24 mm was vibrated in the width direction to obtain a reinforcing fiber sheet material having no gap between the reinforcing fiber spread yarns. The obtained reinforcing fiber sheet material had a width of about 310 mm and a fiber basis weight (fiber weight per unit area) of about 40 g / m 2 .
(3) Copolymerized polyamide resin powder, which is an adhesive thermoplastic resin material, was uniformly dispersed and adhered to one surface of a PEI resin film, which is a thermoplastic resin sheet material, using a powder spraying device. The amount of dispersion was about 0.4 g / m 2 , which was about 1% of the weight of the reinforcing fiber bundle.
(4) The thermoplastic resin sheet material to which the adhesive thermoplastic resin material adhered was continuously bonded to one surface of the obtained reinforcing fiber sheet material while heating. At this time, the heating temperature was controlled at about 150 ° C. Release paper (manufactured by Lintec) was supplied together with the reinforcing fiber sheet material. The speed at which the thermoplastic resin reinforcing sheet material was bonded to the reinforcing fiber sheet material was 10 m / min.
(5) Cut out a 320 mm square sheet in which fibers are arranged in the 0 degree direction, 90 degree direction, 45 degree direction, and -45 degree direction from the obtained thermoplastic resin reinforced sheet material with the fiber direction as 0 degree direction. , [(45 ° / 0 ° / −45 ° / 90 °) 3 ] A laminated sheet material laminated on S was produced.
(6) A laminated sheet material is placed on a flat plate mold made of CC composite having a thickness of 1 mm, and an iron flat plate mold having a thickness of 1 mm is placed on the upper surface thereof, and then another laminated sheet material is placed on the upper surface. Then, the peripheral portions of the uppermost molding die and the lowermost molding die were sealed with a heat-resistant rubber sealing member to form an airtight structure. A release sheet material (thermosetting polyimide film; Ube Industries, Ltd., thickness 50 μm) was provided between the laminated sheet material and the mold. Thereafter, the air in the mold was sucked (discharged), and the inside of the mold was set to a reduced pressure state of 10 Torr or less.
(7) The mold body in which the laminated sheet material was installed and the inside was in a reduced pressure state was set in a heating press. The molding die was placed on the lower die of the hot press die that had been heated to 370 ° C. in advance, and the upper die was immediately lowered to apply pressure. At this time, the mold surfaces of the upper and lower molds of the hot press mold body are formed in a flat shape so as to be in close contact with and pressurize the mold body. A heating / pressurizing treatment for 3 minutes was performed at a pressure of 2 MPa. Even during the heating and pressurizing treatment of the mold by the hot press machine, the air in the mold was continuously sucked (discharged), and the mold was maintained at a reduced pressure of 10 Torr or less.
(8) After the heating / pressurizing treatment, the mold body was taken out from the heating press while the inside was in a reduced pressure state, and set in a cooling press. The molding die was placed on the lower die of the cooling press die that had been cooled to about 20 ° C. in advance by water cooling, and the upper die was immediately lowered to pressurize. At this time, similarly to the hot press mold body, the upper and lower mold surfaces of the cold press mold body are formed in a flat shape so as to be in close contact with the mold body and pressurize. Cooling and pressurizing treatment was performed for 3 minutes at a pressurizing pressure of 2 MPa. Even during the cooling and pressurizing treatment of the mold body by the cooling press, the air in the mold body was continuously sucked (discharged), and the mold body was maintained at a reduced pressure of 10 Torr or less.
(9) Then, after removing the molding die from the cooling press machine and returning the reduced pressure state in the molding die to the atmospheric pressure state, three thermoplastic resin composite material molded products were obtained from the molding die.

<評価>
得られた熱可塑性樹脂複合材料成形品は、厚さ約0.9mmで繊維体積含有率約60%の、成形反り等が生じていない平板形状の成形品に仕上げられた。成形品の一部を切断し、断面観察を行ったところ、耐熱性樹脂であったにもかかわらず維束中への熱可塑性樹脂の含浸性、炭素繊維の分散性が良好であることを確認できた。そして、加熱・加圧時間を短縮した成形条件でも品質の良い成形品を得ることができた。
<Evaluation>
The obtained thermoplastic resin composite material molded product was finished into a flat plate-shaped molded product having a thickness of about 0.9 mm and a fiber volume content of about 60% and having no molding warp. After cutting a part of the molded product and observing the cross section, it was confirmed that the thermoplastic resin impregnation into the bundle and the dispersibility of the carbon fiber were good despite being a heat resistant resin. did it. And, it was possible to obtain a molded product with good quality even under molding conditions in which the heating / pressurizing time was shortened.

本発明において用いられる被成形材料である熱可塑性樹脂多層補強シート材の一部を示す模式図である。It is a schematic diagram which shows a part of thermoplastic resin multilayer reinforcement sheet material which is a molding material used in this invention. 熱可塑性樹脂多層補強シート材に用いられる熱可塑性樹脂補強シート材の一部を示す模式図である。It is a schematic diagram which shows a part of thermoplastic resin reinforcement sheet material used for a thermoplastic resin multilayer reinforcement sheet material. 熱可塑性樹脂多層補強シート材に用いられる別の熱可塑性樹脂補強シート材の一部を示す模式図である。It is a schematic diagram which shows a part of another thermoplastic resin reinforcement sheet material used for a thermoplastic resin multilayer reinforcement sheet material. 熱可塑性樹脂多層補強シート材に用いられるさらに別の熱可塑性樹脂補強シート材の一部を示す模式図である。It is a schematic diagram which shows a part of another thermoplastic resin reinforcement sheet material used for a thermoplastic resin multilayer reinforcement sheet material. 熱可塑性樹脂多層補強シート材に用いられるさらに別の熱可塑性樹脂補強シート材の一部を示す模式図である。It is a schematic diagram which shows a part of another thermoplastic resin reinforcement sheet material used for a thermoplastic resin multilayer reinforcement sheet material. 熱可塑性樹脂多層補強シート材に用いられるさらに別の熱可塑性樹脂補強シート材の一部を示す模式図である。It is a schematic diagram which shows a part of another thermoplastic resin reinforcement sheet material used for a thermoplastic resin multilayer reinforcement sheet material. 本発明において用いられる被成形材料である別の熱可塑性樹脂多層補強シート材の一部を示す模式図である。It is a schematic diagram which shows a part of another thermoplastic resin multilayer reinforcement sheet material which is a molding material used in this invention. 本発明において用いられる被成形材料であるさらに別の熱可塑性樹脂多層補強シート材の一部を示す模式図である。It is a schematic diagram which shows a part of another thermoplastic resin multilayer reinforcement sheet material which is a molding material used in this invention. 被成形材料を成形型体にセットした状態を示す概略断面図である。It is a schematic sectional drawing which shows the state which set the to-be-molded material to the shaping | molding die. 本発明に係る実施形態に関する工程説明図である。It is process explanatory drawing regarding embodiment which concerns on this invention. 本発明係る別の実施形態に関する工程説明図である。It is process explanatory drawing regarding another embodiment which concerns on this invention. 図11のシール部材の取付に関する変形例を示す断面図である。It is sectional drawing which shows the modification regarding attachment of the sealing member of FIG. 本発明に係るさらに別の実施形態に関する工程説明図である。It is process explanatory drawing regarding another embodiment which concerns on this invention.

符号の説明Explanation of symbols

1 熱可塑性樹脂多層補強シート材
2 熱可塑性樹脂補強シート材
3 補強繊維シート材
4 熱可塑性樹脂シート材
11 熱可塑性樹脂多層補強シート材
12 熱可塑性樹脂補強シート材
13 補強繊維シート材
14 熱可塑性樹脂シート材
100 成形型体
101 成形型体
102 排気空間
103 加熱プレス機
104 加熱プレス型体
105 加熱プレス型体
106 冷却プレス機
107 冷却プレス型体
108 冷却プレス型体
109 配管
110 シール部材
111 成形型体










DESCRIPTION OF SYMBOLS 1 Thermoplastic resin multilayer reinforcement sheet material 2 Thermoplastic resin reinforcement sheet material 3 Reinforcement fiber sheet material 4 Thermoplastic resin sheet material
11 Thermoplastic resin multilayer reinforcing sheet material
12 Thermoplastic resin reinforced sheet material
13 Reinforcing fiber sheet material
14 Thermoplastic resin sheet material
100 Mold
101 Mold body
102 Exhaust space
103 Heating press
104 Heating press mold
105 Hot press mold
106 Cooling press machine
107 Cooling press mold
108 Cooling press mold
109 Piping
110 Seal member
111 Mold










Claims (11)

補強繊維材料及び熱可塑性樹脂材料から構成される被成形材料を用いて熱可塑性樹脂複合材料成形品を成形する成形方法であって、前記被成形材料に対する当接部において均一な厚さに形成された一対の成形型体を用いて当該成形型体の間に前記被成形材料を配置し、前記被成形材料の周囲から内部の気体が排気可能となるように前記被成形材料の両側から前記成形型体により挟持して圧接した状態に設定し、前記被成形材料を挟持する前記成形型体の内部を減圧又は真空状態に設定し、前記成形型体の当接面と密着するように当接面が形成された一対の加熱プレス型体を用いて当該加熱プレス型体の間に前記成形型体を設置し、前記被成形材料を挟持するとともに内部を減圧又は真空状態に設定された前記成形型体を加熱・加圧処理して前記補強繊維材料の内部に溶融した前記熱可塑性樹脂材料を含浸させ、前記成形型体の当接面と密着するように当接面が形成された一対の冷却プレス型体を用いて当該冷却プレス型体の間に加熱・加圧処理した前記成形型体を設置し、前記被成形材料を挟持するとともに内部を減圧又は真空状態に設定された前記成形型体を冷却・加圧処理して前記補強繊維材料の内部に溶融含浸させた前記熱可塑性樹脂材料を固化させて成形することを特徴とする熱可塑性樹脂複合材料成形品の成形方法。 A molding method for molding a molded article of a thermoplastic resin composite material using a molding material composed of a reinforcing fiber material and a thermoplastic resin material, wherein the molding is formed to have a uniform thickness at a contact portion with the molding material. The molding material is disposed between the molding dies using a pair of molding dies, and the molding is performed from both sides of the molding material so that the internal gas can be exhausted from the periphery of the molding material. Set in a state of being clamped and pressed by a mold body, setting the inside of the mold body for clamping the material to be molded to a reduced pressure or vacuum state, and making contact with the contact surface of the mold body The molding in which the molding die is placed between the heating press molds using a pair of heating press molds formed with a surface, the molding material is sandwiched, and the inside is set to a reduced pressure or vacuum state before and heating and pressurizing treatment to the formed body Said thermoplastic resin material which is melted inside the reinforcing fiber material impregnated, using said pair of cooling press type body contact surface is formed so as to be in intimate contact with the abutment surface of the mold body the cooling press type The mold that has been heated / pressurized between the bodies is placed , the material to be molded is sandwiched, and the mold that is set in a reduced pressure or vacuum state is cooled / pressurized to reinforce the reinforcement. A method for molding a molded article of a thermoplastic resin composite material , wherein the thermoplastic resin material melt-impregnated inside a fiber material is solidified and molded. 前記被成形材料を挟持した前記成形型体を複数積層して加熱・加圧処理及び冷却・加圧処理を行うことを特徴とする請求項1に記載の成形方法。2. The molding method according to claim 1, wherein a plurality of the molds sandwiching the molding material are stacked to perform heating / pressurizing treatment and cooling / pressurizing treatment. 前記加熱・加圧処理は、設定温度の異なる複数の加熱プレス型体を用いて順次加熱・加圧処理を行うことを特徴とする請求項1又は2に記載の成形方法。3. The molding method according to claim 1, wherein the heating / pressurizing process is performed by sequentially using a plurality of heating press molds having different set temperatures. 前記冷却・加圧処理は、設定温度の異なる複数の冷却プレス型体を用いて順次冷却・加圧処理を行うことを特徴とする請求項1から3のいずれかに記載の成形方法。The molding method according to any one of claims 1 to 3, wherein the cooling / pressurizing process is performed sequentially using a plurality of cooling press molds having different set temperatures. 前記成形型体は、当接部が薄肉状に形成されていることを特徴とする請求項1から4のいずれかに記載の成形方法。The molding method according to claim 1, wherein a contact portion of the molding die is formed in a thin shape. 前記成形型体は、炭素繊維炭素複合体材料からなることを特徴とする請求項1から5のいずれかに記載の成形方法。The molding method according to claim 1, wherein the molding die is made of a carbon fiber carbon composite material. 前記成形型体は、前記被成形材料に当接する当接面が離型処理されていることを特徴とする請求項1から6のいずれかに記載の成形方法。The molding method according to any one of claims 1 to 6, wherein the molding die is subjected to a mold release treatment on an abutting surface that abuts on the molding material. 前記被成形材料は、前記成形型体に当接する部分に離型シート材が設けられていることを特徴とする請求項1から6のいずれかに記載の成形方法。The molding method according to any one of claims 1 to 6, wherein a release sheet material is provided on a portion of the molding material that is in contact with the mold body. 前記被成形材料は、前記補強繊維材料を配列した層の間にマトリクスとなる前記熱可塑性樹脂材料が偏在していることを特徴とする請求項1から8のいずれかに記載の成形方法。The molding method according to any one of claims 1 to 8, wherein the molding material includes the thermoplastic resin material serving as a matrix unevenly between layers in which the reinforcing fiber materials are arranged. 前記被成形材料は、複数の補強繊維が所定方向に引き揃えられてシート状に形成された補強繊維シート材と、当該補強繊維シート材の片面又は両面に付着した熱可塑性樹脂シート材により構成されている熱可塑性樹脂補強シート材を複数枚積層して構成されていることを特徴とする請求項9に記載の成形方法。The molding material is composed of a reinforcing fiber sheet material in which a plurality of reinforcing fibers are aligned in a predetermined direction and formed into a sheet shape, and a thermoplastic resin sheet material attached to one or both sides of the reinforcing fiber sheet material. The molding method according to claim 9, wherein a plurality of the thermoplastic resin reinforced sheet materials are laminated. 前記補強繊維シート材及び前記熱可塑性樹脂シート材を当該熱可塑性樹脂シート材の溶融温度より低い温度で溶融又は軟化する接着用熱可塑性樹脂材によって付着させていることを特徴とする請求項10に記載の成形方法。11. The reinforcing fiber sheet material and the thermoplastic resin sheet material are attached by an adhesive thermoplastic resin material that melts or softens at a temperature lower than the melting temperature of the thermoplastic resin sheet material. The forming method as described.
JP2007289785A 2006-11-22 2007-11-07 Molding method of thermoplastic resin composite material molded product Active JP5417631B2 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
JP2007289785A JP5417631B2 (en) 2007-11-07 2007-11-07 Molding method of thermoplastic resin composite material molded product
US12/376,525 US20100215887A1 (en) 2006-11-22 2007-11-21 Reinforced thermoplastic-resin multilayer sheet material, process for producing the same, and method of forming molded thermoplastic-resin composite material
KR1020097001138A KR20090091104A (en) 2006-11-22 2007-11-21 Reinforced thermoplastic-resin multilayer sheet material, process for producing the same, and method of forming molded thermoplastic-resin composite material
KR1020127034415A KR101321651B1 (en) 2006-11-22 2007-11-21 Method of forming molded thermoplastic-resin composite material
CA002658572A CA2658572A1 (en) 2006-11-22 2007-11-21 Reinforced thermoplastic-resin multilayer sheet material, process for producing the same, and method of forming molded thermoplastic-resin composite material
PCT/JP2007/072520 WO2008062818A1 (en) 2006-11-22 2007-11-21 Reinforced thermoplastic-resin multilayer sheet material, process for producing the same, and method of forming molded thermoplastic-resin composite material
EP07832250.0A EP2090423B1 (en) 2006-11-22 2007-11-21 Reinforced thermoplastic-resin multilayer sheet material, process for producing the same, and method of forming molded thermoplastic-resin composite material
CN2012102479308A CN102815062A (en) 2006-11-22 2007-11-21 Reinforced thermoplastic-resin multilayer sheet material, process for producing the same, and method of forming molded thermoplastic-resin composite material
CN2007800221661A CN101466535B (en) 2006-11-22 2007-11-21 Thermalplastic resin multi-layer reinforced sheet, production method thereof and forming method for thermalplastic resin composite material forming article
KR1020137004019A KR101411169B1 (en) 2006-11-22 2007-11-21 Reinforced thermoplastic-resin sheet material, reinforced thermoplastic-resin multilayer sheet material, process for producing the same, and reinforced thermoplastic-resin multilayer molded article
BRPI0716399-1A2A BRPI0716399A2 (en) 2006-11-22 2007-11-21 thermoplastic resin-reinforced sheet material, process for its production, and molded thermoplastic resin composite material forming method
KR1020127034414A KR101295936B1 (en) 2006-11-22 2007-11-21 Reinforced thermoplastic-resin multilayer sheet material, process for producing the same, and reinforced thermoplastic-resin multilayer molded article
US13/486,779 US10322530B2 (en) 2006-11-22 2012-06-01 Reinforced thermoplastic-resin multilayer sheet material
US13/486,854 US20120270030A1 (en) 2006-11-22 2012-06-01 Reinforced thermoplastic-resin multilayer sheet material, process for producing the same, and method of forming molded thermoplastic-resin composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007289785A JP5417631B2 (en) 2007-11-07 2007-11-07 Molding method of thermoplastic resin composite material molded product

Publications (2)

Publication Number Publication Date
JP2009113369A JP2009113369A (en) 2009-05-28
JP5417631B2 true JP5417631B2 (en) 2014-02-19

Family

ID=40781048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007289785A Active JP5417631B2 (en) 2006-11-22 2007-11-07 Molding method of thermoplastic resin composite material molded product

Country Status (1)

Country Link
JP (1) JP5417631B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4137287A1 (en) 2021-08-18 2023-02-22 Mitsubishi Heavy Industries, Ltd. Composite material processing apparatus and composite material processing method

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102858879B (en) 2011-04-12 2013-12-04 三菱瓦斯化学株式会社 Polyamide resin-based composite material and method for producing same
JP5920690B2 (en) * 2011-05-30 2016-05-18 福井県 Pre-preg sheet material and manufacturing method thereof
US20140154472A1 (en) * 2011-07-11 2014-06-05 Toray Industries, Inc. Thermoplastic resin prepreg, molded preform and molded composite using same, and methods for producing them
AU2011224110B1 (en) * 2011-07-27 2013-01-10 Shanghai Huan Hsin Electronics Co., Ltd. Method for fabricating and processing flexible substrate
RU2535711C1 (en) * 2011-08-03 2014-12-20 Тейдзин Лимитед Fabrication of shaped article by low-pressure moulding
JP5809484B2 (en) * 2011-08-29 2015-11-11 三光合成株式会社 Forming method
US8529809B2 (en) * 2011-09-22 2013-09-10 The Boeing Company Compression molding of composite material quasi-isotropic flakes
JP6021256B2 (en) * 2012-12-03 2016-11-09 株式会社名機製作所 Fiber composite molded product press molding method, fiber composite molded product press molding apparatus, and fiber composite molded product mold
JP6021262B2 (en) * 2013-01-17 2016-11-09 株式会社名機製作所 Compression molding method for fiber composite molded article and compression molding apparatus for fiber composite molded article
US10293542B2 (en) * 2014-06-27 2019-05-21 Globe Machine Manufacturing Company Slipper tool, system and method for using the slipper tool for molding
WO2017061046A1 (en) * 2015-10-09 2017-04-13 株式会社Ihi Fiber-reinforced composite member molding device
CN108698269B (en) 2016-04-15 2020-07-10 旭化成株式会社 Molding die and compression molding method
WO2017216879A1 (en) * 2016-06-14 2017-12-21 株式会社The MOT Company Method for manufacturing fiber reinforced composite material molded article
WO2018125626A1 (en) 2016-12-26 2018-07-05 Continental Structural Plastics, Inc. Combined primary fiber and carbon fiber component for production of reinforced polymeric articles
JP6975618B2 (en) * 2017-11-17 2021-12-01 三菱重工業株式会社 Molding equipment
JP6895038B2 (en) * 2018-09-26 2021-06-30 福井県 Manufacturing method and manufacturing equipment for composite sheet materials
KR20220159937A (en) 2020-03-26 2022-12-05 후쿠이 켄 Method and apparatus for manufacturing composite material molded articles
JP6789518B1 (en) * 2020-05-02 2020-11-25 株式会社The MOT Company Press equipment
WO2022210719A1 (en) * 2021-03-31 2022-10-06 株式会社チャレンヂ Molding system and method for manufacturing compression-molded product
JP7404318B2 (en) * 2021-08-18 2023-12-25 三菱重工業株式会社 Composite material processing equipment and composite material processing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63183836A (en) * 1986-09-11 1988-07-29 帝人株式会社 Composite body and manufacture thereof
JP3336864B2 (en) * 1996-01-18 2002-10-21 松下電工株式会社 Laminated body manufacturing method and apparatus for manufacturing the same
JPH11320729A (en) * 1998-05-19 1999-11-24 Nitto Boseki Co Ltd Unidirectional reinforcing fiber composite base material
JP2004142165A (en) * 2002-10-22 2004-05-20 Toyobo Co Ltd Compression molding material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4137287A1 (en) 2021-08-18 2023-02-22 Mitsubishi Heavy Industries, Ltd. Composite material processing apparatus and composite material processing method

Also Published As

Publication number Publication date
JP2009113369A (en) 2009-05-28

Similar Documents

Publication Publication Date Title
JP5417631B2 (en) Molding method of thermoplastic resin composite material molded product
KR101411169B1 (en) Reinforced thermoplastic-resin sheet material, reinforced thermoplastic-resin multilayer sheet material, process for producing the same, and reinforced thermoplastic-resin multilayer molded article
KR101391468B1 (en) Multiaxially reinforced laminated moldings and process for production thereof
US11421089B2 (en) Prepreg sheet, method for manufacturing same, unit layer with a covering material, method for manufacturing fiber-reinforced composite, and fiber-reinforced composite
JP5920690B2 (en) Pre-preg sheet material and manufacturing method thereof
TWI670169B (en) Resin supply material, method of using reinforced fiber, preform, and method for producing fiber reinforced resin
JP6464602B2 (en) LAMINATED SUBSTRATE MANUFACTURING METHOD AND LAMINATED SUBSTRATE
WO2013008720A1 (en) Thermoplastic resin pre-preg, molded preform and molded composite using same, and method for producing molded preform and molded composite
JP5294609B2 (en) Gas-barrier carbon fiber reinforced prepreg, carbon fiber reinforced plastic, and production method thereof
EP3812118B1 (en) Prepreg sheet and manufacturing method therefor, fiber-reinforced composite material molded article and manufacturing method therefor, and method for manufacturing preform
CN106604818A (en) Resin composite
JP2013176876A (en) Manufacturing method of molding
JP2010517829A (en) Method for processing composite materials
JP5611365B2 (en) Method for producing fiber-reinforced plastic molded body, preform and method for producing the same, and adhesive film
JP5646089B2 (en) Preform manufacturing method and fiber reinforced plastic molded body manufacturing method
JP2014004797A (en) Composite material for molding and method for producing the same
WO2017179721A1 (en) Fiber-reinforced resin intermediate material, fiber-reinforced resin molded article, and method for producing fiber-reinforced resin intermediate material
EP3616890B1 (en) Preform shaping method and composite forming method
TW202112917A (en) Fiber-reinforced resin substrate, integrated molded article, and method for manufacturing fiber-reinforced resin substrate
JP2009214371A (en) Method for manufacturing fiber-reinforced composite material and fiber-reinforced composite material, method for manufacturing integrated structural member and integrated structural member
JP2006123402A (en) Shaping method and shaping apparatus of reinforced fiber substrate for frp shaping
JP2018192717A (en) Reinforcing fiber base material and preform
JP4146817B2 (en) Manufacturing method of fiber reinforced laminate
JP2003127267A (en) Heat-resistant release sheet and method for manufacturing the sheet
WO2023062870A1 (en) Metal-prepreg complex

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131030

R150 Certificate of patent or registration of utility model

Ref document number: 5417631

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250