JP4078726B2 - Multilayer reinforced fiber sheet and structure repair / reinforcement method - Google Patents

Multilayer reinforced fiber sheet and structure repair / reinforcement method Download PDF

Info

Publication number
JP4078726B2
JP4078726B2 JP26132898A JP26132898A JP4078726B2 JP 4078726 B2 JP4078726 B2 JP 4078726B2 JP 26132898 A JP26132898 A JP 26132898A JP 26132898 A JP26132898 A JP 26132898A JP 4078726 B2 JP4078726 B2 JP 4078726B2
Authority
JP
Japan
Prior art keywords
resin
reinforcing fiber
sheet
multilayer
reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26132898A
Other languages
Japanese (ja)
Other versions
JP2000085044A (en
Inventor
明 西村
清 本間
郁夫 堀部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP26132898A priority Critical patent/JP4078726B2/en
Publication of JP2000085044A publication Critical patent/JP2000085044A/en
Application granted granted Critical
Publication of JP4078726B2 publication Critical patent/JP4078726B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、強化繊維シートおよび構造物の補修・補強方法に関する。
【0002】
【従来の技術】
橋の床版や橋脚、トンネル、煙突や建物などのコンクリート構造物は、長年の使用によりコンクリートの中性化や錆の発生による劣化、通行する車両重量制限の緩和による負荷の増大、地震による損傷やより大きな地震を想定した耐震基準の見直しなどによって、補修・補強が必要となってきている。
【0003】
最近、これら構造物の補修・補強は、施工が容易なことから、強化繊維からなるシートを構造物に貼り、常温硬化型の樹脂を含浸させる方法、いわゆるハンドレイアップ法が注目されている。この方法は常温で樹脂が1週間程度で完全に硬化し、現場で強化プラスチック板が成形され、また強化プラスチック(以下、FRPと呼称)板と構造物の接着も同時に行われるから補修・補強の工事が簡便となる。
【0004】
ところが、構造物の補修・補強部分は、床版下面のような天井面や橋脚、建築構造物の柱など鉛直面などもあり、これらの天井面や鉛直面に樹脂を塗布すると樹脂が垂れ落ち、所定の樹脂量が塗布出来なくなることから、これらを防ぐため通常使われている樹脂の粘度は2,000〜25,000mPa・s(ミリパスカル×秒)と非常に高い。通常、ハンドレイアップ成形法は、ボートやタンクなどの成形法として多用されているが、ここで用いられている常温硬化型の不飽和ポリエステル樹脂やビニルエステル樹脂の粘度は、シートを構成する強化繊維への樹脂含浸の観点から200〜500mPa・s、高くてもせいぜい1,000mPa・s程度である。これと比べて構造物の補修・補強に用いられている樹脂の粘度は極めて高く、強化繊維への樹脂含浸性はあまりよくない。
【0005】
このようなことから、構造物の補修・補強に多用されている強化繊維シートは薄く、強化繊維が炭素繊維のもので炭素繊維目付が200〜300g/m2 、すなわち1平方メートル当たりの炭素繊維の体積が110〜170cm3 程度の、炭素繊維が一方向に配列した薄い強化繊維シートである。
【0006】
したがって、構造物の補修・補強に必要な強化繊維量に対処するには使用する強化繊維シートの枚数が多くなり、各シートごとに樹脂含浸作業が必要となるから、樹脂含浸作業回数が多くなり厄介である。
【0007】
一方、単にシート1枚当たりの強化繊維量を増やしたのでは、シートを構成する強化繊維糸条が密に配列し、集束度合いが大きくなり、繊維間隔が詰まり樹脂含浸が困難となる。
【0008】
【発明が解決しようとする課題】
本発明は、このような現状に着目し、1枚当たりの強化繊維量が大きくてかつ樹脂含浸性に優れた多層強化繊維シートを提供し、また施工性に優れる構造物の補修・補強方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するために、本発明は、基本的には下記の構成を有する。即ち、「強化繊維糸条が並行にシートの長さ方向に配列したシート基材が、強化繊維の方向が同じになるように多層重なって、隣接する層が互い一体化されており、該強化繊維の嵩密度(シートの体積/強化繊維の体積)が220〜300%であることを特徴とする多層強化繊維シート。」である。
【0010】
【発明の実施の形態】
本発明の多層強化繊維シート1の概念を示す部分破断斜視図を図1に示した。強化繊維糸条2がシートの長さ方向イに多数本並行に配列した第1層目の基材31 と第2層目の基材32 の2層が強化繊維の方向が同じになるように重なっており、基材31 と基材32 を織組織や接着などの一体化手段(図1には図示せず)によって互い一体化させたものである。
また、本発明の多層強化繊維シートの嵩密度は220〜300%の範囲である。嵩密度が220%以下であると繊維シートを形成する強化繊維の配列密度が大きくなり、すなわち単繊維間の間隙が小さくなるので樹脂含浸性が悪くなり、また高粘度樹脂をハンドレイアップ法で含浸させる際の空気の抱き込みを防ぐことが困難となる。また、嵩密度が300%以上であると、樹脂の含浸性や空気の抱き込みという問題はないが、シートの繊維が嵩高となっているので、シートの繊維間を充填するに必要な樹脂量が多くなってしまう。また、樹脂を塗布し含浸ローラがけすることによって、嵩高なシートを押さえ、樹脂量は少なくすることは可能であるが、押さえられたシートはもとの嵩高な状態に回復する、すなわちスプリングバック現象が起きるから、回復したシートに対する樹脂量が不足し、樹脂が硬化したFRPではボイドが多く入った状態となってしまう。
本発明における嵩密度Vとは、下記の算出式で計算される値をいう。
V=A×t÷(w/ρ)×100(%)
ここで、t:多層強化繊維シートの厚さ(cm)
A:織物の面積(cm 2
w:織物の面積Aにおける強化繊維シート重量(g)
ρ:強化繊維の密度(g/cm 3
ここで、シートの厚さの測定方法は、JIS 7602 5.6項の、厚さ測定器がダイアルゲージ法に準じた。ただし、荷重は50kPaとし、シートに荷重をかけてから20秒経過後の値を読取り、シートの枚数で割り、1枚当たりの厚さとした。なお、シートが織物である場合、よこ糸の補助糸がシートの厚さに及ぼす影響を極力少なくするように、重ね合わせる補助糸の位置が互いにずれるようにシートを数枚重ね合わせて厚さを測定し、シートの重ね合わせ枚数で割って、1枚当たりの厚さを求めた。
なお、必ずしも層数は2層である必要はなく、3層や4層であってよく、限定するものではない。
【0011】
本発明の多層強化繊維シートは、基材の形態および多層構造とするための一体化手段によって分類することができる。
【0012】
まず、一体化手段が接着による場合を説明するに、図2〜図4に本発明の多層強化繊維シートを構成する基材の形態を示した。
【0013】
図2は強化繊維糸条2が基材の長さ方向ロ、つまり織物のたて方向に配列し、よこ方向に強化繊維糸条より細い補助糸4が配列し、たて糸2とよこ糸4が交錯し、織組織した一方向織物である。図3は基材の長さ方向ロ、つまり織物のたて方向に強化繊維糸条2と補助糸5が配向し、よこ方向に補助糸4が配向し、よこ糸の補助糸4がたて糸の補助糸5と交錯し、強化繊維糸条2がよこ糸4と交錯すること無く、真直ぐに配向した、いわゆる一方向ノンクリンプ織物である。また、図4は強化繊維糸条が真直ぐに一方向に並行配列した強化繊維糸条2のシートとメッシュ状の支持体6とを接着剤またはメッシュの線材7、8の表面に存在する熱可塑性ポリマーなどで融着して一体化したトウ・シートである。メッシュ状の支持体6は互いに直交する線材は必ずしも2方向に限定するものではなく、よこ方向のみの1方向や、長さ方向と強化繊維糸条に対して±α゜に配向した3方向であってもよい。また、基材は一方向に配列した強化繊維糸条を細い補助糸で編組織させた一方向編物であってもよい。
【0014】
これらの形態を有する基材は、構造物の補修・補強する際にこれまで使われており、とくに新しいものではない。
【0015】
本発明の多層強化繊維シートは、これらの基材を多数枚重ね合わせ、一体化したものである。図5は本発明の多層強化繊維シートの1実施例で、部分破断した斜視図である。接着手段によって、基材としての一方向織物を2枚重ね合わせた多層強化繊維シートであり、第1層目の基材31 と第2層目の基材32 の層間が点状の接着剤9で接着している。
【0016】
点状に接着させるには、熱溶融性の熱可塑性樹脂粉末を基材31 の片面に均一に疎らにふりかけ、この接着剤が付着した面に基材32 を重ねて熱可塑性樹脂を加熱溶融して基材31 と基材32 を接着することができる。
【0017】
また、接着剤の付着状態が線状であってもよい。線状に接着させるには、織物を製織する際、熱溶融性の熱可塑性樹脂からなるポリマー糸とよこ糸と引き揃えて織物に織り込み、このポリマー糸を溶融することによってたて糸とよこ糸を接着させた、いわゆる目どめ織物を作製する。この織物を重ね、再びポリマー糸の溶融以上に加熱してポリマーを溶融させ、必要に応じて加圧することによって基材31 と基材32 を接着することができる。また、基材31 と基材32 の間にポリマー糸を基材に多数本介在させ、ポリマー糸の溶融以上に加熱してポリマーを溶融さることによっても得られる。また、常温で粘着性のある接着剤が付着したメッシュ状物を基材31 と基材32 の間に介在させて接着することも出来る。
【0018】
このように、接着剤が点状あるいは線状に基材に付着していると、接着剤が樹脂含浸を阻害するようなことはないので好ましく、またハンドレイアップ成形の際、樹脂含浸ローラがけによって強化繊維糸条やよこ糸の目ずれを防ぐことが出来るので好ましい。また、基材同士の接着は、基材の層間にBスージ状態の熱硬化性樹脂からなる薄い5〜15g/m2 程度のフイルム介在させるようにしてもよい。または、希釈剤で溶解した熱可塑性樹脂または熱硬化性樹脂溶液を基材31 に噴霧状に吹き付け、希釈剤を乾燥することによって基材32 と接着することもできる。
【0019】
樹脂の含浸性は、JIS L 1096法によるシート通気量と密接な関係があり、前記通気量で40〜300CC/cm2/secであることが好ましいことがわかった。
【0020】
通気量がの40CC/cm2/sec未満であると、補強繊維糸条を形成する炭素繊維の嵩密度が小さくなり、すなわち、炭素繊維同志が形成する空間が小さく、また補強繊維糸条間の隙間が小さくて、樹脂の含浸性が悪く、ボイドを発生させる。
【0021】
また、300CC/cm2/secでは、補強繊維糸間の隙間が大きい織物であるため、補強繊維部の厚みが増大して表面が凸凹し、また、補強繊維糸が強固に集束されるために補強繊維糸条内への樹脂の含浸性が低下する問題がある。
【0022】
通気量の測定は、JIS L 1096法6.27項の通気性A法に従った。
【0023】
すなわち、円筒の一端が38.3cm2 通気孔に20cm×20cmのシート試験片を所定の方法で取り付け、加減抵抗器によって傾斜形気圧計が水柱1.27cmの圧力を示すように吸い込みファンを調整し、その時の垂直形気圧計の示す圧力と、使用した空気孔の種類とから、試験機付随の換算表によってシート試験片を通過する空気量(CC/cm2/sec)を求め5回の測定結果の平均値を通気量とした。
【0024】
なお、温度が20℃、湿度が65%の室内に試料を24時間放置した後、その雰囲気下で測定した。なお、後述する実施例では、通気量測定器として、(株)大栄科学精器製作所のフラジール形試験機AP−360を使用した。
【0025】
本発明の基材同士の接着に用いる熱可塑性樹脂としてはナイロン、共重合ナイロン、ポリエステル、共重合ポリエステル、塩化ビニリデン、塩化ビニル、ポリエレタン、ポリエチレン、ポリプロピレン、ポリビニルアルコール、アクリルなどであるが、なかでも融点が70〜160℃程度の低融点で溶融する共重合ナイロンであると一体化のための加熱、圧着操作が簡単であり、また接着性もよいので好ましい。
【0026】
また、本発明の基材同士の接着に用いる熱硬化性樹脂としてはエポキシ樹脂、ビニルエステル樹脂、不飽和ポリエステル樹脂やフェノール樹脂などであるが、好ましくは本発明の多層強化繊維シートを用いた補強・補強方法に使う含浸用樹脂と同じもの、すなわち含浸用樹脂がエポキシ樹脂の場合、接着に用いる熱硬化性樹脂もエポキシ樹脂であるとよい。常温で粘着性のある接着剤としてはスチレン・ブタジエンゴム、ポリイソブチレン、エチレン・酢ビ共重合体、アクリル系、酢ビ共重合体などがある。
【0027】
本発明の基材同士の接着に用いる接着剤は本質的に強化繊維樹脂の含浸用樹脂となる必要はない。また基材同士の接着度合いは、強固である必要はなく、取扱い時に基材同士の接着が剥がれない程度であればよいのであるから、基材同士の接着に用いる接着剤の量は極力少ないほうがよく、2〜15g/m2 程度である。15g/m2 以上となると多重強化繊維シートへの樹脂含浸が阻害されたり、含浸用樹脂と接着剤との接着が悪くなり好ましくない。
【0028】
図5に示した本発明の多層強化繊維シートの実施例は基材として一方向織物の例を示したが、図3に示した一方向ノンクリンプ織物や図4に示したトウ・シートであってもよいし、これらの組み合わせであってもよい。
【0029】
また、本発明の多層強化繊維シートは、隣り合う層の基材間に適度の隙間を有することが好ましい。上記の接着による一体化の際、基材と基材との間にメッシュ状物を介在させてもよい。メッシュ状物が基材31 と基材32 の間に存在すると、樹脂含浸のローラ掛けで基材31 (または32 )を透過した未硬化の樹脂が、厚みのあるメッシュ状物の空隙に入る、すなわち層間に未硬化の樹脂層を存在することになるから、この樹脂が基材32 (または31 )へ含浸し、繊維シートが厚くあっても樹脂含浸が容易となる。なお、メッシュ状物は2方向または3方向に線材が配向し、好ましい厚さは0.1〜0.4mmである。あまり厚すぎると、基材間に樹脂が多く存在する、すなわち樹脂の使用量が多くなるのでコストアップとなり不経済である。
【0030】
また、本発明の多層強化繊維シートは、強化繊維糸条が多層に重なって、強化繊維糸条に直交する補助糸の交錯によって織り組織で一体化した、いわゆる一方向多重織物であってもよい。図6は一方向多重織物の1実施例として2重織物を示す断面図である。図面において、強化繊維糸条21 と補助糸41 とからなる平織物31 と、強化繊維糸条22 と補助糸42 とからなる平織物32 の多層構造を有する。そして平織物31 の一部の補助糸41 と平織物32 の強化繊維糸条22 と互いに交錯することによって平織物31 と平織物32 とが一体に保持されている。
【0031】
このように織り組織で一体化すると、一体化させるために接着剤など使わなくてよいから、樹脂の含浸が阻害されるようなことはない。また、平織物31 と平織物32 との間に空隙A部を形成するので、含浸ローラがけにより平織物31 の下面から高粘度樹脂は平織物31 への樹脂含浸が行われる。また、通常、樹脂がシートの全面に全体に行き渡るように、必要量以上樹脂量が塗布されているので、余った樹脂やコンクリートと織物31 間に存在した空気は織物31 内部の樹脂と置換された空気は空隙A部へと移動する。織物31 がコンクリートとの間で空気を抱き込むようなことはなく、また織物31 への樹脂含浸が行われる。次に、空隙A部に貯溜された樹脂は平織物32 の下面から織物32 の内部に含浸し、また平織物32 の上面に塗布される樹脂によっても織物32 の内部に含浸するから、強化繊維を高目付することによって含浸性が阻害されるようなことはない。
【0032】
また、多重織物を製織する際に、よこ方向に補助糸と低融点ポリマー糸を引き揃えて挿入し、低融点ポリマー糸を溶融してたて糸の強化繊維糸条とよこ糸の補助糸の交点を低融点ポリマー10で接着すると、裁断によって織糸がほつれることがなく、また成形の際、織糸が目ずれすることはない。
【0033】
本発明の多層強化繊維シートを構成する基材一層の1平方メートル当たりの強化繊維の体積は、樹脂の含浸性および施工性から100cm3 から350cm3 の範囲が好ましい。100cm3 以下であると一層当たりの強化繊維量が少なくなるので、所望の多層強化繊維シートを作製するには重ねる基材の枚数が多くなる。つまり、1m当たりの多層シートを作製するために必要となる基材の長さが長くなるので、多層シートに占める基材の加工費が大きくなりコストアップするし、枚数が多くなるので重ね合わせの費用も大きくなり、好ましくない。また、350cm3 以上になると一層当たりの繊維量が大きくなるので、樹脂の厚さ方向の流通抵抗が大きくなり、多層シートへの樹脂含浸性が悪くなり好ましくない。
【0034】
なお、本発明における1平方メートル当たりの強化繊維の体積とは、[シートの体積重量/強化繊維密度]をいう。
【0038】
本発明の多層強化繊維シートを構成する同じ層内の強化繊維糸条の糸条間に隙間を設けておくと、樹脂が高粘度であっても、含浸ローラがけで、構造物に塗布した樹脂が糸条間の隙間から繊維シートの厚さ方向に移動させることが出来、樹脂の繊維シートへの透過性がよくなる。したがって、また樹脂の分散が良くなるし、また構造物と繊維シートとの間に余分な樹脂が存在することによって、樹脂が硬化した後に硬化板の表面が凸凹するのを防ぐことができる。このようなことから、糸条と糸条の隙間が0.1〜2.0mmあると好ましい。
【0039】
なお、樹脂の含浸は、シート基材を構成する強化繊維糸条の周囲から、糸条の中心部へと進行するが、あまり太いと糸条の中心部までの距離が長くなり好ましくない。また、糸条が細いと、所定の繊維量を有するシート基材を得るためには、糸条間隔を詰めた状態となり、樹脂の透過性が悪くなる。したがって、強化繊維糸条の繊維断面積の総和が0.2mm2 〜2.0mm2 の範囲が好ましい。より好ましくは0.3mm2 〜1.2mm2 の範囲である。
【0040】
本発明に使用する強化繊維は、炭素繊維、ガラス繊維、ポリアラミド繊維などの高強度であり高弾性率の繊維である。なかでも、炭素繊維は耐アルカリ性に優れるので好ましい。炭素繊維の引張強度は2,500〜6,000MPa、引張弾性率は230〜600GPaの範囲でありとくに限定しないが、橋脚や柱などの剪断補強には4,000〜6,000MPaの高強度の炭素繊維、床版などの曲げ剛性補強には400〜700GPaの高弾性率の炭素繊維を使用すると繊維量が少なくて所定の補強効果が得られる。
【0041】
また、強化繊維糸条のサイジング剤は多層強化繊維シートを製造する際のプロセス性を向上させる点では多く付着させたほうが好ましいが、あまり多いと樹脂の含浸性が阻害される。とくに、炭素繊維の場合は単繊維径が5〜10ミクロンと細く、樹脂含浸性が他の強化繊維より劣るので、0.15〜0.6%の範囲の少量の付着量が好ましい。
【0042】
本発明の多層強化繊維シートの好ましい実施態様としては、強化繊維糸条は10,000〜30,000フイラメントの炭素繊維糸条であり、前記シート基材の1平方メートル当たりの重量が200〜350gで、シート基材が2層で、繊維シートの炭素繊維重量が1平方メートル当たり400〜700g、シートの重量が420〜800gである。強化繊維は耐アルカリ性に優れる炭素繊維であり、また10,000〜30,000フイラメントの糸条、つまり糸条の炭素繊維断面積の総和が0.3〜1.2mm2 であるから糸条内部への樹脂の含浸も良く、またシート基材の1平方メートル当たりの重量が200〜350gであるから、糸条間に適度な隙間を設けることができる。また、炭素繊維の重量が1平方メートル当たり420〜800gと多いから、積層枚数が従来の1/2となる、また、シートの重量が420〜800gであるから、樹脂の粘度やチクソ性にもよるが、樹脂含浸した後、硬化するまでにシートが滑るようなこともない。
【0043】
本発明の多層強化繊維シートが多重織物の場合、および基材が織物の場合の補助糸は実質的には強化繊維としての役割を担わなく、織物組織形成に使用するものであるから強化繊維糸条の太さの1/3以下程度の太さであり、ガラス繊維、ポリアラミド繊維や炭素繊維などの熱収縮率が小さなものが好ましい。
【0044】
また、基材における補助糸の糸密度は、0.5〜6本/cm程度と粗くしておくと、補助糸による強化繊維糸条の拘束が甘く、樹脂の含浸性がよい。
【0045】
本発明の多層強化繊維シートを用いて、次のように構造物の補修・補強を行うことが出来る。
【0046】
構造物として、コンクリート構造物を補修・補強する場合について説明するに、まずコンクリート面の汚れを石鹸水やアセトンなどで除去し、パテを塗布して不陸調整して表面を平滑にする。ついでFRPとの接着を良くするために、エポキシ樹脂系のプライマーを塗布して一昼夜放置した後、その上に常温硬化型の樹脂粘度が2,000〜25,000mPa・s程度の樹脂を下塗りとして、繊維シート重量の1.5〜2.5倍程度の樹脂を均一に塗布した後、多層繊維強化シートを貼り、溝付きの樹脂含浸ローラで樹脂含浸と同時に脱泡を行う。ついで、シートの上に上塗りとして繊維シート重量の0.5〜1.5倍程度の樹脂を均一に塗布した後、さらに樹脂含浸ローラがけする。2層目以降の積層は1層目と同じように、樹脂の下塗り、強化シートの貼り付け、樹脂含浸ローラがけおよび上塗り樹脂の塗布を行って、所定の枚数を繰り返せばよい。
【0047】
なお、上記において多層繊維強化シートを貼って、その上に直ちに上塗り樹脂を塗布し、その後に含浸ローラがけを行ってもよい。
【0048】
また、1層目の樹脂を硬化させた後、次の層の成形を行ってよいし、1層目の常温硬化型樹脂が硬化するまでに2層、3層目も連続的に成形することが出来る。
【0049】
本発明の補修・補強に使用する樹脂はエポキシ樹脂、ビニルエステル樹脂、不飽和ポリエステル樹脂などの常温硬化型の樹脂やメチルメタクリレイト樹脂であってもよい。
【0050】
【実施例】
(実施例1)
強化繊維糸条とし24,000フイラメントのPAN系炭素繊維(糸条の繊度:14400デニール、比重:1.80)をたて糸として用い、よこ方向によこ糸としてのガラス繊維糸(ECG 75 1/0、繊度:608デニール、比重:2.54)と目どめ糸としての融点が120℃の低融点ナイロン50デニール糸を引き揃えて、第1層目と第2層目の織物基材が各々たて糸密度;1.88本/cm、よこ糸糸密度;3本/cmで各織物基材の組織が平組織で、第1層目と第2層目を第1層目のよこ糸の一部で織物組織で一体化させ、織機上に取り付けたヒータで150℃に加熱して低融点ナイロンを溶融し、たて糸とよこ糸を接着させた本発明の多層繊維強化シートを作製した。なお、第1層目と第2層目を第1層目のよこ糸による織物組織で一体化は、まずよこ糸を連続的に7本を挿入して第1層目に3本、第2層目に4本挿入して第1層目および第2層目を通常の平組織させ、次のよこ糸1本は第1層目の、連続したたて糸4本を1単位として、4本のうちの3本とは通常の平組織させ、次は第1層目のたて糸とは交錯させず、第2層目のたて糸1本と交錯させることに行うことができる。これらはたて糸の開口・閉口運動を制御するドビーの操作によって自動的に行うことが出来る。
【0051】
多層繊維強化シートの、第1層目および第2層目の織物基材の炭素繊維目付は300g/m2 、基材の1平方メートル当たりの炭素繊維体積は167cm3 、シートの炭素繊維の嵩密度は234%で、第1層目および第2層目の織物基材の炭素繊維糸条の隙間は0.3mmであった。
【0052】
次に、平滑なコンクリート面にFRPとの接着を良くするために、エポキシ樹脂系のプライマーを塗布して一昼夜放置した後、常温硬化型の、樹脂粘度が10,000mPa・sの樹脂を下塗りとして800g/m2 均一に塗布した後、1層目として上記の多層繊維強化シートを貼り、溝付きの樹脂含浸ローラで樹脂含浸と同時に脱泡を行った。シートの下面から余分な樹脂が絞り出されてきた。ついで、シートの上に上塗りとして600g/m2 の樹脂を均一に塗布した後、さらに樹脂含浸ローラがけし、そのまま放置して樹脂を硬化させた。ついで、1層目と同様に2層目の下塗り樹脂を800g/m2 均一に塗布した後、多層繊維強化シートを貼り、樹脂含浸ローラがけを行い、上塗りとして600g/m2 の樹脂を均一に塗布した後、さらに樹脂含浸ローラがけを樹脂を硬化させた。下塗り樹脂を塗布した後の2層目の樹脂含浸ローラがけの際、1層目と同様に余分な樹脂は絞り出されてきた。樹脂が硬化した後のFRPの表面は平滑性であり、また、FRPを断面観察したところ大きなボイドが無く、また樹脂も十分に含浸されていた。
【0053】
(比較例1)
実施例と同じ強化繊維糸条およびよこ糸、目どめ糸を用い、強化繊維糸条をたて糸とし、よこ方向によこ糸ガラス繊維糸と目どめ糸を引き揃えて、たて糸密度;3.75本/cm、よこ糸糸密度;3本/cmの平組織の織物を製織し、織機上に取り付けたヒータで低融点ナイロンを溶融し、たて糸とよこ糸を接着させた一方向炭素繊維織物を作製した。
【0054】
一方向炭素繊維織物の炭素繊維目付は600g/m2 、基材の1平方メートル当たりの炭素繊維体積は333cm3 、シートの炭素繊維の嵩密度は204%で、炭素繊維糸条の隙間はほとんど無かった。
【0055】
次に、実施例と同じ方法、同じ樹脂で同じ樹脂量をコンクリート面に下塗りした後、上記の炭素繊維織物を貼り、溝付きの樹脂含浸ローラで樹脂含浸と同時に脱泡を行ったが、1層目、2層目ともシートの下面から余分な樹脂が絞り出されなかった。樹脂が硬化した後のFRPの表面は、コンクリート面に余分な樹脂が溜まって凸凹し、見栄えが悪い状態であった。また、FRPを断面観察したところ大きなボイドがあり、また樹脂も十分に含浸してない箇所があった。
【図面の簡単な説明】
【図1】本発明に係る多層強化繊維シートの概念を示す部分破断斜視図である。
【図2】本発明に係る多層強化繊維シートを構成する基材としての一方向織物の斜視図である。
【図3】本発明に係る多層強化繊維シートを構成する基材としての一方向ノンクリンプ織物の斜視図である。
【図4】本発明に係る多層強化繊維シートを構成する基材としてのトウ・シートの斜視図である。
【図5】本発明に係る多層強化繊維シートを示す部分破断斜視図である。
【図6】本発明に係る多層強化繊維シートとしての、一方向2重織物の破断図である。
【符号の説明】
1 :多層強化繊維シート
2 :強化繊維糸条
1 :第1層目の強化繊維糸条
2 :第2層目の強化繊維糸条
3 :基材
1 :第1層目の基材
2 :第2層目の基材
4 :よこ糸(補助糸)
1 :第1層目のよこ糸
2 :第2層目のよこ糸
5:たて補助糸
6:支持体
7:メッシュの線材
8:メッシュの線材
9:接着剤
10:低融点ポリマー
イ:多層強化繊維シート長さ方向
ロ:基材の長さ方向
A:空隙
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a reinforcing fiber sheet and a method for repairing and reinforcing a structure.
[0002]
[Prior art]
Concrete structures such as bridge slabs, piers, tunnels, chimneys and buildings have been deteriorated due to neutralization and rust generation due to long-term use, increased load due to reduced weight restrictions on passing vehicles, damage due to earthquakes In addition, repairs and reinforcements have become necessary due to revisions of seismic standards for large earthquakes.
[0003]
Recently, since repair and reinforcement of these structures are easy to construct, a so-called hand lay-up method, in which a sheet made of reinforcing fibers is attached to the structure and impregnated with a room temperature curable resin, has attracted attention. In this method, the resin is completely cured at room temperature in about one week, and a reinforced plastic plate is formed on-site, and the reinforced plastic (hereinafter referred to as FRP) plate and the structure are bonded at the same time. Construction is simplified.
[0004]
However, the repair / reinforcement part of the structure also includes vertical surfaces such as ceiling surfaces such as the bottom of floor slabs, piers, and pillars of building structures. If resin is applied to these ceiling surfaces or vertical surfaces, the resin will drip off. Since a predetermined amount of resin cannot be applied, the viscosity of a resin that is usually used to prevent these is as high as 2,000 to 25,000 mPa · s (millipascal × second). Usually, the hand lay-up molding method is often used as a molding method for boats and tanks, but the viscosity of the room-temperature-curable unsaturated polyester resin and vinyl ester resin used here is the reinforcement that constitutes the sheet. From the viewpoint of resin impregnation into the fiber, it is 200 to 500 mPa · s, and at most about 1,000 mPa · s. Compared to this, the viscosity of the resin used for repairing and reinforcing the structure is extremely high, and the resin impregnation property to the reinforcing fiber is not so good.
[0005]
Therefore, the reinforcing fiber sheet frequently used for repair and reinforcement of structures is thin, the reinforcing fiber is made of carbon fiber, and the basis weight of carbon fiber is 200 to 300 g / m.2That is, the volume of carbon fiber per square meter is 110-170 cmThreeIt is a thin reinforcing fiber sheet in which carbon fibers are arranged in one direction.
[0006]
Therefore, the number of reinforcing fiber sheets to be used is increased in order to cope with the amount of reinforcing fibers necessary for repairing and reinforcing the structure, and resin impregnation work is required for each sheet. It is troublesome.
[0007]
On the other hand, if the amount of reinforcing fiber per sheet is simply increased, the reinforcing fiber yarns constituting the sheet are arranged densely, the degree of focusing becomes large, the fiber interval is clogged, and resin impregnation becomes difficult.
[0008]
[Problems to be solved by the invention]
The present invention pays attention to such a current situation, provides a multilayer reinforcing fiber sheet having a large amount of reinforcing fibers per sheet and excellent in resin impregnation properties, and a method for repairing and reinforcing a structure excellent in workability. The purpose is to provide.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention basically has the following configuration. That is, “the sheet base material in which the reinforcing fiber yarns are arranged in parallel in the length direction of the sheet is laminated in multiple layers so that the directions of the reinforcing fibers are the same, and adjacent layers are integrated with each other.The bulk density of the reinforcing fiber (the volume of the sheet / the volume of the reinforcing fiber) is 220 to 300%.A multilayer reinforcing fiber sheet characterized by that. Is.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The partially broken perspective view which shows the concept of the multilayer reinforcing fiber sheet 1 of this invention was shown in FIG. First layer base material 3 in which a number of reinforcing fiber yarns 2 are arranged in parallel in the longitudinal direction of the sheet1And base material 3 of the second layer2Are overlapped so that the directions of the reinforcing fibers are the same, and the base material 31And base material 32Are integrated with each other by an integration means (not shown in FIG. 1) such as a woven structure or adhesion.
The bulk density of the multilayer reinforcing fiber sheet of the present invention is in the range of 220 to 300%. When the bulk density is 220% or less, the arrangement density of the reinforcing fibers forming the fiber sheet is increased, that is, the gap between the single fibers is reduced, so that the resin impregnation property is deteriorated, and a high viscosity resin is obtained by the hand lay-up method. It becomes difficult to prevent air from being entrapped when impregnating. In addition, when the bulk density is 300% or more, there is no problem of resin impregnation property or air entrapment, but since the sheet fibers are bulky, the amount of resin necessary to fill between the sheet fibers Will increase. Also, by applying resin and removing the impregnation roller, it is possible to hold the bulky sheet and reduce the amount of resin, but the pressed sheet is restored to its original bulky state, that is, the spring back phenomenon Therefore, the amount of resin relative to the recovered sheet is insufficient, and the FRP in which the resin is cured is in a state where a lot of voids are contained.
The bulk density V in the present invention refers to a value calculated by the following calculation formula.
V = A × t ÷ (w / ρ) × 100 (%)
Where t: thickness of the multilayer reinforcing fiber sheet (cm)
A: Fabric area (cm 2 )
w: Weight of reinforcing fiber sheet in area A of the fabric (g)
ρ: density of reinforcing fiber (g / cm Three )
Here, the measurement method of the sheet thickness is JIS R 7602 The thickness measuring instrument of Section 5.6 conformed to the dial gauge method. However, the load was 50 kPa, the value after 20 seconds had elapsed since the load was applied to the sheet was read and divided by the number of sheets to obtain the thickness per sheet. If the sheet is a woven fabric, measure the thickness by stacking several sheets so that the position of the overlapping auxiliary yarns is shifted from each other so that the influence of the weft auxiliary yarn on the sheet thickness is minimized. Then, the thickness per sheet was determined by dividing by the number of stacked sheets.
  Note that the number of layers is not necessarily two, and may be three or four, and is not limited.
[0011]
The multilayer reinforcing fiber sheet of the present invention can be classified according to the form of the base material and the integration means for obtaining a multilayer structure.
[0012]
First, in order to explain the case where the integration means is based on adhesion, FIGS. 2 to 4 show the form of the base material constituting the multilayer reinforcing fiber sheet of the present invention.
[0013]
FIG. 2 shows that the reinforcing fiber yarns 2 are arranged in the length direction of the base material, that is, the warp direction of the woven fabric, the auxiliary yarns 4 thinner than the reinforcing fiber yarns are arranged in the weft direction, and the warp yarns 2 and the weft yarns 4 are crossed. And a unidirectional woven fabric. FIG. 3 shows that the reinforcing fiber yarns 2 and the auxiliary yarns 5 are oriented in the longitudinal direction of the substrate, that is, the warp direction of the woven fabric, the auxiliary yarns 4 are oriented in the weft direction, and the auxiliary yarns 4 of the weft yarns assist the warp yarns. This is a so-called unidirectional non-crimp fabric in which the reinforcing fiber yarns 2 intersect with the yarns 5 and are straightly oriented without intersecting with the weft yarns 4. FIG. 4 shows a thermoplastic resin in which a sheet of reinforcing fiber yarns 2 in which reinforcing fiber yarns are straightly arranged in parallel in one direction and a mesh-like support 6 are present on the surfaces of adhesives or mesh wires 7 and 8. A tow sheet fused and integrated with a polymer. The mesh-like support 6 is not necessarily limited to two directions of wires orthogonal to each other, but only in one direction of the weft direction, or in three directions oriented ± α ° with respect to the length direction and the reinforcing fiber yarns. There may be. The base material may be a unidirectional knitted fabric in which reinforcing fiber yarns arranged in one direction are knitted with thin auxiliary yarns.
[0014]
Substrates having these forms have been used so far in repairing and reinforcing structures, and are not particularly new.
[0015]
The multilayer reinforcing fiber sheet of the present invention is obtained by superposing and integrating a large number of these substrates. FIG. 5 is a partially broken perspective view of an example of the multilayer reinforcing fiber sheet of the present invention. A multilayer reinforcing fiber sheet in which two unidirectional woven fabrics as a base material are overlapped by an adhesive means, and the base material 3 of the first layer1And base material 3 of the second layer2The layers are bonded with a dotted adhesive 9.
[0016]
In order to bond them in the form of dots, a hot-melt thermoplastic resin powder is used as the base material 31Sprinkle evenly and uniformly on one side of the substrate 32And base material 3 by heating and melting the thermoplastic resin1And base material 32Can be glued.
[0017]
Moreover, the adhesion state of the adhesive may be linear. When weaving the woven fabric, the polymer yarn and weft yarn made of a heat-melting thermoplastic resin are aligned and weaved into the woven fabric, and the warp yarn and weft yarn are bonded by melting the polymer yarn. A so-called fine-mesh fabric is produced. The base material 3 is formed by stacking the woven fabrics and heating again to melt the polymer yarn or more to melt the polymer, and pressurizing as necessary.1And base material 32Can be glued. Moreover, the base material 31And base material 32It can also be obtained by interposing a large number of polymer yarns in the substrate between the two and heating the polymer yarns more than melting to melt the polymer. In addition, a mesh-like material to which an adhesive having adhesiveness at normal temperature is attached is used as the base material 31And base material 32It can also be bonded by interposing between them.
[0018]
As described above, it is preferable that the adhesive adheres to the base material in the form of dots or lines because the adhesive does not hinder the resin impregnation. Is preferable because it can prevent misalignment of reinforcing fiber yarns and weft yarns. In addition, the adhesion between the substrates is a thin 5-15 g / m made of a thermosetting resin in a B-suge state between the layers of the substrates.2You may make it interpose a certain amount of film. Alternatively, a thermoplastic resin or thermosetting resin solution dissolved with a diluent is used as the base material 3.1By spraying on the substrate and drying the diluent 32It can also be glued.
[0019]
The impregnation property of the resin is closely related to the sheet air flow rate according to JIS L 1096 method, and the air flow rate is 40 to 300 CC / cm.2It was found that / sec was preferable.
[0020]
Aeration rate of 40CC / cm2If it is less than / sec, the bulk density of the carbon fibers forming the reinforcing fiber yarn is reduced, that is, the space formed by the carbon fibers is small, and the gap between the reinforcing fiber yarns is small, so that the resin impregnation Poor and generates voids.
[0021]
300CC / cm2/ Sec, because the woven fabric has a large gap between the reinforcing fiber yarns, the thickness of the reinforcing fiber portion is increased, the surface is uneven, and the reinforcing fiber yarns are tightly bundled, so that the reinforcing fiber yarns are firmly focused. There is a problem that the impregnation property of the resin decreases.
[0022]
The measurement of the air flow amount was in accordance with the air permeability A method of JIS L 1096 method 6.27.
[0023]
That is, one end of the cylinder is 38.3 cm2  Attach a 20cm x 20cm sheet test piece to the ventilation hole in the prescribed manner, adjust the suction fan so that the tilt type barometer shows a pressure of 1.27cm water column with an adjustable resistor, and the vertical barometer at that time shows From the pressure and the type of air hole used, the amount of air that passes through the sheet specimen (CC / cm) according to the conversion table attached to the tester2/ Sec) and the average value of the five measurement results was defined as the air flow rate.
[0024]
The sample was allowed to stand for 24 hours in a room with a temperature of 20 ° C. and a humidity of 65%, and then measured in that atmosphere. In Examples to be described later, Frazier type tester AP-360 manufactured by Daiei Kagaku Seisakusho Co., Ltd. was used as an air flow rate measuring device.
[0025]
Examples of the thermoplastic resin used for bonding the substrates of the present invention include nylon, copolymer nylon, polyester, copolymer polyester, vinylidene chloride, vinyl chloride, polyeletane, polyethylene, polypropylene, polyvinyl alcohol, acrylic, etc. Copolymer nylon that melts at a low melting point of about 70 to 160 ° C. is preferable because heating and pressure-bonding operations for integration are simple and adhesion is good.
[0026]
The thermosetting resin used for bonding the substrates of the present invention is an epoxy resin, a vinyl ester resin, an unsaturated polyester resin, a phenol resin, or the like, preferably a reinforcement using the multilayer reinforcing fiber sheet of the present invention. -When the impregnation resin used for the reinforcing method is the same as that for the impregnation resin, that is, when the impregnation resin is an epoxy resin, the thermosetting resin used for adhesion may be an epoxy resin. Examples of adhesives that are sticky at room temperature include styrene / butadiene rubber, polyisobutylene, ethylene / vinyl acetate copolymer, acrylic, and vinyl acetate copolymer.
[0027]
The adhesive used for bonding the substrates of the present invention need not essentially be a resin for impregnating the reinforcing fiber resin. Also, the degree of adhesion between the substrates does not need to be strong, as long as the adhesion between the substrates does not peel off during handling, so the amount of adhesive used for adhesion between the substrates should be as small as possible. Well, 2-15g / m2Degree. 15g / m2If it becomes above, the resin impregnation to the multiple reinforcing fiber sheet will be hindered, or the adhesion between the resin for impregnation and the adhesive will be unfavorable.
[0028]
The embodiment of the multilayer reinforcing fiber sheet of the present invention shown in FIG. 5 shows an example of a unidirectional woven fabric as a base material, but the unidirectional non-crimp woven fabric shown in FIG. 3 and the tow sheet shown in FIG. Or a combination thereof.
[0029]
Moreover, it is preferable that the multilayer reinforcing fiber sheet of this invention has a moderate clearance gap between the base materials of an adjacent layer. In the integration by the above-described adhesion, a mesh-like material may be interposed between the base material and the base material. Mesh material is substrate 31And base material 32Between the substrate 3 and the resin impregnated roller.1(Or 32) Passes through the gaps of the thick mesh material, that is, there is an uncured resin layer between the layers.2(Or 31The resin impregnation becomes easy even if the fiber sheet is thick. The mesh-like material has the wire oriented in two or three directions, and a preferred thickness is 0.1 to 0.4 mm. If the thickness is too large, a large amount of resin exists between the substrates, that is, the amount of resin used increases, resulting in an increase in cost and uneconomical.
[0030]
Further, the multilayer reinforcing fiber sheet of the present invention may be a so-called unidirectional multiple woven fabric in which reinforcing fiber yarns overlap with each other and are integrated by a woven structure by crossing of auxiliary yarns orthogonal to the reinforcing fiber yarns. . FIG. 6 is a cross-sectional view showing a double woven fabric as an example of a unidirectional multi-woven fabric. In the drawing, reinforcing fiber yarn 21And auxiliary thread 41Plain fabric 3 consisting of1And reinforcing fiber yarn 22And auxiliary thread 42Plain fabric 3 consisting of2It has a multilayer structure. And plain fabric 31A part of auxiliary thread 41And plain fabric 32Reinforcing fiber yarn 22Plain fabric 3 by crossing with each other1And plain fabric 32Are held together.
[0031]
When the woven structure is integrated as described above, since it is not necessary to use an adhesive or the like for the integration, the impregnation of the resin is not hindered. Plain fabric 31And plain fabric 32A gap A is formed between the plain fabric 3 and the impregnated roller.1High-viscosity resin is plain fabric 31Resin impregnation is performed. In addition, since the amount of resin more than the required amount is usually applied so that the resin spreads over the entire surface of the sheet, excess resin, concrete, and fabric 31The air that existed between them was the fabric 31The air substituted with the internal resin moves to the gap A part. Textile 31Does not embed air with concrete, and weaving 31Resin impregnation is performed. Next, the resin stored in the gap A is plain fabric 32From the bottom of the fabric 32Impregnated inside and plain fabric 32The fabric 3 is also made of resin applied to the upper surface of the fabric.2Therefore, the impregnation property is not hindered by the high weight of the reinforcing fiber.
[0032]
When weaving multiple woven fabrics, the auxiliary yarn and the low-melting polymer yarn are aligned and inserted in the weft direction, and the low-melting polymer yarn is melted to reduce the intersection of the warp reinforcing fiber yarn and the weft yarn auxiliary yarn. When bonded with the melting point polymer 10, the woven yarn is not frayed by cutting, and the woven yarn is not misaligned during molding.
[0033]
The volume of reinforcing fibers per square meter of the base material layer constituting the multilayer reinforcing fiber sheet of the present invention is 100 cm from the impregnation and workability of the resin.ThreeFrom 350cmThreeThe range of is preferable. 100cmThreeSince the amount of reinforcing fibers per layer is less than the following, the number of substrates to be stacked increases to produce a desired multilayer reinforcing fiber sheet. In other words, since the length of the base material required for producing a multilayer sheet per meter is increased, the processing cost of the base material in the multilayer sheet is increased and the cost is increased, and the number of sheets is increased. Cost is also increased, which is not preferable. 350cmThreeSince the amount of fibers per layer will increase when the above is reached, the flow resistance in the resin thickness direction will increase, and the resin impregnation into the multilayer sheet will deteriorate, such being undesirable.
[0034]
In the present invention, the volume of reinforcing fibers per square meter means [volume weight of sheet / reinforcing fiber density].
[0038]
Resin applied to the structure with an impregnating roller even when the resin has a high viscosity when a gap is provided between the yarns of reinforcing fiber yarns in the same layer constituting the multilayer reinforcing fiber sheet of the present invention. Can be moved in the thickness direction of the fiber sheet from the gap between the yarns, and the permeability of the resin to the fiber sheet is improved. Therefore, the dispersion of the resin is improved, and the presence of excess resin between the structure and the fiber sheet can prevent the surface of the cured plate from becoming uneven after the resin is cured. For this reason, the gap between the yarn and the yarn is preferably 0.1 to 2.0 mm.
[0039]
The resin impregnation proceeds from the periphery of the reinforcing fiber yarn constituting the sheet base material to the center portion of the yarn. However, if it is too thick, the distance to the center portion of the yarn is undesirably increased. On the other hand, if the yarn is thin, in order to obtain a sheet base material having a predetermined fiber amount, the yarn interval is reduced, and the permeability of the resin is deteriorated. Therefore, the total fiber cross-sectional area of the reinforcing fiber yarn is 0.2 mm.2~ 2.0mm2The range of is preferable. More preferably 0.3 mm2~ 1.2mm2Range.
[0040]
The reinforcing fiber used in the present invention is a high-strength and high-modulus fiber such as carbon fiber, glass fiber, or polyaramid fiber. Among these, carbon fiber is preferable because it is excellent in alkali resistance. Carbon fiber has a tensile strength of 2,500 to 6,000 MPa and a tensile modulus of 230 to 600 GPa, and is not particularly limited. However, it has a high strength of 4,000 to 6,000 MPa for shear reinforcement of bridge piers and columns. When a carbon fiber having a high elastic modulus of 400 to 700 GPa is used for reinforcement of bending rigidity such as carbon fiber and floor slab, the amount of fiber is small and a predetermined reinforcing effect can be obtained.
[0041]
Further, it is preferable that a large amount of reinforcing fiber yarn sizing agent is attached in terms of improving the processability when producing the multilayer reinforcing fiber sheet. However, if the amount is too large, the impregnation property of the resin is hindered. In particular, in the case of carbon fibers, since the single fiber diameter is as thin as 5 to 10 microns and the resin impregnation property is inferior to other reinforcing fibers, a small amount of adhesion in the range of 0.15 to 0.6% is preferable.
[0042]
In a preferred embodiment of the multilayer reinforcing fiber sheet of the present invention, the reinforcing fiber yarn is a carbon fiber yarn of 10,000 to 30,000 filaments, and the weight per square meter of the sheet substrate is 200 to 350 g. The sheet substrate has two layers, the carbon fiber weight of the fiber sheet is 400 to 700 g per square meter, and the weight of the sheet is 420 to 800 g. The reinforcing fiber is a carbon fiber excellent in alkali resistance, and the yarn of 10,000 to 30,000 filament, that is, the total carbon fiber cross-sectional area of the yarn is 0.3 to 1.2 mm.2Therefore, the impregnation of the resin inside the yarn is good, and the weight per square meter of the sheet base material is 200 to 350 g, so that an appropriate gap can be provided between the yarns. In addition, since the weight of carbon fiber is as high as 420 to 800 g per square meter, the number of laminated sheets becomes 1/2 of the conventional one, and since the weight of the sheet is 420 to 800 g, it depends on the viscosity and thixotropy of the resin. However, the sheet does not slip after being impregnated with the resin before being cured.
[0043]
When the multilayer reinforcing fiber sheet of the present invention is a multi-woven fabric, and the auxiliary yarn when the base material is a woven fabric, the auxiliary yarn does not substantially play a role as a reinforcing fiber and is used for forming a woven fabric structure. Those having a thickness of about 1/3 or less of the thickness of the strip and having a small heat shrinkage rate such as glass fiber, polyaramid fiber, and carbon fiber are preferable.
[0044]
Further, if the yarn density of the auxiliary yarn in the base material is roughened to about 0.5 to 6 yarns / cm, the reinforcing fiber yarns are restrained by the auxiliary yarn and the resin impregnation is good.
[0045]
Using the multilayer reinforcing fiber sheet of the present invention, the structure can be repaired and reinforced as follows.
[0046]
In the case of repairing / reinforcing a concrete structure as a structure, first, dirt on the concrete surface is removed with soapy water, acetone, or the like, and putty is applied to adjust the unevenness to smooth the surface. Next, in order to improve the adhesion with FRP, an epoxy resin primer is applied and allowed to stand for a whole day and night, and then a resin having a room temperature curable resin viscosity of about 2,000 to 25,000 mPa · s is used as an undercoat. Then, after uniformly applying a resin of about 1.5 to 2.5 times the weight of the fiber sheet, a multilayer fiber reinforced sheet is applied, and defoaming is performed simultaneously with the resin impregnation with a grooved resin impregnation roller. Next, after a resin of about 0.5 to 1.5 times the weight of the fiber sheet is uniformly applied as an overcoat on the sheet, a resin-impregnated roller is applied. In the second and subsequent layers, as in the case of the first layer, a predetermined number of sheets may be repeated by applying a resin undercoat, applying a reinforcing sheet, applying a resin-impregnated roller, and applying a topcoat resin.
[0047]
In addition, in the above, a multilayer fiber reinforced sheet may be pasted, and an overcoating resin may be immediately applied thereon, followed by impregnation roller marking.
[0048]
In addition, after the first layer of resin is cured, the next layer may be molded, and the second and third layers may be molded continuously until the first layer of room temperature curable resin is cured. I can do it.
[0049]
The resin used for repair and reinforcement of the present invention may be a room temperature curable resin such as epoxy resin, vinyl ester resin, unsaturated polyester resin, or methyl methacrylate resin.
[0050]
【Example】
(Example 1)
As a reinforcing fiber yarn, 24,000 filament PAN-based carbon fiber (yarn fineness: 14400 denier, specific gravity: 1.80) is used as warp yarn, and glass fiber yarn (ECG 75 1/0 as weft yarn). Fineness: 608 denier, specific gravity: 2.54) and low-melting nylon 50 denier yarn having a melting point of 120 ° C. as a close-up yarn are aligned, and the first and second woven fabric substrates are warp yarns respectively. Density: 1.88 yarns / cm, weft yarn density: 3 yarns / cm, the texture of each woven fabric base material is a plain structure, and the first layer and the second layer are woven with a portion of the first layer of weft yarns. A multilayer fiber reinforced sheet of the present invention in which the low melting point nylon was melted by heating to 150 ° C. with a heater attached on the loom and fused with the warp and the weft was produced. In order to integrate the first layer and the second layer with the woven fabric structure of the first layer weft, first, seven weft yarns are inserted continuously, the first layer is three, the second layer The first layer and the second layer are inserted into a normal plain structure, and the next weft yarn is the first layer of four continuous warp yarns as one unit. The book can be made into a normal plain structure, and next, without crossing with the warp yarn of the first layer, it can be crossed with one warp yarn of the second layer. These can be automatically performed by the operation of a dobby for controlling the opening / closing movement of the warp yarn.
[0051]
The carbon fiber basis weight of the textile substrate of the first layer and the second layer of the multilayer fiber reinforced sheet is 300 g / m2The carbon fiber volume per square meter of the substrate is 167cmThreeThe bulk density of the carbon fibers of the sheet was 234%, and the gap between the carbon fiber yarns of the first and second layer woven fabric substrates was 0.3 mm.
[0052]
Next, in order to improve the adhesion to FRP on a smooth concrete surface, an epoxy resin primer is applied and left for a whole day and night. 800g / m2After uniformly coating, the multilayer fiber reinforced sheet was applied as the first layer, and defoaming was performed simultaneously with resin impregnation with a grooved resin impregnated roller. Excess resin has been squeezed out from the lower surface of the sheet. Next, 600 g / m as a top coat on the sheet2After the resin was uniformly applied, the resin impregnated roller was further removed and left as it was to cure the resin. Next, as with the first layer, the second layer of the undercoat resin was 800 g / m.2After uniform coating, a multilayer fiber reinforced sheet is applied, and a resin-impregnated roller is applied to form a top coat of 600 g / m2After uniformly applying the resin, a resin impregnated roller was used to cure the resin. When the second-layer resin-impregnated roller is applied after the undercoat resin is applied, the excess resin has been squeezed out as in the first layer. The surface of the FRP after the resin was cured was smooth, and when the cross section of the FRP was observed, there were no large voids and the resin was sufficiently impregnated.
[0053]
(Comparative Example 1)
The same reinforcing fiber yarns, weft yarns, and eyelet yarns as in the examples were used, the reinforcing fiber yarns were used as warp yarns, the weft glass fiber yarns and the eyelet yarns were aligned, and the warp yarn density: 3.75 / Cm, weft yarn density: A woven fabric having a plain structure of 3 / cm was woven, a low-melting nylon was melted with a heater attached on a loom, and a warp yarn and a weft yarn were bonded to produce a unidirectional carbon fiber fabric.
[0054]
Carbon fiber basis weight of unidirectional carbon fiber fabric is 600g / m2The volume of carbon fiber per square meter of the substrate is 333cmThreeThe bulk density of the carbon fibers in the sheet was 204%, and there was almost no gap between the carbon fiber yarns.
[0055]
Next, after the same method as in the example, the same resin amount and the same resin amount were primed on the concrete surface, the above-mentioned carbon fiber fabric was pasted, and defoaming was performed simultaneously with resin impregnation with a grooved resin impregnation roller. Excess resin was not squeezed out from the lower surface of the sheet in both layers. The surface of the FRP after the resin was cured was in an unpleasant state, with excess resin accumulating on the concrete surface and uneven. Further, when the cross section of FRP was observed, there were large voids, and there were portions where the resin was not sufficiently impregnated.
[Brief description of the drawings]
FIG. 1 is a partially broken perspective view showing a concept of a multilayer reinforcing fiber sheet according to the present invention.
FIG. 2 is a perspective view of a unidirectional fabric as a base material constituting the multilayer reinforcing fiber sheet according to the present invention.
FIG. 3 is a perspective view of a unidirectional non-crimp fabric as a base material constituting the multilayer reinforcing fiber sheet according to the present invention.
FIG. 4 is a perspective view of a tow sheet as a base material constituting the multilayer reinforcing fiber sheet according to the present invention.
FIG. 5 is a partially broken perspective view showing a multilayer reinforcing fiber sheet according to the present invention.
FIG. 6 is a cutaway view of a unidirectional double woven fabric as a multilayer reinforcing fiber sheet according to the present invention.
[Explanation of symbols]
1: Multilayer reinforcing fiber sheet
2: Reinforced fiber yarn
21: Reinforcing fiber yarn in the first layer
22: Second-layer reinforcing fiber yarn
3: Substrate
31: Base material of the first layer
32: Base material of the second layer
4: Weft thread (auxiliary thread)
41: First layer weft
42: Weft of the second layer
5: Warp auxiliary thread
6: Support
7: Mesh wire rod
8: Mesh wire
9: Adhesive
10: Low melting point polymer
B: Multi-layer reinforcing fiber sheet length direction
B: Base material length direction
A: Air gap

Claims (10)

強化繊維糸条がシートの長さ方向に並行に配列した基材が、強化繊維の方向が同じになるように多層重なり、隣接する層が互いに一体化されており、該強化繊維の嵩密度(シートの体積/強化繊維の体積)が220〜300%であることを特徴とする多層強化繊維シート。The base material in which the reinforcing fiber yarns are arranged in parallel to the length direction of the sheet is multilayered so that the directions of the reinforcing fibers are the same, and adjacent layers are integrated with each other , and the bulk density of the reinforcing fibers ( A multilayer reinforcing fiber sheet, wherein the volume of the sheet / the volume of reinforcing fibers is 220 to 300% . 前記基材の1平方メートル当たりの強化繊維の体積が100〜350cm3 であることを特徴とする請求項1に記載の多層強化繊維シート。The multilayer reinforcing fiber sheet according to claim 1, wherein the volume of reinforcing fibers per square meter of the substrate is 100 to 350 cm 3 . 前記基材は一方向織物であって、前記一体化手段が織組織であることを特徴とする請求項1または2に記載の多層強化繊維シート。The multilayer reinforcing fiber sheet according to claim 1 or 2 , wherein the base material is a unidirectional woven fabric, and the integration means is a woven structure. 前記一体化手段が接着によることを特徴とする請求項1または2に記載の多層強化繊維シート。The multilayer reinforcing fiber sheet according to claim 1 or 2 , wherein the integration means is adhesion. 前記基材の層間にメッシュ状物が介在してなる請求項に記載の多層強化繊維シート。The multilayer reinforcing fiber sheet according to claim 4 , wherein a mesh-like material is interposed between layers of the base material. 前記基材が織物である請求項4または5に記載の多層強化繊維シート。The multilayer reinforcing fiber sheet according to claim 4 or 5 , wherein the substrate is a woven fabric. 前記強化繊維糸条は10,000〜30,000フイラメントの炭素繊維糸条であり、前記基材の1平方メートル当たりの重量が200〜350gで、基材が2層であることを特徴とする請求項1乃至はのいずれかに記載の多層強化繊維シート。The reinforcing fiber yarn is a carbon fiber yarn of 10,000 to 30,000 filaments, wherein the base material has a weight of 200 to 350 g per square meter, and the base material has two layers. Item 7. The multilayer reinforcing fiber sheet according to any one of Items 1 to 6 . 前記強化繊維糸条間に隙間を設けてなる請求項1乃至はに記載の多層強化繊維シート。Multilayer reinforcing fiber sheet according to any one of claims 1 to 7 comprising a gap is provided between the reinforcing fiber yarns. 構造物の補修または補強したい部位に樹脂を塗布し、請求項1乃至はのいずれかに記載の多層強化繊維シートを貼り付けて補修・補強することを特徴とする構造物の補修または補強方法。A method for repairing or reinforcing a structure, comprising applying a resin to a portion of the structure to be repaired or reinforced and affixing and reinforcing the multilayer reinforcing fiber sheet according to any one of claims 1 to 8. . 前記構造物がコンクリート構造物であることを特徴とする請求項に記載の構造物の補修または補強方法。The method for repairing or reinforcing a structure according to claim 9 , wherein the structure is a concrete structure.
JP26132898A 1998-09-16 1998-09-16 Multilayer reinforced fiber sheet and structure repair / reinforcement method Expired - Fee Related JP4078726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26132898A JP4078726B2 (en) 1998-09-16 1998-09-16 Multilayer reinforced fiber sheet and structure repair / reinforcement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26132898A JP4078726B2 (en) 1998-09-16 1998-09-16 Multilayer reinforced fiber sheet and structure repair / reinforcement method

Publications (2)

Publication Number Publication Date
JP2000085044A JP2000085044A (en) 2000-03-28
JP4078726B2 true JP4078726B2 (en) 2008-04-23

Family

ID=17360294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26132898A Expired - Fee Related JP4078726B2 (en) 1998-09-16 1998-09-16 Multilayer reinforced fiber sheet and structure repair / reinforcement method

Country Status (1)

Country Link
JP (1) JP4078726B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11521587B2 (en) * 2017-02-24 2022-12-06 Robert Bosch Gmbh Sound transducer

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4517483B2 (en) * 2000-09-21 2010-08-04 東レ株式会社 Composite reinforcing fiber substrate and preform
JP5011613B2 (en) * 2001-07-06 2012-08-29 東レ株式会社 Preform and molding method
JP4370797B2 (en) * 2003-04-11 2009-11-25 東レ株式会社 FRP thin plate manufacturing method
JP5994060B2 (en) * 2013-11-15 2016-09-21 八田経編株式会社 Thermoplastic resin reinforced sheet material and method for producing the same
JP6762503B2 (en) * 2016-10-17 2020-09-30 株式会社Shindo One-way reinforced fiber sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11521587B2 (en) * 2017-02-24 2022-12-06 Robert Bosch Gmbh Sound transducer

Also Published As

Publication number Publication date
JP2000085044A (en) 2000-03-28

Similar Documents

Publication Publication Date Title
JPH08158665A (en) Reinforcing method for reinforced concrete structure
JPH0797460A (en) Fibrous reinforcing sheet and concrete structure reinforced therewith
JPH06192941A (en) Spacer woven fabric
JP4078726B2 (en) Multilayer reinforced fiber sheet and structure repair / reinforcement method
JP2947504B2 (en) Textile substrate for reinforcement
JP3633221B2 (en) Unidirectional reinforced fabric and repair or reinforcement method
JP3019004B2 (en) Carbon fiber woven and concrete structures
JPH11320729A (en) Unidirectional reinforcing fiber composite base material
WO2022145395A1 (en) Release sheet, method for applying coating agent, fiber sheet, and method for constructing fiber sheet
US20160222562A1 (en) Novel reinforcement system
JP4479328B2 (en) FRP sheet for repair / reinforcement and its manufacturing method
JP2000220302A (en) Repairing and reinforcing method for structure
JP2819333B2 (en) How to reinforce structures
JPH11138671A (en) Reinforced fiber base
EP0598591A2 (en) Fibre-reinforced sheet for reinforcement
JP3528348B2 (en) Resin impregnated sheet and method for producing the same
JP2019010792A (en) Mesh sheet laminate and concrete exfoliation prevention material
WO1999004967A1 (en) Unidirectional reinforcing fiber composite substrate
JP2001159047A (en) Fiber woven fabric for reinforcing and maintaining concrete structure and method for irregular surface construction of concrete structure using fiber woven fabric for reinforcing and maintenance
JP3099730B2 (en) Unidirectional reinforcing fiber composite substrate
JPH0531839A (en) Unidirectionally arranged reinforced fiber sheet
CA2188401A1 (en) Terry-cloth fabric panels
JP2018066074A (en) Unidirectional fiber-reinforced sheet
JPH0532804A (en) Unidirectionally arranged reinforcing fiber sheet
JPH0139555Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees