JP7384029B2 - Fiber fabrics and carbon fiber reinforced composite materials - Google Patents

Fiber fabrics and carbon fiber reinforced composite materials Download PDF

Info

Publication number
JP7384029B2
JP7384029B2 JP2019237644A JP2019237644A JP7384029B2 JP 7384029 B2 JP7384029 B2 JP 7384029B2 JP 2019237644 A JP2019237644 A JP 2019237644A JP 2019237644 A JP2019237644 A JP 2019237644A JP 7384029 B2 JP7384029 B2 JP 7384029B2
Authority
JP
Japan
Prior art keywords
fiber
yarn
carbon fiber
yarns
warp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019237644A
Other languages
Japanese (ja)
Other versions
JP2021105234A (en
Inventor
耕志 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2019237644A priority Critical patent/JP7384029B2/en
Publication of JP2021105234A publication Critical patent/JP2021105234A/en
Application granted granted Critical
Publication of JP7384029B2 publication Critical patent/JP7384029B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Woven Fabrics (AREA)

Description

本発明は繊維強化複合材料用として優れた特性を発揮する、土木建築用補強や一般的な産業用途などの広範な用途に適した繊維織物およびそれを用いた炭素繊維強化複合材料に関する。 The present invention relates to a fiber fabric that exhibits excellent properties as a fiber-reinforced composite material and is suitable for a wide range of uses such as reinforcement for civil engineering and construction and general industrial use, and a carbon fiber-reinforced composite material using the same.

各種の強化繊維と各種のマトリックス樹脂とを複合化した繊維強化複合材料は、軽量で優れた機械特性を有するため、建造用途(建造物の補強材料等)、一般産業用途、自動車用途(自動車部材)、スポーツ用途(スポーツ用具、自転車部材等)、航空宇宙用途(航空機部材等)等に広く用いられている。 Fiber-reinforced composite materials, which are made by combining various reinforcing fibers and various matrix resins, are lightweight and have excellent mechanical properties, so they are suitable for construction applications (reinforcing materials for buildings, etc.), general industrial applications, and automotive applications (automotive parts). ), sports applications (sports equipment, bicycle parts, etc.), aerospace applications (aircraft parts, etc.), etc.

繊維強化複合材料の製造方法としては、例えば、成形型の上にマトリックス樹脂組成物が未含浸の強化繊維基材を積み重ねたものに、マトリックス樹脂組成物を含浸させ、硬化させる成形法(ハンドレイアップ法、レジントランスファーモールディング(RTM)法、バキュームアシストレジントランスファーモールディング(VaRTM)法等)が知られている。 As a manufacturing method for fiber-reinforced composite materials, for example, reinforcing fiber base materials not impregnated with the matrix resin composition are piled up on a mold, which is then impregnated with the matrix resin composition and cured (hand-laying). methods such as up method, resin transfer molding (RTM) method, vacuum assisted resin transfer molding (VaRTM) method, etc. are known.

含浸に用いられる強化繊維基材としては、たて糸とよこ糸の双方または一方に強化繊維糸条を使用し、織組織を構成する強化繊維織物が多く使用される。強化繊維織物は繊維糸条が相互に拘束しあうため基材の形態保持性に優れ、かつ簡易な設備によって生産が可能である。
特に表面平滑性または一方向の機械的特性が重視される場合はたて糸に強化繊維糸条、よこ糸に前記強化繊維糸条よりも小さい糸条繊度の補助繊維糸条を使用する一方向性補強繊維織物が使用される。
As the reinforcing fiber base material used for impregnation, reinforcing fiber fabrics are often used in which reinforcing fiber threads are used in both or one of the warp and weft to form a woven structure. Reinforced fiber fabrics have excellent shape retention of the base material because the fiber threads bind each other, and can be produced using simple equipment.
In particular, when surface smoothness or unidirectional mechanical properties are important, unidirectional reinforcing fibers are used in which the warp is a reinforcing fiber yarn and the weft is an auxiliary fiber yarn with a yarn fineness smaller than that of the reinforcing fiber yarn. Textiles are used.

特許文献1に記載された一方向性補強繊維織物は、たて糸を炭素繊維マルチフィラメント糸条にて構成し、多数のたて糸を横に並べた状態とし、これと細くかつ織密度の低いガラス繊維からなる補助繊維糸条とを平組織で織り合わせることで、繊維強化成形品の成形に適したシート状の織物としたものである。一方向性織物は強化繊維糸条同士を織り合わせた強化繊維織物と比較し、たて糸及びよこ糸の交点における強化繊維糸条のクリンプ量が小さいため、樹脂組成物と一体化して作られる成型品の表面平滑性と機械的強度において優位である。 The unidirectional reinforcing fiber fabric described in Patent Document 1 has warp yarns made of carbon fiber multifilament yarns, with a large number of warp yarns lined up horizontally, and thin glass fibers with a low weaving density. By interweaving these auxiliary fiber yarns in a flat weave, a sheet-like woven fabric suitable for forming fiber-reinforced molded products is obtained. Compared to reinforcing fiber fabrics in which reinforcing fiber threads are woven together, unidirectional fabrics have a smaller crimp amount of reinforcing fiber threads at the intersections of warp and weft threads, so molded products made by integrating them with resin compositions. Superior in surface smoothness and mechanical strength.

しかしながら、一方向性補強繊維織物においてたて糸炭素繊維マルチフィラメント糸条の配列に対しよこ糸補助繊維糸条を挿入する際、各たて糸炭素繊維マルチフィラメント糸条はよこ糸補助繊維糸条に絞られ、結果として略楕円形の断面形状となる。成型時に金型などの平面に押し付けられた際もよこ糸補助繊維糸条に拘束されるため、たて糸炭素繊維マルチフィラメント糸条の断面方向端部は中央部に対して薄くなる。成型品においてはたて糸炭素繊維マルチフィラメント糸条間の領域で樹脂量過剰となり、ひけの発生によって表面平滑性が低下する。 However, when inserting a weft auxiliary fiber yarn into an array of warp carbon fiber multifilament yarns in a unidirectional reinforced fiber fabric, each warp carbon fiber multifilament yarn is squeezed into a weft auxiliary fiber yarn, resulting in It has a substantially elliptical cross-sectional shape. Since the warp carbon fiber multifilament yarn is restrained by the weft auxiliary fiber yarn when pressed against a flat surface such as a mold during molding, the end portions in the cross-sectional direction of the warp carbon fiber multifilament yarn are thinner than the center portion. In a molded product, the amount of resin is excessive in the area between the warp carbon fiber multifilament yarns, and the surface smoothness decreases due to the occurrence of sink marks.

含浸に用いられる他の一方向性強化繊維基材としては、特許文献2に記載された炭素繊維マルチフィラメント糸条が平行に配列されたシートと無機または有機繊維糸条からなるメッシュを一体化するように編成された、ステッチング糸条からなる拘束編地で拘束された一方向性編物基材がある。一方向性編物基材においてもステッチ糸貫入部付近の領域で樹脂量過剰となり、ひけの発生によって表面平滑性が低下するという問題がある。
また、一方向性編物基材は製造に必要な多軸織機が複雑かつ大がかりとなりコスト面で不利な場合がある。また、連続したメッシュ状体を使用しなければならないため成型品における強化繊維の割合を高くすることができず、さらに成型品層間が樹脂量過剰となるため層間せん断強度や衝撃強度に劣るという問題点がある。
Other unidirectional reinforcing fiber base materials used for impregnation include a sheet in which carbon fiber multifilament threads are arranged in parallel and a mesh made of inorganic or organic fiber threads is integrated, as described in Patent Document 2. There is a unidirectional knitted fabric base material which is knitted as shown in FIG. Even in a unidirectional knitted fabric base material, there is a problem in that the amount of resin is excessive in the region near the stitch thread penetration part, and the surface smoothness is reduced due to the occurrence of sink marks.
Further, the unidirectional knitted fabric base material requires a complicated and large-scale multi-axis loom for production, which may be disadvantageous in terms of cost. In addition, since a continuous mesh-like body must be used, it is not possible to increase the proportion of reinforcing fibers in the molded product, and furthermore, the amount of resin between the layers of the molded product is excessive, resulting in poor interlaminar shear strength and impact strength. There is a point.

含浸に用いられる他の一方向性強化繊維基材としては、特許文献3に記載された炭素繊維マルチフィラメント糸条が平行に配列されたシート状物をメッシュ状体と片面で粘着固定する一方向性強化繊維複合基材がある。しかし、このような一方向性強化繊維複合基材は製造には汎用的に使用される織機とは異なる特有の設備が必要である。また、連続したメッシュ状体を使用しなければならないため成型品における強化繊維の割合を高くすることができず、さらに成型品層間が樹脂量過剰となるため層間せん断強度や衝撃強度に劣るという問題点がある。 Other unidirectional reinforcing fiber base materials used for impregnation include the unidirectional reinforcing fiber base material described in Patent Document 3, in which a sheet-like material in which carbon fiber multifilament threads are arranged in parallel is adhesively fixed on one side to a mesh-like material. There is a reinforced fiber composite base material. However, manufacturing such a unidirectional reinforced fiber composite base material requires special equipment different from a commonly used loom. In addition, since a continuous mesh-like body must be used, it is not possible to increase the proportion of reinforcing fibers in the molded product, and furthermore, the amount of resin between the layers of the molded product is excessive, resulting in poor interlaminar shear strength and impact strength. There is a point.

特許3991440号公報Patent No. 3991440 特開2004-209667号公報Japanese Patent Application Publication No. 2004-209667 特許03099730号公報Patent No. 03099730

本発明の目的は以上のような現状に着目し、強化繊維として炭素繊維マルチフィラメント糸条が用いられた、樹脂と一体化されて成形されたときに表面平滑性に優れる、製造が容易な繊維織物およびそれを用いた炭素繊維強化複合材料を提供することにある。 The purpose of the present invention is to focus on the above-mentioned current situation, and to provide a fiber that uses carbon fiber multifilament yarn as a reinforcing fiber, has excellent surface smoothness when molded integrally with a resin, and is easy to manufacture. An object of the present invention is to provide a woven fabric and a carbon fiber reinforced composite material using the same.

本発明は、上記背景下になされたものであり、以下[1]~[9]の態様を含む。
[1]複数の炭素繊維マルチフィラメント糸条が平行に配列されたシートと、複数の補助繊維糸条とを含む繊維織物であって、
前記繊維織物は、前記炭素繊維マルチフィラメント糸条をたて糸、前記補助繊維糸条をよこ糸として織組織されており、
前記繊維織物における前記炭素繊維マルチフィラメント糸条の本数をN本、前記補助繊維糸条の挿入密度をD本/mとしたとき、前記炭素繊維マルチフィラメント糸条の少なくとも一つが、前記補助繊維糸との交点の密度YがD/N個/m以下となる面を有する、繊維織物。
[2]両面が前記交点の密度YがD/N個/mを超える面を有する炭素繊維マルチフィラメント糸条を含む請求項1に記載の繊維織物。
[3]前記交点の密度YがD/N個/m以下となる面を有さない炭素繊維マルチフィラメント糸条が隣り合って配置されていない、[1]または[2]に記載の繊維織物。
[4]該補助繊維糸条が該たて糸炭素繊維マルチフィラメント糸条より小さい糸条繊度である、[1]から[3]のいずれか1つに記載の繊維織物。
[5]前記交点において前記炭素繊維マルチフィラメント糸条と前記補助繊維糸条とが熱可塑性ポリマーによって接着されている、[1]から[4]のいずれか1つに記載の繊維織物。
[6]前記補助繊維糸条が、熱可塑性ポリマーが付着したガラス繊維である、[1]から[5]のいずれか1つに記載の繊維織物。
[7]前記たて糸炭素繊維マルチフィラメント糸条のフィラメント数が24000~100000本である、[1]から[6]のいずれか1つに記載の繊維織物。
[8]熱硬化性樹脂組成物と[1]から[7]のいずれか1つに記載の繊維織物とを含む炭素繊維強化複合材料。
[9]熱可塑性樹脂組成物と[1]から[7]のいずれか1つに記載の繊維織物とを含む炭素繊維強化複合材料。
The present invention was made against the above background, and includes the following aspects [1] to [9].
[1] A fiber fabric including a sheet in which a plurality of carbon fiber multifilament threads are arranged in parallel, and a plurality of auxiliary fiber threads,
The fiber fabric is woven with the carbon fiber multifilament yarn as the warp yarn and the auxiliary fiber yarn as the weft yarn,
When the number of the carbon fiber multifilament yarns in the fiber fabric is N, and the insertion density of the auxiliary fiber yarns is D yarns/m, at least one of the carbon fiber multifilament yarns is the auxiliary fiber yarn. A fiber fabric having a surface where the density Y at the intersection with D/N pieces/m or less.
[2] The fibrous fabric according to claim 1, wherein both sides include carbon fiber multifilament yarns having surfaces in which the density Y of the intersection points exceeds D/N pieces/m.
[3] The fiber fabric according to [1] or [2], wherein carbon fiber multifilament yarns that do not have a surface where the density Y of the intersection points is D/N pieces/m or less are not arranged next to each other. .
[4] The fibrous fabric according to any one of [1] to [3], wherein the auxiliary fiber yarn has a smaller yarn fineness than the warp carbon fiber multifilament yarn.
[5] The fiber fabric according to any one of [1] to [4], wherein the carbon fiber multifilament yarn and the auxiliary fiber yarn are bonded to each other by a thermoplastic polymer at the intersection point.
[6] The fibrous fabric according to any one of [1] to [5], wherein the auxiliary fiber yarn is glass fiber to which a thermoplastic polymer is attached.
[7] The fiber fabric according to any one of [1] to [6], wherein the warp carbon fiber multifilament yarn has a number of filaments of 24,000 to 100,000.
[8] A carbon fiber reinforced composite material comprising a thermosetting resin composition and the fibrous fabric according to any one of [1] to [7].
[9] A carbon fiber reinforced composite material comprising a thermoplastic resin composition and the fibrous fabric according to any one of [1] to [7].

本発明によれば、強化繊維として炭素繊維マルチフィラメント糸条が用いられた、樹脂と一体化されて成形されたときに表面平滑性に優れる、製造が容易な繊維織物およびそれを用いた炭素繊維強化複合材料を得られる。 According to the present invention, an easy-to-manufacture fiber fabric that uses carbon fiber multifilament threads as reinforcing fibers and has excellent surface smoothness when molded integrally with a resin, and carbon fibers using the same. Reinforced composite material can be obtained.

本発明の一実施態様に係る繊維織物の一例を示す平面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a top view which shows an example of the fiber fabric based on one embodiment of this invention. 本発明の一実施態様に係る繊維織物の一例を示す断面図である。FIG. 1 is a cross-sectional view showing an example of a fiber fabric according to an embodiment of the present invention. 本発明の織物の製造手段である織機の一例である。This is an example of a loom that is a means for manufacturing the fabric of the present invention.

(繊維織物)
本発明は、複数の炭素繊維マルチフィラメント糸条が平行に配列されたシートと、複数の補助繊維糸条とを含む繊維織物である(以降、一方向性補強繊維織物と称する場合がある)。炭素繊維マルチフィラメント糸条とは、炭素繊維単フィラメントが多数本、ほぼ同一方向に引き揃えられサイズ剤などにより一体化された糸条である。補助繊維糸条とは、荷重を負担することを目的とせず、荷重を負担する強化繊維を拘束し基材を一体化することを目的に基材中に導入される任意の材質からなる糸条である。前記一方向性補強繊維織物は、炭素繊維マルチフィラメント糸条をたて糸、補助繊維糸条をよこ糸として織組織されている。織組織されているとは互いに直行する複数のたて糸と複数のよこ糸が厚み方向の位置を入れ替え、上下に組み合されて平面を構成し一体化されていることを指す。炭素繊維マルチフィラメント糸条と補助繊維糸条とが互いの交点において接着されていることが好ましい。交点とは、炭素繊維マルチフィラメント糸条と補助繊維糸条とが接触している部分であり、面や線であってもよい。一方向性補強繊維織物における炭素繊維マルチフィラメント糸条の本数をN本、補助繊維糸条の挿入密度をD本/mとしたとき、炭素繊維マルチフィラメント糸条の少なくとも一つが、前記補助繊維糸との交点の密度YがD/N個/m以下となる面を有する。補助繊維糸条の挿入密度Dは、20~500本/mであることが好ましい。炭素繊維マルチフィラメント糸条は、繊維方向と平行な2つの面を有し、その内1つの面上の補助繊維糸条との交点の密度YがD/N個/m以下となることで平滑性に優れる。方向性補強繊維織物は、強度及び外観の観点から、さらに両面が前記交点の密度YがD/N個/mを超える面を有する炭素繊維マルチフィラメント糸条を含むことが好ましい。交点の密度Yは、単位長さ当たりの炭素繊維マルチフィラメント糸条の一面と補助繊維糸条とが接触している部分を数える。Yは、D/(10×N)個/m以下が好ましく、0個/mであることがより好ましい。つまり、一方向性補強繊維織物は、一方の面に補助繊維糸条との交点を有しない炭素繊維マルチフィラメント糸条を含むことが好ましい。例えば、補助繊維糸条2の相互間隔が10mmとすると、図1の1bの炭素繊維マルチフィラメント糸条では、10の面、11の面ともに交点の密度が50個/mとなり、1aの炭素繊維マルチフィラメント糸条では、10の面では交点の密度が100個/m、11の面では交点の密度が0個/mとなる。
(fiber fabric)
The present invention is a fiber fabric including a sheet in which a plurality of carbon fiber multifilament threads are arranged in parallel, and a plurality of auxiliary fiber threads (hereinafter sometimes referred to as a unidirectional reinforcing fiber fabric). A carbon fiber multifilament yarn is a yarn in which a large number of carbon fiber single filaments are aligned in substantially the same direction and unified by a sizing agent or the like. Auxiliary fiber threads are threads made of any material that are introduced into the base material not for the purpose of bearing the load, but for the purpose of restraining the reinforcing fibers that bear the load and integrating the base material. It is. The unidirectional reinforcing fiber fabric is woven with carbon fiber multifilament yarns as warp yarns and auxiliary fiber yarns as weft yarns. The term woven means that a plurality of warp threads and a plurality of weft threads running perpendicular to each other switch their positions in the thickness direction and are combined vertically to form a plane and are integrated. It is preferable that the carbon fiber multifilament yarn and the auxiliary fiber yarn are bonded to each other at their intersections. The intersection is a portion where the carbon fiber multifilament yarn and the auxiliary fiber yarn are in contact, and may be a plane or a line. When the number of carbon fiber multifilament threads in the unidirectional reinforcing fiber fabric is N, and the insertion density of the auxiliary fiber threads is D threads/m, at least one of the carbon fiber multifilament threads is the auxiliary fiber thread. It has a surface where the density Y of the intersection points with is equal to or less than D/N pieces/m. The insertion density D of the auxiliary fiber threads is preferably 20 to 500 threads/m. Carbon fiber multifilament yarn has two surfaces parallel to the fiber direction, and the density Y of the intersection with the auxiliary fiber yarn on one of the surfaces is D/N pieces/m or less, so that it is smooth. Excellent in sex. From the viewpoints of strength and appearance, the directional reinforcing fiber fabric preferably includes carbon fiber multifilament yarns on both sides of which the density Y of the intersection points exceeds D/N pieces/m. The density Y of the intersection points is calculated by counting the portion where one surface of the carbon fiber multifilament yarn and the auxiliary fiber yarn are in contact with each other per unit length. Y is preferably D/(10×N) pieces/m or less, and more preferably 0 pieces/m. That is, it is preferable that the unidirectional reinforcing fiber fabric includes carbon fiber multifilament yarns having no intersections with the auxiliary fiber yarns on one surface. For example, if the mutual spacing between the auxiliary fiber yarns 2 is 10 mm, then in the carbon fiber multifilament yarn 1b in FIG. In the multifilament yarn, the density of intersection points is 100 pieces/m on the 10 plane, and 0 pieces/m on the 11 plane.

(炭素繊維マルチフィラメント糸条)
本発明で強化繊維として使用する炭素繊維マルチフィラメント糸条は長手方向に狭い範囲の両面においてよこ糸補助繊維糸条との交点を有する部位を除くと、よこ糸補助繊維糸条に絞られることがないため自由な断面形状をとることができる。このため、交点の密度数YがD/N個/m以下となる面が金型などの平滑面に接した際、炭素繊維マルチフィラメント糸条を構成する炭素繊維単フィラメントが平滑面に沿って広がる略台形の断面形状をとる。このとき、隣接する炭素繊維マルチフィラメント糸条との間に空隙ができないため、樹脂と一体化して成型品にした際にヒケが抑制され優れた表面平滑性を発揮する。糸条繊度が高いほど交点の密度数YがD/N個/m以下となる面が平滑面と接するたて糸炭素繊維マルチフィラメント糸条の断面形状が略台形になりやすく、より高い表面平滑性の成型品を得ることができる。糸条フィラメント数は、成形品の平滑性の観点から24000本以上が好ましく、40000本以上がより好ましい。一方、生産性の観点から100000本以下が好ましく、60000本以下がより好ましい。糸条繊度は、成形品の平滑性の観点から1600mg/m以上が好ましく、3000mg/mがより好ましい。一方、生産性の観点から、7500mg/m以下が好ましく、4500mg/m以下がより好ましい。
炭素繊維マルチフィラメント糸条を構成するフィラメント径は生産性向上のため、4μm以上が好ましく、6μm以上がより好ましい。内部と外周部が均質な高い物性を発現するため16μm以下が好ましく、14μm以下がより好ましい。さらに、炭素繊維の引張強度は建材補強や産業用途部材では負担可能な荷重が重要なため3000MPa以上が好ましく、4000MPa以上がより好ましい。また高強度炭素繊維は高価格となるため費用対効果の観点から8000以下が好ましく、7000MPa以下がより好ましい。。本発明において、炭素繊維の引張強度とは、JIS R 7601に準拠して測定したストランド強度を指す。
(Carbon fiber multifilament yarn)
The carbon fiber multifilament yarn used as the reinforcing fiber in the present invention is not narrowed down to the weft auxiliary fiber yarn except for the areas where it intersects with the weft auxiliary fiber yarn on both sides of a narrow range in the longitudinal direction. Can take any cross-sectional shape. Therefore, when a surface where the density number Y of intersection points is D/N pieces/m or less comes into contact with a smooth surface such as a mold, the carbon fiber single filaments constituting the carbon fiber multifilament yarn will move along the smooth surface. It has a widening approximately trapezoidal cross-sectional shape. At this time, since voids are created between adjacent carbon fiber multifilament threads, sink marks are suppressed and excellent surface smoothness is exhibited when integrated with resin to form a molded product. The higher the yarn fineness, the more likely the cross-sectional shape of the warp carbon fiber multifilament yarn, where the surface where the density number Y of intersection points is D/N pieces/m or less is in contact with the smooth surface, becomes approximately trapezoidal, resulting in higher surface smoothness. Molded products can be obtained. The number of yarn filaments is preferably 24,000 or more, more preferably 40,000 or more from the viewpoint of smoothness of the molded product. On the other hand, from the viewpoint of productivity, the number is preferably 100,000 or less, and more preferably 60,000 or less. The yarn fineness is preferably 1600 mg/m or more, more preferably 3000 mg/m from the viewpoint of the smoothness of the molded product. On the other hand, from the viewpoint of productivity, it is preferably 7500 mg/m or less, more preferably 4500 mg/m or less.
In order to improve productivity, the diameter of the filaments constituting the carbon fiber multifilament yarn is preferably 4 μm or more, more preferably 6 μm or more. The thickness is preferably 16 μm or less, more preferably 14 μm or less in order to exhibit high physical properties with homogeneity in the inner and outer peripheral portions. Further, the tensile strength of carbon fiber is preferably 3000 MPa or more, more preferably 4000 MPa or more, since the load that can be borne is important for building material reinforcement and industrial use members. Furthermore, since high-strength carbon fibers are expensive, the tensile strength is preferably 8,000 MPa or less, more preferably 7,000 MPa or less from the viewpoint of cost effectiveness. . In the present invention, the tensile strength of carbon fiber refers to strand strength measured in accordance with JIS R 7601.

炭素繊維マルチフィラメント糸条の集束性は、交点の密度数YがD/N個/m以下となる面が平滑面と接するたて糸炭素繊維マルチフィラメント糸条の断面形状が適切に変形し、成型品において高い表面平滑性を得ることができ、また毛羽の発生による製織性や強度が向上することから、フックドロップ値で100mm以上が好ましく、500mm以上がより好ましい。一方で、糸条としての取り扱いが容易となり製織性が向上することから、フックドロップ値で1000mm以下が好ましく、900mm以下がより好ましい。ここでフックドロップ値とは炭素繊維マルチフィラメント糸条の集束性に関係する要素で、鉛直方向に配された糸条に合計重量30gのフック(半径5mm、金属製ワイヤー直径1mm)および錘を差し入れた状態で落下させた際の落下距離として測定される。 The convergence of the carbon fiber multifilament yarn is achieved by appropriately deforming the cross-sectional shape of the warp carbon fiber multifilament yarn, where the surface where the density number Y of the intersection points is D/N pieces/m or less is in contact with the smooth surface, and forming a molded product. The hook drop value is preferably 100 mm or more, more preferably 500 mm or more, since high surface smoothness can be obtained and the weavability and strength are improved due to the generation of fuzz. On the other hand, the hook drop value is preferably 1000 mm or less, more preferably 900 mm or less, since it becomes easier to handle as a yarn and improves weaving properties. Here, the hook drop value is a factor related to the cohesiveness of carbon fiber multifilament yarn, and a hook (radius 5 mm, metal wire diameter 1 mm) with a total weight of 30 g and a weight are inserted into the yarn arranged vertically. It is measured as the falling distance when the object is dropped.

本発明に用いる炭素繊維には、エポキシ基、水酸基、アミノ基、カルボキシル基、カルボン酸無水物基、アクリレート基およびメタクリレート基から選ばれる1種類以上の官能基を持つ物質を0.01~5質量%付着させ、繊維束の収束性や、炭素繊維強化複合材料としたときの炭素繊維とマトリックス樹脂との接着性を改善するサイズ剤として用いることができる。 The carbon fiber used in the present invention contains 0.01 to 5 mass of a substance having one or more functional groups selected from epoxy groups, hydroxyl groups, amino groups, carboxyl groups, carboxylic acid anhydride groups, acrylate groups, and methacrylate groups. % and can be used as a sizing agent to improve the convergence of fiber bundles and the adhesion between carbon fibers and matrix resin when made into a carbon fiber reinforced composite material.

(よこ糸補助繊維糸条)
本発明に用いるよこ糸補助繊維糸条はガラス繊維や炭素繊維、バサルト繊維などの無機繊維、ポリアラミド繊維、ビニロン繊維、ポリエステル繊維などの有機繊維が使用でき、種類に関しては特に限定はない。
よこ糸補助繊維糸条は、クリンプが小さくなり、強度向上することから、糸条繊度は2mg/m以上が好ましく、5mg/m以上がより好ましく、10mg/m以上がさらに好ましい。また、製織や取扱いに際して切断しにくいため、2000mg/m以下が好ましく、200mg/m以下がより好ましく、50mg/m以下がさらに好ましい。
また、収束性の観点から、よこ糸補助繊維糸条の糸条繊度はたて糸炭素繊維マルチフィラメント糸条の糸条繊度に対し、0.01%以上が好ましく、0.05%以上がより好ましく、0.1%以上がさらに好ましい。一方、平滑性の観点から100%以下が好ましく、10%以下がより好ましく、1%以下がさらに好ましい。
(Weft auxiliary fiber yarn)
As the weft auxiliary fiber yarn used in the present invention, inorganic fibers such as glass fiber, carbon fiber, and basalt fiber, and organic fibers such as polyaramid fiber, vinylon fiber, and polyester fiber can be used, and the type thereof is not particularly limited.
Since the crimp of the weft auxiliary fiber yarn is reduced and the strength is improved, the yarn fineness is preferably 2 mg/m or more, more preferably 5 mg/m or more, and even more preferably 10 mg/m or more. In addition, since it is difficult to cut during weaving or handling, it is preferably 2000 mg/m or less, more preferably 200 mg/m or less, and even more preferably 50 mg/m or less.
In addition, from the viewpoint of convergence, the yarn fineness of the weft auxiliary fiber yarn is preferably 0.01% or more, more preferably 0.05% or more, with respect to the yarn fineness of the warp carbon fiber multifilament yarn. .1% or more is more preferable. On the other hand, from the viewpoint of smoothness, it is preferably 100% or less, more preferably 10% or less, and even more preferably 1% or less.

たて糸炭素繊維マルチフィラメント糸条と、よこ糸補助繊維糸条とを接着するため、熱可塑性ポリマーが連続的に付着したよこ糸補助繊維糸条を使用することができる。使用される熱可塑性ポリマーとしては、ナイロン、共重合ナイロン、ポリエステル、塩化ビニリデン、塩化ビニル、ポリウレタンなどである。中でも、共重合ナイロン、例えば、ナイロン6、66および610の共重合ナイロン、ナイロン6、12、66および610の共重合ナイロンは熱硬化性樹脂との接着が良好であるので好ましい。取り扱い性、基材の形態保持性、耐環境性の観点から、熱可塑性ポリマーが付着したガラス繊維であることが好ましい。熱可塑性ポリマーをよこ糸補助繊維糸条に付着する方法は合撚、カバリング、引き揃えなど何ら限定するものではない。 In order to bond the warp carbon fiber multifilament yarn and the weft auxiliary fiber yarn, it is possible to use a weft auxiliary fiber yarn to which a thermoplastic polymer is continuously attached. Thermoplastic polymers used include nylon, copolymerized nylon, polyester, vinylidene chloride, vinyl chloride, polyurethane, and the like. Among these, copolymerized nylons, such as copolymerized nylons of nylon 6, 66, and 610, and copolymerized nylons of nylons 6, 12, 66, and 610, are preferred because they have good adhesion to thermosetting resins. From the viewpoint of ease of handling, shape retention of the base material, and environmental resistance, glass fibers to which a thermoplastic polymer is attached are preferable. The method of attaching the thermoplastic polymer to the weft auxiliary fiber yarn is not limited in any way, such as plying, covering, and pulling.

(繊維織物の態様)
本発明の繊維織物は、たて糸である多数の炭素繊維マルチフィラメント糸条とよこ糸補助繊維糸条からなる。たて糸炭素繊維マルチフィラメント糸条とよこ糸補助繊維糸条を互いの交点において接着する手段として熱可塑性ポリマーの使用が挙げられるが、その他の手段であってもよい。
熱可塑性ポリマーの供給手段は、熱可塑性ポリマーが連続的に付着したよこ糸補助繊維糸条の使用が好ましいが、熱可塑性ポリマーが連続的に付着した炭素繊維マルチフィラメント糸条の使用、炭素繊維マルチフィラメント糸条シートへのスプレーによる熱可塑性ポリマーの塗布など何ら限定するものではない。
(Aspects of fiber fabric)
The fiber fabric of the present invention consists of a large number of carbon fiber multifilament yarns as warp yarns and weft auxiliary fiber yarns. A thermoplastic polymer may be used as a means for adhering the warp carbon fiber multifilament yarn and the weft auxiliary fiber yarn at their intersections, but other means may be used.
As the means for supplying the thermoplastic polymer, it is preferable to use a weft auxiliary fiber yarn to which the thermoplastic polymer is continuously attached, but carbon fiber multifilament yarn to which the thermoplastic polymer is continuously attached, carbon fiber multifilament The method is not limited to applying the thermoplastic polymer by spraying onto the yarn sheet.

図1に示すように、一部のたて糸炭素繊維マルチフィラメント糸条1aは、一方の面11において交点の密度YがD/N個/m以下となる。本態様においては、たて糸炭素繊維マルチフィラメント糸条1aは、片面のみ(面10)でよこ糸補助繊維糸条2と接している。該たて糸炭素繊維マルチフィラメント糸条1aの長手方向に狭い範囲の両面においてよこ糸補助繊維糸条との交点を有する部位以外はよこ糸補助繊維糸条2から絞られることがないため、よこ糸補助繊維糸条2と接しない面が広がる断面形状をとることが可能である。また、該たて糸炭素繊維マルチフィラメント糸条1aはよこ糸補助繊維糸条2に両側から拘束されることによる形態保持はされないが、面10においてよこ糸補助繊維糸条2と接着しているため、一体の基材として保持される。 As shown in FIG. 1, some of the warp carbon fiber multifilament yarns 1a have a density Y of intersection points on one surface 11 of D/N pieces/m or less. In this embodiment, the warp carbon fiber multifilament yarn 1a is in contact with the weft auxiliary fiber yarn 2 only on one side (surface 10). The warp carbon fiber multifilament yarn 1a is not squeezed from the weft auxiliary fiber yarn 2 except for the portions having intersections with the weft auxiliary fiber yarn on both sides of a narrow range in the longitudinal direction of the weft auxiliary fiber yarn. It is possible to take a cross-sectional shape in which the surface not in contact with 2 is widened. In addition, the warp carbon fiber multifilament yarn 1a is not held in shape by being restrained by the weft auxiliary fiber yarn 2 from both sides, but since it is adhered to the weft auxiliary fiber yarn 2 at the surface 10, it is integrated into one piece. It is held as a base material.

図2に示すように、交点の密度YがD/N個/m以下となる面を有さないたて糸炭素繊維マルチフィラメント糸条1bはよこ糸補助繊維糸条2から絞られて略楕円形の断面形状となるため、金型などの平滑面と接する場合、平滑面に対して隙間が生じる。本態様においては、たて糸炭素繊維マルチフィラメント糸条1bはよこ糸補助繊維糸条2と両面で接している。
一方、交点の密度YがD/N個/m以下となる面が金型などの平滑面と接する場合、たて糸炭素繊維マルチフィラメント糸条を構成する炭素繊維フィラメントは平滑面に沿うように移動する。
よこ糸補助繊維糸条と片面のみで接するたて糸炭素繊維マルチフィラメント糸条1aがよこ糸補助繊維糸条2と両面で接するたて糸炭素繊維マルチフィラメント糸条1bと隣り合って配置されている場合、後者と平滑面の隙間に前者を構成する炭素繊維フィラメントが入り込み、略台形形状をとる。
交点の密度数YがD/N個/m以下となる面を有さないたて糸炭素繊維マルチフィラメント糸条1b同士が隣り合って配置されることがなければたて糸炭素繊維マルチフィラメント糸条間にギャップが存在せず、樹脂組成物と一体化されたときに樹脂量過剰に起因するヒケが生じないため、表面平滑性に優れた成型品が得られる。
As shown in FIG. 2, the warp carbon fiber multifilament yarn 1b, which does not have a surface where the density Y of the intersection point is D/N pieces/m or less, is squeezed from the weft auxiliary fiber yarn 2 and has a substantially elliptical cross section. Because of its shape, when it comes into contact with a smooth surface such as a mold, a gap is created with respect to the smooth surface. In this embodiment, the warp carbon fiber multifilament yarn 1b is in contact with the weft auxiliary fiber yarn 2 on both sides.
On the other hand, when the surface where the density Y of the intersection points is D/N pieces/m or less comes into contact with a smooth surface such as a mold, the carbon fiber filaments forming the warp carbon fiber multifilament yarn move along the smooth surface. .
When the warp carbon fiber multifilament yarn 1a, which contacts the weft auxiliary fiber yarn on only one side, is arranged adjacent to the warp carbon fiber multifilament yarn 1b, which contacts the weft auxiliary fiber yarn 2 on both sides, the latter is smooth. The carbon fiber filaments constituting the former fit into the gaps between the surfaces and take on an approximately trapezoidal shape.
If the warp carbon fiber multifilament yarns 1b that do not have a surface where the density number Y of intersection points is D/N pieces/m or less are not arranged next to each other, there is a gap between the warp carbon fiber multifilament yarns. Since there is no sink mark caused by an excessive amount of resin when the resin composition is integrated with the resin composition, a molded product with excellent surface smoothness can be obtained.

一部のたて糸炭素繊維マルチフィラメント糸条が交点の密度YがD/N個/m以下となる面を有し、かつ交点の密度YがD/N個/m以下となる面を有さない炭素繊維マルチフィラメント糸条が隣り合って配置されていない織組織の例として、例えばあるよこ糸を1本目、続いて挿入されるよこ糸から2本目、3本目と数えるとき、奇数本目のよこ糸がたて糸に対して「浮き、沈み、浮き、浮き」を繰り返し、偶数本目のよこ糸がたて糸に対して「浮き、浮き、浮き、沈み」を繰り返す場合がある。4本周期のたて糸の繰り返しにおける1本目と3本目はよこ糸が常に浮き側で接し、かつ両側でよこ糸と接する2本目と4本目のたて糸は隣り合っていないため、前記の構造を満たす。
同様の構造は、三原織など通常の織物において適用される織組織において、あらかじめ存在しているたて糸を交点の密度YがD/N以下となる面を有しないたて糸炭素繊維マルチフィラメント糸条とし、その間隔にそれぞれ1本以上の交点の密度YがD/N個/m以下となる面を有するたて糸炭素繊維マルチフィラメント糸条を挿入した織組織でも得られる。織組織についてはこれらに限定されるものではない。
Some of the warp carbon fiber multifilament yarns have a surface where the density Y at the intersection point is D/N pieces/m or less, and does not have a surface where the density Y at the intersection point is D/N pieces/m or less. As an example of a woven structure in which carbon fiber multifilament yarns are not arranged next to each other, for example, when counting a certain weft as the first weft, then the second and third wefts inserted, the odd-numbered weft becomes the warp. In some cases, the even-numbered weft threads repeat "float, float, float, sink" against the warp threads. The first and third weft yarns in the four warp cycles are always in contact with each other on the floating side, and the second and fourth warp yarns, which are in contact with the weft yarns on both sides, are not adjacent to each other, so the above structure is satisfied.
A similar structure is that in a weave structure applied to ordinary textiles such as Mihara-ori, the pre-existing warp is made into a warp carbon fiber multifilament yarn that does not have a surface where the density Y of the intersection point is less than D/N, It is also possible to obtain a woven structure in which warp carbon fiber multifilament yarns each having a plane in which the density Y of one or more intersection points is D/N yarns/m or less are inserted in the intervals. The texture is not limited to these.

(繊維織物の製造方法)
図3を用いて一方向性補強繊維織物の製造方法を説明する。本発明の繊維織物は通常の織物製造装置100により製造することができる。複数の炭素繊維マルチフィラメント糸条1がたて糸として、たて糸供給クリ-ル104からよこ取りで供給され平行するように配列されることでたて糸炭素繊維マルチフィラメント糸条シート3を形成する。個々の炭素繊維マルチフィラメント糸条は目的とする織組織に応じ、製織部129のヘルド114に設けられたメールに通され、所定のパターンでヘルド114が上下することによってシートが開口し、よこ糸挿入手段128によってよこ糸補助繊維糸条2が挿入される。よこ糸挿入手段128としては、レピア、シャトル、エアージェット、ウォータージェットなど種々の手段があり、またこれらに限定されるものではない。
(Method for manufacturing fiber fabric)
A method for manufacturing a unidirectional reinforcing fiber fabric will be explained using FIG. 3. The fiber fabric of the present invention can be manufactured using a conventional textile manufacturing apparatus 100. A plurality of carbon fiber multifilament yarns 1 are supplied as warp yarns by wefting from a warp yarn supply creel 104 and arranged in parallel to form a warp carbon fiber multifilament yarn sheet 3. Each carbon fiber multifilament thread is passed through a mail provided in the heald 114 of the weaving section 129 according to the desired weaving structure, and the sheet is opened by moving the heddle 114 up and down in a predetermined pattern, and the weft thread is inserted. The weft auxiliary fiber yarn 2 is inserted by means 128. The weft thread insertion means 128 includes various means such as a rapier, a shuttle, an air jet, and a water jet, but is not limited to these.

よこ糸補助繊維糸条の挿入密度は低過ぎる場合は基材としての形態保持性が低くなるが、高過ぎると最表面のよこ糸に起因する表面平滑性の低下が生じる。このためよこ糸補助繊維糸条は2~50mmピッチで挿入されることが好ましい。 If the insertion density of the weft auxiliary fiber threads is too low, the shape retention as a base material will be poor, but if it is too high, the surface smoothness will decrease due to the weft on the outermost surface. For this reason, it is preferable that the weft auxiliary fiber threads are inserted at a pitch of 2 to 50 mm.

よこ糸補助繊維糸条の挿入によって一方向性補強繊維織物となったシート状物に対し、加熱がされることによってよこ糸補助繊維糸条に連続的に付着している熱可塑性ポリマーが融解することによってたて糸炭素繊維マルチフィラメント糸条とよこ糸補助繊維糸条が互いの交点において接着される。
加熱手段としては加熱ロールなどの接触的な手段や赤外線ヒーターなどの非接触的な手段があり、またこれらに限定されるものではない。
The sheet-like material, which has become a unidirectional reinforcing fiber fabric by inserting weft auxiliary fiber yarns, is heated and the thermoplastic polymer continuously attached to the weft auxiliary fiber yarns melts. The warp carbon fiber multifilament yarn and the weft auxiliary fiber yarn are bonded together at their intersections.
The heating means includes contact means such as a heating roll and non-contact means such as an infrared heater, but is not limited to these.

(成型)
本発明の繊維織物に樹脂を含浸させて炭素繊維強化複合材料を得ることができる。含浸させる樹脂として特に制限は無いが、熱硬化性樹脂組成物または、熱可塑性樹脂組成物であり、熱硬化性樹脂としては特に制限はないが、従来RTM成形やVaRTM成形で使用されている、例えば、エポキシ樹脂、フェノール樹脂、ビニルエステル樹脂、不飽和ポリエステル樹脂、シアネートエステル樹脂、ビスマレイミド樹脂、ベンゾオキサジン樹脂などが挙げられる。また、熱可塑性樹脂としては、特に制限はなく、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル、ポリスチレン、ABS樹脂、アクリル樹脂、塩化ビニル、ポリアミド6等のポリアミド、ポリカーボネート、ポリフェニレンエーテル、ポリエーテルスルフォン、ポリサルフォン、ポリエーテルイミド、ポリケトン、ポリエーテルケトン、ポリエーテルエーテルケトンなどを使用できる。また、これら各樹脂の変性体を用いてもよいし、複数種の樹脂をブレンドして用いてもよい。また、熱可塑性樹脂は、各種添加剤、フィラー、着色剤等を含んでいてもよい。
(molding)
A carbon fiber reinforced composite material can be obtained by impregnating the fiber fabric of the present invention with a resin. There is no particular restriction on the resin to be impregnated, but it may be a thermosetting resin composition or a thermoplastic resin composition, and there is no particular restriction on the thermosetting resin, such as those conventionally used in RTM molding or VaRTM molding. Examples include epoxy resin, phenol resin, vinyl ester resin, unsaturated polyester resin, cyanate ester resin, bismaleimide resin, benzoxazine resin, and the like. The thermoplastic resin is not particularly limited, and includes polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate and polybutylene terephthalate, polystyrene, ABS resin, acrylic resin, vinyl chloride, polyamides such as polyamide 6, polycarbonate, and polyphenylene. Ethers, polyethersulfones, polysulfones, polyetherimides, polyketones, polyetherketones, polyetheretherketones, etc. can be used. Further, modified versions of each of these resins may be used, or a blend of multiple types of resins may be used. Furthermore, the thermoplastic resin may contain various additives, fillers, colorants, and the like.

本発明の繊維織物を利用した炭素繊維強化複合材料の製造方法としては、前記一方向性補強繊維織物を成形型内に配置し、前記一方向性補強繊維織物をバギングフィルムで覆い、前記成形型と前記バギングフィルムの間をシールしてキャビティを形成し、前記キャビティ内を減圧して、液状樹脂組成物を吸引・注入するVaRTM法を用いることができる。VaRTM法に用いるバギングフィルム、シール材には特に限定は無く、使用するマトリクス樹脂の種類に応じて耐熱性を有する材質などを選ぶ事ができる。また、必要に応じて樹脂の拡散を促進するフローメディアを用いることができる。樹脂の注入方式としては、成形品の任意の地点から同心円状に樹脂を拡散・含浸させる多点注入方式や、成形品の任意の辺から一方向に平行に樹脂を拡散・含浸させる辺注入方式など必要に応じた方式をとることができる。 The method for producing a carbon fiber reinforced composite material using the fiber fabric of the present invention includes arranging the unidirectional reinforcing fiber fabric in a mold, covering the unidirectional reinforcing fiber fabric with a bagging film, and then placing the unidirectional reinforcing fiber fabric in a mold. A VaRTM method can be used in which a cavity is formed by sealing between the bagging film and the bagging film, the pressure inside the cavity is reduced, and the liquid resin composition is sucked and injected. There are no particular limitations on the bagging film and sealing material used in the VaRTM method, and heat-resistant materials can be selected depending on the type of matrix resin used. Furthermore, a flow media that promotes resin diffusion can be used as necessary. Resin injection methods include a multi-point injection method in which the resin is diffused and impregnated concentrically from any point on the molded product, and a side injection method in which the resin is diffused and impregnated in parallel from any side of the molded product in one direction. You can use any method that suits your needs.

また、本発明の繊維織物を利用した別の炭素繊維強化複合材料の製造方法としては、前記一方向性補強繊維織物を分割成形型内に配置し、分割型を閉じてキャビティを形成し、前記キャビティ内に液状樹脂組成物を注入させるRTM法やハイサイクルRTM法、ハイプレッシャーRTM法を用いることができる。 Another method for producing a carbon fiber reinforced composite material using the fiber fabric of the present invention includes placing the unidirectional reinforcing fiber fabric in a split mold, closing the split mold to form a cavity, and An RTM method in which a liquid resin composition is injected into a cavity, a high cycle RTM method, or a high pressure RTM method can be used.

実施例を以下に説明する。
(実施例1)
炭素繊維マルチフィラメント糸条(三菱ケミカル株式会社製、パイロフィル(製品名))からなる50K(フィラメント本数:50000本)のマルチフィラメント糸をたて糸に用い、又、22.5texのガラス繊維(ユニチカグラスファイバー社製)糸条に熱融着繊維(東レ株式会社製)を付着させた補助繊維をよこ糸補助繊維糸として、4本周期のたて糸に対し、よこ糸が交互に「浮き、沈み、浮き、浮き」と「浮き、浮き、浮き、沈み」を繰り返す織組織で製織を行い、90℃の加熱ロールに対して接触させることでたて糸炭素繊維マルチフィラメント糸条とよこ糸補助繊維糸条を互いの交点において接着させ、一方向性補強繊維織物を製造した。
Examples will be described below.
(Example 1)
A 50K (number of filaments: 50,000) multifilament yarn made of carbon fiber multifilament yarn (manufactured by Mitsubishi Chemical Corporation, Pyrofil (product name)) is used for the warp, and a 22.5tex glass fiber (Unitika glass fiber) is used for the warp. Using an auxiliary fiber with heat-fused fibers (manufactured by Toray Industries, Inc.) attached to the yarn as the weft auxiliary fiber yarn, the weft alternately "floats, sinks, floats, floats" for the four warp threads. Weaving is performed using a weaving structure that repeats "floating, floating, floating, sinking," and the warp carbon fiber multifilament yarn and weft auxiliary fiber yarn are bonded at their intersections by contacting them with a heated roll at 90°C. A unidirectional reinforced fiber fabric was produced.

上記の一方向性補強繊維織物から縦方向が炭素繊維マルチフィラメント糸条の配向方向と一致するように縦400mm、横160mmの長方形形状のカットシートを4枚切り出した。一部のたて糸炭素繊維マルチフィラメント糸条がよこ糸補助繊維糸条と接しない面が下になるように1枚目を配置し、同じ向きで2枚目をその上に積層し、上下の向きが逆になるように3枚目をその上に積層し、3枚目と同じ向きで4枚目をその上に積層し、計4枚からなる積層体を得た。得られた積層体を離形剤が塗された成形型の上に配置し、上面をバギングフィルム(AIRTECH社製、製品名:ライトロンWL8400)で覆いシーラントテープ(RICHMOND社製、製品名:RS200)によって封止した。繊維配向と直角な向かい合い二辺のそれぞれ中央には樹脂注入口および真空ポンプ接続口として内径4mmのポリウレタン製チューブを配置した。 Four rectangular cut sheets with a length of 400 mm and a width of 160 mm were cut out from the above-mentioned unidirectional reinforcing fiber fabric so that the longitudinal direction coincided with the orientation direction of the carbon fiber multifilament yarn. Arrange the first sheet so that the side where some of the warp carbon fiber multifilament yarns are not in contact with the weft auxiliary fiber yarns is facing down, and then stack the second sheet on top of it in the same direction, so that the top and bottom directions are A third sheet was laminated on top of it in the opposite direction, and a fourth sheet was laminated on top of it in the same direction as the third sheet, to obtain a laminate consisting of a total of four sheets. The obtained laminate was placed on a mold coated with a release agent, and the upper surface was covered with a bagging film (manufactured by AIRTECH, product name: Rytron WL8400) with sealant tape (manufactured by RICHMOND, product name: RS200). ) was sealed. A polyurethane tube with an inner diameter of 4 mm was placed at the center of each of the two opposing sides perpendicular to the fiber orientation as a resin injection port and a vacuum pump connection port.

前記真空ポンプ接続口から真空引きを行い、前記樹脂注入口より樹脂組成物(ナガセケムテックス株式会社製のエポキシ樹脂XNR6815と硬化剤XNH6815を100:27の配合、樹脂粘度260mPa・s)を流し込み常温環境下でのVaRTM成型を実施した。その後、硬化条件24℃24時間、ポストキュア80℃2時間で含浸硬化を行った。
これによって両面に一部のたて糸炭素繊維マルチフィラメント糸条がよこ糸補助繊維糸条と接しない面が存在する炭素繊維強化複合材料が得られた。
A vacuum was drawn from the vacuum pump connection port, and a resin composition (100:27 mixture of epoxy resin VaRTM molding was carried out under environmental conditions. Thereafter, impregnation curing was performed under curing conditions of 24° C. for 24 hours and post-cure at 80° C. for 2 hours.
As a result, a carbon fiber-reinforced composite material was obtained on both surfaces in which a portion of the warp carbon fiber multifilament yarns did not come into contact with the weft auxiliary fiber yarns.

得られた炭素繊維強化複合材料パネルの表面粗さの指標とするため、表面粗さ測定機サーフコム(株式会社東京精密製)を使用して炭素繊維マルチフィラメント糸条シートのトウ間にある樹脂量過剰領域でのヒケ深さの測定を行った。繊維配向と垂直方向を評価軸、測定距離30mmの範囲で最大谷深さRvを測定し、炭素繊維マルチフィラメント糸条シートのトウ間にある樹脂量過剰領域でのヒケ深さとした。測定子がよこ糸補助繊維糸条と接しない条件で任意に選択した5箇所のヒケ深さの平均値は0.93μmであった。 In order to measure the surface roughness of the obtained carbon fiber reinforced composite material panel, the amount of resin between the tows of the carbon fiber multifilament yarn sheet was measured using a surface roughness measuring device Surfcom (manufactured by Tokyo Seimitsu Co., Ltd.). The sink depth was measured in the excess area. With the direction perpendicular to the fiber orientation as the evaluation axis, the maximum valley depth Rv was measured within a measurement distance of 30 mm, and was defined as the sink depth in the excessive resin content region between the tows of the carbon fiber multifilament yarn sheet. The average value of the sink depths at five points arbitrarily selected under the condition that the measuring element did not come into contact with the weft auxiliary fiber yarn was 0.93 μm.

(比較例1)
製織における織組織を平織とした以外は、実施例1と同様にして一方向性補強繊維織物を得た。得られた一方向性補強繊維織物を使用し、実施例1と同様にして炭素繊維強化複合材料パネルを得た。得られた炭素繊維強化複合材料パネルのヒケ深さの平均値は1.44μmであった。
(Comparative example 1)
A unidirectional reinforcing fiber fabric was obtained in the same manner as in Example 1, except that the weaving structure was plain weave. Using the obtained unidirectional reinforced fiber fabric, a carbon fiber reinforced composite material panel was obtained in the same manner as in Example 1. The average value of the sink mark depth of the obtained carbon fiber reinforced composite material panel was 1.44 μm.

以上より、本発明で得られるたて糸炭素繊維マルチフィラメント糸条とよこ糸補助繊維糸条が互いの交点において接着されており、一方向性補強繊維織物における炭素繊維マルチフィラメント糸条の本数をN本、補助繊維糸条の挿入密度をD本/mとしたとき、前記炭素繊維マルチフィラメント糸条の少なくとも一つが、前記交点の密度YがD/N個/m以下となる面を有する一方向性補強繊維織物を用いることにより、表面平滑性において優れた成型品を得ることができる。土木建築用補強や一般的な産業用途などの広範な用途に適し、本発明は工業上極めて有用である。 From the above, the warp carbon fiber multifilament yarns and the weft auxiliary fiber yarns obtained in the present invention are bonded to each other at their intersection points, and the number of carbon fiber multifilament yarns in the unidirectional reinforcing fiber fabric is N. Unidirectional reinforcement in which at least one of the carbon fiber multifilament yarns has a surface where the density Y of the intersection point is D/N yarns/m or less, when the insertion density of the auxiliary fiber yarns is D yarns/m. By using a fiber fabric, a molded product with excellent surface smoothness can be obtained. Suitable for a wide range of uses such as civil engineering and construction reinforcement and general industrial use, the present invention is extremely useful industrially.

1…炭素繊維マルチフィラメント糸条
2…補助繊維糸条
3…たて糸炭素繊維マルチフィラメント糸条シート
4…繊維織物
10…繊維織物(上面図)
11…繊維織物(下面図)
100…織物製造装置
104…たて糸供給クリール
114…ヘルド
116…筬
118…加熱ロール
126…巻取ロール
128…よこ糸挿入手段
129…製織部
1... Carbon fiber multifilament yarn 2... Auxiliary fiber yarn 3... Warp carbon fiber multifilament yarn sheet 4... Fiber fabric 10... Fiber fabric (top view)
11...Fiber fabric (bottom view)
DESCRIPTION OF SYMBOLS 100...Textile manufacturing apparatus 104...Warp supply creel 114...Heald 116...Reed 118...Heating roll 126...Take-up roll 128...Weft thread insertion means 129...Weaving section

Claims (9)

複数の炭素繊維マルチフィラメント糸条が平行に配列されたシートと、複数の補助繊維糸条とを含む繊維織物であって、
前記繊維織物は、前記炭素繊維マルチフィラメント糸条をたて糸、前記補助繊維糸条をよこ糸として織組織されており、
前記繊維織物における前記炭素繊維マルチフィラメント糸条の本数をN本、前記補助繊維糸条の挿入密度をD本/mとしたとき、前記炭素繊維マルチフィラメント糸条の少なくとも一つが、前記補助繊維糸条との交点の密度YがD/(10×N)個/m以下となる面を有する、繊維織物。
A fiber fabric comprising a sheet in which a plurality of carbon fiber multifilament yarns are arranged in parallel, and a plurality of auxiliary fiber yarns,
The fiber fabric is woven with the carbon fiber multifilament yarn as the warp yarn and the auxiliary fiber yarn as the weft yarn,
When the number of the carbon fiber multifilament yarns in the fiber fabric is N, and the insertion density of the auxiliary fiber yarns is D yarns/m, at least one of the carbon fiber multifilament yarns is the auxiliary fiber yarn. A fibrous fabric having a surface in which the density Y of intersection points with the stripes is D/(10×N) pieces/m or less.
両面が前記交点の密度YがD/N個/mを超える面を有する炭素繊維マルチフィラメント糸条を含む請求項1に記載の繊維織物。 The fibrous fabric according to claim 1 , wherein both sides include carbon fiber multifilament yarns having surfaces in which the density Y of the intersection points exceeds D/N pieces/m. 前記交点の密度YがD/N個/m以下となる面を有さない炭素繊維マルチフィラメント糸条が隣り合って配置されていない、請求項1または2に記載の繊維織物。 The fibrous fabric according to claim 1 or 2, wherein carbon fiber multifilament yarns that do not have a surface where the density Y of the intersection points is D/N pieces/m or less are not arranged next to each other. 前記補助繊維糸条が該たて糸炭素繊維マルチフィラメント糸条より小さい糸条繊度である、請求項1から3のいずれか1項に記載の繊維織物。 The fibrous fabric according to any one of claims 1 to 3, wherein the auxiliary fiber yarn has a smaller yarn fineness than the warp carbon fiber multifilament yarn. 前記交点において前記炭素繊維マルチフィラメント糸条と前記補助繊維糸条とが熱可塑性ポリマーによって接着されている、請求項1から4のいずれか1項に記載の繊維織物。 The fibrous fabric according to any one of claims 1 to 4, wherein the carbon fiber multifilament yarn and the auxiliary fiber yarn are bonded to each other by a thermoplastic polymer at the intersection. 前記補助繊維糸条が、熱可塑性ポリマーが付着したガラス繊維である、請求項1から5のいずれか1項に記載の繊維織物。 The fibrous fabric according to any one of claims 1 to 5, wherein the auxiliary fiber yarn is glass fiber to which a thermoplastic polymer is attached. 前記たて糸炭素繊維マルチフィラメント糸条のフィラメント数が24000~100000本である、請求項1から6のいずれか1項に記載の繊維織物。 The fiber fabric according to any one of claims 1 to 6, wherein the warp carbon fiber multifilament yarn has a number of filaments of 24,000 to 100,000. 熱硬化性樹脂組成物と請求項1から7のいずれか1項に記載の繊維織物とを含む炭素繊維強化複合材料。 A carbon fiber reinforced composite material comprising a thermosetting resin composition and the fibrous fabric according to any one of claims 1 to 7. 熱可塑性樹脂組成物と請求項1から7のいずれか1項に記載の繊維織物とを含む炭素繊維強化複合材料。 A carbon fiber reinforced composite material comprising a thermoplastic resin composition and the fibrous fabric according to any one of claims 1 to 7.
JP2019237644A 2019-12-27 2019-12-27 Fiber fabrics and carbon fiber reinforced composite materials Active JP7384029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019237644A JP7384029B2 (en) 2019-12-27 2019-12-27 Fiber fabrics and carbon fiber reinforced composite materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019237644A JP7384029B2 (en) 2019-12-27 2019-12-27 Fiber fabrics and carbon fiber reinforced composite materials

Publications (2)

Publication Number Publication Date
JP2021105234A JP2021105234A (en) 2021-07-26
JP7384029B2 true JP7384029B2 (en) 2023-11-21

Family

ID=76918652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019237644A Active JP7384029B2 (en) 2019-12-27 2019-12-27 Fiber fabrics and carbon fiber reinforced composite materials

Country Status (1)

Country Link
JP (1) JP7384029B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011069033A (en) 2009-09-28 2011-04-07 Mitsubishi Rayon Co Ltd Unidirectionally reinforced textile fabric, and method for producing the same
JP2011255533A (en) 2010-06-07 2011-12-22 Toray Ind Inc Fiber-reinforced plastic molding having curved shape

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3633221B2 (en) * 1997-07-23 2005-03-30 東レ株式会社 Unidirectional reinforced fabric and repair or reinforcement method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011069033A (en) 2009-09-28 2011-04-07 Mitsubishi Rayon Co Ltd Unidirectionally reinforced textile fabric, and method for producing the same
JP2011255533A (en) 2010-06-07 2011-12-22 Toray Ind Inc Fiber-reinforced plastic molding having curved shape

Also Published As

Publication number Publication date
JP2021105234A (en) 2021-07-26

Similar Documents

Publication Publication Date Title
AU2011335297B2 (en) Uni-directional fibre preform having slivers and consisting of reinforcing fibre bundles, and a composite material component
KR100570229B1 (en) Carbon fiber fabrics, fiber-reinforced plastic molded articles using the fabrics, and methods of making the molded articles
JP6446047B2 (en) Continuous fiber reinforced resin composite and molded product thereof
JP4626340B2 (en) Method for producing reinforcing fiber substrate and method for producing composite material using the substrate
EP1464743A1 (en) CARBON FIBER−MADE REINFORING WOVEN FABRIC AND PREPREG AND PREPREG PRODUCTION METHOD
JPH0422933B2 (en)
JP5261171B2 (en) Reinforced reinforcing fiber sheet and method for producing the same
EP3758923B1 (en) A stitched multi-axial reinforcement and a method of producing the same
JP2010084372A (en) Woven fiber-reinforced sheet and method of manufacturing the same
TW514687B (en) Unidirectional carbon fiber fabric, preparing its method and reinforced concrete construct
CN113573875A (en) Stitched multiaxial reinforcement
JP2007514876A (en) Woven fabric based on fiberglass yarn to reinforce molded parts
JP7384029B2 (en) Fiber fabrics and carbon fiber reinforced composite materials
US20180194561A1 (en) Material with at least two layer coverings
JP5049215B2 (en) Reinforcing fiber fabric and its weaving method
JP2012188786A (en) Unidirectional woven fabric and method for producing the same, and fiber-reinforced plastic molded article using the unidirectional woven fabric and molding method thereof
JP7106918B2 (en) Unidirectional reinforcing fiber sheets and braids
JP3214648B2 (en) Mesh prepreg for reinforcement, mesh fiber-reinforced plastic and fiber-reinforced cementitious materials
JP6897705B2 (en) Reinforcing fiber woven fabric and its manufacturing method
JP6364798B2 (en) Reinforcing fiber fabric and method for producing the same
JPH08156152A (en) Reinforcing use fabric base material
JP2001082676A (en) Base material for formation of inner surface of conduit
JP2018001475A (en) Preform for fiber-reinforced composite material, and fiber-reinforced composite material
JPH1143839A (en) Woven fabric reinforced in one direction and repairing or reinforcing
JP2022054847A (en) Fiber base material, carbon fiber-reinforced composite material, and fiber base material manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231023

R151 Written notification of patent or utility model registration

Ref document number: 7384029

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151