WO2013015087A1 - Reinforcing fiber sheet, fiber-reinforced composite, method for producing reinforcing fiber sheet, and method for producing fiber-reinforced composite - Google Patents

Reinforcing fiber sheet, fiber-reinforced composite, method for producing reinforcing fiber sheet, and method for producing fiber-reinforced composite Download PDF

Info

Publication number
WO2013015087A1
WO2013015087A1 PCT/JP2012/067112 JP2012067112W WO2013015087A1 WO 2013015087 A1 WO2013015087 A1 WO 2013015087A1 JP 2012067112 W JP2012067112 W JP 2012067112W WO 2013015087 A1 WO2013015087 A1 WO 2013015087A1
Authority
WO
WIPO (PCT)
Prior art keywords
reinforcing fiber
fiber bundle
sheet
reinforcing
heating roller
Prior art date
Application number
PCT/JP2012/067112
Other languages
French (fr)
Japanese (ja)
Inventor
堀 藤夫
Original Assignee
株式会社 豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 豊田自動織機 filed Critical 株式会社 豊田自動織機
Publication of WO2013015087A1 publication Critical patent/WO2013015087A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/38Automated lay-up, e.g. using robots, laying filaments according to predetermined patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/737Articles provided with holes, e.g. grids, sieves

Definitions

  • the present invention relates to a reinforcing fiber sheet for resin reinforcement, a fiber-reinforced composite material, a method for manufacturing a reinforcing fiber sheet, and a method for manufacturing a fiber-reinforced composite material.
  • Fabrication of a fiber reinforced composite material involves the use of a prepreg produced in a sheet form by impregnating a reinforcing fiber substrate with a semi-cured thermosetting resin in advance, or a prepreg produced by laminating reinforcing fiber substrates.
  • a method using reform is known.
  • the method using prepreg has an advantage that a fiber-reinforced composite material can be produced without adding a new matrix because it is impregnated with a thermosetting resin in advance.
  • the prepreg has a problem that the storage method and the expiration date are limited and the management is complicated.
  • the method using a preform has an advantage that it can be used relatively easily because there is no need to use a large apparatus.
  • Patent Document 1 describes that a reinforcing fiber sheet is formed as follows. That is, after laminating a plurality of sheet-like materials each having the reinforcing fibers aligned in one direction so that the directions of the reinforcing fibers are different from each other, these sheet-like materials are fixed by at least two resin-permeable base fabrics. .
  • the resin-permeable base fabric is a mesh-like product in which fibers are coated with a resin that melts by heating.
  • the sheet-like material is affixed and fixed to a resin-permeable base fabric with a resin melted by heating.
  • an object of the present invention is to provide a reinforced fiber sheet and a fiber reinforced composite material excellent in strength quality.
  • a porous sheet made of an interlayer reinforcing material, a heat-sealing material attached to at least one surface of the porous sheet,
  • a reinforcing fiber sheet including a reinforcing fiber bundle bonded to the one surface with the heat-sealing material.
  • the reinforcing fiber bundle has a direction changing portion in which the reinforcing fiber bundle is bent or curved.
  • the porous sheet is used because the matrix resin is not impregnated into the reinforcing fiber sheet when a sheet without holes is used.
  • the presence of the direction changing portion makes it possible to reduce the number of cut portions of the reinforcing fiber bundle and make the reinforcing fiber sheet excellent in strength quality.
  • the interlayer reinforcing material means that the interlayer of the fiber reinforced composite material is toughened to improve impact resistance.
  • the porous sheet is a woven fabric.
  • the weave of the woven fabric is preferable as a hole through which the matrix resin penetrates.
  • the fabric is a plain fabric.
  • Plain fabric is preferable for reducing the thickness of the reinforcing fiber sheet.
  • the yarn of the fabric is covered with the heat sealing material.
  • the yarn covered with the heat-sealing material is a simple material for attaching the reinforcing fiber bundle to the fabric.
  • the interlayer reinforcing material is a thermoplastic resin.
  • the reinforcing fiber bundle further has a linear portion extending linearly.
  • the direction changing portion of the reinforcing fiber bundle extends in a semicircular arc shape, and the linear portion extends from each of the pair of end portions of the direction changing portion.
  • a step of preparing a porous sheet made of an interlayer reinforcing material having a heat-sealing material attached to at least one surface, and a reinforcing fiber bundle on the one surface of the porous sheet comprising a step of heating and pressing with a heating roller and bonding.
  • the step of bonding the reinforcing fiber bundle includes bending or bending the reinforcing fiber bundle while changing the direction of the heating roller and bonding the reinforcing fiber bundle to the one surface of the porous sheet.
  • the heating roller is heated to a temperature below the melting point of the interlayer reinforcing material and above the melting point of the heat sealing material.
  • a fiber-reinforced composite material obtained by impregnating a matrix resin into a laminate formed by laminating a plurality of reinforcing fiber sheets including at least the reinforcing fiber sheet of the first aspect.
  • a step of preparing a porous sheet made of an interlayer reinforcing material having a heat-sealing material attached to at least one surface, and a reinforcing fiber bundle on the one surface of the porous sheet Laminating and laminating a plurality of reinforcing fiber sheets including at least a reinforcing fiber sheet obtained by adhering the reinforcing fiber bundle to the one surface of the porous sheet by heating and pressing with a heating roller
  • the step of bonding the reinforcing fiber bundle includes bending or bending the reinforcing fiber bundle while changing the direction of the heating roller and bonding the reinforcing fiber bundle to the one surface of the porous sheet.
  • the reinforced fiber sheet and the fiber reinforced composite material of the present invention have an effect of excellent strength quality.
  • (A) is a perspective view of the fiber reinforced composite material of the 1st Embodiment of this invention.
  • (B) is a schematic perspective view of the laminated body of 1st Embodiment.
  • (C) is a perspective view of a plurality of reinforcing fiber sheets of the first embodiment. Sectional drawing of the plain fabric of 1st Embodiment.
  • the schematic diagram of the supply apparatus of 1st Embodiment. The top view explaining the direction change of the heating roller of 1st Embodiment.
  • the fiber-reinforced composite material 10 is formed in a band shape.
  • a hole 101 is formed through one end of the belt-shaped fiber-reinforced composite material 10 in the length direction.
  • a semicircular arc edge 102 is formed around the hole 101.
  • the fiber reinforced composite material 10 is configured by impregnating a laminated body 11 shown in FIG. 1B with a thermosetting resin (for example, epoxy resin).
  • the laminate 11 is configured by laminating a plurality of reinforcing fiber sheets 12A, 12B, 12C, 12D, and 12E shown in FIG.
  • the belt-shaped reinforcing fiber sheet 12A includes a woven fabric 13A that is a porous sheet and a reinforcing fiber bundle 14A that is aligned in the length direction of the reinforcing fiber sheet 12A. .
  • the reinforcing fiber bundle 14A is affixed to an adhesive surface 131 that is one surface of the fabric 13A.
  • the belt-shaped reinforcing fiber sheet 12B is composed of a woven fabric 13B and reinforcing fiber bundles 14B that are aligned in a direction obliquely intersecting with the length direction of the reinforcing fiber sheet 12B at an angle of 135 °.
  • the reinforcing fiber bundle 14B is affixed to the adhesive surface 131 that is one surface of the fabric 13B.
  • the belt-shaped reinforcing fiber sheet 12C is composed of a woven fabric 13C and reinforcing fiber bundles 14C that are aligned in a direction obliquely crossed at an angle of 45 ° with respect to the length direction of the reinforcing fiber sheet 12C.
  • the reinforcing fiber bundle 14C is affixed to the adhesive surface 131 that is one surface of the fabric 13C.
  • the belt-shaped reinforcing fiber sheet 12D is composed of a woven fabric 13D and a reinforcing fiber bundle 14D aligned in the width direction of the reinforcing fiber sheet 12B.
  • the reinforcing fiber bundle 14D is affixed to the adhesive surface 131 that is one surface of the fabric 13D.
  • Each of the pair of belt-shaped reinforcing fiber sheets 12E is composed of a woven fabric 13E and a reinforcing fiber bundle 14E attached to an adhesive surface 131 which is one surface of the woven fabric 13E.
  • the reinforcing fiber bundle 14E includes a first array portion 141 in which the reinforcing fiber bundle 14E is aligned in the length direction of the reinforcing fiber sheet 12E, and the reinforcing fiber bundle 14E is aligned in the length direction of the reinforcing fiber sheet 12E. Later, the second array portion 142 is formed by reversing while drawing a semicircle and being aligned again in the length direction of the reinforcing fiber sheet 12E.
  • the direction of the fibers is changed in a continuous state in the semicircular arc-shaped direction changing portion Ho (see FIG. 4).
  • An empty region Q without the reinforcing fiber bundle 14E is formed between the direction changing portion Ho of the second array portion 142 and one end portion of the first array portion 141.
  • the straight portions 143 and 144 of the second array portion 142 extend linearly from each of the pair of end portions of the direction changing portion Ho.
  • the fabrics 13A, 13B, 13C, 13D, and 13E are plain fabrics, and the warps T and the wefts Y of the fabrics 13A, 13B, 13C, 13D, and 13E have low melting points on the surface of the core yarn 15, respectively.
  • This is a fused yarn having the coating film 16. That is, the fabrics 13A, 13B, 13C, 13D, and 13E are formed from yarns covered with a heat-sealing material. Therefore, it can be said that the heat-sealing material has adhered to both surfaces of the fabrics 13A, 13B, 13C, 13D, and 13E.
  • the core yarn 15 is made of a thermoplastic resin
  • the coating film 16 is made of another thermoplastic resin.
  • thermoplastic resin of the coating 16 a resin having a melting point T1 lower than the melting point T2 of the thermoplastic resin of the core yarn 15 is used.
  • thermoplastic resin for the coating 16 include copolymer nylon, modified polyester, and vinylon.
  • thermoplastic resin of the core yarn 15 include nylon 6 or nylon 66. Polyester may be used instead of nylon.
  • the reinforcing fiber bundles 14A, 14B, 14C, 14D, and 14E are bonded to the fabrics 13A, 13B, 13C, 13D, and 13E by the coating film 16 melted by heating.
  • the reinforcing fiber bundles 14A, 14B, 14C, 14D, and 14E are attached to the fabrics 13A, 13B, 13C, 13D, and 13E by the reinforcing fiber sheet manufacturing apparatus 17 shown in FIG.
  • the reinforcing fiber sheet manufacturing apparatus 17 includes a holding table 18 and a supply device 19 disposed above the holding table 18.
  • a box-shaped head frame 20 constituting the supply device 19 is rotatably supported by a rotation device 22 via a rotation shaft 21.
  • the rotating device 22 can rotate the head frame 20 about the rotating shaft 21.
  • the rotating device 22 is supported by a moving mechanism (not shown) so as to be movable in the left-right direction that coincides with the left-right direction in FIG. 3 and in the front-rear direction that coincides with the direction perpendicular to the paper surface in FIG.
  • the rotating device 22 can be moved up and down by a lifting mechanism (not shown).
  • a bobbin 23 around which the reinforcing fiber bundle 14 is wound, a pair of supply rollers 24 and 25, a tension applying roller 26, a guide roller 27, a pair of delivery rollers 28 and 29, a cutter 30 and a heating roller 31.
  • the reinforcing fiber bundle 14 wound around the bobbin 23 is passed between the pair of supply rollers 24 and 25 and passed between the pair of delivery rollers 28 and 29 while contacting the tension applying roller 26 and the guide roller 27.
  • the supply roller 25 is urged toward the supply roller 24 by the spring force of the compression spring 32.
  • the tension applying roller 26 applies a constant tension to the reinforcing fiber bundle 14 by the spring force of the tension spring 33.
  • the cutter 30 is advanced to a position indicated by a virtual line in FIG. 3 at an appropriate timing by a driving device (not shown).
  • a driving device not shown
  • the reinforcing fiber bundle 14 is cut between the feed rollers 28 and 29 and the heating roller 31.
  • the reinforcing fiber bundle 14 passed between the delivery rollers 28 and 29 is guided between the heating roller 31 and a guide 34 disposed at a position facing the heating roller 31.
  • the surface temperature of the heating roller 31 is raised by a heater (not shown) provided inside the heating roller 31.
  • the heating roller 31 is urged toward the holding table 18 by an urging means (not shown).
  • the heating roller 31 is heated to a temperature not higher than the melting point T2 of the core yarn 15 (interlayer reinforcing material) and not lower than the melting point T1 of the heat sealing material.
  • the fabric 13 ⁇ / b> E is placed on the placement surface 181 of the holding table 18 so as not to move. The above is first performed as a preparation process.
  • the start end of the reinforcing fiber bundle 14 passed between the heating roller 31 and the guide 34 is guided directly above the right end of the fabric 13E by moving the head frame 20. Thereafter, the head frame 20 is moved downward, and the starting end portion of the reinforcing fiber bundle 14 is sandwiched between the heating roller 31 and the fabric 13E.
  • the heating roller 31 presses the starting end portion of the reinforcing fiber bundle 14 onto the right end of the fabric 13E by the urging means described above. Further, the heating roller 31 melts the film 16 of the fused yarn of the fabric 13E by the heating of the heater. Thereby, the start end part of the reinforcing fiber bundle 14 is bonded to the fabric 13E.
  • the heating roller 31 rolls on the fabric 13E while pressing the reinforcing fiber bundle 14 onto the fabric 13E.
  • the reinforcing fiber bundle 14 is pulled out from the bobbin 23 by the rolling of the heating roller 31, and the reinforcing fiber bundle 14 passed between the heating roller 31 and the guide 34 is linearly arranged on the fabric 13E.
  • the heating roller 31 is moved on the fabric 13E along a path indicated by a chain line S1 in FIG.
  • the arrow on the chain line S ⁇ b> 1 represents the rolling direction of the heating roller 31.
  • the cutter 30 is operated, and the reinforcing fiber bundle 14 is moved to the heating roller 31, the guide 34, and the like. Is cut between.
  • the head frame 20 is moved upward and the heating roller 31 is separated from the upper surface of the fabric 13E.
  • the rotating device is actuated to rotate the head frame 20 by 90 ° about the rotating shaft 21. After this rotation, the head frame 20 is moved by the width of the reinforcing fiber bundle 14 in the width direction of the fabric 13E. Thereafter, the rotating device is actuated again, and the head frame 20 is rotated 90 ° about the rotating shaft 21. After this rotation, the head frame 20 is moved down and the heating roller 31 is pressed against the upper surface of the fabric 13E. Thereafter, the head frame 20 is moved in the length direction of the fabric 13E, whereby the reinforcing fiber bundles 14 are linearly arranged in the length direction of the fabric 13E.
  • the first array portion 141 in which the reinforcing fiber bundles 14 are linearly arranged is formed.
  • the reinforcing fiber bundle 14 forming the first array portion 141 is bonded to the upper surface of the fabric 13E by heating from the heating roller 31.
  • the heating roller 31 is moved on the fabric 13E along a path indicated by a chain line S2 in FIG.
  • the arrow on the chain line S2 represents the rolling direction of the heating roller 31.
  • the heating roller 31 linearly moved in the length direction of the fabric 13E reaches the straight end of the path indicated by the chain line S2 (as an example, the position indicated by S21 in FIG. 4)
  • the head frame 20 moves in an arc. Controlled to draw.
  • the heating roller 31 rolls on the fabric 13E while changing its direction as indicated by a chain line S2, and the reinforcing fiber bundle 14 is arranged in a semicircular arc shape.
  • the head frame 20 is moved in the length direction of the fabric 13E, whereby the reinforcing fiber bundles 14 are linearly arranged in the length direction of the fabric 13E.
  • the heating roller 31 By operating the heating roller 31 in this way, the second array part 142 having the semicircular arc direction changing part Ho is formed.
  • the reinforcing fiber bundle 14 forming the second array portion 142 is bonded to the upper surface of the fabric 13E by heating from the heating roller 31.
  • An empty region Q without the reinforcing fiber bundle 14 is formed between the tip of the first array portion 141 bonded to the fabric 13E and the direction change portion Ho of the second array portion 142 bonded to the fabric 13E. Is done.
  • the step of bonding the reinforcing fiber bundle 14 to the bonding surface 131 of the fabric 13E by heating and pressing with the heating roller 31 is performed. Accordingly, the step of bonding the reinforcing fiber bundle 14 includes bending or bending the reinforcing fiber bundle 14 while changing the direction of the heating roller 31 and bonding the reinforcing fiber bundle 14 to the bonding surface 131 of the fabric 13E.
  • the heating roller 31 is rolled on the fabrics 13A, 13B, 13C, and 13D to transfer the reinforcing fiber bundles 14A, 14B, 14C, and 14D to the fabrics 13A, 13B, and 13C. , 13D.
  • the portions of the fabric 13E corresponding to the surroundings of the empty region Q and the direction change portion Ho are cut and removed.
  • the same portions of the fabrics 13A, 13B, 13C, and 13D are cut and removed.
  • the reinforcing fiber sheets 12A, 12B, 12C, 12D, and 12E from which the portions of the fabrics 13A, 13B, 13C, 13D, and 13E are cut and removed are stacked on each other in a mold (not shown). This corresponds to the step of laminating a plurality of reinforcing fiber sheets 12A, 12B, 12C, 12D, and 12E to form the laminate 11.
  • the mold is filled with a matrix resin (the thermosetting resin described above). This corresponds to the step of impregnating the laminate 11 with a matrix resin.
  • the force for receiving the load is the adhesive strength between the reinforcing fiber bundle and the thermosetting resin. Will depend.
  • the force for receiving the load due to the adhesion between the reinforcing fiber bundle and the thermosetting resin is smaller than the force for receiving the load by the second array portion 142.
  • the reinforcing fiber sheet 12E having the second array portion 142 as a fiber reinforced composite material contributes to reducing the weight of the fiber reinforced composite material by reducing the number of laminated reinforcing fiber sheets.
  • the fabrics 13A, 13B, 13C, 13D, and 13E function as interlayer reinforcing materials that suppress the extension of cracks between the layers. This contributes to weight reduction of the fiber-reinforced composite material by reducing the number of laminated reinforcing fiber sheets.
  • a part of the reinforcing fiber sheet 12E around the hole 101 is formed by the direction changing portion Ho. Therefore, the number of cut portions of the reinforcing fiber bundle 14E of the reinforcing fiber sheet 12E is less than that of the reinforcing fiber sheet without the direction change portion Ho. Therefore, the presence of the direction changing portion Ho makes it possible to make the reinforcing fiber sheet 12E excellent in strength quality.
  • the woven fabrics 13A, 13B, 13C, 13D, and 13E have pores, they are suitable as interlayer reinforcing materials that improve the impact resistance by increasing the toughness between the layers of the fiber reinforced composite material 10.
  • the binder resin is cured in a state where it penetrates into the weaves of the fabrics 13A, 13B, 13C, 13D, and 13E. Therefore, the expansion of cracks generated in the resin is effectively suppressed by the fabrics 13A, 13B, 13C, 13D, and 13E. That is, the weaves of the fabrics 13A, 13B, 13C, 13D, and 13E are preferable as the holes through which the resin penetrates, and are important for suppressing the expansion of cracks.
  • a plain fabric is a fabric that can have the smallest thickness among the fabrics if the yarn diameter is the same. Therefore, it is preferable that the fabrics 13A, 13B, 13C, 13D, and 13E are plain fabrics in order to reduce the thickness of the laminate 11 by reducing the thickness of the reinforcing fiber sheets 12A, 12B, 12C, 12D, and 12E.
  • the fusion yarns (warp yarn T and weft yarn Y) constituting the woven fabrics 13A, 13B, 13C, 13D, and 13E are heated while being pressed to form reinforcing fiber bundles into the woven fabrics 13A, 13B, 13C, 13D, and 13E. It is a simple material for pasting.
  • the head frame 20 is provided with a cooling nozzle 35.
  • the cooling nozzle 35 is connected to a cooling device (not shown).
  • the cooling nozzle 35 is disposed on the rear side in the moving direction of the head frame 20 with respect to the heating roller 31.
  • the cold air injection port 351 of the cooling nozzle 35 is disposed so as to be directed between the heating roller 31 and the holding base 18.
  • the coating film 16 melted by heating is cooled by cold air sprayed from the cooling nozzle 35 immediately after the reinforcing fiber bundle is pressurized and heated. Therefore, the solidification of the coating film 16 (heat-bonding material) proceeds promptly as the viscosity decreases early. Therefore, the shape retention effect of the reinforcing fiber bundle can be obtained early.
  • a porous sheet to which a heat-sealable material powder is adhered may be used.
  • a porous film may be used instead of a woven fabric as the porous sheet.
  • the laminated body may be composed only of reinforcing fiber sheets having a direction changing portion.
  • the direction changing portion of the reinforcing fiber bundle may be bent at an acute angle, a right angle or an obtuse angle.
  • 10 Fiber reinforced composite material. 11 ... Laminated body. 12A, 12B, 12C, 12D, 12E ... reinforcing fiber sheet. 13A, 13B, 13C, 13D, 13E ... Woven fabric as a porous sheet. 131: Adhesive surface that is one surface of the fabric. 14, 14A, 14B, 14C, 14D, 14E ... reinforcing fiber bundles. 141: First arrangement portion. 143, 144... Linear portion of the second array portion. 16: A film as a heat sealing material. 31 ... Heating roller. T ... Warp. Y ... Weft. Ho ... Direction change part.

Landscapes

  • Laminated Bodies (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

A reinforcing fiber sheet (12E) is provided with a porous sheet (13E). A heat-sealing material (16) is affixed to at least one surface (131) of the porous sheet (13E). A reinforcing fiber bundle (14) is bonded by the heat-sealing material (16) to the one surface (131) of the porous sheet (13E). The reinforcing fiber bundle (14) has a direction change section (Ho) in which the reinforcing fiber bundle (14) is bent or curved.

Description

強化繊維シート、繊維強化複合材、強化繊維シートの製造方法、及び繊維強化複合材の製造方法Reinforcing fiber sheet, fiber reinforced composite material, method for producing reinforcing fiber sheet, and method for producing fiber reinforced composite material
 本発明は、樹脂強化用の強化繊維シート、繊維強化複合材、強化繊維シートの製造方法、及び繊維強化複合材の製造方法に関する。 The present invention relates to a reinforcing fiber sheet for resin reinforcement, a fiber-reinforced composite material, a method for manufacturing a reinforcing fiber sheet, and a method for manufacturing a fiber-reinforced composite material.
 繊維強化複合材の製作には、強化繊維基材に半硬化の熱硬化性樹脂を予め含浸させてシート状に製造されたプリプレグを用いる方法、あるいは強化繊維基材を積層して製造されたプリフォームを用いる方法等が知られている。 Fabrication of a fiber reinforced composite material involves the use of a prepreg produced in a sheet form by impregnating a reinforcing fiber substrate with a semi-cured thermosetting resin in advance, or a prepreg produced by laminating reinforcing fiber substrates. A method using reform is known.
 プリプレグを用いる方法では、熱硬化性樹脂を予め含浸しているため、新たにマトリックスを付加すること無く繊維強化複合材を製作できるという利点がある。その反面、プリプレグを用いる方法では、バギングフィルムを用いて真空引きした後に大型のオートクレーブによりプリプレグを熱硬化させる等、大型の装置を使用する必要がある。そのため、エネルギー消費が大きく、コストアップにも繋がるという問題がある。又、プリプレグは、保管方法や使用期限等に制約があり、管理が複雑であるという問題もある。 The method using prepreg has an advantage that a fiber-reinforced composite material can be produced without adding a new matrix because it is impregnated with a thermosetting resin in advance. On the other hand, in the method using prepreg, it is necessary to use a large apparatus, such as heat-curing the prepreg with a large autoclave after vacuuming with a bagging film. Therefore, there is a problem that energy consumption is large, leading to an increase in cost. In addition, the prepreg has a problem that the storage method and the expiration date are limited and the management is complicated.
 一方、プリフォームを用いる方法では、大型の装置を用いる必要が無いため、比較的簡便に使用できる利点がある。 On the other hand, the method using a preform has an advantage that it can be used relatively easily because there is no need to use a large apparatus.
 特許文献1には、次のようにして強化繊維シートを形成することが記載されている。すなわち、それぞれ一方向に強化繊維を引き揃えた複数のシート状物を互いに強化繊維の方向が異なるように積層させた後、これらのシート状物を少なくとも2枚の樹脂透過性基布によって固定する。樹脂透過性基布は、加熱によって融解する樹脂を繊維にコーティングしたメッシュ状物である。シート状物は、加熱によって融解した樹脂によって樹脂透過性基布に貼り付け固定される。 Patent Document 1 describes that a reinforcing fiber sheet is formed as follows. That is, after laminating a plurality of sheet-like materials each having the reinforcing fibers aligned in one direction so that the directions of the reinforcing fibers are different from each other, these sheet-like materials are fixed by at least two resin-permeable base fabrics. . The resin-permeable base fabric is a mesh-like product in which fibers are coated with a resin that melts by heating. The sheet-like material is affixed and fixed to a resin-permeable base fabric with a resin melted by heating.
特開2001-38840号公報JP 2001-38840 A
 しかし、特許文献1に開示の強化繊維シートでは、強化繊維がすべて直線的に延びている。この場合、強化繊維シートを所望の形状に形成するときに強化繊維の切断箇所が多くなる。このことは強度的な品質の面で問題がある。 However, in the reinforcing fiber sheet disclosed in Patent Document 1, all the reinforcing fibers extend linearly. In this case, when the reinforcing fiber sheet is formed into a desired shape, the number of cut portions of the reinforcing fibers increases. This is problematic in terms of strength quality.
 そこで本発明は、強度的な品質に優れた強化繊維シート及び繊維強化複合材を提供することを目的とする。 Therefore, an object of the present invention is to provide a reinforced fiber sheet and a fiber reinforced composite material excellent in strength quality.
 上記の目的を達成するために本発明の第1の態様によれば、層間強化材からなる多孔シートと、前記多孔シートの少なくとも一方の面に付着された熱融着材と、前記多孔シートの前記一方の面に前記熱融着材により接着された強化繊維束とを備えた強化繊維シートを提供する。前記強化繊維束は、前記強化繊維束が屈曲又は湾曲された方向転換部を有している。なお、多孔シートを使用しているのは、孔のないシートを使用した場合には強化繊維シートにマトリックス樹脂が含浸しないためである。 In order to achieve the above object, according to the first aspect of the present invention, a porous sheet made of an interlayer reinforcing material, a heat-sealing material attached to at least one surface of the porous sheet, Provided is a reinforcing fiber sheet including a reinforcing fiber bundle bonded to the one surface with the heat-sealing material. The reinforcing fiber bundle has a direction changing portion in which the reinforcing fiber bundle is bent or curved. The porous sheet is used because the matrix resin is not impregnated into the reinforcing fiber sheet when a sheet without holes is used.
 この構成によれば、方向転換部が存在することにより、強化繊維束の切断箇所を少なくして強化繊維シートを強度的な品質に優れたものとすることができる。なお、層間強化材とは、繊維強化複合材の層間を高靭性化して耐衝撃性を向上させるものであることを意味する。 According to this configuration, the presence of the direction changing portion makes it possible to reduce the number of cut portions of the reinforcing fiber bundle and make the reinforcing fiber sheet excellent in strength quality. The interlayer reinforcing material means that the interlayer of the fiber reinforced composite material is toughened to improve impact resistance.
 好適な例では、前記多孔シートは織物である。 In a preferred example, the porous sheet is a woven fabric.
 織物の織り目は、マトリックス樹脂が浸透する孔として好ましい。 The weave of the woven fabric is preferable as a hole through which the matrix resin penetrates.
 好適な例では、前記織物は平織物である。 In a preferred example, the fabric is a plain fabric.
 平織物は、強化繊維シートの厚みを小さくする上で好ましい。 Plain fabric is preferable for reducing the thickness of the reinforcing fiber sheet.
 好適な例では、前記織物の糸は、前記熱融着材によって被覆されている。 In a preferred example, the yarn of the fabric is covered with the heat sealing material.
 熱融着材によって被覆されている糸は、強化繊維束を織物に貼り付ける上で簡便な素材である。 The yarn covered with the heat-sealing material is a simple material for attaching the reinforcing fiber bundle to the fabric.
 好適な例では、前記層間強化材は熱可塑性樹脂である。 In a preferred example, the interlayer reinforcing material is a thermoplastic resin.
 好適な例では、前記強化繊維束は、直線的に延びる直線部をさらに有している。 In a preferred example, the reinforcing fiber bundle further has a linear portion extending linearly.
 好適な例では、前記強化繊維束の前記方向転換部は半円弧状に延びており、前記直線部は前記方向転換部の一対の端部のそれぞれから延びている。 In a preferred example, the direction changing portion of the reinforcing fiber bundle extends in a semicircular arc shape, and the linear portion extends from each of the pair of end portions of the direction changing portion.
 本発明の第2の態様によれば、少なくとも一方の面に熱融着材が付着した層間強化材からなる多孔シートを準備する工程と、前記多孔シートの前記一方の面に、強化繊維束を加熱ローラによって加熱及び加圧して接着させる工程とを備えた強化繊維シートの製造方法が提供される。強化繊維束を接着させる工程は、前記加熱ローラを方向転換しながら前記強化繊維束を屈曲又は湾曲させて前記多孔シートの前記一方の面に接着させることを含む。前記加熱ローラは、前記層間強化材の融点以下で且つ前記熱融着材の融点以上の温度に加熱される。 According to the second aspect of the present invention, a step of preparing a porous sheet made of an interlayer reinforcing material having a heat-sealing material attached to at least one surface, and a reinforcing fiber bundle on the one surface of the porous sheet There is provided a method for producing a reinforcing fiber sheet comprising a step of heating and pressing with a heating roller and bonding. The step of bonding the reinforcing fiber bundle includes bending or bending the reinforcing fiber bundle while changing the direction of the heating roller and bonding the reinforcing fiber bundle to the one surface of the porous sheet. The heating roller is heated to a temperature below the melting point of the interlayer reinforcing material and above the melting point of the heat sealing material.
 本発明の第3の態様によれば、上記第1の態様の強化繊維シートを少なくとも含む複数の強化繊維シートを積層して形成される積層体にマトリックス樹脂を含浸させてなる繊維強化複合材を提供する。 According to the third aspect of the present invention, there is provided a fiber-reinforced composite material obtained by impregnating a matrix resin into a laminate formed by laminating a plurality of reinforcing fiber sheets including at least the reinforcing fiber sheet of the first aspect. provide.
 本発明の第4の態様によれば、少なくとも一方の面に熱融着材が付着した層間強化材からなる多孔シートを準備する工程と、前記多孔シートの前記一方の面に、強化繊維束を加熱ローラによって加熱及び加圧して接着させる工程と、前記多孔シートの前記一方の面に前記強化繊維束を接着させることにより得られた強化繊維シートを少なくとも含む複数の強化繊維シートを積層して積層体を形成する工程と、前記積層体にマトリックス樹脂を含浸させる工程とを備える。強化繊維束を接着させる工程は、前記加熱ローラを方向転換しながら前記強化繊維束を屈曲又は湾曲させて前記多孔シートの前記一方の面に接着させることを含む。 According to the fourth aspect of the present invention, a step of preparing a porous sheet made of an interlayer reinforcing material having a heat-sealing material attached to at least one surface, and a reinforcing fiber bundle on the one surface of the porous sheet Laminating and laminating a plurality of reinforcing fiber sheets including at least a reinforcing fiber sheet obtained by adhering the reinforcing fiber bundle to the one surface of the porous sheet by heating and pressing with a heating roller A step of forming a body, and a step of impregnating the laminate with a matrix resin. The step of bonding the reinforcing fiber bundle includes bending or bending the reinforcing fiber bundle while changing the direction of the heating roller and bonding the reinforcing fiber bundle to the one surface of the porous sheet.
 本発明の強化繊維シート及び繊維強化複合材は、強度的な品質に優れるという効果を奏する。 The reinforced fiber sheet and the fiber reinforced composite material of the present invention have an effect of excellent strength quality.
(a)は、本発明の第1の実施形態の繊維強化複合材の斜視図。(b)は、第1の実施形態の積層体の概略斜視図。(c)は、第1の実施形態の複数の強化繊維シートの斜視図。(A) is a perspective view of the fiber reinforced composite material of the 1st Embodiment of this invention. (B) is a schematic perspective view of the laminated body of 1st Embodiment. (C) is a perspective view of a plurality of reinforcing fiber sheets of the first embodiment. 第1の実施形態の平織物の断面図。Sectional drawing of the plain fabric of 1st Embodiment. 第1の実施形態の供給装置の模式図。The schematic diagram of the supply apparatus of 1st Embodiment. 第1の実施形態の加熱ローラの方向転換を説明する平面図。The top view explaining the direction change of the heating roller of 1st Embodiment. 本発明の第2の実施形態の供給装置の模式図。The schematic diagram of the supply apparatus of the 2nd Embodiment of this invention.
 以下、本発明を具体化した第1の実施形態を図1(a)~図4に基づいて説明する。 Hereinafter, a first embodiment embodying the present invention will be described with reference to FIGS.
 図1(a)に示すように、繊維強化複合材10は帯形状に形成されている。帯形状の繊維強化複合材10の長さ方向の一端部には孔101が貫設されている。孔101の周囲には半円弧縁102が形成されている。繊維強化複合材10は、図1(b)に示す積層体11に熱硬化性樹脂(例えばエポキシ樹脂)を含浸させて構成されている。積層体11は、図1(c)に示す複数の強化繊維シート12A,12B,12C,12D,12Eを積層して構成されている。 As shown in FIG. 1A, the fiber-reinforced composite material 10 is formed in a band shape. A hole 101 is formed through one end of the belt-shaped fiber-reinforced composite material 10 in the length direction. A semicircular arc edge 102 is formed around the hole 101. The fiber reinforced composite material 10 is configured by impregnating a laminated body 11 shown in FIG. 1B with a thermosetting resin (for example, epoxy resin). The laminate 11 is configured by laminating a plurality of reinforcing fiber sheets 12A, 12B, 12C, 12D, and 12E shown in FIG.
 図1(c)に示すように、帯形状の強化繊維シート12Aは、多孔シートである織物13Aと、強化繊維シート12Aの長さ方向に引き揃えられた強化繊維束14Aとから構成されている。強化繊維束14Aは、織物13Aの一方の面である接着面131に貼り付けられている。帯形状の強化繊維シート12Bは、織物13Bと、強化繊維シート12Bの長さ方向に対して135°の角度で斜交する方向に引き揃えられた強化繊維束14Bとから構成されている。強化繊維束14Bは、織物13Bの一方の面である接着面131に貼り付けられている。帯形状の強化繊維シート12Cは、織物13Cと、強化繊維シート12Cの長さ方向に対して45°の角度で斜交する方向に引き揃えられた強化繊維束14Cとから構成されている。強化繊維束14Cは、織物13Cの一方の面である接着面131に貼り付けられている。帯形状の強化繊維シート12Dは、織物13Dと、強化繊維シート12Bの幅方向に引き揃えられた強化繊維束14Dとから構成されている。強化繊維束14Dは、織物13Dの一方の面である接着面131に貼り付けられている。 As shown in FIG. 1C, the belt-shaped reinforcing fiber sheet 12A includes a woven fabric 13A that is a porous sheet and a reinforcing fiber bundle 14A that is aligned in the length direction of the reinforcing fiber sheet 12A. . The reinforcing fiber bundle 14A is affixed to an adhesive surface 131 that is one surface of the fabric 13A. The belt-shaped reinforcing fiber sheet 12B is composed of a woven fabric 13B and reinforcing fiber bundles 14B that are aligned in a direction obliquely intersecting with the length direction of the reinforcing fiber sheet 12B at an angle of 135 °. The reinforcing fiber bundle 14B is affixed to the adhesive surface 131 that is one surface of the fabric 13B. The belt-shaped reinforcing fiber sheet 12C is composed of a woven fabric 13C and reinforcing fiber bundles 14C that are aligned in a direction obliquely crossed at an angle of 45 ° with respect to the length direction of the reinforcing fiber sheet 12C. The reinforcing fiber bundle 14C is affixed to the adhesive surface 131 that is one surface of the fabric 13C. The belt-shaped reinforcing fiber sheet 12D is composed of a woven fabric 13D and a reinforcing fiber bundle 14D aligned in the width direction of the reinforcing fiber sheet 12B. The reinforcing fiber bundle 14D is affixed to the adhesive surface 131 that is one surface of the fabric 13D.
 一対の帯形状の強化繊維シート12Eはそれぞれ、織物13Eと、織物13Eの一方の面である接着面131に貼り付けられた強化繊維束14Eとから構成されている。強化繊維束14Eは、強化繊維シート12Eの長さ方向に強化繊維束14Eが引き揃えられた第1の配列部141と、強化繊維束14Eが強化繊維シート12Eの長さ方向に引き揃えられた後に半円を描きながら反転して強化繊維シート12Eの長さ方向に再び引き揃えられた第2の配列部142とを形成している。第2の配列部142は、半円弧状の方向転換部Ho(図4参照)において連続した状態で繊維の方向が転換している。第2の配列部142の方向転換部Hoと第1の配列部141の一端部との間には、強化繊維束14Eのない空領域Qが形成されている。第2の配列部142の直線部143,144は、方向転換部Hoの一対の端部のそれぞれから直線的に延びている。 Each of the pair of belt-shaped reinforcing fiber sheets 12E is composed of a woven fabric 13E and a reinforcing fiber bundle 14E attached to an adhesive surface 131 which is one surface of the woven fabric 13E. The reinforcing fiber bundle 14E includes a first array portion 141 in which the reinforcing fiber bundle 14E is aligned in the length direction of the reinforcing fiber sheet 12E, and the reinforcing fiber bundle 14E is aligned in the length direction of the reinforcing fiber sheet 12E. Later, the second array portion 142 is formed by reversing while drawing a semicircle and being aligned again in the length direction of the reinforcing fiber sheet 12E. In the second array portion 142, the direction of the fibers is changed in a continuous state in the semicircular arc-shaped direction changing portion Ho (see FIG. 4). An empty region Q without the reinforcing fiber bundle 14E is formed between the direction changing portion Ho of the second array portion 142 and one end portion of the first array portion 141. The straight portions 143 and 144 of the second array portion 142 extend linearly from each of the pair of end portions of the direction changing portion Ho.
 図2に示すように、織物13A,13B,13C,13D,13Eは平織物であり、織物13A,13B,13C,13D,13Eの経糸T及び緯糸Yはそれぞれ、芯糸15の表面に低融点の被膜16を有する融着糸である。すなわち、織物13A,13B,13C,13D,13Eは、熱融着材によって被覆された糸から形成されている。そのため、織物13A,13B,13C,13D,13Eの両面には熱融着材が付着しているといえる。芯糸15は熱可塑性樹脂からなり、被膜16は別の熱可塑性樹脂からなる。被膜16の熱可塑性樹脂としては、芯糸15の熱可塑性樹脂の融点T2よりも低い融点T1を有するものが用いられる。被膜16の熱可塑性樹脂の例としては、例えば共重合ナイロン、変性ポリエステルあるいはビニロンが挙げられる。芯糸15の熱可塑性樹脂の例としてはナイロン6あるいはナイロン66が挙げられる。なお、ナイロンの代わりにポリエステルを使用しても良い。 As shown in FIG. 2, the fabrics 13A, 13B, 13C, 13D, and 13E are plain fabrics, and the warps T and the wefts Y of the fabrics 13A, 13B, 13C, 13D, and 13E have low melting points on the surface of the core yarn 15, respectively. This is a fused yarn having the coating film 16. That is, the fabrics 13A, 13B, 13C, 13D, and 13E are formed from yarns covered with a heat-sealing material. Therefore, it can be said that the heat-sealing material has adhered to both surfaces of the fabrics 13A, 13B, 13C, 13D, and 13E. The core yarn 15 is made of a thermoplastic resin, and the coating film 16 is made of another thermoplastic resin. As the thermoplastic resin of the coating 16, a resin having a melting point T1 lower than the melting point T2 of the thermoplastic resin of the core yarn 15 is used. Examples of the thermoplastic resin for the coating 16 include copolymer nylon, modified polyester, and vinylon. Examples of the thermoplastic resin of the core yarn 15 include nylon 6 or nylon 66. Polyester may be used instead of nylon.
 強化繊維束14A,14B,14C,14D,14Eは、加熱によって溶融した被膜16により織物13A,13B,13C,13D,13Eに接着されている。 The reinforcing fiber bundles 14A, 14B, 14C, 14D, and 14E are bonded to the fabrics 13A, 13B, 13C, 13D, and 13E by the coating film 16 melted by heating.
 強化繊維束14A,14B,14C,14D,14Eは、図3に示す強化繊維シート製造装置17によって織物13A,13B,13C,13D,13Eに貼り付けられる。 The reinforcing fiber bundles 14A, 14B, 14C, 14D, and 14E are attached to the fabrics 13A, 13B, 13C, 13D, and 13E by the reinforcing fiber sheet manufacturing apparatus 17 shown in FIG.
 図3に示すように、強化繊維シート製造装置17は、保持台18と、保持台18の上方に配設された供給装置19とから構成されている。供給装置19を構成する箱形状のヘッドフレーム20は、回転軸21を介して回転装置22によって回転可能に支持されている。回転装置22は、回転軸21を中心にしてヘッドフレーム20を回動可能である。回転装置22は、図示しない移動機構によって、図3における左右方向に一致する左右方向及び図3における紙面に垂直な方向に一致する前後方向に移動可能に支持されている。又、回転装置22は、図示しない昇降機構によって昇降可能である。 As shown in FIG. 3, the reinforcing fiber sheet manufacturing apparatus 17 includes a holding table 18 and a supply device 19 disposed above the holding table 18. A box-shaped head frame 20 constituting the supply device 19 is rotatably supported by a rotation device 22 via a rotation shaft 21. The rotating device 22 can rotate the head frame 20 about the rotating shaft 21. The rotating device 22 is supported by a moving mechanism (not shown) so as to be movable in the left-right direction that coincides with the left-right direction in FIG. 3 and in the front-rear direction that coincides with the direction perpendicular to the paper surface in FIG. The rotating device 22 can be moved up and down by a lifting mechanism (not shown).
 ヘッドフレーム20の内部には、強化繊維束14を巻いたボビン23、一対の供給ローラ24,25、張力付与ローラ26、ガイドローラ27、一対の送り出しローラ28,29、カッター30及び加熱ローラ31が内蔵されている。ボビン23に巻かれた強化繊維束14は、一対の供給ローラ24,25間を通されて張力付与ローラ26及びガイドローラ27に接しながら一対の送り出しローラ28,29間を通される。供給ローラ25は、圧縮ばね32のばね力によって供給ローラ24に向けて付勢されている。張力付与ローラ26は、引っ張りばね33のばね力によって強化繊維束14に一定の張力を付与している。 Inside the head frame 20 are a bobbin 23 around which the reinforcing fiber bundle 14 is wound, a pair of supply rollers 24 and 25, a tension applying roller 26, a guide roller 27, a pair of delivery rollers 28 and 29, a cutter 30 and a heating roller 31. Built in. The reinforcing fiber bundle 14 wound around the bobbin 23 is passed between the pair of supply rollers 24 and 25 and passed between the pair of delivery rollers 28 and 29 while contacting the tension applying roller 26 and the guide roller 27. The supply roller 25 is urged toward the supply roller 24 by the spring force of the compression spring 32. The tension applying roller 26 applies a constant tension to the reinforcing fiber bundle 14 by the spring force of the tension spring 33.
 カッター30は、図示しない駆動装置により適宜のタイミングで図3中に仮想線で示す位置まで進出される。これにより送り出しローラ28,29と加熱ローラ31との間で強化繊維束14が切断される。送り出しローラ28,29間を通された強化繊維束14は、加熱ローラ31と、加熱ローラ31に対向する位置に配設されたガイド34との間に案内される。加熱ローラ31の表面温度は、加熱ローラ31の内部に設けられたヒータ(図示略)により昇温される。又、加熱ローラ31は、図示しない付勢手段により保持台18に向けて付勢されている。 The cutter 30 is advanced to a position indicated by a virtual line in FIG. 3 at an appropriate timing by a driving device (not shown). As a result, the reinforcing fiber bundle 14 is cut between the feed rollers 28 and 29 and the heating roller 31. The reinforcing fiber bundle 14 passed between the delivery rollers 28 and 29 is guided between the heating roller 31 and a guide 34 disposed at a position facing the heating roller 31. The surface temperature of the heating roller 31 is raised by a heater (not shown) provided inside the heating roller 31. The heating roller 31 is urged toward the holding table 18 by an urging means (not shown).
 次に、強化繊維シート12Eの製造方法を説明する。 Next, a method for manufacturing the reinforcing fiber sheet 12E will be described.
 加熱ローラ31は、芯糸15(層間強化材)の融点T2以下でかつ熱融着材の融点T1以上の温度に加熱される。図4に示すように、保持台18の載置面181上に織物13Eが載せられて動かないようにされる。以上のことがまず、準備工程として行われる。 The heating roller 31 is heated to a temperature not higher than the melting point T2 of the core yarn 15 (interlayer reinforcing material) and not lower than the melting point T1 of the heat sealing material. As shown in FIG. 4, the fabric 13 </ b> E is placed on the placement surface 181 of the holding table 18 so as not to move. The above is first performed as a preparation process.
 次に、加熱ローラ31とガイド34との間を通された強化繊維束14の始端は、ヘッドフレーム20を移動することによって織物13Eの右端の直上に案内される。その後、ヘッドフレーム20が下動され、強化繊維束14の始端部が加熱ローラ31と織物13Eとの間に挟まれる。 Next, the start end of the reinforcing fiber bundle 14 passed between the heating roller 31 and the guide 34 is guided directly above the right end of the fabric 13E by moving the head frame 20. Thereafter, the head frame 20 is moved downward, and the starting end portion of the reinforcing fiber bundle 14 is sandwiched between the heating roller 31 and the fabric 13E.
 加熱ローラ31は、前記した付勢手段により強化繊維束14の始端部を織物13Eの右端上に押接する。又、加熱ローラ31は、前記したヒータの加熱によって織物13Eの融着糸の被膜16を溶融する。これにより、強化繊維束14の始端部が織物13Eに接着される。 The heating roller 31 presses the starting end portion of the reinforcing fiber bundle 14 onto the right end of the fabric 13E by the urging means described above. Further, the heating roller 31 melts the film 16 of the fused yarn of the fabric 13E by the heating of the heater. Thereby, the start end part of the reinforcing fiber bundle 14 is bonded to the fabric 13E.
 その後、ヘッドフレーム20が移動されることにより、加熱ローラ31が強化繊維束14を織物13E上に押接しながら織物13E上を転動してゆく。加熱ローラ31の転動により強化繊維束14がボビン23から引き出されてゆき、加熱ローラ31とガイド34との間を通された強化繊維束14が織物13E上に直線的に配列されてゆく。 Thereafter, when the head frame 20 is moved, the heating roller 31 rolls on the fabric 13E while pressing the reinforcing fiber bundle 14 onto the fabric 13E. The reinforcing fiber bundle 14 is pulled out from the bobbin 23 by the rolling of the heating roller 31, and the reinforcing fiber bundle 14 passed between the heating roller 31 and the guide 34 is linearly arranged on the fabric 13E.
 加熱ローラ31は、図4中に鎖線S1で示す経路に沿って織物13E上を移動される。鎖線S1上の矢印は、加熱ローラ31の転動方向を表す。織物13Eの長さ方向へ直線的に移動された加熱ローラ31が鎖線S1で示す経路の直線端近くに達したタイミングで、カッター30が作動され、強化繊維束14が加熱ローラ31とガイド34との間で切断される。強化繊維束14の切断後、加熱ローラ31が鎖線S1で示す経路の直線端まで転動されると、ヘッドフレーム20が上動されて加熱ローラ31が織物13Eの上面から離れる。また、回転装置が作動されてヘッドフレーム20が回転軸21を中心にして90°回転される。この回転後、ヘッドフレーム20が織物13Eの幅方向に強化繊維束14の幅だけ移動される。その後、回転装置が再び作動され、ヘッドフレーム20が回転軸21を中心にして90°回転される。この回転後、ヘッドフレーム20が下動されて加熱ローラ31が織物13Eの上面に押接される。その後、ヘッドフレーム20が織物13Eの長さ方向に移動されることにより、強化繊維束14が織物13Eの長さ方向に直線的に配列されてゆく。このようにヘッドフレーム20及び加熱ローラ31を動作させることにより、強化繊維束14を直線的に配列した第1の配列部141が形成される。第1の配列部141を形成する強化繊維束14は、加熱ローラ31からの加熱によって織物13Eの上面に接着される。 The heating roller 31 is moved on the fabric 13E along a path indicated by a chain line S1 in FIG. The arrow on the chain line S <b> 1 represents the rolling direction of the heating roller 31. At the timing when the heating roller 31 linearly moved in the length direction of the fabric 13E reaches near the linear end of the path indicated by the chain line S1, the cutter 30 is operated, and the reinforcing fiber bundle 14 is moved to the heating roller 31, the guide 34, and the like. Is cut between. After the cutting of the reinforcing fiber bundle 14, when the heating roller 31 is rolled to the linear end of the path indicated by the chain line S1, the head frame 20 is moved upward and the heating roller 31 is separated from the upper surface of the fabric 13E. In addition, the rotating device is actuated to rotate the head frame 20 by 90 ° about the rotating shaft 21. After this rotation, the head frame 20 is moved by the width of the reinforcing fiber bundle 14 in the width direction of the fabric 13E. Thereafter, the rotating device is actuated again, and the head frame 20 is rotated 90 ° about the rotating shaft 21. After this rotation, the head frame 20 is moved down and the heating roller 31 is pressed against the upper surface of the fabric 13E. Thereafter, the head frame 20 is moved in the length direction of the fabric 13E, whereby the reinforcing fiber bundles 14 are linearly arranged in the length direction of the fabric 13E. By operating the head frame 20 and the heating roller 31 in this way, the first array portion 141 in which the reinforcing fiber bundles 14 are linearly arranged is formed. The reinforcing fiber bundle 14 forming the first array portion 141 is bonded to the upper surface of the fabric 13E by heating from the heating roller 31.
 次に、加熱ローラ31は、図4中に鎖線S2で示す経路に沿って織物13E上を移動される。鎖線S2上の矢印は、加熱ローラ31の転動方向を表す。織物13Eの長さ方向へ直線的に移動された加熱ローラ31が鎖線S2で示す経路の直線端(一例として図4中にS21で示す箇所)に達したときには、ヘッドフレーム20の動作が円弧を描くように制御される。これにより加熱ローラ31が鎖線S2で示すように方向を変えながら織物13E上を転動し、強化繊維束14が半円弧形状に配列される。その後、ヘッドフレーム20が織物13Eの長さ方向に移動されることにより、強化繊維束14が織物13Eの長さ方向に直線的に配列されてゆく。このように加熱ローラ31を動作させることにより、半円弧状の方向転換部Hoを備えた第2の配列部142が形成される。第2の配列部142を形成する強化繊維束14は、加熱ローラ31からの加熱によって織物13Eの上面に接着される。 Next, the heating roller 31 is moved on the fabric 13E along a path indicated by a chain line S2 in FIG. The arrow on the chain line S2 represents the rolling direction of the heating roller 31. When the heating roller 31 linearly moved in the length direction of the fabric 13E reaches the straight end of the path indicated by the chain line S2 (as an example, the position indicated by S21 in FIG. 4), the head frame 20 moves in an arc. Controlled to draw. As a result, the heating roller 31 rolls on the fabric 13E while changing its direction as indicated by a chain line S2, and the reinforcing fiber bundle 14 is arranged in a semicircular arc shape. Thereafter, the head frame 20 is moved in the length direction of the fabric 13E, whereby the reinforcing fiber bundles 14 are linearly arranged in the length direction of the fabric 13E. By operating the heating roller 31 in this way, the second array part 142 having the semicircular arc direction changing part Ho is formed. The reinforcing fiber bundle 14 forming the second array portion 142 is bonded to the upper surface of the fabric 13E by heating from the heating roller 31.
 織物13Eに接着された第1の配列部141の先端と、織物13Eに接着された第2の配列部142の方向転換部Hoとの間には、強化繊維束14のない空領域Qが形成される。 An empty region Q without the reinforcing fiber bundle 14 is formed between the tip of the first array portion 141 bonded to the fabric 13E and the direction change portion Ho of the second array portion 142 bonded to the fabric 13E. Is done.
 以上により、織物13Eの接着面131に、強化繊維束14を加熱ローラ31によって加熱及び加圧して接着させる工程は行われる。従って、強化繊維束14を接着させる工程は、加熱ローラ31を方向転換しながら強化繊維束14を屈曲又は湾曲させて織物13Eの接着面131に接着させることを含む。 As described above, the step of bonding the reinforcing fiber bundle 14 to the bonding surface 131 of the fabric 13E by heating and pressing with the heating roller 31 is performed. Accordingly, the step of bonding the reinforcing fiber bundle 14 includes bending or bending the reinforcing fiber bundle 14 while changing the direction of the heating roller 31 and bonding the reinforcing fiber bundle 14 to the bonding surface 131 of the fabric 13E.
 その他の強化繊維シート12A,12B,12C,12Dについても、織物13A,13B,13C,13D上で加熱ローラ31を転動させて強化繊維束14A,14B,14C,14Dを織物13A,13B,13C,13D上に接着させることにより製造される。 For the other reinforcing fiber sheets 12A, 12B, 12C, and 12D, the heating roller 31 is rolled on the fabrics 13A, 13B, 13C, and 13D to transfer the reinforcing fiber bundles 14A, 14B, 14C, and 14D to the fabrics 13A, 13B, and 13C. , 13D.
 このように形成された強化繊維シート12Eでは、空領域Q及び方向転換部Hoの周囲に対応する織物13Eの部位が切断除去される。他の強化繊維シート12A,12B,12C,12Dにおいても、織物13A,13B,13C,13Dの同部位が切断除去される。 In the reinforcing fiber sheet 12E thus formed, the portions of the fabric 13E corresponding to the surroundings of the empty region Q and the direction change portion Ho are cut and removed. In the other reinforcing fiber sheets 12A, 12B, 12C, and 12D, the same portions of the fabrics 13A, 13B, 13C, and 13D are cut and removed.
 織物13A,13B,13C,13D,13Eの前記部位が切断除去された強化繊維シート12A,12B,12C,12D,12Eは、図示しない型内で互いに積層される。これは、複数の強化繊維シート12A,12B,12C,12D,12Eを積層して積層体11を形成する工程に相当する。 The reinforcing fiber sheets 12A, 12B, 12C, 12D, and 12E from which the portions of the fabrics 13A, 13B, 13C, 13D, and 13E are cut and removed are stacked on each other in a mold (not shown). This corresponds to the step of laminating a plurality of reinforcing fiber sheets 12A, 12B, 12C, 12D, and 12E to form the laminate 11.
 その後、前記型内にマトリックス樹脂(前記した熱硬化性樹脂)が充填される。これは、積層体11にマトリックス樹脂を含浸させる工程に相当する。 Thereafter, the mold is filled with a matrix resin (the thermosetting resin described above). This corresponds to the step of impregnating the laminate 11 with a matrix resin.
 マトリックス樹脂が加熱によって硬化すると、図1(a)に示す繊維強化複合材10が形成される。 When the matrix resin is cured by heating, a fiber reinforced composite material 10 shown in FIG. 1 (a) is formed.
 次に、第1の実施形態の作用を説明する。 Next, the operation of the first embodiment will be described.
 まず、繊維強化複合材10の孔101に挿通された部材36から図1(a)中に矢印Kで示す方向へ繊維強化複合材10に荷重が掛かった場合を説明する。この場合、繊維強化複合材10を構成する強化繊維シート12Eが第2の配列部142を有していなかったとすると、前記荷重を受け止める力は、強化繊維束と熱硬化性樹脂との接着強度に依存することになる。この強化繊維束と熱硬化性樹脂の接着による荷重を受け止める力は、第2の配列部142による荷重を受け止める力よりも小さい。そのため、第2の配列部142を有していない強化繊維シートの積層数を増やしたとしても、これは繊維強化複合材の軽量化にとって好ましくない。第2の配列部142を有する強化繊維シート12Eを繊維強化複合材で用いることは、強化繊維シートの積層数を減らして繊維強化複合材の軽量化に寄与する。 First, the case where a load is applied to the fiber reinforced composite material 10 from the member 36 inserted into the hole 101 of the fiber reinforced composite material 10 in the direction indicated by the arrow K in FIG. In this case, if the reinforcing fiber sheet 12E constituting the fiber reinforced composite material 10 does not have the second array portion 142, the force for receiving the load is the adhesive strength between the reinforcing fiber bundle and the thermosetting resin. Will depend. The force for receiving the load due to the adhesion between the reinforcing fiber bundle and the thermosetting resin is smaller than the force for receiving the load by the second array portion 142. Therefore, even if the number of laminated reinforcing fiber sheets that do not have the second array portion 142 is increased, this is not preferable for reducing the weight of the fiber-reinforced composite material. Using the reinforcing fiber sheet 12E having the second array portion 142 as a fiber reinforced composite material contributes to reducing the weight of the fiber reinforced composite material by reducing the number of laminated reinforcing fiber sheets.
 図1(a)中に矢印Rで示す衝撃荷重が繊維強化複合材10の厚み方向に掛かった場合を続いて説明する。層間強化材を含まない繊維強化複合材では、層間に生じるクラックが衝撃荷重Rの方向に向かうにつれて円錐状に拡がってゆくことが知られている。層間強化材を含まない繊維強化複合材において生じるこのようなクラックへの対処は、強化繊維束の層を増やすことで可能である。しかし、繊維強化複合材の軽量化にとってこれは好ましくない。 A case where an impact load indicated by an arrow R in FIG. 1A is applied in the thickness direction of the fiber reinforced composite material 10 will be described subsequently. In a fiber reinforced composite material that does not include an interlayer reinforcing material, it is known that cracks generated between the layers expand in a conical shape toward the direction of the impact load R. It is possible to cope with such cracks occurring in a fiber reinforced composite material that does not include an interlayer reinforcing material by increasing the number of layers of reinforcing fiber bundles. However, this is not preferable for reducing the weight of the fiber-reinforced composite material.
 この点、本実施形態の繊維強化複合材10では、織物13A,13B,13C,13D,13Eが層間でのクラックの伸展を抑制する層間強化材として機能する。このことは、強化繊維シートの積層数を減らして繊維強化複合材の軽量化に寄与する。 In this respect, in the fiber-reinforced composite material 10 of the present embodiment, the fabrics 13A, 13B, 13C, 13D, and 13E function as interlayer reinforcing materials that suppress the extension of cracks between the layers. This contributes to weight reduction of the fiber-reinforced composite material by reducing the number of laminated reinforcing fiber sheets.
 第1の実施形態では以下の効果が得られる。 The following effects are obtained in the first embodiment.
 (1)孔101の周囲の強化繊維シート12Eの一部が方向転換部Hoによって形成されている。そのため、強化繊維シート12Eの強化繊維束14Eの切断箇所が方向転換部Hoのない強化繊維シートに比べて少なくて済む。従って、方向転換部Hoが存在することにより、強化繊維シート12Eを強度的な品質に優れたものとすることができる。 (1) A part of the reinforcing fiber sheet 12E around the hole 101 is formed by the direction changing portion Ho. Therefore, the number of cut portions of the reinforcing fiber bundle 14E of the reinforcing fiber sheet 12E is less than that of the reinforcing fiber sheet without the direction change portion Ho. Therefore, the presence of the direction changing portion Ho makes it possible to make the reinforcing fiber sheet 12E excellent in strength quality.
 (2)織物13A,13B,13C,13D,13Eは織り目が孔になっているため、繊維強化複合材10の層間を高靭性化して耐衝撃性を向上させる層間強化材として好適である。 (2) Since the woven fabrics 13A, 13B, 13C, 13D, and 13E have pores, they are suitable as interlayer reinforcing materials that improve the impact resistance by increasing the toughness between the layers of the fiber reinforced composite material 10.
 (3)バインダ樹脂が織物13A,13B,13C,13D,13Eの織り目に浸透した状態で硬化される。そのため、樹脂に生じるクラックの拡大が織物13A,13B,13C,13D,13Eによって効果的に抑制される。つまり、織物13A,13B,13C,13D,13Eの織り目は、樹脂が浸透する孔として好ましく、クラックの拡大を抑制する上で重要である。 (3) The binder resin is cured in a state where it penetrates into the weaves of the fabrics 13A, 13B, 13C, 13D, and 13E. Therefore, the expansion of cracks generated in the resin is effectively suppressed by the fabrics 13A, 13B, 13C, 13D, and 13E. That is, the weaves of the fabrics 13A, 13B, 13C, 13D, and 13E are preferable as the holes through which the resin penetrates, and are important for suppressing the expansion of cracks.
 (4)平織物は、糸径が同じであれば織物のうちで厚みを最も小さくできる織物である。従って、織物13A,13B,13C,13D,13Eが平織物であることは、強化繊維シート12A,12B,12C,12D,12Eの厚みを小さくして積層体11の厚みを抑制する上で好ましい。 (4) A plain fabric is a fabric that can have the smallest thickness among the fabrics if the yarn diameter is the same. Therefore, it is preferable that the fabrics 13A, 13B, 13C, 13D, and 13E are plain fabrics in order to reduce the thickness of the laminate 11 by reducing the thickness of the reinforcing fiber sheets 12A, 12B, 12C, 12D, and 12E.
 (5)織物13A,13B,13C,13D,13Eを構成する融着糸(経糸T及び緯糸Y)は、加圧しながら加熱することによって強化繊維束を織物13A,13B,13C,13D,13Eに貼り付ける上で簡便な素材である。 (5) The fusion yarns (warp yarn T and weft yarn Y) constituting the woven fabrics 13A, 13B, 13C, 13D, and 13E are heated while being pressed to form reinforcing fiber bundles into the woven fabrics 13A, 13B, 13C, 13D, and 13E. It is a simple material for pasting.
 次に、図5の第2の実施形態を説明する。以下の説明において第1の実施形態と同じ構成部には同じ符合を用い、その詳細説明は省略する。 Next, the second embodiment of FIG. 5 will be described. In the following description, the same reference numerals are used for the same components as those in the first embodiment, and detailed description thereof is omitted.
 ヘッドフレーム20には冷却ノズル35が設けられている。冷却ノズル35は、図示しない冷却装置に接続されている。冷却ノズル35は、加熱ローラ31に対してヘッドフレーム20の移動方向の後方側に配置されている。冷却ノズル35の冷風噴射口351は、加熱ローラ31と保持台18との間を指向するように配設されている。 The head frame 20 is provided with a cooling nozzle 35. The cooling nozzle 35 is connected to a cooling device (not shown). The cooling nozzle 35 is disposed on the rear side in the moving direction of the head frame 20 with respect to the heating roller 31. The cold air injection port 351 of the cooling nozzle 35 is disposed so as to be directed between the heating roller 31 and the holding base 18.
 加熱により溶融した被膜16は、強化繊維束が加圧及び加熱を受けた直後に、冷却ノズル35から噴射される冷風により冷やされる。従って、粘性が早期に下がることにより被膜16(熱融着材)の固化が速やかに進行する。そのため、強化繊維束の形状保持効果が早期に得られる。 The coating film 16 melted by heating is cooled by cold air sprayed from the cooling nozzle 35 immediately after the reinforcing fiber bundle is pressurized and heated. Therefore, the solidification of the coating film 16 (heat-bonding material) proceeds promptly as the viscosity decreases early. Therefore, the shape retention effect of the reinforcing fiber bundle can be obtained early.
 本発明では以下のような実施形態も可能である。 In the present invention, the following embodiments are also possible.
 ○熱融着材の粉末を付着させた多孔シートを用いてもよい。 ◯ A porous sheet to which a heat-sealable material powder is adhered may be used.
 ○多孔シートとして織物ではなく多孔フィルムを用いてもよい。 ○ A porous film may be used instead of a woven fabric as the porous sheet.
 ○方向転換部を有する強化繊維シートのみによって積層体を構成してもよい。 ◯ The laminated body may be composed only of reinforcing fiber sheets having a direction changing portion.
 ○強化繊維束の方向転換部は鋭角、直角あるいは鈍角に屈曲していてもよい。 ○ The direction changing portion of the reinforcing fiber bundle may be bent at an acute angle, a right angle or an obtuse angle.
 10…繊維強化複合材。11…積層体。12A,12B,12C,12D,12E…強化繊維シート。13A,13B,13C,13D,13E…多孔シートとしての織物。131…織物の一方の面である接着面。14,14A,14B,14C,14D,14E…強化繊維束。141…第1の配列部。143,144…第2の配列部の直線部。16…熱融着材としての被膜。31…加熱ローラ。T…経糸。Y…緯糸。Ho…方向転換部。 10: Fiber reinforced composite material. 11 ... Laminated body. 12A, 12B, 12C, 12D, 12E ... reinforcing fiber sheet. 13A, 13B, 13C, 13D, 13E ... Woven fabric as a porous sheet. 131: Adhesive surface that is one surface of the fabric. 14, 14A, 14B, 14C, 14D, 14E ... reinforcing fiber bundles. 141: First arrangement portion. 143, 144... Linear portion of the second array portion. 16: A film as a heat sealing material. 31 ... Heating roller. T ... Warp. Y ... Weft. Ho ... Direction change part.

Claims (10)

  1.  層間強化材からなる多孔シートと、
     前記多孔シートの少なくとも一方の面に付着された熱融着材と、
     前記多孔シートの前記一方の面に前記熱融着材により接着された強化繊維束とを備え、
     前記強化繊維束は、前記強化繊維束が屈曲又は湾曲された方向転換部を有している強化繊維シート。
    A porous sheet made of an interlayer reinforcing material;
    A heat sealing material attached to at least one surface of the porous sheet;
    A reinforcing fiber bundle bonded to the one surface of the perforated sheet by the heat sealing material,
    The reinforcing fiber bundle is a reinforcing fiber sheet having a direction changing portion in which the reinforcing fiber bundle is bent or curved.
  2.  前記多孔シートは織物である請求項1に記載の強化繊維シート。 The reinforcing fiber sheet according to claim 1, wherein the porous sheet is a woven fabric.
  3.  前記織物は平織物である請求項2に記載の強化繊維シート。 The reinforcing fiber sheet according to claim 2, wherein the woven fabric is a plain woven fabric.
  4.  前記織物は、前記熱融着材によって被覆された糸から形成されている請求項2及び請求項3のいずれか1項に記載の強化繊維シート。 The reinforcing fabric sheet according to any one of claims 2 and 3, wherein the woven fabric is formed of a yarn covered with the heat-sealing material.
  5.  前記層間強化材は熱可塑性樹脂である請求項1乃至請求項4のいずれか1項に記載の強化繊維シート。 The reinforcing fiber sheet according to any one of claims 1 to 4, wherein the interlayer reinforcing material is a thermoplastic resin.
  6.  前記強化繊維束は、直線的に延びる直線部をさらに有している請求項1乃至請求項5のいずれか1項に記載の強化繊維シート。 The reinforcing fiber sheet according to any one of claims 1 to 5, wherein the reinforcing fiber bundle further includes a linear portion extending linearly.
  7.  前記強化繊維束の前記方向転換部は半円弧状に延びており、前記直線部は前記方向転換部の一対の端部のそれぞれから延びている請求項6に記載の強化繊維シート。 The reinforcing fiber sheet according to claim 6, wherein the direction changing portion of the reinforcing fiber bundle extends in a semicircular arc shape, and the linear portion extends from each of a pair of end portions of the direction changing portion.
  8.  少なくとも一方の面に熱融着材が付着した層間強化材からなる多孔シートを準備する工程と、
     前記多孔シートの前記一方の面に、強化繊維束を加熱ローラによって加熱及び加圧して接着させる工程とを備え、
     強化繊維束を接着させる工程は、前記加熱ローラを方向転換しながら前記強化繊維束を屈曲又は湾曲させて前記多孔シートの前記一方の面に接着させることを含み、
     前記加熱ローラは、前記層間強化材の融点以下で且つ前記熱融着材の融点以上の温度に加熱される強化繊維シートの製造方法。
    A step of preparing a porous sheet made of an interlayer reinforcing material having a heat-sealing material attached to at least one surface;
    A step of heating and pressing a reinforcing fiber bundle with a heating roller on the one surface of the porous sheet; and
    The step of bonding the reinforcing fiber bundle includes bending or bending the reinforcing fiber bundle while changing the direction of the heating roller and bonding the reinforcing fiber bundle to the one surface of the porous sheet,
    The said heating roller is a manufacturing method of the reinforced fiber sheet heated to the temperature below the melting | fusing point of the said interlayer reinforcement, and above the melting | fusing point of the said heat-fusion material.
  9.  請求項1乃至請求項7のいずれか1項に記載の強化繊維シートを少なくとも含む複数の強化繊維シートを積層して形成される積層体にマトリックス樹脂を含浸させてなる繊維強化複合材。 A fiber-reinforced composite material obtained by impregnating a matrix resin into a laminate formed by laminating a plurality of reinforcing fiber sheets including at least the reinforcing fiber sheet according to any one of claims 1 to 7.
  10.  少なくとも一方の面に熱融着材が付着した層間強化材からなる多孔シートを準備する工程と、
     前記多孔シートの前記一方の面に、強化繊維束を加熱ローラによって加熱及び加圧して接着させる工程であって、強化繊維束を接着させる工程は、前記加熱ローラを方向転換しながら前記強化繊維束を屈曲又は湾曲させて前記多孔シートの前記一方の面に接着させることを含むことと、
     前記多孔シートの前記一方の面に前記強化繊維束を接着させることにより得られた強化繊維シートを少なくとも含む複数の強化繊維シートを積層して積層体を形成する工程と、
     前記積層体にマトリックス樹脂を含浸させる工程とを備える繊維強化複合材の製造方法。
    A step of preparing a porous sheet made of an interlayer reinforcing material having a heat-sealing material attached to at least one surface;
    A step of adhering the reinforcing fiber bundle to the one surface of the porous sheet by heating and pressing with a heating roller, wherein the step of adhering the reinforcing fiber bundle is performed by changing the direction of the heating roller. Bending or bending and adhering to the one surface of the porous sheet;
    A step of laminating a plurality of reinforcing fiber sheets including at least a reinforcing fiber sheet obtained by adhering the reinforcing fiber bundle to the one surface of the porous sheet to form a laminate;
    And a step of impregnating the laminate with a matrix resin.
PCT/JP2012/067112 2011-07-26 2012-07-04 Reinforcing fiber sheet, fiber-reinforced composite, method for producing reinforcing fiber sheet, and method for producing fiber-reinforced composite WO2013015087A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-163250 2011-07-26
JP2011163250A JP5614384B2 (en) 2011-07-26 2011-07-26 Reinforcing fiber sheet, fiber-reinforced composite material, method for producing reinforcing fiber sheet, and method for producing fiber-reinforced composite material

Publications (1)

Publication Number Publication Date
WO2013015087A1 true WO2013015087A1 (en) 2013-01-31

Family

ID=47600942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067112 WO2013015087A1 (en) 2011-07-26 2012-07-04 Reinforcing fiber sheet, fiber-reinforced composite, method for producing reinforcing fiber sheet, and method for producing fiber-reinforced composite

Country Status (3)

Country Link
JP (1) JP5614384B2 (en)
TW (1) TW201313464A (en)
WO (1) WO2013015087A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112677511A (en) * 2019-10-17 2021-04-20 三菱重工业株式会社 Composite material with reinforcing fiber bundle and bolt connection structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101926370B1 (en) * 2016-09-09 2018-12-07 한국과학기술원 Methods of manufacturing optical fiber prepreg sheet

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63165828A (en) * 1986-12-17 1988-07-09 ローライ・フォトテヒニック・ゲーエムベーハー Shutter for optical apparatus and stop laminate
JPS63183836A (en) * 1986-09-11 1988-07-29 帝人株式会社 Composite body and manufacture thereof
JPH07241945A (en) * 1994-03-02 1995-09-19 Akurosu:Kk Carbon fiber-carbon composite sheet
JP2001064406A (en) * 1999-08-31 2001-03-13 Toray Ind Inc Preform for fiber-reinforced preform and fiber- reinforced composite material using the same and production thereof
JP2008149708A (en) * 2006-11-22 2008-07-03 Fukui Prefecture Thermoplastic resin multilayer reinforced sheet material, its manufacturing method, and thermoplastic resin multilayer reinforced molded article
JP2010037694A (en) * 2008-08-07 2010-02-18 Toray Ind Inc Reinforcing fiber base material, laminate and composite material
JP2011516294A (en) * 2008-02-11 2011-05-26 アルバニー エンジニアード コンポジッツ インコーポレイテッド Multi-directional reinforced shape woven preform for composite structures

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59228036A (en) * 1983-06-10 1984-12-21 三菱レイヨン株式会社 Width enlarging method of fiber bundle
JP5429599B2 (en) * 2008-12-24 2014-02-26 東レ株式会社 Curved reinforced fiber laminate, preform, and method for producing fiber reinforced resin composite material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63183836A (en) * 1986-09-11 1988-07-29 帝人株式会社 Composite body and manufacture thereof
JPS63165828A (en) * 1986-12-17 1988-07-09 ローライ・フォトテヒニック・ゲーエムベーハー Shutter for optical apparatus and stop laminate
JPH07241945A (en) * 1994-03-02 1995-09-19 Akurosu:Kk Carbon fiber-carbon composite sheet
JP2001064406A (en) * 1999-08-31 2001-03-13 Toray Ind Inc Preform for fiber-reinforced preform and fiber- reinforced composite material using the same and production thereof
JP2008149708A (en) * 2006-11-22 2008-07-03 Fukui Prefecture Thermoplastic resin multilayer reinforced sheet material, its manufacturing method, and thermoplastic resin multilayer reinforced molded article
JP2011516294A (en) * 2008-02-11 2011-05-26 アルバニー エンジニアード コンポジッツ インコーポレイテッド Multi-directional reinforced shape woven preform for composite structures
JP2010037694A (en) * 2008-08-07 2010-02-18 Toray Ind Inc Reinforcing fiber base material, laminate and composite material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112677511A (en) * 2019-10-17 2021-04-20 三菱重工业株式会社 Composite material with reinforcing fiber bundle and bolt connection structure
EP3808548A1 (en) * 2019-10-17 2021-04-21 Mitsubishi Heavy Industries, Ltd. Composite material and boltfastened structure

Also Published As

Publication number Publication date
JP2013022946A (en) 2013-02-04
TW201313464A (en) 2013-04-01
JP5614384B2 (en) 2014-10-29

Similar Documents

Publication Publication Date Title
JP5223130B2 (en) Thermoplastic resin reinforced sheet material, production method thereof, and thermoplastic resin multilayer reinforced sheet material
JP5135616B2 (en) Thermoplastic resin reinforced sheet material, thermoplastic resin multilayer reinforced sheet material and method for producing the same, and thermoplastic resin multilayer reinforced molded product
JP4899692B2 (en) Reinforcing fiber fabric and method for producing the same
WO2008062818A1 (en) Reinforced thermoplastic-resin multilayer sheet material, process for producing the same, and method of forming molded thermoplastic-resin composite material
WO2007013204A1 (en) Reinforcing woven fabric and process for producing the same
NO931928L (en) PROCEDURE FOR PREPARING UNIFORM TERMOPLASTIC CELL LAYER STRUCTURE WITH DIFFERENT PHYSICAL PROPERTIES
JP2013505155A (en) Automated drape forming device
JP5613928B2 (en) Method and apparatus for producing a sheet of composite material
JP2013505155A5 (en)
WO2015072172A1 (en) Thermoplastic resin reinforcing sheet material and manufacturing process therefor
US20140261993A1 (en) Method for producing preform and method for producing fiber-reinforced plastic molding
WO2013015087A1 (en) Reinforcing fiber sheet, fiber-reinforced composite, method for producing reinforcing fiber sheet, and method for producing fiber-reinforced composite
JPWO2020138473A1 (en) Preform manufacturing method and composite material molded product manufacturing method and mold
JP4341419B2 (en) Preform manufacturing method and composite material manufacturing method
JP2013169793A (en) Method and device for manufacturing composite material
JP7344472B2 (en) Reinforced fiber tape material and its manufacturing method, reinforced fiber laminate and fiber reinforced resin molded product using reinforced fiber tape material
KR102050156B1 (en) the manufacture system of large sized preform
JP2011057767A (en) Method and apparatus for manufacturing preform for fiber-reinforced composite material
JP2005324513A (en) Apparatus for continuously manufacturing preform of girder material made of frp
JP2014181431A (en) Fiber sheet for cutting fiber substrate for laminating of fiber reinforced composite material and method for manufacturing fiber substrate for fiber reinforced composite material
JP2014083732A (en) Method for manufacturing a laminated sheet
JPH1120059A (en) Reinforced fiber base material for composite material and manufacture thereof
JP3749692B2 (en) Laminated composite manufacturing apparatus and manufacturing method
JP2005219373A (en) Automatic device for laminating reinforcing fibers and method for producing fiber-reinforced preform
JP2002053683A (en) Continuous reinforced fibrous sheet and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12817313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12817313

Country of ref document: EP

Kind code of ref document: A1