JPH0226857B2 - - Google Patents

Info

Publication number
JPH0226857B2
JPH0226857B2 JP59256332A JP25633284A JPH0226857B2 JP H0226857 B2 JPH0226857 B2 JP H0226857B2 JP 59256332 A JP59256332 A JP 59256332A JP 25633284 A JP25633284 A JP 25633284A JP H0226857 B2 JPH0226857 B2 JP H0226857B2
Authority
JP
Japan
Prior art keywords
metal foil
curable resin
resin
laminate
item
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59256332A
Other languages
Japanese (ja)
Other versions
JPS61134245A (en
Inventor
Masayoshi Shimomura
Minoru Itsushiki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP59256332A priority Critical patent/JPS61134245A/en
Publication of JPS61134245A publication Critical patent/JPS61134245A/en
Publication of JPH0226857B2 publication Critical patent/JPH0226857B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/036Multilayers with layers of different types
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics

Description

【発明の詳細な説明】 本発明は表面平滑性の優れた印刷配線板用のガ
ラス基材金属箔張積層板およびその製造法に関す
る。 近年、電子機器の小型化に対応して印刷配線板
への高密度実装方式の開発および印刷配線板のパ
ターン密度の高密度化が急速に進展している。高
密度パターンの印刷配線板を作成するためには、
金属箔張積層板の回路を形成する金属箔面の表面
平滑性がすぐれていることが要求される。本発明
におけるようにガラス織布を金属箔に最も近い層
に用いた金属箔張積層板の場合、ガラス織布の織
り目が金属箔表面に現れやすく、織り目に基づく
表面粗さが大きいと、高密度配線板用には使用が
困難であつた。 かかる問題を解決するため本発明者らが鋭意検
討を行つた結果、金属箔に最も近い層のガラス織
布の金属箔側の表面を起毛加工することにより、
得られる積層板の金属箔面の表面粗さを大幅に改
良することが可能であることを見い出した。 本発明は、常温で液状で硬化に際し気体や液体
の副生物を発生しない硬化性樹脂を含浸した複数
枚の基材を積層し、該積層物の少なくとも片面に
金属箔を張つた後硬化させてなる金属箔張積層板
において、少なくとも金属箔に最も近い層の基材
がガラス織布であり、かつ該ガラス基材の金属箔
側の表面が起毛加工されていることを特徴とする
金属箔張積層板を提供する。 本発明で用いる基材はガラス織布を単独で複数
枚用いるか、あるいは最外層をガラス織布、中心
層をガラス不織布紙、セルロース混抄ガラス繊維
紙、合成繊維布、合成繊維不織布等で組合せて用
いてもよい。 金属箔に最も近い最外層のガラス織布に対する
起毛加工は、電気用積層板に使用される通常のガ
ラス織布の表面を研磨することにより行う。従つ
て本発明でいう起毛加工を施したガラス織布と
は、断熱材として用いられるような嵩高のいわゆ
るバルキー加工布とは異なる。バルキー加工布は
単糸、合撚糸の段階で特殊加工を施し、バルキー
性を持たせたヤーンから織り上げたものであり、
嵩高のため、基材としての補強性も少なく、印刷
配線板用の積層板用途には適さない。 起毛加工の方法としては、例えば、ガラス織布
を連続的に搬送しながら、ベルトサンダー、ロー
ルブラシ、ロールバフ等の研磨剤で研磨する方法
があげられ、研磨により織布を構成するガラス単
繊維の一部を切断し起毛することにより、本発明
の効果が発揮される。該加工は金属箔張積層板を
製造する工程中で行つてもかまわない。おな、中
心層のガラス織布に対しても起毛加工を施しても
さしつかえないが、積層板の曲げ強度が低下する
等の弊害があるため、最外層のガラス織布の金属
箔側の表面にのみ起毛加工を施すのが好ましい。 基材に含浸する樹脂は常温で液状でしかも硬化
に際し気体や液体の副生成物を発生しない一般に
低圧成形用樹脂と呼ばれる硬化性樹脂が用いられ
る。不飽和ポリエステル樹脂、ビニルエステル樹
脂、ウレタンアクリレート樹脂、ジアリルフタレ
ート樹脂等のラジカル重合型樹脂や、エポキシ樹
脂等の付加重合型の樹脂などが代表的なものであ
る。不飽和ポリエステル樹脂およびビニルエステ
ル樹脂は硬化収縮が比較的大きく積層板の金属箔
面の表面粗さがエポキシ樹脂の場合に比べて大き
いため、本発明による効果が特に顕著である。 印刷配線板用に使用される金属箔は電解銅箔が
一般的であるが、所望により圧延銅箔、アルミニ
ウム箔等を使用することができる。含浸用の樹脂
が不飽和ポリエステル樹脂、ビニルエステル樹脂
等のラジカル重合型樹脂の場合には、エポキシ樹
脂等の接着剤層を金属箔と樹脂含浸基材の間に設
ける方が金属箔面の表面平滑性および半田耐熱
性、金属箔の接着強度の特性から望ましい。 従来、ガラス基材金属箔張積層板はプレスによ
るバツチ方式により製造されていた。含浸用の樹
脂として常温で液状で硬化に際し気体や液体の副
生物を発生しない硬化性樹脂を用いる場合、本発
明者らが特開昭55−4838、同56−98136等で提案
しているような連続製造法で製造するのが適して
いる。特に硬化の際の成形圧が実質的に無圧の場
合、板厚精度に優れ、表面平滑性の良好な高品質
の金属箔張積層板を得ることができる。 次に本発明を実施例により説明する。 比較例 1 不飽和ポリエステル樹脂(ポリマール6304、武
田薬品)100重量部、クメンハイドロパーオキサ
イド1重量部、6%ナフテン酸コバルト0.2重量
部からなる不飽和ポリエテル樹脂液を調整した。
厚さ約180μmの平織のガラス織布(WE 18K、
メタクリルシラン処理品、日東紡績)8層を連続
的に搬送させ、各基材に対して個別にカーテンフ
ロー方式で上記の不飽和ポリエステル樹脂液で含
浸を行い、樹脂含浸基材を積層した後、エポキシ
樹脂系接着剤を塗布した18μm厚さの電解銅箔
(日鉱グールド・フオイルTC箔)を積層物の両側
にラミネートし、一定厚みにしごいた後トンネル
型加熱炉で100℃で40分間加熱硬化を行い、両面
銅張積層板を得た。このものの表面粗さを表に示
す。 実施例 1 ガラス織布(WE 18K)の片側の表面をあらか
じめベルトサンダーにより連続的に起毛加工を行
つた。8層ガラス織布のうち外側の2層を上記の
起毛加工を施したガラス織布に置き換え、加工を
施した面が銅箔側にくるように配置し、比較例1
と同様の方法で両面銅張積層板を作成した。表面
粗さの測定結果を表に示す。 比較例 2 ビスフエノールA型エポキシ樹脂(エピコート
828、油圧シエルエポキシ)100重量部、メチルテ
トラヒドロ無水フタル酸(HN−2200 日立化
成)80重量部、ベンジルジメチルアミン0.5重量
部からなるエポキシ樹脂液を調合し、比較例1と
同様に8層のガラス織布に含浸させ、積層した
後、厚さ18μmの接着剤を塗布していない銅箔を
積層物の両面に張り合わせ、厚みを調整後、130
℃で40分間の加熱硬化を行い両面銅張積層板を得
た。表面粗さを表に示す。 実施例 2 実施例1と同様の基材構成で、比較例2のエポ
キシ樹脂液を含浸させ、比較例2と同様の条件で
両面銅張積層板を得た。表面粗さの測定結果を表
に示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a glass-based metal foil-clad laminate for printed wiring boards with excellent surface smoothness and a method for producing the same. In recent years, in response to the miniaturization of electronic devices, rapid progress has been made in the development of high-density mounting methods for printed wiring boards and in the pattern density of printed wiring boards. In order to create printed wiring boards with high density patterns,
The metal foil surface forming the circuit of the metal foil-clad laminate is required to have excellent surface smoothness. In the case of a metal foil-clad laminate in which a glass woven fabric is used as the layer closest to the metal foil as in the present invention, the texture of the glass fabric tends to appear on the surface of the metal foil, and if the surface roughness based on the texture is large, the It was difficult to use it for high-density wiring boards. As a result of intensive studies by the present inventors to solve this problem, we found that by brushing the surface of the glass woven fabric closest to the metal foil on the metal foil side,
It has been found that it is possible to significantly improve the surface roughness of the metal foil surface of the resulting laminate. The present invention involves laminating a plurality of substrates impregnated with a curable resin that is liquid at room temperature and does not generate gas or liquid by-products upon curing, and then hardening after applying metal foil to at least one side of the laminate. A metal foil-clad laminate characterized in that at least the base material of the layer closest to the metal foil is a glass woven fabric, and the surface of the glass base material on the metal foil side is brushed. Provides laminates. The base material used in the present invention may be a single glass woven fabric, or a combination of glass woven fabric for the outermost layer, glass nonwoven paper, cellulose mixed glass fiber paper, synthetic fiber cloth, synthetic fiber nonwoven fabric, etc. for the center layer. May be used. The raising process for the outermost glass woven fabric closest to the metal foil is performed by polishing the surface of a normal glass woven fabric used for electrical laminates. Therefore, the raised glass woven fabric referred to in the present invention is different from the so-called bulky fabric used as a heat insulating material. Bulky-processed fabric is woven from yarns that undergo special processing at the single yarn and plied yarn stages to give them bulky properties.
Due to its bulk, it has little reinforcing properties as a base material, and is not suitable for use as a laminate for printed wiring boards. An example of a napping method is to polish the woven glass fabric with an abrasive such as a belt sander, roll brush, or roll buff while continuously conveying it. The effects of the present invention are exhibited by cutting a portion and raising the nap. This processing may be performed during the process of manufacturing the metal foil-clad laminate. Although it is possible to apply brushing to the central layer of woven glass fabric, there are disadvantages such as a reduction in the bending strength of the laminate. It is preferable to apply a brushed finish only to the material. The resin to be impregnated into the base material is generally a curable resin called a low-pressure molding resin, which is liquid at room temperature and does not generate gas or liquid byproducts during curing. Typical examples include radical polymerization type resins such as unsaturated polyester resins, vinyl ester resins, urethane acrylate resins, and diallyl phthalate resins, and addition polymerization type resins such as epoxy resins. Since unsaturated polyester resins and vinyl ester resins have relatively large curing shrinkage and the surface roughness of the metal foil surface of the laminate is greater than that of epoxy resins, the effects of the present invention are particularly remarkable. The metal foil used for printed wiring boards is generally electrolytic copper foil, but rolled copper foil, aluminum foil, etc. can be used if desired. When the resin for impregnation is a radical polymerization type resin such as unsaturated polyester resin or vinyl ester resin, it is better to provide an adhesive layer such as epoxy resin between the metal foil and the resin-impregnated base material to improve the surface of the metal foil surface. Desirable for its smoothness, soldering heat resistance, and adhesive strength of metal foil. Conventionally, glass-based metal foil-clad laminates have been manufactured by a batch method using a press. When using a curable resin that is liquid at room temperature and does not generate gas or liquid by-products during curing as a resin for impregnation, it is possible to use a curable resin that does not generate gas or liquid by-products during curing. It is suitable to manufacture using a continuous manufacturing method. In particular, when the molding pressure during curing is substantially no pressure, a high-quality metal foil-clad laminate with excellent plate thickness accuracy and good surface smoothness can be obtained. Next, the present invention will be explained by examples. Comparative Example 1 An unsaturated polyester resin liquid was prepared containing 100 parts by weight of an unsaturated polyester resin (Polymer 6304, Takeda Pharmaceutical Co., Ltd.), 1 part by weight of cumene hydroperoxide, and 0.2 parts by weight of 6% cobalt naphthenate.
Plain weave glass woven fabric (WE 18K, approximately 180μm thick)
After continuously transporting 8 layers of methacrylic silane treated product, Nitto Boseki, and individually impregnating each base material with the above unsaturated polyester resin liquid using the curtain flow method, and laminating the resin-impregnated base materials, 18μm thick electrolytic copper foil (Nikko Gould Foil TC foil) coated with epoxy resin adhesive is laminated on both sides of the laminate, squeezed to a certain thickness, and then heated and cured at 100℃ for 40 minutes in a tunnel heating furnace. A double-sided copper-clad laminate was obtained. The surface roughness of this material is shown in the table. Example 1 The surface of one side of a glass woven fabric (WE 18K) was previously subjected to a continuous napping process using a belt sander. Comparative Example 1
A double-sided copper-clad laminate was made using the same method as above. The surface roughness measurement results are shown in the table. Comparative example 2 Bisphenol A type epoxy resin (Epicote
828, Hydraulic Shell Epoxy), 80 parts by weight of methyltetrahydrophthalic anhydride (HN-2200, Hitachi Chemical), and 0.5 parts by weight of benzyldimethylamine. After impregnating the glass woven fabric and laminating it, 18 μm thick copper foil without adhesive is pasted on both sides of the laminate, and after adjusting the thickness, 130
A double-sided copper-clad laminate was obtained by heat curing at ℃ for 40 minutes. The surface roughness is shown in the table. Example 2 A double-sided copper-clad laminate was obtained using the same base material configuration as Example 1 and impregnated with the epoxy resin liquid of Comparative Example 2 under the same conditions as Comparative Example 2. The surface roughness measurement results are shown in the table. 【table】

Claims (1)

【特許請求の範囲】 1 常温で液状で硬化に際し気体や液体の副生物
を発生しない硬化性樹脂を含浸した複数枚の基材
を積層し、該積層物の少なくとも片面に金属箔を
張つた後硬化させてなる金属箔張積層板におい
て、少なくとも金属箔に最も近い層の基材がガラ
ス織布であり、かつ該ガラス基材の金属箔側の表
面が起毛加工されていることを特徴とする金属箔
張積層板。 2 前記硬化性樹脂が不飽和ポリエステル樹脂で
ある第1項の金属箔張積層板。 3 前記硬化性樹脂がエポキシ樹脂である第1項
の金属箔張積層板。 4 前記硬化性樹脂がビニルエステル樹脂である
第1項の金属箔張積層板。 5 複数枚のシート状基材を連続的に搬送しなが
ら、常温で液状で硬化に際し気体や液体の副生物
を発生しない硬化性樹脂液を含浸し、含浸した基
材を合体し、合体した積層物の少なくとも片面に
金属箔を張り、次いで積層物を連続的に硬化させ
ることを含む金属箔張積層板の連続製造法におい
て、少なくとも金属箔に最も近い層の基材とし
て、金属箔側の表面が起毛加工されているガラス
織布を使用することを特徴とする金属箔張積層板
の連続製造法。 6 硬化の際の成形圧が実質的に無圧である第5
項の方法。 7 前記硬化性樹脂が不飽和ポリエステル樹脂で
ある第5項の方法。 8 前記硬化性樹脂がエポキシ樹脂である第5項
の方法。 9 前記硬化性樹脂がビニルエステル樹脂である
第5項の方法。
[Scope of Claims] 1. After laminating a plurality of base materials impregnated with a curable resin that is liquid at room temperature and does not generate gas or liquid by-products upon curing, and pasting metal foil on at least one side of the laminate. The cured metal foil-clad laminate is characterized in that at least the base material of the layer closest to the metal foil is a glass woven fabric, and the surface of the glass base material on the metal foil side is brushed. Metal foil laminate. 2. The metal foil-clad laminate of item 1, wherein the curable resin is an unsaturated polyester resin. 3. The metal foil-clad laminate according to item 1, wherein the curable resin is an epoxy resin. 4. The metal foil-clad laminate of item 1, wherein the curable resin is a vinyl ester resin. 5 While continuously transporting multiple sheet-like base materials, impregnate them with a curable resin liquid that is liquid at room temperature and does not generate gas or liquid by-products upon curing, and combine the impregnated base materials to form a combined laminate. In a continuous manufacturing process for metal foil-clad laminates, which involves applying metal foil to at least one side of the object and then curing the laminate continuously, the surface on the metal foil side is used as the substrate for at least the layer closest to the metal foil. A continuous manufacturing method for a metal foil-clad laminate, characterized by using a glass woven fabric that has been brushed. 6 No. 5, in which the molding pressure during curing is substantially no pressure.
Section method. 7. The method of item 5, wherein the curable resin is an unsaturated polyester resin. 8. The method of item 5, wherein the curable resin is an epoxy resin. 9. The method of item 5, wherein the curable resin is a vinyl ester resin.
JP59256332A 1984-12-03 1984-12-03 Glass base material metallic-foil lined laminated board and manufacture thereof Granted JPS61134245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59256332A JPS61134245A (en) 1984-12-03 1984-12-03 Glass base material metallic-foil lined laminated board and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59256332A JPS61134245A (en) 1984-12-03 1984-12-03 Glass base material metallic-foil lined laminated board and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS61134245A JPS61134245A (en) 1986-06-21
JPH0226857B2 true JPH0226857B2 (en) 1990-06-13

Family

ID=17291199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59256332A Granted JPS61134245A (en) 1984-12-03 1984-12-03 Glass base material metallic-foil lined laminated board and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61134245A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6444743A (en) * 1987-08-11 1989-02-17 Nec Corp Copper clad laminated plate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52796A (en) * 1975-06-24 1977-01-06 Tsurumi Soda Kk Purification process of solution of sodium hypochlorite
JPS5698136A (en) * 1980-01-08 1981-08-07 Kanegafuchi Chem Ind Co Ltd Continuous manufacture of laminated substance
JPS5812750A (en) * 1981-07-15 1983-01-24 松下電工株式会社 Manufacture of laminated board

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52796A (en) * 1975-06-24 1977-01-06 Tsurumi Soda Kk Purification process of solution of sodium hypochlorite
JPS5698136A (en) * 1980-01-08 1981-08-07 Kanegafuchi Chem Ind Co Ltd Continuous manufacture of laminated substance
JPS5812750A (en) * 1981-07-15 1983-01-24 松下電工株式会社 Manufacture of laminated board

Also Published As

Publication number Publication date
JPS61134245A (en) 1986-06-21

Similar Documents

Publication Publication Date Title
JP2004349654A (en) Copper foil with insulator layer, its manufacturing method, and multilayer printed circuit board using it
JPH0226857B2 (en)
JPH01163059A (en) Metal foil clad laminated sheet
JP2889474B2 (en) Composite laminate and method for producing the same
JPH0959400A (en) Production of prepreg
JP3122486B2 (en) Manufacturing method of laminated board
JPH03129796A (en) Manufacture of printed circuit board
JP2001191450A (en) Copper clad laminated sheet and method of manufacturing the same
JPH01272416A (en) Manufacture of prepreg
JPH10135590A (en) Substrate for printed circuit
JP3244612B2 (en) Method for producing double-sided decorative board and decorative board
JPS6042567B2 (en) Manufacturing method for electrical laminates
JPH0414875B2 (en)
JPH0771839B2 (en) Laminated board manufacturing method
JP2001170953A (en) Method for manufacturing laminated sheet
JPS61120736A (en) Manufacture of multilayer printed wiring board
JPS6241107B2 (en)
JPH02226796A (en) Manufacture of very thin base material copper clad laminated board
JPH0334677B2 (en)
JPH06338663A (en) Rigid-flex printed wiring board and its manufacture
JPH04119836A (en) Metal foil clad laminated sheet and preparation thereof
JPH06262723A (en) Preparation of copper-clad laminated sheet
JPH06350207A (en) Rigid flex printed wiring board and production thereof
JPS59190846A (en) Continuous manufacture of metallic foil lined laminated board
JPH02218196A (en) Semi-cured resin copper-clad laminated sheet