JP2001064406A - Preform for fiber-reinforced preform and fiber- reinforced composite material using the same and production thereof - Google Patents

Preform for fiber-reinforced preform and fiber- reinforced composite material using the same and production thereof

Info

Publication number
JP2001064406A
JP2001064406A JP24566899A JP24566899A JP2001064406A JP 2001064406 A JP2001064406 A JP 2001064406A JP 24566899 A JP24566899 A JP 24566899A JP 24566899 A JP24566899 A JP 24566899A JP 2001064406 A JP2001064406 A JP 2001064406A
Authority
JP
Japan
Prior art keywords
preform
fiber
yarn
composite material
reinforced composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24566899A
Other languages
Japanese (ja)
Inventor
Kiyoshi Honma
清 本間
Akira Nishimura
明 西村
Shunsaku Noda
俊作 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP24566899A priority Critical patent/JP2001064406A/en
Publication of JP2001064406A publication Critical patent/JP2001064406A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/14Making preforms characterised by structure or composition
    • B29B11/16Making preforms characterised by structure or composition comprising fillers or reinforcement

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Moulding By Coating Moulds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a preform that permits efficient lamination operation by allowing woven fabrics to adhere to each other effectively and steadily with a reduced amount of an adhesive and provide a fiber-reinforced composite material using the same. SOLUTION: In the preform 1 for fiber-reinforced composite material comprising a plurality of reinforcing woven fabrics (2a-2c) laminated, at least one of the reinforcing woven fabrics is made of a flat carbon fiber yarn in which a thermoplastic polymer 5 is attached to almost the center of the carbon fiber fabric and additionally is integrally adhered to (B) other adjacent reinforcing woven fabrics through the thermoplastic polymer. The preform is set in the mold, held in vacuum, then an epoxy resin is cast in the mold and cured to give a molded product.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は繊維強化複合材を形
成するときに、いわゆる補強材として使用するプリフォ
ーム、およびそのプリフォームを用いてなる繊維強化複
合材ならびにこれらの製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a preform used as a so-called reinforcing material when forming a fiber-reinforced composite material, a fiber-reinforced composite material using the preform, and a method for producing the same. .

【0002】[0002]

【従来技術】炭素繊維は比重が小さくて高強度、高弾性
率を有し、それを樹脂で固めた炭素繊維強化複合材は比
強度・比弾性率の高い材料となり、航空機材料を始めと
してスポーツ・レジャー用品に定着しており、最近では
一般産業用途にも使われ始めている。
2. Description of the Related Art Carbon fiber has a low specific gravity and a high strength and a high elastic modulus, and a carbon fiber reinforced composite material obtained by solidifying it with a resin has a high specific strength and a specific elastic modulus. -Established in leisure products and recently started to be used for general industrial purposes.

【0003】また、炭素繊維強化複合材の成形法には種
々の方法があり、一般的には成形品の要求特性や、製造
コストなどを鑑みて適した成形法が選択されている。す
なわち、高性能が要求される航空機用部材においては、
通常、樹脂を予め含浸させたプリプレグの形態とし、そ
のプリプレグを型に沿わしながら積層し、オートクレー
ブで成形する方法が採られている。
There are various methods for molding a carbon fiber reinforced composite material. In general, an appropriate molding method is selected in view of required characteristics of a molded product, production cost, and the like. In other words, in aircraft components that require high performance,
Usually, a method is employed in which the prepreg is pre-impregnated with a resin, the prepregs are laminated along a mold, and molded in an autoclave.

【0004】しかしながら、オートクレーブ成形では高
性能で信頼性のある材料が得られるものの製造コストが
高くつくのが欠点である。原油高騰時にはそれでも通用
していたが、現在のように原油価格の下落、景気低迷の
中では容認できない状況にあり、材料の低コスト化が盛
んに叫ばれている。
[0004] In autoclave molding, however, a high-performance and reliable material can be obtained, but the disadvantage is that the production cost is high. It was still accepted when the price of crude oil rose, but it is unacceptable in the current situation of falling crude oil prices and the economic downturn, and low cost of materials is being actively called for.

【0005】そのような状況において、最近ではレジン
トランスファー成形法(いわゆるRTM成形法)が注目
されている。
Under such circumstances, attention has recently been paid to a resin transfer molding method (so-called RTM molding method).

【0006】RTM成形法とは所定のプリフォームを成
形型にセットし、型内を真空状態にした後、樹脂を型内
に注入して成形する方法で、寸法精度が高く、信頼性の
ある複合材が低コストで得られる可能性を秘めた成形方
法である。
[0006] The RTM molding method is a method in which a predetermined preform is set in a molding die, the inside of the die is evacuated, and a resin is injected into the die to perform molding. This is a molding method with the potential of obtaining a composite material at low cost.

【0007】しかし、RTM成形法で高性能が要求され
る航空機用複合材を低コストで得るためには、高生産性
を有したプリフォームの製造技術と、常温で低粘度であ
って、特に高温雰囲気下での高い圧縮強度を発揮する樹
脂の開発が最大の課題である。
However, in order to obtain a composite material for aircraft, which requires high performance by the RTM molding method, at a low cost, it is necessary to use a preform manufacturing technique having high productivity and a low viscosity at ordinary temperature. The biggest challenge is to develop a resin that exhibits high compressive strength under high temperature atmosphere.

【0008】例えば、プリフォームを効率良く製造する
方法として、特開昭63-152637号公報において、織糸に
熱可塑性ポリマーを付着させ、その熱可塑性ポリマーで
隣接織物同士を接着させたプリフォームが提案されてい
る。
For example, as a method for efficiently producing a preform, Japanese Patent Application Laid-Open No. Sho 63-152637 discloses a preform in which a thermoplastic polymer is adhered to a woven yarn and adjacent fabrics are adhered to each other with the thermoplastic polymer. Proposed.

【0009】上記プリフォームは、たて糸とよこ糸の交
点を熱可塑性ポリマーで目どめされているので目ずれす
ることがなく、効率良くプリフォームを製造することが
できる。
In the preform, since the intersection of the warp and the weft is blinded by the thermoplastic polymer, the preform can be manufactured efficiently without misalignment.

【0010】しかし、プリフォームを構成する織物に付
着させる熱可塑性ポリマーは、織物製造時に炭素繊維糸
と熱可塑性ポリマー糸を引き揃えて製織し、加熱して前
記ポリマー糸を溶融させたものであり、熱可塑性ポリマ
ー糸を炭素繊維糸の上に配置させようとしても各織糸の
断面形状は楕円形をなし、かつ織糸はクリンプしている
ので熱可塑性ポリマー糸を織糸上に留めておくことは至
難の技であり、実際には織糸側面に偏位したり、織糸の
交錯部に隠れたりするため、織物同士の接着面となる表
面には位置せず、織物同士を接着させるには不十分であ
る。
However, the thermoplastic polymer to be attached to the woven fabric constituting the preform is prepared by aligning and weaving carbon fiber yarns and thermoplastic polymer yarns at the time of manufacturing the woven fabric, and heating and melting the polymer yarns. Even if the thermoplastic polymer yarn is to be arranged on the carbon fiber yarn, the cross-sectional shape of each woven yarn is elliptical, and the woven yarn is crimped, so that the thermoplastic polymer yarn is kept on the woven yarn. This is an extremely difficult technique, and in fact it is displaced to the side of the yarn or hidden in the intersecting part of the yarn, so it is not located on the surface that becomes the bonding surface between the fabrics, and the fabrics are bonded together. Is not enough.

【0011】従って、織物同士を接着させるために熱可
塑性ポリマーを多量に使用することになり、コストが高
くつくと同時に、熱可塑性ポリマーが炭素繊維糸条を構
成する炭素繊維間に入り込み、樹脂の含浸を阻害するた
めに複合材の機械的特性を低下させることになる問題が
ある。
Therefore, a large amount of the thermoplastic polymer is used to adhere the fabrics to each other, so that the cost is high and, at the same time, the thermoplastic polymer enters between the carbon fibers constituting the carbon fiber yarn, and the resin is reduced. There is a problem that the impregnation impairs the mechanical properties of the composite.

【0012】さらに、従来の炭素繊維織物では織糸が集
束し、織糸間に隙間のある織物構造であるから、複合材
にした際に炭素繊維リッチの箇所と樹脂リッチの箇所が
偏在するし、高い繊維体積割合(高Vf)の成形品が得られ
ない。また、織糸間隔の小さい状態でたて糸とよこ糸は
大きなクリンプを有して交錯しているので、炭素繊維の
有する高い比強度・比弾性率特性が十分に発揮されない
問題がある。
Further, in the conventional carbon fiber woven fabric, since the woven yarns are bundled and the woven structure has a gap between the woven yarns, carbon fiber-rich portions and resin-rich portions are unevenly distributed when a composite material is formed. In addition, a molded product having a high fiber volume ratio (high Vf) cannot be obtained. In addition, since the warp yarn and the weft yarn have a large crimp and are interlaced in a state where the weft yarn interval is small, there is a problem that the high specific strength and specific elastic modulus characteristics of the carbon fiber are not sufficiently exhibited.

【0013】一方、RTM成形用の樹脂においては、プ
リフォームへの樹脂含浸性を考慮して常温では低粘度
で、かつ複合材として高い機械的特性を発揮することが
必要であるが、航空機用部材においては、特に高温雰囲
気下で高い性能を発揮することが要求される。
On the other hand, the resin for RTM molding needs to have a low viscosity at room temperature and exhibit high mechanical properties as a composite material in consideration of the resin impregnating property of the preform. The members are required to exhibit high performance especially in a high-temperature atmosphere.

【0014】しかし、低粘度樹脂でそのような航空機用
に要求されている性能を満足する樹脂はなく、今後の開
発が期待されているのが現状である。
However, there is no low-viscosity resin that satisfies the performance required for such aircraft, and the present situation is that future development is expected.

【0015】[0015]

【発明が解決しようとする課題】本発明は、上記した従
来のプリフォーム、およびRTM成形による製造法の問
題点を解決することにあり、僅かな接着剤を用いて織物
同士を効果的に、かつ確実に接着させることにより、積
層作業を効率的に行えるプリフォームおよびこのプリフ
ォームを用いた繊維強化複合材の提供、ならびにRTM
成形により優れた性能を発揮する炭素繊維強化複合材を
低コストで製造する方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the problems of the above-mentioned conventional preform and the production method by RTM molding. Provided is a preform capable of efficiently performing lamination work by firmly and securely bonding, a fiber-reinforced composite material using the preform, and RTM.
An object of the present invention is to provide a method for producing a carbon fiber reinforced composite material exhibiting excellent performance by molding at low cost.

【0016】[0016]

【課題を解決するための手段】上記問題点を解決するた
めに、本発明は、複数枚の補強織物が積層されてなる繊
維強化複合材用プリフォームであって、(A)前記補強
織物のうちの少なくとも1枚は繊度D(デニール)が
3,500デニール以上の扁平な炭素繊維糸条からな
り、たて糸およびよこ糸の糸幅W(mm)と炭素繊維糸条
の繊度との関係がW=0.05×D1/2〜0.12×D
1/2の範囲内で、カバーファクターが95%以上、かつ
前記たて糸またはよこ糸の糸幅のほぼ中央部に熱可塑性
ポリマーが付着された炭素繊維織物であり、(B)さら
に隣接する他の補強織物とが前記熱可塑性ポリマーによ
り接着されて一体化されていることを特徴とする繊維強
化複合材用プリフォームである。
In order to solve the above-mentioned problems, the present invention provides a preform for a fiber-reinforced composite material, in which a plurality of reinforcing fabrics are laminated, and (A) a preform for the reinforcing fabric. At least one of the fibers is made of a flat carbon fiber yarn having a fineness D (denier) of 3,500 denier or more, and the relationship between the yarn width W (mm) of the warp and weft yarns and the fineness of the carbon fiber yarn is W = 0.05 × D 1/2 〜0.12 × D
A carbon fiber woven fabric having a cover factor of 95% or more within a range of 1/2 and a thermoplastic polymer adhered to a substantially central portion of the warp or weft yarn width, and (B) another adjacent reinforcing material A preform for a fiber-reinforced composite material, wherein the preform is bonded to a woven fabric by the thermoplastic polymer to be integrated.

【0017】また、本発明は、前記繊維強化複合材用プ
リフォームを用いてなる繊維強化複合材である。
Further, the present invention is a fiber-reinforced composite material using the preform for a fiber-reinforced composite material.

【0018】さらに、本発明は、前記繊維強化複合材用
プリフォームを成形型内にセットし、成形型内を0.0
1MPa以下の真空状態に保持した後、25℃での樹脂
粘度が1.5〜15ポイズ、複合材として硬化後のガラ
ス転移点が120℃以上のエポキシ樹脂を注入し、樹脂
を硬化させて成形することを特徴とする繊維強化複合材
の製造方法及び前記製造方法により得られたことを特徴
とする繊維強化複合材である。
Further, the present invention sets the preform for a fiber-reinforced composite material in a mold, and
After holding in a vacuum state of 1 MPa or less, an epoxy resin having a resin viscosity at 25 ° C. of 1.5 to 15 poise and a glass transition point of 120 ° C. or more after curing as a composite material is injected, and the resin is cured and molded. A method for producing a fiber-reinforced composite material, and a fiber-reinforced composite material obtained by the production method.

【0019】本発明のプリフォームを構成する補強織物
のたて糸およびよこ糸は、繊度が0.4〜0.6デニー
ルの範囲内の単繊維の集束体であって、その断面形状が
扁平な形状(糸幅Wmm)をした炭素繊維糸状で構成さ
れている。
The warp and weft of the reinforcing fabric constituting the preform of the present invention are bundles of single fibers having a fineness in the range of 0.4 to 0.6 denier, and have a flat cross section ( It is composed of a carbon fiber thread having a thread width of Wmm).

【0020】前記糸幅Wは、用いる炭素繊維糸条の繊度
に関係し、炭素繊維糸条の繊度Dとの関係が W=0.
05×D1/2 〜0.12×D1/2 の範囲内である。そ
して、前記広い糸幅の炭素繊維糸条上には熱可塑性ポリ
マーが付着されている。
The yarn width W is related to the fineness of the carbon fiber yarn used, and the relationship with the fineness D of the carbon fiber yarn is W = 0.
It is in the range of 05 × D 1/2 to 0.12 × D 1/2 . Then, a thermoplastic polymer is attached on the wide carbon fiber yarn.

【0021】熱可塑性ポリマーを付着させる方法は、織
物を製織する際の広い糸幅で供給されるたて糸またはよ
こ糸の中央上に、熱可塑性の低融点ポリマー糸が位置す
るようガイドで規制しながらたて糸またはよこ糸と引き
揃えて供給し、織物形態にした後、織機上、または別工
程で前記熱可塑性ポリマーの融点以上の温度で加熱する
ことにより付着させる。このようにすると、同時にたて
糸とよこ糸の交点を目どめすることが可能である。
The method for adhering the thermoplastic polymer is as follows: the warp is controlled by a guide so that the thermoplastic low-melting polymer yarn is positioned on the center of the warp or weft supplied with a wide yarn width when weaving a woven fabric. Alternatively, it is supplied in parallel with the weft yarn and formed into a woven fabric form, and then attached on a loom or in a separate step by heating at a temperature higher than the melting point of the thermoplastic polymer. In this way, it is possible to simultaneously determine the intersection of the warp and the weft.

【0022】この時、前記織物のたて糸とよこ糸は互い
に扁平状態で交錯し合っているので、それぞれの浮きの
部分は平坦であるから、上述した従来技術のように熱可
塑性ポリマー糸が織糸と織糸の間に落ちるようなことが
なく確実に安定して織糸幅のほぼ中央に付着させること
ができる。
At this time, since the warp and the weft of the woven fabric are interlaced with each other in a flat state, the respective floating portions are flat. Therefore, the thermoplastic polymer yarn and the weft are combined with the woven yarn as in the above-mentioned prior art. It is possible to reliably and stably adhere to the center of the width of the yarn without falling between the yarns.

【0023】接着剤となる熱可塑性ポリマーは前記平坦
なたて糸、またはよこ糸の中央部、すなわち織物外表面
に安定して付着されているので、その上に他の織物を積
層した際、熱可塑性ポリマーが他の織物表面にも確実に
接し、織物同士を強固で確実に接着させることができ
る。
The thermoplastic polymer serving as an adhesive is stably adhered to the central portion of the flat warp or weft yarn, that is, the outer surface of the fabric, so that when another fabric is laminated thereon, the thermoplastic polymer is used. Can reliably contact other fabric surfaces, and the fabrics can be firmly and reliably bonded to each other.

【0024】ここで、炭素繊維糸条の繊度Dと糸幅Wの
関係において、糸幅Wが0.05×D1/2未満と狭くな
ると織糸断面形状が楕円形をなすので、織物製造中に熱
可塑性ポリマー糸が織糸と隣接する織糸の間に落ち込み
易くなり、織糸上に確実に配置するのが難しくなる問題
がある。
Here, in the relationship between the fineness D of the carbon fiber yarn and the yarn width W, when the yarn width W is reduced to less than 0.05 × D 1/2, the cross-sectional shape of the woven yarn becomes elliptical. There is a problem that the thermoplastic polymer yarn easily falls between the woven yarn and the adjacent woven yarn, and it is difficult to reliably arrange the woven yarn on the woven yarn.

【0025】一方、糸幅Wが0.12×D1/2 よりも
広幅となると、熱可塑性ポリマー糸が織糸と織糸の間に
落ち込む心配は全くないが、織糸間の間隔が大きくなり
過ぎてたて糸とよこ糸の拘束力が弱くなり、織物として
の形態安定性が低下して取扱い難い織物となる。
On the other hand, when the yarn width W is wider than 0.12 × D 1/2 , there is no fear that the thermoplastic polymer yarn falls between the yarns, but the space between the yarns is large. The binding force between the warp and the weft becomes too weak, and the morphological stability of the woven fabric is reduced, resulting in a woven fabric that is difficult to handle.

【0026】従って、熱可塑性ポリマーの配置の安定化
と織物自体の取扱い性の両者を鑑みて、糸幅Wは用いる
糸条繊度Dとの関係において W=0.05×D1/2
0.12×D1/2の範囲であることが必要である。
Therefore, in consideration of both the stabilization of the arrangement of the thermoplastic polymer and the handleability of the woven fabric itself, the yarn width W is W = 0.05 × D 1/2に お い て in relation to the used yarn fineness D.
It must be in the range of 0.12 × D 1/2 .

【0027】前記たて糸とよこ糸をなす炭素繊維糸条は
無ヨリであることが好ましい。ヨリが存在すると、その
ヨリ部において扁平状の炭素繊維糸条が集束し、糸幅が
確保できないと同時に、その部分が分厚くなり表面平滑
な複合材が得られない。また、応力が作用した際にその
ヨリの部分に応力が集中してその箇所から破壊が進展す
る問題がある。
The carbon fiber thread forming the warp and the weft is preferably non-twisted. When the twist is present, the flat carbon fiber yarns are bundled at the twisted portion, and the yarn width cannot be secured, and at the same time, the portion is thickened and a composite material having a smooth surface cannot be obtained. Further, when a stress is applied, there is a problem that the stress concentrates on the twisted portion and the destruction proceeds from that portion.

【0028】また、本発明の炭素繊維糸条の繊度は3,
500デニール以上である。
The fineness of the carbon fiber yarn of the present invention is 3,
500 denier or more.

【0029】炭素繊維糸条の製造は太さに関係なくほぼ
同じ焼成スピードで生産される関係から、太い糸ほど製
造コストが安価であり、また、同じ目付の織物を製造す
る際、太い炭素繊維糸条を粗い密度で織る方が当然生産
性が高くて加工コストが安価になるため、上記織物は糸
製造コストおよび織物の加工コストの両面から低コスト
が図れるものである。
Since the production of carbon fiber yarns is carried out at substantially the same firing speed regardless of the thickness, the production cost of a thicker yarn is lower. Weaving the yarn at a coarse density naturally leads to higher productivity and lower processing cost. Therefore, the above-mentioned woven fabric can be reduced in cost in terms of both yarn production cost and woven fabric processing cost.

【0030】しかし、太い炭素繊維糸条を用いると織り
糸のクリンプが大きくなり、応力が作用した際にはたて
糸とよこ糸の交錯部に応力が集中して早い段階で破壊す
るという問題点がある。
However, when a thick carbon fiber yarn is used, the crimp of the woven yarn becomes large, and when a stress is applied, there is a problem that the stress is concentrated at the intersection of the warp yarn and the weft yarn and is broken at an early stage.

【0031】また、本発明のプリフォームを構成する織
物は、繊度が3.500デニール以上の太い炭素繊維糸条を
上記糸幅Wとの関係で大きなピッチで配列して、扁平状
で交錯させているので、結果的に前述したような大きな
クリンプとはならず高い機械的特性を発揮させることが
できるものである。炭素繊維糸条の配列ピッチは糸幅と
同じにするのが最も好ましいが、実際にはたて糸とよこ
糸が互いに交錯し合っているので配列ピッチと糸幅を同
じにすることは難しい。糸幅に対して配列ピッチがあま
りにも大きい、すなわち織糸間に大きな隙間が存在する
と、その隙間は樹脂リッチとなるので高い繊維体積割合
(Vf)の複合材が得られない問題がある。従って、織
糸配列ピッチは糸幅の1.2倍以下が好ましい。炭素繊
維糸条のクリンプをできる限り小さくするためには、糸
幅/糸厚み比で25以上の扁平形状であることが好まし
い。
In the woven fabric constituting the preform of the present invention, thick carbon fiber yarns having a fineness of 3.500 denier or more are arranged at a large pitch in relation to the yarn width W, and are interlaced in a flat shape. As a result, a large crimp as described above does not result, and high mechanical properties can be exhibited. It is most preferable that the arrangement pitch of the carbon fiber yarns is the same as the yarn width. However, in practice, it is difficult to make the arrangement pitch and the yarn width the same because the warp and the weft intersect each other. If the arrangement pitch is too large with respect to the yarn width, that is, if there is a large gap between the yarns, the gap becomes rich in resin, so that there is a problem that a composite material having a high fiber volume ratio (Vf) cannot be obtained. Therefore, the weave yarn arrangement pitch is preferably 1.2 times or less the yarn width. In order to make the crimp of the carbon fiber thread as small as possible, the carbon fiber thread preferably has a flat shape with a yarn width / thickness ratio of 25 or more.

【0032】織糸クリンプは、(交錯部での織糸の厚
み)/(織糸間隔)に関係するが、本発明で用いる織物
は炭素繊維糸条を扁平状で大きなピッチで交錯している
から交錯部での織糸厚みが小さく、織糸間隔が大きいの
でクリンプは非常に小さく、高い機械的特性を発揮させ
ることができる。
The crimp of the woven yarn is related to (thickness of the woven yarn at the intersecting portion) / (interval of the woven yarn). In the woven fabric used in the present invention, the carbon fiber yarn is interlaced at a flat shape with a large pitch. Since the thickness of the yarn at the intersecting portion is small and the interval between the yarns is large, the crimp is very small and high mechanical properties can be exhibited.

【0033】上記織物のカバーファクターは95%以上
である。その理由は織糸間に隙間が存在し、カバーファ
クターが小さい織物では、前述したように高い繊維含有
率の複合材が得られず、炭素繊維の持つ高比強度・高比
弾性率が発揮されないことになるからである。
The woven fabric has a cover factor of 95% or more. The reason is that there is a gap between the yarns, and in a woven fabric with a small cover factor, as described above, a composite material having a high fiber content cannot be obtained, and the high specific strength and high specific elastic modulus of carbon fibers cannot be exhibited. Because it will be.

【0034】また織物に大きな隙間があると、その部分
は樹脂部分がリッチとなるので、応力が作用するとその
樹脂リッチ部に応力が集中し、破壊の起点となって低荷
重で破壊する問題があり、結論として織物としてのカバ
ーファクターは95%以上であることが必要である。
If there is a large gap in the woven fabric, the resin portion becomes rich in that portion. When a stress is applied, the stress concentrates on the resin-rich portion, which causes a problem of breaking at a low load as a starting point of destruction. Yes, the conclusion is that the cover factor as a woven fabric must be 95% or more.

【0035】なお、カバーファクターは織物を平面で見
た際の炭素繊維の被覆割合で織物の糸間隔(mm)と糸幅(m
m)から以下の計算式で求めた値である。 次に、本発明に用いる炭素繊維糸条の種類としては、特
に限定されず、PAN系炭素繊維でもピッチ系炭素繊維
であってもよい。特に、用途が航空機用の場合には、耐
衝撃性が要求されている点から、強度が3,500MPa
以上の高強度で破断伸度が1.5%以上の高伸度のPA
N系炭素繊維糸条が好ましいものである。
The cover factor is a ratio of the carbon fiber covering when the woven fabric is viewed in a plane, and the yarn spacing (mm) and the yarn width (m) of the woven fabric.
This is a value obtained from m) by the following formula. Next, the type of the carbon fiber yarn used in the present invention is not particularly limited, and may be a PAN-based carbon fiber or a pitch-based carbon fiber. In particular, when the application is for aircraft, the strength is required to be 3,500 MPa because of the required impact resistance.
PA with high strength and high elongation at break of 1.5% or more
N-based carbon fiber yarns are preferred.

【0036】たて糸、またはよこ糸上に付着させた熱可
塑性ポリマーについても特に限定されないが、100〜
130℃の低温の融点である熱可塑性低融点ポリマーで
あれば、織物製造中に溶融させ、織糸上に容易に配置さ
せることができるので好ましい。
The thermoplastic polymer deposited on the warp or weft is not particularly limited, either.
A thermoplastic low melting point polymer having a low melting point of 130 ° C. is preferred because it can be melted during fabric production and easily arranged on a woven yarn.

【0037】低融点ポリマーとしては、共重合ナイロ
ン、共重合ポリエステル、ポリプロピレン、ポリエチレ
ン、フェノールなどが使える。前記熱可塑性ポリマーを
織糸上に配置させる方法としては、前述したように熱可
塑性ポリマー糸を織物製造時にたて糸、またはよこ糸と
一緒に引き揃えて供給して織糸上に配置させ、例えば織
機上で遠赤外線ヒータで加熱して溶融させることにより
容易に付着させることができる。
As the low melting point polymer, copolymerized nylon, copolymerized polyester, polypropylene, polyethylene, phenol and the like can be used. As a method of arranging the thermoplastic polymer on the woven yarn, as described above, the thermoplastic polymer yarn is arranged on the woven yarn by supplying the thermoplastic polymer yarn together with the warp yarn or the weft yarn during the production of the woven fabric, for example, on a loom. And can be easily attached by heating and melting with a far infrared heater.

【0038】溶融後の熱可塑性ポリマーの形態として
は、たて糸、またはよこ糸の糸幅の中央で連続的に付着
させてもよいが、たて糸、またはよこ糸上に配置した熱
可塑性ポリマー糸をその融点より20℃以上の高温度で
加熱して、熱可塑性ポリマー糸の熱収縮を利用して切断
させ、交差する糸端近傍で粒状に付着させても良い。
As the form of the thermoplastic polymer after melting, the thermoplastic polymer may be continuously adhered at the center of the warp or weft yarn width. It may be heated at a high temperature of 20 ° C. or higher to cut the thermoplastic polymer yarn by utilizing the heat shrinkage, and to adhere the particles in the vicinity of the intersecting yarn ends.

【0039】たて糸、またはよこ糸上に線状で付着させ
た場合にはたて糸、またはよこ糸の繊維方向と並行する
ので接着剤となる熱可塑性ポリマーが繊維内に埋もれて
織物表面に出る量が少なくなり、織物同士の接着が不十
分となり易いが、粒状で存在すると確実に織物表面に存
在させることができ、好ましいものである。
When the fibers are attached linearly on the warp or weft yarn, the amount of the thermoplastic polymer serving as an adhesive is buried in the fiber and comes out to the surface of the woven fabric because it is parallel to the fiber direction of the warp or weft yarn. Although the adhesion between the woven fabrics is likely to be insufficient, the presence in the form of particles can be surely made to exist on the surface of the woven fabric, which is preferable.

【0040】熱可塑性ポリマーをたて糸、またはよこ糸
の扁平面に付着させ際、織物の表面側のみ付着させても
良いし、両面に付着させても構わない。あるいはたて
糸、またはよこの1本交互に表面と裏面の両面に付着さ
せても良い。
When the thermoplastic polymer is attached to the flat surface of the warp or weft, it may be attached only to the surface side of the woven fabric or to both sides. Alternatively, one warp or one weft may be alternately attached to both the front and back surfaces.

【0041】熱可塑性ポリマーの付着量は、1〜5重量
%であることが好ましい。1%未満では、たて糸とよこ
糸の交点を目どめするには十分であるが、織物同士を接
着させるのに少なく、接着させても容易に剥がれる問題
がある。一方5%を越えると、織物同士の接着は強固に
できるが、成形時に熱可塑性ポリマーが炭素繊維間にも
多量に付着して樹脂の含浸が悪くなり、その付着箇所が
未含浸部となり易い問題がある。
The amount of the attached thermoplastic polymer is preferably 1 to 5% by weight. If it is less than 1%, it is sufficient to observe the intersection between the warp and the weft, but there is a problem in that the woven fabrics are not easily adhered to each other, and there is a problem that the woven fabrics are easily peeled off even if they are adhered. On the other hand, if it exceeds 5%, the adhesion between the fabrics can be strengthened, but a large amount of the thermoplastic polymer adheres between the carbon fibers at the time of molding, impairing the impregnation of the resin, and the adhesion portion tends to be an unimpregnated portion. There is.

【0042】本発明のプリフォームは、前記織物が少な
くとも1枚を含んで積層構成をなし、前記熱可塑性ポリ
マーが付着した面と隣接する織物とが熱可塑性ポリマー
で接着されて一体化されている。織物同士の接着は、熱
可塑性ポリマーを付着させた織物面に他の織物を重ね、
熱可塑性ポリマーの融点以上に加熱することにより容易
に行うことができる。
In the preform of the present invention, the woven fabric includes at least one sheet to form a laminated structure, and the surface to which the thermoplastic polymer is attached and the adjacent woven fabric are bonded and integrated with the thermoplastic polymer. . Adhesion of the fabrics, the other fabric on the fabric surface with the thermoplastic polymer attached,
It can be easily carried out by heating above the melting point of the thermoplastic polymer.

【0043】また、加熱時に若干の圧力を加えることに
より一層強固な接着が得られる。実際面では、プレス機
を用いて加熱した後に所定の形状に賦形しながら接着さ
せることもできる。また、長尺のプリフォームであれば
ホットローラ等を用いて連続的に賦形と接着を行うこと
ができる。
Further, by applying a slight pressure during heating, stronger adhesion can be obtained. On the practical side, it is also possible to bond while shaping into a predetermined shape after heating using a press machine. In the case of a long preform, shaping and bonding can be continuously performed using a hot roller or the like.

【0044】プリフォーム材の形状は最終製品の形状に
より決まるが、例えば平板状、断面形状がI、T、C型
などで延びるビーム材のような形状、あるいは表面が
凸、凹型の形状など種々の形状が含まれる。
The shape of the preform material is determined by the shape of the final product. For example, there are various shapes such as a flat plate shape, a cross-sectional shape such as a beam material extending in the form of I, T, C, or a convex or concave surface. Is included.

【0045】特に複雑な形状となると一斉に賦形するの
が難しくなるので、織物を1枚ずつ賦形させながら接着
させても良い。
In particular, since it becomes difficult to simultaneously form a complicated shape, the woven fabrics may be adhered while being formed one by one.

【0046】プリフォームを構成する複数の織物間にお
ける積層方向は、最終製品に要求される強度特性に合わ
せて適宜決めればよく、例えば、それぞれの織物を構成
しているたて糸またはよこ糸同士を同じ方向に積層した
構成、あるいは、0/90゜方向や+45/-45゜方向に交叉し
た補強繊維を含めた積層構成であっても良い。
The laminating direction between a plurality of fabrics constituting the preform may be appropriately determined according to the strength characteristics required for the final product. For example, the warp or weft constituting each fabric is placed in the same direction. Or a laminated structure including reinforcing fibers crossed in the 0/90 ° direction or the + 45 / -45 ° direction.

【0047】積層方向を違える場合、積層構成によって
は成形品の反りが生じることがあるので、積層品の厚み
方向の中心軸に対して対称積層にするのが好ましい。
When the laminating direction is different, the molded product may be warped depending on the laminating structure. Therefore, it is preferable to form the laminated product symmetrically with respect to the central axis in the thickness direction.

【0048】また、本発明のプリフォームは、前記した
2方向織物に、炭素繊維糸条がたて糸方向に配向し、よ
こ糸が細い繊維糸で織られた一方向性の織物を含めて積
層されたものも含まれる。
The preform of the present invention is laminated on the above-described two-way fabric, including a unidirectional fabric in which carbon fiber threads are oriented in the warp direction and the weft is woven with thin fiber yarns. Things are also included.

【0049】このような、一方向性の織物を積層するこ
とにより、成形品における長手方向の強度、弾性率が要
求される成形品のプリフォームとして有効である。
By laminating such a unidirectional woven fabric, it is effective as a preform of a molded article requiring strength and elasticity in the longitudinal direction of the molded article.

【0050】また、一方向性織物のよこ糸として用いる
細い繊維糸条としては、ガラス繊糸条、ポリアラミド繊
維糸条、ビニロン繊維糸条などを使用することができ
る。また、糸条の繊度はたて糸のクリンプを小さくする
点から100〜500デニールの細い糸が好ましい。
As the thin fiber yarn used as the weft of the unidirectional woven fabric, a glass fiber yarn, a polyaramid fiber yarn, a vinylon fiber yarn, or the like can be used. The fineness of the yarn is preferably a thin yarn of 100 to 500 denier from the viewpoint of reducing the crimp of the warp yarn.

【0051】さらに、前記よこ糸に熱可塑性ポリマー糸
を引き揃え、または熱可塑性ポリマー糸をカバーリング
して織り込み、織物にしてから熱可塑性ポリマーの融点
以上に加熱してたて糸とよこ糸の交点を目どめしておく
ことにより、所定のサイズに切断する際に炭素繊維糸条
が解れるようなことがなく取扱い性に優れるので好まし
い。
Further, a thermoplastic polymer yarn is aligned with the weft yarn or covered with the thermoplastic polymer yarn and woven into a woven fabric, and then heated to the melting point of the thermoplastic polymer or higher to find the intersection of the warp yarn and the weft yarn. It is preferable that the carbon fiber yarns are not broken when cut into a predetermined size and the handleability is excellent, so that the handleability is excellent.

【0052】次に、上述したプリフォームを用いた本発
明の繊維強化複合材の製造方法について説明する。
Next, a method for producing the fiber-reinforced composite material of the present invention using the above-described preform will be described.

【0053】まず、上型と下型との間に形成されたキャ
ビィティの中に上述した本発明のプリフォームをセット
し、前記キャビィティ内を0.01MPa以下に真空引
きして減圧した後、樹脂を注入してプリフォームに樹脂
含浸させ、樹脂注入が完了したら樹脂を硬化させる。
First, the above-described preform of the present invention is set in a cavity formed between the upper mold and the lower mold, and the inside of the cavity is evacuated to 0.01 MPa or less to reduce the pressure. Is injected to impregnate the resin into the preform, and when the resin injection is completed, the resin is cured.

【0054】本発明の複合材の製造方法に用いる樹脂は
常温では液状の熱硬化型のエポキシ樹脂で、常温での樹
脂粘度は1.5〜15ポイズであることが必要である。
樹脂の粘度が低い方がプリフォーム内に樹脂が入り込み
易く、樹脂注入時間が短縮されて好ましい傾向ではある
が、常温での樹脂粘度を下げようとすると樹脂のガラス
転移点が低下し、複合材としたときの高温雰囲気での高
い機械的特性が得られない問題があるため、樹脂粘度を
1.5ポイズ以上であることが必要である。
The resin used in the method for producing a composite material of the present invention is a thermosetting epoxy resin which is liquid at room temperature, and the resin viscosity at room temperature must be 1.5 to 15 poise.
The lower the viscosity of the resin, the easier it is for the resin to enter the preform and the shorter the resin injection time, which is a favorable tendency.However, if the resin viscosity at room temperature is lowered, the glass transition point of the resin decreases, and the composite material In this case, there is a problem that high mechanical properties cannot be obtained in a high-temperature atmosphere. Therefore, the resin viscosity needs to be 1.5 poise or more.

【0055】一方、樹脂粘度が15ポイズよりも大きい
と、樹脂の流動性が低下しプリフォームへの樹脂の含浸
が悪くなって未含浸部ができる問題や樹脂注入時間が長
くなる問題が生じる。特に、本発明に用いるプリフォー
ムを構成する織物材は、扁平状のたて糸とよこ糸が交錯
してカバーファクターが95%以上と非常に目の詰まっ
た織構造であるために樹脂が通り難いので樹脂粘度はで
きる限り低い方が好ましいものである。
On the other hand, if the resin viscosity is greater than 15 poise, the fluidity of the resin is reduced, impregnation of the preform with the resin is deteriorated, and unimpregnated portions are formed, and the resin injection time is prolonged. In particular, the woven material constituting the preform used in the present invention has a very tight woven structure with a flat warp yarn and a weft yarn interlaced and a cover factor of 95% or more. It is preferable that the viscosity is as low as possible.

【0056】ここで規定する樹脂粘度は、JIS K7
117に記載の液状の樹脂の回転粘度計による粘度試験
法に準拠し、25℃の室温で樹脂調合後5分後に測定し
た値である。
The resin viscosity specified here is JIS K7
This is a value measured 5 minutes after mixing the resin at room temperature of 25 ° C. in accordance with the viscosity test method using a rotational viscometer of the liquid resin described in 117.

【0057】なお、前記エポキシ樹脂のガラス転移点は
120℃以上であることが必要である。ガラス転移点が
120℃未満では、前述したように成形品の高温雰囲気
における高い機械的特性が得られない。特に、そのよう
な特性が要求される航空機用部材等に使えない問題があ
る。ガラス転移点の上限は特にないが、ガラス転移点を
余りに高くさせようとすると、樹脂粘度が高くなる傾向
にあり、樹脂粘度との関係から制限されるものである。
なお、本発明で規定するガラス転移点とは、完全硬化さ
れた複合材をJIS K7121プラスチック転移温度
測定法に準拠してDSC法によって測定された値であ
る。
The glass transition point of the epoxy resin needs to be 120 ° C. or higher. When the glass transition point is lower than 120 ° C., as described above, high mechanical properties of the molded article in a high-temperature atmosphere cannot be obtained. In particular, there is a problem that it cannot be used for aircraft members and the like that require such characteristics. There is no particular upper limit for the glass transition point, but if the glass transition point is to be made too high, the resin viscosity tends to increase, which is limited by the relationship with the resin viscosity.
The glass transition point defined in the present invention is a value obtained by measuring a completely cured composite material by a DSC method in accordance with JIS K7121 plastic transition temperature measurement method.

【0058】ここで、前記ガラス転移点が120℃以
上、樹脂粘度が1.5〜15ポイズの低粘度エポキシ樹
脂組成物として、粘度が0.1〜30ポイズの3官能以
上の芳香族エポキシ樹脂と、粘度が0.01〜5ポイズ
の芳香族アミン化合物及び/または脂環式アミン化合物
の硬化剤とが配合されたものがあげられる。ここで、エ
ポキシ樹脂は1種であっても構わないが、3官能以上の
芳香族エポキシ樹脂に、例えば2官能の芳香族エポキシ
樹脂を配合しても良い。但し、3官能以上の芳香族エポ
キシ樹脂は全エポキシ樹脂重量%に対して50重量%以
上含まれることが特に耐熱性向上の点から好ましい。
The low-viscosity epoxy resin composition having a glass transition point of 120 ° C. or higher and a resin viscosity of 1.5 to 15 poise is a trifunctional or more aromatic epoxy resin having a viscosity of 0.1 to 30 poise. And a curing agent of an aromatic amine compound and / or an alicyclic amine compound having a viscosity of 0.01 to 5 poise. Here, the epoxy resin may be of one kind, but for example, a bifunctional aromatic epoxy resin may be mixed with a trifunctional or higher aromatic epoxy resin. However, it is particularly preferable that the trifunctional or higher aromatic epoxy resin is contained in an amount of 50% by weight or more based on the total epoxy resin weight% from the viewpoint of improving heat resistance.

【0059】樹脂注入後の硬化方法としては、例えば1
30〜180℃に昇温して1〜4時間保持して完全硬化
させても良いし、最初に50〜100℃程度の温度で1
〜4時間保持して予備硬化させた後、型から脱型して1
30〜180℃程度で1〜4時間保持して完全硬化させ
ても良い。
As a curing method after resin injection, for example, 1
The temperature may be raised to 30 to 180 ° C. and maintained for 1 to 4 hours to completely cure the resin.
After pre-curing for 4 hours, remove from the mold
You may hold | maintain at about 30-180 degreeC for 1-4 hours, and may fully cure.

【0060】さらに本発明の複合材の製造方法に用いる
エポキシ樹脂の曲げ弾性率は3.2GPa以上であるこ
とが好ましい。ここで、本発明で規定する樹脂の弾性率
とは、複合材とする硬化条件と同じ条件で硬化された樹
脂をJISK7203硬化プラスチックの曲げ試験法に
準拠して測定された値である。樹脂の弾性率が3.2G
Pa未満であると、複合材として高い圧縮強度が得られ
ず、構造材料として必要な強度を得るために重量が増
し、炭素繊維強化複合材としての軽量化メリットが発揮
されない結果となる。また、硬化後の樹脂伸度は3.5
%以上であることが好ましい。樹脂伸度が小さいと、複
合材に応力が作用すると樹脂にクラックが生じて、その
クラックが破壊の起点になるので低い応力で複合材が破
壊する問題がある。
Further, the flexural modulus of the epoxy resin used in the method for producing a composite material of the present invention is preferably 3.2 GPa or more. Here, the elastic modulus of the resin specified in the present invention is a value obtained by measuring a resin cured under the same curing conditions as a composite material in accordance with JIS K7203 cured plastic bending test method. The elastic modulus of the resin is 3.2G
When it is less than Pa, high compressive strength cannot be obtained as a composite material, the weight increases in order to obtain the necessary strength as a structural material, and as a result, the merit of weight reduction as a carbon fiber reinforced composite material is not exhibited. The resin elongation after curing is 3.5.
% Is preferable. If the resin elongation is small, when stress acts on the composite material, cracks occur in the resin, and the cracks serve as starting points of destruction, so that there is a problem that the composite material is broken with low stress.

【0061】上述した成形法は上型と下型を用いた例を
説明したが、成形品の形状によって複数の分割型を組み
合わせても良く、成形品の形状により適宜選択すればよ
いものである。成形品の厚さは上型と下型の間隙によっ
て決まるので寸法精度の良い成形品が得られるが、成形
品によっては下型の上のプリフォームを置き、その上か
らフィルムで覆って内部を真空状態にして樹脂を注入す
る真空バッグ成形であってもよい。
Although the above-described molding method uses an upper mold and a lower mold, a plurality of split molds may be combined depending on the shape of the molded product, or may be appropriately selected according to the shape of the molded product. . Since the thickness of the molded product is determined by the gap between the upper and lower molds, a molded product with good dimensional accuracy can be obtained.However, depending on the molded product, place a preform on the lower mold, cover it with a film from above and cover the inside Vacuum bag molding in which a resin is injected in a vacuum state may be used.

【0062】真空バッグ成形で樹脂を硬化させる際、そ
のまま高温に上げるとバッグフィルムやシール材が破れ
る問題があるので、最初に60℃程度の低温で予備硬化
させた後、脱型した後に高温で完全硬化させるのが好ま
しい。
When the resin is cured by vacuum bag molding, if the temperature is raised to a high temperature as it is, there is a problem that the bag film and the sealing material are broken. Therefore, the resin is first preliminarily cured at a low temperature of about 60 ° C. It is preferable to completely cure.

【0063】樹脂の注入方法としては、キャビィティ内
を減圧しており、また樹脂は1.5〜15ポイズと非常
に低粘度であるので大気圧で注入させることもできる。
As a method of injecting the resin, the pressure in the cavity is reduced, and the resin has an extremely low viscosity of 1.5 to 15 poise, so that the resin can be injected at atmospheric pressure.

【0064】成形品の形状が複雑であったり、大きな成
形体、あるいは炭素繊維含有率の高い成形品を得ようと
する場合、樹脂注入に時間を要するので、0.1〜0.
7MPaの圧力で注入させることは、成形時間を短縮で
きるため好ましい方法である。
When a molded article having a complicated shape, a large molded article, or a molded article having a high carbon fiber content is to be obtained, it takes time to inject the resin.
Injecting at a pressure of 7 MPa is a preferable method because the molding time can be shortened.

【0065】また、注入する樹脂を予め加温し、樹脂の
粘度を下げて注入させても良い。
Further, the resin to be injected may be heated beforehand to lower the viscosity of the resin before the injection.

【0066】[0066]

【発明の実施の形態】以下、本発明の好ましい実施の形
態を図面を用いて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings.

【0067】図1は本発明に係るプリフォームの一実施
例を示したもので、織物2a、2b,2cの3枚のたて
糸とよこ糸の繊維軸がそれぞれ同方向に積層されている
とともに、織物2b、及び2cのよこ糸3上には熱可塑
性ポリマー5が付着されており、織物材2aと2b、お
よび織物材2bと2cが前記熱可塑性ポリマーで強固に
接着されて一体化したプリフォーム1を形成している。
FIG. 1 shows an embodiment of the preform according to the present invention, in which three warp yarns and weft yarns of woven fabrics 2a, 2b and 2c are laminated in the same direction, respectively. A thermoplastic polymer 5 is adhered on the weft yarn 3 of 2b and 2c, and the preform 1 in which the woven materials 2a and 2b and the woven materials 2b and 2c are firmly bonded and integrated with the thermoplastic polymer is used. Has formed.

【0068】織物材2aは熱可塑性ポリマーが付着して
いない織物でもよいが、熱可塑性ポリマーを付着させた
面が下層の織物2bと接するように積層させても構わな
い。
The woven material 2a may be a woven fabric to which the thermoplastic polymer is not attached, but may be laminated so that the surface to which the thermoplastic polymer is attached is in contact with the lower woven fabric 2b.

【0069】図2は織物材の積層構成を違えた例を示す
もので、織物7a、7bを構成する織物の繊維軸方向が
0゜/90゜、±45゜、0゜/90゜の順に積層した
プリフォーム6で、それぞれの織物7a、7b、7cは
織り糸上に付着した熱可塑性ポリマー5で接着されてい
る。このように±45゜を含めることにより、面方向に
対する等方性を有した優れた成形品が得られる。
FIG. 2 shows an example in which the laminated structure of the woven materials is different. The fiber axes of the woven fabrics constituting the woven fabrics 7a and 7b are oriented in the order of 0 ° / 90 °, ± 45 °, 0 ° / 90 °. In the laminated preform 6, the respective fabrics 7a, 7b, 7c are bonded by a thermoplastic polymer 5 attached on the yarn. By including ± 45 ° in this manner, an excellent molded product having isotropy in the plane direction can be obtained.

【0070】図3は炭素繊維糸条が共々一方向に配向し
た一方向性織物を含むプリフォーム8の一例を示し、織
物9a、9bの構成繊維の繊維軸が0゜/90゜、0
゜、0゜/90゜の順に積層され、前記同様にそれぞれ
熱可塑性ポリマー5で接着されている。
FIG. 3 shows an example of a preform 8 including a unidirectional woven fabric in which carbon fiber yarns are oriented in one direction together. The fiber axes of the constituent fibers of the woven fabrics 9a and 9b are 0 ° / 90 °, 0 °.
The layers are laminated in the order of {, 0} / 90 °, and are bonded with the thermoplastic polymer 5 in the same manner as described above.

【0071】なお、図示されていないが、織物材9aに
ついては一方向性織物との重なる面に熱可塑性ポリマー
が付着されて、一方向性織物9bと接着されている。
Although not shown, a thermoplastic polymer is attached to the surface of the woven material 9a that overlaps with the unidirectional woven fabric, and is bonded to the unidirectional woven fabric 9b.

【0072】このように一方向性の織物材を含めること
により0゜方向の炭素繊維量を増やすことができ、0゜
方向の強度、弾性率を高めることができる。
By including the unidirectional woven material, the amount of carbon fibers in the 0 ° direction can be increased, and the strength and elastic modulus in the 0 ° direction can be increased.

【0073】本発明の織物材の積層方向は、成形品に要
求される機械的特性を満足するよう適宜選択すれば良
い。
The laminating direction of the woven material of the present invention may be appropriately selected so as to satisfy the mechanical properties required for the molded product.

【0074】図4は、断面形状がI型のビーム材を成形
するためのI型のプリフォーム10の断面図を示したも
ので、フランジ部には外表面から0゜/90゜(11
a)、0゜(11b)、0゜(11b)の積層構成で、
また、ウエッブ部は外表面から0゜/90゜(11
a)、±45゜(11c)、±45゜(11c)の積層
構成からなっており、それらの織物同士が接する面は熱
可塑性ポリマーで強固に接着され、プリフォーム10を
形成している。
FIG. 4 is a cross-sectional view of an I-shaped preform 10 for molding a beam material having an I-shaped cross section. The flange portion has an outer surface of 0 ° / 90 ° (11 °).
a), 0 ゜ (11b), 0 ゜ (11b)
Also, the web part is 0 ° / 90 ° (11 °) from the outer surface.
a), ± 45 ° (11c), and ± 45 ° (11c), and the surfaces where the fabrics are in contact with each other are firmly bonded with a thermoplastic polymer to form the preform 10.

【0075】上記積層構成により、ビーム材に曲げの荷
重が作用した場合、最も高い引っ張り、または圧縮応力
が作用するフランジ部には0゜方向に沢山の炭素繊維を
配置させているので撓みを抑えるに有効である。
With the above laminated structure, when a bending load is applied to the beam material, a large amount of carbon fibers are arranged in the 0 ° direction on the flange portion where the highest tensile or compressive stress is applied, so that bending is suppressed. It is effective for

【0076】また、曲げに対してウエッブに大きなせん
断応力が作用するが、ウエッブ部には±45゜の炭素繊
維を多く配向させているので、せん断破壊を防ぐことが
できるものである。
Although a large shear stress acts on the web for bending, a large amount of ± 45 ° carbon fibers are oriented in the web, so that shear fracture can be prevented.

【0077】以上のように、有効な繊維配向で、成形品
の形状を保ったプリフォームにより、そのまま成形型に
セットでき、成形加工を効率的に行うことが可能とな
る。
As described above, the preform that maintains the shape of the molded article with effective fiber orientation can be set in a molding die as it is, and molding can be performed efficiently.

【0078】図1〜3で示したような平板を成形する際
には、成形時に成形金型の上で一枚一枚積み重ねながら
積層させることができるが、図4で示すような多数の織
物材で複雑な形状のものを成形時に積層させようとして
も、直ぐにバラバラになり、精度良く積層することはで
きず、また成形金型の上で長時間掛けて積層作業をせね
ばならないので、積層も含めた成形時間が長くなり生産
性が悪い。
When forming the flat plate as shown in FIGS. 1 to 3, it is possible to stack the sheets one by one on a forming die at the time of forming. Even if you try to laminate materials of complex shapes during molding, they will quickly fall apart and cannot be laminated accurately, and you will have to spend a lot of time laminating on the molding die. And the productivity is poor.

【0079】本発明のプリフォームであれば、例え複雑
な形状であっても一枚一枚、あるいは一斉に接着させな
がら積層させて一体化させるので精度の高いプリフォー
ムが容易に製作でき、また、成形金型がなくとも予め製
作して、成形金型が空いた時点にセットするだけの時間
で済むから効率的に成形することができる。
In the case of the preform of the present invention, even if the preform is of a complicated shape, it can be easily produced one by one, or can be easily laminated and bonded together so that a high-precision preform can be easily produced. Even if there is no molding die, the molding can be performed in advance, and the molding can be efficiently performed because only the time required to set the molding die when it is empty is sufficient.

【0080】図5は本発明のプリフォームを用いた複合
材で、断面がI型形状したビーム材の製造方法の一例を
示すもので,、プリフォームが金型内にセットされてい
ることを分かりやすくするために金型の中央部の破断面
を表した斜視図である。
FIG. 5 shows an example of a method for producing a beam material having a cross section of an I-shape in a composite material using the preform of the present invention, and shows that the preform is set in a mold. It is the perspective view showing the fracture surface of the center part of the metal mold | die for easy understanding.

【0081】図において、織物材が所定の構成で積層さ
れ、織糸上の配置した熱可塑性ポリマーによって互いに
接着された図4のI型ビーム材用プリフォーム10を分
割型12a、12b、13a、13b、17a、17b
の間に形成されるキャビィティ内に納め、それぞれの型
の合わせ面にはキャビィティ内を完全密閉させるために
シール材でシールする。
In the drawing, the woven materials are laminated in a predetermined configuration, and the I-shaped beam material preform 10 of FIG. 4 bonded to each other by the thermoplastic polymer arranged on the yarn is divided into divided molds 12a, 12b, 13a, 13b, 17a, 17b
And the mating surfaces of the respective molds are sealed with a sealing material in order to completely seal the inside of the cavity.

【0082】次いで、吸引穴16から真空引きを矢印方
向に行った後、樹脂注入弁14を開放して樹脂タンク1
5内の樹脂をキャビィティ内に注入させ、プリフォーム
10に樹脂含浸させる。樹脂注入する際、タンク15内
を密閉型にしてタンク内を加圧することにより注入時間
を短縮させることができる。
Then, after vacuuming was performed through the suction hole 16 in the direction of the arrow, the resin injection valve 14 was opened to open the resin tank 1.
The resin in 5 is injected into the cavity, and the preform 10 is impregnated with the resin. When injecting the resin, the inside of the tank 15 is sealed, and the injection time can be reduced by pressurizing the inside of the tank.

【0083】かくして、得られた含浸済みプリフォーム
10がセットされた金型全体を加熱して樹脂を硬化させ
ることにより、機械的特性に優れた複合材が得られる。
By heating the entire mold in which the obtained impregnated preform 10 is set and curing the resin, a composite material having excellent mechanical properties can be obtained.

【0084】[0084]

【実施例】(実施例1)たて糸とよこ糸として、引っ張
り強度が4,900MPa、引っ張り弾性率が230G
Pa、破断伸度が2.1%、糸条繊度が7,200デニ
ール、糸幅が6.5mmの扁平で無ヨリの炭素繊維糸条
を用い、解舒ヨリが入らないように、また炭素繊維糸条
の扁平状を保持させながら供給させて目付が193g/
2の織物を製織した。
EXAMPLES Example 1 Warp and weft have a tensile strength of 4,900 MPa and a tensile modulus of 230 G.
Pa, a breaking elongation of 2.1%, a yarn fineness of 7,200 denier, a yarn width of 6.5 mm, and a flat, non-twisted carbon fiber yarn. The fiber yarn is supplied while keeping the flat shape, and the basis weight is 193 g /
It was weaving the fabric of m 2.

【0085】製織する際、全てのたて糸上のほぼ中央に
低融点共重合ナイロン100デニールを一緒に供給し
た。
During weaving, 100 denier low-melting copolymer nylon was fed together approximately at the center of all the warp yarns.

【0086】織物にした後、織機上に設けた遠赤外線ヒ
ータで加熱し、前記低融点共重合ナイロンを溶融させ、
そのたて糸とよこ糸の交点を目どめすると同時にたて糸
上に熱可塑性ポリマーである低融点共重合ナイロンを付
着させた。
After forming into a woven fabric, the fabric was heated with a far-infrared heater provided on a loom to melt the low-melting copolymer nylon,
The intersection between the warp and the weft was observed, and at the same time, a low-melting copolymer nylon, which was a thermoplastic polymer, was adhered onto the warp.

【0087】また、よこ糸に関しては筬打ちによって扁
平な炭素繊維の幅が少し狭くなったので、織物にした
後、織機上でエア噴射により糸幅を拡幅させた。
Further, regarding the weft yarn, the width of the flat carbon fiber was slightly narrowed by beating, so that the weft was made into a woven fabric, and the yarn width was widened by air injection on a loom.

【0088】得られた炭素繊維織物の糸幅、カバーファ
クターを表1に示した。
Table 1 shows the yarn width and the cover factor of the obtained carbon fiber fabric.

【0089】上記織物を断面がI型形状のビーム材を成
形するために図4に示す積層構成のプリフォーム10を
製作した。
A preform 10 having a laminated structure as shown in FIG. 4 was manufactured in order to form a beam material having the I-shaped cross section from the above woven fabric.

【0090】プリフォームの製作方法については、まず
最初にウエッブ部形成用の織物6枚を積層し、ウエッブ
部となるだけ接着させた。この時フランジ部へ延びてい
る箇所の接着を防ぐために、フランジ部に延びる部分の
各層間に離型性のフィルムを挟んでおいた。
Regarding the method of manufacturing the preform, first, six woven fabrics for forming the web portion were laminated and bonded to the web portion as much as possible. At this time, in order to prevent adhesion of a portion extending to the flange portion, a release film was sandwiched between layers of the portion extending to the flange portion.

【0091】次いで、先ほどウエッブ部となる部分だけ
接着させたパーツの両端を折り曲げてフランジ部に含め
るため、賦形用型を用いて積層した6枚織物の内3枚を
片側に直角に曲げながらその部分を接着させ、残りの3
枚を反対側に曲げながら接着させた。そのフランジ部に
延びた部分の上からフランジ部用織物を3枚をそれぞれ
接着させながら積層してI型断面のプリフォームを作製
した。
Next, in order to bend both ends of the part where only the part to be the web part was adhered and to include it in the flange part, three of the six woven fabrics laminated using the shaping mold were bent to one side at a right angle. Glue the parts together and the remaining 3
The sheets were adhered while bending to the opposite side. From the portion extending to the flange portion, three pieces of fabric for the flange portion were laminated while being bonded to each other, thereby producing a preform having an I-shaped cross section.

【0092】フランジ部に含めた一方向織物について
は、たて糸には上記2方向織物と同じ炭素繊維糸条を、
よこ糸には203デニールのガラス繊維糸条に50デニ
ールの低融点共重合ナイロンを250ターン/mのヨリ
数でカバーリングした糸を用い、タテ糸密度を4.75
本、よこ糸の密度を3本/cmで通常の製織条件で製織
した。この時、炭素繊維だけの目付380g/m2であ
る。
[0092] For the unidirectional woven fabric included in the flange portion, the same carbon fiber yarn as that of the bidirectional woven fabric is used for the warp yarn.
As the weft, a 203 denier glass fiber thread covered with 50 denier low melting point copolymerized nylon at a twist number of 250 turns / m was used, and the warp yarn density was 4.75.
The book and the weft were woven at a density of 3 / cm under ordinary weaving conditions. At this time, the basis weight of the carbon fiber alone is 380 g / m 2 .

【0093】次いで、高さが100mm、フランジ幅が
80mmで、フランジの厚みが1.55mm、ウエッブ
の厚みが1.15mm、長さが1.5mであるI型断面
の成形品を得るために図5に示す金型にセットした。
Next, in order to obtain a molded product having an I-shaped cross section having a height of 100 mm, a flange width of 80 mm, a flange thickness of 1.55 mm, a web thickness of 1.15 mm and a length of 1.5 m. It was set in the mold shown in FIG.

【0094】金型にセットする際、まず、分割金型の側
面12aにプリフォーム10をセットし、次いで反対面
の金型12bを合わせ、上型13a、下型13bを付け
ることにより非常に短時間で効率的にセットすることが
できた。
When setting the mold, first, the preform 10 is set on the side surface 12a of the split mold, and then the mold 12b on the opposite surface is fitted, and the upper mold 13a and the lower mold 13b are attached. We were able to set efficiently in time.

【0095】本発明の効果を定量的に表すために金型セ
ット時間も含めたプリフォーム作製時間を表1に示し
た。 (比較例1)比較例として、たて糸とよこ糸の引っ張り
強度が3,630MPa、引っ張り弾性率が230GP
a、破断伸度が1.5%、糸条繊度が1,780デニー
ルの炭素繊維糸条を用いた193g/m2目付の通常の
炭素繊維織物で、全てのたて糸と一緒に低融点共重合ナ
イロン50デニールを引き揃えて目どめされた織物を用
いて、実施例と同様にプリフォームを製作した。
Table 1 shows the preform manufacturing time including the mold setting time in order to quantitatively express the effect of the present invention. Comparative Example 1 As a comparative example, the warp and the weft have a tensile strength of 3,630 MPa and a tensile modulus of 230 GP.
a, elongation at break 1.5%, the usual carbon fiber fabric of 193 g / m 2 basis weight using a carbon fiber thread of yarn fineness of 1,780 deniers, low melting copolymerized with all of the warp A preform was manufactured in the same manner as in the example, using a woven fabric prepared by aligning nylon 50 denier.

【0096】同織物のたて糸とよこ糸は大きなクリンプ
を有して互いに交錯し合っているので、たて糸と一緒に
織り込んだ低融点共重合ナイロン糸はたて糸の側面に位
置し、低融点共重合ナイロンの含有量が多いものの織物
の表面には現れていないために、殆ど織物同士を接着さ
せることができず、成形金型に1枚1枚を手で押さえな
がら積層した。
Since the warp and the weft of the woven fabric have a large crimp and are interlaced with each other, the low-melting copolymer nylon yarn woven together with the warp is located on the side of the warp, and the low-melting copolymer nylon is used. Although the content was large, it was hardly adhered to each other because it did not appear on the surface of the woven fabric, and the woven fabric was laminated while holding it one by one in a molding die.

【0097】織糸は目どめされているので解れたりする
ことはなかったが、接着が不完全であるためプリフォー
ムを形成することができず、金型上で手で押さえながら
積層したので、金型を合わせる際に織物材がずれて皺が
生じたし、非常に時間も要した。
[0097] The weaving yarn was not broken because it was stagnant, but the preform could not be formed due to incomplete adhesion. When the molds were assembled, the woven material was displaced and wrinkled, and it took much time.

【0098】プリフォーム作製結果を表1に示した。The results of producing the preform are shown in Table 1.

【0099】[0099]

【表1】 [Table 1]

【0100】(実施例2)実施例1で用いた2方向織物
を30cm幅×50cm長さサイズににカットし、同方
向に4枚を接着させながら積層した平板状のプリフォー
ムを作製した。そして上型と下型とからなる金型にセッ
トし、金型内を0.01MPa以下の真空度に減圧した
後、常温(25℃)での樹脂粘度が2.1ポイズ、硬化
物弾性率3.5GPa、樹脂硬化物ガラス転移点が23
0℃、複合材としての硬化物ガラス転移点が215℃の
エポキシ樹脂を注入した。
(Example 2) The two-way woven fabric used in Example 1 was cut into a size of 30 cm width x 50 cm length, and a flat preform was produced by laminating four pieces in the same direction while adhering. Then, it is set in a mold including an upper mold and a lower mold, and the inside of the mold is depressurized to a degree of vacuum of 0.01 MPa or less. 3.5 GPa, glass transition point of cured resin is 23
An epoxy resin having a glass transition point of 215 ° C. as a composite material at 0 ° C. was injected.

【0101】上型と下型との間で形成される空間の高
さ、すなわち成形品の厚み設定は0.77mmとした。
The height of the space formed between the upper mold and the lower mold, that is, the thickness of the molded product was set to 0.77 mm.

【0102】樹脂が真空引き穴から出始めたら樹脂注入
を止め、その状態で最初に60℃×180分で予備硬化
させ、その後2℃/分の昇温速度で180℃まで上げて
120分放置して硬化させた。
When the resin starts to come out of the evacuation hole, the injection of the resin is stopped. In this state, the resin is first pre-cured at 60 ° C. for 180 minutes, then raised to 180 ° C. at a rate of 2 ° C./min and left for 120 minutes. And cured.

【0103】本実施例の樹脂注入時間、得られた硬化板
の機械的特性評価結果を表2にまとめた。 (比較例2)実施例2で用いたプリフォーム、および同
じ金型で、真空度が0.01MPa以下まで金型内を減
圧した後、樹脂粘度が20ポイズ、樹脂硬化物の弾性率
が3.4GPa、樹脂硬化物ガラス転移点が203℃、
複合材としての硬化物ガラス転移点が190℃のエポキ
シ樹脂を注入し、実施例2と同じ硬化条件で成形した。
Table 2 summarizes the resin injection time of this example and the results of evaluating the mechanical properties of the obtained cured plate. (Comparative Example 2) With the preform used in Example 2 and the same mold, the inside of the mold was depressurized to a degree of vacuum of 0.01 MPa or less, and then the resin viscosity was 20 poise and the elastic modulus of the cured resin was 3 .4 GPa, glass transition point of cured resin is 203 ° C.,
An epoxy resin having a glass transition point of 190 ° C. as a composite material was injected and molded under the same curing conditions as in Example 2.

【0104】樹脂粘度が高いために樹脂注入時間が15
分と非常に長くかかり、成形品においても樹脂の回りが
不十分で表面に樹脂欠損部が見られ、硬化板の機械的特
性が低い結果であった。
Since the resin viscosity is high, the resin injection time is 15
It took a very long time, and even in the molded product, the resin was not sufficiently rotated, and a resin defect was found on the surface, resulting in low mechanical properties of the cured plate.

【0105】実施例2と同様に、樹脂注入時間と硬化板
機械的特性評価結果を表2にまとめた。 (比較例3)比較例1で用いた2方向織物を実施例2で
用いた樹脂と同じ樹脂、および同じ成形方法で成形し
た。
Table 2 summarizes the results of the resin injection time and the evaluation of the mechanical properties of the cured plate in the same manner as in Example 2. (Comparative Example 3) The bidirectional woven fabric used in Comparative Example 1 was molded by the same resin and the same molding method as those used in Example 2.

【0106】積層品は、各層間での接着状況が不十分で
あったが、積層構成が単純であるので特に問題はなかっ
た。また、樹脂注入時間も実施例2とほぼ同じ時間で、
速く樹脂含浸することができた。
Although the laminated product had an inadequate adhesion between the layers, there was no particular problem because the laminated structure was simple. Also, the resin injection time is almost the same as that of the second embodiment.
Fast resin impregnation was achieved.

【0107】しかし、プリフォームを構成する織物材の
織糸クリンプが大きいために硬化板の強度発現率が低い
結果であった。成形結果は表2の通りである。
However, since the woven yarn crimp of the woven material constituting the preform was large, the strength development rate of the cured plate was low. Table 2 shows the molding results.

【0108】[0108]

【表2】 [Table 2]

【0109】[0109]

【発明の効果】以上説明したように、本発明のプリフォ
ームは、たて糸またはよこ糸に広い糸幅の物を用いたこ
とにより、熱可塑性ポリマーが表面に付着されている織
物同士が確実に接着された状態で成形されているので、
寸法精度が高くなり、成形金型に簡単に、かつ確実に装
着させることができ、成形時間を大幅に短縮させること
ができる。
As described above, in the preform of the present invention, by using a warp or weft having a wide yarn width, the woven fabric having the thermoplastic polymer adhered to the surface is securely bonded to each other. Because it is molded in the state
The dimensional accuracy is increased, the dies can be easily and reliably mounted on a molding die, and the molding time can be greatly reduced.

【0110】また、熱可塑性ポリマーを織物の表面に確
実に付着させたものであるから、接着剤となる熱可塑性
ポリマーの使用量が少量で済み、炭素繊維糸条束内にま
で熱可塑性ポリマーが入り込むことがない。よって、R
TM成形時の樹脂含浸が阻害されることがなく、炭素繊
維の高強度・高弾性特性が発揮された複合材となる。
Further, since the thermoplastic polymer is securely adhered to the surface of the woven fabric, the amount of the thermoplastic polymer used as an adhesive is small, and the thermoplastic polymer is contained in the carbon fiber thread bundle. There is no intrusion. Therefore, R
A composite material exhibiting high strength and high elastic properties of carbon fibers without hindering resin impregnation during TM molding.

【0111】また、プリフォームを構成する補強織物
は、そのうちの少なくとも1枚が糸製造コストの安価な
太い炭素繊維糸条を用いて粗密度で織られているので、
製造コストが安価であると同時に、織物材を簡単に接着
させながらプリフォームを形成させたものであるから製
造コストの安価なプリフォームが得られる。
Also, since at least one of the reinforcing fabrics constituting the preform is woven at a coarse density using a thick carbon fiber yarn having a low yarn production cost,
Since the preform is formed while the manufacturing cost is low and the woven material is easily bonded, a preform with low manufacturing cost can be obtained.

【0112】さらに、たて糸とよこ糸の糸幅W(mm)と用
いる炭素繊維糸条の繊度D(デニール)の関係がW=
0.05×D1/2〜0.12×D1/2と広い断面形状の糸
で交錯しているので織糸のクリンプが発生しにくく、し
かもカバーファクターが95%以上と殆ど空隙がない補
強織物を用いるので、炭素繊維の高い比強度・比弾性率
を最大限発揮する複合材が得られる。
Further, the relationship between the yarn width W (mm) of the warp and weft yarns and the fineness D (denier) of the carbon fiber yarn used is W =
Since the yarn is crossed with a wide cross-sectional shape of 0.05 × D 1/2 to 0.12 × D 1/2 , the crimp of the woven yarn is not easily generated, and the cover factor is 95% or more and there is almost no void. Since the reinforced fabric is used, a composite material that maximizes the high specific strength and specific elastic modulus of the carbon fiber can be obtained.

【0113】さらに、本発明の炭素繊維強化複合材の製
造方法は、前記した効果を発揮するプリフォームを金型
にセットし、真空引きをした後、常温では1.5〜15
ポイズと低粘度であって、しかも硬化後のガラス転移点
の高い樹脂を注入して成形するので、プリフォームに確
実に樹脂を含浸させることができ、得られた成形品は高
温雰囲気下でも高い機械的特性を発揮する優れた繊維強
化複合材が得られる。
Further, according to the method for producing a carbon fiber reinforced composite material of the present invention, a preform exhibiting the above-mentioned effects is set in a mold, evacuated, and then 1.5 to 15 at room temperature.
Injection and molding of a resin with a poise and low viscosity, and a high glass transition point after curing, ensure that the preform is impregnated with the resin, and the obtained molded product is high even in a high-temperature atmosphere. An excellent fiber reinforced composite material exhibiting mechanical properties is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のプリフォームの一実施例を示す斜視図
である。
FIG. 1 is a perspective view showing one embodiment of a preform of the present invention.

【図2】図1のプリフォームとは異なる態様の一実施態
様例を示す斜視図である。
FIG. 2 is a perspective view showing an example of an embodiment different from the preform of FIG. 1;

【図3】図1および図2のプリフォームとは異なる態様
のプリフォームの斜視図である。
FIG. 3 is a perspective view of a preform different from the preforms of FIGS. 1 and 2;

【図4】I型断面形状を有した本発明のプリフォームの
一実施態様を示す斜視図である。
FIG. 4 is a perspective view showing one embodiment of a preform of the present invention having an I-shaped cross-sectional shape.

【図5】本発明の炭素繊維強化複合材の成形法を説明す
る一実施例の斜視図である。
FIG. 5 is a perspective view of one embodiment for explaining a method for forming a carbon fiber reinforced composite material of the present invention.

【符号の説明】[Explanation of symbols]

1:プリフォーム 2:織物材 3:よこ糸 4:たて糸 5:熱可塑性ポリマー(接着剤) 6:プリフォーム 7:織物材 8:プリフォーム 9:織物材 10:プリフォーム 11:織物材 12:金型(側面) 13:金型(上下面) 14:樹脂注入弁 15:樹脂タンク 16:吸引口 17:金型(端面) 1: Preform 2: Woven material 3: Weft yarn 4: Warp yarn 5: Thermoplastic polymer (adhesive) 6: Preform 7: Woven material 8: Preform 9: Woven material 10: Preform 11: Woven material 12: Gold Mold (side surface) 13: Mold (upper and lower surfaces) 14: Resin injection valve 15: Resin tank 16: Suction port 17: Mold (end surface)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B32B 27/04 B29C 67/14 G // C08L 63:00 Fターム(参考) 4F072 AA04 AA07 AB09 AB10 AB15 AB33 AC02 AD23 AD51 AG02 AG16 AH36 AK03 4F100 AD11A AG00A AG00B AK01C AK48 AK53G BA03 BA07 BA10A BA10B BA22 BA31 BA32 CB02 DG01A DG12A DG12B DG18A DG18B DH00 DH01A DH01B EC031 EJ421 GB31 GB87 JA05G JA06G JB16C JK01B JK06 JL04 4F205 AA29 AD02 AD05 AD16 AG01 AG03 AH05 AH17 AH31 HA01 HA34 HA35 HA43 HA44 HA47 HB01 HC07 HC16 HC17 HG02 HM02 HM06 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B32B 27/04 B29C 67/14 G // C08L 63:00 F term (Reference) 4F072 AA04 AA07 AB09 AB10 AB15 AB33 AC02 AD23 AD51 AG02 AG16 AH36 AK03 4F100 AD11A AG00A AG00B AK01C AK48 AK53G BA03 BA07 BA10A BA10B BA22 BA31 BA32 CB02 DG01A DG12A DG12B DG18A DG18B DH00 DH01A DH01B05 J01 AJG04 A HA01 HA34 HA35 HA43 HA44 HA47 HB01 HC07 HC16 HC17 HG02 HM02 HM06

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 複数枚の補強織物が積層されてなる繊維
強化複合材用プリフォームであって、(A)前記補強織
物のうちの少なくとも1枚は繊度D(デニール)が3,
500デニール以上の扁平な炭素繊維糸条からなり、た
て糸およびよこ糸の糸幅W(mm)と炭素繊維糸条の繊度
との関係がW=0.05×D1/2〜0.12×D1/2の範
囲内で、カバーファクターが95%以上、かつ前記たて
糸またはよこ糸の糸幅のほぼ中央部に熱可塑性ポリマー
が付着された炭素繊維織物であり、(B)さらに隣接す
る他の補強織物とが前記熱可塑性ポリマーにより接着さ
れて一体化されていることを特徴とする繊維強化複合材
用プリフォーム。
1. A preform for a fiber-reinforced composite material comprising a plurality of reinforcing fabrics laminated, wherein (A) at least one of the reinforcing fabrics has a fineness D (denier) of 3,
It is made of a flat carbon fiber yarn of 500 denier or more, and the relationship between the yarn width W (mm) of the warp and weft yarns and the fineness of the carbon fiber yarn is W = 0.05 × D 1/2 to 0.12 × D A carbon fiber woven fabric having a cover factor of 95% or more within a range of 1/2 and a thermoplastic polymer adhered to a substantially central portion of the warp or weft yarn width, and (B) further reinforcing other adjacent fibers A preform for a fiber-reinforced composite material, wherein the preform is bonded to a woven fabric by the thermoplastic polymer to be integrated.
【請求項2】 熱可塑性ポリマーが炭素繊維織物表面に
粒状で付着されていることを特徴とする請求項1に記載
の繊維強化複合材用プリフォーム。
2. The preform for a fiber-reinforced composite material according to claim 1, wherein the thermoplastic polymer is attached in a granular form to the surface of the carbon fiber fabric.
【請求項3】 炭素繊維織物と他の補強織物とは、それ
ぞれのたて糸またはよこ糸の軸方向が同方向に積層され
ていることを特徴とする請求項1または2に記載の繊維
強化複合材用プリフォーム。
3. The fiber reinforced composite material according to claim 1, wherein the carbon fiber woven fabric and the other reinforcing woven fabric are laminated so that the warp yarns or the weft yarns are laminated in the same axial direction. preform.
【請求項4】 炭素繊維織物と他の補強織物とは、それ
ぞれのたて糸またはよこ糸の軸方向が0および90゜方
向、または±45゜方向の少なくとも一方の積層方向の
ものが含まれていることを特徴とする請求項1または2
に記載の繊維強化複合材用プリフォーム。
4. The carbon fiber woven fabric and the other reinforcing woven fabric include those in which the axial direction of each warp or weft is at least one of 0 and 90 ° direction or ± 45 ° direction. 3. The method according to claim 1, wherein
The preform for a fiber-reinforced composite material according to item 1.
【請求項5】 たて糸が炭素繊維糸条からなり、よこ糸
がガラス繊維糸条からなる炭素繊維織物が含まれている
ことを特徴とする請求項1、2または4に記載の繊維強
化複合材用プリフォーム。
5. The fiber reinforced composite material according to claim 1, wherein the warp yarn comprises a carbon fiber yarn and the weft yarn includes a carbon fiber woven fabric comprising a glass fiber yarn. preform.
【請求項6】 請求項1〜5のいずれかに記載の繊維強
化複合材用プリフォームを用いてなる繊維強化複合材。
6. A fiber-reinforced composite material using the preform for a fiber-reinforced composite material according to claim 1.
【請求項7】 請求項1〜5のいずれかに記載の繊維強
化複合材用プリフォームを成形型内にセットし、成形型
内を0.01MPa以下の真空状態に保持した後、25
℃での樹脂粘度が1.5〜15ポイズの範囲内で、か
つ、複合材として硬化後のガラス転移点が120℃以上
のエポキシ樹脂を注入し、硬化させて成形することを特
徴とする繊維強化複合材の製造方法。
7. The preform for a fiber-reinforced composite material according to claim 1 is set in a mold, and the inside of the mold is kept in a vacuum state of 0.01 MPa or less, and then 25%.
A fiber characterized by injecting an epoxy resin having a glass transition point of 120 ° C. or more as a composite material and having a resin viscosity at 1.5 ° C. within a range of 1.5 to 15 poise and curing and molding. A method of manufacturing a reinforced composite.
【請求項8】 前記エポキシ樹脂の硬化物曲げ弾性率が
3.2GPa以上であることを特徴とする請求項7に記
載の繊維強化複合材の製造方法。
8. The method for producing a fiber-reinforced composite material according to claim 7, wherein the cured product of the epoxy resin has a flexural modulus of 3.2 GPa or more.
【請求項9】 請求項7または8に記載の製造方法によ
り得られたことを特徴とする繊維強化複合材。
9. A fiber-reinforced composite material obtained by the production method according to claim 7. Description:
JP24566899A 1999-08-31 1999-08-31 Preform for fiber-reinforced preform and fiber- reinforced composite material using the same and production thereof Pending JP2001064406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24566899A JP2001064406A (en) 1999-08-31 1999-08-31 Preform for fiber-reinforced preform and fiber- reinforced composite material using the same and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24566899A JP2001064406A (en) 1999-08-31 1999-08-31 Preform for fiber-reinforced preform and fiber- reinforced composite material using the same and production thereof

Publications (1)

Publication Number Publication Date
JP2001064406A true JP2001064406A (en) 2001-03-13

Family

ID=17137051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24566899A Pending JP2001064406A (en) 1999-08-31 1999-08-31 Preform for fiber-reinforced preform and fiber- reinforced composite material using the same and production thereof

Country Status (1)

Country Link
JP (1) JP2001064406A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002081540A1 (en) * 2001-03-30 2002-10-17 Toray Industries, Inc. Epoxy resin composition, process for producing fiber -reinforced composite materials and fiber-reinforced composite materials
JP2003080607A (en) * 2001-07-06 2003-03-19 Toray Ind Inc Preform, frp comprising the same and method for manufacturing them
JP2004106548A (en) * 2002-09-13 2004-04-08 Northrop Grumman Corp Manufacture method for vacuum-assisted transfer molding of cosetting resin
WO2004033176A1 (en) * 2002-10-09 2004-04-22 Toray Industries, Inc. Method of rtm molding
JP2004130598A (en) * 2002-10-09 2004-04-30 Toray Ind Inc Rtm molding method
JP2004160927A (en) * 2002-11-15 2004-06-10 Toray Ind Inc Preform substrate, preform, fiber-reinforced plastic molding and molding method
JP2006168165A (en) * 2004-12-15 2006-06-29 Toho Tenax Co Ltd Preform base material for frp and preform manufacturing method
JP2006306057A (en) * 2005-03-28 2006-11-09 Toray Ind Inc Manufacturing method of frp structure
JP2008247032A (en) * 2001-07-06 2008-10-16 Toray Ind Inc Manufacturing process of preform
GB2448950A (en) * 2007-03-29 2008-11-05 Gurit Fibre-reinforced composite moulding and manufacture thereof
JP2010208260A (en) * 2009-03-12 2010-09-24 Toray Ind Inc Reinforcing fiber laminate, preform and manufacturing method for preform
CN102092135A (en) * 2010-12-13 2011-06-15 中国航空工业集团公司北京航空材料研究院 Method for improving rigidity of wing surface structure of composite material
CN102166825A (en) * 2010-12-24 2011-08-31 中国科学院宁波材料技术与工程研究所 Technology of making automobile engine cover with carbon fiber reinforcement resin-based composite material
WO2013015087A1 (en) * 2011-07-26 2013-01-31 株式会社 豊田自動織機 Reinforcing fiber sheet, fiber-reinforced composite, method for producing reinforcing fiber sheet, and method for producing fiber-reinforced composite
JP2014046618A (en) * 2012-08-31 2014-03-17 Nippon Steel Sumikin Materials Co Ltd REINFORCING FIBER SHEET FOR VaRTM, FIBER REINFORCED PLASTIC STRUCTURE-MOLDING METHOD, AND FIBER REINFORCED PLASTIC STRUCTURE
KR101881994B1 (en) * 2016-04-25 2018-08-24 주식회사 새날테크-텍스 Manufacturing method for functional cross-ply fabric and functional cross-ply fabric manufactured by the same
KR20180109479A (en) * 2017-03-28 2018-10-08 주식회사 새날테크-텍스 Manufacturing method for cross-ply fabric capable of maintaining yarn properties and cross-ply fabric manufactured by the same
KR20180130722A (en) * 2017-05-30 2018-12-10 주식회사 새날테크-텍스 Manufacturing method for carbon fiber-complex sheet having isotropic and carbon fiber-complex sheet manufactured by the same
JP2020504688A (en) * 2016-12-26 2020-02-13 コンチネンタル ストラクチュラル プラスティックス, インコーポレイテッド Combined primary and carbon fiber components in the production of reinforced polymeric articles
JP2020508230A (en) * 2017-02-21 2020-03-19 オートモビリ ランボルギーニ ソチエタ ペル アツイオニ Process for producing composite products and semi-finished products and products obtained thereby
CN114616090A (en) * 2019-11-11 2022-06-10 东丽株式会社 Carbon fiber tape material, and reinforcing fiber laminate and molded body using same

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7148294B2 (en) 2001-03-30 2006-12-12 Toray Industries, Inc. Epoxy resin composition, process for producing fiber-reinforced composite materials and fiber-reinforced composite materials
EP1325937A1 (en) * 2001-03-30 2003-07-09 Toray Industries, Inc. Epoxy resin composition, process for producing fiber -reinforced composite materials and fiber-reinforced composite materials
WO2002081540A1 (en) * 2001-03-30 2002-10-17 Toray Industries, Inc. Epoxy resin composition, process for producing fiber -reinforced composite materials and fiber-reinforced composite materials
US7501087B2 (en) 2001-03-30 2009-03-10 Toray Industries, Inc. Injection molding thermosetting resin composition into reinforcing fiber substrate
EP1325937A4 (en) * 2001-03-30 2005-11-09 Toray Industries Epoxy resin composition, process for producing fiber -reinforced composite materials and fiber-reinforced composite materials
JP2003080607A (en) * 2001-07-06 2003-03-19 Toray Ind Inc Preform, frp comprising the same and method for manufacturing them
JP4609513B2 (en) * 2001-07-06 2011-01-12 東レ株式会社 Preform manufacturing method
JP2008247032A (en) * 2001-07-06 2008-10-16 Toray Ind Inc Manufacturing process of preform
JP2004106548A (en) * 2002-09-13 2004-04-08 Northrop Grumman Corp Manufacture method for vacuum-assisted transfer molding of cosetting resin
AU2008203839B2 (en) * 2002-10-09 2011-03-17 Mitsubishi Heavy Industries, Ltd. Method of RTM molding
WO2004033176A1 (en) * 2002-10-09 2004-04-22 Toray Industries, Inc. Method of rtm molding
AU2003271139B2 (en) * 2002-10-09 2008-08-07 Mitsubishi Heavy Industries, Ltd. Method of RTM molding
US8420002B2 (en) 2002-10-09 2013-04-16 Toray Industries, Inc. Method of RTM molding
US9120253B2 (en) 2002-10-09 2015-09-01 Toray Industries, Inc. Methods of RTM molding
JP2004130598A (en) * 2002-10-09 2004-04-30 Toray Ind Inc Rtm molding method
EP2644365A3 (en) * 2002-10-09 2014-08-13 Toray Industries, Inc. Method of RTM molding
US9463587B2 (en) 2002-10-09 2016-10-11 Toray Industries, Inc. Methods of RTM molding
JP2004160927A (en) * 2002-11-15 2004-06-10 Toray Ind Inc Preform substrate, preform, fiber-reinforced plastic molding and molding method
JP2006168165A (en) * 2004-12-15 2006-06-29 Toho Tenax Co Ltd Preform base material for frp and preform manufacturing method
JP2006306057A (en) * 2005-03-28 2006-11-09 Toray Ind Inc Manufacturing method of frp structure
GB2448950A (en) * 2007-03-29 2008-11-05 Gurit Fibre-reinforced composite moulding and manufacture thereof
US8545744B2 (en) 2007-03-29 2013-10-01 Gurit (Uk) Ltd. Fibre-reinforced composite moulding and manufacture thereof
GB2448950B (en) * 2007-03-29 2010-02-10 Gurit Manufacture of fibre-reinforced composite moulding
JP2010208260A (en) * 2009-03-12 2010-09-24 Toray Ind Inc Reinforcing fiber laminate, preform and manufacturing method for preform
CN102092135A (en) * 2010-12-13 2011-06-15 中国航空工业集团公司北京航空材料研究院 Method for improving rigidity of wing surface structure of composite material
CN102166825A (en) * 2010-12-24 2011-08-31 中国科学院宁波材料技术与工程研究所 Technology of making automobile engine cover with carbon fiber reinforcement resin-based composite material
JP2013022946A (en) * 2011-07-26 2013-02-04 Toyota Industries Corp Reinforced fiber sheet, fiber-reinforced composite material, method for manufacturing reinforced fiber sheet, and method for manufacturing fiber-reinforced composite material
WO2013015087A1 (en) * 2011-07-26 2013-01-31 株式会社 豊田自動織機 Reinforcing fiber sheet, fiber-reinforced composite, method for producing reinforcing fiber sheet, and method for producing fiber-reinforced composite
JP2014046618A (en) * 2012-08-31 2014-03-17 Nippon Steel Sumikin Materials Co Ltd REINFORCING FIBER SHEET FOR VaRTM, FIBER REINFORCED PLASTIC STRUCTURE-MOLDING METHOD, AND FIBER REINFORCED PLASTIC STRUCTURE
KR101881994B1 (en) * 2016-04-25 2018-08-24 주식회사 새날테크-텍스 Manufacturing method for functional cross-ply fabric and functional cross-ply fabric manufactured by the same
JP2020504688A (en) * 2016-12-26 2020-02-13 コンチネンタル ストラクチュラル プラスティックス, インコーポレイテッド Combined primary and carbon fiber components in the production of reinforced polymeric articles
JP7023963B2 (en) 2016-12-26 2022-02-22 テイジン オートモーティブ テクノロジーズ, インコーポレイテッド Combined primary and carbon fiber components in the production of reinforced polymer articles
US11161311B2 (en) 2016-12-26 2021-11-02 Continental Structural Plastics, Inc. Combined primary fiber and carbon fiber component for production of reinforced polymeric articles
JP2020508230A (en) * 2017-02-21 2020-03-19 オートモビリ ランボルギーニ ソチエタ ペル アツイオニ Process for producing composite products and semi-finished products and products obtained thereby
JP7108617B2 (en) 2017-02-21 2022-07-28 オートモビリ ランボルギーニ ソチエタ ペル アツイオニ Process and semi-finished products for manufacturing composite products and products obtained thereby
KR101985947B1 (en) * 2017-03-28 2019-06-04 주식회사 새날테크-텍스 Manufacturing method for cross-ply fabric capable of maintaining yarn properties and cross-ply fabric manufactured by the same
KR20180109479A (en) * 2017-03-28 2018-10-08 주식회사 새날테크-텍스 Manufacturing method for cross-ply fabric capable of maintaining yarn properties and cross-ply fabric manufactured by the same
KR101951924B1 (en) 2017-05-30 2019-02-25 주식회사 새날테크-텍스 Manufacturing method for carbon fiber-complex sheet having isotropic and carbon fiber-complex sheet manufactured by the same
KR20180130722A (en) * 2017-05-30 2018-12-10 주식회사 새날테크-텍스 Manufacturing method for carbon fiber-complex sheet having isotropic and carbon fiber-complex sheet manufactured by the same
CN114616090A (en) * 2019-11-11 2022-06-10 东丽株式会社 Carbon fiber tape material, and reinforcing fiber laminate and molded body using same
CN114616090B (en) * 2019-11-11 2024-04-05 东丽株式会社 Carbon fiber tape material, and reinforcing fiber laminate and molded body using same

Similar Documents

Publication Publication Date Title
JP2001064406A (en) Preform for fiber-reinforced preform and fiber- reinforced composite material using the same and production thereof
AU2003262050B2 (en) Reinforcing fiber substrate, composite material and method for producing the same
JP5309561B2 (en) Method for producing reinforcing fiber base laminate for preform, method for producing preform, and method for producing reinforcing fiber plastic
EP1027206B1 (en) Unidirectional fiber-random mat preform
JP3894035B2 (en) Carbon fiber reinforced substrate, preform and composite material comprising the same
KR101260088B1 (en) Reinforcing woven fabric and process for producing the same
JP3991439B2 (en) Fiber reinforced plastic and method for molding fiber reinforced plastic
JP4254158B2 (en) Carbon fiber substrate manufacturing method, preform manufacturing method, and composite material manufacturing method
EP2799470A1 (en) Carbon fiber base, prepreg, and carbon-fiber-reinforced composite material
CN109715385B (en) Laminated substrate and method for producing same
EP1145841A1 (en) Reinforcing fiber base for composite material
EP3180467B1 (en) Hybrid woven textile for composite reinforcement
JP2004160927A (en) Preform substrate, preform, fiber-reinforced plastic molding and molding method
JP4341419B2 (en) Preform manufacturing method and composite material manufacturing method
JP2001179844A (en) Carbon fiber-reinforced plastic molded body
JP2005262818A (en) Reinforcing fiber substrate, preform and reinforcing fiber substrate manufacturing method
Yi et al. Preform-based toughening technology for RTMable high-temperature aerospace composites
JP3214648B2 (en) Mesh prepreg for reinforcement, mesh fiber-reinforced plastic and fiber-reinforced cementitious materials
JP4019822B2 (en) Manufacturing method of fiber reinforced composite material
GB2237583A (en) Fibre reinforced thermoplastic composites
JP2006104649A (en) Rod-shaped preform and method for producing the same
JP2006138031A (en) Reinforcing fiber substrate, preform and method for producing them
JP3915614B2 (en) Fiber structure and composite material having deformed portion
JPH043769B2 (en)
US20240059046A1 (en) Reinforcing fiber base material for resin transfer molding, method of producing same, reinforcing fiber laminate for resin transfer molding, and fiber-reinforced plastic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070531

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070821