JP2016210080A - Molding and method for producing the same - Google Patents

Molding and method for producing the same Download PDF

Info

Publication number
JP2016210080A
JP2016210080A JP2015095366A JP2015095366A JP2016210080A JP 2016210080 A JP2016210080 A JP 2016210080A JP 2015095366 A JP2015095366 A JP 2015095366A JP 2015095366 A JP2015095366 A JP 2015095366A JP 2016210080 A JP2016210080 A JP 2016210080A
Authority
JP
Japan
Prior art keywords
resin
fiber
thermoplastic resin
molded body
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015095366A
Other languages
Japanese (ja)
Inventor
章亘 佐々木
Akinobu Sasaki
章亘 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2015095366A priority Critical patent/JP2016210080A/en
Publication of JP2016210080A publication Critical patent/JP2016210080A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve a bond strength between both of a first member formed of a fiber-reinforced resin and a second member formed of a material containing a thermoplastic resin in a molding in which the first member and the second member are bonded to each other.SOLUTION: A method for producing a molding includes: a surface working step of heating a surface of a first member 4 containing a resin 2 and a reinforcing fiber 1 to a melting point of the resin 2 or higher or a glass transition point or higher, and thereby working the surface into an uneven shape; and a bonding step of injection molding a material (D) containing a thermoplastic resin (C) onto the worked surface of which the surface temperature is a melting point of the resin 2 or higher or the glass transition point or higher.SELECTED DRAWING: Figure 2

Description

本発明は繊維強化樹脂からなる部材上に熱可塑性樹脂を含む材料を射出成形して成形体を製造する方法、および該方法で製造された成形体に関する。   The present invention relates to a method of manufacturing a molded body by injection molding a material containing a thermoplastic resin on a member made of fiber reinforced resin, and a molded body manufactured by the method.

強化繊維及び熱可塑性樹脂を含有する繊維強化複合材料は、軽量性や力学特性に優れることから、各種産業用途に幅広く利用されている。繊維強化複合材料を部分的に用いた成形体を製造する方法として、例えば、繊維強化複合材料からなる部材上に熱可塑性樹脂を射出成形して一体化する方法が用いられる。   Fiber reinforced composite materials containing reinforced fibers and thermoplastic resins are widely used in various industrial applications because of their excellent light weight and mechanical properties. As a method for producing a molded body partially using a fiber reinforced composite material, for example, a method in which a thermoplastic resin is injection-molded and integrated on a member made of a fiber reinforced composite material is used.

特許文献1には、繊維強化複合材料からなる部材と、その上に射出成形された部材との接合強度を向上させるために、繊維強化複合材料として、強化繊維からなる不織布の表裏面のうち一方の面は熱可塑性樹脂が含浸されており、他方の面は強化繊維が露出している繊維強化樹脂シートを用いて成形体を製造する方法が記載されている。
この方法では、まず、強化繊維からなる不織布と第1の熱可塑性樹脂からなる樹脂シートを、樹脂シート/不織布/樹脂シート/不織布/樹脂シート/不織布/不織布の順で積層させ、加熱加圧した後に冷却することにより、一方の面で強化繊維が露出している積層一体化物(繊維強化樹脂シート)を製造する。次いで、該繊維強化樹脂シートを金型内に配置し、繊維が露出している面上に第2の熱可塑性樹脂を射出成形して、繊維強化樹脂シートの成形物と第2の熱可塑性樹脂の成形物とが一体化された成形体を得る。
この方法によれば、繊維強化樹脂シートの一面で露出していた繊維に第2の熱可塑性樹脂が含浸した状態で固化するため、繊維によるアンカリング効果が得られ、両者の成形物の接合強度が向上する旨が記載されている。
In Patent Document 1, in order to improve the bonding strength between a member made of a fiber reinforced composite material and a member injection-molded thereon, one of the front and back surfaces of a nonwoven fabric made of reinforced fibers is used as the fiber reinforced composite material. A method of manufacturing a molded body using a fiber reinforced resin sheet in which the surface is impregnated with a thermoplastic resin and the reinforcing fiber is exposed on the other surface is described.
In this method, first, a nonwoven fabric composed of reinforcing fibers and a resin sheet composed of a first thermoplastic resin were laminated in the order of resin sheet / nonwoven fabric / resin sheet / nonwoven fabric / resin sheet / nonwoven fabric / nonwoven fabric and heated and pressurized. By cooling later, a laminated integrated product (fiber reinforced resin sheet) in which the reinforcing fibers are exposed on one surface is produced. Next, the fiber reinforced resin sheet is placed in a mold, a second thermoplastic resin is injection-molded on the surface where the fiber is exposed, and a molded product of the fiber reinforced resin sheet and the second thermoplastic resin are molded. To obtain a molded product integrated with the molded product.
According to this method, since the fiber exposed on one surface of the fiber reinforced resin sheet is solidified in the state impregnated with the second thermoplastic resin, an anchoring effect by the fiber is obtained, and the joint strength between the two molded products is obtained. Is stated to improve.

特開2014−172201号公報JP 2014-172201 A

しかし、特許文献1に記載の方法で得られた成形体においても、繊維強化樹脂シートの成形物と、第2の熱可塑性樹脂の成形物との接合強度が充分であるとは言えず、両者の接合強度をさらに向上させることが望まれる。
本発明は、繊維強化樹脂からなる第1の部材と、熱可塑性樹脂を含む材料からなる第2の部材とが接合された成形体における、両部材の接合強度を向上できる成形体の製造方法、および該方法で製造された成形体を提供する。
However, even in the molded article obtained by the method described in Patent Document 1, it cannot be said that the bonding strength between the molded article of the fiber reinforced resin sheet and the molded article of the second thermoplastic resin is sufficient. It is desired to further improve the bonding strength.
The present invention provides a method for producing a molded body capable of improving the bonding strength of both members in a molded body in which a first member made of a fiber reinforced resin and a second member made of a material containing a thermoplastic resin are joined, And a molded article produced by the method.

本発明は、以下の構成を有する。
[1] 樹脂(A)と強化繊維(B)を含有する第1の部材と、熱可塑性樹脂(C)を含む材料(D)からなる第2の部材とが接合された成形体を製造する方法であって、樹脂(A)と強化繊維(B)を含有する第1の部材の表面を、樹脂(A)の融点以上又はガラス転移点以上に加熱することにより、該表面を凹凸状に加工する又は該表面において強化繊維(B)を露出させる加工を行う表面加工工程と、表面温度が樹脂(A)の融点以上又はガラス転移点以上の、前記加工された面上に、熱可塑性樹脂(C)を含む材料(D)を射出成形する接合工程を有する、成形体の製造方法。
The present invention has the following configuration.
[1] A molded body in which a first member containing a resin (A) and a reinforcing fiber (B) and a second member made of a material (D) containing a thermoplastic resin (C) are joined is manufactured. It is a method, Comprising: The surface of the 1st member containing resin (A) and a reinforced fiber (B) is heated more than melting | fusing point or glass transition point of resin (A), and this surface is made uneven | corrugated. A surface processing step of processing or performing processing of exposing the reinforcing fibers (B) on the surface; and a thermoplastic resin on the processed surface having a surface temperature equal to or higher than a melting point of the resin (A) or a glass transition point The manufacturing method of a molded object which has a joining process which injection-molds the material (D) containing (C).

[2] 樹脂(A)と強化繊維(B)を含有する第1の部材と、熱可塑性樹脂(C)を含む材料(D)からなる第2の部材とが接合された成形体を製造する方法であって、樹脂(A)と強化繊維(B)を含有する第1の部材の表面を、樹脂(A)の分解温度以上に加熱することにより、該表面を凹凸状に加工する又は該表面において強化繊維(B)を露出させる加工を行う表面加工工程と、表面温度が樹脂(A)の融点以上又はガラス転移点以上の、前記加工された面上に、熱可塑性樹脂(C)を含む材料(D)を射出成形する接合工程を有する、成形体の製造方法。   [2] A molded body in which the first member containing the resin (A) and the reinforcing fiber (B) and the second member made of the material (D) containing the thermoplastic resin (C) are joined is manufactured. It is a method, and the surface of the first member containing the resin (A) and the reinforcing fiber (B) is heated to a temperature equal to or higher than the decomposition temperature of the resin (A), so that the surface is processed into an uneven shape, or A thermoplastic resin (C) is formed on the processed surface having a surface processing step for exposing the reinforcing fibers (B) on the surface and having a surface temperature equal to or higher than the melting point of the resin (A) or the glass transition point. The manufacturing method of a molded object which has the joining process of injection-molding the material (D) containing.

[3] 前記表面加工工程において、前記第1の部材の表面を赤外線ヒーターで加熱する、[1]または[2]に記載の成形体の製造方法。
[4] 前記表面加工工程において、前記第1の部材の表面にレーザ光を照射する、[1]または[2]に記載の成形体の製造方法。
[5] 前記熱可塑性樹脂(C)を含む材料(D)が、さらに強化繊維を含む、[1]〜[4]の何れか一項に記載の成形体の製造方法。
[6] [1]〜[5]の何れか一項に記載の成形体の製造方法で製造され、第1の部材の表面における最大高さが1〜45μmである成形体。
[3] The method for producing a molded body according to [1] or [2], wherein, in the surface processing step, the surface of the first member is heated with an infrared heater.
[4] The method for manufacturing a molded body according to [1] or [2], wherein, in the surface processing step, the surface of the first member is irradiated with a laser beam.
[5] The method for producing a molded body according to any one of [1] to [4], wherein the material (D) containing the thermoplastic resin (C) further contains reinforcing fibers.
[6] A molded body produced by the method for producing a molded body according to any one of [1] to [5], wherein the maximum height on the surface of the first member is 1 to 45 μm.

本発明の成形体の製造方法によれば、樹脂(A)と強化繊維(B)を含有する第1の部材と、熱可塑性樹脂(C)を含む材料(D)からなる第2の部材とを接合した成形体における、第1の部材と第2の部材との接合強度を向上できる。
本発明によれば、樹脂(A)と強化繊維(B)を含有する第1の部材と、熱可塑性樹脂(C)を含む材料(D)からなる第2の部材とが、高い接合強度で接合された成形体が得られる。
According to the method for producing a molded article of the present invention, a first member containing a resin (A) and a reinforcing fiber (B), and a second member made of a material (D) containing a thermoplastic resin (C); It is possible to improve the bonding strength between the first member and the second member in the molded body in which is bonded.
According to the present invention, the first member containing the resin (A) and the reinforcing fiber (B) and the second member made of the material (D) containing the thermoplastic resin (C) have high bonding strength. A joined molded body is obtained.

表面加工工程前の第1の部材の例を模式的に示す断面図である。It is sectional drawing which shows typically the example of the 1st member before a surface processing process. 表面加工工程後の第1の部材の例を模式的に示す断面図である。It is sectional drawing which shows typically the example of the 1st member after a surface processing process. 表面加工工程後の第1の部材の例を模式的に示す断面図である。It is sectional drawing which shows typically the example of the 1st member after a surface processing process. 表面加工工程後の第1の部材の例を模式的に示す断面図である。It is sectional drawing which shows typically the example of the 1st member after a surface processing process. 表面加工工程前の第1の部材の例を模式的に示す断面図である。It is sectional drawing which shows typically the example of the 1st member before a surface processing process. 表面加工工程後の第1の部材の例を模式的に示す断面図である。It is sectional drawing which shows typically the example of the 1st member after a surface processing process. 表面加工工程後の第1の部材の例を模式的に示す断面図である。It is sectional drawing which shows typically the example of the 1st member after a surface processing process. 試験例における表面加工工程を説明するための概略図である。It is the schematic for demonstrating the surface processing process in a test example. 試験例における接合工程を説明するための概略図である。It is the schematic for demonstrating the joining process in a test example. 実施例における表面加工工程を説明するための概略図である。It is the schematic for demonstrating the surface processing process in an Example. 実施例における接合工程を説明するための概略図である。It is the schematic for demonstrating the joining process in an Example. 実施例で得られた成形体の斜視図である。It is a perspective view of the molded object obtained in the Example. 実施例における表面加工工程を説明するための概略図である。It is the schematic for demonstrating the surface processing process in an Example.

<第1の部材>
第1の部材は樹脂(A)と強化繊維(B)を含有する繊維強化樹脂からなる。例えば、強化繊維(B)からなる基材に樹脂(A)が含浸されたプリプレグ、該プリプレグが複数枚積層されたプリプレグ積層体、またはこれらを成形した部材が挙げられる。また不連続繊維を樹脂中に混練分散したペレットを用いて成形した部材でもよい。
<First member>
A 1st member consists of fiber reinforced resin containing resin (A) and a reinforced fiber (B). Examples thereof include a prepreg obtained by impregnating a resin (A) on a base material composed of reinforcing fibers (B), a prepreg laminate in which a plurality of prepregs are laminated, or a member obtained by molding these. Moreover, the member shape | molded using the pellet which knead-dispersed discontinuous fiber in resin may be sufficient.

強化繊維(B)の種類は、特に限定されず、例えば、無機繊維、有機繊維、金属繊維、又はこれらを組み合わせたハイブリッド構成の強化繊維が使用できる。
無機繊維としては、炭素繊維、黒鉛繊維、炭化珪素繊維、アルミナ繊維、タングステンカーバイド繊維、ボロン繊維、ガラス繊維等が挙げられる。有機繊維としては、アラミド繊維、高密度ポリエチレン繊維、その他一般のナイロン繊維、ポリエステル繊維等が挙げられる。金属繊維としては、ステンレス、鉄等の繊維が挙げられ、また金属を被覆した炭素繊維でもよい。これらの中では、成形体の強度等の機械物性を考慮すると、炭素繊維が好ましい。
The type of the reinforcing fiber (B) is not particularly limited, and for example, reinforcing fibers having inorganic fibers, organic fibers, metal fibers, or a hybrid structure in which these are combined can be used.
Examples of the inorganic fiber include carbon fiber, graphite fiber, silicon carbide fiber, alumina fiber, tungsten carbide fiber, boron fiber, and glass fiber. Examples of the organic fibers include aramid fibers, high density polyethylene fibers, other general nylon fibers, and polyester fibers. Examples of metal fibers include fibers such as stainless steel and iron, and carbon fibers coated with metal may be used. Of these, carbon fibers are preferred in view of mechanical properties such as strength of the molded body.

強化繊維(B)の平均繊維直径は、1μm以上であることが好ましく、5μm以上であることがさらに好ましい。強化繊維(B)の平均繊維直径が1μm以上であると強化繊維(B)の取り扱い性が向上し、樹脂の含浸性が向上するので好ましい。強化繊維(B)の平均繊維直径の上限は特に限定されないが、製造容易性またはコストの点で50μm以下が好ましく、30μm以下がより好ましく、20μm以下がさらに好ましい。
強化繊維(B)は、連続繊維であってもよく、不連続繊維であってもよい。
連続繊維を使用すると得られる成形品の剛性や強度といった機械的物性に優れる。
一方、不連続繊維は繊維強化樹脂の良好な流動性が得られやすく、賦型性に優れる。強化繊維(B)が不連続繊維の場合、第1の部材中の不連続繊維は束の形状を保ったままでもよく、モノフィラメント状態でもよく、束とモノフィラメントの両方が混在していてもよい。
The average fiber diameter of the reinforcing fibers (B) is preferably 1 μm or more, and more preferably 5 μm or more. It is preferable that the average fiber diameter of the reinforcing fibers (B) is 1 μm or more because the handling properties of the reinforcing fibers (B) are improved and the impregnation property of the resin is improved. The upper limit of the average fiber diameter of the reinforcing fibers (B) is not particularly limited, but is preferably 50 μm or less, more preferably 30 μm or less, and even more preferably 20 μm or less in terms of manufacturability or cost.
The reinforcing fiber (B) may be a continuous fiber or a discontinuous fiber.
Excellent mechanical properties such as rigidity and strength of the molded product obtained by using continuous fibers.
On the other hand, discontinuous fibers are easy to obtain good fluidity of the fiber reinforced resin, and are excellent in formability. When the reinforcing fiber (B) is a discontinuous fiber, the discontinuous fiber in the first member may keep the shape of the bundle, may be in a monofilament state, or both the bundle and the monofilament may be mixed.

強化繊維(B)である連続繊維からなる基材の形態としては、多数の連続繊維を一方向に揃えてUDシート(一方向シート)とする形態、または連続繊維を製織してクロス材(織物)とする形態が好ましい。クロス材の織り方としては、例えば、平織、綾織、朱子織、三軸織等が挙げられる。
UDシート(一方向シート)は1層で使用してもよく、多層に積層してもよい。積層する場合には、各層の強化繊維の方向が同じであってもよく、任意の角度で積層してもよい。例えば、強化繊維の方向が0°及び90°となるように交互に積層した交互直交積層が挙げられる。
As a form of the substrate composed of continuous fibers which are the reinforcing fibers (B), a form in which a large number of continuous fibers are aligned in one direction to form a UD sheet (unidirectional sheet), or a cloth material by weaving continuous fibers (woven fabric) ) Is preferred. Examples of the cloth weaving method include plain weave, twill weave, satin weave, and triaxial weave.
The UD sheet (unidirectional sheet) may be used as a single layer or may be laminated in multiple layers. When laminating, the directions of the reinforcing fibers in each layer may be the same or may be laminated at an arbitrary angle. For example, the alternating orthogonal lamination which laminated | stacked alternately so that the direction of a reinforced fiber might be 0 degree and 90 degrees is mentioned.

強化繊維(B)である不連続繊維からなる基材の形態として、後述の接合工程で射出される材料(D)とのアンカリング構造が形成されやすく、第1の部材と第2の部材との強固な接合が得られやすい点で、チョップされた強化繊維束が分散してなる強化繊維ウエブが好ましい。かかる強化繊維ウエブを製造する方法として、チョップされた強化繊維束を液体中で分散する方法、気相中で分散する方法、またはカーディングやニードルパンチ等の機械を用いる方法が例示される。
強化繊維束を液体中で分散する方法においては、液体中(水など)にチョップされた繊維束を供給し、繊維束をほぐしながら分散させ、スラリー化する。その後、脱水、乾燥することで強化繊維ウエブを得る。必要に応じて、分散させる液体にバインダー樹脂や界面活性剤を含有させてもよい。バインダー樹脂や界面活性剤を使用することで強化繊維ウエブの取り扱い性を向上させることができる。
強化繊維束を気相中で分散する方法においては、チョップされた強化繊維束に空気や窒素などの気体を吹き付ける方法が例示される。
As a form of a base material composed of discontinuous fibers which are reinforcing fibers (B), an anchoring structure with a material (D) injected in a joining step described later is easily formed, and the first member and the second member A reinforcing fiber web in which chopped reinforcing fiber bundles are dispersed is preferable in that it is easy to obtain a strong joint. Examples of a method for producing such a reinforcing fiber web include a method of dispersing a chopped reinforcing fiber bundle in a liquid, a method of dispersing in a gas phase, or a method using a machine such as carding or needle punch.
In the method of dispersing the reinforcing fiber bundle in the liquid, the fiber bundle chopped in the liquid (water or the like) is supplied, dispersed while loosening the fiber bundle, and slurried. Thereafter, the reinforcing fiber web is obtained by dehydration and drying. If necessary, the liquid to be dispersed may contain a binder resin or a surfactant. By using a binder resin or a surfactant, the handleability of the reinforcing fiber web can be improved.
Examples of the method of dispersing the reinforcing fiber bundle in the gas phase include a method of blowing a gas such as air or nitrogen to the chopped reinforcing fiber bundle.

または、強化繊維(B)である不連続繊維からなる基材の形態として、モノフィラメントが分散してなる不織布が好ましい。
第1の部材中に不連続繊維がモノフィラメント状態で分散していると、前述の強化繊維ウエブの場合以上に、後述の接合工程で射出される材料(D)とのアンカリング構造が形成されやすくなり、第1の部材と第2の部材との強固な接合が得られやすい点で好ましい。
Or the nonwoven fabric in which a monofilament is disperse | distributed is preferable as a form of the base material which consists of a discontinuous fiber which is a reinforced fiber (B).
When discontinuous fibers are dispersed in a monofilament state in the first member, an anchoring structure with the material (D) injected in the joining process described later is more easily formed than in the case of the above-described reinforcing fiber web. Therefore, it is preferable in that a strong joint between the first member and the second member is easily obtained.

強化繊維(B)である不連続繊維の重量平均繊維長は、1mm以上であることが好ましい。強化繊維の重量平均繊維長が1mm以上であると、第1の部材または第1の部材を備えた成形体における強度や剛性の向上効果が充分に得られる。強化繊維(B)の重量平均繊維長の上限は、金型内での流動性や金型追従性の点で100mm以下が好ましい。
該不連続繊維の重量平均繊維長は2〜80mmがより好ましく、3〜60mmさらに好ましい。
The weight average fiber length of the discontinuous fibers that are the reinforcing fibers (B) is preferably 1 mm or more. When the weight average fiber length of the reinforcing fibers is 1 mm or more, the effect of improving the strength and rigidity of the first member or the molded body provided with the first member is sufficiently obtained. The upper limit of the weight average fiber length of the reinforcing fiber (B) is preferably 100 mm or less in terms of fluidity in the mold and mold followability.
The discontinuous fiber has a weight average fiber length of more preferably 2 to 80 mm, further preferably 3 to 60 mm.

樹脂(A)は熱可塑性樹脂であってもよいし、熱硬化性樹脂であってもよい。
樹脂(A)である熱可塑性樹脂としては、ポリアミド樹脂(ナイロン6、ナイロン66、芳香族ナイロン等)、ポリオレフィン樹脂(ポリエチレン、ポリプロピレン等)、変性ポリオレフィン樹脂(変性ポリプロピレン樹脂等)、ポリエステル樹脂(ポリエチレンテレフタレート、ポリブチレンテレフタレート等)、ポリカーボネート樹脂、ポリアミドイミド樹脂、ポリフェニレンオキシド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリエーテルケトン樹脂、ポリエーテルイミド樹脂、ポリスチレン樹脂、ABS樹脂、ポリフェニレンスルフィド樹脂、液晶ポリエステル樹脂や、アクリロニトリルとスチレンの共重合体、ナイロン6とナイロン66の共重合体等が挙げられる。
変性ポリオレフィン樹脂としては、例えば、マレイン酸等の酸によりポリオレフィン樹脂を変性した酸変性ポリオレフィン樹脂(酸変性ポリプロピレン樹脂等)等が挙げられる。
樹脂(A)としては、1種を単独で使用してもよく、2種以上を併用してもよい。
特に成形加工性の点で、ポリプロピレン樹脂、酸変性ポリプロピレン樹脂、ポリアミド樹脂、およびポリエステル樹脂からなる群から選ばれる1種以上を含むことが好ましい。また、機械的物性や耐熱性の点で、ポリフェニレンスルフィド樹脂、ポリカーボネート樹脂、ポリエーテルケトン樹脂、およびポリエーテルイミド樹脂からなる群から選ばれる1種以上を含むことが好ましい。
The resin (A) may be a thermoplastic resin or a thermosetting resin.
Examples of the thermoplastic resin that is the resin (A) include polyamide resins (nylon 6, nylon 66, aromatic nylon, etc.), polyolefin resins (polyethylene, polypropylene, etc.), modified polyolefin resins (modified polypropylene resin, etc.), polyester resins (polyethylene). Terephthalate, polybutylene terephthalate, etc.), polycarbonate resin, polyamideimide resin, polyphenylene oxide resin, polysulfone resin, polyethersulfone resin, polyetherketone resin, polyetherimide resin, polystyrene resin, ABS resin, polyphenylene sulfide resin, liquid crystal polyester resin And a copolymer of acrylonitrile and styrene, a copolymer of nylon 6 and nylon 66, and the like.
Examples of the modified polyolefin resin include acid-modified polyolefin resins (acid-modified polypropylene resins and the like) obtained by modifying a polyolefin resin with an acid such as maleic acid.
As resin (A), 1 type may be used independently and 2 or more types may be used together.
In particular, in terms of moldability, it is preferable to include one or more selected from the group consisting of polypropylene resins, acid-modified polypropylene resins, polyamide resins, and polyester resins. Moreover, it is preferable that 1 or more types chosen from the group which consists of a polyphenylene sulfide resin, a polycarbonate resin, a polyether ketone resin, and a polyetherimide resin is included at the point of mechanical physical property and heat resistance.

樹脂(A)が熱硬化性樹脂である場合、エポキシ樹脂、ビニルエステル樹脂、および不飽和ポリエステル樹脂からなる群から選ばれる1種以上を含むことが好ましい。   When the resin (A) is a thermosetting resin, it preferably contains one or more selected from the group consisting of epoxy resins, vinyl ester resins, and unsaturated polyester resins.

第1の部材は、目的の成形体の要求特性に応じて、難燃剤、耐候性改良剤、酸化防止剤、熱安定剤、紫外線吸収剤、可塑剤、滑剤、着色剤、相溶化剤、導電性フィラー等の添加剤を含有してもよい。
第1の部材の繊維体積含有率(Vf)は5〜60%が好ましく、10〜55%がより好ましく、15〜50%がさらに好ましい。上記範囲の下限値以上であると第1の部材の強度や剛性が高く、上限値以下であると強化繊維(B)への樹脂(A)の含浸性が良好である。
本明細書において、繊維体積含有率(Vf)は、JIS K7075に準拠する測定方法で得られる値である。
The first member is a flame retardant, weather resistance improver, antioxidant, thermal stabilizer, ultraviolet absorber, plasticizer, lubricant, colorant, compatibilizer, conductive, depending on the required properties of the desired molded article. You may contain additives, such as a property filler.
The fiber volume content (Vf) of the first member is preferably 5 to 60%, more preferably 10 to 55%, and still more preferably 15 to 50%. The strength and rigidity of the first member are high when it is at least the lower limit of the above range, and the impregnation property of the resin (A) to the reinforcing fibers (B) is good when it is at most the upper limit.
In the present specification, the fiber volume content (Vf) is a value obtained by a measurement method based on JIS K7075.

<第2の部材>
第2の部材は熱可塑性樹脂(C)を含む材料(D)からなる。
熱可塑性樹脂(C)としては、特に限定されず、例えば、樹脂(A)である熱可塑性樹脂と同じものが挙げられる。熱可塑性樹脂(C)としては、1種を単独で使用してもよく、2種以上を併用してもよい。
特に成形加工性の点で、ポリプロピレン樹脂、酸変性ポリプロピレン樹脂、ポリアミド樹脂、およびポリエステル樹脂からなる群から選ばれる1種以上を含むことが好ましい。また、機械的物性や耐熱性の点で、ポリフェニレンスルフィド樹脂、ポリカーボネート樹脂、ポリエーテルケトン樹脂、およびポリエーテルイミド樹脂からなる群から選ばれる1種以上を含むことが好ましい。
互いに接合される第1の部材の樹脂(A)と第2の部材の熱可塑性樹脂(C)とが同じ種類の樹脂であると、両部材の接合強度が高くなりやすい点で好ましい。
<Second member>
The second member is made of a material (D) containing a thermoplastic resin (C).
It does not specifically limit as a thermoplastic resin (C), For example, the same thing as the thermoplastic resin which is resin (A) is mentioned. As a thermoplastic resin (C), 1 type may be used independently and 2 or more types may be used together.
In particular, in terms of moldability, it is preferable to include one or more selected from the group consisting of polypropylene resins, acid-modified polypropylene resins, polyamide resins, and polyester resins. Moreover, it is preferable that 1 or more types chosen from the group which consists of a polyphenylene sulfide resin, a polycarbonate resin, a polyether ketone resin, and a polyetherimide resin is included at the point of mechanical physical property and heat resistance.
It is preferable that the resin (A) of the first member and the thermoplastic resin (C) of the second member to be bonded to each other are the same type of resin, because the bonding strength between both members tends to be high.

材料(D)は強化繊維を含んでもよい。材料(D)に強化繊維を含有させると、第2の部材の剛性、強度といった機械的物性が向上するため、第1の部材と第2の部材が接合された成形体の物性も向上させることができる。材料(D)に含有させる強化繊維の種類は、上記強化繊維(B)と、好ましい態様も含めて同様である。
射出前の材料(D)に含有させる強化繊維の平均繊維直径および繊維長は、材料(D)を射出成形できる範囲で設定できる。
射出前の材料(D)中の強化繊維の重量平均繊維長は、機械的物性の向上効果が充分に得られやすい点で1mm以上が好ましく、1.3mm以上がより好ましく、1.5mm以上がさらに好ましい。上限は材料(D)の流動性や金型追従性の点で25mm以下が好ましく、20mm以下がより好ましく、15mm以下がさらに好ましい。
材料(D)を射出成形することで、含まれる強化繊維の長さは短くなる。機械的物性向上の効果が十分得られやすい点で、第2の部材における重量平均繊維長は0.1mm以上が好ましく、0.2mm以上がより好ましく、0.3mm以上がさらに好ましい。上限は材料(D)中の強化繊維の分散性の点で15mm以下が好ましく、10mm以下がより好ましく、5mm以下がさらに好ましい。
材料(D)中の強化繊維の平均繊維直径は、射出後の残存繊維長が長くなりやすい点から1μm以上が好ましく、3μm以上がより好ましく、5μm以上がさらに好ましい。上限は射出成形性の点から50μm以下が好ましく、30μm以下がより好ましく、20μm以下がさらに好ましい。
材料(D)は、目的の成形体の要求特性に応じて、難燃剤、耐候性改良剤、酸化防止剤、熱安定剤、紫外線吸収剤、可塑剤、滑剤、着色剤、相溶化剤、導電性フィラー等の添加剤を含有してもよい。
第2の部材が強化繊維を含む場合の繊維体積含有率(Vf)は5〜60%が好ましく、10〜55%がより好ましく、15〜50%がさらに好ましい。上記範囲の下限値以上であると材料(D)の強度や剛性が高く、上限値以下であると材料(D)中での強化繊維の分散性が良好である。
Material (D) may contain reinforcing fibers. When the reinforcing fiber is contained in the material (D), the mechanical properties such as rigidity and strength of the second member are improved, and thus the physical properties of the molded body in which the first member and the second member are joined are also improved. Can do. The kind of the reinforcing fiber to be contained in the material (D) is the same as that of the reinforcing fiber (B) and the preferred embodiment.
The average fiber diameter and fiber length of the reinforcing fibers contained in the material (D) before injection can be set within a range where the material (D) can be injection molded.
The weight average fiber length of the reinforcing fibers in the material (D) before injection is preferably 1 mm or more, more preferably 1.3 mm or more, and more preferably 1.5 mm or more in that the effect of improving mechanical properties can be sufficiently obtained. Further preferred. The upper limit is preferably 25 mm or less, more preferably 20 mm or less, and even more preferably 15 mm or less in terms of fluidity of the material (D) and mold followability.
By injection-molding the material (D), the length of the reinforcing fibers included is shortened. The weight average fiber length in the second member is preferably 0.1 mm or more, more preferably 0.2 mm or more, and further preferably 0.3 mm or more in that the effect of improving the mechanical properties can be sufficiently obtained. The upper limit is preferably 15 mm or less, more preferably 10 mm or less, and even more preferably 5 mm or less from the viewpoint of dispersibility of the reinforcing fibers in the material (D).
The average fiber diameter of the reinforcing fibers in the material (D) is preferably 1 μm or more, more preferably 3 μm or more, and even more preferably 5 μm or more from the viewpoint that the remaining fiber length after injection tends to be long. The upper limit is preferably 50 μm or less, more preferably 30 μm or less, and even more preferably 20 μm or less from the viewpoint of injection moldability.
Material (D) is a flame retardant, a weather resistance improver, an antioxidant, a heat stabilizer, an ultraviolet absorber, a plasticizer, a lubricant, a colorant, a compatibilizer, a conductive material, depending on the required properties of the target molded article. You may contain additives, such as a property filler.
The fiber volume content (Vf) when the second member includes reinforcing fibers is preferably 5 to 60%, more preferably 10 to 55%, and still more preferably 15 to 50%. When it is at least the lower limit of the above range, the strength and rigidity of the material (D) are high, and when it is at most the upper limit, the dispersibility of the reinforcing fibers in the material (D) is good.

<成形体の製造方法>
本発明の成形体の製造方法は、第1の部材の表面を加熱して凹凸状に加工する又は該表面において強化繊維(B)を露出させる加工を行う表面加工工程と、該加工された面上に、熱可塑性樹脂(C)を含む材料(D)を射出成形する接合工程を有する。
<Method for producing molded body>
The method for producing a molded body of the present invention includes a surface processing step of heating the surface of the first member to process it into irregularities, or performing processing to expose the reinforcing fibers (B) on the surface, and the processed surface There is a joining step of injection molding the material (D) containing the thermoplastic resin (C).

[表面加工工程]
(第1の態様)
表面加工工程の第1の態様では、第1の部材の表面を、樹脂(A)の融点以上又はガラス転移点以上に加熱する。
加熱手段は特に限定されないが、赤外線ヒーター、プレートヒーター、熱風ヒーター、通電加熱装置、レーザー照射装置等が例示される。これらの中でも、赤外線ヒーターまたはレーザー照射装置が好ましい。
赤外線ヒーターは非接触で均一に加熱できる点で好ましい。赤外線ヒーターの種類として、加熱の均一性を重視する場合には遠赤外線ヒーターが好ましく、短時間加熱を重視する場合には近赤外線ヒーターが好ましい。
レーザ光の照射は局所的に加熱できる点で好ましい。レーザ光の種類としてとしては、炭酸ガスレーザーやエキシマレーザーなどの気体レーザー、YAGレーザーやYVOレーザーなどの固体レーザー及びファイバーレーザーなどが使用できる。
[Surface machining process]
(First aspect)
In the first aspect of the surface processing step, the surface of the first member is heated to the melting point of the resin (A) or higher or the glass transition point or higher.
The heating means is not particularly limited, and examples include an infrared heater, a plate heater, a hot air heater, an energizing heating device, and a laser irradiation device. Among these, an infrared heater or a laser irradiation apparatus is preferable.
An infrared heater is preferable in that it can be heated uniformly without contact. As the type of infrared heater, a far infrared heater is preferable when importance is attached to heating uniformity, and a near infrared heater is preferable when importance is placed on short time heating.
Laser light irradiation is preferable in that it can be locally heated. As the type of laser light, a gas laser such as a carbon dioxide laser or an excimer laser, a solid laser such as a YAG laser or a YVO 4 laser, and a fiber laser can be used.

第1の部材の表面を加熱する際の加熱温度は、加熱された領域の表面温度が、樹脂(A)の融点(Tm℃)以上となるように設定する。該表面温度は、第1の部材の表面を加工しやすい点で、Tm+10℃以上が好ましく、Tm+20℃以上がより好ましい。
樹脂(A)が融点を有さない場合の加熱温度は、加熱された領域の表面温度が、樹脂(A)のガラス転移温度(Tg℃)以上となるように設定する。該表面温度は、第1の部材の表面を加工しやすい点で、Tg+10℃以上が好ましく、Tg+20℃以上がより好ましい。
本態様において、第1の部材の加熱された領域の表面温度の上限は、樹脂(A)の分解温度未満である。
本明細書における融点、ガラス転移温度、分解温度は、JIS K7121に準拠した示差走査熱量測定(DSC)法により測定される値を意味する。
The heating temperature for heating the surface of the first member is set so that the surface temperature of the heated region is equal to or higher than the melting point (Tm ° C.) of the resin (A). The surface temperature is preferably Tm + 10 ° C. or higher, and more preferably Tm + 20 ° C. or higher in that the surface of the first member can be easily processed.
The heating temperature when the resin (A) does not have a melting point is set so that the surface temperature of the heated region is equal to or higher than the glass transition temperature (Tg ° C.) of the resin (A). The surface temperature is preferably Tg + 10 ° C. or higher, more preferably Tg + 20 ° C. or higher, in that the surface of the first member can be easily processed.
In this aspect, the upper limit of the surface temperature of the heated region of the first member is lower than the decomposition temperature of the resin (A).
The melting point, glass transition temperature, and decomposition temperature in the present specification mean values measured by a differential scanning calorimetry (DSC) method based on JIS K7121.

(第2の態様)
表面加工工程の第2の態様では、第1の部材の表面を、樹脂(A)の分解温度以上に加熱する。
加熱手段としてはレーザー照射装置、赤外線ヒーターが好ましい。微細な領域の加熱の点でレーザー照射装置が好ましい。レーザ光の種類としてとしては、炭酸ガスレーザーやエキシマレーザーなどの気体レーザー、YAGレーザーやYVOレーザーなどの固体レーザー及びファイバーレーザーなどが使用できる。
本態様において、第1の部材の表面の加熱された領域の表面温度は樹脂(A)の分解温度以上であり、強化繊維(B)の分解温度以上であってもよい。該表面温度の上限は、樹脂(A)の分解温度または強化繊維(B)の分解温度のいずれか高い方の温度をTd℃とすると、Td+200℃以下が好ましく、Td+100℃以下がより好ましい。
本態様は、第1の態様よりも短時間で第1の部材の表面を加工することができ、特に強化繊維(B)を露出させるのに適している。
(Second aspect)
In the second aspect of the surface processing step, the surface of the first member is heated to a temperature equal to or higher than the decomposition temperature of the resin (A).
As a heating means, a laser irradiation apparatus and an infrared heater are preferable. A laser irradiation apparatus is preferable in terms of heating a fine region. As the type of laser light, a gas laser such as a carbon dioxide laser or an excimer laser, a solid laser such as a YAG laser or a YVO 4 laser, and a fiber laser can be used.
In this aspect, the surface temperature of the heated region of the surface of the first member is not less than the decomposition temperature of the resin (A) and may be not less than the decomposition temperature of the reinforcing fiber (B). The upper limit of the surface temperature is preferably Td + 200 ° C. or less, and more preferably Td + 100 ° C. or less, where Td ° C. is the higher of the decomposition temperature of the resin (A) or the decomposition temperature of the reinforcing fiber (B).
This aspect can process the surface of the first member in a shorter time than the first aspect, and is particularly suitable for exposing the reinforcing fibers (B).

(第1の態様および第2の態様共通)
表面加工工程において加熱される前の第1の部材は、目的の形状に予め成形されたものでもよく、成形前のものでもよい。
樹脂(A)が熱硬化性樹脂である場合、樹脂(A)は加熱される時点で既に硬化していてもよいし、半硬化であってもよいし、未硬化であってもよい。
(Common to the first and second aspects)
The first member before being heated in the surface processing step may be pre-shaped into a target shape or may be pre-shaped.
When the resin (A) is a thermosetting resin, the resin (A) may be already cured when heated, may be semi-cured, or may be uncured.

第1の部材の表面を加熱する際の加熱時間は、例えば図2、4、6に示されるように、第1の部材の表面に凸凹形状が形成されるように、または例えば図3、7に示されるように、第1の部材の表面において強化繊維(B)が露出されるように設定される。
図1〜4は、連続繊維である強化繊維1を一方向にそろえた強化繊維シートに、樹脂2を含浸させた第1の部材の、繊維方向に垂直な断面を模式的に示した断面図である。
図1は表面加工工程で加熱される前の第1の部材3を示し、図2は、表面に凹凸形状が形成されるように加熱された第1の部材4を示し、図3は表面において強化繊維1が露出するまで加熱された第1の部材5を示す。図4は、表面にレーザ光を照射することにより規則的な凹凸形状が形成された第1の部材6を示す。
図5〜7は、不連続繊維である強化繊維11が樹脂12中に分散している第1の部材の断面図である。
図5は表面加工工程で加熱される前の第1の部材7を示し、図6は、表面に凹凸形状が形成されるように加熱された第1の部材8を示し、図7は表面において強化繊維11が露出するまで加熱された第1の部材9を示す。
The heating time for heating the surface of the first member is such that an uneven shape is formed on the surface of the first member, as shown in FIGS. As shown in FIG. 2, the reinforcing fiber (B) is set to be exposed on the surface of the first member.
1 to 4 are cross-sectional views schematically showing a cross section perpendicular to the fiber direction of a first member obtained by impregnating a resin 2 with a reinforcing fiber sheet in which reinforcing fibers 1 that are continuous fibers are aligned in one direction. It is.
FIG. 1 shows the first member 3 before being heated in the surface processing step, FIG. 2 shows the first member 4 heated so that an uneven shape is formed on the surface, and FIG. The 1st member 5 heated until the reinforced fiber 1 was exposed is shown. FIG. 4 shows the first member 6 in which a regular uneven shape is formed by irradiating the surface with laser light.
5 to 7 are cross-sectional views of the first member in which the reinforcing fibers 11 that are discontinuous fibers are dispersed in the resin 12.
FIG. 5 shows the first member 7 before being heated in the surface processing step, FIG. 6 shows the first member 8 heated so that an uneven shape is formed on the surface, and FIG. The 1st member 9 heated until the reinforced fiber 11 was exposed is shown.

表面加工により凹凸(強化繊維の露出による凹凸も含む)が形成された第1の部材の表面において、図2または図4に例示するように、厚さ方向における最も高い凸部の頂部と最も深い凹部の底部との差を最大高さ(dmax)とする。厚さ方向とは、表面加工工程で加熱される前の表面に対して垂直な方向を意味する。
本発明の成形体において、第1の部材の表面における最大高さ(dmax)は、1〜45μmの範囲内であることが好ましい。すなわち、後述の接合工程で第2の部材と接合された後の断面における最大高さ(dmax)が1〜45μmの範囲内であることが好ましい。
該最大高さ(dmax)が1μm以上であると、アンカー効果による接合強度の向上効果が得られやすい。45μm以下であると、接合部に空隙部分ができることを抑制することができる。該最大高さ(dmax)は5〜40μmがより好ましく、10〜30μmがさらに好ましい。
表面加工工程では、接合工程での最大高さ(dmax)の変化も加味して、成形体における最大高さ(dmax)が上記の範囲内となるように、第1の部材の表面に対する加熱条件を設定することが好ましい。
As illustrated in FIG. 2 or FIG. 4, on the surface of the first member on which irregularities (including irregularities due to exposure of reinforcing fibers) are formed by the surface processing, as shown in FIG. 2 or FIG. The difference from the bottom of the recess is defined as the maximum height (d max ). The thickness direction means a direction perpendicular to the surface before being heated in the surface processing step.
In the molded article of the present invention, the maximum height (dmax) on the surface of the first member is preferably in the range of 1 to 45 μm. That is, it is preferable that the maximum height (dmax) in the cross section after being joined to the second member in the joining step described later is in the range of 1 to 45 μm.
When the maximum height (dmax) is 1 μm or more, an effect of improving the bonding strength due to the anchor effect is easily obtained. It can suppress that a space | gap part is formed in a junction part as it is 45 micrometers or less. The maximum height (dmax) is more preferably 5 to 40 μm, further preferably 10 to 30 μm.
In the surface processing step, with respect to the surface of the first member so that the maximum height (d max ) in the molded body is within the above range in consideration of the change in the maximum height (d max ) in the joining step. It is preferable to set heating conditions.

[接合工程]
接合工程では、表面加工工程において表面が加工された第1の部材の表面(加工された面)上に、熱可塑性樹脂(C)を含む材料(D)を射出成形する。
例えば、予め成形された第1の部材を成形型内に配置し、表面加工工程を行った後、第1の部材の表面(加工された面)上に材料(D)を射出し成形型内で第2の部材を成形することにより、第1の部材と第2の部材とが接合された成形品が得られる。
または、最終の形状に成形されていない第1の部材を成形型内に配置し、表面加工工程を行った後、第1の部材の表面(加工された面)上に材料(D1)を射出し成形型内で第1の部材を賦形しつつ第2の部材を成形することにより、第1の部材と第2の部材とが接合された成形品が得られる。
[Jointing process]
In the joining step, the material (D) containing the thermoplastic resin (C) is injection-molded on the surface (processed surface) of the first member whose surface is processed in the surface processing step.
For example, after a first member molded in advance is placed in a mold and a surface processing step is performed, the material (D) is injected onto the surface (processed surface) of the first member and the mold is injected into the mold. By molding the second member, a molded product in which the first member and the second member are joined is obtained.
Alternatively, the first member that is not molded into the final shape is placed in a mold, and after performing a surface processing step, the material (D1) is injected onto the surface (processed surface) of the first member. By molding the second member while shaping the first member in the mold, a molded product in which the first member and the second member are joined is obtained.

接合工程において、第1の部材の表面(加工された面)上に材料(D)を射出する際の、該第1の部材の表面の温度は樹脂(A)の融点以上、又は樹脂(A)が融点を有しない場合はガラス転移点以上である。
第1の部材の表面の温度は、非接触温度センサにより測定される温度である。非接触温度センサとして、赤外線サーモグラフィカメラが例示される。加熱手段として広範囲を加熱できる赤外線ヒーターの場合は加熱面の温度はほぼ均一であるので、その温度を表面温度とする。加熱手段として微細領域を加熱するレーザー照射装置の場合は、該加熱された微細領域の温度を表面温度とする。
表面加工工程において、第1の部材の表面を、樹脂(A)の融点以上又はガラス転移点以上に加熱して加工した後、該表面の温度を樹脂(A)の融点以上又はガラス転移点以上に保った状態で、材料(D)を射出することが好ましい。
または、表面加工工程を終えた第1の部材の表面温度が、樹脂(A)の融点又はガラス転移点よりも低くなった場合には、該表面の温度が樹脂(A)の融点以上又はガラス転移点以上となるように再加熱した後、材料(D)を射出する。
In the joining step, the temperature of the surface of the first member when the material (D) is injected onto the surface (processed surface) of the first member is equal to or higher than the melting point of the resin (A), or the resin (A ) Has a melting point or higher when it does not have a melting point.
The temperature of the surface of the first member is a temperature measured by a non-contact temperature sensor. An infrared thermography camera is exemplified as the non-contact temperature sensor. In the case of an infrared heater capable of heating a wide range as a heating means, the temperature of the heating surface is almost uniform, and the temperature is set as the surface temperature. In the case of a laser irradiation apparatus that heats a fine region as the heating means, the temperature of the heated fine region is defined as the surface temperature.
In the surface processing step, after the surface of the first member is processed by heating to the melting point of the resin (A) or higher than the glass transition point, the temperature of the surface is set to the melting point of the resin (A) or higher than the glass transition point. It is preferable to inject the material (D) in a state where the temperature is maintained.
Alternatively, when the surface temperature of the first member that has finished the surface processing step is lower than the melting point or glass transition point of the resin (A), the surface temperature is equal to or higher than the melting point of the resin (A) or glass. After reheating so as to be above the transition point, the material (D) is injected.

材料(D)と接触する直前の第1の部材の表面温度の上限は樹脂(A)の分解温度(Td)である。表面加工工程で形成された表面形状が保たれやすく、樹脂(A)と材料(D)中の樹脂が混ざりやすい点で、樹脂(A)の融点(Tm℃)以上かつTm+200℃以下が好ましく、Tm+30℃以上かつTm+100℃以下がより好ましい。
樹脂(A)が融点を有さない場合は、樹脂(A)のガラス転移温度(Tg℃)以上、かつTg+200℃以下が好ましく、Tg+30℃以上かつTg+100℃以下がより好ましい。
第1の部材の表面上に材料(D)が射出される際の、材料(D)の温度(射出成形温度)が、該材料(D)と接触する直前の第1の部材の表面温度より高い場合、その差の絶対値は100℃以下が好ましく、70℃以下がより好ましく、50℃以下がさらに好ましい。また、該材料(D)の温度(射出成形温度)が、該材料(D)と接触する直前の第1の部材の表面温度より低い場合、その差の絶対値は100℃以下が好ましく、70℃以下がより好ましく、50℃以下がさらに好ましい。これらの差の絶対値が小さいほど材料(D)が第1の部材の凸凹形状部あるいは強化繊維が露出した部分に充填されやすく、接合部に空隙部分が生じ難い。該接合部に空隙部分が生じると、第1の部材と材料(D)とからなる成形品に反りが生じる原因となり得る。
The upper limit of the surface temperature of the first member immediately before coming into contact with the material (D) is the decomposition temperature (Td) of the resin (A). The surface shape formed in the surface processing step is easily maintained, and the resin (A) and the resin in the material (D) are easily mixed, and the melting point (Tm ° C.) or higher and Tm + 200 ° C. or lower of the resin (A) is preferable. Tm + 30 ° C. or higher and Tm + 100 ° C. or lower are more preferable.
When the resin (A) does not have a melting point, the glass transition temperature (Tg ° C.) or higher and Tg + 200 ° C. or lower is preferable, and Tg + 30 ° C. or higher and Tg + 100 ° C. or lower is more preferable.
When the material (D) is injected onto the surface of the first member, the temperature of the material (D) (injection molding temperature) is higher than the surface temperature of the first member immediately before contacting the material (D). When it is high, the absolute value of the difference is preferably 100 ° C. or less, more preferably 70 ° C. or less, and further preferably 50 ° C. or less. When the temperature of the material (D) (injection molding temperature) is lower than the surface temperature of the first member just before contacting the material (D), the absolute value of the difference is preferably 100 ° C. or less, 70 ° C or less is more preferable, and 50 ° C or less is more preferable. As the absolute value of these differences is smaller, the material (D) is more easily filled in the uneven portion of the first member or the portion where the reinforcing fiber is exposed, and the void portion is less likely to occur in the joint portion. If a void portion is generated in the joint portion, it may be a cause of warping of a molded product made of the first member and the material (D).

このようにして得られる成形体にあっては、第1の部材の表面を加工したことによるアンカー効果に加えて、第1の部材の表面温度が高い状態で、該表面上に材料(D)を射出して第2の部材を成形することにより、第1の部材の表面の樹脂と、材料(D)中の樹脂とが、流動性が高い状態で混ざり合うため、第1の部材と第2の部材との接合強度がより向上する。
本発明の方法で製造された成形品は高い機械的物性を有しており、例えば航空機部材、自動車部材、スポーツ用具等に好適に用いられる。
In the molded body thus obtained, in addition to the anchor effect obtained by processing the surface of the first member, the material (D) is formed on the surface in a state where the surface temperature of the first member is high. The resin on the surface of the first member and the resin in the material (D) are mixed in a highly fluid state by injecting the second member to form the second member. The bonding strength with the member 2 is further improved.
The molded product produced by the method of the present invention has high mechanical properties and is suitably used for, for example, aircraft members, automobile members, sports equipment and the like.

以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
<最大高さ(dmax)の測定方法>
成形体の厚み方向に沿う断面が観察面となるように研磨された試料を用意し、顕微鏡で観察した。視野中の第1の部材の表面(第1の部材と第2の部材との界面)の凹凸のうち、最も深い凹部の底部と最も高い凸部の頂部との差(最大高さ)を測定した。視野を変えて30回の測定を行い、平均値を最大高さ(dmax)とした。
なお、第1の部材と第2の部材との界面を判別しやすいように、必要に応じて、第1の部材中の樹脂と第2の部材中の樹脂のいずれかを、物性に影響しない範囲で予め着色してもよい。
<引張試験方法>
引張試験装置(製品名:オートグラフAG−X、島津製作所社製)を用い、タブ間距離120mm、試験速度2mm/分の条件で引張試験を行い、最大試験応力の値を記録した。
最大試験応力(単位:kN)を接合面積で割って、1mm当たりの引張せん断強度(単位:MPa)の値を求めた。
Hereinafter, the present invention will be described in more detail using examples, but the present invention is not limited to these examples.
<Measurement method of maximum height (d max )>
A sample polished so that a cross section along the thickness direction of the molded body was an observation surface was prepared and observed with a microscope. Measures the difference (maximum height) between the bottom of the deepest concave part and the top of the highest convex part among the irregularities on the surface of the first member in the field of view (interface between the first member and the second member) did. The field of view was changed, 30 measurements were taken, and the average value was taken as the maximum height (d max ).
In addition, either the resin in the first member or the resin in the second member does not affect the physical properties as necessary so that the interface between the first member and the second member can be easily distinguished. You may color beforehand in the range.
<Tensile test method>
Using a tensile test apparatus (product name: Autograph AG-X, manufactured by Shimadzu Corporation), a tensile test was performed under the conditions of a distance between tabs of 120 mm and a test speed of 2 mm / min, and the value of the maximum test stress was recorded.
The maximum test stress (unit: kN) was divided by the bonding area to determine the value of tensile shear strength (unit: MPa) per mm 2 .

<原材料>
炭素繊維(1):三菱レイヨン社製、製品名:パイロフィルTR−50S15L、分解温度600℃、平均繊維直径7μmの連続繊維。
熱可塑性樹脂フィルム(A1):(酸変性ポリプロピレン樹脂:三菱化学製、製品名:モディックP958、融点165℃、分解温度400℃、目付:36.4g/m
繊維強化熱可塑性樹脂材料(D1):炭素繊維強化ポリプロピレン樹脂、三菱レイヨン社製、製品名:パイロフィルペレット PP−C−30A。樹脂の融点:170℃、炭素繊維の分解温度:600℃、平均繊維直径:7μm、重量平均繊維長:1.5mm、繊維体積含有率(Vf)18%。
<Raw materials>
Carbon fiber (1): manufactured by Mitsubishi Rayon Co., Ltd., product name: Pyrofil TR-50S15L, decomposition temperature 600 ° C., continuous fiber having an average fiber diameter of 7 μm.
Thermoplastic resin film (A1): (acid-modified polypropylene resin: manufactured by Mitsubishi Chemical, product name: Modic P958, melting point 165 ° C., decomposition temperature 400 ° C., basis weight: 36.4 g / m 2 )
Fiber reinforced thermoplastic resin material (D1): Carbon fiber reinforced polypropylene resin, manufactured by Mitsubishi Rayon Co., Ltd., product name: Pyrofil pellet PP-C-30A. Melting point of resin: 170 ° C., decomposition temperature of carbon fiber: 600 ° C., average fiber diameter: 7 μm, weight average fiber length: 1.5 mm, fiber volume content (Vf) 18%.

(製造例1:プリプレグ(1)の作成)
炭素繊維(1)を、強化繊維の方向が一方向となるように平面状に引き揃えて、目付が72.0g/mである、連続した長尺の強化繊維シート(一方向シート)とした。
この強化繊維シートの両面を、熱可塑性樹脂フィルム(A1)で挟み、カレンダロールを通して、熱可塑性樹脂を強化繊維シートに含浸し、繊維体積含有率(Vf)が33%、厚さが0.12mmのプリプレグ(1)を得た。
(製造例2:シート状物(第1の部材)の作成)
製造例1で得たプリプレグ(1)を縦30cm、横30cmの大きさに切断した正方形シートを17枚、繊維方向が互いに同一となるように積層し、プレス成形して、厚さが約2mmのシート状物を得た。プレス成形の条件は、圧力0.3MPa、200℃で3分間加熱加圧した後、続いて圧力1MPa、50℃で3分間加熱加圧する条件とした。
(製造例3:シート状物(第1の部材)の作成)
製造例1で得たプリプレグ(1)を縦30cm、横30cmの大きさに切断した正方形シートを5枚、隣接するプリプレグ(1)の繊維方向が互いに直交するように積層し、プレス成形して、厚さが約0.6mmのシート状物を得た。プレス成形の条件は製造例2と同じとした。
(Production Example 1: Preparation of prepreg (1))
A continuous long reinforcing fiber sheet (unidirectional sheet) having a basis weight of 72.0 g / m 2 by aligning the carbon fibers (1) in a flat shape so that the direction of the reinforcing fibers is one direction; did.
Both sides of this reinforcing fiber sheet are sandwiched between thermoplastic resin films (A1), and through a calender roll, the reinforcing fiber sheet is impregnated with a thermoplastic resin. The fiber volume content (Vf) is 33% and the thickness is 0.12 mm. Of prepreg (1) was obtained.
(Production Example 2: Creation of sheet-like material (first member))
17 square sheets obtained by cutting the prepreg (1) obtained in Production Example 1 into a size of 30 cm in length and 30 cm in width are laminated so that the fiber directions are the same, and press-molded, and the thickness is about 2 mm. The sheet-like material was obtained. The press molding was performed under the conditions of heating and pressing at a pressure of 0.3 MPa and 200 ° C. for 3 minutes, and then heating and pressing at a pressure of 1 MPa and 50 ° C. for 3 minutes.
(Production Example 3: Creation of sheet-like material (first member))
Five square sheets obtained by cutting the prepreg (1) obtained in Production Example 1 into a size of 30 cm in length and 30 cm in width are laminated so that the fiber directions of adjacent prepregs (1) are orthogonal to each other, and press-molded. A sheet-like material having a thickness of about 0.6 mm was obtained. The conditions for press molding were the same as in Production Example 2.

(製造例4:プリプレグ(2)の作成)
炭素繊維(1)6.5gを長さ5mmに切断(チョップ)した。攪拌機を備えた一辺が30cmの直方体形状の撹拌釜に水10Lをいれた。攪拌機を回転させながらチョップした炭素繊維を投入し分散させた。攪拌機を止めて撹拌釜の下部より水を排出し、炭素繊維のマット状物を得た。それを80℃に保たれた真空加熱機で3時間乾燥し、一辺が30cmの正方形の目付が約72g/mの不織布を得た。製造例1と同様に、この不織布の両面を、熱可塑性樹脂フィルム(A1)で挟み、カレンダロールを通して、熱可塑性樹脂を不織布に含浸し、繊維体積含有率(Vf)が33%、厚さが0.15mmのプリプレグ(2)を得た。プリプレグ(2)は空隙を含むため、プリプレグ(1)より厚かった。
(Production Example 4: Preparation of prepreg (2))
6.5 g of carbon fiber (1) was cut (chopped) into a length of 5 mm. 10 L of water was placed in a rectangular parallelepiped stirring kettle equipped with a stirrer and having a side of 30 cm. While rotating the stirrer, the chopped carbon fiber was added and dispersed. The stirrer was stopped and water was discharged from the lower part of the stirring kettle to obtain a carbon fiber mat. It was dried for 3 hours with a vacuum heater maintained at 80 ° C. to obtain a nonwoven fabric having a square basis weight of 30 cm on one side and a weight of about 72 g / m 2 . Similar to Production Example 1, both sides of this nonwoven fabric are sandwiched between thermoplastic resin films (A1), and the nonwoven fabric is impregnated with the thermoplastic resin through a calender roll. The fiber volume content (Vf) is 33% and the thickness is A prepreg (2) of 0.15 mm was obtained. Since the prepreg (2) contained voids, it was thicker than the prepreg (1).

(製造例5:シート状物(第1の部材)の作成)
製造例4で得た一辺が30cmの正方形プリプレグ(2)を17枚積層し、プレス成形して、厚さが約2mmのシート状物を得た。プレス成形の条件は、圧力0.5MPa、200℃で3分間加熱加圧した後、続いて圧力1.5MPa、50℃で3分間加熱加圧する条件とした。製造例2よりも圧力を高くすることで、プリプレグ中の空隙を除去し、シート厚みを製造例2と同じにした。
(Production Example 5: Creation of sheet-like material (first member))
Seventeen square prepregs (2) each having a side of 30 cm obtained in Production Example 4 were laminated and press-molded to obtain a sheet-like material having a thickness of about 2 mm. The press molding was performed under the conditions of heating and pressing at a pressure of 0.5 MPa and 200 ° C. for 3 minutes, and then heating and pressing at a pressure of 1.5 MPa and 50 ° C. for 3 minutes. By making the pressure higher than in Production Example 2, voids in the prepreg were removed, and the sheet thickness was made the same as in Production Example 2.

以下の試験例1、2、5、7、8は本発明の製造方法を用いた例であり、試験例3、4、6、9、10は比較試験例である。
(試験例1)
製造例2で得たシート状物(厚さ約2mm)の繊維方向を長さ方向として、長さ方向120mm、幅方向25mmの短冊状の試験片(第1の部材)を切り出した。図8に示すように、該試験片21の片面の一端部の、幅方向25mm×長さ方向12.5mmの被加熱領域21aに、ヒーター表面温度500℃に設定した赤外線ヒーター22(日本ガイシ社製、製品名:インフラスタインヒーター)を対向させ、1分間加熱した。なお、被加熱領域21a以外の部分が加熱されないように、赤外線ヒーター22と試験片21との間に遮蔽板23を設置した。こうして、試験片21の被加熱領域21aの表面温度を200℃とした。表面温度は赤外線サーモグラフィカメラ(アビオニクス社製、製品名:G120EX)を使用した。被加熱領域21aの表面は軟化し、図2に示すような凹凸状になった。
続いて図9に示すように、被加熱領域21aの表面温度を保ちながら、直ちに該被加熱領域21a上に、射出成形機を用いて繊維強化熱可塑性樹脂材料(D1)を射出し、長さ方向120mm、幅方向25mmの短冊状の部材24(第2の部材)を成形した。射出成形時の繊維強化熱可塑性樹脂材料(D1)の温度(射出成形温度)は230℃とした。こうして図9に示すような、試験片21の一端部の被加熱領域21a上に、繊維強化熱可塑性樹脂材料(D1)からなる部材24(第2の部材)が接合された成形体25を得た。
得られた成形体25について、上記の方法で引張試験を行い引張せん断強度を求めた。また上記の方法で第1の部材と第2部材との接合面における、第1の部材の最大高さを測定した。これらの結果および主な製造条件を表1に示す(以下、同様)。
The following test examples 1, 2, 5, 7, and 8 are examples using the production method of the present invention, and test examples 3, 4, 6, 9, and 10 are comparative test examples.
(Test Example 1)
A strip-shaped test piece (first member) having a length direction of 120 mm and a width direction of 25 mm was cut out with the fiber direction of the sheet-like material (thickness of about 2 mm) obtained in Production Example 2 as the length direction. As shown in FIG. 8, an infrared heater 22 (Nippon Gaishi Co., Ltd.) having a heater surface temperature of 500 ° C. in a heated region 21 a having a width direction of 25 mm × length direction of 12.5 mm at one end portion of one side of the test piece 21. (Product name: Infrastein heater) were opposed to each other and heated for 1 minute. In addition, the shielding board 23 was installed between the infrared heater 22 and the test piece 21 so that parts other than the to-be-heated area | region 21a might not be heated. Thus, the surface temperature of the heated region 21a of the test piece 21 was set to 200 ° C. As the surface temperature, an infrared thermography camera (manufactured by Avionics, product name: G120EX) was used. The surface of the heated region 21a was softened and became uneven as shown in FIG.
Subsequently, as shown in FIG. 9, while maintaining the surface temperature of the heated region 21a, the fiber reinforced thermoplastic resin material (D1) is immediately injected onto the heated region 21a using an injection molding machine. A strip-shaped member 24 (second member) having a direction of 120 mm and a width direction of 25 mm was formed. The temperature (injection molding temperature) of the fiber reinforced thermoplastic resin material (D1) at the time of injection molding was 230 ° C. Thus, as shown in FIG. 9, a molded body 25 is obtained in which the member 24 (second member) made of the fiber-reinforced thermoplastic resin material (D1) is bonded onto the heated region 21 a at one end of the test piece 21. It was.
About the obtained molded object 25, the tensile test was performed by said method and the tensile shear strength was calculated | required. Moreover, the maximum height of the 1st member in the joint surface of a 1st member and a 2nd member was measured by said method. These results and main production conditions are shown in Table 1 (hereinafter the same).

(試験例2)
試験例1において、試験片21(第1の部材)の被加熱領域21aに対する加熱時間を5分間に変更し、表面温度を220℃とした。それ以外は試験例1と同様にして成形体を製造した。
(試験例3)
試験例1において、試験片21(第1の部材)に対して表面加工工程を行わない以外は、試験例1と同様にして成形体を製造した。
(試験例4)
試験例1において、試験片21(第1の部材)の被加熱領域21aを加熱した後、表面温度が25℃になるまで冷却した後に、該被加熱領域21a上に繊維強化熱可塑性樹脂材料(D1)を射出して第2の部材24を形成した以外は、試験例1と同様にして成形体を製造した。
(Test Example 2)
In Test Example 1, the heating time for the heated region 21a of the test piece 21 (first member) was changed to 5 minutes, and the surface temperature was set to 220 ° C. Otherwise, the molded body was produced in the same manner as in Test Example 1.
(Test Example 3)
In Test Example 1, a molded body was produced in the same manner as in Test Example 1 except that the surface processing step was not performed on the test piece 21 (first member).
(Test Example 4)
In Test Example 1, after heating the heated region 21a of the test piece 21 (first member) and then cooling until the surface temperature reaches 25 ° C., a fiber reinforced thermoplastic resin material (on the heated region 21a) A molded body was manufactured in the same manner as in Test Example 1 except that the second member 24 was formed by injecting D1).

(試験例5)
本例は第1の部材21の被加熱領域21aを樹脂の分解以上に加熱した例である。
すなわち試験例1において、赤外線ヒーターに代えてレーザー照射装置(SUNX社製、製品名:LP−Z250、レーザー種類:ファイバーレーザー、波長:1060nm)を用いた。試験片21(第1の部材)の被加熱領域21aにレーザ光を照射し、幅30μm、深さ20μmの凹部を、格子状で150μm間隔で形成して、該被加熱領域に規則的な凹凸形状を賦与した。このとき該被加熱領域21aの表面温度は650℃になった。そして該領域の温度が250℃になるまで待って、該被加熱領域21a上に繊維強化熱可塑性樹脂材料(D1)を射出した。それ以外は試験例1と同様にして成形体を製造した。
得られた成形体の第1の部材と第2部材との接合面において、第1の部材に形成された凹部には繊維強化熱可塑性樹脂材料(D1)の樹脂が充填されていた。
(Test Example 5)
In this example, the heated region 21a of the first member 21 is heated more than the decomposition of the resin.
That is, in Test Example 1, a laser irradiation apparatus (manufactured by SUNX, product name: LP-Z250, laser type: fiber laser, wavelength: 1060 nm) was used instead of the infrared heater. The heated region 21a of the test piece 21 (first member) is irradiated with laser light, and concave portions with a width of 30 μm and a depth of 20 μm are formed in a lattice shape at intervals of 150 μm, and regular irregularities are formed on the heated region. A shape was given. At this time, the surface temperature of the heated region 21a was 650 ° C. Then, after waiting until the temperature of the region reached 250 ° C., the fiber-reinforced thermoplastic resin material (D1) was injected onto the heated region 21a. Otherwise, the molded body was produced in the same manner as in Test Example 1.
In the joint surface between the first member and the second member of the obtained molded body, the concave portion formed in the first member was filled with the resin of the fiber reinforced thermoplastic resin material (D1).

(試験例6)
試験例5において、試験片21(第1の部材)の被加熱領域21aにレーザ光を照射して加熱した後、表面温度が25℃になるまで冷却した後に、該被加熱領域21a上に繊維強化熱可塑性樹脂材料(D1)を射出した以外は試験例5と同様にして成形体を製造した。
(Test Example 6)
In Test Example 5, the heated region 21a of the test piece 21 (first member) was irradiated with laser light and heated, and then cooled to a surface temperature of 25 ° C., and then a fiber was formed on the heated region 21a. A molded body was produced in the same manner as in Test Example 5 except that the reinforced thermoplastic resin material (D1) was injected.

(試験例7)
本例は、製造例5で得たシート状物(厚さ約2mm)を用い、赤外線ヒーターを用いて加熱した例である。
製造例5で得たシート状物(厚さ約2mm)から長さ方向120mm、幅方向25mmの短冊状の試験片(第1の部材)を切り出した。この試験片を用いたほかは試験例1と同様にして成形体を製造した。
表面加工工程において、表面温度200℃に加熱された被加熱領域21aは、表面が軟化し、図6に示すような凹凸状になった。
(Test Example 7)
In this example, the sheet-like material (thickness: about 2 mm) obtained in Production Example 5 was used and heated using an infrared heater.
A strip-shaped test piece (first member) having a length direction of 120 mm and a width direction of 25 mm was cut out from the sheet-like material (thickness: about 2 mm) obtained in Production Example 5. A molded body was produced in the same manner as in Test Example 1 except that this test piece was used.
In the surface processing step, the heated region 21a heated to the surface temperature of 200 ° C. was softened on the surface and became uneven as shown in FIG.

(試験例8)
本例は、製造例5で得たシート状物(厚さ約2mm)を用い、レーザ光を照射して加熱した例である。
試験例7と同じ試験片を用いたほかは試験例5と同様にして成形体を製造した。本例において、表面加工工程で形成された凹部においては部分的に炭素繊維が突き出るように露出していた。
得られた成形体の第1の部材と第2部材との接合面において、第1の部材に形成された凹部には繊維強化熱可塑性樹脂材料(D1)の樹脂が充填されていた。
(Test Example 8)
In this example, the sheet-like material (thickness: about 2 mm) obtained in Production Example 5 was used and irradiated with laser light and heated.
A molded body was produced in the same manner as in Test Example 5 except that the same test piece as in Test Example 7 was used. In this example, the carbon fibers were exposed so as to partially protrude in the recesses formed in the surface processing step.
In the joint surface between the first member and the second member of the obtained molded body, the concave portion formed in the first member was filled with the resin of the fiber reinforced thermoplastic resin material (D1).

(試験例9)
試験例7と同じ試験片を用いたほかは試験例4と同様にして成形体を製造した。
(試験例10)
試験例7と同じ試験片を用いたほかは試験例6と同様にして成形体を製造した。
(Test Example 9)
A molded body was produced in the same manner as in Test Example 4 except that the same test piece as in Test Example 7 was used.
(Test Example 10)
A molded body was produced in the same manner as in Test Example 6 except that the same test piece as in Test Example 7 was used.

Figure 2016210080
Figure 2016210080

表1の結果に示されるように、第1の部材の表面を加熱して表面加工工程を行い、かつ該第1の部材の表面温度が高い状態で第2の部材を射出して接合工程を行った試験例1、2、5、7、8では、第1の部材と第2の部材の接合強度が高い成形体が得られた。
これに対して、表面加工工程を行わなかった試験例3、表面加工工程を行ったものの、第1の部材の表面温度が低い状態で第2の部材を射出して接合工程を行った試験例4、6は、第1の部材と第2の部材の接合強度が劣っていた。
As shown in the results of Table 1, the surface processing step is performed by heating the surface of the first member, and the second member is injected in a state where the surface temperature of the first member is high to perform the bonding step. In Test Examples 1, 2, 5, 7, and 8 that were performed, molded articles with high bonding strength between the first member and the second member were obtained.
On the other hand, Test Example 3 in which the surface processing step was not performed, and although the surface processing step was performed, the test example in which the bonding process was performed by injecting the second member with the surface temperature of the first member being low. In 4 and 6, the bonding strength between the first member and the second member was inferior.

(実施例1:成形体の製造)
本例では、図10に示す表面加工工程および、図11に示す接合工程を経て、図12に示す成形体を製造した。
予め、製造例3で得たシート状物(厚さ約0.6mm)から、長さ方向40cm、幅方向5cmの短冊状のインサート部材31(第1の部材)を切り出した。なお、該インサート部材31の最表層および最裏層の繊維方向は同一であり、この方向を長さ方向とした。図10のように、成形型の下型32内にインサート部材31を配置し、その上面に、ヒーター表面温度600℃に設定した赤外線ヒーター33(日本ガイシ社製、製品名:インフラスタインヒーター)を対向させた。該赤外線ヒーター33でインサート部材31を3分間加熱し、インサート部材31の上面の表面温度を230℃とした。
その直後に、図11に示すように、成形型の上型34を閉じ、上型34内に設けられた樹脂供給路35から、下型32と上型34で形成される空間内に、繊維強化熱可塑性樹脂材料(D1)を射出した。射出成形温度は230℃とし、下型32と上型34の内面の表面温度(成形型温度)は50℃とした。成形型温度は、維強化熱可塑性樹脂材料(D1)中の樹脂の融点より低いため、射出された維強化熱可塑性樹脂材料(D1)は成形型内で冷却されて固化し、第2の部材36が形成された。維強化熱可塑性樹脂材料(D1)の射出を終えてから15秒後に成形型を開き、図12に示す成形体を取り出した。
得られた成形体のインサート部材31(第1の部材)と第2の部材36との接合面における、第1の部材31の最大高さは25μmであった。
(Example 1: Production of molded body)
In this example, the molded body shown in FIG. 12 was manufactured through the surface processing step shown in FIG. 10 and the joining step shown in FIG.
A strip-shaped insert member 31 (first member) having a length direction of 40 cm and a width direction of 5 cm was cut out in advance from the sheet-like material (thickness: about 0.6 mm) obtained in Production Example 3. In addition, the fiber directions of the outermost layer and the outermost layer of the insert member 31 are the same, and this direction is the length direction. As shown in FIG. 10, the insert member 31 is disposed in the lower mold 32 of the molding die, and an infrared heater 33 (manufactured by NGK, product name: Infrastein heater) having a heater surface temperature of 600 ° C. is formed on the upper surface thereof. Opposed. The insert member 31 was heated by the infrared heater 33 for 3 minutes, and the surface temperature of the upper surface of the insert member 31 was set to 230 ° C.
Immediately after that, as shown in FIG. 11, the upper die 34 of the molding die is closed, and the fiber is fed from the resin supply path 35 provided in the upper die 34 into the space formed by the lower die 32 and the upper die 34. A reinforced thermoplastic resin material (D1) was injected. The injection molding temperature was 230 ° C., and the surface temperatures of the inner surfaces of the lower mold 32 and the upper mold 34 (molding mold temperature) were 50 ° C. Since the mold temperature is lower than the melting point of the resin in the fiber reinforced thermoplastic resin material (D1), the injected fiber reinforced thermoplastic resin material (D1) is cooled and solidified in the mold, and the second member. 36 was formed. 15 seconds after the injection of the fiber reinforced thermoplastic resin material (D1) was completed, the mold was opened, and the molded body shown in FIG. 12 was taken out.
The maximum height of the first member 31 at the joint surface between the insert member 31 (first member) and the second member 36 of the obtained molded body was 25 μm.

(比較例1)
実施例1において、インサート部材31(第1の部材)に対する加熱時間を30秒に変更したところ、加熱後のインサート部材の上面の表面温度は130℃であり、該上面に凹凸は形成されず、平滑面のままであった。それ以外は、実施例1と同様にして成形体を製造した。
得られた成形体のインサート部材31(第1の部材)と第2の部材36との接合面における、第1の部材31の最大高さはゼロであった。
(Comparative Example 1)
In Example 1, when the heating time for the insert member 31 (first member) was changed to 30 seconds, the surface temperature of the upper surface of the insert member after heating was 130 ° C., and no irregularities were formed on the upper surface. It remained a smooth surface. Other than that was carried out similarly to Example 1, and manufactured the molded object.
The maximum height of the first member 31 at the joint surface between the insert member 31 (first member) and the second member 36 of the obtained molded body was zero.

(実施例2:成形体の製造)
実施例1では赤外線ヒーターを用いたが、本例では、試験例5と同じレーザー照射装置37を用いた。
実施例1と同じインサート部材31を、図13のように、成形型の下型32内に配置し、その上面にレーザ光を照射し、幅30μm、深さ20μmの凹部を、格子状で150μm間隔で形成して、該被加熱領域に凹凸形状を賦与した。このときインサート部材31の上面の表面温度は650℃になった。そして該領域の温度が250℃になるまで待って、繊維強化熱可塑性樹脂材料(D1)を射出した。それ以外は実施例1と同様にして成形体を製造した。
得られた成形体のインサート部材31(第1の部材)と第2の部材36との接合面における、第1の部材31の最大高さは20μmであった。
(Example 2: Production of molded body)
In Example 1, an infrared heater was used, but in this example, the same laser irradiation device 37 as in Test Example 5 was used.
As shown in FIG. 13, the same insert member 31 as in Example 1 is placed in the lower mold 32 of the molding die, and the upper surface thereof is irradiated with laser light, and a recess having a width of 30 μm and a depth of 20 μm is formed in a lattice shape to 150 μm. Formed at intervals to give an uneven shape to the heated region. At this time, the surface temperature of the upper surface of the insert member 31 was 650 ° C. And it waited until the temperature of this area | region became 250 degreeC, and injected the fiber reinforced thermoplastic resin material (D1). Except that, a molded body was produced in the same manner as in Example 1.
The maximum height of the first member 31 at the joint surface between the insert member 31 (first member) and the second member 36 of the obtained molded body was 20 μm.

1、11 強化繊維
2、12 樹脂
3、4、5、6、7、8、9 第1の部材
21 試験片(第1の部材)
21a 被加熱領域
22 赤外線ヒーター
23 遮蔽板
24 部材(第2の部材)
25 成形体
31 インサート部材(第1の部材)
32 下型
33 赤外線ヒーター
34 上型
35 樹脂供給路
36 第2の部材
37 レーザー照射装置
DESCRIPTION OF SYMBOLS 1,11 Reinforcing fiber 2,12 Resin 3, 4, 5, 6, 7, 8, 9 First member 21 Test piece (first member)
21a Heated area 22 Infrared heater 23 Shielding plate 24 Member (second member)
25 Molded body 31 Insert member (first member)
32 Lower mold 33 Infrared heater 34 Upper mold 35 Resin supply path 36 Second member 37 Laser irradiation device

Claims (6)

樹脂(A)と強化繊維(B)を含有する第1の部材と、熱可塑性樹脂(C)を含む材料(D)からなる第2の部材とが接合された成形体を製造する方法であって、
樹脂(A)と強化繊維(B)を含有する第1の部材の表面を、樹脂(A)の融点以上又はガラス転移点以上に加熱することにより、該表面を凹凸状に加工する又は該表面において強化繊維(B)を露出させる加工を行う表面加工工程と、
表面温度が樹脂(A)の融点以上又はガラス転移点以上の、前記加工された面上に、熱可塑性樹脂(C)を含む材料(D)を射出成形する接合工程を有する、成形体の製造方法。
This is a method for producing a molded body in which a first member containing a resin (A) and a reinforcing fiber (B) and a second member made of a material (D) containing a thermoplastic resin (C) are joined. And
By processing the surface of the first member containing the resin (A) and the reinforcing fiber (B) to a temperature equal to or higher than the melting point of the resin (A) or higher than the glass transition point, the surface is processed into an uneven shape or the surface A surface processing step for performing processing to expose the reinforcing fiber (B) in
Manufacture of a molded body having a joining step of injection-molding a material (D) containing a thermoplastic resin (C) on the processed surface having a surface temperature equal to or higher than the melting point of the resin (A) or a glass transition point Method.
樹脂(A)と強化繊維(B)を含有する第1の部材と、熱可塑性樹脂(C)を含む材料(D)からなる第2の部材とが接合された成形体を製造する方法であって、
樹脂(A)と強化繊維(B)を含有する第1の部材の表面を、樹脂(A)の分解温度以上に加熱することにより、該表面を凹凸状に加工する又は該表面において強化繊維(B)を露出させる加工を行う表面加工工程と、
表面温度が樹脂(A)の融点以上又はガラス転移点以上の、前記加工された面上に、熱可塑性樹脂(C)を含む材料(D)を射出成形する接合工程を有する、成形体の製造方法。
This is a method for producing a molded body in which a first member containing a resin (A) and a reinforcing fiber (B) and a second member made of a material (D) containing a thermoplastic resin (C) are joined. And
By heating the surface of the first member containing the resin (A) and the reinforcing fiber (B) to a temperature equal to or higher than the decomposition temperature of the resin (A), the surface is processed into unevenness or the reinforcing fiber ( A surface processing step for performing processing to expose B);
Manufacture of a molded body having a joining step of injection-molding a material (D) containing a thermoplastic resin (C) on the processed surface having a surface temperature equal to or higher than the melting point of the resin (A) or a glass transition point Method.
前記表面加工工程において、前記第1の部材の表面を赤外線ヒーターで加熱する、請求項1または2に記載の成形体の製造方法。   The manufacturing method of the molded object of Claim 1 or 2 which heats the surface of the said 1st member with an infrared heater in the said surface treatment process. 前記表面加工工程において、前記第1の部材の表面にレーザ光を照射する、請求項1または2に記載の成形体の製造方法。   The manufacturing method of the molded object of Claim 1 or 2 which irradiates a laser beam to the surface of the said 1st member in the said surface processing process. 前記熱可塑性樹脂(C)を含む材料(D)が、さらに強化繊維を含む、請求項1〜4の何れか一項に記載の成形体の製造方法。   The manufacturing method of the molded object as described in any one of Claims 1-4 with which the material (D) containing the said thermoplastic resin (C) contains a reinforced fiber further. 請求項1〜5の何れか一項に記載の成形体の製造方法で製造され、第1の部材の表面における最大高さが1〜45μmである成形体。   The molded object which is manufactured with the manufacturing method of the molded object as described in any one of Claims 1-5, and the maximum height in the surface of a 1st member is 1-45 micrometers.
JP2015095366A 2015-05-08 2015-05-08 Molding and method for producing the same Pending JP2016210080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015095366A JP2016210080A (en) 2015-05-08 2015-05-08 Molding and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015095366A JP2016210080A (en) 2015-05-08 2015-05-08 Molding and method for producing the same

Publications (1)

Publication Number Publication Date
JP2016210080A true JP2016210080A (en) 2016-12-15

Family

ID=57550919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015095366A Pending JP2016210080A (en) 2015-05-08 2015-05-08 Molding and method for producing the same

Country Status (1)

Country Link
JP (1) JP2016210080A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019171575A (en) * 2018-03-27 2019-10-10 パナソニックIpマネジメント株式会社 Fiber-reinforced resin molding
JP2020055252A (en) * 2018-10-03 2020-04-09 キヤノン株式会社 Resin component, method for manufacturing resin component, lens barrel component, and optical equipment
CN112208172A (en) * 2019-07-12 2021-01-12 大赛璐美华株式会社 Composite molded body and method for producing same
JP2021098351A (en) * 2019-07-12 2021-07-01 ダイセルポリマー株式会社 Composite molding and method for manufacturing the same
JP2021120194A (en) * 2020-01-30 2021-08-19 オムロン株式会社 Composite molding
WO2024018687A1 (en) * 2022-07-22 2024-01-25 株式会社日立製作所 Injection-molded article and method for producing injection-molded article
WO2024089807A1 (en) * 2022-10-26 2024-05-02 株式会社ジェイテクト Molding die for composite material and method for producing composite material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019171575A (en) * 2018-03-27 2019-10-10 パナソニックIpマネジメント株式会社 Fiber-reinforced resin molding
JP2020055252A (en) * 2018-10-03 2020-04-09 キヤノン株式会社 Resin component, method for manufacturing resin component, lens barrel component, and optical equipment
JP7134820B2 (en) 2018-10-03 2022-09-12 キヤノン株式会社 Resin part, method for manufacturing resin part, equipment, and optical equipment
CN112208172A (en) * 2019-07-12 2021-01-12 大赛璐美华株式会社 Composite molded body and method for producing same
JP2021098351A (en) * 2019-07-12 2021-07-01 ダイセルポリマー株式会社 Composite molding and method for manufacturing the same
JP2021120194A (en) * 2020-01-30 2021-08-19 オムロン株式会社 Composite molding
JP7404899B2 (en) 2020-01-30 2023-12-26 オムロン株式会社 Composite molded body
WO2024018687A1 (en) * 2022-07-22 2024-01-25 株式会社日立製作所 Injection-molded article and method for producing injection-molded article
WO2024089807A1 (en) * 2022-10-26 2024-05-02 株式会社ジェイテクト Molding die for composite material and method for producing composite material

Similar Documents

Publication Publication Date Title
JP2016210080A (en) Molding and method for producing the same
JP6432615B2 (en) Fiber reinforced plastic molding composite and fiber reinforced plastic molding
JP5915780B2 (en) Laminated substrate using fiber reinforced thermoplastics
KR101787627B1 (en) Thermoplastic prepreg and laminate
KR101643114B1 (en) Layered substrate and method for manufacturing same
CA2775053A1 (en) Thermoplastic composites and methods of making and using same
JP2020062893A (en) Fiber-reinforced resin molded product and method for producing fiber-reinforced resin molded product
JP2014004797A (en) Composite material for molding and method for producing the same
JP2013208725A (en) Carbon fiber-reinforced thermoplastic resin laminated body and method of producing the same
JP2014198838A (en) Method for producing fiber-reinforced thermoplastic resin molded plate
JP2015063018A (en) Polyolefin laminate sheet and production method of the same
JP5909062B2 (en) Forming method
CN111886119A (en) Method for producing fiber-reinforced resin
JP2012213946A (en) Molding manufacturing method and molding
CN107002365B (en) Carbon fiber felt, blank, sheet material, and molded article
JP6305714B2 (en) Thermoplastic laminated sheet and method for producing the same
JP6093131B2 (en) Method for producing thermoplastic resin fiber reinforced composite material for press molding
JP5809484B2 (en) Forming method
JP5712038B2 (en) Forming method
TW202019707A (en) Reinforced fiber tape material and production method therefor, fiber reinforced resin molded body and reinforced fiber layered body using reinforced fiber tape material
JP2017164970A (en) Fiber-reinforced composite and method for producing the same
JP6131779B2 (en) Thermoplastic prepreg and method for producing thermoplastic prepreg
JP5762694B2 (en) Forming method and fiber-reinforced resin molded product
JP2016190355A (en) Laminated base material
US20240059031A1 (en) Prepreg laminate, composite structure, and method for manufacturing composite structure