JP3633221B2 - Unidirectional reinforced fabric and repair or reinforcement method - Google Patents
Unidirectional reinforced fabric and repair or reinforcement method Download PDFInfo
- Publication number
- JP3633221B2 JP3633221B2 JP19688997A JP19688997A JP3633221B2 JP 3633221 B2 JP3633221 B2 JP 3633221B2 JP 19688997 A JP19688997 A JP 19688997A JP 19688997 A JP19688997 A JP 19688997A JP 3633221 B2 JP3633221 B2 JP 3633221B2
- Authority
- JP
- Japan
- Prior art keywords
- yarn
- yarns
- reinforcing
- fiber
- auxiliary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Woven Fabrics (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、繊維強化複合材料に用いられる補強織物基材に関するものである。さらに詳しくは、コンクリ−ト構造体等を炭素繊維強化プラスチックで補強する際、取扱い性、および表面平滑性に優れ、高い補強効果を発揮する補強織物に関する。
【0002】
【従来の技術】
繊維強化複合材料の補強基材としては、ガラス繊維、炭素繊維などの無機繊維や、アラミド繊維、高強度ポリエチレン繊維などの有機繊維などの高強度、高弾性率繊維からなる織物が多用されている。
【0003】
一般に補強繊維からなる繊維強化プラスチックは、異方性が大きく、補強繊維が配向した方向には高い引張り強度、弾性率を発揮するが、繊維に直角の方向に対してはほとんど樹脂の強度しか発揮しない欠点がある。半面、必要な方向に補強繊維を多く配向させることによって有効な補強ができるメリットがある。
【0004】
異方性を利用するためには、補強繊維をたて方向に配列させ、よこ方向に補助糸を用いた一方向性の織物によって効果的な補強が可能になるものである。
【0005】
この場合、よこ方向の補助糸はたて糸の配列を保つ目的のためであり、補強には全く作用しないものであるあるから、軽量、かつ薄い織物にするために、出来る限り細い糸が使用される。
【0006】
補強繊維からなるたて糸の繊度が比較的小さく、かつたて糸の密度が大きい場合には、よこ糸との交錯点数が多く、かつ、よこ糸によるたて糸への拘束力も増大するために織物自体に剛性があり、取り扱い性の優れた織物となる。
【0007】
しかしながら、その様に補強繊維からなるたて糸の密度が大きく、非常に目の詰まった織物に樹脂を塗布し、複合材料に成形しようとしても、樹脂が含浸し難く、ボイドの多い複合材料となってしまう。
【0008】
特に、補強織物をコンクリート面に貼り付けて補強する際には、樹脂の垂れ落ちや、織物基材のずれ落ちを防ぐために高粘度樹脂が使用されるため一層樹脂の含浸がし難くなる問題がある。
【0009】
さらに、織物基材を貼り付けるために下地に高粘度樹脂を塗布した後、その上から目の詰まった織物基材を貼り付けた際、織物基材の厚み方向に樹脂が抜け難いため、貼り付け面と織物基材の間に樹脂が溜まり、その樹脂層の厚み斑によって貼り付け後の表面が凸凹し、見栄えが悪い成形面となる問題がある。
【0010】
一方、粘度の低い樹脂であっても貼り付け面と貼り付けた織物基材間の樹脂が織物基材表面に抜け難く、その樹脂が貼り付け面と織物基材間を下方に流れだして一カ所に溜り、その箇所に膨れが生じる問題がある。
【0011】
そのような問題に対して、補強繊維からなるたて糸の密度を粗くし、たて糸間に充分な隙間を設け、その隙間から樹脂が容易に表面に抜けるようにしておくことが考えられる。
【0012】
しかし、たて糸の密度を粗くすると、たて糸とよこ糸補助糸の交錯点数が少なく、かつ、たて糸とよこ糸の拘束力が低くなるために、たて糸とよこ糸が交錯部で容易にずれ易く寸法安定性の悪い織物となる。
【0013】
その様な寸法安定性の低い織物基材を積層して成形しようとすると、積層の際に手で持ち上げたりすると、織物の重みによって大きく曲がり、補強繊維を真っ直ぐに配列した状態で積層するのが非常に難しい問題がある。
【0014】
特に、コンクリート垂直面など大きな面積を一方向性の補強織物で補強しようとした際、樹脂をコンクリート面に塗布した後、その上から剛性のない織物を貼り付けようとすると、皺が生じた状態で貼り付けられ、一旦樹脂が付着した状態ではさらに扱い難く、皺をなくするのに非常に時間が掛かり、完全に除去することは不可能である。
【0015】
上記問題点を改善するために、特開平8−156152で織物にシート材を貼り付けた補強織物基材が提案されている。
【0016】
同補強織物基材は、織物面に変形し難い紙等が予め貼り付けてあるため、貼り付け時に皺が生じることなく貼り付けることが可能であるが、予め貼り付ける工程が必要であるし、補強織物基材を貼り付け後、シート材を剥がす必要があるために弱い接着としており、取り扱い時に剥がれ易い問題がある。
【0017】
この様に、従来、繊維強化プラスチック用基材として、寸法安定性に優れ、かつ樹脂含浸性の良好な一方向性補強織物は無かった。
【0018】
【 発明が解決しようとする課題】
本発明の課題は、特に、寸法安定性、取り扱い性に優れ、繊維強化プラスチックに成形する際に樹脂の含浸性が良好で、皺や膨れを生じさせることなく出来、表面平滑成形を行える一方向性補強織物を提供することにある。
【0019】
【 課題を解決するための手段】
上記課題を解決するために、本発明は、基本的には下記の構成を有する。即ち、
「たて方向に複数本の補強繊維糸条が並行に配列し、よこ方向に補助糸が配列してなり、かつ、たて方向に使用された補強繊維目付が150〜600g/m 2 の織物において、
A.補助糸の曲げ剛性指数(繊維の引張り弾性率×(単繊維の直径)4 ×フィラメント数)が5×10−3〜200×10−3Kgf・mm2であり、
B.たて方向の補強繊維糸条とよこ方向補助糸の引張り剛性(繊維の引張り弾性率×単位幅当たり繊維断面積)の比が3〜100であり、
C.織物におけるJIS L 1096法によるシート通気量が40〜300CC/cm 2 /secであることを特徴とする一方向性補強織物」である。
【0020】
【発明の実施の形態】
補強繊維には、ガラス繊維やアラミド繊維、炭素繊維など高強度、高弾性率である繊維が好ましく、特にフィラメント数が6,000 〜30,000本からなる太い炭素繊維であることが好適である。又、単繊維の直径は5〜10μmが好ましい。
【0021】
より好ましくはフィラメント数が12,000〜24,000本からなる炭素繊維である。
【0022】
炭素繊維は、補強繊維の中でも高強度、高弾性率であり、高い補強効果が得られる点から最も好ましく、なかでも、引っ張り強度が300kgf/mm2以上、引っ張り弾性率が20,000kgf/mm2以上の炭素繊維であることが好ましい。
【0023】
本発明は、たて糸として通常用いられる補強繊維糸より太い繊維糸を用い、かつ、補強繊維糸条間に0.2〜2.0mmの隙間を設けたのも特徴である。
【0024】
織物目付が同一の場合、たて糸を太くすることによってたて糸の間隔が大きくすることが出来、しかもたて糸の断面形状をほぼ円形状まで集束させることが出来るので、織物の厚さは大きくなるもののたて糸間に隙間が設け易いことになる。
【0025】
たて糸を太い補強繊維糸とした一方向織物においては、製織後は綜絖のメールによってたて糸断面がほぼ円形状に集束させられるので、たて糸間に隙間を有した状態で織られるが、よこ方向の補助糸は細くて、曲げ剛性の小さい糸が用いられているので、たて糸の幅方向への拡がりに対する規制力が殆ど作用しないため、巻き取りローラのニップ圧によってたて糸は幅方向に拡がり、たて糸間の隙間が殆どなくなってしまう。
【0026】
そこで、本発明においては、曲げ剛性の高いよこ方向補助糸を用いることによりたて糸の幅方向の拡がりを抑制し、積極的にたて糸間に隙間を設けるようにしたものである。
【0027】
よこ方向の補助糸に300〜1,500デニールの太い糸を用いることにより、上記したように織物面において、たて糸間に隙間を設けることができるばかりか、よこ方向補助糸の方向にも隙間を設けることが出来る。
【0028】
図3はたて糸とよこ糸の交錯部の斜視図で、本発明でいうたて糸間の隙間は織物を正面から見た際の隙間(B)を指すが、たて糸はよこ糸と互いに交錯しているので、その交錯部においては、よこ糸にほぼ平行な方向によこ糸の厚み分の隙間(A)ができる訳であるから、よこ糸を太くすることにより、樹脂や抱き込み空気を抜くに充分な大きな隙間(A)が確実に得られる。
【0029】
織物基材の厚み方向に貫通したその様な隙間を設けることにより、その隙間が樹脂や抱き込み空気の通り道となり、樹脂含浸を容易するものである。
【0030】
さらに詳しくは、例えば、コンクリート構造体の補強面に樹脂を塗布し、その上から織物基材を貼り付けて含浸ローラ掛けをする際、通常の織物基材ではコンクリート面と織物基材間の樹脂はコンクリート面と織物基材間で移動するだけで、含浸ローラ掛けを止めたところに樹脂が溜まり、その箇所が膨れる問題がある。
【0031】
たて糸間に隙間を設けておくと、その隙間から樹脂が織物基材表面に抜け、コンクリート面と織物基材間の樹脂は薄く、かつ、均一となり、貼り付け後に膨れが生じることがない。
【0032】
さらに、貼り付け面に樹脂を塗布した後に織物基材を貼り付ける際、空気を抱き込むが、たて糸間に隙間を設けておくと、その隙間から抜くことが出来、抱き込み空気よる大きな空洞が生じることなく信頼性の高い補強を行うことが出来るものである。
【0033】
また、たて糸を太くし密度を粗くすると、たて糸とよこ糸の交錯点数が少なくなるから、当然拘束力が低下し、剛性のない織物になるが、曲げ剛性の高いよこ方向の補助糸を使用することにより、たて糸はよこ糸によって交錯点部で強固に拘束されると同時に、よこ方向補助糸自身の高い曲げ剛性によって織物の幅方向の曲げ剛性が増大するので、織物全体として剛性のある織物となる。
【0034】
よこ方向の補助糸としては、ガラス繊維やアラミド繊維、炭素繊維などの高い曲げ剛性を有した繊維が好ましく、中でもコストの安価なガラス繊維糸が好適である。
【0035】
この様に、よこ方向の補助糸に高い曲げ剛性を有した繊維を使用することにより、たて糸の密度が粗くても、たて方向の補強繊維糸に対して高い拘束力と、よこ方向の補助糸自身の高い剛性により織物基材自体に剛性が付与され、貼り付け作業での皺発生を防ぐことが出来、貼り付け作業が容易となる。
【0036】
また、通常、貼り付け面に樹脂を均一に塗布することは難しく、塗布斑が大きい状態での上に従来の剛性のない柔らかい織物基材を貼り付けた際、織物基材は貼り付け面の樹脂の厚み斑に沿って凸凹した状態で貼り付けられることになるが、本発明の織物基材であれば、織物自身の剛性によって樹脂の多い部分を均一に押し拡げ、樹脂の層を均一して織物基材表面が凸凹するようなことがない。
【0037】
さらに、従来の織物基材と高粘度樹脂を用いた場合には、補強繊維糸束の周りに樹脂が覆い、糸束内の空気を閉じ込めて補強繊維糸束方向に連続した未含浸部(ボイド)が生じる。
【0038】
そして、暫く時間が経過すると補強繊維束が元の厚みに戻ろうとする力によって前記未含浸部が膨れ、補強繊維方向に沿って繊維束中央部が大きな空洞となる問題がある。 その様な問題に対して、よこ方向の補強繊維に剛性を付与させることによって、補強繊維束は剛性のあるよこ方向の補助糸と交錯し、補強繊維束を強固に押さえているので前記した繊維束中央部が大きな空洞となることを防止する作用がある。
【0039】
よこ方向の補助糸の曲げ剛性指数は、繊維の引張り弾性率×(単繊維の直径)4 ×フィラメント数で5×10−3〜200×10−3Kgf・mm2 が好ましく、中でも20×10−3〜100×10−3Kgf・mm2 がより好ましい範囲である。ここで、単繊維の直径ならびにフィラメント数は、糸を樹脂で固め、断面の拡大写真から平均直径ならびにフィラメント数を読みとったものである。
【0040】
たて方向の補強繊維が太く、かつ、補強繊維間に隙間が設けられる粗い密度の場合に、前記曲げ剛性指数で、5×10−3Kgf・mm2以下であると、たて方向の補強繊維に対しての拘束力が作用しないばかりか、よこ方向の補助糸自身の曲げ剛性が小さいために織物の形態保持性がなく、しかも剛性の小さい織物となり、貼り付け時に皺が生じたり、貼り付け面に塗布された樹脂の厚み斑や樹脂の流れの影響を受けて成形後の表面が凸凹する問題がある。
【0041】
一方、前記よこ方向の補助糸の曲げ剛性指数が200×10−3Kgf・mm2 以上となると、非常に剛性の高い織物となるが、たて方向の補強繊維糸にクリンプが生じ、補強繊維の有する高い強度特性が発揮されない問題がある。
【0042】
よこ方向補助糸が樹脂で固められた糸を用いる場合には、(補助糸の引張り弾性率×固められた補助糸の直径の4乗)で計算された値を曲げ剛性とする。
【0043】
補助糸には撚が掛かっていてもよく、無撚であってもよい。特に複合材料の表面平滑が要求される場合には、無撚が好ましい。
【0044】
また、たて方向の補強繊維糸条とよこ方向補助糸の引張り剛性(繊維の引張り弾性率×単位幅当たり繊維断面積)の比が3〜100であることが好ましく、中でも20〜70がより好ましい。ここでいう比は、(たて方向の補強繊維糸条の引っ張り剛性)/(よこ方向の補助糸の引っ張り剛性)をいう。
【0045】
すなわち、本発明の目的を達成するためには、よこ方向の補助糸の引張り剛性は、たて方向の補強繊維糸条が引張り剛性によって変える必要があることである。
【0046】
前記、たて方向の補強繊維糸条とよこ方向補助糸の引張り剛性(繊維の引張り弾性率×単位幅当たり繊維断面積)の比が3以下であると、よこ方向の補助糸の引張り剛性がたて方向補強繊維糸の剛性に対して大きくなり、たて方向の補強繊維糸にクリンプを生じさせるため、補強繊維糸の有する強度特性が十分に発揮されない問題がある。
【0047】
一方、前記比が100以上となると、よこ方向の補助糸の引張り剛性がたて方向補強繊維糸の引張り剛性に対して余りにも小さくなり過ぎ、織物に剛性を付与させることができないばかりか、たて方向補強繊維糸間に隙間を設けることが出来ず、基材貼り付け面と織物基材間の樹脂や、抱き込み空気を織物厚み方向に抜くことが出来ず、膨れが生じる問題がある。
【0048】
本発明におけるたて方向の補強繊維糸の密度は、たて糸間に十分な隙間を設け易くする点から、1〜5本/cmと粗い密度が好ましく、中でも2〜4本/cmがより好ましい範囲で、織物中における補強繊維糸の目付は150〜600g/m2 でが好適である。
【0049】
また、よこ方向の補助糸の密度の好ましい範囲は、0.5〜5本/cmで、より好ましくは2〜3本/cmである。
【0050】
すなわち、よこ糸の密度が0.5本/cm以下では、たて糸とよこ糸の交錯点数が余りにも少なくなるために、たて糸とよこ糸を拘束力が小さくなるし、織物の単位面積当たりのよこ糸量が少なくなるので織物自身の剛性が不足する問題がある。
【0051】
また、たて糸の補強繊維糸束の糸幅はよこ糸との交錯部では規制され、たて糸間に隙間を設けることができるが、よこ糸とよこ糸間が大きくなると、その間でたて糸幅が拡がるため、たて糸間に充分な隙間を設けることが出来ない問題がある。
【0052】
一方、よこ糸密度が5本/cm以上となると、非常に剛性の高い織物となるが、よこ糸の使用量が増え、材料費が高くなる問題があるし、さらに拘束が強くなるためにたて糸の補強繊維糸がクリンプし、補強繊維の高強度が充分に発揮させることができない。
【0053】
たて糸間に設ける隙間は0.2〜2.0mmの範囲が好適である。
【0054】
隙間が0.2mm以下では、特に高粘度樹脂となるとその隙間から樹脂が抜け難い問題があり、また、隙間が2.0mm以上となると、樹脂は抜け易くなるものの、隙間を設けた分たて糸部分の厚みが増して織物表面が凸凹するし、補強繊維糸が強固に集束されるため樹脂の含浸性が低下する問題がある。
【0055】
樹脂の含浸性は、JIS L 1096法によるシート通気量と密接な関係があることは前記したとおりであるが、具体的には該通気量で40〜300CC/cm2/secであることが重要であることがわかった。かかる通気量は、たて方向に使用された炭素繊維目付が150〜600g/m 2 の織物において測定されるものである。
【0056】
通気量がの40CC/cm2/sec未満であると、補強繊維糸条を形成する炭素繊維の嵩密度が小さくなり、すなわち、炭素繊維同志が形成する空間が小さく、また補強繊維糸条間の隙間が小さくて、樹脂の含浸性が悪く、ボイドを発生させる。
【0057】
また、300CC/cm2/secでは、補強繊維糸間の隙間が大きい織物であるため、補強繊維部の厚みが増大して表面が凸凹し、また、補強繊維糸が強固に集束されるために補強繊維糸条内への樹脂の含浸性が低下する問題がある。
【0058】
通気量の測定は、JIS L 1096法6.27項の通気性A法に従った。
【0059】
すなわち、円筒の一端が38.3cm2 通気孔に20cm×20cmのシート試験片を所定の方法で取り付け、加減抵抗器によって傾斜形気圧計が水柱1.27cmの圧力を示すように吸い込みファンを調整し、その時の垂直形気圧計の示す圧力と、使用した空気孔の種類とから、試験機付随の換算表によってシート試験片を通過する空気量(CC/cm2/sec)を求め5回の測定結果の平均値を通気量とした。
【0060】
なお、温度が20℃、湿度が65%の室内に試料を24時間放置した後、その雰囲気下で測定した。なお、後述する実施例では、通気量測定器として、(株)大栄科学精器製作所のフラジール形試験機AP−360を使用した。
【0061】
本発明の織物組織は、たて糸およびよこ糸の密度が粗いものであるから、交錯点数の多い平織構造、または、たて方向の補強繊維糸条と並行で、かつたて方向の補強繊維糸条と1本交互にたて方向の補助糸が配列し、よこ方向の補助糸が前記補強繊維糸条とたて方向の補助糸とで平織組織をなしたノンクリンプ構造が好ましいものである。
【0062】
ここでいうノンクリンプ構造とは、たて糸方向の補強繊維糸条が曲がる(クリンプ)ことなく実質上真っ直ぐに配向した織物構造である。
【0063】
さらに、よこ方向の補助糸に沿って目どめ剤を線状に配置させ、たて方向の補強繊維糸とよこ方向の補助糸の交点を接着させておくことにより、織物の剪断方向の変形に対して抗力を発揮し、一層形態保持性の高い織物になるし、取扱い時に繊維配向が乱れたりすることがないので好ましいものである。
【0064】
目どめ剤は、よこ方向補助糸の周りに螺旋状に配置させてもよい。
【0065】
目どめ剤としては、共重合ナイロン、共重合ポリエステル、ポリエチレンなどの低融点ポリマ−が好ましい。
【0066】
目どめ剤の配置方法は、織物を製造する際、よこ方向補助糸の供給時に低融点ポリマ−糸を引き揃えて供給させるか、予めよこ方向補助糸の周り低融点ポリマ−糸をカバ−リングして供給させて織物を製造し、織機上または別ラインで加熱して低融点ポリマ−糸を溶融させることにより達成でき、たて糸とよこ糸の交点を接着させることが出来る。
【0067】
本発明の一方向性補強織物は構造物の補修または補強に好適に用いることができる。かかる構造物としては、橋梁、柱、トンネルなど特に限定されるものではない。又その材質もコンクリート、金属、石質材、プラスチック、木材等特に限定されるものではないが、コンクリートがもっとも好適であり、以下、コンクリート構造物を例に挙げ本発明を説明する。
【0068】
本発明には、コンクリート構造物の補修・補強したい部位に、樹脂を塗布し、その上から上記した一方向性補強織物を貼り付け、含浸ローラで樹脂含浸させて補強する方法も含まれる。
【0069】
使用する樹脂としては、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂などの熱硬化樹脂である。
【0070】
(本発明の実施態様)
本発明の実施態様例を図1、2にしたがって説明する。
【0071】
図1はガラス繊維糸からなるよこ方向補助糸で、2は炭素繊維からなるたて方向の補強繊維であり、互いに交錯した平織組織をなしている。
【0072】
そして、よこ方向の補助糸の曲げ剛性指数(繊維の引張り弾性率×(単繊維の直径)4×フィラメント数)が5×10−3 〜200×10−3 であり、そして、たて方向の補強繊維糸条とよこ方向補助糸の引張り剛性(繊維の引張り弾性率×単位幅当たり繊維断面積)の比が3〜100である。
【0073】
また、よこ方向補助糸の周りに目どめ剤3が螺旋状に配列され、よこ方向補助糸とたて方向の補強繊維糸との交点で接着されている。
【0074】
図2は、たて方向の補強繊維糸2の間にたて方向補助糸4を交互に配列させ、よこ方向補助糸1が前記補強繊維糸2とたて方向補助糸4とで平織構造をなしたノンクリンプ構造組織であり、よこ方向の補助糸の曲げ剛性、およびたて方向の補強繊維糸条とよこ方向補助糸の引張り剛性の比は前記平織構造と同じ範囲にある。
【0075】
【実施例】
(実施例1〜3、比較例1、2)
本発明の効果を明確にするために表1に示したような各条件で、図1の通りの織組織の一方向性補強織物をそれぞれ作成し、検討を行った結果を表1にまとめた。
【0076】
【表1】
*1:低融点共重合ナイロン100Dをヨリ数150T/mでカバーリング。
【0077】
*2:曲げ剛性指数(繊維の引張り弾性率×(単繊維の直径)4 ×フィラメント数)[Kgf・mm2 ]
*3:引張り剛性(繊維の引張り弾性率×単位幅当たり繊維断面積)の比
*4:織物の剛性の評価は下記の通り。
【0078】
◎:剛性が非常に高く、表面に皺が発生しない。
【0079】
○:剛性が十分高く、表面に皺が発生しない。
【0080】
×:剛性が低く、表面に皺が発生する。
【0081】
表1における本発明の実施例1から3は、織物に十分な剛性があり、皺が生じることなく貼ることが出来、しかも樹脂がたて糸の隙間から抜け出して容易に含浸させることが出来た。また、貼り付け時の空気抱き込みも、たて糸の隙間から抜け、空気抱き込みによるボイドもなかった。
【0082】
一方、比較例1のようによこ方向補助糸の曲げ剛性指数が5Kgf・mm2 以下であると、織物の剛性がなく、織物貼り付け時に皺が入る問題点があった。また、よこ方向補助糸の曲げ剛性が小さいために、たて方向の補強繊維糸の幅を制御する力がなく、糸幅が最大に拡がりたて糸間に隙間がまったくない状態で、通気量も小さい結果で、コンクリ−ト面に樹脂を塗布した上に貼り付け、含浸ロ−ラ掛けを行ってもなかなか樹脂が表面に出ず、貼り付け面と織物基材との樹脂厚み斑により成形面が凸凹した表面で見栄え悪いものであった。
【0083】
また、比較例2においては、よこ方向補助糸にフィラメント数が6,000 本からなる炭素繊維糸を用いた結果、高い曲げ剛性を有し、しかも十分な隙間を得ることができたが、たて方向の補強繊維糸条とよこ方向補助糸の引張り剛性比が小さいため、たて方向の補強繊維糸条のクリンプが大きくなり、しかもよこ方向補助糸が太いために成形後の表面が凸凹する問題があった。
【0084】
【発明の効果】
本発明の一方向性補強織物は、よこ方向補助糸の曲げ剛性ならびにたて方向の補強繊維糸条とよこ方向補助糸の引張り剛性比を特定することにより、たて方向に太い補強繊維糸条を使用し、粗いたて糸密度であっても織物に十分な剛性が付与され、成形時の貼り付けの際に皺が生じたりすることがなく、また、織物の高い剛性によって貼り付け面と織物基材間の樹脂厚み斑を均一に延ばし、表面平滑に仕上げることが出来る。
【0085】
さらに、たて方向の太い補強繊維糸に対して、曲げ剛性の高いよこ糸によって、たて糸間に樹脂が通過するのに十分な隙間が得られ、貼り付け面の樹脂や抱き込み空気を織物表面に抜くことが出来、ボイドや樹脂厚み斑による表面凹凸のないコンクリート構造体の補強が可能となる。
【図面の簡単な説明】
【図1】本発明の一方向性補強織物の実施態様例を示す。
【図2】たて方向補助糸を有する本発明の一方向性補強織物の実施態様例を示す。
【図3】たて糸とよこ方向補助糸の交錯部の斜視図でである(A:よこ方向補助糸に平行な方向で補助糸近傍に出来る隙間、B:織物を正面から見た際の隙間)。
【符号の説明】
1:よこ方向補助糸
2:たて方向補強繊維糸
3:目どめ剤
4:たて方向補助糸[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a reinforced fabric base material used for a fiber-reinforced composite material. More specifically, the present invention relates to a reinforced fabric that is excellent in handleability and surface smoothness and exhibits a high reinforcing effect when a concrete structure or the like is reinforced with carbon fiber reinforced plastic.
[0002]
[Prior art]
As a reinforcing substrate for fiber-reinforced composite materials, fabrics made of high-strength, high-modulus fibers such as inorganic fibers such as glass fibers and carbon fibers, and organic fibers such as aramid fibers and high-strength polyethylene fibers are widely used. .
[0003]
In general, fiber reinforced plastics made of reinforcing fibers have large anisotropy and exhibit high tensile strength and elastic modulus in the direction in which the reinforcing fibers are oriented, but only exhibit resin strength in the direction perpendicular to the fibers. There are no downsides. On the other hand, there is an advantage that effective reinforcement can be achieved by orienting many reinforcing fibers in the required direction.
[0004]
In order to utilize anisotropy, the reinforcing fibers can be arranged in the warp direction, and effective reinforcement can be achieved by a unidirectional fabric using auxiliary yarns in the weft direction.
[0005]
In this case, the auxiliary yarn in the weft direction is for the purpose of maintaining the arrangement of the warp yarns, and does not act on the reinforcement at all. Therefore, in order to make a lightweight and thin fabric, the thinnest possible yarn is used. .
[0006]
When the fineness of the warp yarn made of reinforcing fibers is relatively small and the density of the warp yarn is large, the number of crossing points with the weft yarn is large, and the binding force to the warp yarn by the weft yarn also increases, so the fabric itself is rigid, The fabric is excellent in handleability.
[0007]
However, the density of the warp yarns made of such reinforcing fibers is large, and even if a resin is applied to a very clogged fabric and molded into a composite material, it is difficult to impregnate the resin, resulting in a composite material with many voids. End up.
[0008]
In particular, when reinforcing a reinforcing fabric by affixing it to a concrete surface, a high-viscosity resin is used to prevent dripping of the resin or slippage of the fabric base material, which makes it more difficult to impregnate the resin. is there.
[0009]
In addition, after applying a high-viscosity resin to the substrate to attach the fabric substrate, it is difficult to remove the resin in the thickness direction of the fabric substrate when applying a clogged fabric substrate from above. There is a problem that the resin accumulates between the affixing surface and the woven fabric base, and the surface after application is uneven due to the uneven thickness of the resin layer, resulting in a molded surface with poor appearance.
[0010]
On the other hand, even if the resin has a low viscosity, it is difficult for the resin between the affixed surface and the affixed fabric substrate to come off the surface of the fabric substrate, and the resin flows downward between the affixed surface and the fabric substrate. There is a problem that it collects in a place and bulges in that place.
[0011]
In order to solve such a problem, it is conceivable to increase the density of the warp yarns made of reinforcing fibers and provide a sufficient gap between the warp yarns so that the resin can easily escape from the gap to the surface.
[0012]
However, if the density of the warp yarn is rough, the number of crossing points of the warp yarn and the weft auxiliary yarn is small, and the binding force between the warp yarn and the weft yarn is low, so that the warp yarn and the weft yarn are easily displaced at the crossing portion and the dimensional stability is poor. Become woven.
[0013]
If you try to laminate and form such a woven fabric substrate with low dimensional stability, if you lift it by hand during lamination, it will be bent greatly by the weight of the fabric, and the reinforcing fibers will be laminated in a straight array. There is a very difficult problem.
[0014]
In particular, when trying to reinforce a large area such as a concrete vertical surface with a unidirectional reinforcing fabric, after applying resin to the concrete surface and trying to paste a non-rigid fabric on it, wrinkles occurred It is difficult to handle once the resin is attached, and it takes a very long time to eliminate wrinkles and cannot be completely removed.
[0015]
In order to improve the above problems, a reinforced fabric base material in which a sheet material is bonded to a fabric is proposed in Japanese Patent Laid-Open No. 8-156152.
[0016]
Since the reinforcing woven base material is preliminarily pasted on the fabric surface with paper or the like that is difficult to deform, it can be pasted without wrinkles at the time of pasting, but a step for pasting is necessary, Since it is necessary to peel off the sheet material after applying the reinforced woven fabric base material, weak adhesion is caused, and there is a problem that it is easily peeled off during handling.
[0017]
Thus, conventionally, there has been no unidirectional reinforcing fabric having excellent dimensional stability and good resin impregnation property as a substrate for fiber-reinforced plastics.
[0018]
[Problems to be solved by the invention]
The object of the present invention is, in particular, excellent in dimensional stability and handleability, good in resin impregnation properties when molded into fiber reinforced plastic, can be made without causing wrinkles and blisters, and can be used for smooth surface molding. It is to provide a reinforced fabric.
[0019]
[Means for solving the problems]
In order to solve the above problems, the present invention basically has the following configuration. That is,
"Arranged in the reinforcing fiber yarns of the plurality of the longitudinal direction parallel becomes to assist yarn arranged in the horizontal direction, and the reinforcing fiber basis weight that is used in the longitudinal direction of the 150~600g / m 2 fabric In
A. The bending stiffness index of the auxiliary yarn (tensile modulus of fiber × (diameter of single fiber) 4 × number of filaments) is 5 × 10 −3 to 200 × 10 −3 Kgf · mm 2 ,
B. The ratio in the longitudinal direction of the reinforcing fiber yarns and transverse supplementary threads tensile rigidity (fiber cross-sectional area per tensile modulus × unit width of the fiber) is Ri der 3-100,
C. Unidirectional reinforcement fabrics "sheet air permeability, characterized in 40~300CC / cm 2 / sec der Rukoto by JIS L 1096 Method for textiles.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
The reinforcing fiber is preferably a fiber having high strength and high elastic modulus such as glass fiber, aramid fiber, or carbon fiber, and is particularly preferably a thick carbon fiber having 6,000 to 30,000 filaments. . The diameter of the single fiber is preferably 5 to 10 μm.
[0021]
More preferably, the carbon fiber is composed of 12,000 to 24,000 filaments.
[0022]
Carbon fiber is the most preferable among the reinforcing fibers because it has high strength and high elastic modulus and can provide a high reinforcing effect. Among them, the tensile strength is 300 kgf / mm 2 or more, and the tensile elastic modulus is 20,000 kgf / mm 2. The above carbon fiber is preferable.
[0023]
The present invention is also characterized in that a fiber yarn thicker than a reinforcing fiber yarn normally used as a warp yarn is used, and a gap of 0.2 to 2.0 mm is provided between the reinforcing fiber yarns.
[0024]
If the fabric basis weight is the same, the warp yarn spacing can be increased by thickening the warp yarns, and the cross-sectional shape of the warp yarns can be converged to a nearly circular shape. This makes it easy to provide a gap.
[0025]
In unidirectional woven fabrics, where warp yarns are thick reinforcing fiber yarns, the cross-section of the warp yarn is converged into a substantially circular shape by weaving mail after weaving, so that weaving with a gap between the warp yarns is possible. Since the yarn is thin and has low bending rigidity, there is almost no regulating force for the warp yarn spreading in the width direction, so the warp yarn spreads in the width direction due to the nip pressure of the take-up roller. The gap is almost gone.
[0026]
Therefore, in the present invention, the weft direction auxiliary yarn having high bending rigidity is used to suppress the spread of the warp yarn in the width direction, and a space is positively provided between the warp yarns.
[0027]
By using a thick yarn of 300 to 1,500 denier for the auxiliary yarn in the weft direction, it is possible not only to provide a gap between the warp yarns on the fabric surface as described above, but also in the direction of the weft direction auxiliary yarn. Can be provided.
[0028]
FIG. 3 is a perspective view of the intersection of the warp and the weft, and the gap between the warps in the present invention refers to the gap (B) when the fabric is viewed from the front, but the warps are interlaced with the weft. In the crossing portion, a gap (A) corresponding to the thickness of the weft thread is formed in a direction substantially parallel to the weft thread. Therefore, by thickening the weft thread, a sufficiently large gap (A ) Is definitely obtained.
[0029]
By providing such a gap penetrating in the thickness direction of the woven fabric substrate, the gap becomes a passage for the resin and the embracing air, and the resin impregnation is facilitated.
[0030]
More specifically, for example, when a resin is applied to the reinforcing surface of a concrete structure, and a woven fabric base material is pasted thereon and applied with an impregnation roller, the resin between the concrete surface and the woven fabric base material is used for a normal woven fabric base material. There is a problem that the resin accumulates at the place where the impregnation roller hung is stopped and the portion swells only by moving between the concrete surface and the woven base material.
[0031]
If a gap is provided between the warp yarns, the resin is released from the gap to the surface of the woven base material, the resin between the concrete surface and the woven base material is thin and uniform, and does not swell after being applied.
[0032]
Furthermore, when the fabric base material is pasted after applying the resin to the pasting surface, air is embraced, but if a gap is provided between the warp yarns, it can be removed from the gap, and a large cavity due to the embraced air Reinforcement with high reliability can be performed without occurring.
[0033]
In addition, if the warp yarn is thickened and the density is coarsened, the number of crossing points between the warp yarn and the weft yarn will decrease, so naturally the restraining force will be reduced and the fabric will be less rigid, but we will use the weft direction auxiliary yarn with high bending rigidity. Thus, the warp yarn is firmly restrained at the crossing point by the weft yarn, and at the same time, the bending stiffness in the width direction of the fabric is increased by the high bending stiffness of the weft-direction auxiliary yarn itself, so that the fabric becomes a rigid fabric as a whole.
[0034]
As the auxiliary yarn in the weft direction, a fiber having high bending rigidity such as glass fiber, aramid fiber, or carbon fiber is preferable, and an inexpensive glass fiber yarn is particularly preferable.
[0035]
In this way, by using fibers with high bending rigidity in the auxiliary yarns in the weft direction, even when the warp yarn density is rough, high restraint force on the reinforcing fiber yarns in the warp direction and auxiliary in the weft direction The high rigidity of the yarn itself imparts rigidity to the fabric base material itself, so that wrinkles can be prevented from occurring in the pasting operation, and the pasting operation becomes easy.
[0036]
In addition, it is usually difficult to uniformly apply the resin to the application surface. When a conventional non-rigid soft woven material is applied on a large application spot, It will be affixed in an uneven state along the thickness of the resin, but if it is a woven fabric base material of the present invention, the resin-rich portion is uniformly expanded by the rigidity of the woven fabric itself, and the resin layer is made uniform. As a result, the surface of the fabric base material is not uneven.
[0037]
Furthermore, when a conventional woven fabric base and a high-viscosity resin are used, the resin covers the reinforcing fiber yarn bundle, traps the air in the yarn bundle, and continues in the direction of the reinforcing fiber yarn bundle (void). ) Occurs.
[0038]
Then, after a while, there is a problem that the unimpregnated portion swells due to the force of the reinforcing fiber bundle returning to its original thickness, and the center portion of the fiber bundle becomes a large cavity along the reinforcing fiber direction. For such a problem, by giving rigidity to the reinforcing fibers in the weft direction, the reinforcing fiber bundles are interlaced with the rigid auxiliary yarns in the weft direction, and the reinforcing fiber bundles are firmly held down. There exists an effect | action which prevents that a bundle center part becomes a big cavity.
[0039]
The bending stiffness index of the auxiliary yarns in the weft direction is preferably 5 × 10 −3 to 200 × 10 −3 Kgf · mm 2 in terms of tensile modulus of fiber × (diameter of single fiber) 4 × number of filaments, and in particular, 20 × 10 −3 to 100 × 10 −3 Kgf · mm 2 is a more preferable range. Here, the diameter and the number of filaments of the single fiber are obtained by fixing the yarn with a resin and reading the average diameter and the number of filaments from an enlarged photograph of the cross section.
[0040]
In the case where the reinforcing fiber in the vertical direction is thick and the density is rough so that a gap is provided between the reinforcing fibers, the bending rigidity index is 5 × 10 −3 Kgf · mm 2 or less. Not only does the binding force against the fiber not act, but also the auxiliary yarn itself in the weft direction has a small bending rigidity, so there is no form retention of the woven fabric, and it becomes a woven fabric with low rigidity, causing wrinkles or sticking at the time of application. There is a problem that the surface after molding is uneven due to the influence of the uneven thickness of the resin applied to the affixing surface and the flow of the resin.
[0041]
On the other hand, when the bending stiffness index of the auxiliary yarn in the weft direction is 200 × 10 −3 Kgf · mm 2 or more, the fabric becomes very stiff. However, crimping occurs in the reinforcing fiber yarn in the warp direction, and the reinforcing fiber There is a problem that the high strength characteristics of the material cannot be exhibited.
[0042]
When the weft-direction auxiliary yarn is a yarn hardened with resin, the value calculated by (the tensile elastic modulus of the auxiliary yarn × the fourth power of the diameter of the hardened auxiliary yarn) is taken as the bending rigidity.
[0043]
The auxiliary yarn may be twisted or untwisted. In particular, when the surface of the composite material is required to be smooth, non-twisting is preferable.
[0044]
Further, the ratio of the tensile rigidity of the reinforcing fiber yarns in the warp direction and the weft direction auxiliary yarns (tensile modulus of fiber × fiber cross-sectional area per unit width) is preferably 3 to 100, and more preferably 20 to 70. . The ratio here refers to (the tensile rigidity of the reinforcing fiber yarn in the warp direction) / (the tensile rigidity of the auxiliary yarn in the transverse direction).
[0045]
That is, in order to achieve the object of the present invention, the tensile rigidity of the auxiliary yarn in the weft direction needs to change the reinforcing fiber yarn in the warp direction depending on the tensile rigidity.
[0046]
When the ratio of the tensile rigidity of the reinforcing fiber yarn in the warp direction to the auxiliary yarn in the transverse direction (tensile modulus of fiber × fiber cross-sectional area per unit width) is 3 or less, the tensile rigidity of the auxiliary yarn in the transverse direction is high. Therefore, there is a problem that the strength characteristics of the reinforcing fiber yarn are not sufficiently exhibited because the reinforcing fiber yarn becomes larger than the rigidity of the direction reinforcing fiber yarn and crimps are generated in the reinforcing fiber yarn in the vertical direction.
[0047]
On the other hand, when the ratio is 100 or more, the tensile stiffness of the auxiliary yarn in the transverse direction is too small with respect to the tensile stiffness of the warp-direction reinforcing fiber yarn, so that the fabric cannot be given rigidity. Therefore, there is a problem that a gap cannot be provided between the direction reinforcing fiber yarns, and the resin between the base material attaching surface and the fabric base material and the embedment air cannot be extracted in the fabric thickness direction, causing swelling.
[0048]
The density of the reinforcing fiber yarns in the warp direction in the present invention is preferably a coarse density of 1 to 5 yarns / cm, more preferably 2 to 4 yarns / cm from the viewpoint of easily providing a sufficient gap between the warp yarns. The basis weight of the reinforcing fiber yarn in the woven fabric is preferably 150 to 600 g / m 2 .
[0049]
Moreover, the preferable range of the density of the auxiliary yarns in the weft direction is 0.5 to 5 yarns / cm, more preferably 2 to 3 yarns / cm.
[0050]
That is, when the density of the weft yarn is 0.5 yarns / cm or less, the number of crossing points of the warp yarn and the weft yarn is too small, so that the binding force between the warp yarn and the weft yarn is small, and the amount of the weft yarn per unit area of the woven fabric is small. Therefore, there is a problem that the rigidity of the fabric itself is insufficient.
[0051]
In addition, the yarn width of the reinforcing fiber yarn bundle of the warp yarn is regulated at the intersection with the weft yarn, and a gap can be provided between the warp yarns. There is a problem that a sufficient gap cannot be provided.
[0052]
On the other hand, when the weft density is 5 yarns / cm or more, the fabric becomes very stiff. However, there is a problem that the amount of weft used increases and the material cost becomes high, and the warp yarn is reinforced for further restraint. The fiber yarn is crimped, and the high strength of the reinforcing fiber cannot be exhibited sufficiently.
[0053]
The gap provided between the warp yarns is preferably in the range of 0.2 to 2.0 mm.
[0054]
When the gap is 0.2 mm or less, there is a problem that it is difficult to remove the resin from the gap, especially when it becomes a high-viscosity resin, and when the gap is 2.0 mm or more, the resin is easily removed, but the warp yarn portion provided with the gap As the thickness of the fabric increases, the surface of the fabric becomes uneven, and the reinforcing fiber yarns are tightly bundled.
[0055]
Impregnation of the resin, be sheet aeration and is closely related there Rukoto by JIS L 1096 method but is as described above, specifically a 40~300CC / cm 2 / sec in the aeration I found it important . This air flow rate is measured in a woven fabric having a carbon fiber basis weight of 150 to 600 g / m 2 used in the vertical direction .
[0056]
When the air flow rate is less than 40 CC / cm 2 / sec, the bulk density of the carbon fibers forming the reinforcing fiber yarn is reduced, that is, the space formed by the carbon fibers is small, and between the reinforcing fiber yarns. The gap is small, the impregnation of the resin is bad, and voids are generated.
[0057]
Further, at 300 CC / cm 2 / sec, because the woven fabric has a large gap between the reinforcing fiber yarns, the thickness of the reinforcing fiber portion increases, the surface is uneven, and the reinforcing fiber yarns are tightly focused. There is a problem that the impregnation property of the resin into the reinforcing fiber yarn is lowered.
[0058]
The measurement of the air flow amount was in accordance with the air permeability A method of JIS L 1096 method 6.27.
[0059]
That is, one end of the cylinder attaching the sheet test piece 20 cm × 20 cm to 38.3cm 2 vents in a predetermined manner, adjusting the suction fan to indicate the pressure of the graded barometer water column 1.27cm by rheostat Then, from the pressure indicated by the vertical barometer at that time and the type of air hole used, the amount of air passing through the sheet test piece (CC / cm 2 / sec) is obtained by a conversion table attached to the tester and is calculated five times. The average value of the measurement results was taken as the air flow rate.
[0060]
The sample was allowed to stand for 24 hours in a room with a temperature of 20 ° C. and a humidity of 65%, and then measured in that atmosphere. In Examples to be described later, Frazier type tester AP-360 manufactured by Daiei Kagaku Seisakusho Co., Ltd. was used as an air flow rate measuring device.
[0061]
Since the fabric structure of the present invention has a coarse warp yarn and weft yarn density, a plain weave structure having a large number of crossing points, or a warp direction reinforcing fiber yarn in parallel with a warp direction reinforcing fiber yarn, A non-crimp structure in which warp direction auxiliary yarns are arranged alternately and the weft direction auxiliary yarns form a plain weave structure with the reinforcing fiber yarns and the warp direction auxiliary yarns is preferable.
[0062]
The non-crimp structure here refers to a woven structure in which reinforcing fiber yarns in the warp direction are oriented substantially straight without bending (crimping).
[0063]
Furthermore, by arranging a line-of-sight agent linearly along the auxiliary yarns in the weft direction and bonding the intersecting points of the reinforcing fiber yarns in the warp direction and the auxiliary yarns in the weft direction, deformation of the fabric in the shear direction can be achieved. It is preferable because it exhibits a resistance to the woven fabric and has a higher form-retaining property, and the fiber orientation is not disturbed during handling.
[0064]
The squeezing agent may be arranged in a spiral around the weft direction auxiliary yarn.
[0065]
As the squeezing agent, a low melting point polymer such as copolymer nylon, copolymer polyester, or polyethylene is preferable.
[0066]
As for the arrangement method of the squeezing agent, when producing the woven fabric, the low-melting polymer yarns are arranged and supplied when the weft-direction auxiliary yarns are supplied, or the low-melting polymer yarns are previously covered around the weft-direction auxiliary yarns. This can be achieved by ring-feeding to produce a woven fabric and heating on a loom or on a separate line to melt the low melting polymer yarn, allowing the intersection of warp and weft to be bonded.
[0067]
The unidirectional reinforcing fabric of the present invention can be suitably used for repairing or reinforcing a structure. Such structures are not particularly limited, such as bridges, columns, and tunnels. Also, the material is not particularly limited, such as concrete, metal, stone material, plastic, wood, etc., but concrete is most suitable. Hereinafter, the present invention will be described by taking a concrete structure as an example.
[0068]
The present invention also includes a method in which a resin is applied to a portion of a concrete structure to be repaired / reinforced, and the above-described unidirectional reinforcing fabric is applied thereon, and the resin is impregnated with an impregnation roller to be reinforced.
[0069]
Examples of the resin used include thermosetting resins such as epoxy resins, unsaturated polyester resins, and vinyl ester resins.
[0070]
(Embodiment of the present invention)
An embodiment of the present invention will be described with reference to FIGS.
[0071]
FIG. 1 is a weft direction auxiliary yarn made of glass fiber yarns, and 2 is a warp direction reinforcing fiber made of carbon fibers, which forms a plain weave structure crossing each other.
[0072]
The bending stiffness index of the auxiliary yarn in the weft direction (tensile modulus of fiber × (diameter of single fiber) 4 × number of filaments) is 5 × 10 −3 to 200 × 10 −3 , and The ratio of the tensile rigidity (tensile modulus of fiber x fiber cross-sectional area per unit width) of the reinforcing fiber yarn and the weft direction auxiliary yarn is 3 to 100.
[0073]
Further, the filling
[0074]
FIG. 2 shows that the warp direction auxiliary yarns 4 are alternately arranged between the warp direction reinforcing
[0075]
【Example】
(Examples 1 to 3, Comparative Examples 1 and 2)
In order to clarify the effects of the present invention, unidirectional reinforcing fabrics having a woven structure as shown in FIG. 1 were prepared under the conditions shown in Table 1, and the results of investigation were summarized in Table 1. .
[0076]
[Table 1]
* 1: Covering low melting point copolymer nylon 100D at a twist number of 150 T / m.
[0077]
* 2: Flexural rigidity index (tensile modulus of fiber × (diameter of single fiber) 4 × number of filaments) [Kgf · mm 2 ]
* 3: Ratio of tensile stiffness (tensile modulus of fiber x fiber cross-sectional area per unit width) * 4: Evaluation of fabric stiffness is as follows.
[0078]
A: The rigidity is very high and no wrinkles are generated on the surface.
[0079]
○: The rigidity is sufficiently high and no wrinkles are generated on the surface.
[0080]
X: Low rigidity and wrinkles occur on the surface.
[0081]
In Examples 1 to 3 of the present invention in Table 1, the woven fabric had sufficient rigidity and could be stuck without wrinkles, and the resin could easily be impregnated by coming out of the warp yarn gap. In addition, there was no air embracing at the time of pasting, and there was no void due to air embracing from the warp yarn gap.
[0082]
On the other hand, when the bending stiffness index of the weft-direction auxiliary yarn is 5 Kgf · mm 2 or less as in Comparative Example 1, there is a problem that the fabric does not have rigidity and wrinkles occur when the fabric is applied. In addition, since the bending direction auxiliary yarn has low bending rigidity, there is no force to control the width of the reinforcing fiber yarn in the warp direction, the yarn width is widened to the maximum, and there is no gap between the yarns, and the air flow rate is also small. As a result, even after applying resin on the concrete surface and pasting and applying impregnation roller, the resin does not come out on the surface easily, and the molding surface becomes uneven due to the resin thickness unevenness between the pasting surface and the textile substrate. The uneven surface was unsightly.
[0083]
Moreover, in Comparative Example 2, as a result of using a carbon fiber yarn having 6,000 filaments as the weft direction auxiliary yarn, it had high bending rigidity and a sufficient gap could be obtained. Because the tensile stiffness ratio between the vertical direction reinforcing fiber yarn and the weft direction auxiliary yarn is small, the warp direction reinforcing fiber yarn has a large crimp, and the weft direction auxiliary yarn is thick, and the surface after molding is uneven. was there.
[0084]
【The invention's effect】
The unidirectional reinforcing fabric of the present invention has a thick reinforcing fiber yarn in the warp direction by specifying the bending rigidity of the weft direction auxiliary yarn and the tensile rigidity ratio of the warp direction reinforcing fiber yarn and the weft direction auxiliary yarn. Even if it has a coarse warp density, sufficient rigidity is imparted to the woven fabric, and no wrinkles are produced when it is applied at the time of molding. The uneven thickness of the resin in the middle can be extended uniformly and finished with a smooth surface.
[0085]
Furthermore, wefts with a high bending rigidity are provided for warp-thick reinforcing fiber yarns, so that there is sufficient clearance for the resin to pass between the warp yarns. It can be pulled out, and it becomes possible to reinforce the concrete structure without surface irregularities due to voids and resin thickness spots.
[Brief description of the drawings]
FIG. 1 shows an example embodiment of a unidirectional reinforcing fabric of the present invention.
FIG. 2 shows an example embodiment of a unidirectional reinforcing fabric of the present invention having warp direction assist yarns.
FIG. 3 is a perspective view of a crossing portion of a warp yarn and a weft direction auxiliary yarn (A: a gap formed in the vicinity of the auxiliary yarn in a direction parallel to the weft direction auxiliary yarn, B: a gap when the fabric is viewed from the front).
[Explanation of symbols]
1: Weft direction auxiliary thread 2: Warp direction reinforcing fiber thread 3: Stitching agent 4: Warp direction auxiliary thread
Claims (11)
A.補助糸の曲げ剛性指数(繊維の引張り弾性率×(単繊維の直径)4 ×フィラメント数)が5×10−3〜200×10−3Kgf・mm2であり、
B.たて方向の補強繊維糸条とよこ方向補助糸の引張り剛性(繊維の引張り弾性率×単位幅当たり繊維断面積)の比が3〜100であり、
C.織物におけるJIS L 1096法によるシート通気量が40〜300CC/cm 2 /secであることを特徴とする一方向性補強織物。Arranged in parallel reinforcing fiber yarns of the plurality of the vertical direction, becomes to assist yarn arranged in the horizontal direction, and the reinforcing fiber basis weight that is used in the vertical direction in the fabric 150~600g / m 2 ,
A. The bending stiffness index of the auxiliary yarn (tensile modulus of fiber × (diameter of single fiber) 4 × number of filaments) is 5 × 10 −3 to 200 × 10 −3 Kgf · mm 2 ,
B. The ratio in the longitudinal direction of the reinforcing fiber yarns and transverse supplementary threads tensile rigidity (fiber cross-sectional area per tensile modulus × unit width of the fiber) is Ri der 3-100,
C. Unidirectional reinforcing fabric sheet aeration amount according to JIS L 1096 Method for fabric characterized 40~300CC / cm 2 / sec der Rukoto.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19688997A JP3633221B2 (en) | 1997-07-23 | 1997-07-23 | Unidirectional reinforced fabric and repair or reinforcement method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19688997A JP3633221B2 (en) | 1997-07-23 | 1997-07-23 | Unidirectional reinforced fabric and repair or reinforcement method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1143839A JPH1143839A (en) | 1999-02-16 |
JP3633221B2 true JP3633221B2 (en) | 2005-03-30 |
Family
ID=16365341
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19688997A Expired - Fee Related JP3633221B2 (en) | 1997-07-23 | 1997-07-23 | Unidirectional reinforced fabric and repair or reinforcement method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3633221B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005349826A (en) * | 2004-05-14 | 2005-12-22 | Toray Ind Inc | Fiber reinforced composite material member |
JP5370980B2 (en) * | 2007-11-21 | 2013-12-18 | 太平洋マテリアル株式会社 | Crack inhibiting material for hardened cement, hardened cement, and method for producing hardened cement |
EP2813532A4 (en) | 2012-02-09 | 2015-11-25 | Toray Industries | Carbon fiber composite material |
WO2015053228A1 (en) * | 2013-10-07 | 2015-04-16 | ユニチカ株式会社 | Permeable film, and method for producing same |
JP7357438B2 (en) * | 2018-04-18 | 2023-10-06 | 大嘉産業株式会社 | Reinforcement method and reinforcing material for metal pipes |
JP7384029B2 (en) * | 2019-12-27 | 2023-11-21 | 三菱ケミカル株式会社 | Fiber fabrics and carbon fiber reinforced composite materials |
CN113832588B (en) * | 2021-10-08 | 2022-08-26 | 常州市宏发纵横新材料科技股份有限公司 | Reinforced fabric and using method thereof |
-
1997
- 1997-07-23 JP JP19688997A patent/JP3633221B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH1143839A (en) | 1999-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3286270B2 (en) | Reinforcement mesh fabric and method of material reinforcement | |
JP3991439B2 (en) | Fiber reinforced plastic and method for molding fiber reinforced plastic | |
JP4287881B2 (en) | Reinforced thick fabric and method for producing the same | |
EP0144939A2 (en) | Base Cloth for Reinforcement | |
JPH038833A (en) | Woven fabric of reinforcing fiber | |
JP4262461B2 (en) | Nonwoven fabric for reinforcement and reinforcement method | |
KR102196438B1 (en) | Carbon Fiber Grid for Reinforcement And Manufacturing Method Of The Same | |
JP3633221B2 (en) | Unidirectional reinforced fabric and repair or reinforcement method | |
JP2009249754A (en) | Reinforcing fiber woven fabric and method for weaving the same | |
JP4228497B2 (en) | Reinforcing fabric | |
JP3991440B2 (en) | Fiber reinforced plastic and method for molding fiber reinforced plastic | |
JP5049215B2 (en) | Reinforcing fiber fabric and its weaving method | |
US9994981B2 (en) | Reinforcement system | |
JP3214648B2 (en) | Mesh prepreg for reinforcement, mesh fiber-reinforced plastic and fiber-reinforced cementitious materials | |
JP2017223093A (en) | Method and structure for reinforcing concrete structure | |
JP2947504B2 (en) | Textile substrate for reinforcement | |
JP3800763B2 (en) | Reinforced fiber base roll | |
JP3102295B2 (en) | Reinforcing fabric and method for producing the same | |
JP4078726B2 (en) | Multilayer reinforced fiber sheet and structure repair / reinforcement method | |
WO2010147231A1 (en) | Reinforcing-fiber sheet material | |
JP3019004B2 (en) | Carbon fiber woven and concrete structures | |
JP2010024620A (en) | Bonded structure of carbon fiber anchor and its forming method | |
US6805939B1 (en) | Areally extended composite material with fibers and plastic impregnation | |
JP2842412B2 (en) | Repair and reinforcement methods for carbon fiber sheets and concrete structures | |
JP6897705B2 (en) | Reinforcing fiber woven fabric and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040601 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040615 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040811 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041207 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041220 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080107 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090107 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100107 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100107 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110107 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |