JP5809484B2 - Forming method - Google Patents

Forming method Download PDF

Info

Publication number
JP5809484B2
JP5809484B2 JP2011186137A JP2011186137A JP5809484B2 JP 5809484 B2 JP5809484 B2 JP 5809484B2 JP 2011186137 A JP2011186137 A JP 2011186137A JP 2011186137 A JP2011186137 A JP 2011186137A JP 5809484 B2 JP5809484 B2 JP 5809484B2
Authority
JP
Japan
Prior art keywords
mold
temperature
cooling
molding material
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011186137A
Other languages
Japanese (ja)
Other versions
JP2013046977A (en
Inventor
安田 満雄
満雄 安田
勉 小西
勉 小西
篤 金子
篤 金子
隆夫 亀田
隆夫 亀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanko Gosei Ltd
Original Assignee
Sanko Gosei Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanko Gosei Ltd filed Critical Sanko Gosei Ltd
Priority to JP2011186137A priority Critical patent/JP5809484B2/en
Publication of JP2013046977A publication Critical patent/JP2013046977A/en
Application granted granted Critical
Publication of JP5809484B2 publication Critical patent/JP5809484B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Description

本発明は、強化繊維とマトリクス樹脂とからなり、例えば、自動車や航空機などの繊維強化樹脂製部材を賦形型を使用して3次元形状に賦形する賦形成形方法及び繊維強化樹脂成形品に関する。   The present invention comprises a reinforcing fiber and a matrix resin, for example, a forming method for forming a fiber reinforced resin member such as an automobile or an aircraft into a three-dimensional shape using a forming die and a fiber reinforced resin molded article. About.

従来より、繊維強化樹脂の成形法として平板状の積層成形品を型上に配置し、金型内部を真空状態にして樹脂を注入し、前記平板状の積層成形品に樹脂を拡散、含浸させるレジントランスファーモールディング成形法が知られている。   Conventionally, as a method for molding fiber reinforced resin, a flat laminated product is placed on a mold, the mold is evacuated and the resin is injected, and the flat laminated product is diffused and impregnated. A resin transfer molding method is known.

特許文献1には、このレジントランスファーモールディング成形法に用いるのに好適な3次元形状を有する平板状の積層成形品を、高精度、かつ自動的に製造することのできる賦形成形方法が開示された。   Patent Document 1 discloses a forming method capable of automatically and accurately producing a flat laminated molded product having a three-dimensional shape suitable for use in this resin transfer molding method. It was.

しかしこの特許文献1に開示された賦形成形方法は強化繊維と熱硬化性樹脂からなる平板状の積層成形品を用いるものであって、その成形性には限界があった。しかも一旦硬化後は熱で溶かすことも、溶剤に溶かすこともできずリサイクルできないという問題がある。   However, the forming method disclosed in Patent Document 1 uses a flat laminated molded product made of reinforced fibers and a thermosetting resin, and its moldability is limited. Moreover, once cured, there is a problem that it cannot be recycled because it cannot be dissolved by heat or dissolved in a solvent.

これに対し特許文献2には複数本の強化繊維束を含む織物基材の少なくとも一方の表面に熱可塑性樹脂材料を付着させた後に、該織物基材を構成する複数本の強化繊維束の相対位置に変動を与えることで、変形性に優れ複雑な形状に追従させることができ、かつ、その形状の保持性に優れる強化繊維織物を用いた平板積層成形品、繊維強化樹脂成形品、ならびにそれらの製造方法が開示された。   On the other hand, in Patent Document 2, a thermoplastic resin material is attached to at least one surface of a fabric base material including a plurality of reinforcing fiber bundles, and then the relative strength of the plurality of reinforcing fiber bundles constituting the fabric base material is determined. By changing the position, it is possible to follow a complex shape with excellent deformability, and a flat plate molded product, a fiber reinforced resin molded product using a reinforced fiber fabric with excellent shape retention, and those The manufacturing method of was disclosed.

特開2003−211447号公報Japanese Patent Laid-Open No. 2003-21447 特開2007−56441号公報JP 2007-56441 A

特許文献2に開示された強化繊維織物を成形原反材として積層してなる積層成形材を溶融温度に加熱後、固化温度の成形型で圧縮する成型法では、熱可塑性樹脂を強化繊維に完全に含侵させることが困難であり、十分な成形品強度が得られないという問題がある。
本発明は以上の従来技術における問題に鑑み、成形原反材を用い強度の強い成形品を形状自由度高くかつ効率よく3次元形状に賦形することができる賦形成形方法及び繊維強化樹脂成形品を提供することを目的とする。
In a molding method in which a laminated molding material obtained by laminating a reinforcing fiber fabric disclosed in Patent Document 2 as a molding raw material is heated to a melting temperature and then compressed with a molding die at a solidification temperature, the thermoplastic resin is completely converted into the reinforcing fiber. There is a problem that it is difficult to impregnate, and a sufficient molded product strength cannot be obtained.
In view of the above problems in the prior art, the present invention provides a forming method and a fiber reinforced resin molding which can form a strong molded article into a three-dimensional shape with a high degree of freedom by using a forming raw material. The purpose is to provide goods.


すなわち本発明の賦形成形方法は、複数本の強化繊維束を含む織物基材の少なくとも一方の表面に熱可塑性樹脂を主成分とする樹脂材料が付着された成形原反材を裁断し積層した積層成形材を成形型に投入配置し、加圧、加熱して複数本の強化繊維束を含む織物基材に付着している樹脂材料を溶融して繊維間及び成形原反材の層間を接着する賦形成形方法において、賦形をする上部型と下部型とからなる成形型を溶融温度に昇温する工程と、積層成形材を予熱して成形型へ投入配置する予熱工程と、成形型を型締し加圧する工程と、上下型の分割線近傍で成形型へ投入配置した積層成形材の縁部外側の領域の上下型のうち少なくとも1方を前記熱可塑性樹脂の固化温度に冷却する工程と、成形型を固化温度に冷却して型を開き離型する工程とを有することを特徴とする。

この本発明の賦形成形方法によって、成形型を熱可塑性樹脂材の溶融温度に加熱することによって熱可塑性樹脂を強化繊維に完全に含侵させて繊維積層によって強化して十分な成形品強度の熱可塑性樹脂材を成形することが可能となる。しかも長い昇温時間によってサイクルタイムが過長になることを予熱することによって防止することができる。

That is, the forming method according to the present invention cuts and laminates a forming raw material in which a resin material mainly composed of a thermoplastic resin is attached to at least one surface of a woven fabric substrate including a plurality of reinforcing fiber bundles. Laminate molding material is placed in the mold and pressed and heated to melt the resin material adhering to the textile substrate containing multiple reinforcing fiber bundles and bond the fibers and the layers of the molding material In the forming method, the step of raising the forming mold composed of the upper mold and the lower mold to be molded to a melting temperature, the preheating process of preheating the laminated molding material and placing it in the molding mold, and the mold The mold is clamped and pressurized, and at least one of the upper and lower molds in the region outside the edge of the laminated molding material placed in the mold near the dividing line between the upper and lower molds is cooled to the solidification temperature of the thermoplastic resin. The process and the process of cooling the mold to the solidification temperature, opening the mold and releasing the mold. It is characterized by having.

By this forming method of the present invention, the molding die is heated to the melting temperature of the thermoplastic resin material to completely impregnate the thermoplastic resin into the reinforcing fibers and strengthened by fiber lamination to obtain sufficient molded product strength. It becomes possible to mold a thermoplastic resin material. In addition, it can be prevented by preheating that the cycle time becomes excessive due to the long heating time.

また上部型と下部型とからなる成形型による賦形成形工程では、温度上昇による膨張圧で上部型と下部型の分割部分から樹脂材料がはみ出しを起こす。積層成形材の樹脂材料は表面が先に溶融し、内部からの熱膨張によって、その表面の溶融部分の一部が金型合わせ目部分にはみ出す。このはみ出しは、フラッシュ、バリ、スピューとも呼ばれ、分割部分のはみ出し部に生じる線はパーティングライン、フラッシュラインと呼称される。
本発明の賦形成形方法でも、対策しない場合には、強化繊維と熱可塑性樹脂成形材料の積層品を溶融温度で圧縮成形すると、型分割面より熱可塑性樹脂のみ流出し、肉厚が薄くなる問題が生じ得る。
Further, in the forming process using the molding die composed of the upper die and the lower die, the resin material protrudes from the divided portion of the upper die and the lower die due to the expansion pressure due to the temperature rise. The surface of the resin material of the laminated molding material is melted first, and a part of the melted portion of the surface protrudes from the die joint portion due to thermal expansion from the inside. This protrusion is also called flash, burr, or spew, and the lines generated at the protrusions of the divided parts are called parting lines and flash lines.
If there is no countermeasure even with the forming method of the present invention, if a laminated product of reinforcing fiber and thermoplastic resin molding material is compression molded at the melting temperature, only the thermoplastic resin flows out from the mold dividing surface and the thickness is reduced. Problems can arise.


そこで本発明の賦形成形方法によれば上下型の分割線近傍で成形型へ投入配置した積層成形材の縁部外側の領域の上下型のうち少なくとも1方を前記熱可塑性樹脂の固化温度に冷却する工程を備える。

この上下型のうち少なくとも1方を前記熱可塑性樹脂の固化温度に冷却する工程によって冷却した部分のはみ出した熱可塑性樹脂が固化されることによって、はみ出しが阻止され、樹脂流出をふせぐことができる。

Therefore, according to the forming method of the present invention, at least one of the upper and lower molds in the region outside the edge of the laminated molding material placed in the mold near the dividing line of the upper and lower molds is set to the solidification temperature of the thermoplastic resin. A step of cooling.

When the thermoplastic resin that protrudes from the portion cooled by the process of cooling at least one of the upper and lower molds to the solidification temperature of the thermoplastic resin is solidified, the protrusion is prevented and the resin outflow can be prevented.


また本発明の賦形成形方法は、複数本の強化繊維束を含む織物基材の少なくとも一方の表面に熱可塑性樹脂を主成分とする樹脂材料が付着された成形原反材を裁断し積層した積層成形材を成形型に投入配置し、加圧、加熱して複数本の強化繊維束を含む織物基材に付着している樹脂材料を溶融して繊維間及び成形原反材の層間を接着する賦形成形方法において、賦形をする上部型と下部型とからなる成形型を溶融温度に昇温する工程と、積層成形材を予熱して成形型へ投入配置する予熱工程と、成形型を型締し加圧する工程と、上下型の分割線近傍で成形型へ投入配置した積層成形材の縁部外側の領域の上下型のうち少なくとも1方を前記熱可塑性樹脂の固化温度に冷却する工程と、成形型を固化温度に冷却して型を開き離型する工程と、を行い平板形状の平板積層成形品を成形する工程と、前記平板積層成形品を所定の形状に裁断する工程と、賦形をする成形型を溶融温度に昇温する工程と、前記平板積層成形品を予熱して成形型へ投入配置する予熱工程と、成形型を型締し加圧する工程と、上下型の分割線近傍で成形型へ投入配置した積層成形材の縁部外側の領域の上下型のうち少なくとも1方を前記熱可塑性樹脂の固化温度に冷却する工程と、成形型を固化温度に冷却して型を開き離型する工程とを有することを特徴とする。

強化繊維間への熱可塑性樹脂の含浸には通常約5〜30分の時間を要する。

しかし、本発明の賦形成形方法によって、事前に平板形状の積層成形材を準備することによって、その時間を削減して賦形成形の成形サイクルタイムを短縮することができる。

In addition, the forming method of the present invention cuts and laminates a forming raw material in which a resin material mainly composed of a thermoplastic resin is attached to at least one surface of a woven fabric substrate including a plurality of reinforcing fiber bundles. Laminate molding material is placed in the mold and pressed and heated to melt the resin material adhering to the textile substrate containing multiple reinforcing fiber bundles and bond the fibers and the layers of the molding material In the forming method, the step of raising the forming mold composed of the upper mold and the lower mold to be molded to a melting temperature, the preheating process of preheating the laminated molding material and placing it in the molding mold, and the mold The mold is clamped and pressurized, and at least one of the upper and lower molds in the region outside the edge of the laminated molding material placed in the mold near the dividing line between the upper and lower molds is cooled to the solidification temperature of the thermoplastic resin. And a step of cooling the mold to the solidification temperature, opening the mold, and releasing the mold. A step of forming a flat plate-shaped molded product having a flat plate shape, a step of cutting the flat plate-shaped molded product into a predetermined shape, a step of heating a forming mold to a melting temperature, and the flat plate-shaped molded product Preheating process for preheating and placing in the mold, clamping and pressurizing the mold, and upper and lower molds in the region outside the edge of the laminated molding material placed in the mold near the upper and lower mold dividing lines And at least one of them is cooled to the solidification temperature of the thermoplastic resin, and the mold is cooled to the solidification temperature, and the mold is opened and released.

The impregnation of the thermoplastic resin between the reinforcing fibers usually takes about 5 to 30 minutes.

However, by preparing a plate-shaped laminated molded material in advance by the forming method of the present invention, the time can be reduced and the forming cycle time of the forming shape can be shortened.

成形型が製品部型と、製品部型の背面に蓄熱盤を備え、製品部型のヒ−タ−と、蓄熱盤からの熱伝導で製品部型の型温を昇温させることによって、蓄熱盤の存在により、製品部型の昇温が早くなり、製品部型のヒ−タ−の容量を低減することができる。   The mold is equipped with a product part mold and a heat storage panel on the back of the product part mold, and the product part mold heater and the heat conduction from the heat storage panel raise the mold part temperature of the product part mold to store heat. Due to the presence of the board, the temperature of the product part mold is increased, and the capacity of the product part heater can be reduced.

成形型をエア−と蒸気を含む水冷却によって急冷することができ、成形型を熱可塑性樹脂材の固化温度に冷却する冷却時間を要して、サイクルタイムが過長になることを防止することができる。また成形型の冷却後にエア−で水を抜き取り、成形型の昇温を開始することによって、エア−で水を除去することで、再度の昇温開始を早めることができ、さらに成形サイクルタイムを短縮することができる。   The mold can be rapidly cooled by water cooling including air and steam, and the cooling time for cooling the mold to the solidification temperature of the thermoplastic resin material is required to prevent the cycle time from becoming excessively long. Can do. Also, after cooling the mold, water is extracted with air and the mold is started to warm up. By removing water with air, the start of temperature rise can be accelerated, and the molding cycle time can be further reduced. It can be shortened.

積層成形材及び/又は平板積層成形品を予熱すると共に予成型した後に成形型へ投入配置することにより、簡易に効率よく成形型へ投入配置することが可能となる。また積層成形材又は平板積層成形品を予成型した予成型品を準備しておくことによって、さらに成形効率を向上することができる。予成型の態様としては、例えば成形型への積層成形材又は平板積層成形品の投入配置部分の内側形状に沿う形状に積層成形材又は平板積層成形品を予熱すると共に絞り加工を行う。   By preheating and pre-molding the laminated molding material and / or flat plate molded article, the resulting material can be placed and placed in the mold easily and efficiently. Further, by preparing a pre-formed product obtained by pre-forming a laminated molded material or a flat plate-formed product, the molding efficiency can be further improved. As a form of the pre-molding, for example, the laminated molding material or the flat laminate molded product is preheated to a shape along the inner shape of the input arrangement portion of the laminated molding material or the flat laminate molded product into the mold, and the drawing process is performed.

予熱工程を、近赤外線で加熱し、遠赤外線温度センサ−で温度を検知し、近赤外線の強度を調整し所定の温度に昇温させる工程とすることによって、近赤外線で、予熱対象の分子を加熱し中芯まで加熱でき、また遠赤外線センサ−によって非接触で正確な温度を検知することができる。   The preheating process is a process of heating with near infrared rays, detecting the temperature with a far infrared temperature sensor, adjusting the intensity of the near infrared rays, and raising the temperature to a predetermined temperature. It can be heated and heated to the center, and the far-infrared sensor can detect the accurate temperature without contact.

予熱工程が、溶融温度に昇温過程の成形型へ積層成形材を投入配置して近赤外線で加熱し、遠赤外線温度センサ−で温度を検知し、近赤外線の強度を調整し所定の温度に昇温させる工程であることによって、近赤外線で、予熱対象の分子を加熱し中芯まで加熱でき、また遠赤外線センサ−によって非接触で正確な温度を検知することができる。しかも溶融温度に昇温過程の積層成形材を昇温した成形型へ投入配置することによって効率よく時間短縮して予熱することができる。   In the preheating process, the laminated molding material is placed and placed in the mold in the process of raising the temperature to the melting temperature, heated with near infrared rays, the temperature is detected with a far infrared temperature sensor, the intensity of near infrared rays is adjusted, and the predetermined temperature is reached. By being the step of raising the temperature, the molecule to be preheated can be heated to the middle core with near infrared rays, and the accurate temperature can be detected in a non-contact manner by the far infrared sensor. Moreover, the laminated molding material in the process of raising the temperature to the melting temperature is placed in a mold that has been heated, so that the time can be efficiently reduced and preheated.

上部型のブロックを下降し、下部型のブロックを押し上げて積層成形材又は平板積層成形品を挟持することによって、型移動の相対速度を向上して、成形サイクルタイムの更なる短縮が可能となる。   By lowering the upper die block and pushing up the lower die block to sandwich the laminated molding material or flat plate molded article, the relative speed of mold movement can be improved and the molding cycle time can be further shortened. .

以上の本発明の賦形成形方法によって製造された繊維強化樹脂成形品は、高強度軽量で効率よく安価に製造でき、しかも複雑形状の附形も可能であることから、各種用途に適用が可能となる。   The fiber reinforced resin molded product produced by the above forming method of the present invention can be applied to various applications because it can be manufactured with high strength, light weight, efficiency and low cost, and also can be shaped with complex shapes. It becomes.

本発明に係る賦形成形方法及び繊維強化樹脂成形品によれば、成形原反材を用い強度の強い成形品を形状自由度高くかつ効率よく3次元形状に賦形することができる。   According to the forming method and the fiber-reinforced resin molded product according to the present invention, a molded product having a high strength can be molded into a three-dimensional shape efficiently with a high degree of freedom in shape using a molding raw material.

(a)本発明の賦形成形方法で用いる成形原反材の概念図である。(b)図1(a)に示す成形原反材を構成する織物基材の概念図である。(A) It is a conceptual diagram of the shaping | molding raw material used with the forming method of this invention. (B) It is a conceptual diagram of the textile base material which comprises the shaping | molding raw material shown to Fig.1 (a). 本発明の第一の実施の形態の賦形成形方法で用いる賦形成形装置の説明図である。It is explanatory drawing of the shaping apparatus used with the shaping method of 1st embodiment of this invention. (a)本発明の賦形成形方法で用いる型構造の説明図である。(b)本発明の賦形成形方法で用いる型構造の他の説明図である。(A) It is explanatory drawing of the type | mold structure used with the forming method of this invention. (B) It is another explanatory drawing of the type | mold structure used with the forming method of this invention. (a)本発明の賦形成形方法で用いる型構造の斜視図である。(b)本発明の賦形成形方法で用いる型構造の他の斜視図である。(A) It is a perspective view of the type | mold structure used with the shaping method of this invention. (B) It is another perspective view of the type | mold structure used with the shaping method of this invention. (a)本発明の第二の実施の形態の賦形成形方法の一工程を示す説明図である。(b)本発明の第二の実施の形態の賦形成形方法の他の工程を示す説明図である。(c)本発明の第二の実施の形態の賦形成形方法のさらに他の工程を示す説明図である。(A) It is explanatory drawing which shows 1 process of the shaping method of 2nd embodiment of this invention. (B) It is explanatory drawing which shows the other process of the shaping method of 2nd embodiment of this invention. (C) It is explanatory drawing which shows the other process of the shaping method of 2nd embodiment of this invention. 本発明の第三の実施の形態の賦形成形方法で用いる賦形成形装置の説明図である。It is explanatory drawing of the shaping apparatus used with the shaping method of 3rd embodiment of this invention. 本発明の実施例で製造した製品の写真である。It is a photograph of the product manufactured in the Example of this invention. 本発明の実施例で製造した他の製品の写真である。It is a photograph of the other product manufactured in the Example of this invention. 本発明の実施例の工程図である。It is process drawing of the Example of this invention.

本発明の賦形成形方法は、図1(a)に示す成形原反材1を用いて行う。図1(a)に示すように、成形原反材1は、複数本の強化繊維束2を含む織物基材3の少なくとも一方の表面に熱可塑性樹脂を主成分とする樹脂材料4が付着してなる。   The forming method of the present invention is performed using a forming raw material 1 shown in FIG. As shown in FIG. 1 (a), in the forming raw material 1, a resin material 4 containing a thermoplastic resin as a main component adheres to at least one surface of a woven fabric base 3 including a plurality of reinforcing fiber bundles 2. It becomes.

織物基材3は、図1(b)に示すように互いに平行となるよう一方向に引き揃えられた複数本の強化繊維束2を直交する二方向に織成してなる二方向性織物である。二方向性織物は、強化繊維束2間の相対位置の変化による変形がしやすく立体形状に変形しやすいこと、少ない枚数で力学的に擬似等方性を有する積層成形材を得やすい利点がある。
強化繊維束2を用いることにより、最終製品である繊維強化樹脂成形品の力学特性を高いものとすることができる。
強化繊維束2は、炭素繊維束、黒鉛繊維束、ガラス繊維束、または、アラミド繊維束などを用いることができ、炭素繊維束であることが好ましい。炭素繊維束を用いることにより、最終製品である繊維強化樹脂成形品の力学特性を高いものとすることができる。
As shown in FIG. 1B, the fabric base 3 is a bi-directional fabric formed by weaving a plurality of reinforcing fiber bundles 2 aligned in one direction so as to be parallel to each other in two orthogonal directions. The bi-directional woven fabric has the advantage that it is easy to be deformed due to a change in the relative position between the reinforcing fiber bundles 2 and is easily deformed into a three-dimensional shape, and that it is easy to obtain a laminated molding material that is mechanically pseudo-isotropic with a small number of sheets. .
By using the reinforced fiber bundle 2, the mechanical properties of the fiber reinforced resin molded product as the final product can be made high.
The reinforcing fiber bundle 2 may be a carbon fiber bundle, a graphite fiber bundle, a glass fiber bundle, an aramid fiber bundle, or the like, and is preferably a carbon fiber bundle. By using the carbon fiber bundle, the mechanical properties of the fiber reinforced resin molded product as the final product can be improved.

織物基材3の表面に付着している樹脂材料4は、織物基材3の層間を接着する作用を得ることができる熱可塑性樹脂を主成分とする。熱可塑性樹脂としては、例えば、ポリプロピレン、アクリル、ポリアミド、ポリエチレンテレフタレ−ト、ポリフェニレンサルファイドなどがある。樹脂材料4が熱可塑性樹脂を主成分とするものとすることによって成形原反材1を積層して、立体形状へと変形させた後に織物基材3の層間を接着させる場合の取り扱い性が向上し、生産性が向上する。なお、主成分とは樹脂材料4を構成する成分の中で、その割合が最も多い成分である。   The resin material 4 adhering to the surface of the woven fabric base 3 is mainly composed of a thermoplastic resin capable of obtaining the action of bonding the layers of the woven fabric base 3. Examples of the thermoplastic resin include polypropylene, acrylic, polyamide, polyethylene terephthalate, polyphenylene sulfide, and the like. By making the resin material 4 a thermoplastic resin as a main component, the handling property in the case of bonding the layers of the fabric base material 3 after laminating the forming raw material 1 and deforming it into a three-dimensional shape is improved. And productivity is improved. The main component is a component having the largest ratio among the components constituting the resin material 4.

以下に本発明の第一の実施の形態の賦形成形方法を図2を参照して詳述する。
先ず成形原反材1を積層し、予備積層成形型(図示せず)で予備圧縮成形した積層成形材5を予備加熱型6で予備加熱する。
予備加熱にあたっては上部より近赤外線放射装置7によって近赤外線で予備加熱型6内の熱盤8上に載置された積層成形材5を加熱する。遠赤外線温度センサ−(図示せず)で積層成形材5の温度を検知し、近赤外線放射装置7による近赤外線の強度を調整し所定の温度に積層成形材5を昇温させる。
一方3次元形状を有する賦形型である成形型9を予熱して成形原反材1の溶融温度に昇温する。次に積層成形材5を予熱された成形型9に収納し、成形型9によって積層成形材5を圧縮する。これによって織物基材3に付着している樹脂材料4を軟化して積層成形材5の層間を接着し、形状を保持させる。
その後成形型9を固化温度に急冷して型を開き離型する。以上の各工程によって成形原反材1を積層して3次元形状に賦形する。
以上のように予熱工程が、溶融温度に昇温過程の積層成形材5を昇温した成形型9へ投入配置して近赤外線放射装置7によって近赤外線で加熱し、遠赤外線温度センサ−で温度を検知し、近赤外線の強度を調整し所定の温度に昇温させる工程とすることによって、近赤外線で、予熱対象の分子を加熱し中芯まで加熱できる。また遠赤外線センサ−によって非接触で正確な温度を検知することができる。しかも溶融温度に昇温過程の積層成形材5を昇温した成形型9へ投入配置することによって効率よく時間短縮して予熱することができる。
Hereinafter, the forming method according to the first embodiment of the present invention will be described in detail with reference to FIG.
First, the forming raw material 1 is laminated, and a laminated molding material 5 preliminarily compression-molded with a preliminary lamination mold (not shown) is preheated with a preheating mold 6.
In the preheating, the laminated molding material 5 placed on the heating plate 8 in the preheating mold 6 is heated by the near infrared radiation device 7 from the upper part with the near infrared rays. The far-infrared temperature sensor (not shown) detects the temperature of the laminated molding material 5, adjusts the intensity of near infrared rays by the near-infrared radiation device 7, and raises the laminated molding material 5 to a predetermined temperature.
On the other hand, the forming die 9 which is a shaping die having a three-dimensional shape is preheated and the temperature is raised to the melting temperature of the forming raw material 1. Next, the laminated molding material 5 is accommodated in a preheated molding die 9, and the laminated molding material 5 is compressed by the molding die 9. As a result, the resin material 4 adhering to the fabric base material 3 is softened, the layers of the laminated molding material 5 are bonded, and the shape is maintained.
Thereafter, the mold 9 is rapidly cooled to the solidification temperature, and the mold is opened and released. The forming raw material 1 is laminated by the above steps and shaped into a three-dimensional shape.
As described above, in the preheating step, the laminated molding material 5 in the process of raising the temperature to the melting temperature is placed in the mold 9 which has been heated and heated by the near infrared radiation device 7 in the near infrared, and the temperature is measured by the far infrared temperature sensor. By detecting the temperature and adjusting the intensity of near infrared rays to raise the temperature to a predetermined temperature, the molecules to be preheated can be heated to the center with the near infrared rays. In addition, the far-infrared sensor can accurately detect the temperature without contact. In addition, the laminated molding material 5 in the process of raising the temperature to the melting temperature is placed in the mold 9 that has been heated, so that the time can be efficiently reduced and preheated.

積層成形材5を加熱する温度は、樹脂材料4が軟化して積層成形材5の層間を接着させる温度である。積層成形材5が加圧されながら加熱されることで、積層成形材5を構成する複数本の強化繊維束2を含む織物基材3が互いに強く押付けられ、軟化した樹脂材料4が対向する複数本の強化繊維束を含む織物基材を構成する強化繊維束の単糸の間に浸透する。次いで積層成形材5が冷却されることにより、樹脂材料4は対向する複数本の強化繊維束を含む織物基材に付着し、積層成形材5の層間を接着する。   The temperature at which the laminated molding material 5 is heated is a temperature at which the resin material 4 is softened to bond the layers of the laminated molding material 5 together. When the laminated molding material 5 is heated while being pressed, the fabric base materials 3 including the plurality of reinforcing fiber bundles 2 constituting the laminated molding material 5 are strongly pressed against each other, and the softened resin materials 4 are opposed to each other. It penetrates between the single yarns of the reinforcing fiber bundles constituting the fabric base material including the reinforcing fiber bundles of the book. Next, when the laminated molding material 5 is cooled, the resin material 4 adheres to the fabric base material including a plurality of opposing reinforcing fiber bundles, and bonds the layers of the laminated molding material 5 together.

この様に積層成形材5を立体形状に変形させ層間を接着することにより、シワが無い立体形状の成形体を製造することができる。またこの成形体は積層成形材5の層間が接着されているために、剛性が高く形状保持性に優れており、取り扱いが効率よく行える。   In this way, by deforming the laminated molding material 5 into a three-dimensional shape and bonding the layers, a three-dimensional shaped product having no wrinkles can be manufactured. Further, since this molded body is bonded between the layers of the laminated molding material 5, it has high rigidity and excellent shape retention, and can be handled efficiently.

成形型9は製品部型10と、蓄熱盤11とからなり、製品部型10に備えたヒ−タ−12と蓄熱盤11よりの熱伝導で成形型9の型温を昇温させる。製品部型10は上型10aと下型10bとからなり上部型10aが下部型10bに嵌入して型合わせされることによって製品の成型が行われる。また成形型9はエア−と蒸気を含む水冷のための冷却通水経路13を備え、成形型9は冷却通水経路13に通水することによって急冷される。冷却通水経路13はエア−を印加することによって効率的に水を抜き取り降下させることができる。すなわち成形型9の型温が所定の冷却温度に達した後、冷却通水経路13における通水を止めエア−を印加することによって、成形型9の冷却を終了し、成形型9内の製品を取り出した後に、成形型9の再度の昇温を効率的に開始することができる。   The mold 9 includes a product part mold 10 and a heat storage board 11, and raises the mold temperature of the mold 9 by heat conduction from the heater 12 and the heat storage board 11 provided in the product part mold 10. The product part mold 10 is composed of an upper mold 10a and a lower mold 10b, and the upper mold 10a is fitted into the lower mold 10b to perform mold matching, thereby molding the product. The mold 9 includes a cooling water passage 13 for water cooling including air and steam, and the molding die 9 is rapidly cooled by passing water through the cooling water passage 13. The cooling water passage 13 can efficiently extract and lower water by applying air. That is, after the mold temperature of the mold 9 reaches a predetermined cooling temperature, the cooling of the mold 9 is finished by stopping water flow in the cooling water passage 13 and applying air. After taking out, the temperature rise of the mold 9 can be efficiently started again.


この賦形成形方法は、上部型10aと下部型10bの分割線近傍で成形型へ投入配置した積層成形材の縁部外側の領域の上部型10aと下部型10bのうち少なくとも1方を前記熱可塑性樹脂の固化温度に冷却する冷却手段PMを用いて行う。この冷却手段PMは図3(a)(b)に示すように、上部型10aの縁部にのみ対向して下部型10bに載置した積層成形材5の縁部外側の下部型10b上に入れ駒型として配置される。入れ駒型PMは上部型10aと下部型10bとの型合わせ面の形状もしくは下部型10bに載置する積層成形材5外形と一致する内側形状を有して形成される。その入れ駒型PMの内側に上部型10aが嵌入して上部型10aと下部型10bとが型合わせされることによって下部型10bに載置する積層成形材5の成形が行われる。

In this forming method, at least one of the upper mold 10a and the lower mold 10b in the region outside the edge of the laminated molded material placed and placed in the mold near the dividing line between the upper mold 10a and the lower mold 10b is heated. The cooling means PM is used for cooling to the solidification temperature of the plastic resin. As shown in FIGS. 3A and 3B, the cooling means PM is disposed on the lower mold 10b outside the edge of the laminated molding material 5 placed on the lower mold 10b so as to face only the edge of the upper mold 10a. Arranged as a frame type. The insert piece type PM is formed to have a shape of a mating surface of the upper die 10a and the lower die 10b or an inner shape that matches the outer shape of the laminated molding material 5 placed on the lower die 10b. The upper mold 10a is fitted inside the insert piece mold PM, and the upper mold 10a and the lower mold 10b are mated to form the laminated molding material 5 to be placed on the lower mold 10b.


積層成形材5を予熱して成形型9へ投入配置する予熱工程の後に、上部型10aと下部型10bとが型合わせされることによって製品の成型が行われる。その過程で上部型10aと下部型10bとの型合わせによる圧縮成型と同時に上部型10aと下部型10bの分割線近傍で成形型へ投入配置した積層成形材の縁部外側の領域の上部型10aと下部型10bを熱可塑性樹脂の固化温度に冷却する冷却工程が入れ駒型PMを用いて行われる。このように、入れ駒型PMを用いた冷却工程を行わない場合には、上部型10aと下部型10bの分割部分から成型課程における温度上昇による膨張圧で積層成形材5の表面の樹脂の溶融部分の一部が金型合わせ目部分にはみ出しバリを形成する。しかし入れ駒型PMを用いた冷却工程を行うことによって積層成形材5の表面の樹脂の溶融部分は、金型合わせ目部分において冷却固化し、それが障壁となって樹脂流出が抑止されてバリの形成が最小化される。

After the preheating process in which the laminated molding material 5 is preheated and placed in the molding die 9, the upper die 10a and the lower die 10b are matched with each other to mold the product. In the process, the upper mold 10a in the region outside the edge of the laminated molding material placed in the mold near the dividing line between the upper mold 10a and the lower mold 10b at the same time as compression molding by matching the upper mold 10a and the lower mold 10b. And the cooling process which cools the lower mold | type 10b to the solidification temperature of a thermoplastic resin is performed using insert piece type PM. Thus, when the cooling process using the insert piece type PM is not performed, the resin on the surface of the laminated molding material 5 is melted by the expansion pressure due to the temperature rise in the molding process from the divided part of the upper mold 10a and the lower mold 10b. A part of the portion protrudes from the die joint portion to form a burr. However, by performing a cooling process using the insert piece type PM, the melted portion of the resin on the surface of the laminated molding material 5 is cooled and solidified at the die joint portion, which acts as a barrier to prevent the resin from flowing out. Formation is minimized.


図4(a)上部型10aを示し、図4(b)に下部型10bを示す。図に示すように下部型10bにはその上面に入れ駒型PMを載置するための凹部PM1を有する。凹部PM1は積層成形材5を収納するキャビテイの四側を囲って形成される。この凹部PM1に入れ駒型PMを断熱層PM2を介して収納し、下部型10bとの点接触部(図示せず)によって下部型10b上に支持する。一方、図4(a)に示す上部型10aと下部型10bとを型合わせした状態で入れ駒型PMの上面部と上部型10aの下面には間隙が形成され、相互の接触はない。

その結果、積層成形材5の予熱温度に保持される上部型10a及び下部型10bと入れ駒型PMとの間の熱伝導は最小限とされる。入れ駒型PMによる冷却領域は専ら上部型10aと下部型10bとの型合わせ時における積層成形材5を収納するキャビテイ周囲の、上部型10aと下部型10bの分割線近傍で成形型へ投入配置した積層成形材の縁部外側の領域の上部型10aとなる。

4A shows the upper mold 10a, and FIG. 4B shows the lower mold 10b. As shown in the figure, the lower mold 10b has a concave portion PM1 on the upper surface for placing the frame type PM. The concave portion PM1 is formed so as to surround the four sides of the cavity in which the laminated molding material 5 is accommodated. The frame type PM is accommodated in the recess PM1 via the heat insulating layer PM2, and supported on the lower mold 10b by a point contact portion (not shown) with the lower mold 10b. On the other hand, in the state where the upper mold 10a and the lower mold 10b shown in FIG. 4A are combined, a gap is formed between the upper surface portion of the insert piece mold PM and the lower surface of the upper mold 10a, and there is no mutual contact.

As a result, the heat conduction between the upper mold 10a and the lower mold 10b, which is maintained at the preheating temperature of the laminated molding material 5, and the insert piece mold PM is minimized. The cooling area by the insert piece type PM is exclusively placed in the mold near the dividing line of the upper mold 10a and the lower mold 10b around the cavity for housing the laminated molded material 5 when the upper mold 10a and the lower mold 10b are aligned. It becomes the upper mold | type 10a of the area | region outer side of the edge part of the laminated molding material .


次に本発明の第二の実施の形態の賦形成形方法を図5(a)〜(c)を参照して詳述する。

第二の実施の形態の賦形成形方法では正方形若しくは直方形の成形原反材1を複数用い、この各成形原反材1を、最上面の成形原反材1のみ織物基材3を上側として樹脂材料4が付着した面を下側にし、それ以外は織物基材3を下側として樹脂材料4が付着した面を上側にして積層し、その積層された積層成形材14を第一の実施の形態と同様に圧縮成形して平板状の平板積層成形品15とする。

この第二の実施の形態は成形型9が正方形平板状若しくは直方形平板状の平板積層成形品15を成形する点で第一の実施の形態の賦形成形方法と異なる。

図5(b)、(c)に示すようにこの第二の実施の形態でも積層成形材14を予熱して成形型9へ投入配置する予熱工程の後に、上部型10aと下部型10bとが型合わせされることによって製品の成型が行われる。その成形型を型締し加圧する過程で上部型10aと下部型10bとの型合わせによる圧縮成型と同時に上部型10aと下部型10bの分割線近傍で成形型へ投入配置した積層成形材の縁部外側の領域の上部型10aと下部型10bを熱可塑性樹脂の固化温度に冷却する冷却工程が入れ駒型PMを用いて行われる。

Next, the forming method according to the second embodiment of the present invention will be described in detail with reference to FIGS.

In the forming method of the second embodiment, a plurality of square or rectangular forming raw material 1 is used, and each forming raw material 1 is the uppermost forming raw material 1 and the fabric base material 3 is the upper side. Are laminated with the surface of the resin material 4 attached on the lower side and the other side of the fabric base material 3 on the lower side with the surface of the resin material 4 attached on the upper side. The flat plate laminated product 15 is formed by compression molding as in the embodiment.

This second embodiment differs from the forming method of the first embodiment in that the mold 9 forms a flat plate laminated product 15 having a square flat plate shape or a rectangular flat plate shape.

As shown in FIGS. 5B and 5C, in the second embodiment, after the preheating step in which the laminated molding material 14 is preheated and placed in the molding die 9, the upper die 10a and the lower die 10b are moved to each other. The product is molded by matching the molds. In the process of clamping and pressurizing the mold, compression molding is performed by matching the upper mold 10a and the lower mold 10b, and at the same time , the edge of the laminated molding material placed in the mold near the dividing line of the upper mold 10a and the lower mold 10b. A cooling step for cooling the upper die 10a and the lower die 10b in the outer region to the solidification temperature of the thermoplastic resin is performed using the insert piece type PM.

次に本発明の第三の実施の形態の賦形成形方法を説明する。
第三の実施の形態の賦形成形方法では、図6に示すように積層成形材14又は平板積層成形品15の投入配置部分の成形型9内側形状に沿う形状に積層成形材14又は平板積層成形品15を予熱すると共に予成型として絞り加工を行う点で第一の実施の形態及び第二の実施の形態と異なる。第三の実施の形態の賦形成形方法では、積層成形材14又は平板積層成形品15を成形型9へ簡易に効率よく投入配置することが可能となる。
Next, the forming method according to the third embodiment of the present invention will be described.
In the forming method of the third embodiment, as shown in FIG. 6, the laminated molding material 14 or the flat plate lamination is formed in a shape that conforms to the inner shape of the molding die 9 of the input portion of the laminated molding material 14 or the flat laminated molding product 15. It differs from the first embodiment and the second embodiment in that the molded article 15 is preheated and drawn as a preform. In the forming method according to the third embodiment, the laminated molding material 14 or the flat laminate molded article 15 can be easily and efficiently placed and placed in the molding die 9.


次に本発明の第四の実施の形態の賦形成形方法を図2、図6を参照して詳述する。

この第四の実施の形態の賦形成形方法では、平板積層成形品15を用いて最終製品の成形を行う点で第一の実施の形態の賦形成形方法と異なる。

先ず平板積層成形品15を成形型9に収納する前に予備加熱型6で予熱する。

予備加熱にあたっては上部より近赤外線放射装置7から放射される近赤外線によって平板積層成形品15を加熱し、遠赤外線温度センサ−で平板積層成形品15の温度を検知し、近赤外線放射装置7による近赤外線の強度を調整し所定の温度に平板積層成形品15を昇温させる。

この第四の実施の形態でも平板積層成形品15を予熱して成形型9へ投入配置する予熱工程の後に、上部型10aと下部型10bとが型合わせされることによって製品の成型が行われる。その成形型を型締し加圧する過程で上部型10aと下部型10bとの型合わせによる圧縮成型と同時に上部型10aと下部型10bの分割線近傍で成形型へ投入配置した積層成形材の縁部外側の領域の上部型10aと下部型10bを熱可塑性樹脂の固化温度に冷却する冷却工程が入れ駒型PMを用いて行われる。

Next, the forming method according to the fourth embodiment of the present invention will be described in detail with reference to FIGS.

The forming method of the fourth embodiment differs from the forming method of the first embodiment in that the final product is formed using the flat plate molded product 15.

First, the flat laminated molded product 15 is preheated by the preheating mold 6 before being stored in the mold 9.

In the preliminary heating, the flat plate molded product 15 is heated by near infrared rays radiated from the near infrared radiation device 7 from above, and the temperature of the flat plate molded product 15 is detected by a far infrared temperature sensor. The intensity of near-infrared light is adjusted to raise the temperature of the flat plate molded product 15 to a predetermined temperature.

Also in the fourth embodiment, after the preheating step in which the flat plate molded product 15 is preheated and placed in the mold 9, the upper mold 10 a and the lower mold 10 b are mated to perform product molding. . In the process of clamping and pressurizing the mold, compression molding is performed by matching the upper mold 10a and the lower mold 10b, and at the same time , the edge of the laminated molding material placed in the mold near the dividing line of the upper mold 10a and the lower mold 10b. A cooling step for cooling the upper die 10a and the lower die 10b in the outer region to the solidification temperature of the thermoplastic resin is performed using the insert piece type PM.

以上の近赤外線の強度は、近赤外線放射装置7への通電圧の連続降下で調整する。通電圧のON−OFFで近赤外線による加熱及びその停止を反復した場合には加熱対象の温度変化の脈動が大きく安定しない。これに対して近赤外線の強度を通電圧のON−OFFではなく電圧の連続降下で調整することによって、近赤外線が連続して照射されて温度変化に脈動が生じることはない。そのため加熱対象の温度を効率的に設定温度で安定させることができる。   The intensity of the near infrared light described above is adjusted by a continuous drop of the conduction voltage to the near infrared radiation device 7. When the heating by near infrared rays and the stop thereof are repeated with ON / OFF of the conduction voltage, the pulsation of the temperature change of the heating target is largely unstable. On the other hand, by adjusting the intensity of near infrared rays not by ON / OFF of the voltage but by the continuous voltage drop, the near infrared rays are continuously irradiated and no pulsation occurs in the temperature change. Therefore, the temperature of the object to be heated can be stabilized efficiently at the set temperature.

二方向性織物基材3の一方の表面に、ポリフェニレンサルファイド樹脂(PPS)を主成分とする樹脂材料4が表面に付着した100mm×100mmの大きさの正方形の成形原反材1を複数用意した。この各成形原反材1は正方形の辺の方向をそれぞれ0°、90°方向としたときに、繊維軸方向が概ね0°、90°方向となるものとした。
この各成形原反材1を、最上面の強化繊維織物のみ樹脂材料4が付着した面を下側にし、それ以外は樹脂材料4が付着した面を上側にして積層した積層成形材14を得た。
A plurality of 100 mm × 100 mm square forming raw material 1 having a resin material 4 mainly composed of polyphenylene sulfide resin (PPS) adhering to the surface was prepared on one surface of the bidirectional woven fabric base 3. . Each forming raw material 1 had a fiber axis direction of approximately 0 ° and 90 ° when the directions of the square sides were 0 ° and 90 °, respectively.
A laminated molding material 14 is obtained by laminating each of the raw molding materials 1 with the uppermost reinforcing fiber woven fabric having the resin material 4 attached to the lower side and the other side having the resin material 4 attached to the upper side. It was.

その積層成形材14を熱盤8上に配置し、上部より近赤外線放射装置7によって近赤外線で積層成形材14を加熱し、遠赤外線温度センサ−で積層成形材14の温度を検知し、近赤外線放射装置7による近赤外線の強度を調整し積層成形材14を昇温させ予熱した。
近赤外線の強度は、近赤外線放射装置7への通電圧の連続降下で調整した。
The laminated molding material 14 is placed on the heating plate 8, the laminated molding material 14 is heated by the near infrared radiation device 7 from above, and the temperature of the laminated molding material 14 is detected by a far infrared temperature sensor. The intensity of near infrared rays by the infrared radiation device 7 was adjusted, and the laminated molding material 14 was heated and preheated.
The intensity of the near infrared ray was adjusted by a continuous drop of the conduction voltage to the near infrared radiation device 7.


一方、製品部型10と、蓄熱盤11とからなり、製品部型10に備えたヒ−タ−12と蓄熱盤11よりの熱伝導で成形型9の型温を昇温させて予熱し、この予熱された成形型9に予熱した積層成形材14を収納し、上部型10aと下部型10bの分割線近傍で成形型へ投入配置した積層成形材の縁部外側の領域の上部型10aと下部型10bを熱可塑性樹脂の固化温度に入れ駒型PMを用いて冷却した。

次に加圧しながら成形型9の提供する平板状の平板積層成形品形状に変形させた。その後、成形型9を冷却通水経路13に通水することによって急冷し、さらに冷却通水経路13にエア−を印加することによって効率的に水を抜き取り降下させた。それにより冷却によって固化した平板積層成形品15を得た。

表1に以上の各工程における温度、圧力、所要時間を示す。






On the other hand, it consists of a product part mold 10 and a heat storage board 11, and preheats by raising the mold temperature of the mold 9 by heat conduction from the heater 12 and the heat storage board 11 provided in the product part mold 10, A preheated laminated molding material 14 is accommodated in the preheated molding die 9, and the upper die 10a in the region outside the edge of the laminated molding material placed in the molding die in the vicinity of the dividing line between the upper die 10a and the lower die 10b, The lower mold 10b was placed in the solidification temperature of the thermoplastic resin and cooled using the piece mold PM.

Next, it was deformed into a flat plate laminated product shape provided by the mold 9 while applying pressure. Thereafter, the mold 9 was rapidly cooled by passing water through the cooling water passage 13, and by applying air to the cooling water passage 13, water was efficiently extracted and lowered. Thereby, a flat plate molded article 15 solidified by cooling was obtained.

Table 1 shows the temperature, pressure, and required time in each of the above steps.





他は実施例1と同様にして、アクリル樹脂を主成分とする樹脂材料4が表面に付着した100mm×100mmの大きさの正方形の成形原反材1を用いて、実施例1と同様の賦形成形を行った。
表2にその各工程における温度、圧力、所要時間を示す。
Others were the same as in Example 1, using a 100 mm × 100 mm square molding raw material 1 having a resin material 4 having an acrylic resin as a main component adhered to the surface. Formed.
Table 2 shows the temperature, pressure, and required time in each process.

平板積層成形品15を熱盤8上に配置し、上部より近赤外線放射装置7によって近赤外線で平板積層成形品15を加熱し、遠赤外線温度センサ−で平板積層成形品15の温度を検知し、近赤外線放射装置7による近赤外線の強度を調整し所定の温度に平板積層成形品15を昇温させ予熱した。近赤外線の強度は、近赤外線放射装置7への通電圧の連続降下で調整した。
また上部型16と下部型17とからなる製品部型10内側形状に沿う形状に平板積層成形品15の絞り加工を行なった。
The flat plate molded product 15 is placed on the heating platen 8, the flat plate molded product 15 is heated by near infrared radiation from the upper part by the near infrared radiation device 7, and the temperature of the flat plate molded product 15 is detected by a far infrared temperature sensor. Then, the intensity of near infrared rays by the near infrared radiation device 7 was adjusted, and the flat plate molded article 15 was heated to a predetermined temperature and preheated. The intensity of the near infrared ray was adjusted by a continuous drop of the conduction voltage to the near infrared radiation device 7.
Further, the flat plate molded product 15 was drawn into a shape along the inner shape of the product part mold 10 including the upper mold 16 and the lower mold 17.


一方、上部型16と下部型17とからなる製品部型10に備えたヒ−タ−12と蓄熱盤11よりの熱伝導で上部型16と下部型17の型温を昇温させて予熱した。この予熱された上部型16と下部型17内側に予熱した平板積層成形品15を収納した。さらに上部型10aと下部型10bの分割線近傍で成形型へ投入配置した積層成形材の縁部外側の領域の上部型10aと下部型10bを熱可塑性樹脂の固化温度に入れ駒型PMを用いて冷却した。次いで上部型16の中央部ブロック16aと下部型17の中央部ブロック17aとによって平板積層成形品15を挟持した。上部型16の中央部ブロック16aと下部型17の中央部ブロック17aとによって挟持した平板積層成形品15を凹型19へ移動して平板積層成形品15を絞り変形させた。さらに絞り変形させた平板積層成形品15を圧縮成形した。その後、成形型9を冷却通水経路13に通水することによって急冷し、さらに冷却通水経路13にエア−を印加することによって効率的に水を抜き取り降下させ、冷却によって固化し、図7に示す製品を得た。


On the other hand, the upper mold 16 and the lower mold 17 were preheated by increasing the mold temperature by heat conduction from the heater 12 and the heat storage board 11 provided in the product mold 10 including the upper mold 16 and the lower mold 17. . The preheated flat plate molded product 15 was accommodated inside the preheated upper die 16 and lower die 17. Further, the upper mold 10a and the lower mold 10b in the region outside the edge of the laminated molding material placed in the mold near the dividing line between the upper mold 10a and the lower mold 10b are placed at the solidification temperature of the thermoplastic resin, and the piece type PM is used. And cooled. Next, the flat plate molded product 15 was sandwiched between the central block 16 a of the upper mold 16 and the central block 17 a of the lower mold 17. The flat plate molded article 15 sandwiched between the central block 16a of the upper mold 16 and the central block 17a of the lower mold 17 was moved to the concave mold 19 to deform the flat laminated mold article 15 by drawing. Further, the flat plate molded product 15 that was drawn and deformed was compression molded. Thereafter, the mold 9 is rapidly cooled by passing water through the cooling water passage 13, and further, air is efficiently extracted by applying air to the cooling water passage 13, and solidified by cooling. I got the product shown in

また同様の工程をアクリル樹脂を主成分とする樹脂材料4が表面に付着した100mm×100mmの大きさの正方形の成形原反材1を用いて行った。得られた製品を図8に示す。
各製品は図7、図8に示す様に何れの場合も表面性状が良好な3次元形状の皿状製品が得られた。
図9に実施例3の各工程及び使用/設備及び使用/型と、各工程における所要時間を示す。
図に示されるようにアクリル樹脂を主成分とする樹脂材料4を用いた場合で11.5分、ポリフェニレンサルファイド樹脂(PPS)を主成分とする樹脂材料4を用いた場合で13.5分のサイクルタイムでの製造が可能となった。
A similar process was performed using a square forming raw material 1 having a size of 100 mm × 100 mm in which a resin material 4 mainly composed of an acrylic resin adhered to the surface. The obtained product is shown in FIG.
As shown in FIGS. 7 and 8, each product was a three-dimensional dish-shaped product having a good surface property.
FIG. 9 shows each process and use / equipment and use / type of Example 3 and the required time in each process.
As shown in the figure, 11.5 minutes when the resin material 4 mainly composed of acrylic resin is used, and 13.5 minutes when the resin material 4 mainly composed of polyphenylene sulfide resin (PPS) is used. Manufacture with cycle time became possible.

1・・・成形原反材、2・・・強化繊維束、3・・・織物基材、4・・・樹脂材料、5,14・・・積層成形材、6・・・予備加熱型、7・・・近赤外線放射装置、9・・・成形型、10・・・製品部型、11・・・蓄熱盤、13・・・冷却通水経路、12・・・ヒ−タ−、15・・・平板積層成形品、17・・・下部型、17a・・・下部型中央部ブロック、16・・・上部型、16a・・・上部型中央部ブロック、18・・・対抗型、19・・・凹型。 DESCRIPTION OF SYMBOLS 1 ... Molding raw material, 2 ... Reinforcement fiber bundle, 3 ... Textile base material, 4 ... Resin material, 5,14 ... Laminated molding material, 6 ... Preheating type, DESCRIPTION OF SYMBOLS 7 ... Near-infrared radiation device, 9 ... Mold, 10 ... Product part type, 11 ... Heat storage board, 13 ... Cooling water flow path, 12 ... Heater, 15 ... Plate laminated molded product, 17 ... Lower mold, 17a ... Lower mold center block, 16 ... Upper mold, 16a ... Upper mold center block, 18 ... Counter mold, 19 ... concave type.

Claims (9)


複数本の強化繊維束を含む織物基材の少なくとも一方の表面に熱可塑性樹脂を主成分とする樹脂材料が付着された成形原反材を裁断し積層した積層成形材を成形型に投入配置し、加圧、加熱して複数本の強化繊維束を含む織物基材に付着している樹脂材料を溶融して繊維間及び成形原反材の層間を接着する賦形成形方法において、賦形をする上部型と下部型とからなる成形型を溶融温度に昇温する工程と、積層成形材を予熱して成形型へ投入配置する予熱工程と、成形型を型締し加圧する工程と、上下型の分割線近傍で成形型へ投入配置した積層成形材の縁部外側の領域の上下型のうち少なくとも1方を前記熱可塑性樹脂の固化温度に冷却する工程と、成形型を固化温度に冷却して型を開き離型する工程とを有することを特徴とする賦形成形方法。

A laminated molding material obtained by cutting and laminating a molding raw material having a resin material mainly composed of a thermoplastic resin attached to at least one surface of a woven fabric substrate including a plurality of reinforcing fiber bundles is placed in a molding die. In the forming method in which pressure is applied and heated to melt the resin material adhering to the textile substrate including a plurality of reinforcing fiber bundles to bond the fibers and the layers of the forming raw material, A step of raising a mold composed of an upper mold and a lower mold to a melting temperature, a preheating process of preheating and placing the laminated molding material into the mold, a process of clamping and pressurizing the mold, and upper and lower A step of cooling at least one of the upper and lower molds in the region outside the edge of the laminated molding material placed in the mold in the vicinity of the mold dividing line and cooling the mold to the solidification temperature; And then forming and releasing the mold. Law.

複数本の強化繊維束を含む織物基材の少なくとも一方の表面に熱可塑性樹脂を主成分とする樹脂材料が付着された成形原反材を裁断し積層した積層成形材を成形型に投入配置し、加圧、加熱して複数本の強化繊維束を含む織物基材に付着している樹脂材料を溶融して繊維間及び成形原反材の層間を接着する賦形成形方法において、賦形をする上部型と下部型とからなる成形型を溶融温度に昇温する工程と、積層成形材を予熱して成形型へ投入配置する予熱工程と、成形型を型締し加圧する工程と、上下型の分割線近傍で成形型へ投入配置した積層成形材の縁部外側の領域の上下型のうち少なくとも1方を前記熱可塑性樹脂の固化温度に冷却する工程と、成形型を固化温度に冷却して型を開き離型する工程と、を行い平板形状の平板積層成形品を成形する工程と、前記平板積層成形品を所定の形状に裁断する工程と、賦形をする成形型を溶融温度に昇温する工程と、前記平板積層成形品を予熱して成形型へ投入配置する予熱工程と、成形型を型締し加圧する工程と、上下型の分割線近傍で成形型へ投入配置した積層成形材の縁部外側の領域の上下型のうち少なくとも1方を前記熱可塑性樹脂の固化温度に冷却する工程と、成形型を固化温度に冷却して型を開き離型する工程とを有することを特徴とする賦形成形方法。

A laminated molding material obtained by cutting and laminating a molding raw material having a resin material mainly composed of a thermoplastic resin attached to at least one surface of a woven fabric substrate including a plurality of reinforcing fiber bundles is placed in a molding die. In the forming method in which pressure is applied and heated to melt the resin material adhering to the textile substrate including a plurality of reinforcing fiber bundles to bond the fibers and the layers of the forming raw material, A step of raising a mold composed of an upper mold and a lower mold to a melting temperature, a preheating process of preheating and placing the laminated molding material into the mold, a process of clamping and pressurizing the mold, and upper and lower A step of cooling at least one of the upper and lower molds in the region outside the edge of the laminated molding material placed in the mold in the vicinity of the mold dividing line and cooling the mold to the solidification temperature; And then opening the mold and releasing the mold, A step of forming, a step of cutting the flat plate molded product into a predetermined shape, a step of raising the shaping mold to a melting temperature, and preheating the flat plate molded product to be placed in the mold At least one of the preheating step, the step of clamping and pressurizing the mold, and the upper and lower molds in the region outside the edge of the laminated molding material placed in the mold near the dividing line of the upper and lower molds. A forming method comprising: a step of cooling to a solidification temperature of a resin; and a step of cooling the mold to the solidification temperature to open and release the mold.

成形型が製品部型と、製品部型の背面に蓄熱盤を備え、製品部型のヒ−タ−と、蓄熱盤からの熱伝導で製品部型の型温を昇温させることを特徴とする請求項1または請求項2のいずれか一に記載の賦形成形方法。

The mold has a product part mold and a heat storage panel on the back of the product part mold. The product part heater and the heat conduction from the heat storage panel increase the temperature of the product part mold. The shaping method according to any one of claims 1 and 2.

成形型の冷却がエア−と蒸気を含む水冷であり、成形型の冷却後にエア−で水を抜き取り、成形型の昇温を開始することを特徴とする請求項1〜請求項3のいずれか一に記載の賦形成形方法。

4. The mold according to claim 1, wherein the cooling of the mold is water-cooling including air and steam, and after the mold is cooled, water is extracted with air and the temperature of the mold is increased. The forming method according to one.

積層成形材及び/又は平板積層成形品を予熱すると共に予成型した後に成形型へ投入配置することを特徴とする請求項1〜請求項4のいずれか一に記載の賦形成形方法。

The forming method according to any one of claims 1 to 4, wherein the laminated molding material and / or the flat plate molded article is preheated and pre-molded and then placed in a molding die.

予熱工程が、近赤外線で加熱し、遠赤外線温度センサ−で温度を検知し、近赤外線の強度を調整し所定の温度に昇温させる工程であることを特徴とする請求項1〜請求項5のいずれか一に記載の賦形成形方法。

The preheating step is a step of heating with a near infrared ray, detecting a temperature with a far infrared ray temperature sensor, adjusting the intensity of the near infrared ray, and raising the temperature to a predetermined temperature. The shaping method according to any one of the above.

予熱工程が、溶融温度に昇温過程の成形型へ積層成形材を投入配置して近赤外線で加熱し、遠赤外線温度センサ−で温度を検知し、近赤外線の強度を調整し所定の温度に昇温させる工程であることを特徴とする請求項1〜請求項3のいずれか一に記載の賦形成形方法。

In the preheating process, the laminated molding material is placed and placed in the mold in the process of raising the temperature to the melting temperature, heated with near infrared rays, the temperature is detected with a far infrared temperature sensor, the intensity of near infrared rays is adjusted, and the predetermined temperature is reached. The forming method according to any one of claims 1 to 3, wherein the forming method is a step of raising the temperature.

請求項1〜請求項7のいずれか一に記載の賦形成形方法に用いられる賦形成形型であって、賦形をする上部型と下部型とからなる成形型と、上下型の分割線近傍で成形型へ投入配置した積層成形材の縁部外側の領域の上下型のうち少なくとも1方を前記熱可塑性樹脂の固化温度に冷却する冷却手段と、成形型を型締し加圧する手段と、成形型を固化温度に冷却して型を開き離型する手段とを有し、前記冷却手段が上部型と下部型との型合わせ面の形状と一致する内側形状を有する入れ駒であることを特徴とする賦形成形型。

A forming mold used in the forming method according to any one of claims 1 to 7, wherein the forming mold includes an upper mold and a lower mold for shaping, and a dividing line between upper and lower molds. Cooling means for cooling at least one of the upper and lower molds in the outer region of the edge of the laminated molding material placed and placed in the mold in the vicinity , to the solidification temperature of the thermoplastic resin, and means for clamping and pressurizing the mold And a means for opening and releasing the mold by cooling the forming mold to a solidification temperature, and the cooling means is an insert piece having an inner shape that matches the shape of the die mating surface of the upper mold and the lower mold. A shaped mold characterized by

請求項1〜請求項7のいずれか一に記載の賦形成形方法に用いられる賦形成形型であって、賦形をする上部型と下部型とからなる成形型と、上下型の分割線近傍で成形型へ投入配置した積層成形材の縁部外側の領域の上下型のうち少なくとも1方を前記熱可塑性樹脂の固化温度に冷却する冷却手段と、成形型を型締し加圧する手段と、成形型を固化温度に冷却して型を開き離型する手段とを有し、前記冷却手段が成形型に載置する積層成形材外形と一致する内側形状を有する入れ駒であることを特徴とする賦形成形型。

A forming mold used in the forming method according to any one of claims 1 to 7, wherein the forming mold includes an upper mold and a lower mold for shaping, and a dividing line between upper and lower molds. Cooling means for cooling at least one of the upper and lower molds in the outer region of the edge of the laminated molding material placed and placed in the mold in the vicinity, to the solidification temperature of the thermoplastic resin, and means for clamping and pressurizing the mold And a means for opening and releasing the mold by cooling the mold to a solidification temperature, and the cooling means is a slot having an inner shape that matches the outer shape of the laminated molding material placed on the mold. Forming mold with.
JP2011186137A 2011-08-29 2011-08-29 Forming method Active JP5809484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011186137A JP5809484B2 (en) 2011-08-29 2011-08-29 Forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011186137A JP5809484B2 (en) 2011-08-29 2011-08-29 Forming method

Publications (2)

Publication Number Publication Date
JP2013046977A JP2013046977A (en) 2013-03-07
JP5809484B2 true JP5809484B2 (en) 2015-11-11

Family

ID=48010301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011186137A Active JP5809484B2 (en) 2011-08-29 2011-08-29 Forming method

Country Status (1)

Country Link
JP (1) JP5809484B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5909062B2 (en) * 2011-08-29 2016-04-26 三光合成株式会社 Forming method
JP2015157384A (en) * 2014-02-24 2015-09-03 東洋紡株式会社 Method for producing fiber-reinforced thermoplastic resin-molded article
JP2016147377A (en) * 2015-02-10 2016-08-18 株式会社キャップ Molding method and production method of frp product
CN113573865B (en) * 2019-04-26 2024-05-14 株式会社micro-AMS Resin molding method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085080B2 (en) * 1987-04-27 1996-01-24 三井東圧化学株式会社 Method for producing fiber-reinforced thermoplastics
JPH05301240A (en) * 1992-04-28 1993-11-16 Toshiba Corp Production of fiber fabric composite resin film
JP3977565B2 (en) * 1999-05-06 2007-09-19 小野産業株式会社 Mold for synthetic resin molding, mold temperature control device and mold temperature control method
JP4154808B2 (en) * 1999-07-06 2008-09-24 Jsr株式会社 Mold for molding
JP5417631B2 (en) * 2007-11-07 2014-02-19 福井県 Molding method of thermoplastic resin composite material molded product
JP5603048B2 (en) * 2009-10-19 2014-10-08 帝人株式会社 Manufacturing method of fiber reinforced composite material
JP5909062B2 (en) * 2011-08-29 2016-04-26 三光合成株式会社 Forming method

Also Published As

Publication number Publication date
JP2013046977A (en) 2013-03-07

Similar Documents

Publication Publication Date Title
JP5909062B2 (en) Forming method
JP5668874B2 (en) Preform manufacturing method and fiber reinforced resin molded product manufacturing method
JP5757338B2 (en) Manufacturing method of fiber reinforced composite material molded article
CN106239878B (en) Method for producing resin molded body and press molding device
JP5809484B2 (en) Forming method
JP5568388B2 (en) Fiber-reinforced resin molded product with good appearance
JP5712038B2 (en) Forming method
JP2016210080A (en) Molding and method for producing the same
JP6008788B2 (en) Method and apparatus for producing composite molded product
JP5545974B2 (en) Forming method
JP5762694B2 (en) Forming method and fiber-reinforced resin molded product
JP6802047B2 (en) Formed type and formed type method
JP2012224016A5 (en)
CN111590796A (en) Forming die of thermoplastic composite material and using method thereof
JP6967130B2 (en) Formed type and formed type method
JP5603149B2 (en) Fiber-reinforced resin molded product and forming method
JP5362596B2 (en) Paste composition method, pasting composite mold and pasting device
JP6054714B2 (en) Forming method and forming mold
JP6808946B2 (en) Manufacturing method of fiber reinforced composite molded product
JP5671314B2 (en) Lamination method and forming method of textile base material and thermoplastic resin
JP6026860B2 (en) Forming method
JP2014184725A (en) Shaping/molding method
JP6952856B2 (en) Formed type and formed type method
JP6811573B2 (en) Formed type and formed type method
JP2014100822A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150911

R150 Certificate of patent or registration of utility model

Ref document number: 5809484

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250