JP6808946B2 - Manufacturing method of fiber reinforced composite molded product - Google Patents

Manufacturing method of fiber reinforced composite molded product Download PDF

Info

Publication number
JP6808946B2
JP6808946B2 JP2016031548A JP2016031548A JP6808946B2 JP 6808946 B2 JP6808946 B2 JP 6808946B2 JP 2016031548 A JP2016031548 A JP 2016031548A JP 2016031548 A JP2016031548 A JP 2016031548A JP 6808946 B2 JP6808946 B2 JP 6808946B2
Authority
JP
Japan
Prior art keywords
fiber
reinforced composite
molded product
composite material
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016031548A
Other languages
Japanese (ja)
Other versions
JP2017148973A5 (en
JP2017148973A (en
Inventor
満 轡田
満 轡田
敦 野原
敦 野原
正洋 市野
正洋 市野
和久 池田
和久 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2016031548A priority Critical patent/JP6808946B2/en
Publication of JP2017148973A publication Critical patent/JP2017148973A/en
Publication of JP2017148973A5 publication Critical patent/JP2017148973A5/ja
Application granted granted Critical
Publication of JP6808946B2 publication Critical patent/JP6808946B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Description

本発明は、所望の立体形状を有する繊維強化複合材料成形品の製造方法に関する。 The present invention relates to a method for producing a fiber-reinforced composite material molded product having a desired three-dimensional shape.

繊維強化複合材料成形品の製造には、強化繊維を一方向に引き揃えたシート状物や織物や不織布などに、熱硬化性マトリックス樹脂を含浸させた中間基材である、シート状プリプレグを用いることが多い。 A sheet-shaped prepreg, which is an intermediate base material obtained by impregnating a sheet-like material, a woven fabric, or a non-woven fabric in which reinforcing fibers are aligned in one direction with a thermosetting matrix resin, is used for manufacturing a fiber-reinforced composite material molded product. Often.

一方、シート状プリプレグ以外にも、数千〜数万本のフィラメントが一方向に配列した強化繊維束に熱硬化性マトリックス樹脂を含浸させた、トウプレグ、トウプリプレグ、ヤーンプリプレグ、あるいはストランドプリプレグと呼ばれる細幅の中間基材(以下、トウプレグということがある)が、繊維強化複合材料成形品の製造に利用されている。
特許文献1には、トウプレグを平坦に敷設することでシート状プリプレグと見立て、これをインフュージョン成形やスタンピング成形に利用する、繊維強化複合材料成形品の製造方法が提案されている。
On the other hand, in addition to sheet-shaped prepregs, reinforced fiber bundles in which thousands to tens of thousands of filaments are arranged in one direction are impregnated with a thermosetting matrix resin, and are called tow prepregs, toe prepregs, yarn prepregs, or strand prepregs. A narrow intermediate base material (hereinafter sometimes referred to as tow prepreg) is used in the production of fiber-reinforced composite material molded products.
Patent Document 1 proposes a method for producing a fiber-reinforced composite material molded product, in which a tow preg is laid flat to be regarded as a sheet-shaped prepreg and used for infusion molding or stamping molding.

特許文献1には、トウプレグのスタンピング成形への適用例として、熱硬化性マトリックス樹脂が含浸されたトウプレグを平面に敷設することで形成される積層体を準備し、この積層体の周囲をスタンピング金型内で固締させた後に、このスタンピング金型による積層体の型打ちと加熱を同時に行い、このトウプレグを構成する熱硬化性マトリックス樹脂が硬化するまでこの状態を保持することで、所望の形状を有する繊維強化複合材料成形品を製造することが記載されている。 In Patent Document 1, as an application example of the tow preg to stamping molding, a laminated body formed by laying a tow preg impregnated with a thermosetting matrix resin on a flat surface is prepared, and a stamping metal is provided around the laminated body. After compacting in the mold, the laminate is stamped and heated at the same time by this stamping die, and this state is maintained until the thermosetting matrix resin constituting this tow preg is cured to obtain a desired shape. It is described that a fiber-reinforced composite molded article having the above is produced.

特表2004−504962号公報Special Table 2004-504962

しかしながら、スタンピング金型の温度が、上記の熱硬化性マトリックス樹脂の硬化温度よりも高温の場合には、このマトリックス樹脂は速やかに硬化するため、上記積層体の型打ちによる賦形が不充分となり、得られる成形品にはシワが発生しやすくなるとともに、強化繊維の蛇行が発生し、その結果、成形品の強度が損なわれたり、所望する立体形状の成形品を得ることが困難となったりすることがあった。 However, when the temperature of the stamping die is higher than the curing temperature of the thermosetting matrix resin, the matrix resin cures quickly, so that the molding by stamping the laminate becomes insufficient. The obtained molded product is prone to wrinkles and meandering of reinforcing fibers, and as a result, the strength of the molded product is impaired or it becomes difficult to obtain a molded product having a desired three-dimensional shape. I had something to do.

また、スタンピング金型の温度が、上記の熱硬化性マトリックス樹脂の硬化温度よりも低温の状態で積層体を賦形した後に、この樹脂の硬化温度までスタンピング金型を昇温させる場合には、樹脂の硬化やスタンピング金型の昇降温に長時間を要することとなり、成形品の生産速度や生産効率が著しく損なわれる傾向にあった。 Further, when the temperature of the stamping mold is lower than the curing temperature of the thermosetting matrix resin described above and the laminate is formed, and then the temperature of the stamping mold is raised to the curing temperature of this resin, the stamping mold is heated. It takes a long time to cure the resin and raise and lower the temperature of the stamping die, and the production speed and production efficiency of the molded product tend to be significantly impaired.

上記の課題を解決するため、本発明は、
実質的に連続した強化繊維に熱硬化性樹脂マトリックス樹脂が含浸されている、横幅が3〜55mmの範囲である繊維強化複合材料を一平面内においては直進するよう敷設し、さらにこの平面状の敷設物上に、前記敷設を繰り返すことで、該繊維強化複合材料からなる積層体を製作する敷設工程と、該積層体を賦形することにより、所望する成形品形状とほぼ正味形状を有するプリフォームを製作する賦形工程と、該プリフォームを該熱硬化性マトリックス樹脂の硬化温度以上に調温せしめた成形型内で圧縮成形する成形工程とからなる、繊維強化複合材料成形品の製造方法を提供する。
In order to solve the above problems, the present invention
A fiber-reinforced composite material having a width in the range of 3 to 55 mm, in which substantially continuous reinforcing fibers are impregnated with a thermosetting resin matrix resin, is laid so as to travel straight in one plane, and further, this flat shape is formed. By repeating the laying on the laying object, a laying step of producing a laminate made of the fiber-reinforced composite material, and by shaping the laminate, a product having a desired molded product shape and a substantially net shape. A method for producing a fiber-reinforced composite material molded product, which comprises a shaping step of manufacturing a reform and a molding step of compression molding the preform in a molding mold whose temperature is adjusted to be equal to or higher than the curing temperature of the thermosetting matrix resin. I will provide a.

前記繊維強化複合材料は、炭素繊維トウに熱硬化性マトリックス樹脂を含浸して得られたトウプレグであることが好ましい。 The fiber-reinforced composite material is preferably a tow preg obtained by impregnating a carbon fiber tow with a thermosetting matrix resin.

また、前記敷設工程と前記賦形工程の間には、前記敷設工程を経て得られた積層体の圧密化工程を有するのが好ましい。 Further, it is preferable to have a consolidation step of the laminated body obtained through the laying step between the laying step and the shaping step.

さらに、前記敷設工程にて、前記繊維強化複合材料を表皮材上に敷設することにより、該表皮材を前記繊維強化複合材料成形品の外面または内面に形成させるのが好ましい。 Further, in the laying step, it is preferable to lay the fiber-reinforced composite material on the skin material so that the skin material is formed on the outer surface or the inner surface of the fiber-reinforced composite material molded product.

本発明により、立体形状を有する繊維強化複合材料成形品の生産性と物性とを両立させることができる。また、本発明により、繊維強化複合材料成形品に優れた意匠性を付与することが可能である。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to achieve both productivity and physical properties of a fiber-reinforced composite material molded product having a three-dimensional shape. Further, according to the present invention, it is possible to impart excellent designability to a fiber-reinforced composite material molded product.

図1は、本発明の実施形態の一例を示すための成形品形状図である。FIG. 1 is a molded article shape diagram for showing an example of an embodiment of the present invention. 図2は、本発明の実施形態の一例を示すための平面形状図である。FIG. 2 is a plan view for showing an example of an embodiment of the present invention. 図3は、本発明の実施形態の一例を示すための積層構成図である。FIG. 3 is a laminated configuration diagram for showing an example of the embodiment of the present invention. 図4は、本発明の実施形態の一例を示す図である。FIG. 4 is a diagram showing an example of an embodiment of the present invention. 図5は、本発明の実施形態の一例を示す図である。FIG. 5 is a diagram showing an example of an embodiment of the present invention. 図6は、本発明の実施形態の一例を示すためのプリフォーム形状図である。FIG. 6 is a preform shape diagram for showing an example of the embodiment of the present invention. 図7は、本発明の実施形態の一例を示す図である。FIG. 7 is a diagram showing an example of an embodiment of the present invention. 図8は、本発明の実施形態の一例を示すためのプリフォーム形状図である。FIG. 8 is a preform shape diagram for showing an example of the embodiment of the present invention. 図9は、本発明の実施形態の一例により得られた成形品の強度試験図である。FIG. 9 is a strength test diagram of a molded product obtained by an example of the embodiment of the present invention. 図10は、本発明の実施形態の一例を示すための積層構成図である。FIG. 10 is a laminated configuration diagram for showing an example of the embodiment of the present invention. 図11は、本発明の実施形態の一例により得られた成形品形状図である。FIG. 11 is a molded article shape diagram obtained by an example of the embodiment of the present invention. 図12は、特許文献1の一例により得られた成形品形状図である。FIG. 12 is a molded article shape diagram obtained by an example of Patent Document 1.

(繊維強化複合材料)
本発明の繊維強化複合材料成形品の製造方法に用いることができる繊維強化複合材料は、例えば敷設工程や賦形工程における低温時の取り扱い性に優れるとともに、成形品の物性にも優れることから、熱硬化性マトリックス樹脂と強化繊維を含む繊維強化複合材料である必要がある。
繊維強化複合材料の形態は、強化繊維が実質的に連続する方向に対する直交方向の長さ(以下、横幅という)が3〜55mmの範囲であることを特徴とする。これは、横幅が3mmより短いと、一平面の敷設に必要となる前記繊維強化複合材料の本数が多くなり、敷設効率が低下する傾向にあるためである。より好ましくは5mm以上であり、さらに好ましくは6mm以上である。また、横幅が55mmを超えると、敷設する平面形状によっては、前記繊維強化複合材料の歩留まり低下が懸念される傾向にあるためである。より好ましくは40mm以下であり、さらに好ましくは30mm以下である。
(Fiber reinforced composite material)
The fiber-reinforced composite material that can be used in the method for producing a fiber-reinforced composite material molded product of the present invention is excellent in handleability at low temperatures in, for example, a laying process and a shaping process, and is also excellent in physical properties of the molded product. It needs to be a fiber reinforced composite material containing a thermosetting matrix resin and reinforcing fibers.
The form of the fiber-reinforced composite material is characterized in that the length (hereinafter, referred to as the width) in the direction orthogonal to the direction in which the reinforcing fibers are substantially continuous is in the range of 3 to 55 mm. This is because if the width is shorter than 3 mm, the number of the fiber-reinforced composite materials required for laying a single plane increases, and the laying efficiency tends to decrease. It is more preferably 5 mm or more, still more preferably 6 mm or more. Further, when the width exceeds 55 mm, there is a tendency that the yield of the fiber-reinforced composite material is lowered depending on the plan shape to be laid. It is more preferably 40 mm or less, still more preferably 30 mm or less.

また、繊維強化複合材料は、敷設工程で繊維強化複合材料の幅を容易に調整できることから、トウプレグであることが好ましい。ただし、この繊維強化複合材料の横幅が3〜55mmの範囲であれば、トウプレグに限定されることはなく、例えば、シート状プリプレグを前記横幅に裁断したものを繊維強化複合材として用いることができる。 Further, the fiber-reinforced composite material is preferably a tow preg because the width of the fiber-reinforced composite material can be easily adjusted in the laying process. However, as long as the width of the fiber-reinforced composite material is in the range of 3 to 55 mm, it is not limited to the tow preg, and for example, a sheet-shaped prepreg cut to the width can be used as the fiber-reinforced composite material. ..

(強化繊維)
本発明の繊維強化複合材料成形品の製造方法に用いることができる強化繊維としては、例えば、炭素繊維、ガラス繊維、アラミド繊維、高強度ポリエステル繊維、ボロン繊維、アルミナ繊維、窒化珪素繊維、ナイロン繊維などが挙げられる。本発明に用いる強化繊維としては、これらから一種以上を適宜選択して使用することができるが、中でも比強度および比弾性に優れることから、炭素繊維が好ましい。
本発明に用いる炭素繊維には、炭素繊維トウの収束性や、繊維強化複合材料成形品とした際の炭素繊維と熱硬化性マトリックス樹脂との接着性を改善するため、エポキシ基、水酸基、アミノ基、カルボキシル基、カルボン酸無水物基、アクリレート基およびメタクリレート基から選ばれる1種類以上の官能基を持つ物質が0.01〜5質量%程度付着されたものであってもよい。
(Reinforcing fiber)
Examples of the reinforcing fibers that can be used in the method for producing the fiber-reinforced composite material molded product of the present invention include carbon fibers, glass fibers, aramid fibers, high-strength polyester fibers, boron fibers, alumina fibers, silicon nitride fibers, and nylon fibers. And so on. As the reinforcing fiber used in the present invention, one or more of these can be appropriately selected and used, but among them, carbon fiber is preferable because it is excellent in specific strength and specific elasticity.
The carbon fiber used in the present invention has an epoxy group, a hydroxyl group, and an amino in order to improve the convergence of the carbon fiber toe and the adhesiveness between the carbon fiber and the thermosetting matrix resin when it is made into a fiber-reinforced composite material molded product. A substance having one or more functional groups selected from a group, a carboxyl group, a carboxylic acid anhydride group, an acrylate group and a methacrylate group may be attached in an amount of about 0.01 to 5% by mass.

(強化繊維トウ)
トウプレグに用いる炭素繊維トウについては、何ら制限されるものではないが、炭素繊維フィラメント数が1000〜100000本程度の炭素繊維トウであることが好ましい。また、本発明に使用する炭素繊維トウは、積層体表面の凹凸が減少する傾向にあることから、無撚りであることが好ましい。撚りがある場合は撚り数にして5回/m以下が好ましく、2回/m以下がさらに好ましい。
(Reinforcing fiber tow)
The carbon fiber tow used for the tow preg is not limited in any way, but it is preferably a carbon fiber tow having about 1000 to 100,000 carbon fiber filaments. Further, the carbon fiber tow used in the present invention is preferably untwisted because the unevenness on the surface of the laminate tends to be reduced. When there is twist, the number of twists is preferably 5 times / m or less, and more preferably 2 times / m or less.

(熱硬化性マトリックス樹脂)
本発明の繊維強化複合材料成形品の製造方法に用いることができる熱硬化性マトリックス樹脂としては、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、アクリル樹脂、ビニルエステル樹脂、フェノール樹脂、ベンゾオキサジン樹脂などが挙げられる。本発明に用いる熱硬化性マトリックス樹脂としては、これらの中から一種以上を適宜選択して使用することができるが、中でも硬化後の強度を高くできる傾向にあることから、エポキシ樹脂が好ましい。
また、熱硬化性マトリックス樹脂中には、硬化剤、離型剤、脱法剤、紫外線吸収剤、充填剤などの各種添加剤などが含まれてもよい。
(Thermosetting matrix resin)
Examples of the thermosetting matrix resin that can be used in the method for producing a fiber-reinforced composite material molded product of the present invention include epoxy resin, unsaturated polyester resin, acrylic resin, vinyl ester resin, phenol resin, and benzoxazine resin. Can be mentioned. As the thermosetting matrix resin used in the present invention, one or more of these can be appropriately selected and used, but among them, an epoxy resin is preferable because it tends to increase the strength after curing.
Further, the thermosetting matrix resin may contain various additives such as a curing agent, a mold release agent, a release agent, an ultraviolet absorber, and a filler.

(トウプレグの製造方法)
トウプレグの製造方法は何ら制限するものではなく、例えば、熱硬化性マトリックス樹脂を加熱により低粘度化させ、引き揃えた炭素繊維トウをその低粘度化された熱硬化性マトリックス樹脂中に浸漬通過させて含浸させる方法であっても良いし、熱硬化性マトリックス樹脂を溶剤で希釈した液状樹脂に炭素繊維トウを浸漬させてから、必要に応じで過剰の樹脂溶液を除去した後に、加熱等により溶剤を蒸発させてトウプレグを得る方法(以下、ラッカー法という)であっても良いし、予め熱硬化性マトリックス樹脂を支持シートに塗布して一定厚みのフィルム上の樹脂としたのちに、このフィルム上の樹脂と炭素繊維トウとを重ねて加熱加圧することで、熱硬化性マトリックス樹脂を炭素繊維トウに含浸させる方法であっても良い。
(Manufacturing method of tow preg)
The method for producing the tow preg is not limited in any way. For example, the heat-curable matrix resin is reduced in viscosity by heating, and the aligned carbon fiber tow is immersed and passed through the low-viscosity heat-curable matrix resin. The carbon fiber tow may be dipped in a liquid resin obtained by diluting the thermosetting matrix resin with a solvent, and if necessary, the excess resin solution may be removed, and then the solvent may be used by heating or the like. May be used to obtain a tow preg by evaporating the resin (hereinafter referred to as a lacquer method), or a heat-curable matrix resin is previously applied to a support sheet to form a resin on a film having a certain thickness, and then on this film. The carbon fiber toe may be impregnated with the heat-curable matrix resin by superimposing the resin and the carbon fiber tow and heating and pressurizing the resin.

(敷設工程)
横幅が3〜55mmの範囲の上述の繊維強化複合材料を一平面内においては直進するよう敷設する工程を繰り返すことによって、繊維強化複合材料を平面上に敷設し、さらにこの平面状の敷設物上に、この工程を繰り返すことによって、実質的に平坦である所望の形状の繊維強化複合材料の積層体を製作することができる。
(Laying process)
By repeating the step of laying the above-mentioned fiber-reinforced composite material having a width in the range of 3 to 55 mm so as to travel straight in one plane, the fiber-reinforced composite material is laid on the plane, and further on the flat laying object. In addition, by repeating this step, a laminate of the fiber-reinforced composite material having a desired shape that is substantially flat can be produced.

(敷設方法)
本発明の繊維強化複合材料の敷設方法としては、例えば、上述の繊維強化複合材料を手作業で配置しても良いし、一般的に知られる自動積層装置を用いて配置してもよい。この敷設による繊維強化複合材料の敷設条件は、同一層内における隣り合う繊維強化複合材料どうしが大きく重なったり、大きく隙間が開いたりさえしなければ、特に制限はない。
(Installation method)
As a method for laying the fiber-reinforced composite material of the present invention, for example, the above-mentioned fiber-reinforced composite material may be arranged manually or may be arranged using a generally known automatic laminating device. The conditions for laying the fiber-reinforced composite material by this laying are not particularly limited as long as the adjacent fiber-reinforced composite materials in the same layer do not greatly overlap each other or have a large gap.

(繊維配向)
同一平面における強化繊維の配向は、実質的に一様であり、かつ略平行に引き揃えられていることが、立体形状を有する繊維強化複合材料成形品の生産性と物性とを両立させる上で必要である。また、並列する細幅の繊維強化複合材料は、互いに当接していることが好ましい。
(Fiber orientation)
The orientation of the reinforcing fibers on the same plane is substantially uniform and aligned substantially in parallel in order to achieve both the productivity and the physical properties of the fiber-reinforced composite material molded product having a three-dimensional shape. is necessary. Further, it is preferable that the narrow fiber-reinforced composite materials in parallel are in contact with each other.

(積層構成)
上述の積層体の積層構成としては、一方向積層、直交積層、擬似等方積層などを採用することができ、特に制限されないが、後の賦形工程で積層体を賦形しやすく、得られるプリフォームに目開きが発生しにくいことから、直交積層や疑似等方積層が好ましい。
積層体の層数は、特に制限されるものではなく、目的とする繊維強化複合材料成形品に応じて適宜選択することができる。
(Laminated structure)
As the laminated structure of the above-mentioned laminate, unidirectional lamination, orthogonal lamination, pseudo isotropic lamination and the like can be adopted, and the laminate is easily formed in a later shaping step and can be obtained without particular limitation. Orthogonal lamination and pseudo-isotropic lamination are preferable because the preform is less likely to open.
The number of layers of the laminate is not particularly limited, and can be appropriately selected depending on the target fiber-reinforced composite material molded product.

(積層体の厚み)
積層体の厚みは、特に制限されるものではないが、0.2〜6mmの範囲とするのが好ましい。これは、積層体の厚みを0.2mm以上とすることによって、後の賦形工程で得られるプリフォームの形状保持性が良好となる傾向にあるためである。より好ましくは、0.4mm以上であり、さらに好ましくは0.6mm以上である。また、積層体の厚み6mm以下とすることによって、上記のプリフォームの賦形性が良好となり、得られる成形品へのシワ発生が低減される傾向にあるためである。より好ましくは、5mm以下であり、さらに好ましくは4mm以下である。
(Thickness of laminate)
The thickness of the laminate is not particularly limited, but is preferably in the range of 0.2 to 6 mm. This is because the shape retention of the preform obtained in the subsequent shaping step tends to be improved by setting the thickness of the laminate to 0.2 mm or more. It is more preferably 0.4 mm or more, and further preferably 0.6 mm or more. Further, when the thickness of the laminated body is 6 mm or less, the shapeability of the preform is improved, and the occurrence of wrinkles on the obtained molded product tends to be reduced. It is more preferably 5 mm or less, still more preferably 4 mm or less.

(表皮材)
前記敷設工程を表皮材の上で行うことにより、繊維強化複合材料と表皮材が一体となった積層体を製作してもよい。これによって、成形品に効率良く意匠性を付与することができる。ここで用いる表皮材としては、特に制限されることなく、目的とする繊維強化複合材料成形品に応じて適宜選択することができる。
(Skin material)
By performing the laying step on the skin material, a laminate in which the fiber-reinforced composite material and the skin material are integrated may be produced. As a result, the molded product can be efficiently imparted with design. The skin material used here is not particularly limited and may be appropriately selected depending on the target fiber-reinforced composite material molded product.

(圧密化工程)
本発明においては、上述の積層体を製作する敷設工程と、この積層体を賦形してプリフォームを製作する賦形工程の間に、必要に応じて、圧密化工程を採用することができる。
この工程によって積層体を圧密化することで、敷設された繊維強化複合材料を、それらの適切な位置に保持させることができ、この賦形工程によって製作された積層体の運搬時における繊維強化複合材料の剥離や、賦形工程時における強化繊維の大きな配向の乱れを予防でき、その結果、得られる成形品の物性を良好とすることができる。
積層体の圧密化方法としては、材料の加熱がなく、積層体の強化繊維が蛇行しない方法が好ましく、例えば、平坦なツール上に積層体を配置して、その上部からゴム膜などを配置した後、内部を真空引きしてゴム膜を圧着させることで圧密化する方法などを挙げることができる。
(Consolidation process)
In the present invention, a consolidation step can be adopted, if necessary, between the laying step of manufacturing the above-mentioned laminate and the shaping step of shaping the laminate to produce a preform. ..
By compacting the laminate by this step, the laid fiber-reinforced composite materials can be held in their appropriate positions, and the fiber-reinforced composite produced by this shaping step during transportation of the laminate can be held. It is possible to prevent peeling of the material and large disorder of the orientation of the reinforcing fibers during the shaping process, and as a result, the physical properties of the obtained molded product can be improved.
As a method for compacting the laminate, a method in which the reinforcing fibers of the laminate do not meander without heating the material is preferable. For example, the laminate is placed on a flat tool and a rubber film or the like is placed from above. After that, a method of compacting by vacuuming the inside and crimping the rubber film can be mentioned.

(賦形工程)
本発明では、目的とする繊維強化複合材料成形品を得る成形工程に先立って、上述の積層体を賦形することにより、所望する成形品形状の正味形状を有するプリフォームを製作する。
(Shaping process)
In the present invention, a preform having a desired net shape of a molded product is produced by shaping the above-mentioned laminate prior to the molding step of obtaining the desired fiber-reinforced composite molded product.

(賦形)
上述の賦形工程における積層体の賦形の方法としては、例えば、人手によって上述の積層体を型に貼り込むことにより、この積層体を賦形してプリフォームを製作しても良いし、型上に上述の積層体を配置して、その上部からゴム膜などを配置した後に、内部を真空引きしてゴム膜を圧着させることで積層体を賦形してプリフォームを製作しても良いし、簡易な成形機に雄雌型を配置し、開いた雄雌型の間に積層体を配置して、雄雌型を挟圧することで賦形してプリフォームを製作しても良いし、これらの方法を適宜組み合わせることで賦型しても良いが、大きな形状であっても短時間で賦形できることから、雄雌型の挟圧により積層体を賦形してプリフォームを製作することが好ましい。
ここでの雄雌型とは、一方の型の凸部または凹部に、他方の凹部または凸部が対応する一対の型のことを意味する。
(Excipient)
As a method of shaping the laminate in the above-mentioned shaping step, for example, the above-mentioned laminate may be manually pasted into a mold to shape the laminate to produce a preform. Even if the above-mentioned laminate is placed on the mold, a rubber film or the like is placed from above, and then the inside is vacuumed and the rubber film is crimped to shape the laminate to produce a preform. Alternatively, the male and female molds may be placed in a simple molding machine, the laminate may be placed between the open male and female molds, and the male and female molds may be sandwiched to form a preform. However, shaping may be performed by appropriately combining these methods, but since shaping can be performed in a short time even if the shape is large, the laminate is shaped by pinching the male and female molds to produce a preform. It is preferable to do so.
The male-female mold here means a pair of molds in which the convex portion or concave portion of one mold corresponds to the concave portion or convex portion of the other mold.

(予備加熱)
また、賦形工程における上述の積層体の賦形に先立って、前記積層体を予備加熱しても良く、さらにはこの積層体の温度が40〜80℃になるよう予備加熱することが好ましい。これにより、熱硬化性マトリックス樹脂の粘性が適度に低下することで賦形作業が容易となり、繊維強化複合材料がこの作業中に硬化することなく、プリフォームを良好に製作することができる。
この予備加熱温度を40℃以上とすることによって、例えば、熱硬化性マトリックス樹脂としてエポキシ樹脂を使用する場合には、マトリックス樹脂に充分な成形性を付与できる傾向にある。また、予備加熱温度を80℃以下とすることによって、マトリックス樹脂の粘性を適度に維持することができ、賦形時におけるプリフォームの繊維乱れを発生させることなく、機械特性に優れた繊維強化複合材料成形品を最終的に得ることができる傾向にある。
予備加熱の方法としては、例えば積層体に温風を当てることによって実施しても良いし、赤外線を当てることで実施しても良いし、加熱したプレート上に積層体を配置することによって実施しても良いが、積層体を短時間で予備加熱できることや、予備加熱後の積層体の取り扱いが容易であることから、赤外線による予備加熱が好ましい。
(Preheating)
Further, the laminate may be preheated prior to the shaping of the laminate in the shaping step, and it is preferable to preheat the laminate so that the temperature of the laminate becomes 40 to 80 ° C. As a result, the viscosity of the thermosetting matrix resin is appropriately lowered, so that the shaping work becomes easy, and the fiber-reinforced composite material does not harden during this work, and the preform can be satisfactorily produced.
By setting the preheating temperature to 40 ° C. or higher, for example, when an epoxy resin is used as the thermosetting matrix resin, there is a tendency that sufficient moldability can be imparted to the matrix resin. Further, by setting the preheating temperature to 80 ° C. or lower, the viscosity of the matrix resin can be maintained appropriately, and the fiber-reinforced composite having excellent mechanical properties does not cause fiber disorder of the preform at the time of shaping. There is a tendency that a material molded product can be finally obtained.
As a method of preheating, for example, it may be carried out by applying warm air to the laminated body, by applying infrared rays, or by arranging the laminated body on a heated plate. However, preheating with infrared rays is preferable because the laminated body can be preheated in a short time and the laminated body can be easily handled after the preheating.

(裁断)
本発明には、積層体、あるいはプリフォームの裁断工程を採用することができるが、裁断工程を採用することなく、得られるプリフォームの形状が所望する成形品形状の正味形状となるのであれば、この裁断工程を採用する必要はない。
成形品の正味形状となるプリフォームを製作するための裁断工程としては、例えば、積層体を所望する成形品形状の平面展開形状となるよう裁断し、前記積層体を賦形することで、成形品の正味形状を有するプリフォームを製作しても良いし、あるいは、積層体を賦形することで、成形品のほぼ正味形状のプリフォーム製作した後に、前記プリフォームの余剰部分を裁断することで、成形品の正味形状を有するプリフォームとしても良い。得られるプリフォームの寸法精度を高められることから、成形品形状のほぼ正味形状を有するプリフォームを裁断することで、成形品の正味形状を有するプリフォームを製作することが好ましい。
(Cut)
Although a laminating body or preform cutting step can be adopted in the present invention, if the shape of the obtained preform becomes the desired net shape of the molded product without adopting the cutting step. , It is not necessary to adopt this cutting process.
As a cutting step for producing a preform having a net shape of a molded product, for example, the laminate is cut so as to have a plane-developed shape of a desired molded product shape, and the laminate is shaped to form a molded product. A preform having the net shape of the product may be produced, or a preform having a substantially net shape of the molded product may be produced by shaping the laminate, and then the excess portion of the preform may be cut. Therefore, it may be a preform having a net shape of a molded product. Since the dimensional accuracy of the obtained preform can be improved, it is preferable to produce a preform having a net shape of the molded product by cutting the preform having a substantially net shape of the molded product.

(成形工程)
本発明では、熱硬化性マトリックス樹脂の硬化温度以上に調温せしめた成形型内で、プリフォームを圧縮成形することにより、所望の立体形状を有する繊維強化複合材料成形品を得ることができる。
前記圧縮成形に先立ち、成形型を調温しておくことで、成形型の昇降温を回避しながら、成形サイクルを短くすることができ、効率よく成形品を得ることができる。
(Molding process)
In the present invention, a fiber-reinforced composite material molded product having a desired three-dimensional shape can be obtained by compression molding the preform in a molding mold whose temperature is adjusted to be equal to or higher than the curing temperature of the thermosetting matrix resin.
By adjusting the temperature of the molding die prior to the compression molding, the molding cycle can be shortened while avoiding the elevating temperature of the molding die, and the molded product can be efficiently obtained.

(成形型)
上述の前記成形型は、プリフォーム厚みに応じたクリアランスが設定されており、この成形型は、必要に応じ、真空引き機構やイジェクター機構などを採用することができる。
(Molding mold)
The above-mentioned molding die has a clearance set according to the thickness of the preform, and this molding die can adopt a vacuuming mechanism, an ejector mechanism, or the like, if necessary.

以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.

(実施例1)
本実施例では、図1に示した形状を有する成形品1を得るための繊維強化複合材成形品の製造方法について記載する。
(Example 1)
In this embodiment, a method for manufacturing a fiber-reinforced composite molded product for obtaining a molded product 1 having the shape shown in FIG. 1 will be described.

フィラメント数24000本からなる炭素繊維トウ(グラフィル社製;34−700、密度1.8g/cm)にエポキシ樹脂を主成分とした熱硬化性マトリックス樹脂組成物(密度1.2g/cm)を加熱含浸させて、体積あたりの炭素繊維含有量が56.4質量%となるトウプリプレグを得た。 A thermosetting matrix resin composition containing an epoxy resin as a main component in a carbon fiber tow (manufactured by Grafil; 34-700, density 1.8 g / cm 3 ) consisting of 24,000 filaments (density 1.2 g / cm 3 ). Was heat-impregnated to obtain a tow prepreg having a carbon fiber content per volume of 56.4% by mass.

(敷設)
前記トウプレグを、自動積層装置(BA Composite‘s社製;STAXX Compact1700)を使用して、図2に示した平面形状を有する前記トウプレグからなる積層体2を製作した。
前記トウプレグは、敷設後の横幅が6.35mmとなるよう、互いに当接するよう平行に敷設した。前記積層体2の一層における厚みは0.25mm、繊維目付けは256g/mであった。
前記積層体2は、図3が示すように、各層の炭素繊維方向が、0°/90°/0°と互いに直交するよう、三層の直交積層であり、前記積層体2の厚みは0.75mmであった。なお、図3の矢印方向は炭素繊維の0°方向を示している。
(Laying)
Using an automatic laminating device (manufactured by BA Company's; STAXX Compact1700), the tow preg was produced as a laminated body 2 made of the tow preg having the planar shape shown in FIG.
The tow pregs were laid in parallel so as to be in contact with each other so that the width after laying was 6.35 mm. The thickness of one layer of the laminate 2 was 0.25 mm, and the fiber basis weight was 256 g / m 2 .
As shown in FIG. 3, the laminate 2 is a three-layer orthogonal laminate so that the carbon fiber directions of the layers are orthogonal to each other at 0 ° / 90 ° / 0 °, and the thickness of the laminate 2 is 0. It was .75 mm. The arrow direction in FIG. 3 indicates the 0 ° direction of the carbon fiber.

(圧密化)
前記積層体2を平坦な作業台上に搬送し、前記積層体2をデバルグ装置3(Torr社製;T−7シールシステム)で覆い、真空ポンプで内部を減圧状態にすることで、前記積層体2を圧密化した。減圧状態は、真空圧は700mmHgの状態を、5分間維持した。
その後、内部を大気圧に戻し、圧密化された前記積層体4(以下、「圧密化された積層体」についても、説明の便宜上「積層体」という)を得た。
(Consolidation)
The laminate 2 is transported onto a flat workbench, the laminate 2 is covered with a debarg device 3 (manufactured by Torr; T-7 seal system), and the inside is depressurized by a vacuum pump. Body 2 was compacted. In the reduced pressure state, the vacuum pressure was maintained at 700 mmHg for 5 minutes.
After that, the inside was returned to atmospheric pressure to obtain the consolidated body 4 (hereinafter, the “consolidated layer” is also referred to as “laminate” for convenience of explanation).

(賦形)
次いで、前記積層体4を、図5に示される上面が開口したキャビティを有する雌型5の開口部上に載せ、前記積層体4を可動式赤外線ヒーター6により70℃に加熱した後、簡易成形機7に取り付けた雄型8を下降させ、雌型5と雄型8とで挟み込みこむことにより、前記積層体4を賦形して、成形品1のほぼ正味形状を有するプリフォーム9を製作した。そして、雌型5および雄型8に空気を吹き付けて冷却した後、雄型8を上昇させて、図6に示される形状のプリフォーム9を雌型5のキャビティから取出した。
(Excipient)
Next, the laminated body 4 is placed on the opening of the female mold 5 having a cavity whose upper surface is open as shown in FIG. 5, the laminated body 4 is heated to 70 ° C. by a movable infrared heater 6, and then simple molding is performed. By lowering the male mold 8 attached to the machine 7 and sandwiching it between the female mold 5 and the male mold 8, the laminate 4 is shaped to produce a preform 9 having a substantially net shape of the molded product 1. did. Then, after cooling the female mold 5 and the male mold 8 by blowing air, the male mold 8 was raised and the preform 9 having the shape shown in FIG. 6 was taken out from the cavity of the female mold 5.

(トリミング)
前記プリフォーム9を図7に示されるトリミング冶具10に載せ、前記プリフォーム9の外周を固定し、トリミング冶具10の溝に沿って超音波カッター11により前記プリフォーム3を裁断することで、成形品1の正味形状を有する図8に示されるプリフォーム12を製作した。
(trimming)
The preform 9 is placed on the trimming jig 10 shown in FIG. 7, the outer periphery of the preform 9 is fixed, and the preform 3 is cut along the groove of the trimming jig 10 by an ultrasonic cutter 11 to form the preform 3. The preform 12 shown in FIG. 8 having the net shape of product 1 was manufactured.

(圧縮成形)
得られたプリフォーム12を、予め140℃に調温せしめた圧縮成形型の下型内に配置し、これを140℃に調温せしめた圧縮成形型の上型で挟み込み、加熱加圧してプリフォーム12を硬化させ、成形品1を得た。得られた成形品1には強化繊維の蛇行は見られなかった。
次に、得られた成形品1を図9に示すように、成形品1の端部2点を拘束させて、側面に対し荷重を加える試験を行った。その結果、目標荷重を達成したことから、得られた成形品1の物性は良好であった。
(Compression molding)
The obtained preform 12 is placed in the lower mold of the compression molding mold whose temperature has been adjusted to 140 ° C. in advance, sandwiched between the upper mold of the compression molding mold whose temperature has been adjusted to 140 ° C., and heated and pressed. The reform 12 was cured to obtain a molded product 1. No meandering of the reinforcing fibers was observed in the obtained molded product 1.
Next, as shown in FIG. 9, the obtained molded product 1 was subjected to a test in which two ends of the molded product 1 were restrained and a load was applied to the side surface. As a result, the target load was achieved, and the physical properties of the obtained molded product 1 were good.

(実施例2)
炭素繊維織物に熱硬化性マトリックス樹脂を含浸した織物プリプレグ(三菱レイヨン株式会社製;TR3523 360GMP、織物プリプレグ1層あたりの厚み;0.20mm、織物プリプレグ目付;200g/m)を表皮材101として用意し、前記表皮材101の上に、前記実施例1と同様の方法で、図10に示される積層体102を製作した。
前記積層体102は、前記トウプレグによる各層の炭素繊維が0°/90°/0°と互いに直交するよう積層しており、前記積層体102の厚みは0.95mmであった。
(Example 2)
A woven fabric prepreg (manufactured by Mitsubishi Rayon Co., Ltd .; TR3523 360 GMP, thickness per layer of woven fabric prepreg; 0.20 mm, woven fabric prepreg grain; 200 g / m 2 ) obtained by impregnating a carbon fiber woven fabric with a heat-curable matrix resin is used as the skin material 101. The laminated body 102 shown in FIG. 10 was produced on the skin material 101 in the same manner as in the first embodiment.
The laminated body 102 was laminated so that the carbon fibers of each layer of the tow preg were laminated so as to be orthogonal to each other at 0 ° / 90 ° / 0 °, and the thickness of the laminated body 102 was 0.95 mm.

実施例1と同様の方法で、前記積層体102を圧密化した後にプリフォームとし、外周をトリミングした後に圧縮成形することで、図11に示される成形品103を得た。
成形品103の片方の表面は表皮材101で構成されていた。
得られた成形品103は実施例1と同様の方法で試験を行ったところ、目標荷重を達成したことから、得られた成形品103の物性は良好であった。
In the same manner as in Example 1, the laminated body 102 was compacted and then preformed, and the outer periphery was trimmed and then compression molded to obtain a molded product 103 shown in FIG.
One surface of the molded product 103 was composed of the skin material 101.
When the obtained molded product 103 was tested in the same manner as in Example 1, the target load was achieved, so that the physical properties of the obtained molded product 103 were good.

(比較例1)
実施例1と同様の方法で積層体2を製作した。予め140℃に調温した雌型5の開口部上に前記積層体2を載せ、簡易成形機7に取り付けた、雌型5と同様に140℃に調温された雄型8を降下させ、雌型5と雌型8で挟みこむことにより、前記積層体2を加熱加圧して硬化させ、成形品201を得た。得られた成形品201には、図12に示されるような強化繊維の大きな蛇行が見られた。
次に、得られた成形品201を実施例1と同様の方法で試験を行ったところ、目標荷重を達成できなかったことから、得られた成形品201の物性は不良であった。
(Comparative Example 1)
The laminated body 2 was manufactured by the same method as in Example 1. The laminate 2 was placed on the opening of the female mold 5 whose temperature was adjusted to 140 ° C. in advance, and the male mold 8 which was attached to the simple molding machine 7 and whose temperature was adjusted to 140 ° C. was lowered in the same manner as the female mold 5. By sandwiching it between the female mold 5 and the female mold 8, the laminate 2 was heated and pressed to be cured to obtain a molded product 201. In the obtained molded product 201, a large meandering of the reinforcing fibers as shown in FIG. 12 was observed.
Next, when the obtained molded product 201 was tested in the same manner as in Example 1, the target load could not be achieved, so that the physical properties of the obtained molded product 201 were poor.

本発明の繊維強化複合材料成形品の製造方法によって、立体形状を有する繊維強化複合材料成形品の生産性と物性とを両立させることができる。また、本発明により、繊維強化複合材料成形品に優れた意匠性を付与することができる。 By the method for producing a fiber-reinforced composite material molded product of the present invention, it is possible to achieve both productivity and physical properties of a fiber-reinforced composite material molded product having a three-dimensional shape. Further, according to the present invention, it is possible to impart excellent designability to a fiber-reinforced composite material molded product.

1 成形品
2 積層体
2A 表層
2B 中層
2C 下層
3 デバルグ装置
4 積層体
5 雌型
6 赤外線ヒーター
7 簡易成形機
8 雄型
9 プリフォーム
10 トリミング冶具
11 超音波カッター
12 プリフォーム
101 表皮材
102 積層体
103 成形品
201 成形品
1 Molded product 2 Laminated body 2A Surface layer 2B Middle layer 2C Lower layer 3 Debulg device 4 Laminated body 5 Female type 6 Infrared heater 7 Simple molding machine 8 Male type 9 Preform 10 Trimming jig 11 Ultrasonic cutter 12 Preform 101 Skin material 102 Laminated body 103 Molded product 201 Molded product

Claims (8)

実質的に連続した強化繊維に熱硬化性樹脂マトリックス樹脂が含浸されている、横幅が3〜55mmの範囲である繊維強化複合材料を一平面内においては直進するよう敷設し、さらにこの平面状の敷設物上に、前記敷設を繰り返すことで、該繊維強化複合材料からなる積層体を製作する敷設工程と、該積層体を賦形することにより、所望する成形品形状とほぼ正味形状を有するプリフォームを製作する賦形工程と、該プリフォームを該熱硬化性マトリックス樹脂の硬化温度以上に調温せしめた成形型内で圧縮成形する成形工程とからなる、繊維強化複合材料成形品の製造方法。 A fiber-reinforced composite material having a width in the range of 3 to 55 mm, in which substantially continuous reinforcing fibers are impregnated with a thermosetting resin matrix resin, is laid so as to travel straight in one plane, and further, this flat shape is formed. By repeating the laying on the laying object, a laying step of producing a laminate made of the fiber-reinforced composite material, and by shaping the laminate, a product having a desired molded product shape and a substantially net shape. A method for producing a fiber-reinforced composite material molded product, which comprises a shaping step of manufacturing a reform and a molding step of compression molding the preform in a molding mold whose temperature is adjusted to be equal to or higher than the curing temperature of the thermosetting matrix resin. .. 前記繊維強化複合材料は、炭素繊維トウに熱硬化性マトリックス樹脂を含浸して得られたトウプレグである、請求項1記載の繊維強化複合材料成形品の製造方法。 The method for producing a fiber-reinforced composite material molded product according to claim 1, wherein the fiber-reinforced composite material is a tow preg obtained by impregnating a carbon fiber tow with a thermosetting matrix resin. トウプレグに用いる炭素繊維トウの撚り数が5回/m以下である、請求項1または2に記載の繊維強化複合材料成形品の製造方法。 The method for producing a fiber-reinforced composite material molded product according to claim 1 or 2, wherein the number of twists of the carbon fiber tow used for the tow preg is 5 times / m or less. 前記敷設工程と前記賦形工程の間に、前記敷設工程を経て得られた積層体の圧密化工程を有する、請求項1〜3のいずれか一項に記載の繊維強化複合材料成形品の製造方法。 The production of a fiber-reinforced composite material molded product according to any one of claims 1 to 3, further comprising a consolidation step of the laminate obtained through the laying step between the laying step and the shaping step. Method. 前記敷設工程にて、前記繊維強化複合材料を表皮材上に敷設することにより、該表皮材を前記繊維強化複合材料成形品の外面または内面に形成させる、請求項1〜4のいずれか一項に記載の繊維強化複合材料成形品の製造方法。 Any one of claims 1 to 4, wherein in the laying step, the fiber-reinforced composite material is laid on the skin material to form the skin material on the outer surface or the inner surface of the fiber-reinforced composite material molded product. A method for producing a fiber-reinforced composite molded article according to. 賦形工程における前記積層体の賦形に先立って、前記積層体の温度が40〜80℃になるよう予備加熱する、請求項1〜5のいずれか一項に記載の繊維強化複合材料成形品の製造方法。 The fiber-reinforced composite material molded product according to any one of claims 1 to 5, which is preheated so that the temperature of the laminate becomes 40 to 80 ° C. prior to the shaping of the laminate in the shaping step. Manufacturing method. 前記予備加熱を温風、赤外線、加熱プレートによるいずれか一つ以上の手段で行う、請求項6に記載の繊維強化複合材料成形品の製造方法。 The method for producing a fiber-reinforced composite material molded product according to claim 6, wherein the preheating is performed by any one or more means of warm air, infrared rays, and a heating plate. 前記積層体の厚みが6mm以下である、請求項1〜7のいずれか一項に記載の繊維強化複合材料成形品の製造方法。 The method for producing a fiber-reinforced composite material molded product according to any one of claims 1 to 7, wherein the thickness of the laminate is 6 mm or less.
JP2016031548A 2016-02-23 2016-02-23 Manufacturing method of fiber reinforced composite molded product Active JP6808946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016031548A JP6808946B2 (en) 2016-02-23 2016-02-23 Manufacturing method of fiber reinforced composite molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016031548A JP6808946B2 (en) 2016-02-23 2016-02-23 Manufacturing method of fiber reinforced composite molded product

Publications (3)

Publication Number Publication Date
JP2017148973A JP2017148973A (en) 2017-08-31
JP2017148973A5 JP2017148973A5 (en) 2019-03-28
JP6808946B2 true JP6808946B2 (en) 2021-01-06

Family

ID=59740209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016031548A Active JP6808946B2 (en) 2016-02-23 2016-02-23 Manufacturing method of fiber reinforced composite molded product

Country Status (1)

Country Link
JP (1) JP6808946B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7144253B2 (en) * 2018-09-13 2022-09-29 株式会社Subaru Method for producing fiber-reinforced composite material
JP7408928B2 (en) * 2019-06-24 2024-01-09 大日本印刷株式会社 Manufacturing method of fiber reinforced resin molded product with hard coat layer

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE509755T1 (en) * 2001-08-02 2011-06-15 Ebert Composites Corp METHOD FOR CRIMPING THE TOP AND LOWER END PARTS OF Z-AXIS ORIENTED FIBERS INTO THE CORRESPONDING TOP AND LOWER SURFACE OF A COMPOSITE LAMINATE AND COMPOSITE LAMINATE
US20120087801A1 (en) * 2010-10-12 2012-04-12 General Electric Company Composite components and processes therefor
JP5712944B2 (en) * 2011-03-17 2015-05-07 東レ株式会社 Method for producing metal composite
US9393745B2 (en) * 2012-05-15 2016-07-19 Hexcel Corporation Over-molding of load-bearing composite structures
JP5937894B2 (en) * 2012-06-04 2016-06-22 株式会社ジャムコ Composite stringer continuous preform equipment
EP3109025B1 (en) * 2014-02-19 2020-11-04 Mitsubishi Chemical Corporation Fiber-reinforced composite material compression molding method and product
JP6369178B2 (en) * 2014-07-07 2018-08-08 三菱ケミカル株式会社 Preform manufacturing method, fiber-reinforced thermosetting resin molded product manufacturing method, and preform

Also Published As

Publication number Publication date
JP2017148973A (en) 2017-08-31

Similar Documents

Publication Publication Date Title
JP6721042B2 (en) Prepreg sheet, manufacturing method thereof, unit layer with skin material, manufacturing method of fiber-reinforced composite material molded product, and fiber-reinforced composite material molded product
TWI520844B (en) Method for fabricating preform and fiber-reinforced resin molded article
ES2770400T3 (en) Method and apparatus for forming thermoplastic composite structures
JP5757338B2 (en) Manufacturing method of fiber reinforced composite material molded article
CN112313055B (en) Prepreg and method for producing same, fiber-reinforced composite molded article and method for producing same, and method for producing preform
US20090050263A1 (en) Process for manufacturing preform and apparatus therefor
JP2008290421A (en) Manufacturing method of molding comprising prepreg laminate
US20210316479A1 (en) Method for manufacturing preform, method for manufacturing composite material molded article, and mold
CN111886119A (en) Method for producing fiber-reinforced resin
JP6808946B2 (en) Manufacturing method of fiber reinforced composite molded product
JP5909062B2 (en) Forming method
JP5568388B2 (en) Fiber-reinforced resin molded product with good appearance
JP5809484B2 (en) Forming method
JP5712038B2 (en) Forming method
JP5545974B2 (en) Forming method
JP5762694B2 (en) Forming method and fiber-reinforced resin molded product
JPWO2015146668A1 (en) Fiber-reinforced composite material and method for producing the same
JP2002248620A (en) Base material for molding fiber-reinforced plastic and molding method of fiber-reinforced plastic
JP5603149B2 (en) Fiber-reinforced resin molded product and forming method
JP2011143559A (en) Lamination molding method, lamination molding die and lamination molding device
JP5671314B2 (en) Lamination method and forming method of textile base material and thermoplastic resin
JP6026860B2 (en) Forming method
JP7139296B2 (en) Fiber-reinforced resin composite molding and method for producing the same
JP2014184725A (en) Shaping/molding method
JP2014100822A (en) Contouring molding method and fiber-reinforced resin molding

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200212

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201123

R151 Written notification of patent or utility model registration

Ref document number: 6808946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151