JP5671314B2 - Lamination method and forming method of textile base material and thermoplastic resin - Google Patents

Lamination method and forming method of textile base material and thermoplastic resin Download PDF

Info

Publication number
JP5671314B2
JP5671314B2 JP2010261073A JP2010261073A JP5671314B2 JP 5671314 B2 JP5671314 B2 JP 5671314B2 JP 2010261073 A JP2010261073 A JP 2010261073A JP 2010261073 A JP2010261073 A JP 2010261073A JP 5671314 B2 JP5671314 B2 JP 5671314B2
Authority
JP
Japan
Prior art keywords
thermoplastic resin
mold
laminated
base material
laminating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010261073A
Other languages
Japanese (ja)
Other versions
JP2012111101A (en
JP2012111101A5 (en
Inventor
篤 金子
篤 金子
勉 小西
勉 小西
安田 満雄
満雄 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanko Gosei Ltd
Original Assignee
Sanko Gosei Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanko Gosei Ltd filed Critical Sanko Gosei Ltd
Priority to JP2010261073A priority Critical patent/JP5671314B2/en
Publication of JP2012111101A publication Critical patent/JP2012111101A/en
Publication of JP2012111101A5 publication Critical patent/JP2012111101A5/ja
Application granted granted Critical
Publication of JP5671314B2 publication Critical patent/JP5671314B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description


本発明は、例えば、自動車や航空機などの繊維強化樹脂製部材を賦形型を使用して3次元形状に賦形する賦形成形方法及び斯かる賦形成形方法に用いられる積層材に関する。

The present invention relates to a forming method for forming a fiber reinforced resin member such as an automobile or an aircraft into a three-dimensional shape using a forming die and a laminated material used for such a forming method.


従来より、炭素繊維を強化繊維とする繊維強化樹脂の成形法として平板状の積層成形品を型上に配置し、金型内部を真空状態にして樹脂を注入し、前記平板状の積層成形品に樹脂を拡散、含浸させるレジントランスファーモールディング成形法が知られている。

Conventionally, as a method of molding a fiber reinforced resin using carbon fiber as a reinforcing fiber, a flat laminated product is placed on a mold, the mold is evacuated, and the resin is injected into the flat laminated product. A resin transfer molding method in which a resin is diffused and impregnated is known.


特許文献1には、このレジントランスファーモールディング成形法に用いるのに好適な3次元形状を有する平板状の積層成形品を、高精度、かつ自動的に製造することのできる賦形成形方法が開示された。

Patent Document 1 discloses a forming method capable of automatically and accurately producing a flat laminated molded product having a three-dimensional shape suitable for use in this resin transfer molding method. It was.


しかしこの特許文献1に開示された賦形成形方法は強化繊維と熱硬化性樹脂からなる平板状の積層成形品を用いるものであって、その成形性には限界があった。しかも一旦硬化後は熱で溶かすことも、溶剤に溶かすこともできずリサイクルできないという問題がある。

However, the forming method disclosed in Patent Document 1 uses a flat laminated molded product made of reinforced fibers and a thermosetting resin, and its moldability is limited. Moreover, once cured, there is a problem that it cannot be recycled because it cannot be dissolved by heat or dissolved in a solvent.


これに対し特許文献2には複数本の強化繊維束を含む織物基材の少なくとも一方の表面に熱可塑性樹脂材料を付着させた後に、該織物基材を構成する複数本の強化繊維束の相対位置に変動を与えることで、変形性に優れ複雑な形状に追従させることができ、かつ、その形状の保持性に優れる強化繊維織物を用いた平板状積層成形品、繊維強化樹脂成形品、ならびにそれらの製造方法が開示された。

On the other hand, in Patent Document 2, a thermoplastic resin material is attached to at least one surface of a fabric base material including a plurality of reinforcing fiber bundles, and then the relative strength of the plurality of reinforcing fiber bundles constituting the fabric base material is determined. By giving variation to the position, it is possible to follow a complicated shape with excellent deformability, and a flat laminate molded product, a fiber reinforced resin molded product using a reinforced fiber fabric that has excellent shape retention, and Their manufacturing method has been disclosed.


特開2003−211447号公報Japanese Patent Laid-Open No. 2003-21447 特開2007−56441号公報JP 2007-56441 A

特許文献2に開示された強化繊維織物を成形原反材として積層してなる積層成形材を溶融温度に加熱後、固化温度の成形型で圧縮する成型法では、熱可塑性樹脂を炭素繊維に完全に含侵させることが困難であり、十分な成形品強度が得られないという問題がある。
本発明は以上の従来技術における問題に鑑み、強度の強い成形品を形状自由度高くかつ効率よく3次元形状に賦形することができる織物基材と熱可塑性樹脂との積層方法及び賦形成形方法を提供することを目的とする。
In a molding method in which a laminated molding material obtained by laminating a reinforcing fiber fabric disclosed in Patent Document 2 as a molding raw material is heated to a melting temperature and then compressed with a molding die at a solidification temperature, the thermoplastic resin is completely converted into carbon fibers. There is a problem that it is difficult to impregnate, and a sufficient molded product strength cannot be obtained.
In view of the problems in the prior art described above, the present invention provides a method for laminating a textile base material and a thermoplastic resin, and a forming shape, which can shape a strong molded product into a three-dimensional shape with a high degree of freedom in shape. It aims to provide a method .

本発明の織物基材と熱可塑性樹脂との積層方法は、フルム状にした熱可塑性樹脂間に複数本の強化繊維束を含む織物基材を狭持する工程と、熱可塑性樹脂間を減圧する工程と、炭素繊維を狭持した熱可塑性樹脂を近赤外線で加熱した後冷却して織物基材の両側面に熱可塑性樹脂を接着する工程とよりなることを特徴とする。 Method of laminating the textile substrate and the thermoplastic resin of the present invention includes the steps of holding the fabric substrate containing reinforcing fiber bundles of a plurality of between full I Lum shape thermoplastic resin, between a thermoplastic resin It is characterized by comprising a step of depressurizing and a step of heating the thermoplastic resin sandwiching the carbon fibers with near infrared rays and then cooling to adhere the thermoplastic resin to both side surfaces of the textile substrate.

ルム状にした熱可塑性樹脂を巻き出して熱可塑性樹脂間に炭素繊維を狭持する工程から熱可塑性樹脂を近赤外線で加熱した後冷却し、ローラに巻き取る工程までを連続して行うのがよい。 A full I Lum shape thermoplastic resin was wound thermoplastic resin between the thermoplastic resin from the step of holding the carbon fiber is cooled after heating in the near infrared, it is continuously performed until the step of winding the roller It is good.

本発明の賦形成形方法は、本発明の織物基材と熱可塑性樹脂との積層材を複数積層する工程と、その複数積層した積層体を近赤外線で予熱して熱可塑性樹脂溶融温度の型へ投入する工程と、熱可塑性樹脂溶融温度の型を型締め圧縮した後型を冷却する工程とよりなることを特徴とする。   The forming method of the present invention comprises a step of laminating a plurality of laminates of the textile substrate of the present invention and a thermoplastic resin, and a mold having a thermoplastic resin melting temperature by preheating the laminated laminates with near infrared rays. And a step of cooling the mold after the mold having a thermoplastic resin melting temperature is clamped and compressed.

さらに本発明の賦形成形方法は、賦形をする成形型を熱可塑性樹脂溶融温度に昇温する工程と、本発明の織物基材と熱可塑性樹脂との積層材を複数積層した積層成形材を予熱して成形型へ投入配置する工程と、成形型を型締し加圧する工程と、成形型を固化温度に冷却して型を開き離型する工程とを有することを特徴とする。
Furthermore, the forming method of the present invention includes a step of raising a forming mold to a thermoplastic resin melting temperature, and a laminated molded material obtained by laminating a plurality of laminated materials of the textile base material and the thermoplastic resin of the present invention. And a step of pre-heating and placing in the mold, a step of clamping and pressurizing the mold, and a step of opening the mold by releasing the mold after cooling the mold to the solidification temperature.


この本発明の賦形成形方法によって、成形型を熱可塑性樹脂材の溶融温度に加熱することによって熱可塑性樹脂を炭素繊維に完全に含侵させて繊維積層によって強化して十分な成形品強度の熱可塑性樹脂材を成形することが可能となる。しかも長い昇温時間によってサイクルタイムが過長になることを予熱することによって防止することができる。

By this forming method of the present invention, the molding die is heated to the melting temperature of the thermoplastic resin material to completely impregnate the thermoplastic resin into the carbon fibers and strengthened by fiber lamination to obtain sufficient molded product strength. It becomes possible to mold a thermoplastic resin material. In addition, it can be prevented by preheating that the cycle time becomes excessive due to the long heating time.


強化繊維束が炭素繊維束であれば、軽く高強度の成形品を得ることができる。

If the reinforcing fiber bundle is a carbon fiber bundle, a light and high-strength molded product can be obtained.

予熱工程を、近赤外線で加熱し、遠赤外線温度センサ−で温度を検知し、近赤外線の強度を調整し所定の温度に昇温させる工程とすることによって、近赤外線で、予熱対象の分子を加熱し中芯まで加熱でき、また遠赤外線センサ−によって非接触で正確な温度を検知することができる。
近赤外線強度を、電圧の連続降下で調整し所定の温度に昇温させることによって近赤外線で、予熱対象の分子を加熱し、予熱対象を効率よく中芯まで加熱することができる。
The preheating process is a process of heating with near infrared rays, detecting the temperature with a far infrared temperature sensor, adjusting the intensity of the near infrared rays, and raising the temperature to a predetermined temperature. It can be heated and heated to the center, and the far-infrared sensor can detect the accurate temperature without contact.
By adjusting the near-infrared intensity with a continuous voltage drop and raising the temperature to a predetermined temperature, the molecules to be preheated can be heated with the near infrared rays, and the preheated object can be efficiently heated to the center.

予熱工程が、溶融温度に昇温過程の成形型へ積層成形材を投入配置して近赤外線で加熱し、遠赤外線温度センサ−で温度を検知し、近赤外線の強度を調整し所定の温度に昇温させる工程であることによって、近赤外線で、予熱対象の分子を加熱し中芯まで加熱でき、また遠赤外線センサ−によって非接触で正確な温度を検知することができる。しかも溶融温度に昇温過程の積層成形材を昇温した成形型へ投入配置することによって効率よく時間短縮して予熱することができる。  In the preheating process, the laminated molding material is placed and placed in the mold in the process of raising the temperature to the melting temperature, heated with near infrared rays, the temperature is detected with a far infrared temperature sensor, the intensity of near infrared rays is adjusted, and the predetermined temperature is reached. By being the step of raising the temperature, the molecule to be preheated can be heated to the middle core with near infrared rays, and the accurate temperature can be detected in a non-contact manner by the far infrared sensor. Moreover, the laminated molding material in the process of raising the temperature to the melting temperature is placed in a mold that has been heated, so that the time can be efficiently reduced and preheated.


以上の本発明の賦形成形方法によって製造された繊維強化樹脂成形品は、高強度軽量で効率よく安価に製造でき、しかも複雑形状の附形も可能であることから、各種用途に適用が可能となる。

The fiber reinforced resin molded product produced by the above forming method of the present invention can be applied to various applications because it can be manufactured with high strength, light weight, efficiency and low cost, and also can be shaped with complex shapes. It becomes.

本発明に係る織物基材と熱可塑性樹脂との積層方法及び賦形成形方法によれば、成形原反材を用い強度の強い成形品を形状自由度高くかつ効率よく3次元形状に賦形することができる。
According to the laminating method and the forming method of the textile base material and the thermoplastic resin according to the present invention, a strong molded product is shaped into a three-dimensional shape efficiently with a high degree of freedom in shape using a forming raw material. be able to.

(a)本発明の織物基材と熱可塑性樹脂との積層方法によって得られる積層材の概念図である。(b)本発明の織物基材と熱可塑性樹脂との積層方法によって得られる積層材の他の概念図である。(c)本発明で用いる織物基材の説明図である。(A) It is a conceptual diagram of the laminated material obtained by the lamination | stacking method of the textile base material of this invention, and a thermoplastic resin . (B) It is another conceptual diagram of the laminated material obtained by the lamination | stacking method of the textile base material and thermoplastic resin of this invention. (C) It is explanatory drawing of the textile base material used by this invention. (a)本発明の織物基材と熱可塑性樹脂との積層方法の説明図、(b)本発明の織物基材と熱可塑性樹脂との積層方法の他の説明図、(c)本発明の織物基材と熱可塑性樹脂との積層方法のさらに他の説明図である。(A) Explanatory drawing of the lamination | stacking method of the textile base material and thermoplastic resin of this invention, (b) Other explanatory drawing of the lamination | stacking method of the textile base material and thermoplastic resin of this invention, (c) Of this invention It is other explanatory drawing of the lamination | stacking method of a textile base material and a thermoplastic resin. 本発明の織物基材と熱可塑性樹脂との積層方法の斜視説明図である。It is an isometric view explanatory drawing of the lamination | stacking method of the textile base material and thermoplastic resin of this invention. 本発明の第一の実施の形態の賦形成形方法で用いる賦形成形装置の説明図である。It is explanatory drawing of the shaping apparatus used with the shaping method of 1st embodiment of this invention.

図1(a)(b)に示す様に本発明の織物基材と熱可塑性樹脂との積層方法によって得られる積層材1は、複数本の強化繊維束2を含む織物基材3の両側面にフィルム状熱可塑性樹脂4が接着されてなる。
この積層材1はフィルム状にした熱可塑性樹脂4間に複数本の強化繊維束2を含む織物基材3を狭持して、熱可塑性樹脂4間を減圧して近赤外線放射装置5で加熱・冷却してなる。
As shown in FIGS. 1 (a) and 1 (b) , a laminated material 1 obtained by the method of laminating a textile base material and a thermoplastic resin of the present invention has both sides of a textile base material 3 including a plurality of reinforcing fiber bundles 2. The film-like thermoplastic resin 4 is adhered to the substrate.
This laminated material 1 sandwiches a fabric substrate 3 including a plurality of reinforcing fiber bundles 2 between film-shaped thermoplastic resins 4 and depressurizes between the thermoplastic resins 4 to be heated by a near infrared radiation device 5.・ Cooled.

さらに詳細には図2(a)〜(c)に示すようにフィルム状にした熱可塑性樹脂4間に複数本の強化繊維束2を含む織物基材3を狭持する工程と、熱可塑性樹脂4間を減圧する工程と、強化繊維束2を含む織物基材3を狭持した熱可塑性樹脂4を近赤外線放射装置5で加熱した後冷却する工程とによって積層材1を製造することができる。 More specifically, as shown in FIGS. 2 (a) to 2 (c), a step of sandwiching a woven base material 3 including a plurality of reinforcing fiber bundles 2 between the thermoplastic resin 4 in the form of a film, and the thermoplastic resin The laminated material 1 can be manufactured by the process of depressurizing between 4 and the process of heating and cooling the thermoplastic resin 4 holding the woven fabric base 3 including the reinforcing fiber bundle 2 with the near infrared radiation device 5. .

以上の過程において近赤外線放射装置5によって放射される近赤外線はフルム状熱可塑性樹脂4を透過して強化繊維束2を含む織物基材3を直接加熱する。加熱された織物基材3からフルム状熱可塑性樹脂4に熱伝導が生じ、フルム状熱可塑性樹脂4が収縮して織物基材3の表裏に貼り付けられる。
この場合に近赤外線を用いることによって透明なフルム状熱可塑性樹脂4を透過して内側の織物基材3を直接高効率で加熱する。またその加熱効率も遠赤外線に比較して高い。
Near infrared rays emitted by the near-infrared radiation device 5 heats the fabric substrate 3 comprising a reinforcing fiber bundle 2 passes through the full I Lum shaped heat thermoplastic resin 4 directly in the above process. Heat conduction occurs in heated fabric substrate 3 carafe I Lum shaped heat thermoplastic resin 4, full I Lum shaped heat thermoplastic resin 4 is pasted contract and the front and back of the fabric substrate 3.
In this case passes through the transparent full I Lum shaped heat thermoplastic resin 4 to heat the inside of the fabric substrate 3 directly high efficiency by using a near-infrared. Moreover, the heating efficiency is also high compared with far infrared rays.

図3に示すようにフルム状にした熱可塑性樹脂4を巻き出して熱可塑性樹脂4間に強化繊維束2を含む織物基材3を狭持する工程から熱可塑性樹脂4間を減圧する工程を経て熱可塑性樹脂4を近赤外線放射装置5で加熱した後ファン6によって冷却し、ローラ7に巻き取る工程までを連続して行うことによって生産効率を向上することができる。
図3に示すように熱可塑性樹脂4間を減圧する工程は織物基材3を狭持した熱可塑性樹脂4間を減圧装置88を用いて実施することができる。
Depressurizing between thermoplastic resin 4 from the step of holding the fabric substrate 3 comprising a reinforcing fiber bundle 2 unwound thermoplastic resin 4 was full I Lum form between the thermoplastic resin 4 as shown in FIG. 3 Production efficiency can be improved by performing the process of heating the thermoplastic resin 4 with the near-infrared radiation device 5 after the process and then cooling it with the fan 6 and winding it around the roller 7.
As shown in FIG. 3, the step of reducing the pressure between the thermoplastic resins 4 can be performed using a pressure reducing device 88 between the thermoplastic resins 4 holding the woven fabric base 3.

本発明の賦形成形方法は、図1(a)(b)に示す複数本の強化繊維束2を含む織物基
材3の両側面にフルム状熱可塑性樹脂4が貼付されてなる積層材1を用いて行う。
Excipient type method of the present invention, FIG. 1 (a) (b) full I Lum shaped heat thermoplastic resin 4 on both sides of the plurality of fabric substrate 3 comprising a reinforcing fiber bundle 2 of is affixed shown stacked This is done using material 1.


織物基材3は、図1(c)に示すように互いに平行となるよう一方向に引き揃えられた複数本の強化繊維束2を直交する二方向に織成してなる二方向性織物である。二方向性織物は、強化繊維束2間の相対位置の変化による変形がしやすく立体形状に変形しやすいこと、少ない枚数で力学的に擬似等方性を有する積層成形材を得やすい利点がある。

強化繊維束2は、炭素繊維束、黒鉛繊維束、ガラス繊維束、または、アラミド繊維束などを用いることができ、炭素繊維束であることが好ましい。炭素繊維束を用いることにより、最終製品である繊維強化樹脂成形品の力学特性を高いものとすることができる。

As shown in FIG. 1C, the woven fabric base 3 is a bi-directional woven fabric formed by weaving a plurality of reinforcing fiber bundles 2 aligned in one direction so as to be parallel to each other in two orthogonal directions. The bi-directional woven fabric has the advantage that it is easy to be deformed due to a change in the relative position between the reinforcing fiber bundles 2 and is easily deformed into a three-dimensional shape, and that it is easy to obtain a laminated molding material that is mechanically pseudo-isotropic with a small number of sheets. .

The reinforcing fiber bundle 2 may be a carbon fiber bundle, a graphite fiber bundle, a glass fiber bundle, an aramid fiber bundle, or the like, and is preferably a carbon fiber bundle. By using the carbon fiber bundle, the mechanical properties of the fiber reinforced resin molded product as the final product can be improved.

織物基材3の表面に付着している樹脂材料4は、織物基材3の層間を接着する作用を得ることができる熱可塑性樹脂を主成分とする。熱可塑性樹脂としては、例えば、ポリアミド、ポリスルフォン、ポリエーテルイミド、ポリフェニレンエーテル、ポリイミド、ポリアミドイミドなどがある。樹脂材料4が熱可塑性樹脂を主成分とするものとすることによって積層材1を積層して、立体形状へと変形させた後に織物基材3の層間を接着させる場合の取り扱い性が向上し、生産性が向上する。なお、主成分とは樹脂材料4を構成する成分の中で、その割合が最も多い成分である。
The resin material 4 adhering to the surface of the woven fabric base 3 is mainly composed of a thermoplastic resin capable of obtaining the action of bonding the layers of the woven fabric base 3. Examples of the thermoplastic resin include polyamide, polysulfone, polyetherimide, polyphenylene ether, polyimide, and polyamideimide . When the resin material 4 has a thermoplastic resin as a main component, the laminate 1 is laminated, and the handleability when the layers of the fabric base material 3 are bonded after being deformed into a three-dimensional shape is improved. Productivity is improved. The main component is a component having the largest ratio among the components constituting the resin material 4.


以下に本発明の第一の実施の形態の賦形成形方法を図4を参照して詳述する。

先ず積層材1を積層し、予備積層成形型(図示せず)で予備圧縮成形した積層成形材9を予備加熱型10で予備加熱する。

予備加熱にあたっては上部より近赤外線放射装置5によって近赤外線で予備加熱型10内の熱盤11上に載置された積層成形材9を加熱し、遠赤外線温度センサ−(図示せず)で積層成形材9の温度を検知し、近赤外線放射装置5による近赤外線の強度を調整し所定の温度に積層成形材9を昇温させる。

一方3次元形状を有する賦形型である成形型12を予熱して積層材1の溶融温度に昇温する。次に積層成形材9を予熱された成形型12に収納し、成形型12によって積層成形材9を圧縮する。これによって織物基材3に付着している樹脂材料4を軟化して積層成形材9の層間を接着し、形状を保持させる。

その後成形型12を固化温度に急冷して型を開き離型する。以上の各工程によって積層材1を積層して3次元形状に賦形する。

Hereinafter, the forming method according to the first embodiment of the present invention will be described in detail with reference to FIG.

First, the laminated material 1 is laminated, and the laminated molding material 9 preliminarily compression-molded with a preliminary lamination mold (not shown) is preheated with the preliminary heating mold 10.

In the preheating, the laminated molding material 9 placed on the heating plate 11 in the preheating mold 10 is heated by near infrared radiation from the upper part by the near infrared radiation device 5 and laminated by a far infrared temperature sensor (not shown). The temperature of the molding material 9 is detected, the intensity of near infrared rays by the near infrared radiation device 5 is adjusted, and the laminated molding material 9 is heated to a predetermined temperature.

On the other hand, the forming die 12 which is a shaping die having a three-dimensional shape is preheated to raise the temperature to the melting temperature of the laminated material 1. Next, the laminated molding material 9 is accommodated in a preheated molding die 12, and the laminated molding material 9 is compressed by the molding die 12. As a result, the resin material 4 adhering to the fabric base material 3 is softened, the layers of the laminated molding material 9 are bonded, and the shape is maintained.

Thereafter, the mold 12 is rapidly cooled to the solidification temperature, and the mold is opened and released. The laminated material 1 is laminated by the above steps and shaped into a three-dimensional shape.


積層成形材9を加熱する温度は、樹脂材料4が軟化して積層成形材9の層間を接着させる温度である。積層成形材9が加圧されながら加熱されることで、積層成形材9を構成する複数本の強化繊維束2を含む織物基材3が互いに強く押付けられ、軟化した樹脂材料4が対向する複数本の強化繊維束2を含む織物基材を構成する強化繊維束2の単糸の間に浸透する。次いで積層成形材9が冷却されることにより、樹脂材料4は対向する複数本の強化繊維束2を含む織物基材3に付着し、積層成形材9の層間を接着する。

The temperature at which the laminated molding material 9 is heated is a temperature at which the resin material 4 is softened to bond the layers of the laminated molding material 9 together. When the laminated molding material 9 is heated while being pressed, the fabric base materials 3 including the plurality of reinforcing fiber bundles 2 constituting the laminated molding material 9 are strongly pressed against each other, and the softened resin materials 4 are opposed to each other. It penetrates between the single yarns of the reinforcing fiber bundles 2 constituting the fabric base material including the reinforcing fiber bundles 2. Next, by cooling the laminated molding material 9, the resin material 4 adheres to the woven fabric base 3 including a plurality of reinforcing fiber bundles 2 facing each other, and bonds the layers of the laminated molding material 9 together.


この様に積層成形材9を立体形状に変形させ層間を接着することにより、シワが無い立体形状の成形体を製造することができる。またこの成形体は積層成形材9の層間が接着されているために、剛性が高く形状保持性に優れており、取り扱いが効率よく行える。

By thus deforming the laminated molding material 9 into a three-dimensional shape and bonding the layers, a three-dimensional shaped product having no wrinkles can be manufactured. In addition, since the layer of the laminated molding material 9 is bonded to the molded body, the molded body has high rigidity and excellent shape retention and can be handled efficiently.


成形型12は製品部型13と、蓄熱盤14とよりなり、製品部型13に備えたヒ−タ−15と蓄熱盤14よりの熱伝導で成形型12の型温を昇温させる。また成形型12は水冷のための冷却通水経路16を備え、成形型12は冷却通水経路16に通水することによって急冷される。冷却通水経路16はエア−を印加することによって効率的に水を抜き取り降下させることができる。すなわち成形型12の型温が所定の冷却温度に達した後、冷却通水経路16における通水を止めエア−を印加することによって、成形型12の冷却を終了し、成形型12内の製品を取り出した後に、成形型12の再度の昇温を効率的に開始することができる。

The mold 12 includes a product part mold 13 and a heat storage board 14, and raises the mold temperature of the mold 12 by heat conduction from the heater 15 and the heat storage board 14 provided in the product part mold 13. The molding die 12 includes a cooling water passage 16 for water cooling, and the molding die 12 is rapidly cooled by passing water through the cooling water passage 16. The cooling water flow path 16 can efficiently extract and lower water by applying air. That is, after the mold temperature of the mold 12 reaches a predetermined cooling temperature, the cooling of the mold 12 is finished by stopping water flow in the cooling water passage 16 and applying air. After taking out, the temperature rise of the mold 12 can be efficiently started again.

[実施例]
二方向性織物基材3の両側面に、ポリフェニレンサルファイド樹脂(PPS)を主成分とする樹脂材料4が表面に付着した100mm×100mmの大きさの正方形の積層材1を複数用意した。この各積層材1は正方形の辺の方向をそれぞれ0°、90°方向としたときに、繊維軸方向が概ね0°、90°方向となるものとした。
この各積層材1を積層した積層成形材9を得た。
[比較例]
[Example]
A plurality of square laminates 1 each having a size of 100 mm × 100 mm having a resin material 4 mainly composed of polyphenylene sulfide resin (PPS) attached to the surface were prepared on both side surfaces of the bidirectional woven fabric base 3. Each laminated material 1 has a fiber axis direction of approximately 0 ° and 90 ° when the directions of the sides of the square are set to 0 ° and 90 °, respectively.
A laminated molded material 9 in which the laminated materials 1 were laminated was obtained.
[Comparative example]


その積層成形材9を熱盤11上に配置し、上部より近赤外線放射装置5によって近赤外線で積層成形材9を加熱し、遠赤外線温度センサ−で積層成形材9の温度を検知し、近赤外線放射装置5による近赤外線の強度を調整し積層成形材9を昇温させ260°Cに予熱した。

近赤外線の強度は、近赤外線放射装置5への通電圧の連続降下で調整し、予熱した。

The laminated molding material 9 is placed on a heating plate 11, the laminated molding material 9 is heated by near infrared radiation from the upper part by a near infrared radiation device 5, and the temperature of the laminated molding material 9 is detected by a far infrared temperature sensor. The intensity of near infrared rays by the infrared radiation device 5 was adjusted, and the laminated molding material 9 was heated and preheated to 260 ° C.

The intensity of the near infrared ray was adjusted by the continuous drop of the conduction voltage to the near infrared radiation device 5 and preheated.


一方、製品部型13と、蓄熱盤14とよりなり、製品部型13に備えたヒ−タ−15と蓄熱盤14よりの熱伝導で成形型12の型温を昇温させて260°Cに予熱し、この260°Cに予熱された成形型12に260°Cに予熱した積層成形材9を収納し、溶融状態における型締め時間を7分として加圧しながら成形型12の提供する平板状の平板状積層成形品形状に変形させた。その後、成形型12を冷却通水経路16に通水することによって80°Cまで急冷し、3分間の冷却型締めを行い、さらに冷却通水経路16にエア−を印加することによって効率的に水を抜き取り降下させ、冷却によって固化した平板状積層成形品を得た。

[比較例]

On the other hand, it consists of a product part mold 13 and a heat storage board 14, and the mold temperature of the mold 12 is raised by heat conduction from the heater 15 and the heat storage board 14 provided in the product part mold 13 to 260 ° C. The laminated mold 9 preheated to 260 ° C. is stored in the mold 12 preheated to 260 ° C., and the flat plate provided by the mold 12 is pressed while the mold clamping time in the molten state is 7 minutes. It was made to deform | transform into the shape of a flat plate-shaped laminated molded product. Thereafter, the molding die 12 is rapidly cooled to 80 ° C. by passing water through the cooling water passage 16, the cooling die is clamped for 3 minutes, and air is applied to the cooling water passage 16 efficiently. Water was extracted and dropped to obtain a flat laminated molded product solidified by cooling.

[Comparative example]

二方向性織物基材3の一方の表面に、ポリフェニレンサルファイド樹脂(PPS)を主
成分とする樹脂材料4が付着した100mm×100mmの大きさの正方形の成形原反材
を複数用意した。この各成形原反材は正方形の辺の方向をそれぞれ0°、90°方向とし
たときに、繊維軸方向が概ね0°、90°方向となるものとした。
この各成形原反材1aを、最上面の強化繊維織物のみ樹脂材料4が付着した面を下側に
し、それ以外は樹脂材料4が付着した面を上側にして積層した積層成形材9を得た。
その積層成形材9について実施例と同様にして平板状積層成形品を得た。
実施例及び比較例それぞれで得られた成形品の曲げ強度を測定したところ比較例成形品
では316Mpaであるのに対し、実施例成形品では633Mpaの曲げ強度であること
が確認できた。
A plurality of square forming raw materials having a size of 100 mm × 100 mm in which a resin material 4 mainly composed of polyphenylene sulfide resin (PPS) was adhered to one surface of the bidirectional fabric base material 3 were prepared. Each forming raw material had a fiber axis direction of approximately 0 ° and 90 ° when the directions of the square sides were 0 ° and 90 °, respectively.
A laminated molding material 9 is obtained by laminating the respective molding raw materials 1a with the uppermost reinforcing fiber woven fabric having the resin material 4 adhering side down and the other resin material 4 adhering side up. It was.
The laminated molded material 9 was obtained in the same manner as in the example to obtain a flat laminated molded product.
When the bending strength of the molded product obtained in each of the example and the comparative example was measured, it was confirmed that the comparative example molded product was 316 Mpa, whereas the example molded product had a bending strength of 633 Mpa.


1・・・積層材、2・・・強化繊維束、3・・・織物基材、4・・・樹脂材料、9・・・積層成形材、10・・・予備加熱型、5・・・近赤外線放射装置、12・・・成形型、13・・・製品部型、14・・・蓄熱盤、16・・・冷却通水経路、15・・・ヒ−タ−。

DESCRIPTION OF SYMBOLS 1 ... Laminated material, 2 ... Reinforcement fiber bundle, 3 ... Textile base material, 4 ... Resin material, 9 ... Laminated molding material, 10 ... Preheating type, 5 ... Near-infrared radiation device, 12 ... mold, 13 ... product part mold, 14 ... heat storage board, 16 ... cooling water passage, 15 ... heater.

Claims (5)

フィルム状にした熱可塑性樹脂間に複数本の強化繊維束を含む織物基材を狭持する工程と、熱可塑性樹脂間を減圧する工程と、炭素繊維を狭持した熱可塑性樹脂を近赤外線で加熱した後冷却して織物基材の両側面に熱可塑性樹脂を接着する工程とよりなることを特徴とする織物基材と熱可塑性樹脂との積層方法。  A process of sandwiching a textile substrate including a plurality of reinforcing fiber bundles between a thermoplastic resin made into a film, a process of reducing the pressure between thermoplastic resins, and a thermoplastic resin sandwiching carbon fibers in the near infrared A method for laminating a woven fabric base material and a thermoplastic resin, comprising: heating and then cooling to adhere a thermoplastic resin to both side surfaces of the woven fabric base material. フィルム状にした熱可塑性樹脂を巻き出して熱可塑性樹脂間に炭素繊維を狭持する工程から熱可塑性樹脂を近赤外線で加熱した後冷却し、ローラに巻き取る工程までを連続して行う請求項1に記載した織物基材と熱可塑性樹脂との積層方法。A process in which a film-like thermoplastic resin is unwound and the carbon fiber is sandwiched between the thermoplastic resins, and the thermoplastic resin is heated with near infrared rays and then cooled and wound up on a roller. A method for laminating the textile substrate and the thermoplastic resin described in 1. 強化繊維束が炭素繊維束である請求項1又は請求項2に記載した織物基材と熱可塑性樹脂との積層方法。 The method for laminating a textile substrate and a thermoplastic resin according to claim 1 or 2 , wherein the reinforcing fiber bundle is a carbon fiber bundle. 請求項1又は請求項2の織物基材と熱可塑性樹脂との積層方法によって得られる複数本の強化繊維束を含む織物基材の両側面にフィルム状熱可塑性樹脂が接着された積層材を複数積層する工程と、その複数積層した積層体を近赤外線で予熱して熱可塑性樹脂溶融温度の型へ投入する工程と、熱可塑性樹脂溶融温度の型を型締め圧縮した後型を冷却する工程とよりなることを特徴とする賦形成形方法。 A plurality of laminates in which film-like thermoplastic resins are bonded to both side surfaces of a fabric base material including a plurality of reinforcing fiber bundles obtained by the method of laminating a textile base material and a thermoplastic resin according to claim 1 or claim 2. A step of laminating, a step of preheating the multi-layered laminate with near-infrared rays and putting it into a mold having a thermoplastic resin melting temperature, and a step of cooling the mold after clamping the mold having a thermoplastic resin melting temperature. A forming method characterized by comprising: 賦形をする成形型を熱可塑性樹脂溶融温度に昇温する工程と、請求項1又は請求項2の織物基材と熱可塑性樹脂との積層方法によって得られる複数本の強化繊維束を含む織物基材の両側面にフィルム状熱可塑性樹脂が接着された積層材を複数積層した積層成形材を予熱して成形型へ投入配置する工程と、成形型を型締し加圧する工程と、成形型を固化温度に冷却して型を開き離型する工程とを有することを特徴とする賦形成形方法。
A fabric comprising a plurality of reinforcing fiber bundles obtained by heating a shaping mold to a thermoplastic resin melting temperature, and a method of laminating a fabric substrate and a thermoplastic resin according to claim 1 or 2. Preheating a laminated molding material in which a plurality of laminated materials each having a film-like thermoplastic resin bonded to both sides of the base material are laminated, placing and placing them in a molding die, clamping and pressing the molding die, and a molding die Forming the mold by opening the mold and releasing the mold.
JP2010261073A 2010-11-24 2010-11-24 Lamination method and forming method of textile base material and thermoplastic resin Active JP5671314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010261073A JP5671314B2 (en) 2010-11-24 2010-11-24 Lamination method and forming method of textile base material and thermoplastic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010261073A JP5671314B2 (en) 2010-11-24 2010-11-24 Lamination method and forming method of textile base material and thermoplastic resin

Publications (3)

Publication Number Publication Date
JP2012111101A JP2012111101A (en) 2012-06-14
JP2012111101A5 JP2012111101A5 (en) 2014-01-16
JP5671314B2 true JP5671314B2 (en) 2015-02-18

Family

ID=46495842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010261073A Active JP5671314B2 (en) 2010-11-24 2010-11-24 Lamination method and forming method of textile base material and thermoplastic resin

Country Status (1)

Country Link
JP (1) JP5671314B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113021932A (en) * 2021-02-26 2021-06-25 吉安奔达科技发展有限公司 Production method of automobile wheel cover and automobile wheel cover

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0612923Y2 (en) * 1991-09-19 1994-04-06 平岡織染株式会社 Flame retardant heat resistant sheet
JPH05301240A (en) * 1992-04-28 1993-11-16 Toshiba Corp Production of fiber fabric composite resin film
JPH07205373A (en) * 1994-01-17 1995-08-08 Toray Ind Inc Extremely thin composite continuous sheet and production thereof
JP2004217829A (en) * 2003-01-16 2004-08-05 Jfe Chemical Corp Stampable sheet, method for producing the same, mat and expansion molding
JP4899692B2 (en) * 2005-07-29 2012-03-21 東レ株式会社 Reinforcing fiber fabric and method for producing the same
JP5223130B2 (en) * 2007-02-15 2013-06-26 福井県 Thermoplastic resin reinforced sheet material, production method thereof, and thermoplastic resin multilayer reinforced sheet material

Also Published As

Publication number Publication date
JP2012111101A (en) 2012-06-14

Similar Documents

Publication Publication Date Title
JP5668874B2 (en) Preform manufacturing method and fiber reinforced resin molded product manufacturing method
JP5251004B2 (en) Preform manufacturing method, preform, and fiber reinforced plastic girder
US10099460B2 (en) Method for producing preform and method for producing fiber-reinforced plastic molding
CN112313055B (en) Prepreg and method for producing same, fiber-reinforced composite molded article and method for producing same, and method for producing preform
JP5909062B2 (en) Forming method
JP5809484B2 (en) Forming method
JP5712038B2 (en) Forming method
JP5568388B2 (en) Fiber-reinforced resin molded product with good appearance
JP5545974B2 (en) Forming method
JP5671314B2 (en) Lamination method and forming method of textile base material and thermoplastic resin
JP5762694B2 (en) Forming method and fiber-reinforced resin molded product
JP6802047B2 (en) Formed type and formed type method
JP2012224016A5 (en)
JP2019523164A (en) Composite sheet material and manufacturing method thereof
JP6967130B2 (en) Formed type and formed type method
JP5603149B2 (en) Fiber-reinforced resin molded product and forming method
JP2017148973A (en) Method for manufacturing fiber-reinforced composite material molded product
JP6026860B2 (en) Forming method
JP6054714B2 (en) Forming method and forming mold
JP2012111101A5 (en)
WO2017061046A1 (en) Fiber-reinforced composite member molding device
JP6811573B2 (en) Formed type and formed type method
JP6724667B2 (en) Composite material molding method and composite material molding apparatus
JP2014184725A (en) Shaping/molding method
TWM470753U (en) Fiber-reinforced plate material

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141219

R150 Certificate of patent or registration of utility model

Ref document number: 5671314

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250