JPH05301240A - Production of fiber fabric composite resin film - Google Patents

Production of fiber fabric composite resin film

Info

Publication number
JPH05301240A
JPH05301240A JP4109780A JP10978092A JPH05301240A JP H05301240 A JPH05301240 A JP H05301240A JP 4109780 A JP4109780 A JP 4109780A JP 10978092 A JP10978092 A JP 10978092A JP H05301240 A JPH05301240 A JP H05301240A
Authority
JP
Japan
Prior art keywords
resin film
fiber woven
crystalline thermoplastic
thermoplastic resin
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4109780A
Other languages
Japanese (ja)
Inventor
Takahiro Mori
崇浩 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4109780A priority Critical patent/JPH05301240A/en
Publication of JPH05301240A publication Critical patent/JPH05301240A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0333Organic insulating material consisting of one material containing S
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates

Abstract

PURPOSE:To mold a thin resin film excellent in brittleness by placing a fiber fabric on a crystalline thermoplastic resin film and placing a second crystalline thermoplastic resin film on the fabric and pressing the whole under heating in an autoclave to quench the same at a cooling speed of 10 deg.C/sec or higher. CONSTITUTION:Glass cloth 12 with a thickness of 50mum is placed on a first resin film 11a composed of a polyphenylene sulfide resin with a thickness of 25mum and m.p. of 281 deg.C and a second resin film 11b with a thickness of 25mum is placed on the glass cloth 12. The whole is introduced into an autoclave to be heated and pressed at 300 deg.C or higher under pressure of 5kg/cm<2> to form an integrated fiber fabric composite polyphenylene sulfide resin film 13 with a thickness of 75mum. Since the whole is uniformly heated and pressed under vacuum within the autoclave, the resin is sufficiently infiltrated in the fabric. The film taken out of the autoclave is suddenly cooled at a cooling speed of 10 deg.C/sec or higher and the crystal growth of the resin is suppressed and brittleness is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は結晶性熱可塑性樹脂を
用いた複合樹脂フィルムに関し、特に繊維織物を複合し
た結晶性熱可塑性樹脂フィルムの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite resin film using a crystalline thermoplastic resin, and more particularly to a method for producing a crystalline thermoplastic resin film in which fiber woven fabric is composited.

【0002】[0002]

【従来の技術】結晶性熱可塑性樹脂は、一般的に非結晶
性熱可塑性樹脂に比較して耐熱性が高く、はんだ付け等
を伴う電子回路基板等に有望な樹脂材である。特にフィ
ルム状のものは、回路配線を施した上でフィルムを積層
すれば多層基板が容易に実現できる。しかしながら、結
晶性熱可塑性樹脂フィルムは加熱による収縮が大きく、
溶融時の樹脂粘度も低いため、熱プレスなどの熱加工で
は精度の良い成型加工をすることは困難であった。また
熱収縮や溶融時の樹脂流動を少なくする目的で、ガラス
クロス等の繊維織物を結晶性熱可塑性樹脂以外の樹脂フ
ィルム中に混在させる方法は一般的に行われている。し
かしながら結晶性熱可塑性樹脂の場合は、繊維織物の中
に樹脂を薄く均一に分散させる方法がなく、ガラスクロ
ス等の繊維織物を入れた結晶性熱可塑性樹脂のフィルム
はこれまで作られていなかった。さらに結晶性熱可塑性
樹脂は一度熱による成型加工をすると、脆くなってしま
うという欠点があった。
2. Description of the Related Art Crystalline thermoplastic resins generally have higher heat resistance than amorphous thermoplastic resins, and are promising resin materials for electronic circuit boards and the like that require soldering. In particular, in the case of a film, a multilayer substrate can be easily realized by laminating films after circuit wiring is provided. However, the crystalline thermoplastic resin film has a large shrinkage due to heating,
Since the resin viscosity at the time of melting is low, it is difficult to perform accurate molding by heat processing such as hot pressing. Further, for the purpose of reducing the resin flow at the time of heat shrinkage or melting, a method of mixing a fiber woven fabric such as glass cloth in a resin film other than the crystalline thermoplastic resin is generally performed. However, in the case of a crystalline thermoplastic resin, there is no method for thinly and uniformly dispersing the resin in the fiber woven fabric, and a crystalline thermoplastic resin film containing a fiber woven fabric such as glass cloth has not been produced so far. .. Further, the crystalline thermoplastic resin has a drawback that it becomes brittle once it is molded by heat.

【0003】このため結晶性熱可塑性樹脂の加工のほと
んどは射出成型で行われている。射出成型では樹脂単体
のものは少なく、ガラス等のフィラーが入ったものが多
い。射出成型でフィルム状のものを製作することは可能
であるが、フィラーを入れたものは繊維織物を入れたも
のに比べ、熱加工における寸法安定性が悪く強度的にも
劣るという欠点があった。そこで最近ではガラス繊維等
の繊維織物と結晶性熱可塑性樹脂の繊維を混ぜて織った
織物を成型するという方法も行われている。しかしこの
方法では、薄いフィルム状のものは製作できなかった。
Therefore, most of the processing of the crystalline thermoplastic resin is carried out by injection molding. In injection molding, few are made of resin alone, and many are made of filler such as glass. Although it is possible to produce a film-like product by injection molding, the one with a filler had the drawback that the dimensional stability during heat processing was poor and the strength was inferior to that with a fiber woven fabric. .. Therefore, recently, a method of forming a woven fabric by mixing a fiber woven fabric such as glass fiber and a fiber of a crystalline thermoplastic resin has been performed. However, this method could not produce a thin film.

【0004】[0004]

【発明が解決しようとする課題】結晶性熱可塑性樹脂を
用いて繊維織物複合フィルムを製作するには、上記のよ
うな問題があった。そこで本発明は、厚みが薄く均一で
かつ脆性に優れた、繊維織物複合結晶性熱可塑性樹脂フ
ィルムの製造方法を提供しようとするものである。
The production of the fiber woven composite film by using the crystalline thermoplastic resin has the above problems. Therefore, the present invention is to provide a method for producing a fiber woven composite crystalline thermoplastic resin film which is thin, uniform and excellent in brittleness.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に本発明では、結晶性熱可塑性樹脂材並びに繊維織物を
積層させた被加工物を、前記結晶性熱可塑性樹脂材の融
点以上の温度で加熱加圧する加熱加圧工程と、この加熱
加圧工程終了後前記被加工物を毎秒10℃以上の速度で
冷却する冷却工程とを備えた製造工程を提供する。
In order to achieve the above object, in the present invention, a crystalline thermoplastic resin material and an object to be processed laminated with a fiber woven fabric are treated at a temperature equal to or higher than the melting point of the crystalline thermoplastic resin material. And a cooling step of cooling the workpiece at a rate of 10 ° C. or more per second after completion of the heating / pressurizing step.

【0006】さらに本発明では、前記冷却工程終了後、
再度前記結晶性熱可塑性樹脂材のガラス転移点以上でか
つ融点以下の温度に、前記被加工物を昇温保持する再加
熱工程と、その後毎秒10℃以上の速度で前記被加工物
を再冷却する工程とを備えた製造工程を提供する。
Further, in the present invention, after the cooling step is completed,
Again, a reheating step of holding the workpiece at a temperature above the glass transition point and below the melting point of the crystalline thermoplastic resin material, and then recooling the workpiece at a rate of 10 ° C. or more per second. And a manufacturing step including a step of performing.

【0007】[0007]

【作用】結晶性熱可塑性樹脂の結晶成長度は、ガラス転
移点以上でかつ融点以下での保持温度、時間、その後の
冷却速度で決定される。希望する結晶成長度が得られる
温度、時間に保持後、急冷すると、結晶はほぼ急冷直前
の状態にとどまって固化する。この性質を利用して所望
の特性を持った繊維織物複合結晶性熱可塑性樹脂フィル
ムを製造することができるようになった。
The crystal growth of the crystalline thermoplastic resin is determined by the holding temperature above the glass transition point and below the melting point, the time, and the subsequent cooling rate. When the material is held at a temperature and for a time at which the desired degree of crystal growth is obtained and then rapidly cooled, the crystal remains in the state just before the rapid cooling and solidifies. Utilizing this property, it has become possible to manufacture a fiber woven composite crystalline thermoplastic resin film having desired properties.

【0008】[0008]

【実施例】以下、本発明の実施例を図1を参照して説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG.

【0009】図1(a)は積層の構成を示した断面図
で、厚さ25μm、融点281℃のポリフェニレンスル
フィド樹脂からなる第1の樹脂フィルム11aの上に、
厚さ50μmのガラスクロス12を載置し、さらにその
上に厚さ25μmのポリフェニレンスルフィド樹脂から
なる第2の樹脂フィルム11bを載置している。前記ガ
ラスクロス12は、ガラス繊維からなる縦糸12aと横
糸12bを織って形成されている。これをオートクレー
ブ(雰囲気プレス機)にいれ、ポリフェニレンスルフィ
ド樹脂の融点以上である300℃で1時間、圧力5kg
/cm2 の条件で加熱加圧する。この結果、図1(b)
のように一体化した厚さ75μmの繊維織物複合ポリフ
ェニレンスルフィド樹脂フィルム13を製造することが
できる。ここでオートクレーブを使用するのは、温度、
圧力を被加工物に均一にかけることができ、特に被加工
物を後述するように真空中に置くので、被加工物中の気
泡の残留を少なくすることができるからである。
FIG. 1A is a cross-sectional view showing a laminated structure, in which a first resin film 11a made of polyphenylene sulfide resin having a thickness of 25 .mu.m and a melting point of 281.degree.
A glass cloth 12 having a thickness of 50 μm is placed, and a second resin film 11b made of polyphenylene sulfide resin having a thickness of 25 μm is further placed thereon. The glass cloth 12 is formed by weaving warp threads 12a and weft threads 12b made of glass fibers. This is put in an autoclave (atmosphere press), and the pressure is 5 kg for 1 hour at 300 ° C., which is higher than the melting point of the polyphenylene sulfide resin.
/ Cm 2 Heat and pressurize under the conditions. As a result, FIG. 1 (b)
The fiber woven fabric composite polyphenylene sulfide resin film 13 having a thickness of 75 μm integrated as described above can be manufactured. Here, the autoclave is used for temperature,
This is because the pressure can be uniformly applied to the work piece, and in particular, since the work piece is placed in a vacuum as described later, the bubbles remaining in the work piece can be reduced.

【0010】加熱加圧が行われる前の図1(a)の状態
では、第1樹脂フィルム11a,第2樹脂フィルム11
bは結晶構造を保持した状態であるが、加熱加圧が進行
するに従って結晶性が解除され溶融状態となる。この結
果溶融状態となった第1、第2樹脂フィルム11a,1
1bは、ガラスクロス12の繊維内に図1(b)に示す
ごとくに浸透する。その後、後に詳述する冷却を経て、
第1、第2樹脂フィルム11a,11bは、ガラスクロ
ス内に再結晶され繊維織物複合ポリフェニレンスルフィ
ド樹脂フィルム13が形成される。
In the state of FIG. 1 (a) before heating and pressurization, the first resin film 11a and the second resin film 11 are
Although b is in a state in which the crystal structure is retained, the crystallinity is released and becomes a molten state as heating and pressurization progress. As a result, the first and second resin films 11a, 1 which are in a molten state
1b penetrates into the fibers of the glass cloth 12 as shown in FIG. 1 (b). After that, through the cooling described in detail later,
The first and second resin films 11a and 11b are recrystallized in the glass cloth to form the fiber woven composite polyphenylene sulfide resin film 13.

【0011】ここで図2および図3を用いて、オートク
レーブの構成を説明する。図2はオートクレーブの全体
構成図である。図示していないが外部の高圧供給部より
高圧雰囲気が送り込まれる加圧室21の中には、断熱材
で囲われた熱プレス部25があり、この中に設けられた
ヒータ22と送風機23により加熱雰囲気が作られる。
また加工部24は、ヒ−タ22の下方に配置されるが、
ヒ−タ22と加工部24の間には熱遮蔽板26が設けら
れている。ヒ−タ22の熱は送風機23により矢印27
のように、熱遮蔽板26の側方から加工部24へ伝達さ
れる。熱遮蔽板26を設けたことにより、加工部24へ
の熱が均一に印加される。
The structure of the autoclave will be described with reference to FIGS. 2 and 3. FIG. 2 is an overall configuration diagram of the autoclave. Although not shown, in the pressurizing chamber 21 into which a high-pressure atmosphere is sent from an external high-pressure supply unit, there is a heat press unit 25 surrounded by a heat insulating material, and a heater 22 and a blower 23 provided therein A heating atmosphere is created.
Further, the processing portion 24 is arranged below the heater 22,
A heat shield plate 26 is provided between the heater 22 and the processing portion 24. The heat of the heater 22 is supplied by the blower 23 to the arrow 27.
As described above, the heat is transmitted from the side of the heat shield plate 26 to the processing portion 24. By providing the heat shield plate 26, heat is uniformly applied to the processed portion 24.

【0012】図3は加工部24を拡大して示したもので
あり、金属製プレート28の上に載置された被加工物2
9は、カバーシート27で覆われ、カバーシート27と
金属製プレート28の間にはパッキン30が設けられて
いる。また金属製プレート28の一端には、真空吸引口
31が設けられている。このような構成のオ−トクレ−
ブを用いて加熱加圧する工程を次に説明する。
FIG. 3 is an enlarged view of the machined portion 24, which is the workpiece 2 placed on the metal plate 28.
9 is covered with a cover sheet 27, and a packing 30 is provided between the cover sheet 27 and the metal plate 28. A vacuum suction port 31 is provided at one end of the metal plate 28. Auto-crate with such a configuration
The process of heating and pressurizing using a slab will be described below.

【0013】被加工物29は、真空吸引によりカバーシ
ート27を介して加熱加圧される。被加工物29は、真
空状態で均一に加熱加圧されるので、樹脂が織物の中に
充分に浸透し、その後の冷却を経て均質な積層フィルム
を得ることができる。
The workpiece 29 is heated and pressed through the cover sheet 27 by vacuum suction. Since the work piece 29 is uniformly heated and pressed in a vacuum state, the resin sufficiently penetrates into the woven fabric, and after cooling, a homogeneous laminated film can be obtained.

【0014】加熱加圧直後300℃のポリフェニレンス
ルフィド樹脂は、結晶成長がほとんど進行していない状
態にあるが、これを毎秒10℃以上の降温速度で急激に
降温してゆくと、ポリフェニレンスルフィド樹脂の結晶
成長が抑さえられ、前記複合材樹脂フィルムを徐冷した
ものに比べ脆くないものを得ることができる。次に降温
速度と脆性の関係について、図4を用いて説明する。
The polyphenylene sulfide resin at 300 ° C. immediately after heating and pressurization is in a state in which crystal growth has hardly progressed. However, when the temperature is rapidly lowered at a temperature lowering rate of 10 ° C. or more per second, the polyphenylene sulfide resin becomes It is possible to obtain a film in which crystal growth is suppressed and which is not brittle as compared with the composite resin film which is gradually cooled. Next, the relationship between the cooling rate and brittleness will be described with reference to FIG.

【0015】図4は、脆性をポリフェニレンスルフィド
樹脂の引張強度に置換え、加熱後の降温速度との関係を
実験的に求めて図示したものである。すなわちポリフェ
ニレンスルフィド樹脂フィルム表面に熱可塑性導電性樹
脂ペーストを2mm角に印刷する。これを300℃で熱
板プレスし、その後の降温速度を変化させた。この後無
電解銅メッキを行い、印刷されたパターン上のみに選択
的に銅を析出させた。このパターン上に錫メッキ軟銅線
を垂直にはんだ付けし、垂直方向に引張った時の破断強
度を測定した。破断は軟銅線やはんだ付け部で生ずるこ
ともあるが、ポリフェニレンスルフィド樹脂が破壊され
た時のデータのみを選択し、図示したものが図4であ
る。この方法での引張強度は、実用的見地から0.7k
g/mm2 以上必要であり、これを達成するには降温速
度を毎秒10℃以上にすればよいことがわかる。
FIG. 4 shows the brittleness of polyphenylene sulfide.
Replace it with the tensile strength of the resin and change the relationship with the cooling rate after heating.
It is obtained by experiment and illustrated. Ie polyphe
Thermoplastic conductive resin on the surface of the nylene sulfide resin film
The grease paste is printed on a 2 mm square. Heat this at 300 ° C
The plate was pressed, and then the temperature decrease rate was changed. Nothing after this
Electrolytic copper plating is performed and selected only on the printed pattern
Copper was deposited. Tin-plated annealed copper wire on this pattern
Strength when soldered vertically and pulled vertically
The degree was measured. Breakage may occur in annealed copper wires and soldered parts.
However, the polyphenylene sulfide resin was destroyed
Fig. 4 shows only the data when
It The tensile strength of this method is 0.7k from a practical point of view.
g / mm2 The above is required, and to achieve this, the cooling rate
It can be seen that the temperature should be 10 ° C. or more per second.

【0016】ただし加熱加圧(熱プレス)直後の急冷
が、前記図2、図3で示したオートクレーブのように、
装置の構造上難しい場合がある。すなわちオートクレー
ブの場合には、熱プレス直後に冷却を目的として被加工
物を取出すことが、常圧戻し等の手順が必要であって困
難を伴う。その場合には、冷却が終わり熱プレス機より
取出した被加工物を、オーブン等に入れ再度樹脂のガラ
ス転移点以上でかつ融点以下の温度に昇温し、その後急
冷することにより所望の特性を得ることができる。ここ
でガラス転移点以上でかつ融点以下の温度としたのは、
成型品の形状が変わらず、かつ結晶の変化が顕著な領域
に保持するためである。この再加熱、急冷が有効である
理由を、次に事例を用いて説明する。
However, the rapid cooling immediately after the heating and pressurization (hot pressing) is performed as in the autoclave shown in FIGS.
It may be difficult due to the structure of the device. That is, in the case of an autoclave, it is difficult to take out a workpiece for the purpose of cooling immediately after hot pressing, because it requires a procedure such as returning to normal pressure. In that case, after cooling, the work piece taken out from the hot press machine is put in an oven or the like, and again heated to a temperature not lower than the glass transition point of the resin and not higher than the melting point, and then rapidly cooled to obtain desired characteristics. Obtainable. Here, the temperature above the glass transition point and below the melting point is
This is because the shape of the molded product does not change and the crystal is retained in a region where the change is remarkable. The reason why this reheating and rapid cooling is effective will be described below with reference to an example.

【0017】前記図1、図2、図3により説明した実施
例と同じ構成で熱プレスし、徐冷した繊維織物複合ポリ
フェニレンスルフィド樹脂フィルムを、270℃で5分
間保持し、その後の降温速度を変化させて降温速度毎の
試料を作成した。夫々の試料に対し、処理前後の寸法変
化率と、処理後の引張り強度(前記引張り強度の条件に
同じ)を測定し、その相関関係を図5に示した。270
℃への昇温で結晶成長度が低下するが、その後急冷する
と結晶成長度が低い状態で固化し、引張り強度は高くな
る。しかし結晶成長度が処理前に比べ低下したので、寸
法変化率は大きくなる。徐冷の場合は結晶成長度が高く
なるので脆くなるが、寸法変化率は小さくなる。すなわ
ち再加熱後の降温速度を制御することにより、引張り強
度と寸法変化率のバランスをとりつつ、所望の特性に合
った繊維織物複合結晶性熱可塑性樹脂フィルムを製作す
ることもできる。
The fiber woven fabric composite polyphenylene sulfide resin film, which was hot-pressed and gradually cooled in the same constitution as that of the embodiment described with reference to FIGS. 1, 2 and 3 above, was held at 270 ° C. for 5 minutes, and then the temperature decreasing rate was changed. The samples were prepared by changing the temperature reduction rate. For each sample, the dimensional change rate before and after the treatment and the tensile strength after the treatment (same as the condition of the tensile strength) were measured, and the correlation is shown in FIG. 270
When the temperature is raised to 0 ° C., the degree of crystal growth decreases, but when it is rapidly cooled thereafter, it solidifies in a state where the degree of crystal growth is low, and the tensile strength increases. However, since the crystal growth degree is lower than that before the treatment, the dimensional change rate becomes large. In the case of slow cooling, the degree of crystal growth becomes high, so that it becomes brittle, but the dimensional change rate becomes small. That is, by controlling the rate of temperature decrease after reheating, it is possible to produce a fiber woven fabric composite crystalline thermoplastic resin film having desired properties while balancing the tensile strength and the dimensional change rate.

【0018】上記実施例では、オ−トクレ−ブを使用す
る方法を説明したが、本発明はこれのみに限定されるも
のではなく、精度の良い熱板プレス機、ラミネータを使
用してもよいことはいうまでもない。
Although the method using the autoclave has been described in the above embodiment, the present invention is not limited to this, and a hot plate press and a laminator having high precision may be used. Needless to say.

【0019】また上記実施例では、繊維織物を第1樹脂
フィルムと第2樹脂フィルムで挟む構成をとっている
が、フィルム表面の平滑度、そりがさほど要求されない
場合には、いずれか一つの樹脂フィルムを省略してもよ
い。このような場合には、樹脂フィルムに代えて粉状あ
るいは粒状の結晶性熱可塑性樹脂を使用することもでき
る。
Further, in the above embodiment, the fiber woven fabric is sandwiched between the first resin film and the second resin film. However, when smoothness of the film surface and warpage are not so required, one of the resins is used. The film may be omitted. In such a case, a powdery or granular crystalline thermoplastic resin can be used instead of the resin film.

【0020】また繊維織物としては、ガラスクロスの代
わりに炭素繊維織物、ポリアミド樹脂織物、アルミナ繊
維織物等が使用可能である。繊維織物の代わりに紙の様
に繊維方向が一定していないものも使用できるが、寸法
安定性はそれほど高くない。樹脂はポリフェニレンスル
フィドの代わりにポリエーテルエーテルケトン、液晶ポ
リマー等が使用できる。
As the fiber woven fabric, carbon fiber woven fabric, polyamide resin woven fabric, alumina fiber woven fabric or the like can be used instead of glass cloth. Instead of the fiber woven fabric, it is possible to use a fabric in which the fiber directions are not constant, such as paper, but the dimensional stability is not so high. As the resin, polyetheretherketone, liquid crystal polymer or the like can be used instead of polyphenylene sulfide.

【0021】[0021]

【発明の効果】以上説明したように、本発明によれば、
繊維織物を複合した結晶性熱可塑性樹脂フィルムを成型
することができると共に、熱可塑性樹脂の融点以上の温
度から急冷するか、一度完成した繊維織物複合結晶性熱
可塑性樹脂フィルムを、再度樹脂のガラス転移点以上で
かつ融点以下の温度に昇温し、その後急冷することによ
り、脆性に優れた繊維織物複合結晶性熱可塑性樹脂フィ
ルムを作ることが可能になる。また降温速度を制御する
ことにより、引張り強度と寸法変化率のバランスのとれ
た繊維織物複合結晶性熱可塑性樹脂フィルムを製作する
こともできる。
As described above, according to the present invention,
It is possible to mold a crystalline thermoplastic resin film that is a composite of fiber woven fabrics, and quench it from the temperature above the melting point of the thermoplastic resin, or once complete the fiber woven fabric composite crystalline thermoplastic resin film, re-glass the resin. By raising the temperature above the transition point and below the melting point and then quenching it, it becomes possible to produce a fiber woven composite crystalline thermoplastic resin film having excellent brittleness. Further, by controlling the temperature lowering rate, it is possible to produce a fiber woven fabric composite crystalline thermoplastic resin film in which the tensile strength and the dimensional change rate are well balanced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における繊維織物複合結晶性熱
可塑性樹脂フィルムの構成を示す断面図である。
FIG. 1 is a cross-sectional view showing the structure of a fiber woven composite crystalline thermoplastic resin film in an example of the present invention.

【図2】本発明の実施例におけるオートクレーブの構成
を示す断面図である。
FIG. 2 is a cross-sectional view showing a configuration of an autoclave in an example of the present invention.

【図3】図2の要部拡大図である。FIG. 3 is an enlarged view of a main part of FIG.

【図4】本発明の実施例における降温速度と引張り強度
の関連図である。
FIG. 4 is a diagram showing the relationship between the temperature decrease rate and the tensile strength in the example of the present invention.

【図5】本発明の実施例における寸法変化率と引張り強
度の関連図である。
FIG. 5 is a diagram showing the relationship between the dimensional change rate and the tensile strength in the example of the present invention.

【符号の説明】[Explanation of symbols]

11a,11b…第1、第2樹脂フィルム 12 …ガラスクロス 12a,12b…縦糸、横糸 13 …複合樹脂フィルム 11a, 11b ... 1st, 2nd resin film 12 ... Glass cloth 12a, 12b ... Warp and weft 13 ... Composite resin film

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B29K 105:08 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location B29K 105: 08

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 結晶性熱可塑性樹脂材並びに繊維織物を
積層させた被加工物を、前記結晶性熱可塑性樹脂材の融
点以上の温度で加熱加圧する加熱加圧工程と、この加熱
加圧工程終了後前記被加工物を毎秒10℃以上の速度で
冷却する冷却工程とを具備することを特徴とする繊維織
物複合樹脂フィルムの製造方法。
1. A heating and pressurizing step of heating and pressurizing a work to which a crystalline thermoplastic resin material and a fiber woven fabric are laminated at a temperature equal to or higher than the melting point of the crystalline thermoplastic resin material, and the heating and pressurizing step. And a cooling step of cooling the work piece at a rate of 10 ° C. or more per second after the completion of the method.
【請求項2】 前記被加工物は、第1の結晶性熱可塑性
樹脂材と第2の結晶性熱可塑性樹脂材と間に、繊維織物
を介在させて形成することを特徴とする請求項1記載の
繊維織物複合樹脂フィルムの製造方法。
2. The work piece is formed by interposing a fiber woven fabric between a first crystalline thermoplastic resin material and a second crystalline thermoplastic resin material. A method for producing the fiber woven composite resin film described.
【請求項3】 前記第1並びに第2の結晶性熱可塑性樹
脂材は、いずれもフィルム状部材であることを特徴とす
る請求項2記載の繊維織物複合樹脂フィルムの製造方
法。
3. The method for producing a fiber woven composite resin film according to claim 2, wherein each of the first and second crystalline thermoplastic resin materials is a film member.
【請求項4】 前記第1の結晶性熱可塑性樹脂材がフィ
ルム状部材であり、前記第2の結晶性熱可塑性樹脂材が
粉状部材または粒状部材であることを特徴とする請求項
2記載の繊維織物複合樹脂フィルムの製造方法。
4. The first crystalline thermoplastic resin material is a film-shaped member, and the second crystalline thermoplastic resin material is a powder-shaped member or a granular member. Of the method for producing a fiber woven composite resin film of.
【請求項5】 前記冷却工程終了後、再度前記結晶性熱
可塑性樹脂材のガラス転移点以上でかつ融点以下の温度
に、前記被加工物を昇温保持する再加熱工程と、その後
毎秒10℃以上の速度で前記被加工物を再冷却する工程
とを具備することを特徴とする請求項1乃至請求項4記
載の繊維織物複合樹脂フィルムの製造方法。
5. After the cooling step, a reheating step of raising the temperature of the workpiece to a temperature not lower than the glass transition point and not higher than the melting point of the crystalline thermoplastic resin material, and thereafter 10 ° C. per second. 5. The method for producing a fiber woven composite resin film according to claim 1, further comprising the step of recooling the workpiece at the above speed.
【請求項6】 前記結晶性熱可塑性樹脂材はポリフェニ
レンスルフィド樹脂であり、前記繊維織物はガラスクロ
スであることを特徴とする請求項1乃至請求項5記載の
繊維織物複合樹脂フィルムの製造方法。
6. The method for producing a fiber woven composite resin film according to claim 1, wherein the crystalline thermoplastic resin material is a polyphenylene sulfide resin, and the fiber woven fabric is glass cloth.
【請求項7】 第1並びに第2の結晶性熱可塑性樹脂フ
ィルムの間に、繊維織物が挿入された被加工物を支持台
上に載置する工程と、前記被加工物を耐熱シートで気密
に覆う工程と、前記耐熱シート内を真空吸引する工程
と、前記耐熱シートを介して前記被加工物を加熱加圧す
る工程と、前記加熱加圧工程終了後前記被加工物を冷却
する工程とを具備することを特徴とする繊維織物複合樹
脂フィルムの製造方法。
7. A step of placing a work piece in which a fiber woven fabric is inserted between a first and a second crystalline thermoplastic resin film on a support base, and the work piece is hermetically sealed with a heat-resistant sheet. A step of covering the inside of the heat resistant sheet with a vacuum, a step of heating and pressing the work piece through the heat resistant sheet, and a step of cooling the work piece after the heating and pressing step. A method for producing a fiber woven composite resin film, comprising:
【請求項8】 前記冷却工程は、毎秒10℃以上の速度
で前記被加工物を降温する工程であることを特徴とする
請求項7記載の繊維織物複合樹脂フィルムの製造方法。
8. The method for producing a fiber woven composite resin film according to claim 7, wherein the cooling step is a step of lowering the temperature of the workpiece at a rate of 10 ° C. or more per second.
【請求項9】 前記冷却工程終了後、再度前記第1並び
に第2の結晶性熱可塑性樹脂フィルムのガラス転移点以
上でかつ融点以下の温度に、前記被加工物を昇温保持す
る再加熱工程と、その後毎秒10℃以上の速度で前記被
加工物を再冷却する工程とを具備することを特徴とする
請求項7記載の繊維織物複合樹脂フィルムの製造方法。
9. A reheating step for holding the workpiece at a temperature above the glass transition point and below the melting point of the first and second crystalline thermoplastic resin films after the cooling step is finished. 8. The method for producing a fiber woven composite resin film according to claim 7, further comprising the step of: recooling the workpiece at a rate of 10 ° C. or more per second.
【請求項10】 前記第1並びに第2の結晶性熱可塑性
樹脂フィルムはポリフェニレンスルフィド樹脂であり、
前記繊維織物はガラスクロスであることを特徴とする請
求項7乃至請求項9記載の繊維織物複合樹脂フィルムの
製造方法。
10. The first and second crystalline thermoplastic resin films are polyphenylene sulfide resins,
The method for producing a fiber woven composite resin film according to claim 7, wherein the fiber woven fabric is glass cloth.
JP4109780A 1992-04-28 1992-04-28 Production of fiber fabric composite resin film Pending JPH05301240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4109780A JPH05301240A (en) 1992-04-28 1992-04-28 Production of fiber fabric composite resin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4109780A JPH05301240A (en) 1992-04-28 1992-04-28 Production of fiber fabric composite resin film

Publications (1)

Publication Number Publication Date
JPH05301240A true JPH05301240A (en) 1993-11-16

Family

ID=14519041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4109780A Pending JPH05301240A (en) 1992-04-28 1992-04-28 Production of fiber fabric composite resin film

Country Status (1)

Country Link
JP (1) JPH05301240A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11315470A (en) * 1998-01-08 1999-11-16 Ten Cate Advanced Composites Bv Production of carbon fiber fabric
JP2012111101A (en) * 2010-11-24 2012-06-14 Sanko Gosei Ltd Shape molding method and fiber-reinforced resin molding
JP2013046977A (en) * 2011-08-29 2013-03-07 Sanko Gosei Ltd Shaping-molding method and fiber reinforced resin molding
JP2014513639A (en) * 2011-04-01 2014-06-05 ロックツール Apparatus and method for compression-integrating composite parts having a thermoplastic substrate reinforced by continuous fibers, particularly naturally derived fibers
JP2021014558A (en) * 2019-07-16 2021-02-12 旭化成株式会社 Continuous fiber-reinforced resin composite material and method for producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11315470A (en) * 1998-01-08 1999-11-16 Ten Cate Advanced Composites Bv Production of carbon fiber fabric
JP2012111101A (en) * 2010-11-24 2012-06-14 Sanko Gosei Ltd Shape molding method and fiber-reinforced resin molding
JP2014513639A (en) * 2011-04-01 2014-06-05 ロックツール Apparatus and method for compression-integrating composite parts having a thermoplastic substrate reinforced by continuous fibers, particularly naturally derived fibers
JP2013046977A (en) * 2011-08-29 2013-03-07 Sanko Gosei Ltd Shaping-molding method and fiber reinforced resin molding
JP2021014558A (en) * 2019-07-16 2021-02-12 旭化成株式会社 Continuous fiber-reinforced resin composite material and method for producing the same

Similar Documents

Publication Publication Date Title
US6274242B1 (en) Liquid crystal polymer film, laminate, method of making them and multi-layered parts-mounted circuit board
US6334922B1 (en) Coating method utilizing a polymer film and method of making metal-polymer laminates
JP4162321B2 (en) Method for producing metal foil laminate
JPH05301240A (en) Production of fiber fabric composite resin film
CN100477883C (en) Method for manufacturing circuit board
JPH11207766A (en) Manufacture of multilayer printed-wiring board
EP1270193B1 (en) Use of a heat resistant cushioning material in a press molding process
JPS6120728A (en) Preparation of laminate board
JPH05154960A (en) Production of laminated sheet for printed circuit board
JPH08216340A (en) Highly rigid copper-clad laminated plate and manufacture thereof
JP3456784B2 (en) Circuit forming substrate manufacturing method and circuit forming substrate manufacturing apparatus
JPH02258337A (en) Manufacture of laminate for printed circuit
JPH1037038A (en) Glass cloth
JPH06106645A (en) Manufacture of copper-clad laminate
JPS63299197A (en) Manufacture of metal foil-plated metallic substrate
JPH11150366A (en) Production of sequential multilayer wiring board
JPH0828407B2 (en) Film carrier and manufacturing method thereof
JP2003283109A (en) Method for manufacturing board for forming circuit
JP2002067061A (en) Method for manufacturing metal-clad laminate
JPS61143122A (en) Manufacture of laminated sheet
JPH0226857B2 (en)
JPH0524165A (en) Manufacture of laminated sheet
JPH03112187A (en) Manufacture of printed-wiring board
JPH0985884A (en) Metal foil-plated laminated board
JPH04201311A (en) Manufacture of laminated sheet