JP6369178B2 - Preform manufacturing method, fiber-reinforced thermosetting resin molded product manufacturing method, and preform - Google Patents
Preform manufacturing method, fiber-reinforced thermosetting resin molded product manufacturing method, and preform Download PDFInfo
- Publication number
- JP6369178B2 JP6369178B2 JP2014139710A JP2014139710A JP6369178B2 JP 6369178 B2 JP6369178 B2 JP 6369178B2 JP 2014139710 A JP2014139710 A JP 2014139710A JP 2014139710 A JP2014139710 A JP 2014139710A JP 6369178 B2 JP6369178 B2 JP 6369178B2
- Authority
- JP
- Japan
- Prior art keywords
- prepreg
- preform
- fiber
- reinforcing fiber
- yarns
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Reinforced Plastic Materials (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
Description
本発明は、立体形状、特に、可展面ではない曲面(複数の平面の組み合わせを含む)、すなわち三次元曲面形状を有する繊維強化樹脂成形品を得るべく、その成形に先立って、強化繊維とマトリックス樹脂組成物からなるプリプレグを所定形状に賦形して得られるプリフォームとその製造方法、また、そのプリフォームを用いた繊維強化樹脂成形品の製造方法に関する。 In order to obtain a fiber reinforced resin molded article having a three-dimensional shape, particularly a curved surface (including a combination of a plurality of flat surfaces) that is not a developable surface, that is, a three-dimensional curved surface shape, The present invention relates to a preform obtained by shaping a prepreg made of a matrix resin composition into a predetermined shape, a method for producing the same, and a method for producing a fiber-reinforced resin molded article using the preform.
強化繊維に熱硬化性樹脂組成物を含浸させてなるプリプレグ(例えば、UDプリプレグやクロスプリプレグ)を成形型内で加熱加圧して成形することで、所定形状の繊維強化樹脂成形品を得る技術が知られている(例えば、特許文献1参照)。 A technology for obtaining a fiber-reinforced resin molded article having a predetermined shape by heating and pressing a prepreg (for example, UD prepreg or cross prepreg) obtained by impregnating a reinforcing fiber with a thermosetting resin composition in a mold. It is known (see, for example, Patent Document 1).
立体形状を有する繊維強化樹脂成形品を製造する場合に、プリプレグから最終成形品の形状を考慮した所定形状のプリフォームを、成形に先立って予め製造する技術も知られている。
プリフォームの製造方法としては、例えば、複数枚積層したプリプレグを赤外線ヒーターで加熱した後、プリフォーム成形機に設置されたプリフォーム型で挟むことでプリプレグを折り曲げ、その後、プリフォーム型に空気を吹き付けてプリプレグを冷却した後に、プリフォーム型を開いて賦形されたプリプレグを取り出して、所望のプリフォームを得る方法が知られている(例えば、特許文献2参照)。
In the case of manufacturing a fiber-reinforced resin molded product having a three-dimensional shape, a technique for manufacturing a preform having a predetermined shape in consideration of the shape of the final molded product from a prepreg in advance of molding is also known.
As a method for producing a preform, for example, a plurality of laminated prepregs are heated with an infrared heater, and then the prepreg is bent by being sandwiched by a preform mold installed in a preform molding machine, and then air is blown into the preform mold. A method is known in which a prepreg is blown to cool the prepreg, and then a preform mold is opened to take out the shaped prepreg to obtain a desired preform (for example, see Patent Document 2).
しかしながら、一方向に引き揃えた繊維に樹脂を含浸して製造したUDプリプレグを用いて立体形状特に、三次元曲面形状を有するプリフォームを製造する場合、UDプリプレグ1枚、または、同一方向のUDプリプレグを複数枚積層したプリプレグを用いて賦形を行うと、プリプレグの面内で強化繊維方向の垂直方向に加わる荷重によりプリプレグが簡単に裂けてしまう問題があった。そのため、繊維方向が多方向となるようUDプリプレグを複数枚重ねて積層体を得た後に、賦形する必要があった。
しかしながら、積層体に多方向の強化繊維が含まれる場合、繊維方向が異なるUDプリプレグどうしが密着してしまうことで、それぞれのUDプリプレグが他方のUDプリプレグのせん断変形を抑制して、賦形の自由度が低下する問題があった。
However, when manufacturing a preform having a three-dimensional shape, particularly a three-dimensional curved surface, by using a UD prepreg manufactured by impregnating resin into fibers aligned in one direction, one UD prepreg or UD in the same direction When shaping is performed using a prepreg in which a plurality of prepregs are laminated, there is a problem that the prepreg is easily torn by a load applied in a direction perpendicular to the reinforcing fiber direction in the plane of the prepreg. For this reason, it is necessary to form a laminate after stacking a plurality of UD prepregs so that the fiber direction is multidirectional.
However, when multi-directional reinforcing fibers are included in the laminate, the UD prepregs having different fiber directions are in close contact with each other, so that each UD prepreg suppresses shear deformation of the other UD prepreg, There was a problem that the degree of freedom decreased.
一方、2方向の繊維が互いに直交するように製織した強化繊維織物からなるクロスプリプレグを用いて立体形状を有するプリフォームを製造する場合、クロスプリプレグは1枚を賦形する場合であっても裂けにくいが、賦形できる立体形状が制限される問題があった。 On the other hand, when a preform having a three-dimensional shape is produced using a cross prepreg composed of a reinforcing fiber fabric woven so that fibers in two directions are orthogonal to each other, the cross prepreg is torn even when one sheet is formed. Although it is difficult, there is a problem that a three-dimensional shape that can be shaped is limited.
さらに、一方向にひき揃えた強化繊維のシート状物を、繊維方向が多方向となるように2層以上重ねて、ステッチ糸により厚み方向に結束したノンクリンプファブリックからなるプリプレグで所望のプリフォームを得る方法も知られている。
しかしながら、ノンクリンプファブリックのプリプレグを用いて立体形状を有するプリフォームを製造する場合、ステッチ糸の配向によっては、賦形できる形状に制限が生じたり、1枚プリプレグの中に3軸以上の繊維方向の強化繊維がある場合は、その繊維配向によっても賦形できる形状に制限が生じたりする問題があった。
Furthermore, a desired prepreg made of a non-crimp fabric in which two or more layers of reinforcing fiber sheets arranged in one direction are stacked so that the fiber directions are multidirectional and bound in the thickness direction by stitch yarns. The method of obtaining is also known.
However, when a preform having a three-dimensional shape is manufactured using a prepreg of a non-crimp fabric, the shape that can be shaped may be limited depending on the orientation of the stitch yarn, or the fiber direction of three or more axes in one prepreg In the case where the reinforced fiber is present, there is a problem that the shape that can be shaped is limited depending on the fiber orientation.
本発明は、強化繊維が一方向に揃った1枚のプリプレグからであっても、あるいは強化繊維が一方向に揃ったプリプレグを複数枚重ねた積層体からであっても、立体形状、特に三次元曲面形状を有するプリフォームを容易に製造する方法の提供を目的とする。 Even if the present invention is from one prepreg in which reinforcing fibers are aligned in one direction, or from a laminated body in which a plurality of prepregs in which reinforcing fibers are aligned in one direction are stacked, the three-dimensional shape, particularly the tertiary An object of the present invention is to provide a method for easily producing a preform having an original curved shape.
本発明は以下の様態を有する。
[1] 互いに平行に配列した多数本の強化繊維糸条と補助繊維糸からなり、該補助繊維糸の織り密度が3〜9本/インチであり織物目付が1000g/m 2 以下である一方向性補強繊維織物と、熱硬化性のマトリックス樹脂組成物からなる、プリプレグ又は該プリプレグを含むプリプレグ積層体を所定形状に賦形してプリフォームを得る、プリフォームの製造方法。
[2] 互いに平行に配列した多数本の強化繊維糸条と補助繊維糸からなり、該補助繊維糸の織り密度が3〜9本/インチであり織物目付が1000g/m 2 以下である一方向性補強繊維織物と、熱硬化性のマトリックス樹脂組成物からなる、プリプレグ又は該プリプレグを含むプリプレグ積層体を所定形状に賦形してプリフォームとし、
該プリフォームを加熱加圧して前記マトリックス樹脂組成物を硬化することによって所望の立体形状を有する繊維強化熱硬化性樹脂成形品を得る、繊維強化熱硬化性樹脂成形品の製造方法。
[3] 並列した多数本の強化繊維糸条と補助繊維糸からなり、該補助繊維糸の織り密度が3〜9本/インチであり織物目付が1000g/m 2 以下である一方向性補強繊維織物と、熱硬化性のマトリックス樹脂組成物からなる、プリプレグ又は該プリプレグを含むプリプレグ積層体からなる、立体形状を有するプリフォーム。
The present invention has the following aspects.
[1] Ri parallel to Do the large number of reinforcing fiber yarns were arranged from the auxiliary yarns together, weaving density of the auxiliary yarns is Ru der fabric basis weight was 3-9 / inch is 1000 g / m 2 or less A method for producing a preform, wherein a prepreg or a prepreg laminate comprising the prepreg and comprising a unidirectional reinforcing fiber fabric and a thermosetting matrix resin composition is shaped into a predetermined shape to obtain a preform.
[2] Ri parallel to Do the large number of reinforcing fiber yarns were arranged from the auxiliary yarns together, weaving density of the auxiliary yarns is Ru der fabric basis weight was 3-9 / inch is 1000 g / m 2 or less a unidirectional reinforcing fiber woven fabric, made of a thermosetting matrix resin composition, a preform a prepreg laminate including the prepreg or the prepreg was shaped into a predetermined shape,
A method for producing a fiber-reinforced thermosetting resin molded article, which obtains a fiber-reinforced thermosetting resin molded article having a desired three-dimensional shape by heating and pressurizing the preform to cure the matrix resin composition.
[3] juxtaposed Ri Do from many present reinforcing fiber yarns and auxiliary yarns, the weave density of the auxiliary yarns is 3-9 / inch and are woven weight per unit area 1000 g / m 2 or less der Ru unidirectional A preform having a three-dimensional shape, comprising a prepreg or a prepreg laminate comprising the reinforced fiber fabric and a thermosetting matrix resin composition.
本発明のプリフォームの製造方法は、1枚の強化繊維が一方向に揃ったプリプレグからであっても、あるいは強化繊維が一方向に揃ったプリプレグを複数枚重ねた積層体からであっても、立体形状、特に三次元曲面形状を有するプリフォームを容易に製造することを可能とするものである。 The method for producing a preform of the present invention may be from a prepreg in which one reinforcing fiber is aligned in one direction, or from a laminate in which a plurality of prepregs in which reinforcing fibers are aligned in one direction are stacked. It is possible to easily manufacture a preform having a three-dimensional shape, particularly a three-dimensional curved surface shape.
(プリプレグ)
本発明のプリフォームの製造方法に用いることができるプリプレグは、強化繊維と熱硬化性のマトリックス樹脂組成物からなるプリプレグであり、互いに平行に配列した多数本の強化繊維糸条と補助繊維糸からなる一方向性補強繊維織物、特に、たて糸方向の強化繊維糸条と、当該強化繊維糸条と補助繊維糸が交錯する一方向性補強繊維織物が強化繊維基材であるプリプレグであることが好ましい。
また、予めマトリックス樹脂組成物を含浸させた強化繊維糸条(以下「トウプレグ」)がたて糸方向に多数本平行に配列され、補助繊維糸が交錯して織物の形態をなしているプリプレグであっても構わない。
(一方向性補強繊維織物)
前記一方向性補強繊維織物とは、たて糸に多数本の強化繊維糸条を配列し、当該強化繊維糸条より細い補助繊維糸が当該強化繊維糸条と交差している補強繊維織物であって、前記強化繊維糸条が実質的に屈曲せず強化繊維糸条群を構成し、当該強化繊維糸条群の両面それぞれに当該強化繊維糸条群と交差する複数の補助繊維糸群を有することが好ましい。また、複数のたて糸方向の補助繊維糸を有していても構わない。
更に、前記一方向性補強繊維織物の補助繊維糸の織り密度が3〜9本/インチ(但し、1インチ=25.4mm)であり、織物目付が1000g/m2以下であることが好ましい。補助繊維糸の織り密度が2本/インチ以下では強化繊維糸条が乱れやすく作業性が悪くなり、10本/インチ以上では強化繊維糸条群の拘束箇所が多くなることで、前記一方向性補強繊維織物が賦形時にせん断変形しにくくなり、その結果、得られるプリフォームにシワなどが発生することが懸念される。また、織物目付が1000g/m2より大きいと、プリプレグが厚すぎて賦形が困難となり、得られるプリフォームにシワなどが発生することが懸念される。
(Prepreg)
The prepreg that can be used in the method for producing the preform of the present invention is a prepreg composed of reinforcing fibers and a thermosetting matrix resin composition, and includes a plurality of reinforcing fiber yarns and auxiliary fiber yarns arranged in parallel to each other. It is preferable that the unidirectional reinforcing fiber woven fabric, particularly the reinforcing fiber yarn in the warp direction, and the unidirectional reinforcing fiber woven fabric in which the reinforcing fiber yarn and the auxiliary fiber yarn cross each other is a prepreg that is a reinforcing fiber base material. .
Further, a prepreg in which a plurality of reinforcing fiber yarns (hereinafter “toe prep”) impregnated with a matrix resin composition are arranged in parallel in the warp yarn direction, and auxiliary fiber yarns are interlaced to form a woven fabric. It doesn't matter.
(Unidirectional reinforcing fiber fabric)
The unidirectional reinforcing fiber fabric is a reinforcing fiber fabric in which a plurality of reinforcing fiber yarns are arranged in a warp yarn, and auxiliary fiber yarns thinner than the reinforcing fiber yarns intersect the reinforcing fiber yarns. The reinforcing fiber yarns do not substantially bend to form a reinforcing fiber yarn group, and each side of the reinforcing fiber yarn group has a plurality of auxiliary fiber yarn groups intersecting with the reinforcing fiber yarn group. preferable. Further, a plurality of auxiliary fiber yarns in the warp direction may be provided.
Furthermore, it is preferable that the weave density of the auxiliary fiber yarn of the unidirectional reinforcing fiber fabric is 3 to 9 yarns / inch (where 1 inch = 25.4 mm) and the fabric basis weight is 1000 g / m 2 or less. If the weaving density of the auxiliary fiber yarns is 2 yarns / inch or less, the reinforcing fiber yarns are likely to be disturbed, and the workability is deteriorated. If the yarn density is 10 yarns / inch or more, the number of restrained portions of the reinforcing fiber yarn groups increases. There is a concern that the reinforcing fiber fabric is less likely to undergo shear deformation during shaping, and as a result, wrinkles and the like are generated in the resulting preform. On the other hand, if the fabric basis weight is larger than 1000 g / m 2 , the prepreg is too thick, making shaping difficult, and there is a concern that wrinkles and the like may occur in the resulting preform.
(強化繊維)
前記一方向性補強繊維織物を構成する強化繊維としては、例えば、炭素繊維、ガラス繊維、アラミド繊維、高強度ポリエステル繊維、ボロン繊維、アルミナ繊維、窒化珪素繊維、ナイロン繊維などが挙げられる。これらの中でも比強度および比弾性に優れることから、炭素繊維が好ましい。
本発明に用いる炭素繊維には、繊維束の収束性や、繊維強化樹脂成形品としたときの炭素繊維とマトリックス樹脂組成物との接着性を改善するため、エポキシ基、水酸基、アミノ基、カルボキシル基、カルボン酸無水物基、アクリレート基およびメタクリレート基から選ばれる1種類以上の官能基を持つ物質を0.01〜5質量%付着させてもよい。
(Reinforced fiber)
Examples of the reinforcing fibers constituting the unidirectional reinforcing fiber fabric include carbon fibers, glass fibers, aramid fibers, high-strength polyester fibers, boron fibers, alumina fibers, silicon nitride fibers, nylon fibers, and the like. Among these, carbon fiber is preferable because it is excellent in specific strength and specific elasticity.
The carbon fiber used in the present invention has an epoxy group, a hydroxyl group, an amino group, a carboxyl group in order to improve the convergence of the fiber bundle and the adhesion between the carbon fiber and the matrix resin composition when it is formed into a fiber-reinforced resin molded product. A substance having one or more functional groups selected from a group, a carboxylic acid anhydride group, an acrylate group and a methacrylate group may be attached in an amount of 0.01 to 5% by mass.
(強化繊維糸条)
本発明に用いる強化繊維糸条は何ら制限するものではないが、強化繊維数1000〜100000本の強化繊維糸条であることが好ましい。また、本発明に使用する強化繊維糸条は無撚りであることが好ましい。撚りがある場合は撚り数にして5回/m以下が好ましく、2回/m以下がさらに好ましい。
(Reinforcing fiber yarn)
The reinforcing fiber yarn used in the present invention is not limited at all, but is preferably a reinforcing fiber yarn having 1000 to 100,000 reinforcing fibers. The reinforcing fiber yarn used in the present invention is preferably untwisted. When there is a twist, the number of twists is preferably 5 times / m or less, more preferably 2 times / m or less.
(補助繊維糸)
前記一方向性補強繊維織物を構成する補助繊維糸としては、例えば、ポリエステル繊維、ガラス繊維、アラミド繊維、ポリアミド繊維などが挙げられる。これらの中でも、製織に適した柔軟性を有しており、かつ、製織工程中における伸縮が少ないことで、一方向性補強繊維織物中の強化繊維糸条の真直性が保たれることからガラス繊維を用いることが好ましい。さらには強化繊維糸条群および/またはたて糸補助繊維糸を熱融着により固定するため、熱可塑性ポリマーを繊維糸条に線状に連続的に付着せしめて、よこ糸補助繊維糸として用いることが好ましい。熱可塑性ポリマーを繊維糸条に付着する方法は合撚、カバーリング、引き揃えなど何ら限定するものではない。熱可塑性ポリマーをガラス繊維糸条に線状に連続的に付着せしめて、よこ糸補助繊維糸として用いることがさらに好ましい。
(Auxiliary fiber yarn)
Examples of the auxiliary fiber yarn constituting the unidirectional reinforcing fiber fabric include polyester fiber, glass fiber, aramid fiber, and polyamide fiber. Among these, glass has flexibility suitable for weaving, and since the straightness of the reinforcing fiber yarns in the unidirectional reinforcing fiber fabric is maintained due to less stretching during the weaving process. It is preferable to use fibers. Furthermore, in order to fix the reinforcing fiber yarn group and / or the warp auxiliary fiber yarn by heat fusion, it is preferable that the thermoplastic polymer is continuously attached linearly to the fiber yarn and used as the weft auxiliary fiber yarn. . The method for attaching the thermoplastic polymer to the fiber yarn is not limited in any way, such as twisting, covering, and alignment. More preferably, the thermoplastic polymer is continuously adhered linearly to the glass fiber yarn and used as the weft auxiliary fiber yarn.
補助繊維糸の繊度は、強化繊維糸条の屈曲を少なくできることから細くあるほど好ましく、強化繊維糸条の繊度の1/10未満であることが好ましい。 The fineness of the auxiliary fiber yarn is preferably as thin as possible because the bending of the reinforcing fiber yarn can be reduced, and is preferably less than 1/10 of the fineness of the reinforcing fiber yarn.
(マトリックス樹脂組成物)
前記プリプレグを構成するマトリックス樹脂組成物としては、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、アクリル樹脂、ビニルエステル樹脂、フェノール樹脂、ベンゾオキサジン樹脂などの各種の熱硬化性樹脂組成物が挙げられる。これらの中でも、硬化後の強度を高くできることからエポキシ樹脂が好ましい。
前記マトリックス樹脂組成物中には、硬化剤、離型剤、脱泡剤、紫外線吸収剤、充填材などの各種添加剤などが含まれてもよい。
(Matrix resin composition)
Examples of the matrix resin composition constituting the prepreg include various thermosetting resin compositions such as an epoxy resin, an unsaturated polyester resin, an acrylic resin, a vinyl ester resin, a phenol resin, and a benzoxazine resin. Among these, an epoxy resin is preferable because the strength after curing can be increased.
The matrix resin composition may contain various additives such as a curing agent, a release agent, a defoaming agent, an ultraviolet absorber, and a filler.
(プリプレグの製造方法)
プリプレグの製造方法としては、前記マトリックス樹脂組成物を溶剤で希釈した液状樹脂に前記一方向性補強繊維織物を浸漬してから、必要に応じて過剰の樹脂溶液を除去し、加熱等により溶剤を蒸発させてプリプレグを得る溶液(ラッカー)法であっても構わないし、予め前記マトリックス樹脂組成物を離型紙(支持シート)に塗布して一定厚みのフィルム状の樹脂組成物(以下、「樹脂フィルム」)としたのち、前記樹脂フィルムと前記一方向性補強繊維織物を重ねてニップロールなどで加熱、加圧して、樹脂組成物を前記一方向性補強繊維織物に含浸させてプリプレグを得るホットメルト法であっても構わないが、安定して取り扱えるプリプレグを得やすいこと、高品質な繊維強化樹脂成形品を得やすいことからホットメルト法が好ましい。
また、トウプレグをたて糸方向に多数本平行に配列させ、補助繊維糸を交錯させて織物の形態としても良い。トウプレグの製造方法は、ラッカー法やホットメルト法に準ずる方法、あるいはマトリックス樹脂組成物を加熱により低粘度化し、引き出した強化繊維糸条をその低粘度化した樹脂組成物中に浸漬通過させて、含浸させる方法であっても構わない。
(Manufacturing method of prepreg)
As a method for producing a prepreg, after immersing the unidirectional reinforcing fiber fabric in a liquid resin obtained by diluting the matrix resin composition with a solvent, an excess resin solution is removed as necessary, and the solvent is removed by heating or the like. It may be a solution (lacquer) method in which a prepreg is obtained by evaporation, or the matrix resin composition is applied in advance to a release paper (support sheet) to form a film-like resin composition (hereinafter referred to as “resin film”). )), And the resin film and the unidirectional reinforcing fiber woven fabric are stacked and heated and pressed with a nip roll or the like, and the unidirectional reinforcing fiber woven fabric is impregnated into the unidirectional reinforcing fiber woven fabric to obtain a prepreg. However, the hot melt method is preferred because it is easy to obtain a prepreg that can be handled stably and it is easy to obtain a high-quality fiber-reinforced resin molded product. There.
Alternatively, a large number of towpregs may be arranged in parallel in the warp yarn direction, and auxiliary fiber yarns may be interlaced to form a woven fabric. A method for producing a toupreg is a method according to the lacquer method or the hot melt method, or the matrix resin composition is reduced in viscosity by heating, and the drawn reinforcing fiber yarn is immersed in the reduced viscosity resin composition, An impregnation method may be used.
(プリプレグの切断)
プリプレグを所定の形状に切断する方法としては、はさみなどを用いて切断してもよいし、カッティングプロッターを用いて切断しても構わない。切断形状の精度を高めることができることから、カッティングプロッターを用いて切断することが好ましい。
(Cutting prepreg)
As a method of cutting the prepreg into a predetermined shape, the prepreg may be cut using scissors or the like, or may be cut using a cutting plotter. Since the accuracy of the cutting shape can be improved, it is preferable to cut using a cutting plotter.
(プリプレグの積層)
本発明においてはプリプレグ1枚でも良好なプリフォームを賦形可能であるが、所望する成形品厚みとプリプレグ厚みに合わせて、プリフォームに賦形する前に、所定の形状に切断したプリプレグを積層して所望の構成を有する積層体にしても良く、その場合の積層体厚みは0.1〜5.0mmであることが好ましく、更には0.2〜2.0mmであることがより好ましい。0.1mm未満では薄すぎて、そのような積層体となるプリプレグの製造が難しく高価になるだけではなく、得られるプリフォームの形状保持が困難にもなる。また、5.0mmを超えると厚すぎて賦形が困難となり、得られるプリフォームにシワなどが発生することが懸念される。
(Lamination of prepreg)
In the present invention, it is possible to form a good preform even with a single prepreg, but in accordance with the desired molded product thickness and prepreg thickness, the prepreg cut into a predetermined shape is laminated before shaping into the preform. In this case, the thickness of the laminate is preferably 0.1 to 5.0 mm, and more preferably 0.2 to 2.0 mm. If it is less than 0.1 mm, it is too thin, and not only is it difficult and expensive to produce a prepreg to be such a laminate, but it also makes it difficult to maintain the shape of the resulting preform. Moreover, when it exceeds 5.0 mm, it is too thick and shaping is difficult, and there is a concern that wrinkles and the like are generated in the obtained preform.
(賦形)
一枚のプリプレグ、または、プリプレグの積層体(以下、総称して単に「積層体」と表現することがある。)を賦形してプリフォームを得るための手段としては、例えば、人手による型への貼り込みにより積層体を賦形しても構わないし、型上に積層体を配置して、その上部からゴム膜などを配置した後に、内部を真空引きしてゴム膜を圧着させることで積層体を賦形しても構わないし、簡易な成形機に雄雌型を設置し、開いた雄雌型の間に積層体を配置して、雄雌型を狭圧することで賦形しても構わないし、いくつかの方法を組み合わせることで賦形しても構わないが、短時間で賦形できることから、雄雌型を狭圧することにより積層体を賦形することが好ましい。ここで雄雌型とは、一方の型の凸部または凹部に、他方の凹部または凸部が対応する一対の型のことを意味する。
(Shaping)
Examples of means for obtaining a preform by shaping a single prepreg or a laminate of prepregs (hereinafter sometimes simply referred to as “laminate”) include, for example, a manual mold The laminated body may be shaped by sticking to the mold, or after placing the laminated body on the mold and placing the rubber film etc. from the upper part, the inside is evacuated and the rubber film is crimped The laminate may be shaped, or the male and female molds are placed on a simple molding machine, the laminate is placed between the open male and female molds, and the male and female molds are shaped by narrowing the pressure. Alternatively, it may be formed by combining several methods, but it is preferable to shape the laminate by narrowing the male and female molds because they can be shaped in a short time. Here, the male-female mold means a pair of molds in which the convex portion or concave portion of one mold corresponds to the concave portion or convex portion of the other.
さらに、当該積層体を予備加熱した後に賦形することが好ましく、さらには積層体の温度が40℃〜70℃になるよう加熱することが好ましい。40℃未満ではプリプレグのマトリックス樹脂組成物の粘度が高すぎて、所望の形状に賦形することが困難である。また、70℃を超えると、マトリックス樹脂組成物の粘度が著しく低下することによって、賦形時に強化繊維の乱れが発生したりすることで、最終的に得られる繊維強化樹脂組成物の機械特性が低下する。
予備加熱は、例えば、積層体に温風を当てても構わないし、積層体に赤外線を当てても構わないし、積層体を加熱したプレート上に載置して伝熱により加熱しても構わないが、積層体を短時間で加熱できることや、予備加熱後の積層体の取り扱いが容易であることから、赤外線による加熱が好ましい。
Furthermore, it is preferable to shape the laminate after preliminary heating, and it is preferable to heat the laminate so that the temperature of the laminate is 40 ° C to 70 ° C. If the temperature is lower than 40 ° C., the viscosity of the matrix resin composition of the prepreg is too high, and it is difficult to form the desired shape. Further, when the temperature exceeds 70 ° C., the viscosity of the matrix resin composition is remarkably lowered, and the disturbance of the reinforcing fibers occurs during shaping, so that the mechanical properties of the finally obtained fiber reinforced resin composition are increased. descend.
In the preheating, for example, warm air may be applied to the laminated body, infrared light may be applied to the laminated body, or the laminated body may be placed on a heated plate and heated by heat transfer. However, heating by infrared rays is preferable because the laminate can be heated in a short time and the laminate is easy to handle after preheating.
(成形工程)
前記の方法にて賦形して得たプリフォームを成形体厚みと同じクリアランスが設定されている金型に設置し、プレス機を用いて所望の温度、圧力に加熱加圧することでプリフォームを硬化させて、成形品を得る。
その際、金型は所定の硬化温度に調温しておき、圧縮成形した後、その温度のまま成形品を取り出すことが好ましい。このように行うことで、成形型の昇降温をする必要が無くなり、成形サイクルを高めることができるので、生産性を高くすることができる。
(Molding process)
The preform obtained by shaping by the above method is placed in a mold having the same clearance as the molded body thickness, and the preform is heated and pressed to a desired temperature and pressure using a press. Curing to obtain a molded product.
At that time, the mold is preferably adjusted to a predetermined curing temperature, compression-molded, and then the molded product is taken out at that temperature. By doing so, it is not necessary to raise or lower the temperature of the mold, and the molding cycle can be increased, so that productivity can be increased.
以下、実施例により本発明をより具体的に説明する。ただし、本発明は実施例に限定されるものではない。
(実施例1)
本実施例では、図1に示す立体形状1を有する繊維強化複合材料成形品を得るためのプリフォーム製造方法について記載する。
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the examples.
Example 1
In this example, a preform manufacturing method for obtaining a fiber-reinforced composite material molded article having the three-dimensional shape 1 shown in FIG. 1 will be described.
一方向性補強繊維織物として、たて糸の強化繊維糸条が炭素繊維であり、当該炭素繊維糸条に交錯する補助繊維糸が熱融着糸でカバーリングされたガラス繊維からなる一方向性補強繊維織物2(三菱レイヨン株式会社製、製品名:TRK9AMPQ、織物目付:329g/m2、補助繊維糸の織り密度:8本/インチ)を用意し、エポキシ樹脂組成物A(三菱レイヨン株式会社製、製品名:#391)をホットメルト法にて含浸させてプリプレグ3を作製した。 As a unidirectional reinforcing fiber fabric, the reinforcing fiber yarns of the warp yarn are carbon fibers, and the auxiliary fiber yarns intersecting with the carbon fiber yarns are made of glass fibers covered with heat-sealing yarns. Fabric 2 (Mitsubishi Rayon Co., Ltd., product name: TRK9AMPQ, fabric basis weight: 329 g / m 2 , auxiliary fiber yarn weaving density: 8 / inch) was prepared, and epoxy resin composition A (Mitsubishi Rayon Co., Ltd., Product name: # 391) was impregnated by a hot melt method to prepare prepreg 3.
具体的には、上記プリプレグ3は、一方向性補強繊維織物2を、離型紙上に塗工されたエポキシ樹脂組成物Aで挟み合わせて、60℃に調温したフュージングプレス機で加熱、加圧することで、エポキシ樹脂組成物Aを一方向性補強繊維織物2に含浸して作成した。上記プリプレグ3中のエポキシ樹脂組成物Aの含有率は33質量%となるようにして、プリプレグ1層あたりの厚みを0.30mmとなるようにした。その後、上記プリプレグ3を立体形状1に賦形しやすいよう、300mm×300mmに切断してプリプレグシート3aとした。このとき、図3の矢印方向が炭素繊維の0°方向、図3の矢印方向と直交方向を炭素繊維の90°方向として、切り出したプリプレグシート3aの一辺が0°方向、もう一辺が90°方向である正方形となるよう切断した。 Specifically, the prepreg 3 is formed by sandwiching the unidirectional reinforcing fiber woven fabric 2 with the epoxy resin composition A coated on the release paper and heating and heating the prepreg 3 with a fusing press machine adjusted to 60 ° C. The unidirectional reinforcing fiber fabric 2 was impregnated with the epoxy resin composition A by pressing. The content of the epoxy resin composition A in the prepreg 3 was 33% by mass, and the thickness per prepreg layer was 0.30 mm. Thereafter, the prepreg 3 was cut into 300 mm × 300 mm so as to easily shape the three-dimensional shape 1 to obtain a prepreg sheet 3a. At this time, the arrow direction in FIG. 3 is the 0 ° direction of the carbon fiber, the direction orthogonal to the arrow direction in FIG. 3 is the 90 ° direction of the carbon fiber, one side of the cut prepreg sheet 3a is in the 0 ° direction, and the other side is 90 °. It cut | disconnected so that it might become a square which is a direction.
上記プリプレグシート3aを立体形状1に賦形するために必要な雄雌型と、それを作動させるための成形機7を準備して、成形機7に可動型として上型5を配置し、固定型として下型6を配置した。上型5は5aと5bの二つの部分型により構成されており、成形機7は部分型5aと部分型5bを個別に動かすことができる(図3、図4)。 A male / female mold required to shape the prepreg sheet 3a into the three-dimensional shape 1 and a molding machine 7 for operating the prepreg sheet 3a are prepared. The lower mold 6 was arranged as a mold. The upper mold 5 is composed of two partial molds 5a and 5b, and the molding machine 7 can individually move the partial mold 5a and the partial mold 5b (FIGS. 3 and 4).
次に上記プリプレグシート3aを下型6の上に配置した後、赤外線ヒーター8にてプリプレグシート3aの表面温度が約60℃となるように加熱した。加熱した後、上型の部分型5aを下降させ、続けて部分型5bを下降させて雄雌型を閉じて、プリプレグシート3aを賦形した(図5上段)。 Next, after the prepreg sheet 3a was placed on the lower mold 6, it was heated with an infrared heater 8 so that the surface temperature of the prepreg sheet 3a was about 60 ° C. After heating, the upper partial mold 5a was lowered, the partial mold 5b was lowered, the male and female molds were closed, and the prepreg sheet 3a was shaped (upper part of FIG. 5).
引き続き、プリプレグシート3aを冷却した後、部分型5bを上昇させ、続けて部分型5aを上昇させて、雌雄型を開いてプリプレグシート3aを露出させ、下型6から賦形されたプリプレグシート3aを取り外した(図5下段)。賦形されたプリプレグシート3aの外周部をトリミングすることで所望する立体形状1を有するプリフォーム10を得た。得られたプリフォーム10には、プリプレグの裂けやほつれはなく、所望の立体形状を有するプリフォームを容易に製作できた。
引き続き上型と下型の間の押し切り状態のクリアランスが0.3mmとなるよう設定した圧縮成形用成形型を140℃まで加熱し、成形型の下型にプリフォーム10を設置し、これを上型と下型で挟み10分間保持して、加熱加圧を行うことで、繊維強化樹脂成形品を得た。得られた成形品は強度、外観に優れていた。
Subsequently, after cooling the prepreg sheet 3a, the partial mold 5b is raised, the partial mold 5a is subsequently raised, the male and female molds are opened to expose the prepreg sheet 3a, and the prepreg sheet 3a formed from the lower mold 6 Was removed (bottom of FIG. 5). The preform 10 having the desired three-dimensional shape 1 was obtained by trimming the outer periphery of the shaped prepreg sheet 3a. The obtained preform 10 was free from tearing and fraying of the prepreg, and a preform having a desired three-dimensional shape could be easily manufactured.
Subsequently, the compression molding mold set so that the clearance between the upper mold and the lower mold is 0.3 mm is heated to 140 ° C., and the preform 10 is placed in the lower mold of the molding mold. A fiber-reinforced resin molded product was obtained by sandwiching the mold and the lower mold for 10 minutes and heating and pressing. The obtained molded product was excellent in strength and appearance.
(実施例2)
実施例1で作製されたプリプレグ3から実施例1と同様に300mm×300mmのプリプレグシート3aを3枚切断し、炭素繊維の方向が0°/90°/0°となるようにその3枚を重ねて、積層体9を用意した。
(Example 2)
Three prepreg sheets 3a each having a size of 300 mm × 300 mm are cut from the prepreg 3 produced in Example 1 in the same manner as in Example 1, and the three sheets are placed so that the carbon fiber direction is 0 ° / 90 ° / 0 °. The laminate 9 was prepared by overlapping.
引き続き実施例1と同様の方法で、プリプレグシート3aのかわりに積層体9を用いて立体形状1を有するプリフォームを作成した。得られたプリフォームには、プリプレグの裂けやほつれはなかった。また、積層体にして賦形してもプリプレグの突っ張りや折りたたまれはなく、所望の立体形状を有するプリフォームを容易に製作できた。
引き続き、実施例1と同様の方法で繊維強化樹脂成形品を得た。但し、本実施例では上型と下型の間の押し切り状態のクリアランスが0.9mmとなるよう設定した。得られた成形品は強度、外観に優れていた。
Subsequently, in the same manner as in Example 1, a preform having a three-dimensional shape 1 was created using the laminate 9 instead of the prepreg sheet 3a. The obtained preform did not tear or fray the prepreg. Further, even when the laminate was formed, the prepreg was not stretched or folded, and a preform having a desired three-dimensional shape could be easily manufactured.
Subsequently, a fiber reinforced resin molded product was obtained in the same manner as in Example 1. However, in this example, the clearance in the push-off state between the upper die and the lower die was set to be 0.9 mm. The obtained molded product was excellent in strength and appearance.
(比較例1)
一方向に引き揃えられた炭素繊維糸条にエポキシ樹脂組成物を含浸させたUDプリプレグ(三菱レイヨン株式会社製、製品名:TR391E250S、プリプレグ1層あたりの厚み:0.22mm、プリプレグ目付:250g/m2)を用意し、実施例1と同様の方法でプリフォームを製作した。得られたプリフォームは、大きなせん断変形を要する部位11(図6中にクロスハッチで示した部位)においてUDプリプレグの折りたたみやシワや目開きが発生し、良好なプリフォームは得られなかった。
また、このプリフォームを上型と下型の間の押し切り状態のクリアランスが0.22mmとなるよう設定したこと以外は実施例1と同様の方法で加熱加圧成形したところ、得られた成形品は、UDプリプレグのシワや折りたたみが押し潰されたことで繊維のうねりが発生したり、UDプリプレグの目開き部位では樹脂たまりが発生したり、強度、外観に優れるものではなかった。
(Comparative Example 1)
UD prepreg impregnated with an epoxy resin composition in carbon fiber yarns aligned in one direction (product name: TR391E250S, manufactured by Mitsubishi Rayon Co., Ltd., thickness per prepreg layer: 0.22 mm, prepreg basis weight: 250 g / m 2 ) was prepared, and a preform was manufactured in the same manner as in Example 1. In the obtained preform, folding, wrinkles, and openings of the UD prepreg occurred at the portion 11 (a portion indicated by a cross hatch in FIG. 6) requiring large shear deformation, and a good preform could not be obtained.
Moreover, when this preform was heat-press molded in the same manner as in Example 1 except that the clearance between the upper die and the lower die was set to 0.22 mm, the resulting molded product was obtained. The UD prepreg was not excellent in strength and appearance because wrinkles or folding of the UD prepreg was crushed and undulation of the fiber occurred, or a resin pool was generated at the opening portion of the UD prepreg.
(比較例2)
また、比較例1に用いたUDプリプレグの、炭素繊維糸条が引き揃えられた方向を0°方向、炭素繊維糸条が引き揃えられた方向と直交方向を90°方向として、前記UDプリプレグの方向が0°/90°/0°となるよう3枚重ねて、300mm×300mmとなる前記UDプリプレグの積層体を用意した。前記積層体を用いて実施例2と同様の方法でプリフォームを作製した。得られたプリフォームには大きなせん断変形を要する部位11において積層体の折りたたみやシワが発生し、良好なプリフォームは得られなかった。
また、このプリフォームを上型と下型の間の押し切り状態のクリアランスが0.66mmとなるよう設定したこと以外は実施例2と同様の方法で加熱加圧成形したところ、得られた成形品はシワや折りたたまれた積層体が押し潰されたことで繊維のうねりが発生し、強度、外観に優れるものではなかった。
(Comparative Example 2)
Further, the direction of the UD prepreg used in Comparative Example 1 in which the carbon fiber yarns are aligned is defined as 0 ° direction, and the direction orthogonal to the direction in which the carbon fiber yarns are aligned is defined as 90 ° direction. Three layers of the UD prepreg having a size of 300 mm × 300 mm were prepared by stacking three sheets so that the direction was 0 ° / 90 ° / 0 °. A preform was produced in the same manner as in Example 2 using the laminate. In the obtained preform, folding and wrinkling of the laminate occurred at the site 11 requiring large shear deformation, and a good preform could not be obtained.
Moreover, when this preform was heat-press molded in the same manner as in Example 2 except that the clearance between the upper die and the lower die was set to 0.66 mm, the resulting molded product was obtained. In the case of wrinkles and folded laminates, the fibers were swelled and the strength and appearance were not excellent.
(比較例3)
あらかじめ製織された炭素繊維にエポキシ樹脂組成物を含浸させたクロスプリプレグ(三菱レイヨン株式会社製、製品名:TR3523 391GMP プリプレグ1層あたりの厚み:0.22mm、プリプレグ目付:200g/m2)を用意し、実施例1と同様の方法でプリフォームを製作した。得られたプリフォームは、大きなせん断変形を要する部位11においてクロスプリプレグの突っ張りが発生し、所望の形状を有したプリフォームは得られなかった。
また、このプリフォームを比較例1と同様の方法で加熱加圧成形したところ、得られた成形品は部位11において繊維のうねりが発生し、強度、外観に優れるものではなかった。
(Comparative Example 3)
A cross prepreg (product name: TR3523 391GMP prepreg thickness per layer: 0.22 mm, prepreg basis weight: 200 g / m 2 ) prepared by impregnating a pre-woven carbon fiber with an epoxy resin composition is prepared. Then, a preform was produced in the same manner as in Example 1. In the obtained preform, the cross prepreg was stretched at the site 11 requiring a large shear deformation, and a preform having a desired shape could not be obtained.
Further, when this preform was subjected to heat and pressure molding in the same manner as in Comparative Example 1, the resulting molded product was swelled with fibers in the region 11 and was not excellent in strength and appearance.
(比較例4)
一方向に引き揃えた炭素繊維を、繊維方向が直交方向となるよう2層重ねて、ステッチ糸により厚み方向に結束させたノンクリンプファブリック(TK Industry社製、製品名:TK1300B127T、目付:300g/m2)を用いて、実施例1と同様の方法でエポキシ樹脂組成物Aを含浸させたプリプレグを作成した(プリプレグ1層あたりの厚み:0.3mm)。
このプリプレグを用いて、実施例1と同様の方法でプリフォームを作製した。得られたプリフォームは、大きなせん断変形を要する部位11において、変形方向にステッチ糸が配向されていることによってプリプレグの突っ張りが発生し、良好なプリフォームは得られなかった。
また、このプリフォームを実施例1と同様の方法で加熱加圧成形したところ、得られた成形品には部位11において炭素繊維のうねりが発生し、強度、外観に優れるものではなかった。
(Comparative Example 4)
Non-crimp fabric (made by TK Industry, product name: TK1300B127T, basis weight: 300 g / layer) in which two layers of carbon fibers aligned in one direction are stacked so that the fiber directions are orthogonal to each other and bound in the thickness direction by stitch yarns m 2 ) was used to prepare a prepreg impregnated with the epoxy resin composition A in the same manner as in Example 1 (thickness per prepreg layer: 0.3 mm).
Using this prepreg, a preform was produced in the same manner as in Example 1. In the obtained preform, the prepreg was stretched due to the stitch yarn being oriented in the deformation direction at the site 11 requiring large shear deformation, and a good preform could not be obtained.
Further, when this preform was subjected to heat and pressure molding in the same manner as in Example 1, the resulting molded product was swelled with carbon fibers in the region 11 and was not excellent in strength and appearance.
(比較例5)
一方向に引き揃えられた炭素繊維糸条(三菱レイヨン株式会社製、製品名:TR50S12L)を用いて、炭素繊維糸条と直交する方向に熱融着糸でカバーリングされたガラス繊維(クラレ株式会社製)を補助繊維糸として交錯させた一方向性補強繊維織物(織物目付:320g/m2、補助繊維糸織り密度12本/インチ)を用意し、実施例1と同様にプリプレグを作製した。(プリプレグ1層あたりの厚み:0.3mm)
このプリプレグを用いて実施例1と同様の方法でプリフォームを製作した。得られたプリフォームには、大きなせん断変形を要する部位11において、プリプレグの突っ張りが発生し、良好なプリフォームは得られなかった。プリプレグの突っ張りは、炭素繊維糸条群が補助繊維糸によって強く拘束されていることによって発生したものと推定される。
また、このプリフォームを用いて実施例1と同様の方法で加熱加圧成形したところ、得られた成形品には炭素繊維のうねりが発生し、強度、外観に優れるものではなかった。
(Comparative Example 5)
Glass fiber (Kuraray Co., Ltd.) covered with heat-sealed yarn in a direction perpendicular to the carbon fiber yarn using carbon fiber yarn (Mitsubishi Rayon Co., Ltd., product name: TR50S12L) aligned in one direction A unidirectional reinforcing fiber fabric (woven fabric weight: 320 g / m 2 , density of auxiliary fiber yarn weaving density of 12 / inch) prepared by crossing as a supplementary fiber yarn was prepared, and a prepreg was produced in the same manner as in Example 1. . (Thickness per prepreg layer: 0.3 mm)
Using this prepreg, a preform was produced in the same manner as in Example 1. In the obtained preform, the prepreg was stretched at the site 11 requiring large shear deformation, and a good preform could not be obtained. The prepreg tension is presumed to be caused by the carbon fiber yarn group being strongly restrained by the auxiliary fiber yarn.
Further, when this preform was subjected to heat and pressure molding in the same manner as in Example 1, the resulting molded product was swelled with carbon fibers and was not excellent in strength and appearance.
(比較例6)
一方向に引き揃えられた炭素繊維糸条(三菱レイヨン株式会社製、製品名:TR50S12L)を用いて、炭素繊維糸条と直交する方向に熱融着糸でカバーリングされたガラス繊維(クラレ株式会社製)を補助繊維糸として交錯させた一方向性補強繊維織物(織物目付1200g/m2、補助繊維糸織り密度8本/インチ)を用意し、実施例1と同様にプリプレグを作成した。(プリプレグ1層あたりの厚み:1.2mm)
このプリプレグを用いて実施例1と同様の方法でプリフォームを製作したが、作業性が悪かった。
一方、このプリフォームを上型と下型の間の押し切り状態のクリアランスが1.2mmとなるよう設定したこと以外は実施例1と同様の方法で加熱加圧成形したところ、得られた成形品は強度、外観には問題はなかった。
(Comparative Example 6)
Glass fiber (Kuraray Co., Ltd.) covered with heat-sealed yarn in a direction perpendicular to the carbon fiber yarn using carbon fiber yarn (Mitsubishi Rayon Co., Ltd., product name: TR50S12L) aligned in one direction A unidirectional reinforcing fiber fabric (woven fabric basis weight 1200 g / m 2 , density of auxiliary fiber yarn weave density 8 / inch) was prepared by crossing as a supplementary fiber yarn, and a prepreg was prepared in the same manner as in Example 1. (Thickness per prepreg layer: 1.2 mm)
Using this prepreg, a preform was produced in the same manner as in Example 1, but the workability was poor.
On the other hand, when this preform was heat-pressure molded in the same manner as in Example 1 except that the clearance between the upper mold and the lower mold was set to 1.2 mm, the molded product obtained was obtained. There was no problem in strength and appearance.
1 立体形状
2 一方向性補強繊維織物
2a 強化繊維糸条
2b 補助繊維糸
3a 一方向性補強繊維織物プリプレグから切断したプリプレグシート
5a 上型の部分型
5b 上型の部分型
6 下型
7 成形機
8 赤外線ヒーター
10 プリフォーム
11 立体形状1における大きなせん断変形を要する部位
DESCRIPTION OF SYMBOLS 1 Three-dimensional shape 2 Unidirectional reinforcing fiber fabric 2a Reinforcing fiber yarn 2b Auxiliary fiber yarn 3a Pre-preg sheet 5a cut from unidirectional reinforcing fiber fabric prepreg Upper mold part mold 5b Upper mold part mold 6 Lower mold 7 Molding machine 8 Infrared heater 10 Preform 11 Part requiring large shear deformation in the three-dimensional shape 1
Claims (3)
該プリフォームを加熱加圧して前記マトリックス樹脂組成物を硬化することによって所望の立体形状を有する繊維強化熱硬化性樹脂成形品を得る、繊維強化熱硬化性樹脂成形品の製造方法。 Ri Do a number present reinforcing fiber yarns and auxiliary yarns of which arranged parallel to one another, weave density of the auxiliary yarns is 3-9 / inch and are woven weight per unit area 1000 g / m 2 or less der Ru unidirectional A prepreg comprising a reinforcing fiber fabric and a thermosetting matrix resin composition , or a prepreg laminate including the prepreg is shaped into a predetermined shape to form a preform,
A method for producing a fiber-reinforced thermosetting resin molded article, which obtains a fiber-reinforced thermosetting resin molded article having a desired three-dimensional shape by heating and pressurizing the preform to cure the matrix resin composition.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014139710A JP6369178B2 (en) | 2014-07-07 | 2014-07-07 | Preform manufacturing method, fiber-reinforced thermosetting resin molded product manufacturing method, and preform |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014139710A JP6369178B2 (en) | 2014-07-07 | 2014-07-07 | Preform manufacturing method, fiber-reinforced thermosetting resin molded product manufacturing method, and preform |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016017111A JP2016017111A (en) | 2016-02-01 |
JP6369178B2 true JP6369178B2 (en) | 2018-08-08 |
Family
ID=55232583
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014139710A Active JP6369178B2 (en) | 2014-07-07 | 2014-07-07 | Preform manufacturing method, fiber-reinforced thermosetting resin molded product manufacturing method, and preform |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6369178B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200028061A (en) * | 2018-09-05 | 2020-03-16 | 재단법인 한국탄소융합기술원 | Apparatus for making the preform |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6808946B2 (en) * | 2016-02-23 | 2021-01-06 | 三菱ケミカル株式会社 | Manufacturing method of fiber reinforced composite molded product |
EP3960796A4 (en) * | 2019-04-26 | 2022-06-29 | Mitsubishi Chemical Corporation | Method for manufacturing molded article of fiber-reinforced composite material, reinforcing fiber substrate and molded article of fiber-reinforced composite material |
WO2021033740A1 (en) * | 2019-08-22 | 2021-02-25 | 三菱ケミカル株式会社 | Frp product manufacturing method |
CN112409618A (en) * | 2020-11-13 | 2021-02-26 | 清华大学深圳国际研究生院 | Unidirectional thermosetting aramid fiber composite material and preparation method thereof |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59129119A (en) * | 1983-01-17 | 1984-07-25 | Mitsubishi Heavy Ind Ltd | Forming method of composite material product |
JP2836457B2 (en) * | 1993-10-26 | 1998-12-14 | 東レ株式会社 | Carbon fiber fabric and method and apparatus for producing the same |
JP3094835B2 (en) * | 1994-03-08 | 2000-10-03 | 東レ株式会社 | REINFORCED FABRIC, ITS MANUFACTURING METHOD AND MANUFACTURING APPARATUS |
JP4076241B2 (en) * | 1996-10-30 | 2008-04-16 | 本田技研工業株式会社 | Manufacturing method of fiber reinforced plastic molding |
JP2008290421A (en) * | 2007-05-28 | 2008-12-04 | Toyota Motor Corp | Manufacturing method of molding comprising prepreg laminate |
JP2009161886A (en) * | 2008-01-09 | 2009-07-23 | Toray Ind Inc | Reinforced fiber substrate, preform, composite material and method for producing the same |
-
2014
- 2014-07-07 JP JP2014139710A patent/JP6369178B2/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200028061A (en) * | 2018-09-05 | 2020-03-16 | 재단법인 한국탄소융합기술원 | Apparatus for making the preform |
KR102207477B1 (en) | 2018-09-05 | 2021-01-26 | 재단법인 한국탄소융합기술원 | Apparatus for making the preform |
Also Published As
Publication number | Publication date |
---|---|
JP2016017111A (en) | 2016-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6369178B2 (en) | Preform manufacturing method, fiber-reinforced thermosetting resin molded product manufacturing method, and preform | |
JP3821467B2 (en) | Reinforcing fiber base material for composite materials | |
JP4899692B2 (en) | Reinforcing fiber fabric and method for producing the same | |
JP5241257B2 (en) | Fiber-reinforced composite material and method for producing the same | |
WO2007013204A1 (en) | Reinforcing woven fabric and process for producing the same | |
US20210316479A1 (en) | Method for manufacturing preform, method for manufacturing composite material molded article, and mold | |
WO2018083734A1 (en) | Composite material reinforcement substrate, composite material, and production method for composite material reinforcement substrate | |
JP2001064406A (en) | Preform for fiber-reinforced preform and fiber- reinforced composite material using the same and production thereof | |
JPWO2019244994A1 (en) | Prepreg sheet and its manufacturing method, fiber reinforced composite molded article and its manufacturing method, and preform manufacturing method | |
JP5002895B2 (en) | Method for producing reinforced fiber fabric | |
US20220040935A1 (en) | Method for manufacturing molded article of fiber-reinforced composite material, reinforcing fiber substrate and molded article of fiber-reinforced composite material | |
JP2007260930A (en) | Preform base material and preform manufacturing method | |
JP4759303B2 (en) | Composite material using multiaxial fabric | |
JP2014073580A (en) | Method for producing preform | |
Tanaka et al. | Eco-efficient manufacturing process of fibre reinforced thermoplastic | |
JP4817651B2 (en) | Preform substrate for FRP and method for producing preform | |
JP5144010B2 (en) | Manufacturing method of fiber reinforced plastic panel | |
JP2017148973A (en) | Method for manufacturing fiber-reinforced composite material molded product | |
JPH07241846A (en) | Preform and production of the same | |
KR101879174B1 (en) | flexible carbon fiber fabrics and textile fabric manufacturing method obtained through him | |
JP6650296B2 (en) | Substrate for fiber reinforced plastic, multilayer substrate for fiber reinforced plastic, preform for fiber reinforced plastic, and method for producing the same | |
CN113242783B (en) | Cloth prepreg, method for producing cloth prepreg, fiber-reinforced resin molded article, and method for producing fiber-reinforced resin molded article | |
JP5417461B2 (en) | Manufacturing method of laminate | |
JP2011251446A (en) | Continuous fiber composite material structure, method for manufacturing the same, and composite molded object using the continuous fiber composite material structure | |
JP2012111101A (en) | Shape molding method and fiber-reinforced resin molding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170206 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20171108 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171128 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180122 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180206 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180612 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180625 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6369178 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |