JP2004160927A - Preform substrate, preform, fiber-reinforced plastic molding and molding method - Google Patents

Preform substrate, preform, fiber-reinforced plastic molding and molding method Download PDF

Info

Publication number
JP2004160927A
JP2004160927A JP2002331941A JP2002331941A JP2004160927A JP 2004160927 A JP2004160927 A JP 2004160927A JP 2002331941 A JP2002331941 A JP 2002331941A JP 2002331941 A JP2002331941 A JP 2002331941A JP 2004160927 A JP2004160927 A JP 2004160927A
Authority
JP
Japan
Prior art keywords
preform
fiber
substrate
resin
yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002331941A
Other languages
Japanese (ja)
Other versions
JP4168734B2 (en
Inventor
Akira Nishimura
明 西村
Eisuke Wadahara
英輔 和田原
Ikuo Horibe
郁夫 堀部
Kiyoshi Honma
清 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2002331941A priority Critical patent/JP4168734B2/en
Publication of JP2004160927A publication Critical patent/JP2004160927A/en
Application granted granted Critical
Publication of JP4168734B2 publication Critical patent/JP4168734B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a preform substrate permitting low-cost manufacture of large and thick fiber-reinforced plastic moldings and having excellent reliability and mechanical characteristics as a molding, including excellent tensile strength, tensile elastic modulus, compression strength, compression elastic modulus and impact fracture toughness, a preform, a method of molding a fiber-reinforced plastic, and a fiber-reinforced plastic molding. <P>SOLUTION: The substrate is composed of a unidirectional fabric base material in which reinforcing fiber threads are oriented in parallel in the longitudinal direction and particles are adhered to at least one side of the fabric. The material is laminated into a large number of intersected layers and integrated into a preform by an integrating means. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、繊維強化プラスチックに好適なプリフォーム基材ならびにプリフォームおよび繊維強化プラスチクス成形体およびその成形方法に関する。
【0002】
【従来の技術】
航空機の燃費向上やペイロードの増加のため機体の軽量化が求められ、スポイラー、エルロン、翼胴フェアリングや昇降舵などの2次構造体のみならず、最近、尾翼の水平安定板や垂直安定板ならびに床支持桁の1次構造体にも繊維強化プラスチック、とりわけ炭素繊維強化プラスチックが実用化されるにいたっている。さらに近年は、主翼のスキンやストリンガーなどの1次大型構造体も機体の軽量化や低コスト化を求めて、従来のジュラルミンから炭素繊維強化プラスチックに置き換える試みがなされている。
【0003】
航空機の1次構造材としては、炭素繊維強化プラスチックの引張強度、引張弾性率、圧縮強度、圧縮弾性率や衝撃破壊靭性などの機械的特性が求められると同時に、低コスト化を達成するためには、低コスト化が達成可能な成形方法と、この成形法に適応する強化繊維材料が必要となる。
【0004】
低コスト成形法として、従来のプリプレグの積層体をバギングし、積層体を真空下に保持しながらオートクレーブにて加熱・加圧するオートクレーブ成形法に対して、最近真空バッグ成形法が注目されている。この方法はマトリックス樹脂を付着させない強化繊維材料を積層し、この積層体の上に樹脂拡散媒体を置き、これらをフイルムでバギングし、内部を真空に保ちながら、樹脂を拡散媒体を通して積層体の全面に流し、積層体の厚さ方向に流す方法であり、大きな面積を有する成形体の成形方法としては適しているかに見える。
【0005】
ところが、単に織物などの強化繊維材料を積層したのでは、繊維強化プラスチックに成形したときに、層間の破壊靭性を確保することができない。つまり、連続炭素繊維からなる繊維強化プラスチックは、繊維軸方向の機械的特性には優れるが、繊維軸から離れるに従い、機械的特性は急激に低下する。この対策として、たとえば、機械的特性が疑似等方性基材となるようの繊維軸方向がFRP(繊維強化プラスチック)成形体の長さ(0゜)方向、幅(90゜)方向や斜め(±45゜)方向となるよう積層され、成形されている。ところが、このような成形板に面直角方向の衝撃が加わると、たとえば0°層と45°層の面方向の機械的性質が極端に異なるので、0°層と45°層の変形が異なり、層間に大きなクラックが発生することがあり、成形板の圧縮強度が大幅に低下してしまうのである。航空機の1次構造体には大きな信頼性が要求され、現在ジュラルミン製の構造材は定期的な肉眼観察により、損傷状態やクラック発生状態が検査されている。しかし、残念ながら、とくに炭素繊維強化プラスチックは黒くて不透明なので、離着陸の際舞い上がる石や組み立てや修理の際での工具の落下や組み立ての運搬時の衝突などによるクラックの発生状態を肉眼観察できないため、損傷状態を検出出来ない。
【0006】
また、真空含浸成形法は大きな面積を有する航空機の主翼スキン材の成形法としては適しているが、20mm〜30mmとスキン材は厚いので、織物などの積層枚数が80〜200枚と大きくなり、積層体の拡散媒体の反対面にまで樹脂が流れなく、樹脂含浸不良という欠点が発生する。
【0007】
また、樹脂含浸性を向上させるため、織物材を強化繊維糸条がたて方向とよこ方向の2方向に配列した二方向織物とし、目空き部から樹脂を含浸させることが出来るようにすれば、真空含浸成形法で厚い繊維強化プラスチックでも樹脂を含浸させることが可能になる。ところがこのような織物は、太いよこ糸によってたて方向に延びる強化繊維糸条が大きくクリンプ(屈曲)し、これを成形するとクリンプ部に応力が集中し、引張強度や圧縮強度が低下し、1次構造材としての所定の強度が発現せず、設計強度が低くなる。したがって、構造材は肉厚に設計する必要があり、軽量化を達成できないという問題があった。
【0008】
また、主翼スキン材のような大型の構造材は、たとえば幅が5〜7m、長さが20m〜30mと大型のため、たとえば機械的特性が良好な一方向織物を積層するにしても主翼の長さ方向に、幅が100cm程度の織物を0°方向、+α°(通常は+45°方向)、−α°(通常は−45°方向)ならびに90°方向と多方向に多数の織物を積層することが必要となり、折角、真空バッグ成形法という省力化に優れた成形法にもかかわらず、強化繊維材料を積層するのに多くの工数を必要とし、また長い織物などの強化繊維材料を積層するので、繊維材料、つまり強化繊維糸条が曲がり、真っ直ぐに積層することは困難であった。
【0009】
一方、多軸布帛として、特許文献1には、強化繊維糸条を拡げ、この状態を結合剤などで形態固定したテープを多方向に層状に積層し、ステッチ糸で一体化した多軸布帛が開示されているが、このような布帛は樹脂含浸用の間隙を有しないので、真空バッグ成形法で厚い繊維強化プラスチックを成形しても十分な含浸性を確保することは出来ないという問題があった。
【0010】
また、並行配列した強化繊維糸条をシート状に多方向に積層し、これをステッチ糸で縫合一体化した多軸布帛も知られているが、強化繊維糸条をシート状に並行配列する場合、ピンに引っ掛けられた各糸条はステッチ糸で位置固定されるまではフリーで、全ての糸条の正確に配列に配列させることは困難で、糸条間にギャップが出来るという問題があった。さらに、この状態は、多軸布帛の幅が広くなるとフリーな状態にある糸長さも大きくなるのでさらに顕著となり、繊維強化プラスチックにしたとき機械的な性質が低下するので、信頼性に欠けるという問題があった。
【0011】
【特許文献1】
特表2001−516406号公報(特許請求の範囲)
【0012】
【発明が解決しようとする課題】
そこで本発明の課題は、かかる従来技術の背景に鑑み、大型の厚い繊維強化プラスチック成形体が安価で、生産性よく製造でき、かつ信頼性に優れ、また成形したときに引張強度、引張弾性率、圧縮強度、圧縮弾性率や衝撃破壊靭性などの機械的特性に優れるプリフォーム基材、プリフォーム、繊維強化プラスチックの成形方法および繊維強化プラスチック成形体を提供することにある。
【0013】
【課題を解決するための手段】
上記課題を解決するために、本発明は、次のような手段を採用するものである。すなわち、本発明に係るプリフォーム基材は、強化繊維糸条が長さ方向に互いに並行に配列し、少なくとも片面に粒子が接着してなる一方向織物基材からなり、前記一方向織物基材が多数枚交差積層され、一体化手段により一体化されていることを特徴とするものからなる。
【0014】
このプリフォーム基材においては、一方向織物基材の隣り合う前記強化繊維糸条の間隙が織物の全幅において、0.1mmを超え1.0mm未満のほぼ均一な間隙であることが好ましい。
【0015】
また、前記一方向織物は、応力が集中するような屈曲を有しない強化繊維糸条を一方向に互いに並行かつシート状に引き揃えてなる糸条群のシート面の両側に強化繊維糸条と交差するよこ方向補助糸群が位置し、それらよこ方向補助糸群と、強化繊維糸条と並行するたて方向補助糸群とが織組織をなして糸条群を一体に保持してなる一方向ノンクリンプ織物であることが好ましい。
【0016】
また、前記一体化手段としては、ステッチであることが好ましい。
【0017】
また、前記交差積層角度がプリフォーム基材の長さ方向に対して少なくとも0゜層を含んでいるが好ましい。
【0018】
また、前記交差積層角度がプリフォーム基材の長さ方向に対して少なくとも+α゜層、−α゜層の2方向を含んでいるが好ましい。
【0019】
また、プリフォーム基材の長さ方向に対して積層数が一様ではなく、途中から増加または減少している構成を採ることも可能である。
【0020】
前記強化繊維糸条としては、炭素繊維を用いることが好ましいが、これに限定されない。炭素繊維を用いる場合には、炭素繊維のフイラメント数が12,000本を超え25,000本未満であり、炭素繊維の引張弾性率が280GPaを超え500GPa未満であり、かつ破壊歪みエネルギーが53MJ/m以上の炭素繊維であることが好ましい。
【0021】
好ましい態様として、前記一方向織物基材はたて糸が炭素繊維糸条であり、よこ方向補助糸の繊度が6デシテックスを超え70デシテックス未満であり、よこ方向補助糸の密度が0.3本/cmを超え6.0本/cm未満であり、かつ炭素繊維の目付が100g/mを超え350g/m未満である構成を挙げることができる。中でも、よこ方向補助糸の繊度が15デシテックスを超え50デシテックス未満であり、よこ方向補助糸の密度が1.0本/cmを超え4.0本/cm未満であり、かつ炭素繊維の目付が180g/mを超え210g/m未満であることが好ましい。
【0022】
前記粒子としては、繊維強化プラスチックの層間靭性付与機能を有し、融点またはガラス転移温度が50℃を超え150℃未満であるものが好ましい。
【0023】
また、粒子の付着量としては、前記一方向織物基材を構成する強化繊維の重量に対して2%を超え20%未満であることが好ましい。
【0024】
本発明は、上記のようなプリフォーム基材が複数枚数積層され、各プリフォーム基材が積層体の全面にわたって切れ目なく積層されていることを特徴とする積層体も提供する。
【0025】
また、本発明に係るプリフォームは、上記のようなプリフォーム基材が複数枚数積層され、織物基材および/またはプリフォーム基材同士が接着されていることを特徴とするものからなる。
【0026】
このプリフォームにおいては、前記プリフォーム基材が、プリフォームの全面にわたって切れ目なく積層されていることが好ましい。
【0027】
また、プリフォームにおける強化繊維体積率Vpfが45%を超え60%未満であることが好ましい。
【0028】
また、前記プリフォームを構成している一方向織物基材の隣り合う前記強化繊維糸条の間隙が0.1mmを超え1.0mm未満であることが好ましい。
【0029】
本発明に係る繊維強化プラスチックの成形方法は、前述のプリフォーム基材を所定枚数成形型に積層し、または前述のプリフォーム基材の積層体を成形型に配置し、その上に樹脂を面方向に拡散する媒体を置いたのち、全体をバッグフイルムで覆い、つぎにバッグフイルムで覆われた内部を減圧状態にし、積層されたプリフォーム基材の片面に液状の熱硬化性樹脂を拡散させ、プリフォーム基材に樹脂を含浸させて硬化させることを特徴とする方法からなる。
【0030】
また、本発明に係る繊維強化プラスチックの成形方法は、前述のプリフォームを型に積層し、その上に樹脂を面方向に拡散する媒体を置いたのち、全体をバッグフイルムで覆い、つぎにバッグフイルムで覆われた内部を減圧状態にし、積層されたプリフォームの片面に液状の熱硬化性樹脂を拡散させ、プリフォームに樹脂を含浸させて硬化させることを特徴とする方法からなる。
【0031】
このような本発明に係る繊維強化プラスチックの成形方法においては、前記熱硬化性樹脂はエポキシ樹脂であり、樹脂ならびに型およびプリフォーム基材またはプリフォームを加熱し、樹脂粘度を下げて樹脂含浸性を向上させることが好ましい。
【0032】
本発明に係る繊維強化プラスチック成形体は、上記のような成形法によって得られるものからなる。
【0033】
【発明の実施の形態】
以下に、本発明の望ましい実施の形態を、図面を参照しながら説明する。
図1は、本発明の一実施態様に係るプリフォーム基材を構成する一方向織物基材1の概略斜視図である。図1において、一方向織物基材1は、たて方向に強化繊維糸条2が配列し、このたて糸に対して横方向補助糸としての細いよこ糸3が一本交互に交錯し、隣り合う強化繊維糸条間には隙間Aが形成された状態で平組織し、この一方向織物の表面には粒子4が付着し、また隣り合う強化繊維糸条間には隙間Aが形成されている。
【0034】
図2は、一方向織物基材1の別の態様を示す概略斜視図である。図2において、一方向織物基材1は、応力が集中するような屈曲を有しない強化繊維糸条2を一方向に互いに並行にシート状に配列し、このシート面の両側に強化繊維糸条と交差する、細いよこ糸3が位置し、これらよこ糸3と、強化繊維糸条と並行するたて方向補助糸5とが織組織をなして強化繊維糸条を一体に保持してなる、いわゆる一方向ノンクリンプ織物のであり、この一方向ノンクリンプ織物の表面には粒子4が付着し、また隣り合う強化繊維糸条間には隙間Aが形成されている。
【0035】
図1および図2で一方向織物基材を形成する一方向織物として、たて糸の強化繊維糸条とよこ糸が平組織およびノンクリンプ組織で一体化されたケースについて説明したが、綾組織や朱子組織であってもよい。
【0036】
本発明において使用する強化繊維糸条はマルチフイラメント糸条であり、特にその種類に制限はないが、例えば、ガラス繊維、有機(ポリアラミド、PBO、PVA、PE等)繊維または炭素繊維等が挙げられる。とくに炭素繊維は、比強度および比弾性率に優れ、耐吸水性に優れるので、航空機構造材や自動車の強化繊維糸条として好ましく用いられる。
【0037】
中でも、高靭性炭素繊維であると、成形される繊維強化プラスチックの衝撃吸収エネルギーが大きくなるので、航空機の1次構造材として適用が可能となる。すなわち、JIS−R−7601に準拠して測定される引張弾性率(E)が280GPaを超え500GPa未満であり、かつ破壊歪みエネルギー(σ/2E、σ:JIS−R−7601に準拠して測定される引張強度)が53MJ/m以上であると好ましい。
【0038】
強化繊維糸条として炭素繊維を用いる場合、フイラメント数が12,000本を超え25,000本未満であり、糸条繊度は800テックスを超え1,800テックス未満であることが好ましい。かかる範囲であると、一方向織物の形態が安定し、また隣り合う糸条との間に適度な間隙を形成しやすく、比較的安価に高性能の炭素繊維を入手できる利点がある。
【0039】
また、本発明における強化繊維糸条は、成形した複合材料の高い強化繊維体積率や力学特性の発現率の面から、実質的に無撚のものであることが好ましい。
【0040】
本発明で使用するよこ糸は、ナイロン6繊維、ナイロン66繊維、ナイロン11繊維、ナイロン12繊維、ポリエステル繊維、ポリアラミド繊維、ポリフェニレンサルファイド繊維、ポリエーテルイミド繊維、ポリエーテルスルフォン繊維、ポリケトン繊維、ポリエーテルケトン繊維、ポリエーテルエーテルケトン繊維やガラス繊維から選ばれる少なくとも1種を主成分とするよこ糸であるのが好ましい。なかでもナイロン66は樹脂との接着がよく、また延伸により細繊度の糸が得られるので好ましい。
【0041】
また、本発明における一方向織物基材のよこ糸としては、マルチフィラメント糸であることが好ましい。マルチフィラメント糸であると、フィラメント単糸の繊度(直径)を小さくすることが可能となる。これを実質的に撚りのない状態で使用すると、織物中でのよこ糸は、フィラメントの単糸が厚み方向にそれぞれ重ならずに、平行に並んでいる形態となり、よこ糸の厚さが薄くなり、強化繊維糸条とよこ糸の交錯または交差によるクリンプが小さくなり、繊維強化プラスチックにおいて強化繊維糸条の真直性を高め、高い機械的特性となる。
【0042】
同様な観点で、よこ糸の太さもできるだけ細い方がよく、よこ糸の繊度は6デシテックスを超え70デシテックス未満が好ましい。より好ましくは15デシテックスを超え50デシテックス未満である。もともと、本発明において、よこ糸の果たす大きな役割は、隣り合う強化繊維糸条の間に間隙を形成させることと織物基材の形態保持にある。よこ糸が太いと、繊維強化プラスチックにおいて強化繊維糸条がクリンプして、糸条の真直性を低下させるので好ましくない。
【0043】
また、よこ糸の密度は0.3本/cmを超え6.0本/cm未満が好ましく、より好ましくは2.0本/cmを超え4.0本/cm未満がである。よこ糸の密度が小さいと製織途中や粉末散布工程で、織物がロールやガイドバーなどに接触し、よこ糸の配列乱れが発生するし、また真空バッグ成形の際、樹脂の流路となる隣り合う強化繊維糸条の間隙が小さくなり、樹脂の含浸性が悪くなるので好ましくない。また、よこ糸の密度が大きくなると、たて糸の強化繊維糸条のクリンプが大きくなり、またよこ糸の繊維量が多くなり、吸湿などによって繊維強化プラスチックの耐熱性を低下させるので好ましくない。
【0044】
なお、本発明に用いるよこ糸は樹脂との接着を良くするため、繊維を紡糸する際に付着させた工程油剤を精練処理などで除去し、また延伸して製造され糸を使用する場合は、あらかじめ、熱処理により200℃での乾熱収縮率を4%以下にしておくことが好ましい。
【0045】
また、図2のノンクリンプ織物におけるたて補助糸は、たて補助糸とよこ糸の交錯によって、たて方向に配列している強化繊維糸条の拡がりを阻止し、隣り合う強化繊維糸条の間隔を確保し、真空バッグ成形の際の樹脂流路を確保することにある。また、よこ糸と強化繊維糸条との交錯によるクリンプをなくするため、よこ糸を強化繊維糸条の両側に交差させ、たて補助糸とよこ糸を交錯させることによって、強化繊維糸条を真っ直ぐに配列させようとするものである。
【0046】
補助糸としては粒子付着や成形時の加熱によって収縮しないガラス繊維糸が好ましい。また、補助糸は実質的に繊維強化プラスチックに対する補強効果はないので、さほど太くする必要はなく、繊度は100デシテックスを超え470デシテックス未満が好ましい。なお、樹脂流路を確保するため補助糸にカバーリングを行い、カバーリング糸の撚りによって樹脂流路を確保することができる。カバーリングに使用する糸は、ナイロン6繊維、ナイロン66繊維、ナイロン11繊維、ナイロン12繊維、ポリエステル繊維、ポリアラミド繊維、ポリフェニレンサルファイド繊維、ポリエーテルイミド繊維、ポリエーテルスルフォン繊維、ポリケトン繊維、ポリエーテルケトン繊維、ポリエーテルエーテルケトン繊維、なかでもナイロン66は樹脂との接着がよく、繊度は15デシテックスを超え50デシテックス未満程度である。
【0047】
プリフォーム基材における織物基材の隣り合う強化繊維糸条間の間隙Aは、プリフォーム基材やプリフォームでの樹脂の流路確保にとって大切であり、織物基材の全巾において、隣り合う強化繊維糸条の平均間隔が0.1〜1mmの範囲であるのが好ましい。より好ましくは0.2〜0.8mm、更に好ましくは0.3〜0.5mmの範囲である。かかる範囲であると、上記の層内流路形成効果が十分に発現する。それ以下では、十分に発現しない場合がある。逆に広すぎると、成形した際、大きな樹脂リッチ部分を形成することになり、強化繊維体積率の低下、機械的特性(特に疲労強度)の低下、サーマルクラックの発生等につながる場合がある。なお、強化繊維糸条の間隔の測定においては、ノンクリンプ織物のように強化繊維糸条の間に補助糸が存在しても、補助糸は細いので、さほど樹脂の流れに影響しないので、無視されて測定される。
【0048】
なお、上記における織物基材の隣り合う強化繊維糸条間の間隙Aは、0.01mmの精度で測定可能な測定顕微鏡を用いて100ヶ所の隙間を測定し、その平均値を間隙値とした。なお、測定顕微鏡で測定不能な場合には、実体顕微鏡で測定することもできる。
【0049】
本発明で使用する織物基材の炭素繊維の目付の好ましい範囲は180g/mを超え350g/m未満であり、より好ましくは180g/mを超え210g/m未満である。
【0050】
炭素繊維の目付があまり小さいと、所定の厚さを有する成形体を得る場合、必要となる織物量が多くなり、織物製造費用、粒子接着費用がかさみ、また積層枚数が増えるので低コスト化に繋がらない。また、目付が大きくなると、糸条間の間隙が小さくなり、また、成形体の肉厚を変化させるため、途中から織物基材の積層数を減らすと、厚さ変化が大きくなり、強化繊維糸条の切断部に応力集中が働くことがあるので好ましくない。
【0051】
本発明で使用する織物基材には織物に粒子が接着しているが、粒子量は強化繊維重量に対して2%を超え20%未満が好ましい。粒子が、上記範囲で接着していることにより、織物における強化繊維糸条とよこ糸、ならびにノンクリンプ織物における補助糸と接着し、織物の目ズレが防止され、形態が安定する。更に、織物基材を積層してプリフォーム基材やプリフォームを得る際の織物同士の接着性がもたらされる。
【0052】
また、上記範囲の粒子は、織物基材を積層して得られる繊維強化プラスチックにおいて、クラックストッパーの役目を果たす。とくに、繊維強化プラスチックが衝撃を受けた時に、織物の層間の損傷の抑制、つまりクラックの進展の抑止の役目を果たし、衝撃付与後での圧縮強度の低下が小さくなるのである。
【0053】
粒子量が2%以下になると層間に十分なクラックストッパー効果が得られない。また、粒子量が20%を越えると、繊維強化プラスチックにした場合の強化繊維体積率が小さくなり過ぎ、機械的特性が低くなるだけでなく、粒子を接着させる際の加熱、加圧やプリフォームの高繊維密度化処理の加熱、加圧の際に、粒子が変形し糸条の隙間を埋めて、マトリックス樹脂の流路を潰し、含浸を妨げる場合があるため好ましくない。
【0054】
かかる粒子は、織物基材の表面に接着し、織物基材の片面に接着していてもよいし、両面に接着していてもよい。より低コストに織物基材を製造する場合は、前者が好ましい。
【0055】
かかる粒子が、平均直径(楕円形の場合は平均短径)は、小さければ小さいほど均一に織物の表面に分散させることが可能となるため、1mm以下が好ましく、250μm以下がより好ましくは、50μm以下が更に好ましい。
【0056】
織物基材に接着している粒子の織物の面に垂直方向の凹凸が大き過ぎると、それに接して位置する強化繊維糸条が屈曲する可能性があるので、織物基材表面における粒子の平均厚みは、5〜250μmの範囲であることが好ましい。より好ましくは、10〜100μm、更に好ましくは、15〜60μmの範囲である。
【0057】
本発明で用いる粒子は、織物への粒子の接着やプリフォームの高繊維密度処理のため、加熱処理するが、その作業性の面から、50〜150℃の範囲の融点またはガラス転移温度を有しているものが好ましい。より好ましくは70〜140℃、更に好ましくは90〜120℃の範囲である。
【0058】
ここでいう融点およびガラス転移点は、それぞれ示差走査熱量計(DSC)から計測される結晶の溶解温度およびガラス状態への転移温度を指す。
【0059】
粒子の成分は、織物基材の取扱性を向上させ、それを用いて得られる繊維強化プラスチックの機械的性質を向上させるものであれば、特に限定されない。粒子としては、各種の熱硬化性樹脂および/または熱可塑性樹脂を使用できる。
【0060】
熱可塑性樹脂を粒子の主成分として用いる場合には、例えば、ポリアミド、ポリスルフォン、ポリエーテルスルフォン、ポリエーテルイミド、ポリフェニレンエーテル、ポリイミド、ポリアミドイミド、フェノキシから選ばれる少なくとも1種のであるのが好ましく、その中でもポリアミド、ポリエーテルイミド、ポリフェニレンエーテル、ポリエーテルスルフォンがとりわけ好ましい。
【0061】
熱可塑性樹脂は、粒子の主成分となり、その配合量が、70〜100重量%であることが好ましい。より好ましくは75〜97重量%であ、更に好ましくは80〜95重量%である。配合量が70重量%未満であると、耐衝撃性にに優れた繊維強化プラスチックを得難い場合がある。また、熱可塑性樹脂を主成分とした場合、粒子の織物への接着性や接着加工性が劣る場合がある。この場合には、粒子に少量の粘着付与剤、可塑剤等を配合するとよい。
【0062】
図3は、本発明に係るプリフォーム基材6の好ましい一態様を示す概略部分破断斜視図である。図における下面側から順次、粒子4が接着した一方向織物基材1がプリフォーム基材の長さ方向イの+α°方向に、織物基材1が90°方向に、織物基材1が−α°方向に、織物基材1が0°方向に、織物基材1が−α°方向に、織物基材1が90°方向に、織物基材1が+α°方向に、各層間には粒子が存在するように、7層交差積層されて、一体化手段としてステッチ糸7で、これら7層がプリフォーム基材の全面にわたって縫合一体化されている。なお、一体化手段はステッチに限定するものではなく、織物基材に接着させた粒子を加熱しスポット状に点接着させて一体化させてもよいが、このようなプリフォーム基材は、曲面に沿わせた場合、各層間が滑らないため凹側の強化繊維糸条が局部的に屈曲する。
【0063】
ステッチ糸で縫合一体化すると各層間は滑りが発生する自由度があるので、曲面に沿わせても強化繊維糸条が局部的に屈曲するようなことはないので好ましい。縫合一体化にあたってのステッチ糸が形成する縫い組織としては、単環縫い、1/1のトリコット編みが挙げられる。ステッチ糸のプリフォーム基材の長さ方向に対する縫合のピッチは1mmを超え6mm未満が好ましく、プリフォーム基材のハンドリング性や賦形性などを考慮して適宜選択することが出来る。またステッチ糸のプリフォーム基材の幅方向に対する縫合の間隔は2mmを超え40mm未満が好ましい。なお、本発明に使用する織物基材には、粒子が接着して、強化繊維糸条とよこ糸が接着して強化繊維糸条の移動が拘束され、いわば目どめされた状態となっているので、90°方向に積層した織物基材に幅方向に線状に配列したステッチのニードルが狭い間隔で90°方向の強化繊維糸条に狭い間隔で突き刺さると、ニードルが突き刺さった箇所の強化繊維糸条の強化繊維を破断させることがあるので、このようなときには縫合の間隔は10mmを超え40mm未満と大きくし、ニードルが貫通する際、強化繊維糸条の位置が若干逃げるようにすることが好ましい。なお、縫合の間隔は40mmを超えるとステッチによるプリフォーム基材の拘束が甘く、形態が不安定となるので、運搬の際に層がずれるので好ましくない。
【0064】
また、ニードルの貫通により90°方向の強化繊維糸条が損傷を受ける場合は、90°方向の強化繊維糸条に対して1ないし2本程度のニードルが突き刺さるように、ニードルの配列を幅方向に斜め方向に配列すればよい。
【0065】
本発明において用いるステッチ糸はマルチフイラメント糸が好ましく、ナイロン6繊維、ナイロン66繊維、ナイロン11繊維、ナイロン12繊維、ポリエステル繊維、ポリアラミド繊維、ポリエーテルイミド繊維、ポリフェニレンサルファイド繊維などであるが、なかでもナイロン66は樹脂との接着がよく、また延伸により細繊度の糸が得られるので好ましい。ステッチ糸の繊度はステッチ加工時の糸切れに耐え、また縫合一体化できればよく、出来るだけ小さければよい。好ましくは14デシテックスを超え120デシテックス未満である。より好ましくは14デシテックスを超え85デシテックス未満である。あまり太いと、ステッチ部が凸状態となり表面平滑な繊維強化プラスチックス得られないばかりか、ステッチ糸の吸水性が大きくまた耐熱性に劣るので、構造材としての特性が低下するので好ましくない。なお、本発明に用いるステッチ糸は樹脂との接着を良くするため、繊維を紡糸する際に接着させた工程油剤を精練処理などで除去しておくことが好ましい。
【0066】
図3では一方向織物基材が+α°層、90°層、−α°層、0°層、−α°層、90°層、+α°層の7層に積層したプリフォーム基材について説明したが、必ずしもこの積層角度や積層枚数に限定するものではない。たとえば、0°層/+α°層/0°層/−α°層/90°層/−α°層/0°層/+α°層/0°層のように9層で0°層を多く含むものであってもよい。
【0067】
また、前記のプリフォーム基材は全て7層または9層の一様な積層数について説明したが、プリフォーム基材の長さ方向に対して、途中から積層数が増えたりまたは減少してもよい。つまり構造材の厚みは常に一定ではなく、たとえば航空機の主翼スキン材などは胴体から離れるに従いスキン材の厚さを長さ方向に順次薄くなっている。したがって、あらかじめ主翼プリフォームの長さに相当するプリフォーム基材を準備するにあたり、構造設計に基づき−α°層、90°層、+α°層や0°層を途中から1層ずつ減らし、急激な厚さ変化のないプリフォーム基材とすることが出来る。とくにプリフォーム基材は多層となっているので、主翼の肉厚変化に対応するため、一様な積層数のプリフォーム基材を途中からプリフォーム基材の積層枚数を減らしてたプリフォームにすると、1枚当たりのプリフォーム基材の厚さが厚いので、急激な厚さ変化となり、この急激な厚さ変化部分で応力集中が発生して強度低下をもたらすので好ましくない。
【0068】
ここで、バイアス角α°は、プリフォーム基材を繊維強化プラスチック構造体の長さ方向に積層し、強化繊維によるせん断補強を効果的に行う観点から実質的に45°が好ましい。また積層角の順序は特に限定されないが、各層の機械的特性の異方性に伴う積層板の厚さ方向への衝撃による繊維強化プラスチックの層間にクラックを出来るだけ小さくし、繊維強化プラスチック板の圧縮強度の低下を小さくするという観点で、隣接する各層の強化繊維の交角が45°であることが好ましい。
【0069】
本発明においては、プリフォームとは、プリフォーム基材が多数枚数積層され、織物基材ならびにプリフォーム同士が接着しているものとし、プリフォーム基材を接着せず積層したのものを積層体と呼称する。
【0070】
なお、プリフォーム基材の積層体ならびにプリフォーム中に強化繊維糸条の切断部を入れないため、プリフォーム基材がプリフォームの全面に切れ目なく積層されていることが好ましい。たとえば航空機の主翼のスキン材のように幅が5m〜8mと広い構造体を成形する場合、幅の狭いプリフォーム基材の0°方向が主翼の長さ方向となるよう、幅方向をプリフォーム基材の端をオーバラップして積層することになるが、オーバラップ部の重量が増えて目的とする軽量化が達成出来ないばかりか、±45°方向や90°方向の強化繊維糸条が途中で切れ、強化繊維糸条の切断部に応力集中が働き、強度低下を招くので好ましくない。また、プリフォーム基材の積層体ならびにプリフォームはプリフォーム基材の端をオーバラップしなく、基材の端をつき合わすように積層することも可能であるが、やはり±45°方向や90°方向の強化繊維糸条が途中で切れ、強化繊維糸条の切断部に応力集中が働き、強度低下を招くので好ましくない。
【0071】
したがって、主翼のように幅の広い構造体の場合は、プリフォーム基材のオーバラップや強化繊維糸条の切断部の挿入を防ぐため、主翼幅に相当する幅の広いプリフォーム基材を、切れ目なく積層することが好ましい。
【0072】
次に、このようなプリフォーム基材を作製するに当たっての1例を説明する。
たとえば、+α°層/90°層/−α°層/0°層/−α°層/90°層/+α°層の7層に積層したプリフォーム基材を作製する場合、長さ方向に強化繊維糸条が配列し、ロールに巻かれた長尺の織物基材ロールを7本準備する。
【0073】
次に、両側にピンが線状に植え込まれたベルトを有し、このベルトがステッチ部、巻き取り部へと移動しているプリフォーム基材製造機の長さ方向に対して+α°の方向から織物基材の端を固定しながら引き出し、ロール設置側と反対側のピンに引掛け織物基材の両端を裁断する。さらに、織物基材の端を固定しながら、既に引き出され、ピンに引っ掛けた織物基材との間に隙間が出来ないように、またオーバラップしないように引き出し、ロール設置側と反対側のピンに引掛け織物基材の両端を裁断し、これを繰り返しながら+α°層を形成する。つぎに、90°方向から織物基材を引き出し、既に形成されている+α°層の上に90°層を形成し、同様に+α°層/90°層の上に−α°層を形成する。0°層はピンに引っ掛けることなくピント並行に供給し、ステッチ部に到達して、位置が固定されるまで−α°層の上に仮どめして0°層を形成する。+α°層/90°層/−α°層/0°層の上に、さらに−α°層、90°層、+α°層が順次形成された7層の積層体にステッチ部でニードルを貫通させ、ステッチ糸で縫合一体化することによって、本発明のプリフォーム基材が作製される。なお、プリフォーム基材の長さ方向に対して積層数が一様ではなく、途中から増加または減少させたプリフォーム基材は、構造設計に基づき、途中から−α°層、90°層、+α°層や0°層の供給を増やしたり、減らしたりして作製することが可能となる。
【0074】
本発明で使用する織物基材には、粒子が接着して、あらかじめ強化繊維糸条とよこ糸が接着して強化繊維糸条の移動が拘束され、いわば目どめされた状態となっているので、プリフォーム基材を作製するときに糸条配列が乱れるということはない。また、薄い織物であっても粒子の接着により織物基材の形態が安定し、幅の広いプリフォーム基材を作製する場合でも織物基材に皺が入るようなことはなく、品質の安定したプリフォーム基材を作製することが可能となる。
【0075】
なお、成形にあたって、織物基材の積層体は、強化繊維糸条に接着しているサイジング、強化繊維同士の絡み合い等で嵩高であるので、このような積層体に真空バッグ成形法で樹脂を注入しても、加圧力が小さく、十分に積層体を押さえることが出来ないので樹脂成分が多い、つまり強化繊維の体積含有率が小さな繊維強化プラスチックとなることがある。このようなときには、たとえば本発明のプリフォーム基材が所定の枚数積層されたプリフォームを、粒子の融点またはガラス転移温度以上に加熱・加圧して繊維密度を上げ、プリフォームにおける強化繊維体積率Vpfが45%を超え60%未満にしておくことが好ましい。45%以下であると真空含浸での樹脂の含浸性はよいが、繊維体積含有率の小さな繊維強化プラスチックとなり、機械的特性も低くなり、構造体の軽量化を達成することが困難となる。一方、60%以上になると糸条間や繊維間の隙間が小さくなって、樹脂が流れ難くなり好ましくない。
【0076】
ここで強化繊維体積率Vpfとは下記の方法によって算出した値を示す。
Vpf=W1/(ρ×T1)×100(%)
W1:プリフォーム1cm当たりの強化繊維の重量(g/cm
ρ:強化繊維の密度(g/cm
T1:JIS7602に準拠し、0.1MPaの荷重下で測定したプリフォームの厚さ(cm)
【0077】
なお、上記のように高繊維密度化処理を行ったプリフォームを成形して得られる繊維強化プラスチック成形体の繊維体積含有率が52〜62%となり、主翼スキン材のような航空機構造材にも繊維強化プラスチックの性能が十分発揮できる。
【0078】
また、樹脂の含浸性からプリフォーム基材において、一方向織物基材の強化繊維糸条の間隙が確保されていることは大切であるが、たとえば、プリフォーム基材を多数枚積層し接着させた、樹脂含浸を行う前のプリフォームにおいても、嵩高を小さくするためのプリフォームの高繊維密度化処理によって糸条間の状態が変化し、隙間小さくなることは好ましくなく、隙間が十分に確保されていることが大切である。プリフォームの織物基材の全幅において、織物基材の糸条間の隙間が0.1mmを超え1mm未満のほぼ均一な間隙であることが好ましい。より好ましくは0.2mmを超え0.8mm未満、さらに好ましくは0.3mmを超え0.5mm未満の範囲である。かかる範囲であるとプリフォームの厚さ方向に対して樹脂が流れ、プリフォームへの樹脂の含浸が行われる。間隙がこれより小さいと、全体に樹脂が到達しない前に樹脂の粘度が上がったり、樹脂の硬化が始まり樹脂の未含浸部分が発生し、欠陥となり成形体が不合格となる。とくに、主翼などのように大型プラスチック構造体が不合格となると経済的な損害も莫大なものとなる。また、間隙がこの範囲を超えると樹脂の含浸は良好であるが、高繊維密度化処理や成形の際、この隙間に隣接する層の強化繊維糸条が食い込みまたは落ち込み、織物基材、プリフォーム基材の状態では強化繊維糸条が真っ直ぐ配列していたにもかかわらず、成形体では隙間への糸条の食い込みまたは落ち込みによりクリンプし(曲がり)、機械的特性が低下してしまう。また、この隙間部にマトリックス樹脂が入るから、成形体では樹脂過多部となり、疲労などで樹脂過多部にクラックが入り好ましくない。糸条間の隙間が、この範囲であれば、この隙間を通過して次の層へと樹脂が流れ、樹脂の含浸性も良好であり、また優れた機械的特性を有する成形体が得られるのである。また、隙間は織物基材の全幅において、ほぼ均一であることが好ましい。隙間が不均一で、大きな隙間がまばらに存在すると、この隙間からの樹脂が他の隙間に先行して流れるので、プリフォームの内部に未含浸部が形成されることがあるので好ましくない。
【0079】
本発明のプリフォーム基材、プリフォーム基材の積層体ならびにプリフォームから、従来から知られている方法で繊維強化プラスチックを成形することができるが、なかでもレジントランスファー成形法や真空バッグ成形法は大型の成形品を安価に製造することができるので、好ましく用いられる。
【0080】
以下、本発明のプリフォームを用いて真空バッグ成形により成形する本発明の繊維強化プラスチックの製造法の一実施例を説明する。
【0081】
図4は本発明の繊維強化プラスチックの成形法を説明する一実施例の断面図である。図4において、成形型8の上にプリフォーム9を置き、その上に樹脂が硬化した後に引き剥がして除去するシート、いわゆるピールプライ10を積層し、その上に樹脂をプリフォームの全面に拡散させるための媒体11を置く。プリフォームの周囲には、織物などの多孔性の材料を多数枚積層して真空ポンプの空気の吸引口12を取り付けたエッジ・ブリーザ13を張り巡らし、全体をバッグフイルム14で覆い、空気が漏れないようにバッグフイルムの周囲をシール材15で型に接着する。バッグフイルムの上部に樹脂タンクから注入される樹脂の吐出口17を取り付け、該取り付け部から空気が漏れないようにシール材15で接着する。樹脂タンクには、硬化剤を所定量入れた常温でシロップ状の熱硬化性樹脂を入れておく。ついで、真空ポンプでバッグフイルムで覆われたプリフォームを、真空圧力が93310〜101325Pa程度の減圧状態にした後、バルブ16を解放して樹脂を注入する。バッグフイルムで覆われた中が減圧状態であり、プリフォームの厚さ方向より媒体の面方向の樹脂流通抵抗が小さいから、まず樹脂は媒体の全面に拡がったのち、ついでプリフォームの厚さ方向の含浸が進行する。この方法であると樹脂の流れなければならない距離は、プリフォームの厚さでよいから、樹脂含浸が非常に早く完了する。樹脂含浸完了後、バルブ16を閉口し室温に放置して樹脂を硬化させる。樹脂の硬化後、ピールプライを剥いで、媒体やバッグフイルムを除去し、型から脱型することによって繊維強化プラスチック成形品が得られる。
【0082】
本発明において使用する媒体11の一例を図5に示した。媒体はバッグ内の減圧力をプリフォームに伝え、かつ注入される媒体の隙間を通すことにより、媒体側のプリフォーム上面に樹脂を行き渡らせるものである。すなわち、バッグフイルムとピールプライ間に位置する媒体に樹脂が注入されると、図5において、注入された樹脂はバッグフイルムに接するX群のバー18の間隙をバー18の方向に流れると同時に、Y群の矩形断面のバー19の間隙をバー19の方向に流れるから、全方向に樹脂が拡散することになる。また、バー17にかかる力をバー18に伝えることができるから減圧力をプリフォームに伝えることができるのである。媒体の具体的なものとしては、ポリプロピレン、ポリエチレン、ポリエステル、ポリ塩化ビニルや金属からなどからなるメッシュ状のシートが用いられる。たとえば、メッシュ状樹脂フイルム、織物、網状物や編物などであり、必要に応じてこれらを数枚重ねて使用することができる。
【0083】
なお、上記において繊維材がプリフォームについて説明したが、本発明で言うプリフォーム基材やプリフォーム基材を多数枚重ねたプリフォーム基材の積層体であってもよい。
【0084】
上記に記載した成形法は、大きくは真空バッグ成形法の範疇にはいるが、樹脂注入と同時に樹脂をプリフォーム基材の積層体またはプリフォームの全面に拡散させる点で、従来の真空バッグ成形法とは異なり、とくに大型の繊維強化プラスチック成形品の成形に用いると好適である。
【0085】
本発明の成形方法に用いるピールプライは、樹脂が硬化した後に繊維強化プラスチックから引き剥がして除去するシートであるが、樹脂を通過させることができることが必要であり、ナイロン繊維織物、ポリエステル繊維織物、ガラス繊維織物などが用いられる。なお、ナイロン繊維織物やポリエステル繊維織物は安価であるため好ましく用いられるが、これらの織物を製造する際に用いられている油剤やサイジング剤が繊維強化プラスチックの樹脂に混入するのを防ぐため、精練を行い、また硬化の際の加熱による収縮を防ぐため、熱セットされた織物を使用することが好ましい。
【0086】
本発明で用いるエッジ・ブリーザは空気樹脂を通過させることができることが必要であり、ナイロン繊維織物、ポリエステル繊維織物、ガラス繊維織物およびナイロン繊維またはポリエステル繊維からなるマットを使用することができる。
【0087】
また、本発明で用いるバッグフイルムは、気密性であることが必要であり、ナイロンフイルム、ポリエステルフイルムやPVCフイルムなどを用いることができる。
【0088】
なお、本発明における成形法では、通常、常温で液状の熱硬化性樹脂、たとえばエポキシ樹脂、ビニルエステル樹脂、フェノール樹脂や不飽和ポリエステル樹脂を使用するが、樹脂含浸が容易でかつ高性能で耐熱性の高い繊維強化プラスチックとするために、エポキシ樹脂が好ましく用いられる。エポキシ樹脂の樹脂粘度が小さいと、一般的に耐熱性が悪くなるので、やや常温で樹脂粘度が高い場合でも、注入の際の型温度、プリフォームおよび樹脂の粘度は好ましくは70〜100℃とし、注入樹脂の粘度を下げて、樹脂粘度を200mPa・s以下とするのが好ましい。続いて、樹脂注入後130℃程度で一次硬化させ、エポキシ樹脂の重合を進めて、少なくともゲル状態とし、その後180℃程度の高温で二次硬化させることが好ましい。この方法により、樹脂含浸が良好で、耐熱性に優れ、かつ靭性、強度、弾性率といった機械的性質に優れる繊維強化プラスチックを成形することができる。
【0089】
本発明によって得られる繊維強化プラスチック成形体の適用範囲はとくに限定されないが、航空機の主翼(スキン、ストリンガー)、床支持材、胴体、水平尾翼や垂直尾翼などの航空機の1次構造部材として好適に用いられる。
【0090】
【実施例】
実施例1
強化繊維糸条としてフイラメント数が24,000本、糸条の繊度が1,030テックス、引張強度が5.8GPa、引張弾性率が290GPa、サイジング付着量が0.5重量%、撚数が実質的に零回の炭素繊維糸条をたて糸とし、たて補助糸として22.5デシテックスのカップリング剤を付着させたガラス繊維糸に精練加工を施した17デシテックスのナイロン66フイラメント糸を撚数250回/mでカバーリング(被覆)したカバーリング糸、よこ糸として精練加工を施した撚数が実質的に零回の17デシテックスのナイロン66フイラメント糸を用い、炭素繊維糸条、補助糸のたて糸密度が各々1.84本/cmで、よこ糸密度が3本/cmの、炭素繊維目付が190g/mの一方向ノンクリンプ織物を作製した。この織物の上面に平均径が120ミクロンの粒子を27g/mを均一に散布し、200℃の加熱によって織物表面に接着させ織物基材を作製した。
【0091】
この織物基材を−45°方向、90°方向、+45°方向および0°方向に順次積層し、ステッチ糸として精練加工を施した78デシテックスのナイロン66フイラメント糸を用い、0°方向にステッチ間隔が10mm、ピッチを3mmになるように織物基材が4層のプリフォーム基材を作製した。測定の結果、プリフォーム基材を構成する織物基材の隣り合う炭素繊維糸条の間隙は0.4mmであった。
【0092】
実施例2
プリフォーム基材を0°方向および90°方向に各々50cmとなるように裁断し、これをプリフォーム基材のコーナーを合わせながら33枚積層した。この積層体をフイルムで真空バギングし、80℃の雰囲気下で1時間、高繊維密度化処理を行い、炭素繊維体積率Vpfが49%のプリフォームが得られた。プリフォームでの隣り合う炭素繊維糸条の間隙は0.35mmと高繊維密度化処理によってやや狭くなっていた。
【0093】
実施例3
つぎに、エポキシ樹脂ならびにプリフォームをセットした成形型を80℃に加熱し、エポキシ樹脂を1時間注入し、その後130℃で2時間、樹脂を一次硬化させ、引き続き180℃で2時間、二次硬化させて、真空バッグ成形を行った。
【0094】
得られた繊維強化プラスチックの成形板の厚さは25mmで炭素繊維の体積含有率が55%であり、また樹脂はプリフォームの全体に含浸しており、顕微鏡の断面観察でもボイドは観察されず、構造材として十分使用可能な状態であった。
【0095】
比較例1
実施例1と同じ炭素繊維糸条を使用して、1.84本/cmの密度で並行配列させたシートに支持体に付着させて、炭素繊維目付が190g/mの一方向シートを作製した。なお支持体は、ガラス繊維22.5デシテックスガラス繊維糸に粘着剤が付着した、たて方向およびよこ方向の間隔が10mmのメッシュ状物である。
【0096】
つぎに、このシートを用いて実施例と同じ条件で比較プリフォーム基材を作製した。比較プリフォーム基材を構成する一方向シートの隣り合う炭素繊維糸条の間隙は全くなく、0mmであった。
【0097】
比較例2
実施例2と同じ方法にて高繊維密度化処理を行ったプリフォームを作製した。プリフォームにおける隣り合う炭素繊維糸条の間隙は全くなく、0mmであった。
【0098】
比較例3
つぎに、実施例3と同じ方法にてバッグ成形した。バッグフイルム、ピールプライおよび樹脂拡散媒体を引き剥がし、成形体を観察したところ、樹脂拡散媒体側の1mm程度のプリフォームにしか樹脂が含浸していなく、さらに樹脂含浸すべき成形体24mm分には全く樹脂が含浸していなかった。
【0099】
得られた繊維強化プラスチックの成形板は、樹脂が含浸していなく、とても構造体として使える状態ではなかった。
【0100】
【発明の効果】
以上説明したように、本発明によれば、次のような種々の効果が得られる。
(1)本発明のプリフォーム基材は、強化繊維糸条が長さ方向に互いに並行に配列し、少なくとも片面に粒子が接着してなる一方向織物基材からなり、前記一方向織物基材が多数枚交差積層され、一体化手段により一体化されているから、これを多層積層して作製するプリフォームは積層回数が大幅に減り、安価に生産性よく製造することができる。
【0101】
また、樹脂の含浸性がよいので厚い成形体でも含浸を完全に行うことが可能となり、また織物の間には粒子が存在し、強化繊維糸条のクリンプの小さい一方向織物を使用しているから、衝撃破壊靭性に優れ、引張強度、引張弾性率、圧縮強度、圧縮弾性率などの機械的性質に優れる繊維強化プラスチック成形体が得られる。
【0102】
(2)本発明のプリフォームならびにプリフォーム基材の積層体は、プリフォーム基材が全面に切れ目なく積層されているから、強化繊維糸条の切断部がプリフォームならびに積層体に存在しなく、引張強度、圧縮強度に優れる大型成形体が得られる。
【0103】
(3)本発明のプリフォームは、プリフォーム基材が所定の枚数積層され、織物基材ならびにプリフォーム同士が接着しており、プリフォームにおける強化繊維体積率Vpfが45%を超え60%未満であるから、樹脂の含浸がよく、また繊維体積含有率の大きな成形体が得られる。
【0104】
(4)本発明の成形方法は、プリフォーム基材の積層体ならびにプリフォームを型に積層し、その上に樹脂を面方向に拡散する媒体を置いたのち、全体をバッグフイルムで覆い、つぎにバッグフイルムで覆われた内部を減圧状態にし、積層体ならびにプリフォームの片面に液状の熱硬化性樹脂を拡散させ、積層体ならびにプリフォームに樹脂を含浸、硬化させることを特徴とする繊維強化プラスチックの成形方法であるから、大型の成形体を安価に製造することができ、またボイドのない成形体となる。
【図面の簡単な説明】
【図1】本発明の一実施態様に係るプリフォーム基材を構成する一方向織物基材の概略斜視図である。
【図2】本発明の別の実施態様に係るプリフォーム基材を構成する一方向織物基材の概略斜視図である。
【図3】本発明に係るプリフォーム基材の好ましい態様を示す概略部分破断斜視図である。
【図4】本発明に係る繊維強化プラスチックの成形法を説明する一実施例における断面図である。
【図5】本発明の成形法に使用する樹脂拡散媒体の一実施例を示す概略斜視図である。
【符号の説明】
1 一方向織物基材
一方向織物基材(プリフォーム基材の長さ方向イに対し+α°方向)
一方向織物基材(プリフォーム基材の長さ方向イに対し90°方向)
一方向織物基材(プリフォーム基材の長さ方向イに対し−α°方向)
一方向織物基材(プリフォーム基材の長さ方向イに対し0°方向)
一方向織物基材(プリフォーム基材の長さ方向イに対し−α°方向)
一方向織物基材(プリフォーム基材の長さ方向イに対し90°方向)
一方向織物基材(プリフォーム基材の長さ方向イに対し+α°方向)
2 強化繊維糸条
3 よこ糸
4 粒子
5 たて方向補助糸
6 プリフォーム基材
7 ステッチ糸
8 成形型
9 プリフォーム
10 ピールプライ
11 樹脂拡散媒体
12 空気の吸引口
13 エッジ・ブリーザ
14 バッグフイルム
15 シール材
16 バルブ
17 樹脂の吐出口
18 X群のバー
19 Y群のバー
A 強化繊維糸条間の隙間
イ プリフォーム基材の長さ方向
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a preform base material suitable for fiber-reinforced plastics, a preform and a fiber-reinforced plastic molded article, and a method for molding the same.
[0002]
[Prior art]
In order to improve the fuel efficiency of the aircraft and increase the payload, it is necessary to reduce the weight of the fuselage. Not only secondary structures such as spoilers, ailerons, wing fuselage fairings and elevators, but also the horizontal and vertical stabilizers of the tail wing recently In addition, fiber reinforced plastics, especially carbon fiber reinforced plastics, have been put to practical use for the primary structure of the floor support girder. Further, in recent years, attempts have been made to replace conventional duralumin with carbon fiber reinforced plastic for primary large-sized structures such as skins of main wings and stringers in order to reduce the weight and cost of the fuselage.
[0003]
As primary structural materials for aircraft, mechanical properties such as tensile strength, tensile modulus, compressive strength, compressive modulus and impact fracture toughness of carbon fiber reinforced plastics are required, and at the same time, to achieve low cost. Requires a molding method capable of achieving cost reduction and a reinforcing fiber material adapted to this molding method.
[0004]
As a low cost molding method, a vacuum bag molding method has recently attracted attention as compared with a conventional autoclave molding method in which a laminate of prepregs is bagged, and the laminate is heated and pressurized in an autoclave while maintaining the laminate under vacuum. In this method, a reinforcing fiber material to which a matrix resin is not adhered is laminated, a resin diffusion medium is placed on the laminate, these are bagged with a film, and the resin is passed through the diffusion medium through the diffusion medium while keeping the inside vacuum. And flows in the thickness direction of the laminate, which seems to be suitable as a method for molding a molded article having a large area.
[0005]
However, when a reinforcing fiber material such as a woven fabric is simply laminated, when molded into a fiber-reinforced plastic, the fracture toughness between layers cannot be ensured. In other words, the fiber-reinforced plastic made of continuous carbon fibers has excellent mechanical properties in the fiber axis direction, but the mechanical properties rapidly decrease as the distance from the fiber axis increases. As a countermeasure, for example, the fiber axis direction such that the mechanical properties become a quasi-isotropic base material is the length (0 °) direction, the width (90 °) direction, or the oblique (± 45 °) direction of the FRP (fiber reinforced plastic) molded product.゜) Laminated and molded in the direction. However, when an impact in the direction perpendicular to the plane is applied to such a formed plate, for example, the mechanical properties in the plane direction of the 0 ° layer and the 45 ° layer are extremely different, so the deformation of the 0 ° layer and the 45 ° layer is different, A large crack may be generated between the layers, and the compressive strength of the formed plate is greatly reduced. The primary structure of an aircraft is required to have high reliability, and at present, structural members made of duralumin are inspected for damage and cracks by periodic visual observation. Unfortunately, however, carbon fiber reinforced plastic is black and opaque, so it is not possible to visually observe the occurrence of cracks caused by rocks flying during takeoff and landing, tools falling during assembly or repair, collisions during assembly transportation, etc. , The damage state cannot be detected.
[0006]
In addition, the vacuum impregnation molding method is suitable as a molding method of a main wing skin material of an aircraft having a large area, but since the skin material is thick as 20 mm to 30 mm, the number of layers of woven fabrics and the like increases to 80 to 200, The resin does not flow to the surface of the laminate opposite to the diffusion medium, which causes a defect of poor resin impregnation.
[0007]
Further, in order to improve the resin impregnation property, if the woven material is a two-way woven fabric in which the reinforcing fiber yarns are arranged in two directions of the warp direction and the weft direction, and the resin can be impregnated from the empty space, The resin can be impregnated even with a thick fiber reinforced plastic by the vacuum impregnation molding method. However, in such a woven fabric, the reinforcing fiber yarn extending in the warp direction by a thick weft is largely crimped (bent), and when it is formed, stress is concentrated on the crimp portion, and the tensile strength and the compressive strength are reduced, and the primary strength is reduced. The predetermined strength as a structural material is not exhibited, and the design strength is reduced. Therefore, there has been a problem that the structural material needs to be designed to be thick, and it is not possible to achieve weight reduction.
[0008]
In addition, a large-sized structural material such as a main wing skin material has a large width of, for example, 5 to 7 m and a length of 20 to 30 m. In the length direction, a large number of woven fabrics with a width of about 100 cm are stacked in multiple directions such as 0 °, + α ° (usually + 45 °), -α ° (usually -45 °), and 90 °. It requires a lot of man-hours to laminate the reinforcing fiber material, despite the labor-saving molding method of vacuum bag molding and the lamination of reinforcing fiber materials such as long woven fabrics. Therefore, the fiber material, that is, the reinforcing fiber yarn is bent, and it is difficult to laminate the fiber straight.
[0009]
On the other hand, as a multiaxial fabric, Patent Document 1 discloses a multiaxial fabric in which a reinforcing fiber yarn is expanded, and a tape in which this state is fixed by a binder or the like is laminated in multiple directions in layers and integrated with stitch yarn. Although disclosed, such a fabric does not have a gap for resin impregnation, and thus there is a problem that sufficient impregnation cannot be ensured even when a thick fiber reinforced plastic is molded by a vacuum bag molding method. Was.
[0010]
Also, a multiaxial fabric is known in which reinforcing fiber yarns arranged in parallel are laminated in a sheet shape in multiple directions, and this is stitched and integrated with a stitch thread, but when reinforcing fiber yarns are arranged in a sheet shape in parallel. , Each thread hooked on a pin is free until it is fixed in position by stitch thread, it is difficult to arrange all threads accurately and there is a problem that a gap is formed between the threads. . Further, this state becomes more remarkable because the width of the free state becomes larger as the width of the multiaxial fabric increases, and the mechanical properties of the fiber-reinforced plastic deteriorate, so that the reliability is lacking. was there.
[0011]
[Patent Document 1]
JP-T-2001-516406 (Claims)
[0012]
[Problems to be solved by the invention]
In view of the background of the prior art, the object of the present invention is to provide a large, thick fiber-reinforced plastic molded product that is inexpensive, can be manufactured with high productivity, and has excellent reliability. An object of the present invention is to provide a preform substrate, a preform, a method of molding fiber-reinforced plastic, and a fiber-reinforced plastic molded article having excellent mechanical properties such as compression strength, compression modulus and impact fracture toughness.
[0013]
[Means for Solving the Problems]
In order to solve the above problems, the present invention employs the following means. That is, the preform substrate according to the present invention comprises a unidirectional woven substrate in which reinforcing fiber yarns are arranged in parallel in the length direction and particles are adhered to at least one surface, and the unidirectional woven substrate is Are cross-laminated and integrated by an integrating means.
[0014]
In this preform base material, the gap between the reinforcing fiber yarns adjacent to the one-way woven fabric base material is preferably a substantially uniform gap of more than 0.1 mm and less than 1.0 mm in the entire width of the woven fabric.
[0015]
Further, the unidirectional woven fabric has reinforcing fiber yarns on both sides of a sheet surface of a yarn group formed by aligning reinforcing fiber yarns having no bending such that stress is concentrated in a direction parallel to each other and in a sheet shape. A one-way non-crimp fabric in which intersecting weft direction auxiliary yarn groups are located, and the weft direction auxiliary yarn groups and the warp direction auxiliary yarn groups parallel to the reinforcing fiber yarns form a woven structure and integrally hold the yarn groups. It is preferable that
[0016]
Further, it is preferable that the integration means is a stitch.
[0017]
It is preferable that the cross lamination angle includes at least 0 ° layer with respect to the length direction of the preform base material.
[0018]
Further, it is preferable that the cross lamination angle includes at least two directions of a + α ゜ layer and a −α ゜ layer with respect to the length direction of the preform base material.
[0019]
Further, it is also possible to adopt a configuration in which the number of laminations is not uniform in the length direction of the preform base material, but increases or decreases in the middle.
[0020]
As the reinforcing fiber yarn, it is preferable to use carbon fiber, but it is not limited to this. When carbon fibers are used, the number of filaments of the carbon fibers is more than 12,000 and less than 25,000, the tensile modulus of the carbon fibers is more than 280 GPa and less than 500 GPa, and the breaking strain energy is 53 MJ / m 3 The above carbon fibers are preferable.
[0021]
In a preferred embodiment, the warp yarn is a carbon fiber yarn, the fineness of the weft direction auxiliary yarn is more than 6 dtex and less than 70 decitex, and the density of the weft direction auxiliary yarn is 0.3 / cm. And less than 6.0 fibers / cm, and the basis weight of the carbon fibers is 100 g / m. 2 Over 350g / m 2 There may be mentioned configurations that are less than. Among them, the fineness of the weft direction auxiliary yarn is more than 15 decitex and less than 50 decitex, the density of the weft direction auxiliary yarn is more than 1.0 yarn / cm and less than 4.0 yarn / cm, and the basis weight of the carbon fiber is less. 180 g / m 2 Over 210 g / m 2 It is preferably less than.
[0022]
The particles preferably have a function of imparting interlayer toughness of the fiber reinforced plastic and have a melting point or a glass transition temperature of more than 50 ° C and less than 150 ° C.
[0023]
In addition, the amount of particles attached is preferably more than 2% and less than 20% based on the weight of the reinforcing fibers constituting the one-way woven fabric substrate.
[0024]
The present invention also provides a laminate wherein a plurality of the preform substrates as described above are laminated, and each of the preform substrates is continuously laminated over the entire surface of the laminate.
[0025]
Further, the preform according to the present invention is characterized in that a plurality of the preform substrates as described above are laminated, and the woven substrate and / or the preform substrate are adhered to each other.
[0026]
In this preform, it is preferable that the preform substrate is laminated without interruption over the entire surface of the preform.
[0027]
Further, it is preferable that the reinforcing fiber volume ratio Vpf in the preform is more than 45% and less than 60%.
[0028]
In addition, it is preferable that a gap between the reinforcing fiber yarns adjacent to the one-way woven fabric base constituting the preform is more than 0.1 mm and less than 1.0 mm.
[0029]
In the method of molding a fiber-reinforced plastic according to the present invention, a predetermined number of the above-described preform substrates are laminated on a molding die, or a laminate of the above-described preform substrates is arranged in a molding die, and the resin is placed on the laminate. After placing the medium that diffuses in the direction, cover the whole with the bag film, then put the inside covered with the bag film under reduced pressure, and diffuse the liquid thermosetting resin on one side of the laminated preform base material. And a method of impregnating the preform base material with a resin and curing the resin.
[0030]
Further, in the method of molding a fiber-reinforced plastic according to the present invention, the above-described preform is laminated on a mold, a medium for diffusing the resin in the surface direction is placed on the preform, and the whole is covered with a bag film. The method is characterized in that the inside covered with the film is decompressed, a liquid thermosetting resin is diffused on one side of the laminated preform, and the preform is impregnated with the resin and cured.
[0031]
In such a method of molding a fiber-reinforced plastic according to the present invention, the thermosetting resin is an epoxy resin, and the resin and the mold and the preform base material or the preform are heated to lower the resin viscosity and to impregnate the resin. Is preferably improved.
[0032]
The fiber-reinforced plastic molded article according to the present invention is obtained by the molding method described above.
[0033]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic perspective view of a unidirectional woven fabric substrate 1 constituting a preform substrate according to one embodiment of the present invention. In FIG. 1, a unidirectional woven fabric substrate 1 has reinforcing fiber yarns 2 arranged in the warp direction, and one thin weft yarn 3 as a lateral auxiliary yarn alternately intersects with the warp yarns to form adjacent reinforcing yarns. The fibers A have a flat structure with a gap A formed between the fiber yarns. Particles 4 adhere to the surface of the unidirectional woven fabric, and a gap A is formed between adjacent reinforcing fiber yarns.
[0034]
FIG. 2 is a schematic perspective view showing another embodiment of the unidirectional woven fabric substrate 1. In FIG. 2, a unidirectional woven fabric substrate 1 has reinforcing fiber yarns 2 having no bend such that stress is concentrated and arranged in a sheet parallel to each other in one direction, and reinforcing fiber yarns are arranged on both sides of the sheet surface. A thin weft yarn 3 intersecting with the weft yarn 3 and the warp direction auxiliary yarn 5 in parallel with the reinforcing fiber yarn form a woven structure to integrally hold the reinforcing fiber yarn. Particles 4 adhere to the surface of the one-way non-crimp fabric, and a gap A is formed between adjacent reinforcing fiber yarns.
[0035]
In FIGS. 1 and 2, the case where the reinforcing fiber yarn of the warp and the weft are integrated in a flat structure and a non-crimp structure as the unidirectional fabric forming the unidirectional fabric base material is described. There may be.
[0036]
The reinforcing fiber yarn used in the present invention is a multifilament yarn, and the type thereof is not particularly limited, and examples thereof include glass fiber, organic (polyaramid, PBO, PVA, PE, etc.) fiber or carbon fiber. . Particularly, carbon fibers are excellent in specific strength and specific elastic modulus and excellent in water absorption resistance, and therefore are preferably used as reinforcing fiber yarns for aircraft structural materials and automobiles.
[0037]
Above all, if the carbon fiber is a high-toughness fiber, the impact-absorbing energy of the fiber-reinforced plastic to be molded becomes large, so that it can be applied as a primary structural material of an aircraft. That is, the tensile modulus of elasticity (E) measured according to JIS-R-7601 exceeds 280 GPa and is less than 500 GPa, and the fracture strain energy (σ 2 / 2E, σ: tensile strength measured according to JIS-R-7601) of 53 MJ / m 3 It is preferable that it is above.
[0038]
When carbon fiber is used as the reinforcing fiber yarn, the number of filaments is preferably more than 12,000 and less than 25,000, and the yarn fineness is preferably more than 800 tex and less than 1,800 tex. Within such a range, there is an advantage that the form of the unidirectional fabric is stable, an appropriate gap is easily formed between adjacent yarns, and high-performance carbon fibers can be obtained relatively inexpensively.
[0039]
In addition, the reinforcing fiber yarn in the present invention is preferably substantially non-twisted from the viewpoint of a high reinforcing fiber volume ratio of the molded composite material and an expression rate of mechanical properties.
[0040]
The weft used in the present invention is nylon 6 fiber, nylon 66 fiber, nylon 11 fiber, nylon 12 fiber, polyester fiber, polyaramid fiber, polyphenylene sulfide fiber, polyetherimide fiber, polyether sulfone fiber, polyketone fiber, polyether ketone. The weft is preferably a weft containing at least one selected from fibers, polyetheretherketone fibers and glass fibers. Among them, nylon 66 is preferable because it has good adhesion to a resin, and a fine fiber can be obtained by stretching.
[0041]
Further, the weft of the unidirectional woven fabric substrate in the present invention is preferably a multifilament yarn. With a multifilament yarn, the fineness (diameter) of a single filament yarn can be reduced. When this is used in a substantially untwisted state, the weft in the woven fabric is in a form in which the single filaments are arranged in parallel without overlapping in the thickness direction, and the thickness of the weft is reduced, Crimp due to the crossing or crossing of the reinforcing fiber yarn and the weft yarn is reduced, and the straightness of the reinforcing fiber yarn is increased in the fiber reinforced plastic, resulting in high mechanical properties.
[0042]
From the same viewpoint, the thickness of the weft yarn is preferably as thin as possible, and the fineness of the weft yarn is preferably more than 6 dtex and less than 70 dtex. More preferably, it is more than 15 dtex and less than 50 dtex. Originally, in the present invention, the major role of the weft yarn is to form a gap between adjacent reinforcing fiber yarns and to maintain the shape of the woven fabric substrate. If the weft is thick, the reinforcing fiber yarns are crimped in the fiber reinforced plastic, and the straightness of the yarns is reduced, which is not preferable.
[0043]
Further, the density of the weft yarn is preferably more than 0.3 yarns / cm and less than 6.0 yarns / cm, more preferably more than 2.0 yarns / cm and less than 4.0 yarns / cm. If the density of the weft yarn is low, the fabric will come into contact with rolls or guide bars during weaving or in the powder dispersing process, causing the weft yarn to be disturbed, and adjacent reinforcement that will become a resin flow path during vacuum bag molding. It is not preferable because the gap between the fiber yarns becomes small and the impregnating property of the resin becomes poor. In addition, when the density of the weft yarn increases, the crimp of the reinforcing fiber yarn of the warp yarn increases, and the amount of the weft yarn fiber increases, and the heat resistance of the fiber reinforced plastic decreases due to moisture absorption.
[0044]
In addition, in order to improve the adhesion between the weft yarn and the resin used in the present invention, the process oil agent attached when the fiber is spun is removed by a scouring treatment or the like. Preferably, the dry heat shrinkage at 200 ° C. is set to 4% or less by heat treatment.
[0045]
The warp auxiliary yarns in the non-crimp fabric of FIG. 2 prevent the reinforcing fiber yarns arranged in the warp direction from spreading by intersecting the warp auxiliary yarns and the weft yarns, so that the space between adjacent reinforcing fiber yarns is reduced. To secure the resin flow path during vacuum bag molding. In addition, in order to eliminate crimps caused by the crossing of the weft and the reinforcing fiber yarn, the weft yarn is crossed on both sides of the reinforcing fiber yarn, and the warp auxiliary yarn and the weft yarn are crossed to arrange the reinforcing fiber yarns straight. It is to try to make it.
[0046]
As the auxiliary yarn, a glass fiber yarn that does not shrink due to adhesion of particles or heating during molding is preferable. Further, since the auxiliary yarn has substantially no reinforcing effect on the fiber-reinforced plastic, it is not necessary to make it so thick, and the fineness is preferably more than 100 dtex and less than 470 dtex. In addition, covering is performed on the auxiliary yarn in order to secure the resin flow path, and the resin flow path can be secured by twisting the covering yarn. The yarn used for the covering is nylon 6 fiber, nylon 66 fiber, nylon 11 fiber, nylon 12 fiber, polyester fiber, polyaramid fiber, polyphenylene sulfide fiber, polyetherimide fiber, polyether sulfone fiber, polyketone fiber, polyether ketone fiber. Fiber, polyetheretherketone fiber, especially nylon 66, has good adhesion to resin, and the fineness is more than 15 dtex and less than 50 dtex.
[0047]
The gap A between adjacent reinforcing fiber yarns of the textile substrate in the preform substrate is important for securing the flow path of the resin in the preform substrate and the preform, and is adjacent to each other in the entire width of the textile substrate. The average spacing of the reinforcing fiber yarns is preferably in the range of 0.1 to 1 mm. It is more preferably in the range of 0.2 to 0.8 mm, and still more preferably in the range of 0.3 to 0.5 mm. Within such a range, the above-described effect of forming an intra-layer flow path will be sufficiently exhibited. Below that, it may not be sufficiently expressed. Conversely, if the width is too large, a large resin-rich portion will be formed during molding, which may lead to a decrease in the volume fraction of reinforcing fibers, a decrease in mechanical properties (particularly, fatigue strength), the occurrence of thermal cracks, and the like. In the measurement of the spacing between the reinforcing fiber yarns, even if auxiliary yarns exist between the reinforcing fiber yarns as in a non-crimp fabric, since the auxiliary yarns are thin, they do not significantly affect the flow of the resin, and are ignored. Measured.
[0048]
In addition, the gap A between adjacent reinforcing fiber yarns of the woven fabric substrate in the above was measured using a measuring microscope capable of measuring with an accuracy of 0.01 mm at 100 gaps, and the average value was defined as the gap value. . If measurement is not possible with a measuring microscope, measurement can also be performed with a stereoscopic microscope.
[0049]
The preferred range of the basis weight of the carbon fiber of the textile substrate used in the present invention is 180 g / m2. 2 Over 350g / m 2 Less than 180 g / m 2 Over 210 g / m 2 Is less than.
[0050]
If the basis weight of the carbon fiber is too small, when obtaining a molded body having a predetermined thickness, the required amount of fabric is increased, the fabric manufacturing cost and the particle bonding cost are increased, and the number of laminated layers is increased, so that cost reduction is achieved. I can not connect it. Also, when the basis weight is increased, the gap between the yarns is reduced, and the thickness of the molded body is changed. It is not preferable because stress concentration may act on the cut portion of the strip.
[0051]
The particles adhere to the woven fabric on the woven fabric substrate used in the present invention, and the amount of the particles is preferably more than 2% and less than 20% based on the weight of the reinforcing fibers. When the particles are adhered in the above range, the particles adhere to the reinforcing fiber yarns and the weft yarns in the woven fabric and the auxiliary yarns in the non-crimp woven fabric, thereby preventing misalignment of the woven fabric and stabilizing the form. Further, the adhesiveness between the woven fabrics is obtained when the woven fabric substrates are laminated to obtain a preform base material or a preform.
[0052]
In addition, the particles in the above-mentioned range serve as crack stoppers in a fiber-reinforced plastic obtained by laminating a woven fabric substrate. In particular, when the fiber-reinforced plastic is subjected to an impact, it plays a role in suppressing damage between layers of the woven fabric, that is, in suppressing the progress of cracks, and the decrease in compressive strength after impact is reduced.
[0053]
If the particle amount is less than 2%, a sufficient crack stopper effect between the layers cannot be obtained. On the other hand, if the amount of particles exceeds 20%, the volume ratio of reinforcing fibers in the case of fiber-reinforced plastic becomes too small, so that not only the mechanical properties are lowered, but also the heating, pressurizing and preforming when bonding the particles. When heating and pressurizing in the high fiber density treatment, the particles are deformed, filling gaps between the yarns, crushing the flow path of the matrix resin, and impeding impregnation, which is not preferable.
[0054]
Such particles may adhere to the surface of the textile substrate and adhere to one side or both sides of the textile substrate. In the case of producing a textile substrate at lower cost, the former is preferred.
[0055]
The smaller the average diameter of the particles (or the average minor axis in the case of an elliptical shape), the more uniformly the particles can be dispersed on the surface of the woven fabric, so the diameter is preferably 1 mm or less, more preferably 250 μm or less, and more preferably 50 μm or less. The following are more preferred.
[0056]
If the vertical irregularities on the surface of the woven fabric of the particles adhered to the woven fabric substrate are too large, the reinforcing fiber yarn located in contact with the woven fabric may be bent, so the average thickness of the particles on the woven fabric surface Is preferably in the range of 5 to 250 μm. More preferably, it is in the range of 10 to 100 μm, even more preferably in the range of 15 to 60 μm.
[0057]
The particles used in the present invention are subjected to a heat treatment in order to adhere the particles to the fabric and to perform a high fiber density treatment of the preform. However, from the viewpoint of workability, the particles have a melting point or glass transition temperature in the range of 50 to 150 ° C. Are preferred. The temperature is more preferably in the range of 70 to 140C, and still more preferably in the range of 90 to 120C.
[0058]
The melting point and the glass transition point referred to here indicate the melting temperature of the crystal and the transition temperature to the glass state measured by a differential scanning calorimeter (DSC), respectively.
[0059]
The component of the particles is not particularly limited as long as it improves the handleability of the woven fabric substrate and improves the mechanical properties of the fiber-reinforced plastic obtained using the same. Various thermosetting resins and / or thermoplastic resins can be used as the particles.
[0060]
When using a thermoplastic resin as the main component of the particles, for example, polyamide, polysulfone, polyethersulfone, polyetherimide, polyphenylene ether, polyimide, polyamideimide, preferably at least one selected from phenoxy, Among them, polyamide, polyetherimide, polyphenylene ether and polyether sulfone are particularly preferred.
[0061]
The thermoplastic resin becomes the main component of the particles, and the blending amount is preferably 70 to 100% by weight. More preferably, it is 75 to 97% by weight, still more preferably 80 to 95% by weight. If the amount is less than 70% by weight, it may be difficult to obtain a fiber-reinforced plastic having excellent impact resistance. When a thermoplastic resin is used as a main component, the adhesiveness of the particles to the fabric and the adhesive processability may be poor. In this case, a small amount of a tackifier, a plasticizer, or the like may be added to the particles.
[0062]
FIG. 3 is a schematic partially broken perspective view showing a preferred embodiment of the preform substrate 6 according to the present invention. The unidirectional woven fabric substrate 1 to which the particles 4 are adhered sequentially from the lower surface side in the figure. 1 Is the woven fabric substrate 1 in the + α ° direction of the length direction of the preform substrate. 2 In the 90 ° direction, the fabric substrate 1 3 Is in the -α ° direction, 4 In the 0 ° direction, the woven fabric substrate 1 5 Is in the -α ° direction, 6 In the 90 ° direction, the fabric substrate 1 7 In the + α ° direction, seven layers are cross-laminated so that particles exist between the layers, and these seven layers are stitched and integrated over the entire surface of the preform base material by stitch yarn 7 as an integrating means. . In addition, the integration means is not limited to stitching, and the particles adhered to the woven fabric substrate may be heated and spot-bonded in a spot shape to be integrated, but such a preform substrate has a curved surface. In this case, since the layers do not slide, the concave reinforcing fiber yarn is locally bent.
[0063]
When the layers are stitched together with a stitch thread, there is a degree of freedom in slipping between the layers, so that the reinforcing fiber yarns are not locally bent even along a curved surface, which is preferable. As a sewing structure formed by a stitch thread for stitch integration, single-ring sewing and 1/1 tricot knitting can be given. The stitch pitch of the stitch yarn in the length direction of the preform base material is preferably more than 1 mm and less than 6 mm, and can be appropriately selected in consideration of the handling properties and the shaping properties of the preform base material. The stitching interval of the stitch thread in the width direction of the preform base material is preferably more than 2 mm and less than 40 mm. In addition, the particles adhere to the woven fabric substrate used in the present invention, the reinforcing fiber yarns and the weft yarns adhere to each other, and the movement of the reinforcing fiber yarns is restrained, so to speak, in a state of being stopped. Therefore, when the needles of the stitches arranged linearly in the width direction on the woven fabric substrate laminated in the 90 ° direction pierce the reinforcing fiber yarns in the 90 ° direction at a narrow interval at a narrow interval, the reinforcing fiber at the location where the needle pierces In such a case, the reinforcing fiber of the yarn may be broken, so in such a case, the interval between the stitches is increased to more than 10 mm and less than 40 mm, and when the needle penetrates, the position of the reinforcing fiber yarn may be slightly escaped. preferable. In addition, if the stitching interval exceeds 40 mm, the preform base material is loosely restrained by the stitches and the form becomes unstable.
[0064]
When the reinforcing fiber yarn in the 90 ° direction is damaged by penetration of the needle, the arrangement of the needles in the width direction is adjusted so that about one or two needles pierce the reinforcing fiber yarn in the 90 ° direction. May be arranged in an oblique direction.
[0065]
The stitch yarn used in the present invention is preferably a multifilament yarn, and is, for example, nylon 6 fiber, nylon 66 fiber, nylon 11 fiber, nylon 12 fiber, polyester fiber, polyaramid fiber, polyetherimide fiber, or polyphenylene sulfide fiber. Nylon 66 is preferred because it has good adhesion to the resin and can be drawn to yield fine yarn. The fineness of the stitch thread is sufficient as long as it can withstand thread breakage during stitch processing and can be integrated by stitching. Preferably it is more than 14 dtex and less than 120 dtex. More preferably, it is more than 14 dtex and less than 85 dtex. If the thickness is too large, not only is the stitch portion protruded, so that a fiber-reinforced plastic having a smooth surface cannot be obtained, but also the stitch yarn has a large water absorption and poor heat resistance, so that the properties as a structural material deteriorate, which is not preferable. The stitch yarn used in the present invention is preferably removed by a scouring treatment or the like in order to improve the adhesion between the stitch yarn and the resin.
[0066]
FIG. 3 illustrates a preform base material in which the unidirectional woven base material is laminated into seven layers of a + α ° layer, a 90 ° layer, a −α ° layer, a 0 ° layer, a −α ° layer, a 90 ° layer, and a + α ° layer. However, the present invention is not necessarily limited to the lamination angle and the number of laminations. For example, there are 9 layers and many 0 ° layers such as 0 ° layer / + α ° layer / 0 ° layer / −α ° layer / 90 ° layer / −α ° layer / 0 ° layer / + α ° layer / 0 ° layer. May be included.
[0067]
In addition, the above-described preform base materials have all been described with reference to the uniform number of layers of 7 layers or 9 layers, but the number of layers may increase or decrease in the middle of the preform base material in the length direction. Good. In other words, the thickness of the structural material is not always constant. For example, the thickness of the skin material of an aircraft main wing skin is gradually reduced in the length direction as the distance from the fuselage increases. Therefore, in preparing a preform base material corresponding to the length of the main wing preform in advance, the -α layer, 90 ° layer, + α ° layer, and 0 ° layer are reduced one by one from the middle one by one based on the structural design. A preform substrate having no significant thickness change can be obtained. In particular, since the preform base material has a multilayer structure, in order to cope with changes in the thickness of the main wing, a preform base material with a uniform lamination number is replaced with a preform in which the number of preform base materials is reduced from the middle. Then, since the thickness of the preform base material per sheet is large, the thickness changes suddenly, and stress concentration occurs at the portion where the thickness changes rapidly, resulting in a decrease in strength, which is not preferable.
[0068]
Here, the bias angle α ° is preferably substantially 45 ° from the viewpoint of laminating the preform base material in the length direction of the fiber-reinforced plastic structure and effectively performing shear reinforcement by the reinforcing fibers. The order of the lamination angle is not particularly limited, but the cracks between the layers of the fiber reinforced plastic due to the impact in the thickness direction of the laminate due to the anisotropy of the mechanical properties of each layer are minimized, and the fiber reinforced plastic plate is From the viewpoint of reducing the decrease in the compressive strength, it is preferable that the intersection angle between the reinforcing fibers of the adjacent layers is 45 °.
[0069]
In the present invention, a preform is a laminate in which a large number of preform bases are laminated, a textile base and preforms are bonded to each other, and the preform bases are laminated without bonding. Called.
[0070]
It is preferable that the preform substrate is continuously laminated on the entire surface of the preform in order to prevent a cut portion of the reinforcing fiber thread from being inserted into the laminate of the preform substrate and the preform. For example, when forming a wide structure having a width of 5 m to 8 m, such as a skin material for a main wing of an aircraft, the width direction of the preform is set so that the 0 ° direction of the narrow preform base is the length direction of the main wing. The ends of the base material are overlapped and laminated. However, the weight of the overlapped portion is increased and not only the desired weight reduction cannot be achieved, but also the reinforcing fiber yarns in ± 45 ° direction and 90 ° direction are formed. It is not preferable because it breaks in the middle and stress concentration acts on the cut portion of the reinforcing fiber yarn, resulting in a decrease in strength. In addition, it is possible to laminate the preform base material laminate and the preform so that the edges of the preform base material do not overlap with each other without overlapping the ends of the preform base material. The reinforcing fiber yarn in the ° direction is broken in the middle, and stress concentration acts on the cut portion of the reinforcing fiber yarn, resulting in a decrease in strength, which is not preferable.
[0071]
Therefore, in the case of a wide structure such as a main wing, a wide preform base material corresponding to the main wing width is used to prevent the overlap of the preform base material and the insertion of a cut portion of the reinforcing fiber yarn. It is preferable that the layers are stacked without breaks.
[0072]
Next, an example of producing such a preform substrate will be described.
For example, when producing a preform base material laminated on seven layers of + α ° layer / 90 ° layer / −α ° layer / 0 ° layer / −α ° layer / 90 ° layer / + α ° layer, Seven long woven fabric base rolls in which reinforcing fiber yarns are arranged and wound around the rolls are prepared.
[0073]
Next, on both sides, there is a belt in which pins are linearly implanted, and the belt has + α ° with respect to the length direction of the preform substrate manufacturing machine moving to the stitching section and the winding section. Pull out the fabric substrate while fixing the end of the fabric substrate from the direction, hook the pin on the side opposite to the roll installation side, and cut both ends of the fabric substrate. Furthermore, while fixing the end of the woven fabric substrate, the woven fabric material is pulled out so that there is no gap between the woven fabric material that has already been pulled out and hooked on the pin, and the woven fabric material does not overlap. The both ends of the woven fabric substrate are cut, and this is repeated to form a + α ° layer. Next, the fabric substrate is drawn out from the 90 ° direction, a 90 ° layer is formed on the already formed + α ° layer, and a −α ° layer is similarly formed on the + α ° layer / 90 ° layer. . The 0 ° layer is supplied in parallel with the focus without being hooked on the pin, reaches the stitch portion, and temporarily stops on the −α ° layer until the position is fixed to form the 0 ° layer. The needle is penetrated at the stitch portion into a seven-layer laminate in which a + α ° layer, a 90 ° layer, and a + α ° layer are sequentially formed on the + α ° layer / 90 ° layer / −α ° layer / 0 ° layer. Then, the preform base material of the present invention is manufactured by stitching and integrating with a stitch thread. In addition, the number of laminations is not uniform in the length direction of the preform base material, and the preform base material that is increased or decreased from the middle is based on the structural design. It is possible to manufacture by increasing or decreasing the supply of the + α ° layer and the 0 ° layer.
[0074]
Since the particles are adhered to the woven fabric substrate used in the present invention, the reinforcing fiber yarns and the weft yarns are bonded in advance, and the movement of the reinforcing fiber yarns is restrained, so that it is in a so-called depressed state. When the preform base material is manufactured, the yarn arrangement is not disturbed. Further, even in the case of a thin woven fabric, the morphology of the woven fabric substrate is stabilized by the adhesion of the particles, and even when a wide preform substrate is produced, the woven fabric substrate does not wrinkle, and the quality is stable. It becomes possible to produce a preform substrate.
[0075]
In molding, the laminate of the woven fabric substrate is bulky due to sizing adhered to the reinforcing fiber yarns, entanglement of the reinforcing fibers, etc., and resin is injected into such a laminate by a vacuum bag molding method. However, since the pressing force is small and the laminate cannot be sufficiently held down, the resin component is large, that is, a fiber-reinforced plastic having a small volume content of the reinforcing fiber may be obtained. In such a case, for example, a preform in which a predetermined number of the preform substrates of the present invention are laminated is heated and pressed to a temperature higher than the melting point or glass transition temperature of the particles to increase the fiber density, and the reinforcing fiber volume ratio in the preform is increased. It is preferable that Vpf be more than 45% and less than 60%. When it is 45% or less, the impregnating property of the resin in vacuum impregnation is good, but it becomes a fiber reinforced plastic having a small fiber volume content, and the mechanical properties are lowered, making it difficult to reduce the weight of the structure. On the other hand, if it is 60% or more, the gap between the yarns or the fibers becomes small, and the resin hardly flows, which is not preferable.
[0076]
Here, the reinforcing fiber volume ratio Vpf indicates a value calculated by the following method.
Vpf = W1 / (ρ × T1) × 100 (%)
W1: Preform 1cm 2 Weight of reinforcing fiber per unit (g / cm 2 )
ρ: density of reinforcing fiber (g / cm 3 )
T1: Preform thickness (cm) measured under a load of 0.1 MPa in accordance with JIS7602
[0077]
The fiber volume content of the fiber-reinforced plastic molded product obtained by molding the preform subjected to the high fiber density treatment as described above is 52 to 62%, and is suitable for aircraft structural materials such as wing skin materials. The performance of fiber reinforced plastic can be fully exhibited.
[0078]
In addition, it is important that a gap between reinforcing fiber yarns of the unidirectional woven fabric substrate is secured in the preform substrate from the impregnating property of the resin. For example, a large number of preform substrates are laminated and bonded. In addition, even in the preform before resin impregnation, the state between the yarns changes due to the high fiber density treatment of the preform to reduce the bulkiness, and it is not preferable that the gap is reduced, and the gap is sufficiently secured. It is important that it is done. It is preferable that the gap between the yarns of the woven fabric substrate is a substantially uniform gap of more than 0.1 mm and less than 1 mm over the entire width of the woven fabric substrate of the preform. More preferably, it is more than 0.2 mm and less than 0.8 mm, and still more preferably more than 0.3 mm and less than 0.5 mm. Within such a range, the resin flows in the thickness direction of the preform, and the preform is impregnated with the resin. If the gap is smaller than this, the viscosity of the resin increases before the resin does not reach the whole, or the resin starts to be cured, a portion not impregnated with the resin occurs, and the molded article is rejected due to a defect. In particular, if a large plastic structure such as a wing is rejected, economic damage will be enormous. When the gap exceeds this range, the impregnation of the resin is good, but at the time of high fiber density treatment or molding, the reinforcing fiber yarns of the layer adjacent to the gap bite or fall, and the fabric base material, the preform Despite the fact that the reinforcing fiber yarns were arranged straight in the state of the base material, the molded product crimps (bends) due to biting or dropping of the yarns into the gaps, resulting in reduced mechanical properties. In addition, since the matrix resin enters the gap, the molded article becomes excessively resinous, and the excessively resinous part is cracked due to fatigue or the like, which is not preferable. If the gap between the yarns is within this range, the resin flows through the gap to the next layer, and the molded article having good resin impregnation and excellent mechanical properties can be obtained. It is. The gap is preferably substantially uniform over the entire width of the woven fabric substrate. If the gaps are non-uniform and large gaps are sparse, the resin from these gaps flows before other gaps, which is not preferable because an unimpregnated portion may be formed inside the preform.
[0079]
From the preform base material of the present invention, a laminate of the preform base material and the preform, a fiber-reinforced plastic can be molded by a conventionally known method. Among them, a resin transfer molding method and a vacuum bag molding method Is preferably used because a large molded product can be manufactured at low cost.
[0080]
Hereinafter, an embodiment of the method for producing the fiber-reinforced plastic of the present invention, which is formed by vacuum bag molding using the preform of the present invention, will be described.
[0081]
FIG. 4 is a cross-sectional view of one embodiment illustrating a molding method of the fiber-reinforced plastic of the present invention. In FIG. 4, a preform 9 is placed on a molding die 8, and a sheet to be removed by being peeled off after the resin is cured, a so-called peel ply 10, is laminated thereon, and the resin is diffused over the entire surface of the preform. The medium 11 for placing. Around the preform, a large number of porous materials such as woven fabrics are laminated, and an edge breather 13 provided with an air suction port 12 of a vacuum pump is stretched around the preform. The whole is covered with a bag film 14, and air leaks. The periphery of the bag film is adhered to the mold with a sealing material 15 so as not to cause any problem. A discharge port 17 for the resin injected from the resin tank is attached to the upper portion of the bag film, and the bag film is adhered with a sealing material 15 so that air does not leak from the attachment portion. The resin tank is filled with a thermosetting resin in a syrup at room temperature containing a predetermined amount of a curing agent. Next, the preform covered with the bag film is reduced to a vacuum pressure of about 93310 to 101325 Pa by a vacuum pump, and then the resin is injected by opening the valve 16. The inside covered with the bag film is in a decompressed state, and the resin flow resistance in the surface direction of the medium is smaller than that in the thickness direction of the preform. Therefore, the resin first spreads over the entire surface of the medium, and then in the thickness direction of the preform. Impregnation proceeds. With this method, the distance over which the resin must flow can be the thickness of the preform, so that the resin impregnation is completed very quickly. After completion of the resin impregnation, the valve 16 is closed and left at room temperature to cure the resin. After the resin is cured, the peel ply is peeled off, the medium and the bag film are removed, and the fiber-reinforced plastic molded article is obtained by removing the mold from the mold.
[0082]
FIG. 5 shows an example of the medium 11 used in the present invention. The medium transmits the resin to the upper surface of the preform on the medium side by transmitting the reduced pressure in the bag to the preform and passing the medium through the gap of the medium to be injected. That is, when the resin is injected into the medium located between the bag film and the peel ply, in FIG. 5, the injected resin flows through the gap of the X group of bars 18 in contact with the bag film in the direction of the bars 18 and at the same time, Since the resin flows in the gap between the bars 19 having the rectangular cross section in the direction of the bars 19, the resin is diffused in all directions. Further, since the force applied to the bar 17 can be transmitted to the bar 18, the reduced pressure can be transmitted to the preform. As a specific medium, a mesh sheet made of polypropylene, polyethylene, polyester, polyvinyl chloride, metal, or the like is used. For example, a mesh-like resin film, a woven fabric, a net-like material, a knitted fabric, and the like can be used by stacking several of them as necessary.
[0083]
Although the fibrous material has been described above as a preform, the fibrous material may be a preform substrate or a laminate of a plurality of preform substrates in the present invention.
[0084]
Although the molding method described above falls largely in the category of vacuum bag molding method, the conventional vacuum bag molding method is used in that the resin is diffused over the entire surface of the preform substrate laminate or the preform simultaneously with resin injection. Unlike the method, it is particularly suitable for use in molding large fiber-reinforced plastic molded articles.
[0085]
The peel ply used in the molding method of the present invention is a sheet that is peeled off and removed from the fiber-reinforced plastic after the resin is hardened, but it is necessary that the resin can be passed through, and nylon fiber woven fabric, polyester fiber woven fabric, glass A fiber fabric or the like is used. Nylon fiber woven fabrics and polyester fiber woven fabrics are preferably used because they are inexpensive, but in order to prevent oils and sizing agents used in manufacturing these woven fabrics from being mixed into the resin of the fiber-reinforced plastic, scouring is performed. In order to prevent shrinkage due to heating during curing, it is preferable to use a heat-set fabric.
[0086]
The edge breather used in the present invention needs to be able to pass air resin, and nylon fiber woven fabric, polyester fiber woven fabric, glass fiber woven fabric and a mat made of nylon fiber or polyester fiber can be used.
[0087]
Further, the bag film used in the present invention needs to be airtight, and a nylon film, a polyester film, a PVC film, or the like can be used.
[0088]
In the molding method of the present invention, a thermosetting resin which is liquid at room temperature, for example, an epoxy resin, a vinyl ester resin, a phenol resin or an unsaturated polyester resin is usually used. An epoxy resin is preferably used in order to obtain a fiber-reinforced plastic having high properties. If the resin viscosity of the epoxy resin is small, the heat resistance generally deteriorates, so even when the resin viscosity is slightly high at room temperature, the mold temperature during injection, the viscosity of the preform and the resin are preferably 70 to 100 ° C. It is preferable that the viscosity of the injected resin is reduced to 200 mPa · s or less. Subsequently, after the resin is injected, it is preferable to perform primary curing at about 130 ° C., advance polymerization of the epoxy resin, at least to a gel state, and then perform secondary curing at a high temperature of about 180 ° C. By this method, it is possible to mold a fiber-reinforced plastic having good resin impregnation, excellent heat resistance, and excellent mechanical properties such as toughness, strength, and elastic modulus.
[0089]
Although the application range of the fiber-reinforced plastic molded product obtained by the present invention is not particularly limited, it is suitably used as a primary structural member of an aircraft such as an aircraft main wing (skin, stringer), floor support, fuselage, horizontal tail and vertical tail. Used.
[0090]
【Example】
Example 1
As the reinforcing fiber yarn, the number of filaments is 24,000, the fineness of the yarn is 1,030 tex, the tensile strength is 5.8 GPa, the tensile modulus is 290 GPa, the sizing adhesion amount is 0.5% by weight, and the number of twists is substantially. Zero carbon fiber yarns are used as warp yarns, and 17 dtex nylon 66 filament yarn obtained by scouring glass fiber yarn to which a 22.5 dtex coupling agent is attached as a warp auxiliary yarn is used as a warp yarn for a number of twists of 250. Using a covering yarn covered at a number of turns / m, a nylon 66 filament yarn of 17 dtex, which has been refined as a weft and has substantially zero twists, and the warp density of the carbon fiber yarn and the auxiliary yarn Are 1.84 threads / cm each, the weft density is 3 threads / cm, and the carbon fiber weight is 190 g / m. 2 A one-way non-crimp fabric was prepared. 27 g / m2 particles having an average diameter of 120 microns were placed on the upper surface of the woven fabric. 2 Was uniformly dispersed and adhered to the surface of the fabric by heating at 200 ° C. to prepare a fabric substrate.
[0091]
The woven fabric base material is sequentially laminated in the −45 ° direction, the 90 ° direction, the + 45 ° direction, and the 0 ° direction, and a nylon 66 filament yarn of 78 decitex subjected to scouring processing is used as a stitch yarn. Was 10 mm and the pitch was 3 mm to prepare a preform substrate having four layers of woven fabric substrate. As a result of the measurement, the gap between the adjacent carbon fiber yarns of the textile base material constituting the preform base material was 0.4 mm.
[0092]
Example 2
The preform base material was cut so as to be 50 cm in each of the 0 ° direction and the 90 ° direction, and 33 pieces of the preform base material were laminated while matching the corners of the preform base material. This laminate was vacuum bagged with a film, and subjected to a high fiber density treatment in an atmosphere at 80 ° C. for 1 hour to obtain a preform having a carbon fiber volume ratio Vpf of 49%. The gap between adjacent carbon fiber yarns in the preform was 0.35 mm, which was slightly narrowed by the high fiber density treatment.
[0093]
Example 3
Next, the mold on which the epoxy resin and the preform were set was heated to 80 ° C., and the epoxy resin was injected for 1 hour. Then, the resin was primarily cured at 130 ° C. for 2 hours, and then secondary cured at 180 ° C. for 2 hours. After curing, vacuum bag molding was performed.
[0094]
The thickness of the obtained fiber-reinforced plastic molded plate is 25 mm, the volume content of carbon fiber is 55%, and the resin is impregnated in the entire preform. Thus, it was in a state of being sufficiently usable as a structural material.
[0095]
Comparative Example 1
The same carbon fiber yarns as in Example 1 were attached to the support at a density of 1.84 yarns / cm on a sheet arranged in parallel, and the carbon fiber weight was 190 g / m. 2 Was produced. Note that the support is a mesh-like material in which an adhesive is attached to glass fiber 22.5 decitex glass fiber yarn and the distance between the vertical direction and the horizontal direction is 10 mm.
[0096]
Next, using this sheet, a comparative preform substrate was produced under the same conditions as in the example. There was no gap between the adjacent carbon fiber yarns of the one-way sheet constituting the comparative preform substrate, and it was 0 mm.
[0097]
Comparative Example 2
In the same manner as in Example 2, a preform subjected to a high fiber density treatment was produced. There was no gap between adjacent carbon fiber yarns in the preform, and it was 0 mm.
[0098]
Comparative Example 3
Next, a bag was formed in the same manner as in Example 3. When the bag film, the peel ply and the resin diffusion medium were peeled off and the molded body was observed, only the preform of about 1 mm on the resin diffusion medium side was impregnated with the resin. The resin was not impregnated.
[0099]
The obtained fiber reinforced plastic molded plate was not impregnated with the resin and was not in a very usable state as a structure.
[0100]
【The invention's effect】
As described above, according to the present invention, the following various effects can be obtained.
(1) The preform substrate of the present invention comprises a one-way woven substrate in which reinforcing fiber yarns are arranged in parallel in the length direction and particles are adhered to at least one surface, and the one-way woven substrate is provided. Are cross-laminated and integrated by the integrating means, so that a preform manufactured by laminating the layers in a multi-layer can be manufactured with a significantly reduced number of laminations, and can be manufactured inexpensively and with good productivity.
[0101]
In addition, since the impregnating property of the resin is good, it is possible to completely impregnate even a thick molded product, and particles are present between the woven fabrics, and a unidirectional woven fabric having a small crimp of the reinforcing fiber yarn is used. Thus, a fiber-reinforced plastic molded article having excellent impact fracture toughness and excellent mechanical properties such as tensile strength, tensile modulus, compressive strength, and compressive modulus can be obtained.
[0102]
(2) In the laminate of the preform and the preform substrate of the present invention, since the preform substrate is continuously laminated on the entire surface, the cut portion of the reinforcing fiber yarn does not exist in the preform and the laminate. A large molded body having excellent tensile strength and compressive strength can be obtained.
[0103]
(3) In the preform of the present invention, a predetermined number of preform base materials are laminated, the textile base material and the preform are adhered to each other, and the reinforcing fiber volume ratio Vpf in the preform is more than 45% and less than 60%. Thus, a molded article having good resin impregnation and a high fiber volume content can be obtained.
[0104]
(4) In the molding method of the present invention, the laminate of the preform base material and the preform are laminated in a mold, a medium for diffusing the resin in the surface direction is placed thereon, and the whole is covered with a bag film. Fiber reinforced, characterized in that the inside covered with the bag film is decompressed, liquid thermosetting resin is diffused on one side of the laminate and the preform, and the laminate and the preform are impregnated with the resin and cured. Since it is a plastic molding method, a large-sized molded body can be manufactured at low cost, and a molded body without voids can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view of a one-way woven fabric base constituting a preform base according to one embodiment of the present invention.
FIG. 2 is a schematic perspective view of a unidirectional woven fabric substrate constituting a preform substrate according to another embodiment of the present invention.
FIG. 3 is a schematic partially broken perspective view showing a preferred embodiment of a preform base material according to the present invention.
FIG. 4 is a cross-sectional view in one example illustrating a method for molding a fiber-reinforced plastic according to the present invention.
FIG. 5 is a schematic perspective view showing one embodiment of a resin diffusion medium used in the molding method of the present invention.
[Explanation of symbols]
1 unidirectional textile substrate
1 1 Unidirectional textile substrate (+ α ° direction with respect to the length direction of the preform substrate)
1 2 Unidirectional woven fabric substrate (90 ° direction to preform substrate length direction a)
1 3 Unidirectional woven fabric substrate (-α ° direction with respect to the length direction of the preform substrate)
1 4 Unidirectional woven fabric substrate (0 ° direction with respect to the length direction of the preform substrate)
1 5 Unidirectional woven fabric substrate (-α ° direction with respect to the length direction of the preform substrate)
1 6 Unidirectional woven fabric substrate (90 ° direction to preform substrate length direction a)
1 7 Unidirectional textile substrate (+ α ° direction with respect to the length direction of the preform substrate)
2 Reinforcing fiber yarn
3 weft
4 particles
5 Warp direction auxiliary yarn
6 Preform substrate
7 stitch thread
8 Mold
9 Preform
10 peel ply
11 Resin diffusion medium
12 Air suction port
13 Edge Breather
14 Bag film
15 Sealing material
16 valves
17 Resin outlet
18 Group X Bar
19 Group Y Bar
A Gap between reinforcing fiber yarns
I Preform substrate length direction

Claims (22)

強化繊維糸条が長さ方向に互いに並行に配列し、少なくとも片面に粒子が接着してなる一方向織物基材からなり、前記一方向織物基材が多数枚交差積層され、一体化手段により一体化されていることを特徴とするプリフォーム基材。The reinforcing fiber yarns are arranged in parallel with each other in the longitudinal direction, and are made of a unidirectional woven fabric substrate in which particles are adhered to at least one surface. A large number of the unidirectional woven fabric substrates are cross-laminated, and integrated by an integrating means. A preform substrate characterized in that the preform substrate is formed. 前記プリフォーム基材において、一方向織物基材の隣り合う前記強化繊維糸条の間隙が織物の全幅において、0.1mmを超え1.0mm未満のほぼ均一な間隙であることを特徴とする、請求項1に記載のプリフォーム基材。In the preform substrate, the gap between the reinforcing fiber yarns adjacent to the one-way woven fabric substrate is a substantially uniform gap of more than 0.1 mm and less than 1.0 mm in the entire width of the woven fabric, The preform substrate according to claim 1. 前記一方向織物は、応力が集中するような屈曲を有しない強化繊維糸条を一方向に互いに並行かつシート状に引き揃えてなる糸条群のシート面の両側に強化繊維糸条と交差するよこ方向補助糸群が位置し、それらよこ方向補助糸群と、強化繊維糸条と並行するたて方向補助糸群とが織組織をなして糸条群を一体に保持してなる一方向ノンクリンプ織物であることを特徴とする、請求項1または2に記載のプリフォーム基材。The one-way woven fabric intersects the reinforcing fiber yarns on both sides of the sheet surface of a yarn group in which the reinforcing fiber yarns having no bend such that stress is concentrated are aligned in one direction in parallel with each other in a sheet shape. A weft direction auxiliary yarn group is located, and the weft direction auxiliary yarn group and the warp direction auxiliary yarn group parallel to the reinforcing fiber yarn form a woven structure, and are a unidirectional non-crimp fabric in which the yarn group is integrally held. The preform substrate according to claim 1, wherein: 前記一体化手段がステッチであることを特徴とする、請求項1〜3のいずれかに記載のプリフォーム基材。The preform substrate according to any one of claims 1 to 3, wherein the integration means is a stitch. 前記交差積層角度がプリフォーム基材の長さ方向に対して少なくとも0゜層を含むことを特徴とする、請求項1〜4のいずれかに記載のプリフォーム基材。The preform substrate according to any one of claims 1 to 4, wherein the cross lamination angle includes at least 0 ° layer with respect to the length direction of the preform substrate. 前記交差積層角度がプリフォーム基材の長さ方向に対して少なくとも+α゜層、−α゜層の2方向を含むことを特徴とする、請求項1〜5のいずれかに記載のプリフォーム基材。The preform substrate according to any one of claims 1 to 5, wherein the crossing lamination angle includes at least two directions of a + α ゜ layer and a -α ゜ layer with respect to a length direction of the preform base material. Wood. プリフォーム基材の長さ方向に対して積層数が一様ではなく、途中から増加または減少していることを特徴とする、請求項1〜6のいずれかに記載のプリフォーム基材。The preform substrate according to any one of claims 1 to 6, wherein the number of laminations is not uniform in the longitudinal direction of the preform substrate, but increases or decreases in the middle. 前記強化繊維糸条が炭素繊維を用いてなる、請求項1〜7のいずれかに記載のプリフォーム基材。The preform substrate according to any one of claims 1 to 7, wherein the reinforcing fiber yarn is made of carbon fiber. 前記炭素繊維のフイラメント数が12,000本を超え25,000本未満であり、炭素繊維の引張弾性率が280GPaを超え500GPa未満であり、かつ破壊歪みエネルギーが53MJ/m以上の炭素繊維であることを特徴とする、請求項8に記載のプリフォーム基材。The number of filaments of the carbon fiber is more than 12,000 and less than 25,000, the tensile modulus of the carbon fiber is more than 280 GPa and less than 500 GPa, and the breaking strain energy is 53 MJ / m 3 or more. The preform substrate according to claim 8, wherein: 前記一方向織物基材はたて糸が炭素繊維糸条であり、よこ方向補助糸の繊度が6デシテックスを超え70デシテックス未満であり、よこ方向補助糸の密度が0.3本/cmを超え6.0本/cm未満であり、かつ炭素繊維の目付が100g/mを超え350g/m未満であることを特徴とする、請求項8または9に記載のプリフォーム基材。5. The unidirectional woven fabric substrate has a warp yarn of carbon fiber yarn, a fineness of the weft direction auxiliary yarn of more than 6 decitex and less than 70 decitex, and a density of the weft direction auxiliary yarn of more than 0.3 / cm. less than 0 present / cm, and wherein the basis weight of the carbon fibers is less than 350 g / m 2 exceed 100 g / m 2, preform substrate according to claim 8 or 9. よこ方向補助糸の繊度が15デシテックスを超え50デシテックス未満であり、よこ方向補助糸の密度が1.0本/cmを超え4.0本/cm未満であり、かつ炭素繊維の目付が180g/mを超え210g/m未満であることを特徴とする、請求項10に記載のプリフォーム基材。The fineness of the weft direction auxiliary yarn is more than 15 dtex and less than 50 dtex, the density of the weft direction auxiliary yarn is more than 1.0 yarn / cm and less than 4.0 yarn / cm, and the basis weight of the carbon fiber is 180 g / cm2. and less than 210g / m 2 exceed m 2, preform substrate of claim 10. 前記粒子は、繊維強化プラスチックの層間靭性付与機能を有し、融点またはガラス転移温度が50℃を超え150℃未満であることを特徴とする、請求項1〜11のいずれかに記載のプリフォーム基材。The preform according to any one of claims 1 to 11, wherein the particles have a function of imparting interlayer toughness of a fiber-reinforced plastic, and have a melting point or a glass transition temperature of more than 50 ° C and less than 150 ° C. Base material. 前記粒子の付着量が前記一方向織物基材を構成する強化繊維の重量に対して2%を超え20%未満であることを特徴とする、請求項1〜12のいずれかに記載のプリフォーム基材。The preform according to any one of claims 1 to 12, wherein the attached amount of the particles is more than 2% and less than 20% based on the weight of the reinforcing fibers constituting the unidirectional woven fabric substrate. Base material. 請求項1〜13のいずれかに記載のプリフォーム基材が複数枚数積層され、各プリフォーム基材が積層体の全面にわたって切れ目なく積層されていることを特徴とする積層体。A laminate, wherein a plurality of the preform substrates according to any one of claims 1 to 13 are laminated, and each of the preform substrates is continuously laminated over the entire surface of the laminate. 請求項1〜13のいずれかに記載のプリフォーム基材が複数枚数積層され、織物基材および/またはプリフォーム基材同士が接着されていることを特徴とするプリフォーム。A preform, wherein a plurality of the preform substrates according to any one of claims 1 to 13 are laminated, and the woven substrate and / or the preform substrate are adhered to each other. 前記プリフォーム基材が、プリフォームの全面にわたって切れ目なく積層されていることを特徴とする、請求項15に記載のプリフォーム。The preform according to claim 15, wherein the preform base material is continuously laminated over the entire surface of the preform. プリフォームにおける強化繊維体積率Vpfが45%を超え60%未満であることを特徴とする、請求項15または16に記載のプリフォーム。The preform according to claim 15 or 16, wherein the reinforcing fiber volume fraction Vpf in the preform is more than 45% and less than 60%. 前記プリフォームを構成している一方向織物基材の隣り合う前記強化繊維糸条の間隙が0.1mmを超え1.0mm未満であることを特徴とする、請求項15〜17のいずれかに記載のプリフォーム。The gap between the reinforcing fiber yarns adjacent to the one-way woven fabric substrate constituting the preform is more than 0.1 mm and less than 1.0 mm, according to any one of claims 15 to 17, Preform of description. 請求項1〜13のいずれかに記載のプリフォーム基材を所定枚数成形型に積層し、または請求項14に記載のプリフォーム基材の積層体を成形型に配置し、その上に樹脂を面方向に拡散する媒体を置いたのち、全体をバッグフイルムで覆い、つぎにバッグフイルムで覆われた内部を減圧状態にし、積層されたプリフォーム基材の片面に液状の熱硬化性樹脂を拡散させ、プリフォーム基材に樹脂を含浸させて硬化させることを特徴とする、繊維強化プラスチックの成形方法。A predetermined number of preform substrates according to any one of claims 1 to 13 are laminated in a molding die, or a laminate of the preform substrate according to claim 14 is disposed in a molding die, and a resin is placed thereon. After placing the medium that diffuses in the plane direction, cover the whole with a bag film, then put the inside covered with the bag film under reduced pressure, and diffuse the liquid thermosetting resin to one side of the laminated preform base material. A method of impregnating a preform substrate with a resin and curing the resin. 請求項15〜18のいずれかに記載のプリフォームを型に積層し、その上に樹脂を面方向に拡散する媒体を置いたのち、全体をバッグフイルムで覆い、つぎにバッグフイルムで覆われた内部を減圧状態にし、積層されたプリフォームの片面に液状の熱硬化性樹脂を拡散させ、プリフォームに樹脂を含浸させて硬化させることを特徴とする、繊維強化プラスチックの成形方法。The preform according to any one of claims 15 to 18 is laminated on a mold, a medium for diffusing the resin in the surface direction is placed on the preform, the whole is covered with a bag film, and then covered with a bag film. A method for molding a fiber-reinforced plastic, wherein the inside of the preform is depressurized, a liquid thermosetting resin is diffused on one side of the laminated preform, and the preform is impregnated with the resin and cured. 前記熱硬化性樹脂はエポキシ樹脂であり、樹脂ならびに型およびプリフォーム基材またはプリフォームを加熱し、樹脂粘度を下げて樹脂含浸性を向上させることを特徴とする、請求項19または20に記載の繊維強化プラスチックの成形方法。21. The thermosetting resin according to claim 19, wherein the thermosetting resin is an epoxy resin, and heats the resin and the mold and the preform base material or preform to lower the resin viscosity and improve the resin impregnation property. Molding method of fiber reinforced plastic. 請求項19〜21のいずれかに記載の成形法によって得られる繊維強化プラスチック成形体。A fiber-reinforced plastic molded article obtained by the molding method according to claim 19.
JP2002331941A 2002-11-15 2002-11-15 Preform substrate, preform and method for molding fiber reinforced plastic Expired - Fee Related JP4168734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002331941A JP4168734B2 (en) 2002-11-15 2002-11-15 Preform substrate, preform and method for molding fiber reinforced plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002331941A JP4168734B2 (en) 2002-11-15 2002-11-15 Preform substrate, preform and method for molding fiber reinforced plastic

Publications (2)

Publication Number Publication Date
JP2004160927A true JP2004160927A (en) 2004-06-10
JP4168734B2 JP4168734B2 (en) 2008-10-22

Family

ID=32809164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002331941A Expired - Fee Related JP4168734B2 (en) 2002-11-15 2002-11-15 Preform substrate, preform and method for molding fiber reinforced plastic

Country Status (1)

Country Link
JP (1) JP4168734B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006104649A (en) * 2004-09-10 2006-04-20 Toray Ind Inc Rod-shaped preform and method for producing the same
JP2006168165A (en) * 2004-12-15 2006-06-29 Toho Tenax Co Ltd Preform base material for frp and preform manufacturing method
JP2007001299A (en) * 2005-05-23 2007-01-11 Toray Ind Inc Rod-shaped preform for filling gap, its manufacturing method, and manufacturing device
JP2007045004A (en) * 2005-08-10 2007-02-22 Sekisui Chem Co Ltd Vacuum injection molding method of fiber reinforced resin molded product
JP2007162151A (en) * 2005-12-12 2007-06-28 Toray Ind Inc Biaxial stitch base material and preform
JP2007160587A (en) * 2005-12-12 2007-06-28 Toray Ind Inc Multilayered base material, preform and manufacturing method of preform
JP2007518608A (en) * 2004-01-26 2007-07-12 サイテク・テクノロジー・コーポレーシヨン Stabilizable preform precursor and stabilized preform for composite materials, and method for stabilizing and reducing bulk of a preform
JP2008142935A (en) * 2006-12-06 2008-06-26 Canon Inc Inkjet head cartridge, recording head, ink container, and manufacturing method for inkjet head cartridge
JP2009107337A (en) * 2007-10-16 2009-05-21 General Electric Co <Ge> Substantially cylindrical composite article and fan casing
JP2011102461A (en) * 2011-02-16 2011-05-26 Toray Ind Inc Multilayered substrate, preform, and method for producing preform
JP2011219889A (en) * 2010-04-08 2011-11-04 Mitsubishi Rayon Co Ltd Fabric woven from reinforced fiber yarn and method for manufacturing the same
JP2012092337A (en) * 2010-10-28 2012-05-17 General Electric Co <Ge> Polyetherimide-stitched reinforcing fabric and composite material including the same
JP2012511450A (en) * 2008-12-09 2012-05-24 ヘクセル ランフォルセマン A novel intermediate material aimed at limiting microcracks in composite parts
JP2013522486A (en) * 2010-03-18 2013-06-13 トウホウ テナックス ユーロップ ゲゼルシャフト ミット ベシュレンクテル ハフツング Stitched multi-axis fabric
JP2014083792A (en) * 2012-10-25 2014-05-12 Ihi Corp Cylindrical case and method for manufacturing cylindrical case
JP2014163016A (en) * 2013-02-26 2014-09-08 Mitsubishi Rayon Co Ltd Multi-axis stitched substrate for reinforcement, woven fabric for reinforcement and carbon fiber reinforcement composite material, and method for producing them
JP2014208414A (en) * 2013-04-16 2014-11-06 本田技研工業株式会社 Production method and production apparatus of fiber sheet laminate
JP2016078258A (en) * 2014-10-10 2016-05-16 倉敷紡績株式会社 Fiber sheet for fiber-reinforced resin and molding using the same
JP2018501121A (en) * 2014-11-21 2018-01-18 テープ、ウィービング、スウェーデン、アクチボラグTape Weaving Sweden Ab Tape-like dry fiber reinforcement
JP2019217694A (en) * 2018-06-20 2019-12-26 ダイキョーニシカワ株式会社 Method for producing fiber-reinforced resin composite
JP2020517501A (en) * 2017-04-25 2020-06-18 ヘクセル レインフォースメンツ ユーケイ リミテッド Preform with local reinforcement
CN113423563A (en) * 2018-12-19 2021-09-21 科思创知识产权两合公司 Method for preparing polyurethane composite material by vacuum infusion process
WO2023180423A1 (en) * 2022-03-23 2023-09-28 Owens Corning Intellectual Capital, Llc Functionalized fabric

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11107107A (en) * 1997-08-04 1999-04-20 Toray Ind Inc Carbon fiber woven fabric and fiber-reinforced plastic and molding of fiber-reinforced plastic
JP2001064406A (en) * 1999-08-31 2001-03-13 Toray Ind Inc Preform for fiber-reinforced preform and fiber- reinforced composite material using the same and production thereof
JP2002227067A (en) * 2001-01-29 2002-08-14 Toray Ind Inc Reinforcing multiaxial stitched fabric and preform
JP2003020542A (en) * 2001-07-06 2003-01-24 Toray Ind Inc Carbon fiber fabric, method for molding using the same, carbon fiber-reinforced plastic and aircraft structural member
JP2003082117A (en) * 2001-07-04 2003-03-19 Toray Ind Inc Carbon fiber reinforcement, and preform and composite material prepared therefrom
JP2003080607A (en) * 2001-07-06 2003-03-19 Toray Ind Inc Preform, frp comprising the same and method for manufacturing them

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11107107A (en) * 1997-08-04 1999-04-20 Toray Ind Inc Carbon fiber woven fabric and fiber-reinforced plastic and molding of fiber-reinforced plastic
JP2001064406A (en) * 1999-08-31 2001-03-13 Toray Ind Inc Preform for fiber-reinforced preform and fiber- reinforced composite material using the same and production thereof
JP2002227067A (en) * 2001-01-29 2002-08-14 Toray Ind Inc Reinforcing multiaxial stitched fabric and preform
JP2003082117A (en) * 2001-07-04 2003-03-19 Toray Ind Inc Carbon fiber reinforcement, and preform and composite material prepared therefrom
JP2003020542A (en) * 2001-07-06 2003-01-24 Toray Ind Inc Carbon fiber fabric, method for molding using the same, carbon fiber-reinforced plastic and aircraft structural member
JP2003080607A (en) * 2001-07-06 2003-03-19 Toray Ind Inc Preform, frp comprising the same and method for manufacturing them

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007518608A (en) * 2004-01-26 2007-07-12 サイテク・テクノロジー・コーポレーシヨン Stabilizable preform precursor and stabilized preform for composite materials, and method for stabilizing and reducing bulk of a preform
JP2006104649A (en) * 2004-09-10 2006-04-20 Toray Ind Inc Rod-shaped preform and method for producing the same
JP2006168165A (en) * 2004-12-15 2006-06-29 Toho Tenax Co Ltd Preform base material for frp and preform manufacturing method
JP2007001299A (en) * 2005-05-23 2007-01-11 Toray Ind Inc Rod-shaped preform for filling gap, its manufacturing method, and manufacturing device
JP2007045004A (en) * 2005-08-10 2007-02-22 Sekisui Chem Co Ltd Vacuum injection molding method of fiber reinforced resin molded product
JP2007160587A (en) * 2005-12-12 2007-06-28 Toray Ind Inc Multilayered base material, preform and manufacturing method of preform
JP2007162151A (en) * 2005-12-12 2007-06-28 Toray Ind Inc Biaxial stitch base material and preform
JP4742840B2 (en) * 2005-12-12 2011-08-10 東レ株式会社 Multilayer substrate, preform, and preform manufacturing method
JP2008142935A (en) * 2006-12-06 2008-06-26 Canon Inc Inkjet head cartridge, recording head, ink container, and manufacturing method for inkjet head cartridge
JP2009107337A (en) * 2007-10-16 2009-05-21 General Electric Co <Ge> Substantially cylindrical composite article and fan casing
US9017814B2 (en) 2007-10-16 2015-04-28 General Electric Company Substantially cylindrical composite articles and fan casings
US9695533B2 (en) 2008-12-09 2017-07-04 Hexcel Reinforcements Intermediate material intended to limit the microcracking of composite parts
JP2012511450A (en) * 2008-12-09 2012-05-24 ヘクセル ランフォルセマン A novel intermediate material aimed at limiting microcracks in composite parts
JP2013522486A (en) * 2010-03-18 2013-06-13 トウホウ テナックス ユーロップ ゲゼルシャフト ミット ベシュレンクテル ハフツング Stitched multi-axis fabric
JP2011219889A (en) * 2010-04-08 2011-11-04 Mitsubishi Rayon Co Ltd Fabric woven from reinforced fiber yarn and method for manufacturing the same
JP2012092337A (en) * 2010-10-28 2012-05-17 General Electric Co <Ge> Polyetherimide-stitched reinforcing fabric and composite material including the same
JP2011102461A (en) * 2011-02-16 2011-05-26 Toray Ind Inc Multilayered substrate, preform, and method for producing preform
JP2014083792A (en) * 2012-10-25 2014-05-12 Ihi Corp Cylindrical case and method for manufacturing cylindrical case
JP2014163016A (en) * 2013-02-26 2014-09-08 Mitsubishi Rayon Co Ltd Multi-axis stitched substrate for reinforcement, woven fabric for reinforcement and carbon fiber reinforcement composite material, and method for producing them
JP2014208414A (en) * 2013-04-16 2014-11-06 本田技研工業株式会社 Production method and production apparatus of fiber sheet laminate
JP2016078258A (en) * 2014-10-10 2016-05-16 倉敷紡績株式会社 Fiber sheet for fiber-reinforced resin and molding using the same
JP2018501121A (en) * 2014-11-21 2018-01-18 テープ、ウィービング、スウェーデン、アクチボラグTape Weaving Sweden Ab Tape-like dry fiber reinforcement
US11400689B2 (en) 2014-11-21 2022-08-02 Tape Weaving Sweden Ab Tape-like dry fibrous reinforcement
JP2020517501A (en) * 2017-04-25 2020-06-18 ヘクセル レインフォースメンツ ユーケイ リミテッド Preform with local reinforcement
JP7208158B2 (en) 2017-04-25 2023-01-18 ヘクセル レインフォースメンツ ユーケイ リミテッド Preform with local reinforcement
JP2019217694A (en) * 2018-06-20 2019-12-26 ダイキョーニシカワ株式会社 Method for producing fiber-reinforced resin composite
CN113423563A (en) * 2018-12-19 2021-09-21 科思创知识产权两合公司 Method for preparing polyurethane composite material by vacuum infusion process
WO2023180423A1 (en) * 2022-03-23 2023-09-28 Owens Corning Intellectual Capital, Llc Functionalized fabric

Also Published As

Publication number Publication date
JP4168734B2 (en) 2008-10-22

Similar Documents

Publication Publication Date Title
JP4168734B2 (en) Preform substrate, preform and method for molding fiber reinforced plastic
US10035301B2 (en) Unidirectional reinforcement, a method of producing a reinforcement and the use thereof
CA2635855C (en) Reinforcing fiber base material for preforms, process for the production of laminates thereof, and so on
AU2003262050B2 (en) Reinforcing fiber substrate, composite material and method for producing the same
US8852713B2 (en) Methods and preforms for forming composite members with interlayers formed of nonwoven, continuous materials
EP2874802B1 (en) A unidirectional reinforcement and a method of producing a unidirectional reinforcement
JP5011613B2 (en) Preform and molding method
US9505193B2 (en) Stitched unidirectional or multi-axial reinforcement and a method of producing the same
WO2012067063A1 (en) Structural warp knit sheet and laminate thereof
JP2003020542A (en) Carbon fiber fabric, method for molding using the same, carbon fiber-reinforced plastic and aircraft structural member
CN113573875A (en) Stitched multiaxial reinforcement
JP2018065999A (en) Fiber-reinforced base material, fiber-reinforced laminate and fiber-reinforced resin
JP2006138031A (en) Reinforcing fiber substrate, preform and method for producing them
JP2023050344A (en) Reinforcing fiber base material for resin injection molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080728

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4168734

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees