JP2017164970A - Fiber-reinforced composite and method for producing the same - Google Patents

Fiber-reinforced composite and method for producing the same Download PDF

Info

Publication number
JP2017164970A
JP2017164970A JP2016051945A JP2016051945A JP2017164970A JP 2017164970 A JP2017164970 A JP 2017164970A JP 2016051945 A JP2016051945 A JP 2016051945A JP 2016051945 A JP2016051945 A JP 2016051945A JP 2017164970 A JP2017164970 A JP 2017164970A
Authority
JP
Japan
Prior art keywords
fiber
reinforced composite
laminate
producing
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016051945A
Other languages
Japanese (ja)
Other versions
JP6786826B2 (en
Inventor
充貴 布施
Mitsutaka Fuse
充貴 布施
舘山 勝
Masaru Tateyama
勝 舘山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2016051945A priority Critical patent/JP6786826B2/en
Publication of JP2017164970A publication Critical patent/JP2017164970A/en
Application granted granted Critical
Publication of JP6786826B2 publication Critical patent/JP6786826B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a fiber-reinforced composite that, when shaping and molding a two-dimensional sheet-like intermediate substrate into a three-dimensional shape having a convexoconcave shape, has little molding failure that causes deterioration in strength of members such as wall thickness change of convexoconcave parts and wrinkle, void, and fiber meander on the surface or in the inside thereof, and can easily and securely mold a fiber-reinforced composite having excellent dynamic characteristics and excellent surface quality.SOLUTION: The method for producing a fiber-reinforced composite comprises heating a laminate of a sheet-like prepreg substrate composed of a reinforcing fiber and a thermoplastic resin, then applying a pressure to the laminate along a mold having a three-dimensional curved surface and cooling. In the method, the laminate is constituted so that at least a part thereof is composed of an unmelted part formed by a non-heating region and the other is composed of a molten part; the heated laminate is placed in the mold whose temperature has been adjusted to a temperature lower than the solidification temperature of the laminate; and the molten part is disposed along the mold.SELECTED DRAWING: Figure 1

Description

本発明は一方向に引き揃えられた強化繊維と熱可塑樹脂から構成されるシート状プリプレグ基材を用いて複雑形状深絞り形状を成形する場合に繊維蛇行や凹凸がなく外観、力学物性に優れた複雑形状深絞り成型体の製造方法およびその成形体に関する。   The present invention is excellent in appearance and mechanical properties without fiber meandering and unevenness when forming a complex-shaped deep-drawn shape using a sheet-like prepreg base material composed of reinforced fibers and thermoplastic resin aligned in one direction. The present invention relates to a method for manufacturing a deep-drawn complex shape and a molded body thereof.

繊維強化複合体の成形方法としては、繊維強化複合体の中間基材である繊維強化熱可塑性樹脂成型板をプレス成形する方法が例示される。繊維強化熱可塑性樹脂成型板として、プリプレグと称される連続した強化繊維に熱可塑性樹脂を含浸せしめた基材を積層したものが例示される。これにより得られた成形品は、連続した強化繊維を用いているので優れた力学物性を有する。また連続した強化繊維は規則的に配列することで、必要とする力学物性に設計することが可能であり、力学物性のばらつきも小さい。   Examples of the method for molding the fiber reinforced composite include a method of press molding a fiber reinforced thermoplastic resin molded plate which is an intermediate substrate of the fiber reinforced composite. Examples of the fiber reinforced thermoplastic resin molded plate include a laminate in which a continuous reinforcing fiber called a prepreg is laminated with a base material impregnated with a thermoplastic resin. The molded product thus obtained has excellent mechanical properties because it uses continuous reinforcing fibers. Further, by arranging the continuous reinforcing fibers regularly, it is possible to design the required mechanical properties, and the variation in the mechanical properties is small.

しかしながら、連続した強化繊維であるゆえに複雑な三次元形状を形成することは難しく、主として平面形状に近い部材に限られる。若しくは三次元形状を賦形する際には、プリプレグを数mmの幅にまでカットしてテープとし、三次元形状に並べて積層することで、幅の狭いテープ自体は実質二次元形状に沿うだけでよく、複雑形状であっても形状追従可能とするオートテープレイアップと呼ばれる技術がある。   However, since it is a continuous reinforcing fiber, it is difficult to form a complicated three-dimensional shape, and it is mainly limited to members close to a planar shape. Alternatively, when shaping a three-dimensional shape, the prepreg is cut to a width of a few millimeters to form a tape, and the three-dimensional shape is stacked and laminated so that the narrow tape itself follows the substantially two-dimensional shape. There is a technology called auto tape lay-up that allows a shape to follow even a complicated shape.

しかしながら、大面積、肉厚部材の三次元積層に用いるには生産性が低いという問題が残る。一方生産性に優れるプロセスとしてスタンピング成形が知られている(たとえば特許文献1)。スタンピング成形は型内に加熱、溶融した基材を設置し、型締した後、加圧し冷却固化して成形することにより、工程数も少なく、短時間に多数の成形品を得ることができる。しかしながら、賦形時にプリプレグの変形能不足に起因するシワやブリッジング(繊維の突っ張り)が発生し、繊維強化複合体の歩止まりが落ちるという問題があった。   However, the problem of low productivity remains for use in three-dimensional lamination of large area and thick members. On the other hand, stamping molding is known as a process with excellent productivity (for example, Patent Document 1). In stamping molding, a heated and melted base material is placed in a mold, clamped, pressed, cooled and solidified, and molded, so that a large number of molded products can be obtained in a short time. However, there is a problem that wrinkles and bridging (fiber stretching) due to insufficient deformability of the prepreg occur during shaping, and the yield of the fiber-reinforced composite is lowered.

プリプレグ積層体が固化され繊維強化複合体となる過程で厚み減少が生じるため、形状変化のある部位、例えばコーナーR部に賦形されたプリプレグ積層体は伸長性の低い強化繊維が連続しているため、周長差を解消するため座屈してシワとなるか、ブリッジングを起こして型形状に追従しない、という成形不具合が生じる。また、ブリッジング直下は成形圧が加わり難いことからボイドが発生しやすい。このボイド発生は真空ポンプを加圧手段としたオーブン成形など低圧成形においてより顕著な問題であった。   The thickness of the prepreg laminate is reduced in the process of solidifying into a fiber reinforced composite, so that the prepreg laminate formed in the part having a shape change, for example, the corner R portion, has continuous reinforcing fibers having low extensibility. For this reason, in order to eliminate the circumferential length difference, there arises a molding defect such as buckling and wrinkling, or bridging and not following the mold shape. In addition, voids are likely to occur immediately under bridging because molding pressure is difficult to apply. The generation of voids is a more significant problem in low pressure molding such as oven molding using a vacuum pump as a pressurizing means.

複雑形状の成形に適した繊維強化熱可塑性樹脂成型板として、プリプレグの強化繊維を横切る方向にプリプレグの表面から裏面に貫通する切込を有するプリプレグを積層したものが例示される。この基材は優れた力学的物性と高賦形性を両立する特徴がある。   Examples of the fiber reinforced thermoplastic resin molding plate suitable for forming a complex shape include a laminate of prepregs having notches penetrating from the front surface of the prepreg to the back surface in a direction crossing the reinforcing fibers of the prepreg. This base material is characterized by both excellent mechanical properties and high formability.

しかしながら、特許文献2に記載されるような切込を有するプリプレグを積層した基材を用いて複雑形状を成形する場合、圧縮の方向に力が加わると繊維がよれてしまい、力の伝達ができないため力学物性を発揮するこができない。   However, when a complex shape is formed using a base material in which prepregs having cuts as described in Patent Document 2 are laminated, if force is applied in the direction of compression, the fibers are kinked and the force cannot be transmitted. Therefore, the mechanical properties cannot be demonstrated.

特開2014−156012号公報Japanese Patent Application Laid-Open No. 2014-156012 特開2014−173031号公報JP 2014-173031 A

本発明の目的は、二次元シート状の中間基材を凹凸形状を有する三次元形状に賦形、成形するにあたり、凹凸部の肉厚変化や表面、内部にシワ、ボイド、繊維蛇行といった部材強度低下を引き起こす成形欠陥が少なく、優れた力学特性、表面品位を容易にかつ確実に成形することが可能な繊維強化複合体の製造方法を提供することにある。   The object of the present invention is to form and form a two-dimensional sheet-like intermediate base material into a three-dimensional shape having a concavo-convex shape, and to change the thickness of the concavo-convex portion and the strength of the member such as wrinkles, voids, and fiber meandering inside. It is an object of the present invention to provide a method for producing a fiber-reinforced composite that can be molded easily and reliably with excellent mechanical properties and surface quality with few molding defects that cause deterioration.

上記の課題を解決するために、本発明は以下の手段を採用するものである。すなわち、
(1)強化繊維と熱可塑樹脂とから構成されるシート状プリプレグ基材の積層体を加熱した後、三次元曲面を持つ成形型に沿わせて加圧し、冷却する繊維強化複合体の製造方法であって、前記積層体の少なくとも一部を非加熱領域とする未溶融部とそれ以外の溶融部とを設け、加熱した前記積層体を、該積層体の固化温度より低温に調温した前記成形型に載置し、前記溶融部を前記成形型に沿わせる繊維強化複合体の製造方法。
(2)一方向に引き揃えられた強化繊維を前記シート状プリプレグ基材として用いる(1)に記載の繊維強化複合体の製造方法。
(3)少なくとも一部の強化繊維を10〜100mmの長さに分断した、断続的な切れ込みを複数設けた前記シート状プリプレグ基材が用いられる(1)または(2)に記載の繊維強化複合体の製造方法。
(4)前記切込みと前記強化繊維の配向方向とのなす角θ(°)の絶対値が2°〜45°の範囲である(3)に記載の繊維強化複合体の製造方法。
(5)前記積層体を加圧する方向に切断した前記繊維強化複合体の断面長さのうち、最短断面長さL1と、L1より長い最長断面長さL2との比L1/L2が、0.3<L1/L2<0.96の範囲にある(1)〜(4)のいずれかに記載の繊維強化複合体の製造方法。
(6)前記積層体の強化繊維配向方向に沿って、該積層体を加圧する方向に切断した前記繊維強化複合体の断面に形成された屈曲部を複数有し、前記屈曲部の曲率半径Rが前記繊維強化複合体の厚みdの2倍以上から5倍以下の範囲にあり、前記屈曲部による凸形状部を2ヶ所以上備える(1)〜(5)のいずれかに記載の繊維強化複合体の製造方法。
(7)前記繊維強化複合体を垂直方向に投影した投影面積Smmと最大深さLmmとの比S/Lが50mm以上1240mm以下の範囲にある(1)〜(6)のいずれかに記載の繊維強化複合体の製造方法。
である。
In order to solve the above problems, the present invention employs the following means. That is,
(1) A method for producing a fiber-reinforced composite in which a laminate of a sheet-like prepreg base material composed of reinforcing fibers and a thermoplastic resin is heated, then pressed along a mold having a three-dimensional curved surface, and cooled. The non-melted part and at least a melted part in which at least a part of the laminate is not heated are provided, and the heated laminate is adjusted to a temperature lower than the solidification temperature of the laminate. A method for producing a fiber-reinforced composite, which is placed on a mold and the melted portion is placed along the mold.
(2) The method for producing a fiber-reinforced composite according to (1), wherein the reinforcing fibers aligned in one direction are used as the sheet-like prepreg base material.
(3) The fiber-reinforced composite according to (1) or (2), wherein the sheet-like prepreg base material provided with a plurality of intermittent cuts, in which at least a part of the reinforcing fibers is divided into a length of 10 to 100 mm, is used. Body manufacturing method.
(4) The method for producing a fiber-reinforced composite according to (3), wherein an absolute value of an angle θ (°) formed by the cut and the orientation direction of the reinforcing fiber is in a range of 2 ° to 45 °.
(5) The ratio L1 / L2 of the shortest cross-sectional length L1 and the longest cross-sectional length L2 longer than L1 among the cross-sectional lengths of the fiber-reinforced composite cut in the direction of pressing the laminate is 0. The manufacturing method of the fiber reinforced composite in any one of (1)-(4) which exists in the range of 3 <L1 / L2 <0.96.
(6) A plurality of bent portions formed in a cross section of the fiber reinforced composite cut in a direction in which the laminate is pressed along the reinforcing fiber orientation direction of the laminate, and the curvature radius R of the bent portion Is in the range of 2 to 5 times the thickness d of the fiber reinforced composite, and has two or more convex portions by the bent portion, the fiber reinforced composite according to any one of (1) to (5) Body manufacturing method.
(7) according to any one of the ratio S / L of the projected area Smm 2 and maximum depth Lmm fiber reinforced composite was projected vertically in 1240mm below the range of 50 mm (1) ~ (6) A method for producing a fiber-reinforced composite.
It is.

本発明によれば、三次元形状への賦形性に優れ、容易にかつ確実に、凹凸部の肉厚変化やシワ、ボイド、繊維蛇行といった部材強度低下を引き起こす成形欠陥が少なく、優れた力学特性、表面品位を有する繊維強化複合体を製造することが可能である。   According to the present invention, it is excellent in formability to a three-dimensional shape, and easily and reliably has few molding defects that cause member strength deterioration such as thickness change of wrinkles, wrinkles, voids, and fiber meandering, and excellent mechanical properties. It is possible to produce a fiber reinforced composite having properties and surface quality.

本発明の製造方法の一例を示す概略図である。It is the schematic which shows an example of the manufacturing method of this invention. 本発明の製造方法により得られる繊維強化複合体の一例を示す概略図である。It is the schematic which shows an example of the fiber reinforced composite obtained by the manufacturing method of this invention. 繊維強化複合体に設けられた屈曲部の位置を示す概略図である。It is the schematic which shows the position of the bending part provided in the fiber reinforced composite. 屈曲部の部分拡大図である。It is the elements on larger scale of a bending part.

本発明は、スタンピング成形時の複雑な形状への賦形性に優れ、短時間で成形可能であり、かつ構造材に適用可能な優れた力学物性、表面品位を有することを特徴とする繊維強化複合体の製造方法に関する。さらに詳しくは、R部や凹凸形状等の三次元形状の成形に容易に追随し、構造部材として機械強度を維持し、例えば航空機部材、自動車部材、スポーツ用具等に好適に用いられる繊維強化複合体の製造方法に関する。   The present invention is a fiber reinforced fiber that is excellent in shaping into a complicated shape during stamping molding, can be molded in a short time, and has excellent mechanical properties and surface quality applicable to structural materials. The present invention relates to a method for producing a composite. More specifically, a fiber-reinforced composite that easily follows the molding of a three-dimensional shape such as an R portion or an uneven shape, maintains mechanical strength as a structural member, and is suitably used for, for example, aircraft members, automobile members, sports equipment, and the like. It relates to the manufacturing method.

より具体的には、一方向に配向した強化繊維と熱可塑性樹脂とを含むプリプレグを複数枚積層した積層体を予め熱可塑性樹脂の融点以上まで予備加熱し、熱可塑性樹脂を溶融させ、キャビティに凹凸形状がある上型と下型からなる成形型を用い、前記積層体の固化温度よりも低温にした該成形型内に加熱、溶融した積層体を設置し、型締めした後、加圧し冷却固化して繊維強化複合体を得るスタンピング成形を行うに際し、予備加熱し積層体を溶融する際に、加熱時に前記積層体の少なくとも一部に非加熱領域を設けて未溶融部とし、前記積層体の固化温度よりも低温に調温した前記成形型に前記積層体を押し付け、前記未溶融部以外の溶融部を前記成形型に沿わせる繊維強化複合体の製造方法である。   More specifically, a laminate obtained by laminating a plurality of prepregs including reinforcing fibers oriented in one direction and a thermoplastic resin is preliminarily heated to a temperature equal to or higher than the melting point of the thermoplastic resin, and the thermoplastic resin is melted to form a cavity. Using a mold composed of an upper mold and a lower mold having a concavo-convex shape, a heated and melted laminate is placed in the mold lower than the solidification temperature of the laminate, the mold is clamped, and then pressurized and cooled. When performing stamping molding to obtain a fiber-reinforced composite by solidification, when the laminate is preheated to melt the laminate, at least a part of the laminate is provided with an unheated region during heating to form an unmelted portion, and the laminate This is a method for producing a fiber-reinforced composite, in which the laminate is pressed against the mold that is adjusted to a temperature lower than the solidification temperature, and a melted part other than the unmelted part is placed along the mold.

最初に、繊維強化複合体を製造する成形装置について説明する。   Initially, the shaping | molding apparatus which manufactures a fiber reinforced composite_body | complex is demonstrated.

本発明の繊維強化複合体を成形する成形型は、凹部とこの凹部に対応する凸部を有し、凹部と凸部との間にキャビティが構成される成形型を用いることができる。キャビティの厚みは0.5〜10mmが好ましい。また、キャビティを、積層体を加圧する方向に切断した断面長さのうち、繊維強化複合体の形状に沿って計測した長さのうち最短となる最短断面長さL1と、最長となる最長断面長さL2との比L1/L2が、0.3<L1/L2<0.96の範囲にある成形型を用いることが好ましい。   As the mold for molding the fiber-reinforced composite of the present invention, a mold having a concave portion and a convex portion corresponding to the concave portion and having a cavity between the concave portion and the convex portion can be used. The thickness of the cavity is preferably 0.5 to 10 mm. The shortest cross-sectional length L1 that is the shortest of the lengths measured along the shape of the fiber-reinforced composite and the longest cross-section that is the longest among the cross-sectional lengths cut in the direction of pressing the laminate. It is preferable to use a mold having a ratio L1 / L2 with the length L2 in a range of 0.3 <L1 / L2 <0.96.

さらに、繊維強化複合体を成形するに際し、非加熱領域を作る際に用いることのできる治具としては、金属フレームや、金属フィルム、金属テープを用いることができる。また、冷媒により冷却する場合には、冷却媒体として樹脂溶融温度よりも低温の空気、水を用いることができる。   Furthermore, a metal frame, a metal film, or a metal tape can be used as a jig that can be used to form a non-heated region when forming a fiber-reinforced composite. When cooling with a refrigerant, air or water having a temperature lower than the resin melting temperature can be used as a cooling medium.

次に、本発明で用いる繊維強化複合体を構成する強化繊維について説明する。   Next, the reinforcing fiber constituting the fiber reinforced composite used in the present invention will be described.

強化繊維の種類は特に限定されず、無機繊維、有機繊維、金属繊維、またはこれらを組み合わせたハイブリッド構成の強化繊維が使用できる。強化繊維としては、例えば、アルミニウム、黄銅、ステンレスなどの金属繊維や、ポリアクリロニトリル系、レーヨン系、リグニン系、ピッチ系の炭素繊維や、黒鉛繊維や、ガラスなどの絶縁性繊維や、アラミド樹脂、ポリベンゾオキサゾール樹脂、ポリフェニレンスルフィド樹脂、ポリエステル樹脂、アクリル樹脂、ナイロン樹脂、ポリエチレン樹脂などの有機繊維や、シリコンカーバイト、シリコンナイトライドなどの無機繊維が挙げられる。また、これらの繊維に表面処理が施されているものであっても良い。表面処理としては、導電体として金属の被着処理のほかに、カップリング剤による処理、サイジング剤による処理、添加剤の付着処理などがある。また、これらの強化繊維は1種類を単独で用いてもよいし、2種類以上を併用してもよい。これらの中では、最終成形物の強度等の機械特性を考慮すると、炭素繊維が好ましい。また、強化繊維の平均繊維直径は、1〜50μmであることが好ましく、5〜20μmであることがさらに好ましい。   The type of the reinforcing fiber is not particularly limited, and inorganic fiber, organic fiber, metal fiber, or a hybrid fiber having a combination of these can be used. Examples of reinforcing fibers include metal fibers such as aluminum, brass, and stainless steel, polyacrylonitrile-based, rayon-based, lignin-based, pitch-based carbon fibers, graphite fibers, insulating fibers such as glass, aramid resins, Examples thereof include organic fibers such as polybenzoxazole resin, polyphenylene sulfide resin, polyester resin, acrylic resin, nylon resin, and polyethylene resin, and inorganic fibers such as silicon carbide and silicon nitride. These fibers may be subjected to a surface treatment. Examples of the surface treatment include a treatment with a coupling agent, a treatment with a sizing agent, and an adhesion treatment of an additive in addition to a treatment for depositing a metal as a conductor. Moreover, these reinforcing fibers may be used individually by 1 type, and may use 2 or more types together. Among these, carbon fibers are preferable in consideration of mechanical properties such as strength of the final molded product. Moreover, it is preferable that the average fiber diameter of a reinforced fiber is 1-50 micrometers, and it is more preferable that it is 5-20 micrometers.

一般に積層体に含まれる強化繊維の長さは、長いほど力学特性に優れるものの、スタンピング成形時の流動性が低下する。スタンピング成形時の流動性向上のためには、強化繊維をある長さに切断することが効果的であり、このことによりリブやボスといった複雑な三次元形状にも流動する基材を得ることができ、シワやブリッジングを減少させることができる。しかしながら一般にランダム材とよばれる切断された強化繊維と樹脂組成物からなるスタンピング成形用の基材は力学特性にばらつきを生じるため、部品設計が困難であった。この解決策として切込を有したプリプレグを複数枚、積層することで、力学特性が良好でそのばらつきも小さくすることができ、スタンピング成形時の流動性に優れる積層体を得ることができる。   In general, the longer the length of the reinforcing fiber contained in the laminate, the better the mechanical properties, but the fluidity during stamping molding decreases. In order to improve the fluidity during stamping molding, it is effective to cut the reinforcing fiber to a certain length, which makes it possible to obtain a substrate that can flow even in complicated three-dimensional shapes such as ribs and bosses. And wrinkles and bridging can be reduced. However, a stamping molding base material made of a cut reinforcing fiber and a resin composition, which is generally called a random material, has a variation in mechanical properties, so that it is difficult to design a part. As a solution, by laminating a plurality of prepregs having cuts, it is possible to obtain a laminate having good mechanical properties and small variations, and excellent fluidity during stamping molding.

本発明の繊維強化複合体の製造方法で用いることができるプリプレグは、繊維体積含有率Vfが30%以上70%以下であれば、成形性、力学特性の観点から好ましい。Vfの値が低いほど流動性は向上するが、Vfの値が30%未満では構造材に必要な力学特性は得られない。流動性と力学特性の関係を鑑みると、30%以上60%以下が好ましい。かかるVf値は、JIS K7075(1991)に基づき測定できる。   The prepreg that can be used in the method for producing a fiber-reinforced composite of the present invention is preferable from the viewpoints of moldability and mechanical properties if the fiber volume content Vf is 30% or more and 70% or less. The lower the value of Vf, the better the fluidity. However, if the value of Vf is less than 30%, the mechanical properties necessary for the structural material cannot be obtained. Considering the relationship between fluidity and mechanical properties, 30% to 60% is preferable. Such a Vf value can be measured based on JIS K7075 (1991).

本発明の繊維強化複合体を構成する樹脂成分としては、熱可塑性樹脂を用いることが必要である。熱可塑性樹脂は化学反応を伴うことなく冷却固化して所定の形状を得ることができるので、短時間成形が可能であり、生産性に優れる。さらに、一般的に熱硬化性樹脂よりも靱性値が高い熱可塑性樹脂を用いることで、強度、特に衝撃性を向上させることができる。このような特性を備える本発明に好適な熱可塑性樹脂としては、例えば、ポリエチレンテレフタレート(PET)樹脂、ポリブチレンテレフタレート(PBT)樹脂、ポリトリメチレンテレフタレート(PTT)樹脂、ポリエチレンナフタレート(PEN)樹脂、液晶ポリエステル樹脂等のポリエステルや、ポリエチレン(PE)樹脂、ポリプロピレン(PP)樹脂、ポリブチレン樹脂等のポリオレフィンや、スチレン系樹脂の他、ポリオキシメチレン(POM)樹脂、ポリアミド(PA)樹脂、ポリカーボネート(PC)樹脂、ポリメチレンメタクリレート(PMMA)樹脂、ポリ塩化ビニル(PVC)樹脂、ポリフェニレンスルフィド(PPS)樹脂、ポリフェニレンエーテル(PPE)樹脂、変性PPE樹脂、ポリイミド(PI)樹脂、ポリアミドイミド(PAI)樹脂、ポリエーテルイミド(PEI)樹脂、ポリスルホン(PSU)樹脂、変性PSU樹脂、ポリエーテルスルホン樹脂、ポリケトン(PK)樹脂、ポリエーテルケトン(PEK)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、ポリエーテルケトンケトン(PEKK)樹脂、ポリアリレート(PAR)樹脂、ポリエーテルニトリル(PEN)樹脂、フェノール系樹脂、フェノキシ樹脂、ポリテトラフルオロエチレン樹脂などのフッ素系樹脂、更にポリスチレン系樹脂、ポリオレフィン系樹脂、ポリウレタン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリブタジエン系樹脂、ポリイソプレン系樹脂、フッ素系樹脂等の熱可塑エラストマー等や、これらの共重合体、変性体、および2種類以上ブレンドした樹脂などであってもよい。とりわけ、耐熱性、耐薬品性の観点からはPPS樹脂が、成形品外観、寸法安定性の観点からはポリカーボネート樹脂やスチレン系樹脂が、成形品の強度、耐衝撃性の観点からはポリアミド樹脂がより好ましく用いられる。また、得たい成形品の要求特性に応じて、難燃剤、耐候性改良剤、その他酸化防止剤、熱安定剤、紫外線吸収剤、可塑剤、滑剤、着色剤、相溶化剤、導電性フィラー等を添加しておくこともできる。   As a resin component constituting the fiber reinforced composite of the present invention, it is necessary to use a thermoplastic resin. Since the thermoplastic resin can be cooled and solidified without a chemical reaction to obtain a predetermined shape, it can be molded in a short time and has excellent productivity. Furthermore, the strength, particularly the impact property, can be improved by using a thermoplastic resin generally having a toughness value higher than that of the thermosetting resin. Examples of the thermoplastic resin having such characteristics suitable for the present invention include polyethylene terephthalate (PET) resin, polybutylene terephthalate (PBT) resin, polytrimethylene terephthalate (PTT) resin, and polyethylene naphthalate (PEN) resin. Polyester such as liquid crystal polyester resin, polyolefin such as polyethylene (PE) resin, polypropylene (PP) resin, polybutylene resin, styrene resin, polyoxymethylene (POM) resin, polyamide (PA) resin, polycarbonate ( PC) resin, polymethylene methacrylate (PMMA) resin, polyvinyl chloride (PVC) resin, polyphenylene sulfide (PPS) resin, polyphenylene ether (PPE) resin, modified PPE resin, polyimide (PI) resin Polyamideimide (PAI) resin, polyetherimide (PEI) resin, polysulfone (PSU) resin, modified PSU resin, polyethersulfone resin, polyketone (PK) resin, polyetherketone (PEK) resin, polyetheretherketone (PEEK) ) Resin, polyether ketone ketone (PEKK) resin, polyarylate (PAR) resin, polyether nitrile (PEN) resin, phenolic resin, phenoxy resin, polytetrafluoroethylene resin, and other fluorine-based resins, polystyrene resin, Polyolefin resins, polyurethane resins, polyester resins, polyamide resins, polybutadiene resins, polyisoprene resins, thermoplastic elastomers such as fluorine resins, copolymers, modified products, and two or more types of It may be a de resin. In particular, PPS resin is used from the viewpoint of heat resistance and chemical resistance, polycarbonate resin and styrene resin are used from the viewpoint of molded product appearance and dimensional stability, and polyamide resin is used from the viewpoint of strength and impact resistance of the molded product. More preferably used. In addition, depending on the required characteristics of the molded product to be obtained, flame retardants, weather resistance improvers, other antioxidants, heat stabilizers, ultraviolet absorbers, plasticizers, lubricants, colorants, compatibilizers, conductive fillers, etc. Can also be added.

本発明の繊維強化複合体の製造方法に用いることができるプリプレグは、切込を有する場合には、分断されるプリプレグの厚みが大きいほど強度が低下する傾向がある。構造材に適用することを前提とするならば、プリプレグの厚さは500μm以下とすることが好ましい。一方、厚みが50μm未満ではプリプレグの取り扱いが難しく、積層体とするために積層するプリプレグの枚数が非常に多くなるので、生産性が著しく悪化する。よって生産性の観点から50μm以上300μm以下であることが好ましい。   When the prepreg that can be used in the method for producing a fiber-reinforced composite of the present invention has a cut, the strength tends to decrease as the thickness of the divided prepreg increases. If it is assumed to be applied to a structural material, the thickness of the prepreg is preferably 500 μm or less. On the other hand, if the thickness is less than 50 μm, it is difficult to handle the prepreg, and the number of prepregs to be laminated for obtaining a laminate is very large, so the productivity is remarkably deteriorated. Therefore, it is preferable that it is 50 micrometers or more and 300 micrometers or less from a viewpoint of productivity.

スタンピング成形時の高い流動性を必要とする場合には、強化繊維を横切る方向にプリプレグの表面から裏面に貫通する切込を有するプリプレグを用いることが好ましい。   When high fluidity at the time of stamping molding is required, it is preferable to use a prepreg having a notch penetrating from the surface of the prepreg to the back surface in a direction crossing the reinforcing fiber.

本発明においては、同一積層体においてプリプレグの表面から裏面に貫通する切込の無いプリプレグやプリプレグの表面から裏面に貫通する切込の有るプリプレグの両方を用いても良い。特に、スタンピング成形時の高い流動性を必要とする場合には、プリプレグの表面から裏面に貫通する切込により強化繊維が切断されていることが好ましい。切断された強化繊維の長さは特に制限されるものではないが、力学特性と流動性の観点から、10mm以上、100mm以下が好ましい。特に十分な力学物性とスタンピング成形時の賦形性を両立させるためには10mm以上50mm以下がさらに好ましい。   In this invention, you may use both the prepreg without a notch penetrated from the surface of a prepreg to the back surface in the same laminated body, and the prepreg with the notch penetrated from the surface of a prepreg to the back surface. In particular, when high fluidity at the time of stamping molding is required, it is preferable that the reinforcing fiber is cut by a notch penetrating from the front surface to the back surface of the prepreg. The length of the cut reinforcing fiber is not particularly limited, but is preferably 10 mm or more and 100 mm or less from the viewpoint of mechanical properties and fluidity. In particular, 10 mm or more and 50 mm or less is more preferable in order to achieve both sufficient mechanical properties and shaping at the time of stamping molding.

本発明の繊維強化複合体の製造方法に用いることができるプリプレグとして切込みを有するプリプレグを用いる場合は、レーザーマーカー、サンプルカット機や抜型等を利用して切込を入れることにより得ることができるが、前記切込がレーザーマーカーを用いて施されたものであると、曲線やジグザグ線など複雑な切込を高速に加工できるという効果があるので好ましく、また、前記切込がサンプルカット機を用いて施されたものであると、2m以上の大判のプリプレグ層を加工できるという効果があるので好ましい。さらに、前記切込が抜型を用いて施されたものであると、高速に加工が可能であるという効果があるので好ましい。   When using a prepreg having a cut as a prepreg that can be used in the method for producing a fiber-reinforced composite of the present invention, it can be obtained by making a cut using a laser marker, a sample cutting machine, a cutting die or the like. It is preferable that the incision is made using a laser marker because it has the effect of processing a complex incision such as a curve or a zigzag line at high speed, and the incision is performed using a sample cutting machine. Since it has the effect that a large prepreg layer of 2 m or more can be processed, it is preferable. Furthermore, it is preferable that the cut is made by using a punching die because there is an effect that processing can be performed at high speed.

高い力学的特性を必要とする場合には、一方向に配向した強化繊維と熱可塑性樹脂とを含むプリプレグ(プリプレグの表面から裏面に貫通する切込を有さないプリプレグ)をそのまま用いることが好ましい。このプリプレグを複数枚積層して積層体とすることができる。
切込みと前記強化繊維の配向方向とのなす角θ(°)の絶対値は2°〜45°の範囲が好ましく、θの絶対値が45°より大きいと高流動性は得ることができるが、力学特性の向上が小さい。特にθの絶対値が45°以下であることで力学特性の向上が著しい。一方、θの絶対値は2°より小さいと流動性も力学特性も十分得ることが出来るが、切込を安定して入れることが難しくなる。すなわち、繊維に対して切込が寝てくると、切込を入れる際、繊維が刃から逃げやすく、また、繊維長さLを100mm以下とするためには、θの絶対値が2°より小さいと少なくとも切込同士の最短距離が0.9mmより小さくなるなど、切込の挿入が難しくなる。
When high mechanical properties are required, it is preferable to use a prepreg containing reinforced fibers oriented in one direction and a thermoplastic resin (a prepreg having no notch penetrating from the front surface to the back surface). . A plurality of the prepregs can be laminated to form a laminate.
The absolute value of the angle θ (°) formed by the incision and the orientation direction of the reinforcing fibers is preferably in the range of 2 ° to 45 °. If the absolute value of θ is greater than 45 °, high fluidity can be obtained. Little improvement in mechanical properties. Particularly, when the absolute value of θ is 45 ° or less, the mechanical characteristics are remarkably improved. On the other hand, if the absolute value of θ is smaller than 2 °, sufficient fluidity and mechanical properties can be obtained, but it is difficult to make a stable cut. That is, when the incision lies on the fiber, when the incision is made, the fiber easily escapes from the blade, and in order to make the fiber length L 100 mm or less, the absolute value of θ is more than 2 °. If it is smaller, at least the shortest distance between the cuts becomes smaller than 0.9 mm, making it difficult to insert the cuts.

次工程では、上記のようにして得られた切込の無いプリプレグや切込の有るプリプレグを強化繊維の方向が、一方向、疑似等方、または0°/90°交互積層、ランダム積層など任意の積層構成になるように積層して積層体を作成する。この積層体を構成するプリプレグとして切込の無いプリプレグのみを使用しても良いし、切込の有るプリプレグのみを使用しても良いし、切込の無いプリプレグと切込の有るプリプレグの両方を使用しても良い。この際取扱いの容易さから超音波溶着機で隣接する層をなすプリプレグをスポット溶接しながら積層して積層体とすることもできる。   In the next step, the direction of the reinforcing fiber is unidirectional, pseudo-isotropic, or 0 ° / 90 ° alternating lamination, random lamination, etc. A laminated body is prepared by laminating so as to obtain a laminated structure of As a prepreg constituting this laminate, only a prepreg without a cut may be used, or only a prepreg with a cut may be used, or both a prepreg without a cut and a prepreg with a cut may be used. May be used. At this time, for ease of handling, prepregs forming adjacent layers can be laminated by spot welding with an ultrasonic welding machine to form a laminate.

本発明の繊維強化複合体の製造方法に用いることができる積層体は、複数のプリプレグを強化繊維の方向が擬似等方となるように積層されていることが、プレス時の流動の異方性を小さくする点で好ましい。積層構成は、0°/45°/90°/−45°の4層のn回繰り返しを対称積層したもの(〔0°/45°/90°/−45°〕ns)や0°/60°/−60°の3層のn回繰り返しを対称積層したもの([0°/60°/−60°]ns)で表記される擬似等方であることが好ましい(nは1以上の整数を表し、sは対称積層構成であることを表す)。擬似等方とすることで、積層体のソリを抑制することができる。また、成形して構造材として用いる繊維強化複合体とする場合、多方向からの荷重に耐える必要がある。力学物性の観点からも、繊維強化複合体は汎用的な使用に耐えるよう、擬似等方に積層されていることが好ましい。   The laminated body that can be used in the method for producing a fiber-reinforced composite of the present invention is that a plurality of prepregs are laminated so that the directions of the reinforcing fibers are quasi-isotropic. Is preferable in terms of reducing the size. The layered structure is a layer in which four layers of 0 ° / 45 ° / 90 ° / −45 ° are repeated n times symmetrically ([0 ° / 45 ° / 90 ° / −45 °] ns) or 0 ° / 60. It is preferably pseudo-isotropic expressed by symmetrically laminating three repetitions of 3 layers of ° / -60 ° ([0 ° / 60 ° / -60 °] ns) (n is an integer of 1 or more) And s represents a symmetric stacked configuration). By using pseudo isotropic, warping of the laminate can be suppressed. In addition, when forming a fiber-reinforced composite used as a structural material by molding, it is necessary to withstand loads from multiple directions. Also from the viewpoint of mechanical properties, the fiber reinforced composite is preferably laminated in a pseudo isotropic manner to withstand general-purpose use.

本発明の繊維強化複合体の製造方法に用いることができる積層体は、プリプレグに含まれる強化繊維の方向が0度であるプリプレグと90度であるプリプレグが交互に積層されていることが、積層体の強度の異方性を小さくする点で好ましい。   The laminate that can be used in the method for producing a fiber-reinforced composite according to the present invention is a laminate in which prepregs whose reinforced fibers are included in the prepreg have an orientation of 0 degrees and 90 degrees are alternately laminated. This is preferable in that the anisotropy of the strength of the body is reduced.

本発明にかかる一体化した積層体の厚さは、0.5〜10mmであることが好ましい。0.5mm未満であるとプリプレグの積層数が少なく、切り込み部の重なり部分の影響が大きくなり破壊の起点となりやすくなるためあまり好ましくない。0.5mm以上であると、積層数が増え、切れ込みが重なった場合でも他の層で補うことができる。10mmを超えるとコーナーR部で内層と外層で周長差が大きくなり、内層側にブリッジングが生じたり、外層側の切れ込み部が広がり、開口部となったり、強度低下につながる可能性がある。   The thickness of the integrated laminate according to the present invention is preferably 0.5 to 10 mm. If it is less than 0.5 mm, the number of laminated prepregs is small, and the influence of the overlapping portion of the cut portions becomes large, and it tends to become a starting point of fracture, which is not preferable. When the thickness is 0.5 mm or more, the number of stacked layers increases, and even when the cuts overlap, they can be supplemented with other layers. If it exceeds 10 mm, the circumference difference between the inner layer and the outer layer becomes large at the corner R portion, bridging may occur on the inner layer side, the notched portion on the outer layer side may be widened, an opening portion may be formed, and the strength may be reduced. .

次に、詳細は後述する製造方法によって得られた繊維強化複合体について説明する。   Next, the fiber reinforced composite obtained by the manufacturing method mentioned later for details is demonstrated.

得られた繊維強化複合体について、図2に示すように、積層体を加圧する方向に切断した繊維強化複合体201の形状に沿って計測した断面長さのうち、最短断面長さL1(202)と、L1より長い最長断面長さL2(203)との比L1/L2が、0.3<L1/L2<0.96の範囲であることが好ましい。0.3以下の場合はL1とL2の差が大きくなることにより、L2に張力が大きくかかるため切れ込み部が広がり、開口部となり、強度低下につながる可能性がある。0.96以上の場合は切れ込みを入れることによる成形性向上効果が十分に生かされず、切れ込み挿入の工程を鑑みると効率が良くない。   As for the obtained fiber reinforced composite, as shown in FIG. 2, the shortest cross-sectional length L1 (202 of the cross-sectional lengths measured along the shape of the fiber reinforced composite 201 cut in the direction in which the laminate is pressed is used. ) And the longest cross-sectional length L2 (203) longer than L1 is preferably in the range of 0.3 <L1 / L2 <0.96. In the case of 0.3 or less, since the difference between L1 and L2 becomes large, a large tension is applied to L2, so that the cut portion is widened and becomes an opening, which may lead to a decrease in strength. In the case of 0.96 or more, the effect of improving the formability by making a notch is not fully utilized, and the efficiency is not good in view of the notch insertion process.

また、繊維強化複合体301は、図3に示すように、複数の屈曲部302が設けられていることが好ましい。屈曲部302、402とは、図4に示すように、ある曲率(半径:R)を有している箇所のこと指す。屈曲部402の外縁側の半径Rは、繊維強化複合体401の厚みd(403)の2倍以上から5倍以下の範囲にあることが好ましい。2倍未満では周長差が大きくなるため切れ込み部が広がり開口部となる可能性がある。5倍を超えると切れ込みを入れることによる成形性向上効果が十分に生かされず、切れ込み挿入の工程を鑑みると効率が良くない。   Further, the fiber reinforced composite 301 is preferably provided with a plurality of bent portions 302 as shown in FIG. As shown in FIG. 4, the bent portions 302 and 402 indicate portions having a certain curvature (radius: R). The radius R on the outer edge side of the bent portion 402 is preferably in the range of 2 to 5 times the thickness d (403) of the fiber reinforced composite 401. If it is less than 2 times, the circumferential length difference becomes large, so that the cut portion may expand and become an opening. If it exceeds 5 times, the effect of improving the formability by making the cut is not fully utilized, and the efficiency is not good in view of the step of inserting the cut.

繊維強化複合体301に形成された複数の屈曲部302のうち、隣接する屈曲部302から得られる凸形状部303を2つ以上含むと、凸形状と凸形状の間部分は繊維が拘束されるため、ブリッジングが発生するが、切込の有るプリプレグの積層体を用いた場合は基材が伸びるためブリッジングが発生せず、きれいに成形することができるという点で好ましい。   Of the plurality of bent portions 302 formed in the fiber reinforced composite 301, when two or more convex shaped portions 303 obtained from the adjacent bent portions 302 are included, the fibers are constrained between the convex shapes and the convex shapes. For this reason, bridging occurs, but when a prepreg laminate having a cut is used, the base material is elongated, so that bridging does not occur and it is preferable to form a beautiful shape.

さらに、繊維強化複合体201(301、401)を垂直方向に投影した投影面積Smmと、最大深さLmmとの比S/Lが50mm以上1240mm以下の範囲にあることが好ましい。50mm未満では切れ込み部が広がり開口部となる可能性がある。1240mmを超えると切れ込みを入れることによる成形性向上効果が十分に生かされず、切れ込み挿入の工程を鑑みると効率が良くない。 次に、繊維強化複合体の製造方法について詳細に説明する。 Furthermore, the projected area Smm 2 fiber-reinforced composite 201 a (301, 401) projected in the vertical direction, the ratio S / L between the maximum depth Lmm is preferably in the 1240mm below the range of 50 mm. If it is less than 50 mm, there is a possibility that the cut portion will spread and become an opening. If it exceeds 1240 mm, the effect of improving the formability by making a cut is not fully utilized, and the efficiency is not good in view of the process of inserting the cut. Next, the manufacturing method of a fiber reinforced composite is demonstrated in detail.

本発明の繊維強化複合体を成形する方法としては、強化繊維と熱可塑樹脂とから構成されるプリプレグの表面から裏面に貫通する切込の無いシート状プリプレグやプリプレグの表面から裏面に貫通する切込の有るシート状プリプレグを用いて複数枚積層し、その積層体を熱可塑樹脂の融点以上まで加熱し積層体を溶融させ、加熱時に前記積層体の少なくとも一部に非加熱領域を設けて未溶融部とし、前記積層体の固化温度よりも低温に調温した三次元曲面を持つ成形型に沿わせて加圧し、冷却することで、繊維強化複合体を得る製造方法である。   As a method of molding the fiber-reinforced composite of the present invention, there is a sheet-like prepreg that does not penetrate from the surface of the prepreg composed of reinforcing fibers and a thermoplastic resin to the back surface, or a cut that penetrates from the surface of the prepreg to the back surface. A plurality of laminated sheet-shaped prepregs, and the laminated body is heated to a temperature equal to or higher than the melting point of the thermoplastic resin to melt the laminated body. At the time of heating, an unheated region is provided in at least a part of the laminated body. It is a manufacturing method for obtaining a fiber-reinforced composite by applying pressure along a mold having a three-dimensional curved surface adjusted to a temperature lower than the solidification temperature of the laminated body and cooling.

ここで固化温度とは、結晶性ポリマーの場合は結晶化温度、非晶性ポリマーの場合はガラス転移温度である。   Here, the solidification temperature is a crystallization temperature in the case of a crystalline polymer, and a glass transition temperature in the case of an amorphous polymer.

積層体は遠赤外線ヒーターや加熱板、高温オーブン、誘電加熱、高周波加熱などに例示される加熱装置で加熱される。材料の加熱に要する加熱時間、加熱温度は使用されるマトリックス熱可塑性樹脂によって異なり指定されるものではないが、マトリックス樹脂の融点から分解温度の範囲で加熱されることが好ましい。   The laminate is heated by a heating device exemplified by a far infrared heater, a heating plate, a high temperature oven, dielectric heating, high frequency heating and the like. The heating time and heating temperature required for heating the material differ depending on the matrix thermoplastic resin used and are not specified, but it is preferable that the heating is performed within the range of the melting point to the decomposition temperature of the matrix resin.

非加熱領域を作る手法としては、加熱時に未溶融にしたい箇所に熱が伝わらないようにすることが有効である。例えば、遠赤外線ヒーターを用いて加熱する場合、未溶融にしたい箇所に金属フレームや金属フィルムを乗せておく、もしくアルミテープを貼り付けるだけで、遠赤外線が通過しないため未溶融とすることができる。または、未溶融にしたい箇所のみ遠赤外線を照射しないようにしてもよい。または、加熱時に未溶融にしたい箇所のみを冷却させてもよい。例えば、未溶融にしたい箇所のみに樹脂溶融温度よりも低温の空気などの冷却媒体を当ててもよい。   As a technique for creating a non-heated region, it is effective to prevent heat from being transmitted to a portion that is desired to be unmelted during heating. For example, when heating using a far-infrared heater, place a metal frame or metal film on the part you want to melt, or just stick an aluminum tape and the far-infrared will not pass, so it will be unmelted. it can. Or you may make it not irradiate a far infrared ray only in the location which wants to make it unmelted. Alternatively, only the portion that is desired to be unmelted during heating may be cooled. For example, a cooling medium such as air having a temperature lower than the resin melting temperature may be applied only to a portion that is desired to be unmelted.

加熱溶融された積層体は人手または搬送装置を用いて金型内に搬送される。搬送は可能な限りすばやく行なわれることが好ましく、30秒以下の搬送時間であればプレス時のマトリックス温度が冷却されておらず好ましい。   The laminated body heated and melted is transported into a mold using a manual or transport device. The conveyance is preferably performed as quickly as possible, and a conveyance time of 30 seconds or less is preferable because the matrix temperature during pressing is not cooled.

前記加圧において積層体にかける圧力としては、好ましくは0.1〜10MPaであり、より好ましくは0.2〜3MPaである。この圧力については、プレス力を積層体の面積で除した値とする。この範囲であれば、プリプレグに含まれる強化繊維の間に、熱可塑性樹脂を含浸させることができるので好ましい。   As a pressure applied to a laminated body in the said pressurization, Preferably it is 0.1-10 Mpa, More preferably, it is 0.2-3 Mpa. The pressure is a value obtained by dividing the pressing force by the area of the laminate. If it is this range, since it can be made to impregnate a thermoplastic resin between the reinforced fiber contained in a prepreg, it is preferable.

積層体の固化温度よりも低温になるまで加圧、冷却した後、前記成形型上型を上昇し脱型することで繊維強化複合体を得る。脱型する際に、押し出しピン等を用いて繊維強化複合体を得てもよい。   After pressurizing and cooling to a temperature lower than the solidification temperature of the laminate, the upper mold is raised and removed to obtain a fiber-reinforced composite. When demolding, a fiber reinforced composite may be obtained using an extrusion pin or the like.

次に、本発明の実施例、比較例について説明するが、本発明はこれらの実施例に限定されるものではない。表2において、行は実施例又は比較例を示す。列は左から加熱積層体の未溶融部分の有無、次の列は加熱積層体の切込の有無、その次の列は賦形性すなわち成形した繊維強化複合体の表面品位を評価した結果を示す。平面部にシワ、かつ屈曲部にブリッジングが見られ、実用上問題があるレベルを×、平面部にシワ、かつ屈曲部にブリッジングが一部見られるが実用上問題ないレベルを○、平面部にシワ、かつR部にブリッジングが見られず、実用上問題ないレベルを◎とした。   Next, examples of the present invention and comparative examples will be described, but the present invention is not limited to these examples. In Table 2, the rows indicate examples or comparative examples. The row shows the presence or absence of unmelted parts of the heated laminate from the left, the next row shows the presence or absence of the cut of the heated laminate, and the next row shows the results of evaluating the formability, that is, the surface quality of the molded fiber reinforced composite. Show. X indicates a level where there is wrinkling in the flat part and bridging in the bent part and there is a practical problem, x indicates a level where there is wrinkle in the flat part and some bridging in the bent part, but there is no practical problem The level at which no wrinkles were observed at the part and no bridging was observed at the R part and no problem in practical use was marked as ◎.

(実施例1)
本発明で用いたプリプレグは、炭素繊維とナイロン6から構成されるはTenCate Cetex(登録商標) TC910の繊維方向に直行する幅方向の端部を熱溶着させ700mm角の大きさのシート状にした、一方向プリプレグ基材を用いた。
Example 1
The prepreg used in the present invention is made of carbon fiber and nylon 6, and the end portion in the width direction perpendicular to the fiber direction of TenCate Cetex (registered trademark) TC910 is heat-welded to form a sheet having a size of 700 mm square. A unidirectional prepreg substrate was used.

上記シート状の一方向プリプレグ基材をシリンダーに刃を配置したローラーカッターに繊維方向に挿入し、断続的な直線状の切れ込みを挿入した。繊維長さが12mm、前記切込みと前記強化繊維のなす角をθとしたとき、θは22°とした。   The sheet-like unidirectional prepreg base material was inserted in a fiber direction into a roller cutter having a blade disposed on a cylinder, and intermittent linear cuts were inserted. When the fiber length is 12 mm and the angle between the cut and the reinforcing fiber is θ, θ is 22 °.

シート状プリプレグの繊維方向を0°とし、シート状プリプレグを8枚、(0°/45°/90°/−45°)sとなるように積層し、プリプレグの積層体を得た。   The fiber direction of the sheet-like prepreg was set to 0 °, and 8 sheet-like prepregs were laminated so as to be (0 ° / 45 ° / 90 ° / −45 °) s to obtain a laminate of prepregs.

上記積層体を予備加熱し、溶融させる手法には遠赤外線ヒーターを用いた。積層体を遠赤外線ヒーターにより積層体中心温度が260℃になるまで加熱し加熱積層体を得た。積層体加熱時に未溶融にしたい箇所、積層体周囲、幅50mmにアルミフレームを乗せ非加熱領域を設けることで、加熱積層体に未溶融部を作製した。   A far infrared heater was used as a method for preheating and melting the laminate. The laminate was heated with a far infrared heater until the laminate center temperature reached 260 ° C. to obtain a heated laminate. An unmelted portion was prepared in the heated laminate by providing an unheated region by placing an aluminum frame on a portion to be unmelted at the time of heating the laminate, the periphery of the laminate, and a width of 50 mm.

上記加熱積層体を150℃に加熱されたキャビティに凹凸形状がある上型と下型からなる成形型を用いて、3MPaの圧力でコールドプレスすることで繊維強化複合体を得た。   The heated laminate was cold-pressed at a pressure of 3 MPa using a mold composed of an upper mold and a lower mold having cavities and depressions in a cavity heated to 150 ° C. to obtain a fiber-reinforced composite.

得られた繊維強化複合体はシワ、ブリッジングも見られず表面品位は良好であり、実用上問題のないレベルであり、評価を◎とした。   The obtained fiber reinforced composite did not show wrinkles or bridging, had good surface quality, had no practical problem, and was evaluated as ◎.

(実施例2)
実施例1のプリプレグを用い、切込を挿入することなく、実施例1と同様に繊維強化複合体を成形し、得られた繊維強化複合体の表面品位を評価した。繊維強化複合体の表面に一部ブリッジングが見られたが、実用上問題のないレベルであり、評価を○とした。
(Example 2)
Using the prepreg of Example 1, a fiber reinforced composite was molded in the same manner as in Example 1 without inserting a notch, and the surface quality of the obtained fiber reinforced composite was evaluated. Although some bridging was observed on the surface of the fiber reinforced composite, it was at a level having no problem in practical use, and the evaluation was evaluated as “good”.

(比較例1)
実施例1のプリプレグを用い、実施例1と同様に切込を挿入した。積層体加熱時に未溶融部を設けない以外は実施例1と同様に繊維強化複合体を成形し、得られた繊維強化複合体の表面品位を評価した。繊維強化複合体の表面にシワが見られ、実用上問題のあるレベルと判断し、評価を×とした。
(Comparative Example 1)
Using the prepreg of Example 1, a cut was inserted in the same manner as in Example 1. A fiber reinforced composite was molded in the same manner as in Example 1 except that no unmelted part was provided when the laminate was heated, and the surface quality of the obtained fiber reinforced composite was evaluated. Wrinkles were observed on the surface of the fiber reinforced composite, and it was judged that there was a problem in practical use.

(比較例2)
実施例1のプリプレグを用い、切込を挿入することなく、積層体加熱時に未溶融部を設けない以外は実施例1と同様に繊維強化複合体を成形し、得られた繊維強化複合体の表面品位を評価した。繊維強化複合体の表面にシワが見られ、また、コーナーR部にブリッジングが見られ実用上問題のあるレベルと判断し、評価を×とした。
(Comparative Example 2)
A fiber reinforced composite was molded in the same manner as in Example 1 except that the prepreg of Example 1 was not used, no notch was inserted, and no unmelted portion was provided when the laminate was heated. The surface quality was evaluated. Wrinkles were observed on the surface of the fiber reinforced composite, bridging was observed in the corner R portion, and it was judged that there was a problem in practical use.

本発明は、R部や凹凸形状等の三次元形状の成形に容易に追随し、構造部材として機械強度を維持することができるので、例えば航空機部材、自動車部材、スポーツ用具等に好適に用いることができる。   Since the present invention can easily follow the molding of a three-dimensional shape such as the R portion and the concavo-convex shape and maintain the mechanical strength as a structural member, for example, it can be suitably used for aircraft members, automobile members, sports equipment, etc. Can do.

101:プリプレグ
102:積層体
103:金属フレーム
104:ヒーター
105:加熱積層体
106:加熱積層体溶融部
107:加熱積層体未溶融部
108:下金型
109:上金型
110、201、301、401:繊維強化複合体
202:最短周長L1を持つ前記繊維強化複合体加圧する方向に切断した前記繊維強化複合体の断面長
203:最長周長L2を持つ前記繊維強化複合体加圧する方向に切断した前記繊維強化複合体の断面長
302、402:屈曲部
303:凸形状部
403:厚み測定点
101: Prepreg 102: Laminated body 103: Metal frame 104: Heater 105: Heated laminated body 106: Heated laminated body melting part 107: Heated laminated body unmelted part 108: Lower mold 109: Upper molds 110, 201, 301, 401: Fiber reinforced composite 202: Cross-sectional length 203 of the fiber reinforced composite cut in the direction of pressing the fiber reinforced composite having the shortest peripheral length L1: In the direction of pressing the fiber reinforced composite having the longest peripheral length L2. Section lengths 302 and 402 of the cut fiber reinforced composite: bent portion 303: convex portion 403: thickness measurement point

Claims (7)

強化繊維と熱可塑樹脂とから構成されるシート状プリプレグ基材の積層体を加熱した後、三次元曲面を持つ成形型に沿わせて加圧し、冷却する繊維強化複合体の製造方法であって、前記積層体の少なくとも一部を非加熱領域とする未溶融部とそれ以外の溶融部とを設け、加熱した前記積層体を、該積層体の固化温度より低温に調温した前記成形型に載置し、前記溶融部を前記成形型に沿わせる繊維強化複合体の製造方法。 A method for producing a fiber-reinforced composite in which a laminate of a sheet-like prepreg base material composed of reinforcing fibers and a thermoplastic resin is heated, then pressed along a mold having a three-dimensional curved surface, and cooled. The unmolded part having at least a part of the laminated body as a non-heated region and the other molten part are provided, and the heated laminated body is adjusted to a temperature lower than the solidification temperature of the laminated body. A method for producing a fiber-reinforced composite, which is placed and the molten part is placed along the mold. 一方向に引き揃えられた強化繊維を前記シート状プリプレグ基材として用いる請求項1に記載の繊維強化複合体の製造方法。 The method for producing a fiber-reinforced composite according to claim 1, wherein reinforcing fibers aligned in one direction are used as the sheet-like prepreg base material. 少なくとも一部の強化繊維を10〜100mmの長さに分断した、断続的な切れ込みを複数設けた前記シート状プリプレグ基材が用いられる請求項1または2に記載の繊維強化複合体の製造方法。 The method for producing a fiber-reinforced composite according to claim 1 or 2, wherein the sheet-like prepreg base material provided with a plurality of intermittent cuts, in which at least some of the reinforcing fibers are divided into a length of 10 to 100 mm, is used. 前記切込みと前記強化繊維の配向方向とのなす角θ(°)の絶対値が2°〜45°の範囲である請求項3に記載の繊維強化複合体の製造方法。 The method for producing a fiber-reinforced composite according to claim 3, wherein an absolute value of an angle θ (°) formed by the cut and the orientation direction of the reinforcing fiber is in a range of 2 ° to 45 °. 前記積層体を加圧する方向に切断した前記繊維強化複合体の断面長さのうち、最短断面長さL1と、L1より長い最長断面長さL2との比L1/L2が、0.3<L1/L2<0.96の範囲にある請求項1〜4のいずれかに記載の繊維強化複合体の製造方法。 Of the cross-sectional lengths of the fiber reinforced composite cut in the direction of pressing the laminate, the ratio L1 / L2 between the shortest cross-sectional length L1 and the longest cross-sectional length L2 longer than L1 is 0.3 <L1. The method for producing a fiber-reinforced composite according to any one of claims 1 to 4, wherein /L2<0.96. 前記積層体の強化繊維配向方向に沿って、該積層体を加圧する方向に切断した前記繊維強化複合体の断面に形成された屈曲部を複数有し、前記屈曲部の曲率半径Rが前記繊維強化複合体の厚みdの2倍以上から5倍以下の範囲にあり、前記屈曲部による凸形状部を2ヶ所以上備える請求項1〜5のいずれかに記載の繊維強化複合体の製造方法。 A plurality of bent portions formed in a cross section of the fiber reinforced composite cut in a direction in which the laminate is pressed along the reinforcing fiber orientation direction of the laminate, and the curvature radius R of the bent portion is the fiber. The method for producing a fiber-reinforced composite according to any one of claims 1 to 5, which is in a range of 2 to 5 times the thickness d of the reinforced composite and has two or more convex portions by the bent portion. 前記繊維強化複合体を垂直方向に投影した投影面積Smmと最大深さLmmとの比S/Lが50mm以上1240mm以下の範囲にある請求項1〜6のいずれかに記載の繊維強化複合体の製造方法。 Fiber-reinforced composite according to claim 1 in a ratio S / L range is at least 50mm 1240mm or less of the fiber-reinforced composite projected area Smm 2 and maximum depth Lmm projected in the vertical direction Manufacturing method.
JP2016051945A 2016-03-16 2016-03-16 Fiber reinforced composite and its manufacturing method Active JP6786826B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016051945A JP6786826B2 (en) 2016-03-16 2016-03-16 Fiber reinforced composite and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016051945A JP6786826B2 (en) 2016-03-16 2016-03-16 Fiber reinforced composite and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2017164970A true JP2017164970A (en) 2017-09-21
JP6786826B2 JP6786826B2 (en) 2020-11-18

Family

ID=59912367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016051945A Active JP6786826B2 (en) 2016-03-16 2016-03-16 Fiber reinforced composite and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6786826B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019031478A1 (en) * 2017-08-09 2019-02-14 東レ株式会社 Fiber reinforced plastic and fiber reinforced plastic manufacturing method
JPWO2019078243A1 (en) * 2017-10-20 2020-02-06 東レ株式会社 Method for producing fiber-reinforced plastic composite
CN113272108A (en) * 2018-12-27 2021-08-17 三菱化学株式会社 Method for producing preform, method for producing composite material molded article, and mold

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02273224A (en) * 1989-04-14 1990-11-07 Honda Motor Co Ltd Method for molding fiber reinforced resin
JPH08276514A (en) * 1995-04-07 1996-10-22 Mitsui Toatsu Chem Inc Joint of corrugated pipe and manufacture thereof
JP2000108236A (en) * 1998-10-02 2000-04-18 Mitsubishi Rayon Co Ltd Fiber-reinforced thermoplastic resin laminated sheet, its molding method, medical supporting tool using the same, and its molding method
JP2015096586A (en) * 2013-10-11 2015-05-21 住友化学株式会社 Molded article
JP2015160349A (en) * 2014-02-27 2015-09-07 三菱レイヨン株式会社 Method for producing fiber-reinforced plastic
JP2016011367A (en) * 2014-06-30 2016-01-21 三菱レイヨン株式会社 Laminate substrate
JP2016506327A (en) * 2013-01-02 2016-03-03 ザ・ボーイング・カンパニーTheBoeing Company Fabrication of thermoplastic reinforced composite parts

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02273224A (en) * 1989-04-14 1990-11-07 Honda Motor Co Ltd Method for molding fiber reinforced resin
JPH08276514A (en) * 1995-04-07 1996-10-22 Mitsui Toatsu Chem Inc Joint of corrugated pipe and manufacture thereof
JP2000108236A (en) * 1998-10-02 2000-04-18 Mitsubishi Rayon Co Ltd Fiber-reinforced thermoplastic resin laminated sheet, its molding method, medical supporting tool using the same, and its molding method
JP2016506327A (en) * 2013-01-02 2016-03-03 ザ・ボーイング・カンパニーTheBoeing Company Fabrication of thermoplastic reinforced composite parts
JP2015096586A (en) * 2013-10-11 2015-05-21 住友化学株式会社 Molded article
JP2015160349A (en) * 2014-02-27 2015-09-07 三菱レイヨン株式会社 Method for producing fiber-reinforced plastic
JP2016011367A (en) * 2014-06-30 2016-01-21 三菱レイヨン株式会社 Laminate substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019031478A1 (en) * 2017-08-09 2019-02-14 東レ株式会社 Fiber reinforced plastic and fiber reinforced plastic manufacturing method
JPWO2019078243A1 (en) * 2017-10-20 2020-02-06 東レ株式会社 Method for producing fiber-reinforced plastic composite
CN113272108A (en) * 2018-12-27 2021-08-17 三菱化学株式会社 Method for producing preform, method for producing composite material molded article, and mold

Also Published As

Publication number Publication date
JP6786826B2 (en) 2020-11-18

Similar Documents

Publication Publication Date Title
US10604633B2 (en) Thermoplastic prepreg and laminate
JP5167953B2 (en) Laminated substrate, fiber reinforced plastic, and production method thereof
JP6962191B2 (en) Manufacturing method of fiber reinforced plastic and fiber reinforced plastic
US10919259B2 (en) Laminated substrate using fiber-reinforced thermoplastic plastic, and molded product manufacturing method using same
JP6464602B2 (en) LAMINATED SUBSTRATE MANUFACTURING METHOD AND LAMINATED SUBSTRATE
TWI793144B (en) Prepreg laminate and method for producing fiber-reinforced plastic using prepreg laminate
JP2011084038A (en) Method for manufacturing fiber-reinforced composite material
JP2017164970A (en) Fiber-reinforced composite and method for producing the same
JP2015166130A (en) Method for producing fiber-reinforced plastic
JP5332225B2 (en) Manufacturing method of fiber reinforced composite material
JPS63247012A (en) Preparation of fiber reinforced thermoplastic
WO2019188195A1 (en) Method for producing fiber-reinforced resin
JP2013221114A (en) Resin sheet made of carbon fiber composite resin material, resin molded product and method for manufacturing the same
JP6435696B2 (en) Method for producing laminated substrate
JP2016210080A (en) Molding and method for producing the same
JP2014189722A (en) Laminated base material of fiber-reinforced plastic and method for producing the same
JP2014104641A (en) Laminate substrate and fiber-reinforced composite material
JP2014087963A (en) Method for producing molded part
TW201832905A (en) Method for producing fiber-reinforced plastic
JP2017001371A (en) Manufacturing method of fiber reinforced plastic molded sheet
JP2015160349A (en) Method for producing fiber-reinforced plastic
JP2016087907A (en) Method for producing fiber-reinforced plastic
JP2014188954A (en) Fiber-reinforced thermoplastic resin structure, and production method thereof
JP2014173031A (en) Stampable molded article, and method for producing the same
JP2016172346A (en) Method for producing fiber reinforced plastic and laminated sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201012

R151 Written notification of patent or utility model registration

Ref document number: 6786826

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151