JP2020082429A - Integrated compact - Google Patents

Integrated compact Download PDF

Info

Publication number
JP2020082429A
JP2020082429A JP2018217243A JP2018217243A JP2020082429A JP 2020082429 A JP2020082429 A JP 2020082429A JP 2018217243 A JP2018217243 A JP 2018217243A JP 2018217243 A JP2018217243 A JP 2018217243A JP 2020082429 A JP2020082429 A JP 2020082429A
Authority
JP
Japan
Prior art keywords
resin
molded body
reinforcing member
plate material
integrated molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018217243A
Other languages
Japanese (ja)
Inventor
佳祐 長縄
Keisuke Naganawa
佳祐 長縄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2018217243A priority Critical patent/JP2020082429A/en
Publication of JP2020082429A publication Critical patent/JP2020082429A/en
Pending legal-status Critical Current

Links

Abstract

To provide an integrated compact of a fiber reinforcement resin and a reinforcement member, which is used in an electronic device chassis or the like, has less warpage and high rigidity, and can be light-weighted and thinned.SOLUTION: An integrated compact comprising: a plate 2 that is a rectangular planar structure made of a fiber reinforcement resin; a long-sized reinforcement member 3; and a resin member 4 made of non-continuous fibers and a thermoplastic resin, in which the reinforcement member 3 is arranged in an at least a part of region of an outer periphery part of one side surface of the plate 2, the resin member 4 joins with an at least a part of region of the reinforcement member 3 and joins with at least a part of region of one side surface of the plate 2 and/or at least a part of region of a side surface 6.SELECTED DRAWING: Figure 3

Description

本発明は、例えば医療用カセッテ、パソコン、OA機器または携帯電話等の部品や筐体部分として用いられる軽量、高強度・高剛性でかつ薄肉化が要求される用途に適した一体化成形体に関する。 TECHNICAL FIELD The present invention relates to an integrated molded body which is used as a part or a housing part of, for example, a medical cassette, a personal computer, an OA equipment or a mobile phone, and which is suitable for applications requiring high strength and rigidity and thinness.

現在、医療用カセッテ、パソコン、OA機器、AV機器、携帯電話、電話機、ファクシミリ、家電製品または玩具用品などの電気・電子機器の携帯化が進むにつれ、より小型、軽量化が要求されている。その要求を達成するために、機器を構成する部品、特に筐体には、外部から荷重がかかった場合に筐体が大きく撓んで内部部品と接触、破壊を起こさないようにする必要があるため、高強度・高剛性化を達成しつつ、かつ薄肉化が求められている。 At present, as electric/electronic devices such as medical cassettes, personal computers, OA devices, AV devices, mobile phones, telephones, facsimiles, home electric appliances and toys are becoming portable, smaller size and lighter weight are required. In order to achieve this requirement, it is necessary to prevent the components that make up the equipment, especially the casing, from flexing significantly when an external load is applied, causing contact with internal components and destruction. While achieving high strength and high rigidity, thinning is required.

また、成形体をより高強度・高剛性化するために強化繊維と樹脂からなる繊維強化樹脂に別の補強部材等を付加させて一体化接合成形させ小型軽量化した成形体において、反りが少なく、接合強度の信頼性が要求されている。 In addition, in order to increase the strength and rigidity of the molded body, the fiber-reinforced resin made of reinforced fiber and resin is added with another reinforcing member, etc., and integrally joined and molded to reduce the size and weight of the molded body. The reliability of the bonding strength is required.

特許文献1(国際公開2018/110293号)には、片側表面が意匠面である板材(A)と部材(B)との間に接合樹脂(C)が介在した一体化成形体において、部材(B)の内側に、板材(A)と部材(B)とが離間するように配置され、板材(A)の外周縁部の少なくとも一部の領域が接合樹脂(C)と接合する第1の接合部を有するとともに、一体化成形体の意匠面側の表面の少なくとも一部に、板材(A)、部材(B)、および接合樹脂(C)が露出する領域を有する構成が記載され、これにより、複数の構造体が高い接合強度で接合し、その接合境界部が良好な平滑性を有し、成形体が板材の構成部材を有していても反り低減が図れ、軽量・薄肉化を実現することができるという効果が開示されている。 Patent Document 1 (International Publication No. 2018/110293) describes a member (B) in an integrated molded body in which a bonding resin (C) is interposed between a plate material (A) whose one surface is a design surface and a member (B). ), the plate member (A) and the member (B) are arranged so as to be separated from each other, and at least a part of the outer peripheral edge portion of the plate member (A) is bonded to the bonding resin (C). A structure having a portion and a region where the plate material (A), the member (B), and the bonding resin (C) are exposed is described on at least a part of the surface of the integrated molded body on the design surface side. Multiple structures are joined with high joint strength, the joint boundary has good smoothness, and even if the molded body has a plate member, it is possible to reduce warpage and realize weight reduction and thinning. The effect of being able to do is disclosed.

また、特許文献2(特開2011−166124号公報)には、熱可塑性樹脂からなる成形体(I)と、連続した強化繊維と熱硬化性樹脂を含む成形体(II)が接合されてなる電気・電子機器筐体であって、該成形体(I)が面状構造体であり、前記成形体(I)が凹形状の溝を有し、前記成形体(II)が該溝に沿って配置され、金型のキャビティ内に、前記成形体(II)がインサートされ、射出成形によりキャビティに前記成形体(I)が充填することにより、前記成形体(I)と前記成形体(II)とが一体化されてなる電気・電子機器筐体が記載され、これにより、複雑形状を形成することに適した熱可塑性樹脂からなる成形体(I)と、高剛性で生産性の高い連続した強化繊維と熱硬化性樹脂からなる成形体(II)を、必要とされる部分に効果的に配置することで、成形性、生産性、高剛性などの特性を損なうことなく、良好な軽量性、経済性、薄肉性を満たし、かつ必要とされる複雑な形状に対しても対応可能な電気・電子機器筐体が得られる、との効果が開示されている。 Further, in Patent Document 2 (JP 2011-166124A), a molded product (I) made of a thermoplastic resin and a molded product (II) containing continuous reinforcing fibers and a thermosetting resin are joined together. An electric/electronic device housing, wherein the molded body (I) is a planar structure, the molded body (I) has a concave groove, and the molded body (II) extends along the groove. The molded body (II) is inserted into the cavity of the mold, and the cavity is filled with the molded body (I) by injection molding, whereby the molded body (I) and the molded body (II) are filled. ) Is integrated with an electric/electronic device housing, which allows a molded body (I) made of a thermoplastic resin suitable for forming a complicated shape and a continuous body having high rigidity and high productivity. By arranging the molded body (II) consisting of the reinforced fiber and the thermosetting resin effectively in the required part, good lightweight without compromising the characteristics such as moldability, productivity and high rigidity. There is disclosed the effect that an electric/electronic device housing that satisfies the requirements of cost efficiency, economical efficiency, and thinness, and that can be used for a required complicated shape can be obtained.

国際公開2018/110293号パンフレットInternational publication 2018/110293 pamphlet 特開2011−166124号公報JP, 2011-166124, A

しかし、特許文献1の構成では、部材(B)と板材(A)とを接合樹脂(C)で一体化した成形体で、反り低減が図れ、軽量・薄肉化を実現することを目的としたものであり、連続繊維及び熱硬化性樹脂を含む部材(B)が板材(A)と離間した構成となっているため、成形体自体の一層の高剛性化に対して改善の余地があった。 However, in the configuration of Patent Document 1, a molded body in which the member (B) and the plate material (A) are integrated with the bonding resin (C) has an object to reduce the warpage and realize the reduction in weight and thickness. Since the member (B) containing the continuous fiber and the thermosetting resin is separated from the plate material (A), there is room for improvement in further increasing the rigidity of the molded body itself. ..

また、特許文献2の構成では、例えば、成形体(I)の溶融した熱可塑性樹脂がぶつかり合って形成されたウェルドが形成されている箇所は強度低下が生じるため、これらを補強する目的で、成形体(II)を成形体(I)に有するウェルドを跨って配置することにより、より剛性の高い電気・電子機器筐体を得ることができる。しかし、成形体の面状構造体である天板部分には熱可塑性樹脂を主成分とする成形体(I)が用いられ、補強部材である成形体(II)は成形体(I)に形成された溝に沿って配置される構成で高い剛性が得られるが、成形体(I)の肉厚を小さくしている箇所での境界部で強度が不均衡になる懸念があり、さらに、(I)が配置された箇所とされていない箇所で、強度、剛性に差があり、成形体自体の一層の高剛性化に対して改善の余地があった。 In addition, in the configuration of Patent Document 2, for example, strength is reduced at a portion where a weld formed by the molten thermoplastic resin of the molded body (I) colliding with each other is reduced in strength. By arranging the molded body (II) across the weld having the molded body (I), a more rigid electric/electronic device housing can be obtained. However, the molded body (I) containing a thermoplastic resin as a main component is used for the top plate portion which is the planar structure of the molded body, and the molded body (II) which is the reinforcing member is formed into the molded body (I). Although high rigidity can be obtained with the configuration in which the molded body (I) is arranged along the groove, there is a concern that the strength may become unbalanced at the boundary portion where the wall thickness of the molded body (I) is reduced. There was a difference in strength and rigidity between the portion where I) was arranged and the portion where it was not arranged, and there was room for improvement in further increasing the rigidity of the molded body itself.

そこで、本発明は、かかる従来技術の問題点に鑑み、補強部材が複数の構造体と高い接合強度で接合し、成形体が板材の構成部材を有しても反り低減が図れ、また成形体の剛性を高め、軽量・薄肉化を可能としうる一体化成形体を提供することを目的とする。 Therefore, in view of the problems of the prior art, the present invention is capable of reducing the warp even if the reinforcing member is joined to a plurality of structures with high joint strength, and the molded body has a plate member component. It is an object of the present invention to provide an integrated molded body capable of increasing the rigidity of the, and making it lightweight and thin.

上記課題を解決するために本発明は以下の手段を採用するものである。すなわち、
(1)繊維強化樹脂からなる矩形形状の面状構造体である板材(A)、長尺体である補強部材(B)及び、不連続繊維と熱可塑性樹脂からなる樹脂部材(C)とから構成される一体化成形体であって、
前記補強部材(B)が前記板材(A)の片側表面の外周縁部の少なくとも一部の領域に配置され、
前記樹脂部材(C)が前記補強部材(B)の少なくとも一部の領域と接合するとともに、前記板材(A)の片側表面の外周縁部の少なくとも一部の領域および/または側面の少なくとも一部の領域と接合することを特徴とする一体化成形体。
(2)前記補強部材(B)の長手方向と直交する断面の形状が、円形形状、楕円形状または矩形形状のいずれかである(1)に記載の一体化成形体。
(3)前記板材(A)の外周縁部の少なくとも一部に湾曲した曲在形状部を有する(1)または(2)に記載の一体化成形体。
(4)前記補強部材(B)の断面形状が、前記板材(A)の曲在形状部の湾曲形状に合致した曲面を一部に有する長尺体である(3)に記載の一体化成形体。
(5)前記樹脂部材(C)が前記板材(A)の側面の全領域と接合する(1)〜(4)のいずれかに記載の一体化成形体。
(6)前記板材(A)の外周縁部の少なくとも一部の領域と接合した領域における前記樹脂部材(C)の形状が、前記補強部材(B)の最頂部の高さ(前記板材(A)と前記補強部材(B)との接合箇所からもっとも離間した位置までの距離)以上の高さに形成された部位を有する(1)〜(5)のいずれかに記載の一体化成形体。
(7)前記板材(A)の投影面積X(mm)と、前記補強部材(B)の投影面積Y(mm)との比Y/Xが0.01〜0.2である(1)〜(6)のいずれかに記載の一体化成形体。
(8)前記補強部材(B)の長手方向と直交する断面部において、前記補強部材(B)の断面積をB2(mm)、前記樹脂部材(C)の断面積をC2(mm)とすると、B2/C2が0.01〜0.8である(1)〜(7)のいずれかに記載の一体化成形体。
(9)前記板材(A)と、前記補強部材(B)および/または前記樹脂部材(C)とが、接合層を介して接合されている(1)〜(8)のいずれかに記載の一体化成形体。
(10)前記補強部材(B)が一方向強化繊維及び熱硬化性樹脂から構成される(1)〜(9)のいずれかに記載の一体化成形体。
(11)前記板材(A)が連続繊維及び熱硬化性樹脂から構成される(1)〜(10)のいずれかに記載の一体化成形体、である。
In order to solve the above problems, the present invention employs the following means. That is,
(1) From a plate material (A) that is a rectangular planar structure made of fiber-reinforced resin, a reinforcing member (B) that is a long body, and a resin member (C) that is made of discontinuous fibers and a thermoplastic resin An integrated molded body,
The reinforcing member (B) is arranged in at least a part of an outer peripheral edge portion of one surface of the plate material (A),
The resin member (C) is joined to at least a partial region of the reinforcing member (B), and at least a partial region of the outer peripheral edge portion of one side surface of the plate material (A) and/or at least a portion of a side surface thereof. An integrated molded body characterized by being bonded to the region of.
(2) The integrated molded body according to (1), wherein the cross-section of the reinforcing member (B) orthogonal to the longitudinal direction has a circular shape, an elliptical shape, or a rectangular shape.
(3) The integrated molded body according to (1) or (2), which has a curved curved shape portion in at least a part of an outer peripheral edge portion of the plate material (A).
(4) The integrated molded body according to (3), wherein the reinforcing member (B) is an elongated body having a curved surface partly corresponding to the curved shape of the curved shape portion of the plate material (A). ..
(5) The integrated molded body according to any one of (1) to (4), in which the resin member (C) is joined to the entire side surface region of the plate material (A).
(6) The shape of the resin member (C) in the region joined to at least a part of the outer peripheral edge portion of the plate material (A) is the height of the top of the reinforcing member (B) (the plate material (A The integrated molded body according to any one of (1) to (5), which has a portion formed at a height equal to or more than a distance from a joint portion between the reinforcing member (B) and the reinforcing member (B).
(7) The ratio Y/X of the projected area X (mm 2 ) of the plate material (A) and the projected area Y (mm 2 ) of the reinforcing member (B) is 0.01 to 0.2 (1 )-(6) integrated molding.
(8) In the cross-section portion orthogonal to the longitudinal direction of the reinforcing member (B), the cross-sectional area of the reinforcing member (B) is B2 (mm 2 ) and the cross-sectional area of the resin member (C) is C2 (mm 2 ). Then, the integrated molded body according to any one of (1) to (7), wherein B2/C2 is 0.01 to 0.8.
(9) The plate member (A) and the reinforcing member (B) and/or the resin member (C) are bonded to each other via a bonding layer (1) to (8). Integrated molded body.
(10) The integrated molded body according to any one of (1) to (9), wherein the reinforcing member (B) is composed of a unidirectional reinforcing fiber and a thermosetting resin.
(11) The integrated molded product according to any one of (1) to (10), in which the plate material (A) is composed of continuous fibers and a thermosetting resin.

本願発明の一体化成形体によれば、補強部材が複数の構造体と高い接合強度で接合し、成形体が面状構造体である板材の構成部材を有しても反り低減が図れ、また成形体の強度・剛性を高めることができ、軽量・薄肉化を実現することができる。 According to the integrated molded body of the present invention, the reinforcing member is bonded to a plurality of structures with high bonding strength, and even if the molded body has a plate member constituting a planar structure, the warp can be reduced, and the molded body can be molded. The strength and rigidity of the body can be increased, and the weight and thickness can be reduced.

本発明に係る一体化成形体の平面図である。FIG. 3 is a plan view of an integrated molded body according to the present invention. 図1に示す一体化成形体の底面図である。FIG. 2 is a bottom view of the integrated molded body shown in FIG. 1. 図1または図2のA−A’断面図である。FIG. 3 is a cross-sectional view taken along the line A-A′ of FIG. 1 or 2. 図1または図2のB−B’断面図である。FIG. 3 is a sectional view taken along line B-B′ of FIG. 1 or FIG. 2. 本発明に係る一体化成形体の構成部材である板材(A)の斜視図である。It is a perspective view of the board|plate material (A) which is a structural member of the integrated molded body which concerns on this invention. 本発明に係る一体化成形体の構成部材でその断面の形状が矩形状の補強部材(B)の斜視図である。FIG. 6 is a perspective view of a reinforcing member (B) having a rectangular cross section in the constituent member of the integrated molded body according to the present invention. 図1に示す一体化成形体において、補強部材(B)を板材(A)上の配置位置を変えたA−A’断面図である。FIG. 2 is a cross-sectional view taken along the line A-A′ of the integrated molded body shown in FIG. 1, in which the reinforcing member (B) is arranged on the plate material (A) at different positions. 図1に示す一体化成形体において、補強部材(B)を板材(A)上の配置位置をさらに別の位置に変えたA−A’断面図である。FIG. 2 is a cross-sectional view taken along the line A-A′ in which the reinforcing member (B) is arranged on the plate material (A) at another position in the integrated molded body shown in FIG. 1. 本発明に係る一体化成形体の構成部材でその断面の形状が円形形状である補強部材(B)の斜視図である。FIG. 3 is a perspective view of a reinforcing member (B) having a circular cross section in the constituent member of the integrated molded body according to the present invention. 断面の形状が円形形状である補強部材(B)が板材(A)及び樹脂部材(C)と一体化した一体化成形体のA−A’断面図である。It is an A-A' cross section figure of the integrated molding which the reinforcing member (B) whose cross-sectional shape is circular shape integrated with the plate material (A) and the resin member (C). 断面形状を楕円形状とした補強部材(B)の斜視図である。FIG. 6 is a perspective view of a reinforcing member (B) having an elliptical cross section. 断面形状を楕円形状とした補強部材(B)が板材(A)及び樹脂部材(C)と一体化した一体化成形体のA−A’断面図である。It is an A-A' cross section figure of the integrated molding which the reinforcing member (B) which made the cross-sectional shape elliptical shape integrated with the plate material (A) and the resin member (C). 板材(A)の外周縁部の少なくとも一部に湾曲した曲在形状部を有する一体化成形体の平面図である。FIG. 4 is a plan view of an integrated molded body having a curved curved portion on at least a part of an outer peripheral edge portion of the plate material (A). 図13に示す一体化成形体の底面図である。FIG. 14 is a bottom view of the integrated molded body shown in FIG. 13. 板材(A)の外周縁部の少なくとも一部に湾曲した曲在形状部を有する一体化成形体の断面図である。It is sectional drawing of the integrated molded object which has the curved curved-shape part in at least one part of the outer peripheral edge part of plate material (A). 板材(A)の外周縁部の少なくとも一部に湾曲した曲在形状部を有し、曲在形状部の湾曲形状に合致した曲面を一部に有する補強部材(B)を接合した一体化成形体の断面図である。An integrated molded body in which a reinforcing member (B) having a curved curved portion at least at a part of the outer peripheral edge of the plate material (A) and having a curved surface matching the curved shape of the curved portion is joined. FIG. 板材(A)の外周縁部の少なくとも一部に湾曲した曲在形状部を有し、補強部材(B)が、樹脂部材(C)の同一辺の中に、2つ以上配置され一体化した一体化成形体のA−A’断面図である。At least a part of the outer peripheral edge of the plate member (A) has a curved curved portion, and two or more reinforcing members (B) are arranged and integrated on the same side of the resin member (C). It is an AA' sectional view of an integrated molding. 樹脂部材(C)を補強部材(B)の最頂部の高さ以上の高さに形成した一体化成形体の部分断面拡大図である。It is a partial cross-sectional enlarged view of the integrated molding which formed the resin member (C) in the height more than the height of the top of a reinforcement member (B). 樹脂部材(C)を補強部材(B)の最頂部の高さ以上の高さに形成した別の形態の一体化成形体の部分断面拡大図である。It is a partial cross-section enlarged view of the integrated molding of another form which formed the resin member (C) in the height more than the height of the top of a reinforcement member (B). 板材(A)の投影面積を表した平面図である。It is a top view showing the projected area of board (A). 補強部材(B)の投影面積を表した平面図である。It is a top view showing the projected area of a reinforcement member (B). 板材(A)と樹脂部材(C)との間に第1の接合層、板材(A)と補強部材(B)との間に第2の接合層を介して接合した態様を表した一体化成形体の断面図である。An integrated structure showing a mode in which a plate material (A) and a resin member (C) are bonded together via a first bonding layer and a plate material (A) and a reinforcing member (B) are bonded via a second bonding layer. It is sectional drawing of a form. 図21と異なる断面形状を有する補強部材(B)を用いて、第1の接合層および第2の接合層を設けた別の接合態様の一体化成形体の断面図である。FIG. 22 is a cross-sectional view of an integrally formed body in another joining mode in which the first joining layer and the second joining layer are provided by using the reinforcing member (B) having a cross-sectional shape different from that in FIG. 21. 成形下金型に板材(A)の片側表面の外周縁部の少なくとも一部の領域に補強部材(B)を配置した平面図[1]と、C−C’断面図[2]である。It is the top view [1] which arrange|positioned the reinforcement member (B) in at least one part area|region of the outer peripheral part of the one side surface of the plate material (A) in the lower molding die, and C-C' sectional view [2]. 樹脂部材(C)を射出ゲート口から射出注入して一体化成形体を成形した平面図[1]とC−C’断面図「2」である。It is the top view [1] which injected and injected the resin member (C) from the injection gate opening, and molded the integrated molded body, and C-C' sectional drawing "2". 一体化成形体1の対向する2辺を万能試験機の固定台に載置した状態を示す底面図である。It is a bottom view showing the state where two opposite sides of integrated molding 1 were placed on the fixed stand of a universal testing machine. 図25のD−D’断面図である。FIG. 26 is a cross-sectional view taken along the line D-D′ of FIG. 25. 一体化成形体1を万能試験機の固定台に載置し、上方からロードセルによる荷重を付加した状態を示す平面図である。It is a top view which shows the state which mounted the integral molded body 1 on the fixed stand of a universal testing machine, and added the load by a load cell from the upper direction. 図27のE−E’断面図である。FIG. 28 is a cross-sectional view taken along the line E-E′ of FIG. 27. 図27の領域21の側面断面図である。FIG. 28 is a side sectional view of a region 21 of FIG. 27. 補強部材(B)を作成する一実施形態である引抜成形工程の概略図である。It is a schematic diagram of the pultrusion molding process which is one embodiment which creates a reinforcement member (B).

以下、実施の形態について図面を用いて説明する。なお、本発明は図や実施例に何ら限定されるものではない。 Hereinafter, embodiments will be described with reference to the drawings. The present invention is not limited to the drawings and the embodiments.

本発明に係る一体化成形体1の構成は、繊維強化樹脂からなる矩形形状の面状構造体である板材(A)2、長尺体である補強部材(B)3及び不連続繊維と熱可塑性樹脂からなる樹脂部材(C)4とから構成される一体化成形体1であって、補強部材(B)3が板材(A)2の片側表面の外周縁部の少なくとも一部の領域に配され、樹脂部材(C)4が補強部材(B)3の少なくとも一部の領域と接合するとともに、板材(A)2の片側表面の外周縁部の少なくとも一部の領域および/または側面の少なくとも一部の領域と接合する構成である。 The structure of the integrated molded body 1 according to the present invention includes a plate material (A) 2 which is a rectangular planar structure made of a fiber reinforced resin, a reinforcing member (B) 3 which is an elongated body, a discontinuous fiber and a thermoplastic material. An integrated molded body 1 composed of a resin member (C) 4 made of a resin, wherein a reinforcing member (B) 3 is arranged in at least a part of an outer peripheral edge portion of one surface of a plate material (A) 2. The resin member (C) 4 is joined to at least a partial region of the reinforcing member (B) 3, and at least one region and/or side face of at least a part of the outer peripheral edge of the one side surface of the plate material (A) 2. It is the structure which joins with the area|region of a part.

図5に示す面状構造体である板材(A)2、及び図6に示す長尺体である補強部材(B)3を別々にあらかじめ準備しておき、図1ないし図4に示すように、板材(A)2の片側表面の外周縁部のうち、対向する一対の長辺に沿って、及び、対向する一対の短辺に沿って補強部材(B)3が配され、さらに、樹脂部材(C)4により板材(A)2および補強部材(B)が接合一体化された構成である。 A plate material (A) 2 which is a planar structure shown in FIG. 5 and a reinforcing member (B) 3 which is a long body shown in FIG. 6 are separately prepared in advance, and as shown in FIGS. The reinforcing member (B) 3 is arranged along a pair of opposing long sides of the outer peripheral edge portion of one surface of the plate material (A) 2, and along a pair of opposing short sides, and further, a resin. The plate member (A) 2 and the reinforcing member (B) are joined and integrated by the member (C) 4.

補強部材(B)3が板材(A)2の外周縁部の少なくとも一部の領域に配することにより、成形体1の反りを抑制するとともに、一体化成形体1の強度・剛性を高めることができる。さらに、樹脂部材(C)4が補強部材(B)3の少なくとも一部の領域と接合するとともに、板材(A)2の片側表面の外周縁部の少なくとも一部の領域、側面部6の少なくとも一部の領域、又は外周縁部の少なくとも一部の領域と側面部6の少なくとも一部の領域双方と接合する形態をとることにより、樹脂部材(C)4と板材(A)2との接合強度を高めることができる。 By disposing the reinforcing member (B) 3 in at least a part of the outer peripheral edge portion of the plate material (A) 2, it is possible to suppress warpage of the molded body 1 and to increase the strength and rigidity of the integrated molded body 1. it can. Further, the resin member (C) 4 is joined to at least a part of the area of the reinforcing member (B) 3, and at least a part of the outer peripheral edge part of one surface of the plate material (A) 2 and at least the side surface part 6. Joining of the resin member (C) 4 and the plate material (A) 2 by adopting a form of joining to a part of the region or at least a part of the outer peripheral edge part and at least a part of the side face part 6 The strength can be increased.

ここで、板材(A)2の外周縁部とは、面状構造体の板材(A)2の外周部付近の平面部領域であり、板材(A)2の1辺の長さに対して外周端部から0〜15%の長さの範囲内であることが好ましい。この板材(A)2の外周縁部に、補強部材(B)3の一部が位置するように配することが好ましい。図3では補強部材(B)3の一部が板材(A)2の外周端部と接し、その一面が板材(A)2の側面部6と同一平面状に揃って面一で配置される態様を例示している。また、補強部材(B)3の補強効果が発現できるのであれば、図7に示すように、補強部材(B)3が板材(A)2の外周端部よりも内側にずれて外周縁部の位置に配する構成でも構わないし、また、図8に示すように、補強部材(B)3の一部が板材(A)2の外周端部よりも外側にはみ出すようにずらして配する構成でも構わない。外周端部とは、板材(A)2の外周縁部の最も端の箇所を指し、側面部6と接する箇所である。 Here, the outer peripheral edge portion of the plate material (A) 2 is a flat portion region near the outer peripheral portion of the plate material (A) 2 of the planar structure, and with respect to the length of one side of the plate material (A) 2. It is preferable that the length is within a range of 0 to 15% from the outer peripheral end. It is preferable to arrange the reinforcing member (B) 3 so that a part of the reinforcing member (B) 3 is located at the outer peripheral edge of the plate member (A) 2. In FIG. 3, a part of the reinforcing member (B) 3 is in contact with the outer peripheral end portion of the plate material (A) 2, and one surface thereof is arranged flush with the side surface portion 6 of the plate material (A) 2 in the same plane. 1 illustrates an embodiment. Further, if the reinforcing effect of the reinforcing member (B) 3 can be exhibited, as shown in FIG. 7, the reinforcing member (B) 3 is displaced inward from the outer peripheral end portion of the plate material (A) 2 and the outer peripheral edge portion thereof. 8 may be arranged. Alternatively, as shown in FIG. 8, a part of the reinforcing member (B) 3 is arranged so as to be offset so as to protrude outside the outer peripheral end of the plate material (A) 2. But it doesn't matter. The outer peripheral end portion refers to the outermost peripheral edge portion of the plate material (A) 2 and is a portion in contact with the side surface portion 6.

図3又は図4はそれぞれ図1又は図2のA−A’、B−B’の断面図であるが、同じ部材の配置構成を明確にするため、図1又は図2と同様の模様を示している。以下同様である。 FIG. 3 or FIG. 4 is a cross-sectional view taken along the line AA′ or BB′ of FIG. 1 or FIG. 2, respectively, but in order to clarify the arrangement configuration of the same members, a pattern similar to that of FIG. Shows. The same applies hereinafter.

また、面状構造体である板材(A)2は、平面の投影面積に比べて側面部面積が小さい面形状で、投影面積が10,000〜250,000mmの範囲で、側面部6の高さである板材(A)2の板厚は0.2〜5mmの範囲であることが好ましい。より好ましくは投影面積が40,000〜240,000mmの範囲、板厚が0.5〜3mmの範囲であり、さらに好ましくは90,000〜220,000mmの範囲、板厚が1〜2mmの範囲である。例えば、カセッテやパソコンの筺体のように投影面積に比べて側面部面積が小さい、薄肉型直方体形状においては、その強度・剛性を確保して、曲げや衝撃に対して強い強度が必要である。このような形態であっても、本発明の構成を取ることにより強い強度、高い剛性を保持することができる。 Further, the plate material (A) 2 which is a planar structure has a surface shape in which the side surface area is smaller than the projected area of a plane, and the projected area of the side surface portion 6 is 10,000 to 250,000 mm 2 . The plate thickness of the plate material (A) 2 having a height is preferably in the range of 0.2 to 5 mm. More preferably in the range of the projected area of 40,000~240,000mm 2, ranges plate thickness of 0.5 to 3 mm, more preferably in the range of 90,000~220,000mm 2, plate thickness 1~2mm The range is. For example, in the case of a thin-walled rectangular parallelepiped shape whose side surface area is smaller than the projected area such as the case of a cassette or a personal computer, it is necessary to secure its strength and rigidity and to have a strong strength against bending and impact. Even in such a form, strong strength and high rigidity can be maintained by adopting the configuration of the present invention.

また、樹脂部材(C)4は、射出成形可能な熱可塑性樹脂を用いることが好ましい。樹脂部材(C)4を射出成形することにより、板材(A)2や補強部材(B)3と接合一体化することができる。 The resin member (C) 4 is preferably made of injection-moldable thermoplastic resin. By injection molding the resin member (C) 4, it is possible to join and integrate the plate member (A) 2 and the reinforcing member (B) 3.

樹脂部材(C)4を構成する熱可塑性樹脂の種類としては特に制限はなく、以下に例示される熱可塑性樹脂のいずれの樹脂も用いることができる。例えばポリエチレンテレフタレート(PET)樹脂、ポリブチレンテレフタレート(PBT)樹脂、ポリトリメチレンテレフタレート(PTT)樹脂、ポリエチレンナフタレート(PEN樹脂)、液晶ポリエステル樹脂等のポリエステル樹脂や、ポリエチレン(PE樹脂)、ポリプロピレン(PP樹脂)、ポリブチレン樹脂等のポリオレフィン樹脂や、ポリオキシメチレン(POM)樹脂、ポリアミド(PA)樹脂、ポリフェニレンスルフィド(PPS)樹脂などのポリアリーレンスルフィド樹脂、ポリケトン(PK)樹脂、ポリエーテルケトン(PEK)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、ポリエーテルケトンケトン(PEKK)樹脂、ポリエーテルニトリル(PEN)樹脂、ポリテトラフルオロエチレン樹脂などのフッ素系樹脂、液晶ポリマー(LCP)などの結晶性樹脂、スチレン系樹脂の他、ポリカーボネート(PC)樹脂、ポリメチルメタクリレート(PMMA)樹脂、ポリ塩化ビニル(PVC)樹脂、ポリフェニレンエーテル(PPE)樹脂、ポリイミド(PI)樹脂、ポリアミドイミド(PAI)樹脂、ポリエーテルイミド(PEI)樹脂、ポリサルホン(PSU)樹脂、ポリエーテルサルホン樹脂、ポリアリレート(PAR)樹脂などの非晶性樹脂、その他、フェノール系樹脂、フェノキシ樹脂、更にポリスチレン系樹脂、ポリオレフィン系樹脂、ポリウレタン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリブタジエン系樹脂、ポリイソプレン系樹脂、フッ素系樹脂、およびアクリロニトリル系樹脂等の熱可塑エラストマー等や、これらの共重合体および変性体等から選ばれる熱可塑性樹脂が挙げられる。中でも、得られる成形品の軽量性の観点からはポリオレフィン樹脂が好ましく、強度の観点からはポリアミド樹脂が好ましく、表面外観の観点からポリカーボネート樹脂やスチレン系樹脂、変性ポリフェニレンエーテル系樹脂のような非晶性樹脂が好ましく、耐熱性の観点からポリアリーレンスルフィド樹脂が好ましく、連続使用温度の観点からポリエーテルエーテルケトン樹脂が好ましく用いられる。 There is no particular limitation on the kind of the thermoplastic resin forming the resin member (C) 4, and any of the thermoplastic resins exemplified below can be used. For example, polyethylene terephthalate (PET) resin, polybutylene terephthalate (PBT) resin, polytrimethylene terephthalate (PTT) resin, polyethylene naphthalate (PEN resin), polyester resin such as liquid crystal polyester resin, polyethylene (PE resin), polypropylene ( PP resin), polybutylene resin or other polyolefin resin, polyoxymethylene (POM) resin, polyamide (PA) resin, polyphenylene sulfide (PPS) resin or other polyarylene sulfide resin, polyketone (PK) resin, polyether ketone (PEK) ) Resin, polyetheretherketone (PEEK) resin, polyetherketoneketone (PEKK) resin, polyethernitrile (PEN) resin, fluorine resin such as polytetrafluoroethylene resin, crystalline resin such as liquid crystal polymer (LCP) , Styrene resin, polycarbonate (PC) resin, polymethylmethacrylate (PMMA) resin, polyvinyl chloride (PVC) resin, polyphenylene ether (PPE) resin, polyimide (PI) resin, polyamideimide (PAI) resin, poly Amorphous resins such as ether imide (PEI) resin, polysulfone (PSU) resin, polyether sulfone resin, polyarylate (PAR) resin, and other phenolic resins, phenoxy resins, polystyrene resins, polyolefin resins, Thermoplastic elastomer such as polyurethane resin, polyester resin, polyamide resin, polybutadiene resin, polyisoprene resin, fluororesin, and acrylonitrile resin, and heat selected from copolymers and modified products of these. A plastic resin may be used. Among them, polyolefin resin is preferable from the viewpoint of lightness of the obtained molded product, polyamide resin is preferable from the viewpoint of strength, and polycarbonate resin or styrene resin from the viewpoint of surface appearance, amorphous such as modified polyphenylene ether resin. Resin is preferred, polyarylene sulfide resin is preferred from the viewpoint of heat resistance, and polyether ether ketone resin is preferably used from the viewpoint of continuous use temperature.

また、樹脂部材(C)4を構成する不連続繊維としては、ポリアクリルニトリル(PAN)系、レーヨン系、リグニン系、ピッチ系の炭素繊維や、黒鉛繊維や、ガラスなどの絶縁性繊維や、アラミド樹脂、ポリフェニレンスルフィド樹脂、ポリエステル樹脂、アクリル樹脂、ナイロン樹脂、ポリエチレン樹脂などの有機繊維や、シリコンカーバイト、シリコンナイトライドなどの無機繊維が挙げられる。これらの強化繊維は1種類を単独で用いてもよいし、2種類以上を併用してもよい。中でも、軽量化効果の観点から、比強度、比剛性に優れるPAN系、ピッチ系、レーヨン系などの炭素繊維が好ましく用いられる。また、得られる成形品の経済性を高める観点からは、ガラス繊維が好ましく用いられ、とりわけ力学特性と経済性のバランスから炭素繊維とガラス繊維を併用することが好ましい。さらに、得られる成形品の衝撃吸収性や賦形性を高める観点からは、アラミド繊維が好ましく用いられ、とりわけ力学特性と衝撃吸収性のバランスから炭素繊維とアラミド繊維を併用することが好ましい。これらの中で、強度と弾性率などの力学的特性に優れるPAN系の炭素繊維をより好ましく用いることができる。 The discontinuous fibers constituting the resin member (C) 4 include polyacrylonitrile (PAN)-based, rayon-based, lignin-based, pitch-based carbon fibers, graphite fibers, and insulating fibers such as glass, Examples thereof include organic fibers such as aramid resin, polyphenylene sulfide resin, polyester resin, acrylic resin, nylon resin and polyethylene resin, and inorganic fibers such as silicon carbide and silicon nitride. These reinforcing fibers may be used alone or in combination of two or more. Among them, PAN-based, pitch-based, rayon-based carbon fibers which are excellent in specific strength and specific rigidity are preferably used from the viewpoint of the effect of weight reduction. Further, from the viewpoint of increasing the economical efficiency of the obtained molded product, glass fiber is preferably used, and it is particularly preferable to use carbon fiber and glass fiber in combination from the viewpoint of the balance between mechanical properties and economic efficiency. Further, aramid fibers are preferably used from the viewpoint of enhancing the impact absorbency and shapeability of the obtained molded product, and it is particularly preferred to use carbon fiber and aramid fiber in combination from the viewpoint of balance between mechanical properties and impact absorbability. Among these, PAN-based carbon fibers which are excellent in mechanical properties such as strength and elastic modulus can be more preferably used.

また、樹脂部材(C)4を構成する不連続繊維の重量平均繊維長が0.3〜5mmであることが好ましい。 The weight average fiber length of the discontinuous fibers forming the resin member (C) 4 is preferably 0.3 to 5 mm.

ここで、連続繊維と不連続繊維について定義する。連続繊維とは、一体化成形体1に含有された強化繊維が一体化成形体1の全長または全幅にわたって実質的に連続して配置された様態であり、不連続繊維とは断続的に強化繊維が分断されて配置された様態のものをいう。一般的に、一方向に引き揃えた強化繊維に樹脂を含浸させた一方向繊維強化樹脂が連続繊維に該当し、プレス成形に用いるSMC基材、射出成形に用いる強化繊維が含有したペレット材料などが不連続繊維に該当する。 Here, continuous fibers and discontinuous fibers will be defined. The continuous fiber is a state in which the reinforcing fibers contained in the integrated molded body 1 are arranged substantially continuously over the entire length or the entire width of the integrated molded body 1, and the discontinuous fibers are intermittently separated from the reinforcing fibers. It is the one that is arranged and arranged. Generally, unidirectional fiber reinforced resin obtained by impregnating unidirectionally aligned reinforcing fibers with resin corresponds to continuous fiber, SMC base material used for press molding, pellet material containing reinforcing fiber used for injection molding, etc. Corresponds to discontinuous fiber.

不連続繊維の中でも射出成形に用いるペレット材料として、不連続繊維で構成された部材中に残存した重量平均繊維長が一定の繊維長を有することにより、射出成形時において、繊維強化樹脂が成形型の成形金型の隅部分までに均一に充填することができる。重量平均繊維長が0.3mm未満であると、強度や剛性が十分に得られない場合や、一体化成形体1の反り低減が十分に図ることができない場合がある。重量平均繊維長が5mmを超えると樹脂の流動性が悪くなり、射出成形時に樹脂部材(C)4を成形金型の隅部分までに均一に充填しにくくなる場合がある。不連続炭素繊維の重量平均繊維長は、好ましくは0.4〜3mm、より好ましくは、1〜2.5mm、さらに好ましくは、1.4〜1.9mmである。 Among the discontinuous fibers, as a pellet material used for injection molding, the weight-average fiber length remaining in the member composed of the discontinuous fibers has a constant fiber length, so that the fiber-reinforced resin can be molded at the time of injection molding. It is possible to uniformly fill up to the corners of the molding die. When the weight average fiber length is less than 0.3 mm, sufficient strength and rigidity may not be obtained, or the warp of the integrated molded body 1 may not be sufficiently reduced. When the weight average fiber length exceeds 5 mm, the fluidity of the resin deteriorates, and it may be difficult to uniformly fill the resin member (C) 4 to the corners of the molding die during injection molding. The weight average fiber length of the discontinuous carbon fibers is preferably 0.4 to 3 mm, more preferably 1 to 2.5 mm, further preferably 1.4 to 1.9 mm.

また、樹脂部材(C)4の繊維重量含有率が10〜30重量%であることが好ましい。これにより、樹脂部材(C)4の収縮を抑えて、一体化成形体1の反り低減を図ることができる。10重量%未満であると、一体化成形体1の強度確保が困難になる場合があり、30重量%を超えると、射出成形において、樹脂部材(C)4の充填が一部不十分になる場合がある。繊維重量含有率は15〜30重量%がより好ましく、さらに好ましくは20〜30重量%である。 In addition, the fiber weight content of the resin member (C) 4 is preferably 10 to 30% by weight. As a result, it is possible to suppress the shrinkage of the resin member (C) 4 and reduce the warp of the integrated molded body 1. When it is less than 10% by weight, it may be difficult to secure the strength of the integrated molded body 1, and when it exceeds 30% by weight, the resin member (C) 4 may be partially insufficiently filled in the injection molding. There is. The fiber weight content is more preferably 15 to 30% by weight, further preferably 20 to 30% by weight.

また、本発明において、補強部材(B)3の長手方向と直交する断面の形状が円形形状、楕円形状または矩形形状であることが好ましい。 Further, in the present invention, it is preferable that the cross section of the reinforcing member (B) 3 that is orthogonal to the longitudinal direction has a circular shape, an elliptical shape, or a rectangular shape.

補強部材(B)3の断面形状が、図6に示す長方形や図3の断面図に示す正方形といった矩形形状とすることにより、板材(A)2との位置決めが容易となるとともに、板材(A)2と面接触する態様となり接合強度も向上できる。 When the reinforcing member (B) 3 has a rectangular sectional shape such as a rectangle shown in FIG. 6 or a square shown in the sectional view of FIG. 3, positioning with the plate material (A) 2 is facilitated and the plate material (A) is ) 2, and the bonding strength can be improved.

また、補強部材(B)3の断面形状が、図9や図10に示す円形形状とすることにより、補強部材(B)3自体の強度が向上し、一体化成形体1の高強度化を図ることとができる。補強部材(B)3の断面形状が、図11や図12に示す楕円形状とすることによっても同様の効果を得ることができる。 Further, by making the cross-sectional shape of the reinforcing member (B) 3 circular as shown in FIGS. 9 and 10, the strength of the reinforcing member (B) 3 itself is improved, and the strength of the integrated molded body 1 is increased. You can do things. The same effect can be obtained by making the cross-sectional shape of the reinforcing member (B) 3 oval as shown in FIGS. 11 and 12.

また。本発明において、板材(A)2の外周縁部の少なくとも一部に湾曲した曲在形状部5を有することが好ましい。 Also. In the present invention, it is preferable that at least a part of the outer peripheral edge portion of the plate material (A) 2 has a curved curved shape portion 5.

図15に示すように、板材(A)2の外周縁部に湾曲した曲在形状部5を設けることにより、板材(A)2の曲げ強度、剛性を向上することができる。図15に示す断面形状を有する一体化成形体1は、断面形状が楕円形状である補強部材(B)3が外周縁部の曲在形状部5付近に配され、樹脂部材(C)4は補強部材(B)3の表面の覆うとともに、板材(A)2の曲在形状部5の領域と接合した態様を備えている。 As shown in FIG. 15, the bending strength and rigidity of the plate material (A) 2 can be improved by providing the curved curved shape portion 5 on the outer peripheral edge of the plate material (A) 2. In the integrally molded body 1 having the cross-sectional shape shown in FIG. 15, the reinforcing member (B) 3 having an elliptical cross-sectional shape is arranged near the curved shape portion 5 at the outer peripheral edge portion, and the resin member (C) 4 is reinforced. The surface of the member (B) 3 is covered, and the member (B) 3 is joined to the region of the curved shape portion 5 of the plate (A) 2.

また、曲在形状部5の湾曲形状について、その曲率半径は0.5〜10mmが好ましい。曲率半径が0.5mm未満であると炭素繊維が曲げ部分で蛇行し、曲げ部分の強度・剛性が低下する。曲率半径が10mmを超えると側壁部の曲げ剛性・強度が十分に発現しない場合がある。曲率半径は好ましくは0.8〜8mm、より好ましくは1〜7mm、さらに好ましくは2〜6mmである。 The radius of curvature of the curved shape of the curved shape portion 5 is preferably 0.5 to 10 mm. If the radius of curvature is less than 0.5 mm, the carbon fiber will meander at the bent portion, and the strength and rigidity of the bent portion will decrease. If the radius of curvature exceeds 10 mm, the bending rigidity and strength of the side wall portion may not be sufficiently exhibited. The radius of curvature is preferably 0.8 to 8 mm, more preferably 1 to 7 mm, and further preferably 2 to 6 mm.

また。本発明において、補強部材(B)3の断面形状が、板材(A)2の曲在形状部7の湾曲形状に合致した曲面を一部に有する長尺体であることが好ましい。 Also. In the present invention, the reinforcing member (B) 3 is preferably an elongated body having a curved surface partly matching the curved shape of the curved shape portion 7 of the plate material (A) 2.

図16に示すように、補強部材(B)3の断面形状の一面8が湾曲形状を有し、その面が板材(A)2の曲在形状部5の湾曲形状に沿った形状を有して接合している。このような接合の形態とすることにより、板材(A)2と補強部材(B)3との接合強度を向上させることができるとともに、一体化成形体1の曲げ強度を向上させることができる。また、図16に示す接合形態では、樹脂部材(C)4は補強部材(B)3の表面と板材(A)2の側面部6とに接合している。このように2つの面と接合することにより、板材(A)2と補強部材(B)3との接合強度を向上させることができるとともに、一体化成形体1の曲げ強度・剛性をより高めることができる。また、補強部材(B)を、図17に示すように、樹脂部材(C)を2つ以上配置してもよい。 As shown in FIG. 16, one surface 8 of the cross-sectional shape of the reinforcing member (B) 3 has a curved shape, and the surface has a shape along the curved shape of the curved shape portion 5 of the plate material (A) 2. Are joined together. With such a joining mode, the joining strength between the plate material (A) 2 and the reinforcing member (B) 3 can be improved, and the bending strength of the integrated molded body 1 can be improved. Further, in the joining form shown in FIG. 16, the resin member (C) 4 is joined to the surface of the reinforcing member (B) 3 and the side surface portion 6 of the plate material (A) 2. By joining the two surfaces in this manner, the joining strength between the plate material (A) 2 and the reinforcing member (B) 3 can be improved, and the bending strength and rigidity of the integrated molded body 1 can be further enhanced. it can. Further, as shown in FIG. 17, two or more resin members (C) may be arranged as the reinforcing member (B).

また、本発明において、樹脂部材(C)4が板材(A)2の側面部6の全領域と接合することが好ましい。 Further, in the present invention, it is preferable that the resin member (C) 4 is bonded to the entire area of the side surface portion 6 of the plate material (A) 2.

図3又は図4の断面図に示すように、板材(A)2の側面部6全周にわたって樹脂部材(C)と接合することで一体化成形体1全体として高い接合強度と薄肉化を実現することができる。 As shown in the cross-sectional view of FIG. 3 or FIG. 4, by bonding with the resin member (C) over the entire circumference of the side surface portion 6 of the plate material (A) 2, high bonding strength and thinning of the entire integrated molded body 1 are realized. be able to.

また、本発明において、板材(A)2の外周縁部の少なくとも一部の領域と接合した領域における樹脂部材(C)4の形状が、補強部材(B)3の最頂部の高さ11以上の高さに形成された部位12を有することが好ましい。 Further, in the present invention, the shape of the resin member (C) 4 in the region joined to at least a part of the outer peripheral edge portion of the plate material (A) 2 has a height of 11 or more at the top of the reinforcing member (B) 3. It is preferable to have the portion 12 formed at the height of.

図3の一部を拡大した図18や、図15の一部を拡大した図19に示すように、樹脂部材(C)4が補強部材(B)3の最頂部の高さ11以上の高さに形成された部位12を、板材(A)2の外周縁部の少なくとも一部に有することが好ましい。補強部材(B)3の最頂部の高さとは、板材(A)2と補強部材(B)3との接合箇所からもっとも離間した位置までの距離を指す。図17に示すような複数の補強部材(B)で補強されている場合には、板材(A)から最も離れて配置された補強部材(B)との離間した位置までの距離とする。 As shown in FIG. 18 in which a part of FIG. 3 is enlarged and in FIG. 19 in which a part of FIG. 15 is enlarged, the resin member (C) 4 has a height of 11 or more at the top of the reinforcing member (B) 3. It is preferable that the portion 12 formed in the height is provided on at least a part of the outer peripheral edge portion of the plate material (A) 2. The height of the top of the reinforcing member (B) 3 refers to the distance from the joint between the plate member (A) 2 and the reinforcing member (B) 3 to the most distant position. In the case of being reinforced by a plurality of reinforcing members (B) as shown in FIG. 17, the distance is from the plate material (A) to the position separated from the reinforcing member (B) arranged most distant.

補強部材(B)3の最頂部の高さ11に対して、樹脂部材(C)4の最頂部の高さ12が大きくなるように樹脂部材(C)4を形成することにより、樹脂部材(C)4と補強部材(B)3との接合強度を向上させることができるとともに、一体化成形体1の曲げ強度・剛性をより高めることができる。なお、図18又は図19は、補強部材(B)3、樹脂部材(C)4は板材(A)から見て下方に形成しているため、下方側に最頂部が形成されている態様である。 By forming the resin member (C) 4 so that the height 12 at the top of the resin member (C) 4 is larger than the height 11 at the top of the reinforcing member (B) 3, the resin member ( The joint strength between the C) 4 and the reinforcing member (B) 3 can be improved, and the bending strength and rigidity of the integrated molded body 1 can be further increased. 18 or 19, since the reinforcing member (B) 3 and the resin member (C) 4 are formed on the lower side when viewed from the plate material (A), the uppermost portion is formed on the lower side. is there.

また、本発明において、板材(A)2の投影面積X(mm)と、補強部材(B)3の投影面積Y(mm)との比Y/Xが0.01〜0.2であることが好ましい。補強部材(B)が複数ある場合、各補強部材の投影面積の和を投影面積Y(mm)とし、投影面積が重なり合う箇所がある場合は、重なり合う部分の投影面積は同一とする。 In the present invention, the ratio Y/X of the projected area X (mm 2 ) of the plate material (A) 2 and the projected area Y (mm 2 ) of the reinforcing member (B) 3 is 0.01 to 0.2. Preferably. When there are a plurality of reinforcing members (B), the sum of the projected areas of the respective reinforcing members is the projected area Y (mm 2 ), and when there is a portion where the projected areas overlap, the projected areas of the overlapping portions are the same.

Y/Xの比が0.01〜0.2の範囲内にあると、一体化成形体1の高剛性化と薄肉・軽量化とを満足することができる。投影面積は、部材を光で照らした場合に出来る影の面積を示し、図20に示す板材(A)2の平面に対して垂直な光で照らした場合に出来る影の面積が投影面積Xであり、図21に示す板材(A)2に補強部材(B)3を配した底面図において、補強部材(B)3の投影面積Yは、板材(A)の平面と平行な面における投影面積と規定する。図10、図12、図15、図16、または図17においても同様で、板材(A)の平面と平行な面における投影面積を投影面積Yと規定する。 When the Y/X ratio is in the range of 0.01 to 0.2, it is possible to satisfy the high rigidity of the integrated molded body 1 and the reduction in thickness and weight. The projected area is the area of the shadow formed when the member is illuminated with light, and the area of the shadow formed when illuminated with the light perpendicular to the plane of the plate material (A) 2 shown in FIG. In the bottom view in which the reinforcing member (B) 3 is arranged on the plate member (A) 2 shown in FIG. 21, the projected area Y of the reinforcing member (B) 3 is the projected area on the plane parallel to the plane of the plate member (A). Stipulate. The same applies to FIG. 10, FIG. 12, FIG. 15, FIG. 16, or FIG. 17, and the projected area on a plane parallel to the plane of the plate material (A) is defined as the projected area Y.

Y/Xが0.01未満であると、補強材としての作用が低下して、一体化成形体1の剛性が低下する場合がある。Y/Xが0.2を超えると補強部材(B)4の使用量が多くなり、薄肉・軽量の要求を満たすことが困難となる場合がある。好ましくはY/Xが0.02〜0.18、より好ましくはY/Xが0.02〜0.15、さらに好ましくはY/Xが0.025〜0.10である。 If Y/X is less than 0.01, the function as a reinforcing material may be reduced, and the rigidity of the integrated molded body 1 may be reduced. If Y/X exceeds 0.2, the amount of the reinforcing member (B) 4 used increases, and it may be difficult to satisfy the requirements for thinness and light weight. Y/X is preferably 0.02 to 0.18, more preferably Y/X is 0.02 to 0.15, and still more preferably Y/X is 0.025 to 0.10.

また、本発明において、補強部材(B)3の長手方向と直交する断面部において、補強部材(B)3の断面積をB2(mm)、樹脂部材(C)4の断面積をC2(mm)とすると、B2/C2が0.01〜0.8であることが好ましい。補強部材(B)が複数ある場合、断面積B2(mm)は、各補強部材(B)の断面積の和とする。 Further, in the present invention, in the cross-section portion orthogonal to the longitudinal direction of the reinforcing member (B) 3, the cross-sectional area of the reinforcing member (B) 3 is B2 (mm 2 ) and the cross-sectional area of the resin member (C) 4 is C2 ( mm 2 ), B2/C2 is preferably 0.01 to 0.8. When there are a plurality of reinforcing members (B), the sectional area B2 (mm 2 ) is the sum of the sectional areas of the reinforcing members (B).

補強部材(B)3の断面積に対し、樹脂部材(C)4の断面積を一定量大きくすることにより、板材(A)2と補強部材(B)3との接合強度を向上させることができるとともに、一体化成形体1の曲げ強度・剛性をより高めることができる。 By increasing the cross-sectional area of the resin member (C) 4 by a certain amount with respect to the cross-sectional area of the reinforcing member (B) 3, the joint strength between the plate material (A) 2 and the reinforcing member (B) 3 can be improved. In addition, the bending strength and rigidity of the integrated molded body 1 can be further increased.

B2/C2が0.01未満であると、補強部材(B)3の存在割合が小さくなり、一体化成形体1の曲げ強度や剛性を向上させにくくなる。B2/C2が0.8を超えると、樹脂部材(C)4の存在割合が小さくなり、板材(A)2と樹脂部材(C)4との接合強度が十分に得られない場合がある。好ましくはB2/C2が0.05〜0.5、より好ましくはB2/C2が0.1〜0.4、さらに好ましくは0.15〜0.35である。 When B2/C2 is less than 0.01, the proportion of the reinforcing member (B) 3 present becomes small, and it becomes difficult to improve the bending strength and rigidity of the integrated molded body 1. When B2/C2 exceeds 0.8, the existence ratio of the resin member (C) 4 becomes small, and the bonding strength between the plate material (A) 2 and the resin member (C) 4 may not be sufficiently obtained. B2/C2 is preferably 0.05 to 0.5, more preferably B2/C2 is 0.1 to 0.4, and further preferably 0.15 to 0.35.

一体化成形体1の高剛性化と薄肉・軽量化を発現するために、補強部材(B)3の好ましい断面積B2は1〜100mmであり、より好ましくは4〜50mm、さらに好ましくは9〜30mmである。断面積B2が100mmを超えると、補強部材(B)3の厚みおよび/または幅が増大し、補強部材(B)3の使用量が多くなり、軽量の要求を満たすことが困難となる場合がある。断面積B2が1mm未満であると、補強部材としての機能が発揮できにくくなる場合があり、また、補強部材(B)3を得ることが困難となる場合がある。 To express high rigidity and thin and lightweight integrally formed article 1, the preferred cross-sectional area B2 of the reinforcing member (B) 3 is 1 to 100 mm 2, more preferably 4~50Mm 2, more preferably 9 ˜30 mm 2 . When the cross-sectional area B2 exceeds 100 mm 2 , the thickness and/or width of the reinforcing member (B) 3 increases, the amount of the reinforcing member (B) 3 used increases, and it becomes difficult to satisfy the requirement for lightweight. There is. When the cross-sectional area B2 is less than 1 mm 2 , it may be difficult to exert the function as the reinforcing member, and it may be difficult to obtain the reinforcing member (B) 3.

また、補強部材(B)3の形状は長尺体で、その長手方向の任意の箇所における断面の形状が実質的に同一であることが好ましい。実質的に同一とは、長手方向に切り出した観察断面において、観察断面の投影面積の差が±10%以下であることと定義する。補強部材(B)が複数ある場合も、各補強部材において、その長手方向の任意の箇所における断面の形状が実質的に同一であることが好ましい。また、一体化成形体1の高剛性化と薄肉・軽量化を発現するために、補強部材(B)3の最大長尺長さB3と断面積B2との比B2/B3が0.002〜0.2となる形状とすることが好ましい。 Further, it is preferable that the reinforcing member (B) 3 has an elongated shape and that the cross-sectional shape at any position in the longitudinal direction thereof is substantially the same. Substantially the same is defined as the difference in the projected area of the observation cross section being ±10% or less in the observation cross section cut out in the longitudinal direction. Even when there are a plurality of reinforcing members (B), it is preferable that each reinforcing member has substantially the same cross-sectional shape at any position in the longitudinal direction. Further, in order to realize high rigidity, thinness and lightness of the integrated molded body 1, the ratio B2/B3 of the maximum length B3 of the reinforcing member (B) 3 to the cross-sectional area B2 is 0.002 to 0. It is preferable to have a shape of 0.2.

また、本発明において、板材(A)2と、補強部材(B)3および/または樹脂部材(C)4とが、接合層13を介して接合されていることが好ましい。 Further, in the present invention, it is preferable that the plate material (A) 2 and the reinforcing member (B) 3 and/or the resin member (C) 4 are bonded via the bonding layer 13.

特に、板材(A)2と樹脂部材(C)4との間に、接合層を設けることが好ましい。この際、補強部材(B)3を配置する際に、1層の接合層で十分に接合できない場合には、図22や図23に示すように、補強部材(B)3に第2の接合層14を設けた上で、第1の接合層13と接合させることもできる。このような接合層を設けることにより、互いの部材間の接合力を強化することができる。 In particular, it is preferable to provide a bonding layer between the plate material (A) 2 and the resin member (C) 4. At this time, when the reinforcing member (B) 3 is arranged, if it is not possible to sufficiently bond it with one bonding layer, as shown in FIG. 22 and FIG. The layer 14 can be provided and then bonded to the first bonding layer 13. By providing such a joining layer, the joining force between the members can be strengthened.

第1の接合層13として熱可塑性樹脂の不織布を用いると、樹脂部材(C)4の射出成形時の熱により溶融することで、板材(A)2と樹脂部材(C)4とを接合可能とすることができる。この場合、第1の接合層13と樹脂部材(C)4とは、同種の熱可塑性樹脂を用いることが好ましい。同種で無い場合でも、相溶性が良いものであれば特に限定されるものではなく、樹脂部材(C)4を構成する樹脂の種類によって最適なものを選定することができる。第1の接合層13としては、不織布に限らず、フィルム等のシート状であればその形態は特に限定されるものではない。 When a nonwoven fabric of a thermoplastic resin is used as the first bonding layer 13, the plate material (A) 2 and the resin member (C) 4 can be bonded by being melted by the heat at the time of injection molding of the resin member (C) 4. Can be In this case, it is preferable to use the same kind of thermoplastic resin for the first bonding layer 13 and the resin member (C) 4. Even if they are not of the same type, they are not particularly limited as long as they have good compatibility, and the most suitable one can be selected depending on the type of resin constituting the resin member (C) 4. The first bonding layer 13 is not limited to a non-woven fabric, and its form is not particularly limited as long as it is a sheet shape such as a film.

また、第2の接合層14として接着剤を用いると、補強部材(B)3を精度良く位置決め固定することができる。接着剤としては、アクリル系、エポキシ系、スチレン系、ナイロン系、エステル系などの接着剤を用いることができる。 If an adhesive is used as the second bonding layer 14, the reinforcing member (B) 3 can be positioned and fixed with high accuracy. As the adhesive, an acrylic-based, epoxy-based, styrene-based, nylon-based, or ester-based adhesive can be used.

また。本発明において、補強部材(B)3が一方向強化繊維及び熱硬化性樹脂から構成されることが好ましい。 Also. In the present invention, the reinforcing member (B) 3 is preferably composed of unidirectional reinforcing fibers and a thermosetting resin.

補強部材(B)3に含まれる強化繊維が連続した一方向に配置され、マトリクス樹脂として熱硬化性樹脂を使用することにより補強部材として、一体化成形体1の高強度・剛性化に有効に作用する。 The reinforcing fibers contained in the reinforcing member (B) 3 are arranged in one continuous direction, and the thermosetting resin is used as the matrix resin, so that the reinforcing member effectively acts as a reinforcing member to increase the strength and rigidity of the integrated molded body 1. To do.

補強部材(B)3は図6、図9又は図11に示すように一定の長さを有する長尺体であり、長手方向が面状構造体である板材(A)2の外周辺と略平行に配置することが好ましく、さらに、補強部材(B)3の長手方向と一方向性繊維の繊維配列方向とが略平行であることが好ましい。略平行とは、角度が完全に平行に揃ってずれ角度が0度である場合のみならず、角度が平行から±10度のずれも許容できる範囲である。
また、補強部材(B)3を構成する一方向強化繊維の材料として、樹脂部材(C)4について前述した強化繊維が好ましく用いることができる。
The reinforcing member (B) 3 is an elongated body having a constant length as shown in FIG. 6, FIG. 9 or FIG. 11, and is substantially the same as the outer periphery of the plate material (A) 2 whose longitudinal direction is a planar structure. It is preferable to arrange them in parallel, and it is preferable that the longitudinal direction of the reinforcing member (B) 3 and the fiber arrangement direction of the unidirectional fibers are substantially parallel to each other. The term “substantially parallel” means not only the case where the angles are perfectly parallel and the deviation angle is 0°, but also the range in which the deviation of ±10° from the parallel angle is allowable.
Further, as the material of the unidirectional reinforcing fibers forming the reinforcing member (B) 3, the reinforcing fibers described above for the resin member (C) 4 can be preferably used.

また、補強部材(B)3を構成する熱硬化性樹脂での例示としては、不飽和ポリエステル樹脂、ビニルエステル樹脂、エポキシ樹脂、フェノール(レゾール型)樹脂、ユリア・メラミン樹脂、ポリイミド樹脂、マレイミド樹脂、ベンゾオキサジン樹脂などの熱硬化性樹脂などを好ましく用いることができる。これらは、2種以上をブレンドした樹脂などを適用しても良い。この中でも、特に、エポキシ樹脂は、成形体の力学特性や、耐熱性の観点から好ましい。エポキシ樹脂は、その優れた力学特性を発現するために、使用する樹脂の主成分として含まれるのが好ましく、具体的には樹脂組成物当たり60重量%以上含まれることが好ましい。 Examples of the thermosetting resin that constitutes the reinforcing member (B) 3 include unsaturated polyester resin, vinyl ester resin, epoxy resin, phenol (resole type) resin, urea/melamine resin, polyimide resin, and maleimide resin. Thermosetting resins such as benzoxazine resins can be preferably used. You may apply the resin etc. which blended 2 or more types to these. Among these, the epoxy resin is particularly preferable from the viewpoint of mechanical properties of the molded body and heat resistance. The epoxy resin is preferably contained as the main component of the resin used in order to exhibit its excellent mechanical properties, and specifically, it is preferably contained in an amount of 60% by weight or more based on the resin composition.

また、補強部材(B)4を構成する樹脂として、熱可塑性樹脂を用いることも好ましい。補強部材(B)4の熱可塑性樹脂が樹脂部材(C)3と溶融固着した接合構造となる。これにより、一体化成形体1としてより高い接合強度を実現することができる。溶融固着した接合構造は、熱により相互の部材が溶融し、冷却して固着した状態の接合構造をいう。熱可塑性樹脂の種類としては前述した樹脂部材(C)4について例示した熱可塑性樹脂が好ましく用いることができる。 Moreover, it is also preferable to use a thermoplastic resin as the resin forming the reinforcing member (B) 4. The thermoplastic resin of the reinforcing member (B) 4 is fused and fixed to the resin member (C) 3 to form a joint structure. As a result, higher joint strength can be realized as the integrated molded body 1. The melted and fixed joint structure refers to a joint structure in which mutual members are melted by heat, cooled, and fixed. As the kind of the thermoplastic resin, the thermoplastic resins exemplified for the resin member (C) 4 described above can be preferably used.

また、本発明において、補強部材(B)3の繊維重量含有率が65〜82重量%であることが好ましい。 Further, in the present invention, the fiber weight content of the reinforcing member (B) 3 is preferably 65 to 82% by weight.

これにより、一体化成形体1の側壁部の曲げ強度・剛性を高めることができるとともに、一体化成形体1の反り低減を図ることができる。65重量%未満であると、一体化成形体1の強度、剛性確保が困難になる場合があり、82重量%を超えると、炭素繊維への樹脂含侵が悪くなり、側壁部の曲げ強度、剛性が不十分になる場合がある。繊維重量含有率は、好ましくは68〜80重量%、より好ましくは70〜78重量%、さらに好ましくは72〜76重量%である。 As a result, the bending strength and rigidity of the side wall portion of the integrated molded body 1 can be enhanced, and the warp of the integrated molded body 1 can be reduced. If it is less than 65% by weight, it may be difficult to secure the strength and rigidity of the integrated molded body 1, while if it exceeds 82% by weight, the resin impregnation into the carbon fiber is deteriorated, and the bending strength and rigidity of the side wall portion are increased. May be insufficient. The fiber weight content is preferably 68 to 80% by weight, more preferably 70 to 78% by weight, and further preferably 72 to 76% by weight.

また、本発明において、板材(A)2が連続繊維及び熱硬化性樹脂から構成されることが好ましい。 Further, in the present invention, the plate material (A) 2 is preferably composed of continuous fibers and a thermosetting resin.

繊維強化樹脂の強化繊維に炭素繊維を用い、マトリクス樹脂として熱硬化性樹脂を用いた連続炭素繊維化樹脂を使用することにより、高剛性・軽量・薄肉化を実現することができる。板材(A)2は一体化成形体1の強度、剛性を高める観点で、高強度かつ高剛性であり、さらに軽量性に優れた部材を用いることが好ましい。強化繊維、熱硬化性樹脂は前述した強化繊維、熱硬化性樹脂を用いることができる。 By using carbon fiber as the reinforcing fiber of the fiber-reinforced resin and continuous carbon fiber resin using thermosetting resin as the matrix resin, high rigidity, light weight and thinning can be realized. As the plate material (A) 2, from the viewpoint of enhancing the strength and rigidity of the integrated molded body 1, it is preferable to use a member having high strength and high rigidity and further excellent in lightness. As the reinforcing fiber and the thermosetting resin, the reinforcing fiber and the thermosetting resin described above can be used.

次に、本発明に係る一体化成形体の製法について図面を用いながら説明する。 Next, a method for producing the integrated molded body according to the present invention will be described with reference to the drawings.

予め、繊維強化樹脂からなる矩形形状の面状構造体である板材(A)2と、長尺体である補強部材(B)3を準備しておく。次に、図24[1]又は[2]に示すように、成形下金型15に、板材(A)2を配し、板材(A)2の片側表面の外周縁部の少なくとも一部の領域に補強部材(B)3を配置する。その後、図25[1]に示すように、成形上金型16を板材(A)2と接する位置まで下降させ、成形下金型15と成形金型16とで形成される空間に、不連続繊維と熱可塑性樹脂からなる樹脂部材(C)4を射出ゲート17から射出成形する。これにより、樹脂部材(C)4が補強部材(B)3を覆うように接合するとともに、板材(A)2の片側表面の外周縁部及び側面の領域と接合一体化することができる。図25[2]は、成形上金型16を上昇させた後、成形下金型15内で成形された一体化成形体1を示す。このような製造方法によれば、板材(A)2、補強部材(B)3及び樹脂部材(C)4が接合し、補強部材(B)3と板材(A)2との接合強度を高めることができるとともに、一体化成形体1の高強度・剛性化を図ることができる。 A plate material (A) 2 that is a rectangular planar structure made of fiber reinforced resin and a reinforcing member (B) 3 that is a long body are prepared in advance. Next, as shown in FIG. 24 [1] or [2], the plate material (A) 2 is placed in the lower molding die 15, and at least a part of the outer peripheral edge portion of the one side surface of the plate material (A) 2 is placed. The reinforcing member (B) 3 is arranged in the area. After that, as shown in FIG. 25[1], the upper molding die 16 is lowered to a position in contact with the plate material (A) 2 and discontinuous in the space formed by the lower molding die 15 and the molding die 16. A resin member (C) 4 made of fibers and a thermoplastic resin is injection molded from an injection gate 17. Thereby, the resin member (C) 4 can be joined so as to cover the reinforcing member (B) 3 and can be joined and integrated with the outer peripheral edge portion and the side surface region of the one side surface of the plate material (A) 2. FIG. 25 [2] shows the integrated molded body 1 molded in the lower molding die 15 after the upper molding die 16 is raised. According to such a manufacturing method, the plate material (A) 2, the reinforcing member (B) 3, and the resin member (C) 4 are bonded to each other, and the bonding strength between the reinforcing member (B) 3 and the plate material (A) 2 is increased. In addition, the strength and rigidity of the integrated molded body 1 can be increased.

以下、実施例によって、本発明の一体化成形体1およびその製造方法について具体的に説明するが、下記の実施例は本発明を制限するものではない。 Hereinafter, the integrated molded body 1 of the present invention and the method for producing the same will be specifically described by way of examples, but the following examples do not limit the present invention.

実施例に用いた測定方法を下記する。 The measuring methods used in the examples are described below.

(1)重量平均繊維長の測定
樹脂部材(C)4に含有される強化繊維の重量平均繊維長Lwを以下のとおり測定した。まず、一体化成形体1から測定する樹脂部材(C)4の一部を切り出し、電気炉にて空気中500℃で60分間加熱して樹脂を十分に焼却除去して強化繊維のみを分離した。次に、分離した強化繊維から無作為に400本以上抽出した。これらの抽出した強化繊維の繊維長の測定は、光学顕微鏡を用いて行い、400本の繊維の長さを1μm単位まで測定して、下式を用いて重量平均繊維長Lwを算出した。
重量平均繊維長Lw=Σ(Mi×Ni)/Σ(Mi×Ni)
Mi:繊維長(mm)
Ni:繊維長Miの強化繊維の個数
(1) Measurement of weight average fiber length The weight average fiber length Lw of the reinforcing fibers contained in the resin member (C) 4 was measured as follows. First, a part of the resin member (C) 4 to be measured was cut out from the integrated molded body 1 and heated in an electric furnace at 500° C. for 60 minutes to sufficiently incinerate and remove the resin to separate only the reinforcing fibers. Next, 400 or more were randomly extracted from the separated reinforcing fibers. The fiber lengths of these extracted reinforcing fibers were measured using an optical microscope, the lengths of 400 fibers were measured to the unit of 1 μm, and the weight average fiber length Lw was calculated using the following formula.
Weight average fiber length Lw=Σ(Mi 2 ×Ni)/Σ(Mi×Ni)
Mi: Fiber length (mm)
Ni: Number of reinforcing fibers having a fiber length Mi

(2)繊維重量含有率の測定
板材(A)2、補強部材(B)3または樹脂部材(C)4の繊維重量含有率は、以下の方法により測定した。一体化成形体1から測定する板材(A)2、補強部材(B)3または樹脂部材(C)4を切り出し、その重量w0(g)を測定した。次に、切り出したサンプルを空気中で500℃×1時間加熱し、樹脂成分を十分に焼却除去して残存した強化繊維の重量w1(g)を測定した。下式を用いて、繊維重量含有率(重量%)を求めた。測定はn=3で行い、その平均値を用いた。
繊維重量含有率(重量%)=(強化繊維の重量w1/切り出しサンプルの重量w0)×100
(2) Measurement of fiber weight content rate The fiber weight content rate of the plate material (A) 2, the reinforcing member (B) 3 or the resin member (C) 4 was measured by the following method. The plate material (A) 2, the reinforcing member (B) 3 or the resin member (C) 4 to be measured was cut out from the integrated molded body 1, and the weight w0 (g) thereof was measured. Next, the cut-out sample was heated in air at 500° C. for 1 hour to sufficiently incinerate and remove the resin component, and the weight w1 (g) of the remaining reinforcing fiber was measured. The fiber weight content (% by weight) was calculated using the following formula. The measurement was performed at n=3, and the average value was used.
Fiber weight content (% by weight)=(weight of reinforcing fiber w1/weight of cut sample w0)×100

(3)一体化成形体の評価
万能試験機に一体化成形体1を配置し、外周縁部にロードセルで荷重を負荷し、そのたわみを評価した。
(3) Evaluation of integrated molded body The integrated molded body 1 was placed in a universal testing machine, a load was applied to the outer peripheral edge portion by a load cell, and its deflection was evaluated.

まず、450×450mmの正方形で板厚1.2mmの板材(A)2、板材(A)2の1辺と同じ長さの長尺体である補強部材(B)3と樹脂部材(C)4を、図1〜4に示すように板材(A)2の四方4辺に配した一体化成形体1を準備した。作成方法は後述する実施例1のとおりとした。 First, a plate member (A) 2 having a square shape of 450×450 mm and a plate thickness of 1.2 mm, a reinforcing member (B) 3 and a resin member (C) that are long members having the same length as one side of the plate member (A) 2. As shown in FIGS. 1 to 4, an integrated molded body 1 was prepared in which 4 were arranged on the four sides of the plate material (A) 2. The preparation method was as in Example 1 described later.

次に、図26や図27に示すように、一体化成形体1の対向する2辺を水平な固定台18に置いた。固定台はその断面の1辺の長さが樹脂部材(C)4の下方の1辺と同じ長さの正方形で、長さは板材(A)2の1辺と同じ長さのものを使用した。 Next, as shown in FIGS. 26 and 27, the two opposite sides of the integrated molded body 1 were placed on a horizontal fixed base 18. The fixing base is a square whose one side of the cross section has the same length as the lower one side of the resin member (C) 4 and has the same length as one side of the plate material (A) 2. did.

次に、図28や図29に示すように、一体化成形体1の固定台に固定されていない1辺のいずれかにロードセル20を用いて荷重を負荷した。ロードセル20は一体化成形体1の1辺の中央部に垂直な方向に下降させた。荷重は500Nとした。また、ロードセル20による荷重を負荷する点から、辺の長手左右方向に±30mm離れた位置に支持台19を配置した。支持台19間距離は60mmとした。支持台19は三角柱形状で、横置きにして頂辺で支える態様とした。一体化成形体1と接する長さは樹脂部材(C)4の下方の1辺と同じとした。 Next, as shown in FIG. 28 and FIG. 29, a load was applied by using the load cell 20 to one of the sides of the integrally molded body 1 which was not fixed to the fixed base. The load cell 20 was lowered in a direction perpendicular to the central portion of one side of the integrated molded body 1. The load was 500N. In addition, the support base 19 was arranged at a position separated by ±30 mm in the left-right direction in the longitudinal direction of the side from the point of applying a load by the load cell 20. The distance between the support stands 19 was 60 mm. The support 19 has a triangular prism shape, and is placed horizontally and supported by the top side. The length in contact with the integrated molded body 1 was the same as one side below the resin member (C) 4.

図30に示すように、ロードセル20は補強部材(B)3が位置する箇所の上方から押し当てるようにし、ロードセル20が一体成形体1と接する、荷重方向に対する垂直な断面の直径は、補強部材(B)3の長手方向に垂直な断面における水平の幅長と略同じにした。 As shown in FIG. 30, the load cell 20 is pressed from above the position where the reinforcing member (B) 3 is located, and the diameter of the cross section perpendicular to the load direction where the load cell 20 contacts the integrally molded body 1 is the reinforcing member. (B) The width was set to be substantially the same as the horizontal width in the cross section perpendicular to the longitudinal direction of (3).

(材料組成例1)二方向クロスプリプレグの調整
PAN系炭素繊維束(東レ社製、品番:T300)を使用したシート状二方向クロスにエポキシ樹脂フィルム(ベースレジン:ジシアンジアミド/ジクロロフェニルメチルウレア硬化系エポキシ樹脂)を用いてエポキシ樹脂フィルム2枚を炭素繊維束の両面から重ね、加熱加圧により樹脂を含浸させ、炭素繊維の重量含有率が56%、厚み0.24mmの二方向クロスプリプレグを作製した。
(Material composition example 1) Adjustment of bidirectional cloth prepreg Epoxy resin film (base resin: dicyandiamide/dichlorophenylmethylurea curing epoxy) on a sheet-shaped bidirectional cloth using a PAN-based carbon fiber bundle (Toray, product number: T300) Resin) and two epoxy resin films are stacked from both sides of the carbon fiber bundle, and the resin is impregnated by heating and pressing to produce a bidirectional cross prepreg having a carbon fiber weight content of 56% and a thickness of 0.24 mm. ..

(材料組成例2)補強部材(B)3の調整
図31に示す引抜成形工程によって補強部材(B)3を作成した。まず、強化繊維束30(東レ社製、品番:T700)がクリール31から引き出され、ガイドロールを介して強化繊維束30を樹脂バス32に導入し、熱硬化性樹脂組成物を付着させてからスクイズ33にて擦過して熱硬化性樹脂組成物を強化繊維束30に含浸させるとともに余剰な熱硬化性樹脂組成物を一部除去した。更にガイドにより強化繊維の位置を一本ずつ決めることにより、所望の断面形状を持つ引抜成形金型34へバランス良く進入させた。強化繊維とともにダイスを通過できない、最終的に余剰になる樹脂は金型からバックフローしてダイス入り口から垂れ落ちて除去させた。熱硬化性樹脂組成物が含浸した樹脂含浸繊維基材35は、引抜成形金型34内で通過する間に加熱され熱硬化性樹脂組成物が硬化し、引抜成形金型の出口から排出され、長尺体の補強部材(B)3を生成した。
(Material Composition Example 2) Adjustment of Reinforcement Member (B) 3 Reinforcement member (B) 3 was produced by the pultrusion process shown in FIG. First, the reinforcing fiber bundle 30 (manufactured by Toray, product number: T700) is pulled out from the creel 31, the reinforcing fiber bundle 30 is introduced into the resin bath 32 through the guide roll, and the thermosetting resin composition is attached thereto. The squeeze 33 was rubbed to impregnate the reinforcing fiber bundle 30 with the thermosetting resin composition and the excess thermosetting resin composition was partially removed. Further, the positions of the reinforcing fibers were determined one by one by the guide, so that the reinforcing fibers were made to enter into the pultrusion molding die 34 having a desired cross-sectional shape with good balance. The resin that cannot pass through the die together with the reinforcing fibers and eventually becomes the excess resin was backflowed from the mold and drooped from the die entrance to be removed. The resin-impregnated fiber base material 35 impregnated with the thermosetting resin composition is heated while passing through the pultrusion molding die 34 to cure the thermosetting resin composition, and is discharged from the outlet of the pultrusion molding die. A long-sized reinforcing member (B) 3 was produced.

(材料組成例3)樹脂部材(C)4の調整
炭素繊維ペレット(東レ(株)製、品番:TLP1040 、長繊維炭素繊維強化6ナイロン、繊維重量含有率は表1に記載)。
(Material composition example 3) Adjustment of resin member (C) 4 Carbon fiber pellets (manufactured by Toray Industries, Inc., product number: TLP1040, long fiber carbon fiber reinforced 6 nylon, fiber weight content is shown in Table 1).

(材料組成例4)接合層(熱可塑接着フィルム)の調整
ポリアミド樹脂(東レ(株)製CM8000、4元共重合ポリアミド6/66/610/12、融点130℃)のペレットを、プレス成形を行い、厚み0.05mmの熱可塑接着フィルムを得た。これを接合層13として使用した。
(Material composition example 4) Adjustment of bonding layer (thermoplastic adhesive film) Pellets of polyamide resin (CM8000 manufactured by Toray Industries, Inc., quaternary copolyamide 6/66/610/12, melting point 130°C) are press-molded. Then, a thermoplastic adhesive film having a thickness of 0.05 mm was obtained. This was used as the bonding layer 13.

(実施例1)
材料組成例1で得た二方向クロスプリプレグを450mm角のサイズに調整した後、5ply積層し、その上に材料構成4で得た接合層1plyを積層した。積層体盤面温度150℃のプレス金型上に配置した後、盤面を閉じて3MPaで加熱プレスした。加圧から10分間経過した後、盤面を開き、板厚1.2mmの平板形状をした熱硬化炭素繊維強化樹脂板を得た。これを板材(A)2とした。
(Example 1)
The bidirectional cross prepreg obtained in Material Composition Example 1 was adjusted to a size of 450 mm square, 5 ply was laminated, and the bonding layer 1 ply obtained in Material constitution 4 was laminated thereon. The laminate was placed on a press die having a board surface temperature of 150° C., the board surface was closed, and hot pressing was performed at 3 MPa. After a lapse of 10 minutes from the pressurization, the board surface was opened to obtain a flat plate-shaped thermosetting carbon fiber reinforced resin board having a board thickness of 1.2 mm. This was designated as plate material (A)2.

次に、材料組成例2で得た図6に示す矩形形状の補強部材(B)3に、図22に示すように、接合層14であるエポキシ樹脂系接着剤(ヘンケルジャパン(株)製、品番:E−120HP)を塗付した後、板材(A)2の外周縁部上に貼り付けた。その後、図24に示すように、補強部材(B)3が貼り付いた板材(A)2を成形下金型15上に配置した。 Next, as shown in FIG. 22, on the rectangular reinforcing member (B) 3 shown in FIG. 6 obtained in Material Composition Example 2, as shown in FIG. 22, an epoxy resin adhesive (manufactured by Henkel Japan KK, The product number: E-120HP) was applied and then applied on the outer peripheral edge of the plate material (A) 2. Thereafter, as shown in FIG. 24, the plate material (A) 2 to which the reinforcing member (B) 3 was attached was placed on the lower molding die 15.

次に、図25に示すように、成形上金型16を板材(A)2と接する位置まで下降させ、成形上金型16をセットした後、型締めを行った後、成形下金型15と成形金型16とで形成される空間に、材料組成例3で得られた不連続炭素繊維と熱可塑性樹脂からなる樹脂部材(C)4を射出ゲート口17から射出成形して、図1〜図4に図示する一体化成形体1を製造した。一体化成形体1の材料組成、物性特性等をまとめて(表1)に示す。実施例2以降は(表1)に示した材料組成にて行った。 Next, as shown in FIG. 25, the upper molding die 16 is lowered to a position in contact with the plate material (A) 2, the upper molding die 16 is set, and after clamping the mold, the lower molding die 15 is formed. A resin member (C) 4 composed of the discontinuous carbon fiber obtained in Material Composition Example 3 and a thermoplastic resin is injection-molded from an injection gate port 17 into a space formed by the molding die 16 and the molding die 16, as shown in FIG. -The integrated molded body 1 illustrated in FIG. 4 was manufactured. The material composition, physical properties, etc. of the integrated molded body 1 are summarized in (Table 1). After Example 2, the material composition shown in (Table 1) was used.

板材(A)2は、実施例1〜6では正方形、実施例7では外周縁部の4辺を曲率半径4mmになるように曲げ、曲在形状部5を形成した。 The plate material (A) 2 was square in Examples 1 to 6, and in Example 7 four sides of the outer peripheral edge were bent so that the radius of curvature was 4 mm to form the curved shape section 5.

補強部材を配した実施例1〜7ではひずみの評価値が1.4以下を示し実使用上問題ないレベルの高い剛性を持った一体化成形体1を得た。補強部材を配さない比較例1ではたわみの評価値が高く、実使用上問題のあるレベルであった。 In Examples 1 to 7 in which the reinforcing member was arranged, the evaluation value of strain was 1.4 or less, and the integrated molded body 1 having high rigidity with a level of no problem in practical use was obtained. In Comparative Example 1 in which no reinforcing member was provided, the deflection evaluation value was high, which was a problematic level in practical use.

本発明の一体化成形体は、自動車内外装、電気・電子機器筐体、自転車、スポーツ用品用構造材、航空機内装材、輸送用箱体等に有効に使用できる。 INDUSTRIAL APPLICABILITY The integrated molded body of the present invention can be effectively used for automobile interiors and exteriors, electric/electronic device casings, bicycles, sports material structural materials, aircraft interior materials, transportation boxes, and the like.

1 一体化成形体
2 板材(A)
3 補強部材(B)
4 樹脂部材(C)
5 曲在形状部
6 板材(A)の側面部
7 樹脂部材(C)の下方の一面部
8 補強部材(B)の断面形状の一面部
9 補強部材(B)の他の一面部
11 補強部材(B)の最頂部の高さ
12 樹脂部材(C)の最頂部の高さ
13 補強部材(B)と樹脂部材(C)との間の少なくとも一部に設けた第1の接合層
14 補強部材(B)と板材(A)との間の少なくとも一部に設けた第2の接合層
15 成形下金型
16 成形上金型
17 射出ゲート口
18 固定台
19 支持台
20 ロードセル
21 拡大領域
30 補強繊維束
31 クリール
32 樹脂バス
33 スクイズ
34 引抜成形金型
1 Integrated molded body 2 Plate material (A)
3 Reinforcement member (B)
4 Resin member (C)
5 curved shape part 6 side surface part 7 of the plate material (A) 7 one surface part under the resin member (C) 8 one surface part 9 of the cross-sectional shape of the reinforcing member (B) 9 another surface part 11 of the reinforcing member (B) 11 reinforcing member (B) Height of top part 12 12 Height of top part of resin member (C) 13 First bonding layer 14 provided on at least a part between the reinforcing member (B) and the resin member (C) Reinforcement Second bonding layer 15 provided on at least a part between the member (B) and the plate material (A) Lower molding die 16 Upper molding die 17 Injection gate port 18 Fixed base 19 Support base 20 Load cell 21 Expanded area 30 Reinforcing fiber bundle 31 Creel 32 Resin bath 33 Squeeze 34 Pultrusion mold

Claims (11)

繊維強化樹脂からなる矩形形状の面状構造体である板材(A)、長尺体である補強部材(B)及び、不連続繊維と熱可塑性樹脂からなる樹脂部材(C)とから構成される一体化成形体であって、
前記補強部材(B)が前記板材(A)の片側表面の外周縁部の少なくとも一部の領域に配置され、
前記樹脂部材(C)が前記補強部材(B)の少なくとも一部の領域と接合するとともに、前記板材(A)の片側表面の外周縁部の少なくとも一部の領域および/または側面の少なくとも一部の領域と接合することを特徴とする一体化成形体。
A plate member (A) that is a rectangular planar structure made of fiber reinforced resin, a reinforcing member (B) that is a long body, and a resin member (C) that is made of discontinuous fibers and a thermoplastic resin. It is an integrated molded body,
The reinforcing member (B) is arranged in at least a part of an outer peripheral edge portion of one surface of the plate material (A),
The resin member (C) is joined to at least a partial region of the reinforcing member (B), and at least a partial region of the outer peripheral edge portion of one side surface of the plate material (A) and/or at least a portion of a side surface thereof. An integrated molded body characterized by being bonded to the region of.
前記補強部材(B)の長手方向と直交する断面の形状が、円形形状、楕円形状または矩形形状のいずれかである請求項1に記載の一体化成形体。 The integrated molded body according to claim 1, wherein the shape of the cross section of the reinforcing member (B) orthogonal to the longitudinal direction is any one of a circular shape, an elliptical shape, and a rectangular shape. 前記板材(A)の外周縁部の少なくとも一部に湾曲した曲在形状部を有する請求項1または2に記載の一体化成形体。 The integrated molded body according to claim 1, wherein at least a part of an outer peripheral edge portion of the plate material (A) has a curved curved shape portion. 前記補強部材(B)の断面形状が、前記板材(A)の曲在形状部の湾曲形状に合致した曲面を一部に有する長尺体である請求項3に記載の一体化成形体。 The integrated molded body according to claim 3, wherein the cross-sectional shape of the reinforcing member (B) is an elongated body that partially has a curved surface that matches the curved shape of the curved shape portion of the plate material (A). 前記樹脂部材(C)が前記板材(A)の側面の全領域と接合する請求項1〜4のいずれかに記載の一体化成形体。 The integrated molded body according to any one of claims 1 to 4, wherein the resin member (C) is joined to the entire area of the side surface of the plate material (A). 前記板材(A)の外周縁部の少なくとも一部の領域と接合した領域における前記樹脂部材(C)の形状が、前記補強部材(B)の最頂部の高さ(前記板材(A)と前記補強部材(B)との接合箇所からもっとも離間した位置までの距離)以上の高さに形成された部位を有する請求項1〜5のいずれかに記載の一体化成形体。 The shape of the resin member (C) in the region joined to at least a part of the outer peripheral portion of the plate member (A) is the height of the top of the reinforcing member (B) (the plate member (A) and the plate member (A)). The integrated molded body according to any one of claims 1 to 5, which has a portion formed at a height equal to or more than a distance from a joint portion with the reinforcing member (B) to a position farthest from the joint portion. 前記板材(A)の投影面積X(mm)と、前記補強部材(B)の投影面積Y(mm)との比Y/Xが0.01〜0.2である請求項1〜6のいずれかに記載の一体化成形体。 The ratio Y/X of the projected area X (mm 2 ) of the plate material (A) and the projected area Y (mm 2 ) of the reinforcing member (B) is 0.01 to 0.2. The integrated molded body according to any one of 1. 前記補強部材(B)の長手方向と直交する断面部において、前記補強部材(B)の断面積をB2(mm)、前記樹脂部材(C)の断面積をC2(mm)とすると、B2/C2が0.01〜0.8である請求項1〜7のいずれかに記載の一体化成形体。 When the cross-sectional area of the reinforcing member (B) is B2 (mm 2 ) and the cross-sectional area of the resin member (C) is C2 (mm 2 ) in the cross-sectional portion orthogonal to the longitudinal direction of the reinforcing member (B), B2/C2 is 0.01-0.8, The integrated molding in any one of Claims 1-7. 前記板材(A)と、前記補強部材(B)および/または前記樹脂部材(C)とが、接合層を介して接合されている請求項1〜8のいずれかに記載の一体化成形体。 The integrated molded body according to any one of claims 1 to 8, wherein the plate material (A) and the reinforcing member (B) and/or the resin member (C) are bonded via a bonding layer. 前記補強部材(B)が一方向強化繊維及び熱硬化性樹脂から構成される請求項1〜9のいずれかに記載の一体化成形体。 The integrated molded body according to any one of claims 1 to 9, wherein the reinforcing member (B) is composed of a unidirectional reinforcing fiber and a thermosetting resin. 前記板材(A)が連続繊維及び熱硬化性樹脂から構成される請求項1〜10のいずれかに記載の一体化成形体。
The integrated molded body according to any one of claims 1 to 10, wherein the plate material (A) is composed of continuous fibers and a thermosetting resin.
JP2018217243A 2018-11-20 2018-11-20 Integrated compact Pending JP2020082429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018217243A JP2020082429A (en) 2018-11-20 2018-11-20 Integrated compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018217243A JP2020082429A (en) 2018-11-20 2018-11-20 Integrated compact

Publications (1)

Publication Number Publication Date
JP2020082429A true JP2020082429A (en) 2020-06-04

Family

ID=70905559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018217243A Pending JP2020082429A (en) 2018-11-20 2018-11-20 Integrated compact

Country Status (1)

Country Link
JP (1) JP2020082429A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3804942A4 (en) * 2018-06-07 2022-03-09 Toray Industries, Inc. Integrated molded body and method for manufacturing same
WO2023276848A1 (en) * 2021-06-29 2023-01-05 東レ株式会社 Integrated molded body
US11572124B2 (en) 2021-03-09 2023-02-07 Guerrilla Industries LLC Composite structures and methods of forming composite structures
US11745443B2 (en) 2017-03-16 2023-09-05 Guerrilla Industries LLC Composite structures and methods of forming composite structures
WO2023248914A1 (en) * 2022-06-23 2023-12-28 東レ株式会社 Integrated molded body and electronic device casing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11745443B2 (en) 2017-03-16 2023-09-05 Guerrilla Industries LLC Composite structures and methods of forming composite structures
EP3804942A4 (en) * 2018-06-07 2022-03-09 Toray Industries, Inc. Integrated molded body and method for manufacturing same
US11572124B2 (en) 2021-03-09 2023-02-07 Guerrilla Industries LLC Composite structures and methods of forming composite structures
WO2023276848A1 (en) * 2021-06-29 2023-01-05 東レ株式会社 Integrated molded body
WO2023248914A1 (en) * 2022-06-23 2023-12-28 東レ株式会社 Integrated molded body and electronic device casing

Similar Documents

Publication Publication Date Title
JP2020082429A (en) Integrated compact
US10265928B2 (en) Fiber reinforced composite material structure, composite material molded body using the same, and manufacturing method therefor
TWI781970B (en) Integral molded body and method for producing the same
CN108029212B (en) Shell body
US10571963B2 (en) Housing
CN108029213B (en) Shell body
JP6167537B2 (en) Manufacturing method of fiber-reinforced plastic molded product and manufacturing method of integrally molded product
JP5678483B2 (en) Fiber-reinforced plastic molded product with curved shape
US10509443B2 (en) Housing
WO2018142971A1 (en) Integrally molded body and method for producing same
JP2011166124A (en) Electrical and electronic equipment housing
JP2004209717A (en) Fiber reinforced molded product
JP2020131459A (en) Integrated molding
EP3600871A1 (en) Thin, high-stiffness laminates, portable electronic device housings including the same, and methods for making such laminates and portable electronic device housings
JP2020163674A (en) Fiber reinforced plastic molding
JP2021142671A (en) Integrally molded body and method of manufacturing the same
JP6728607B2 (en) Electronic device housing
US11951728B2 (en) Fiber-reinforced plastic molded body
WO2020202903A1 (en) Fiber reinforced plastic molded body
JP7088433B1 (en) Prepregs, moldings and integral moldings
JP2015147378A (en) Fiber-reinforced plastic molded article, and production method thereof
JP2004358828A (en) Housing molded product made of fiber-reinforced thermosetting resin and its manufacturing method
JP2014188954A (en) Fiber-reinforced thermoplastic resin structure, and production method thereof