JP2020163674A - Fiber reinforced plastic molding - Google Patents

Fiber reinforced plastic molding Download PDF

Info

Publication number
JP2020163674A
JP2020163674A JP2019065922A JP2019065922A JP2020163674A JP 2020163674 A JP2020163674 A JP 2020163674A JP 2019065922 A JP2019065922 A JP 2019065922A JP 2019065922 A JP2019065922 A JP 2019065922A JP 2020163674 A JP2020163674 A JP 2020163674A
Authority
JP
Japan
Prior art keywords
fiber
resin
plate material
reinforced plastic
plastic molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019065922A
Other languages
Japanese (ja)
Inventor
佳祐 塩崎
Keisuke Shiozaki
佳祐 塩崎
中山 裕之
Hiroyuki Nakayama
裕之 中山
志保 孝介
Kosuke Shiho
孝介 志保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2019065922A priority Critical patent/JP2020163674A/en
Publication of JP2020163674A publication Critical patent/JP2020163674A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a fiber reinforced plastic molding having high appearance designability, having a small warp of the molding though an asymmetrically laminated structure and capable of achieving thinning, high strength and high rigidity.SOLUTION: A fiber reinforced plastic molding is constituted of a laminate (A)2 having a planar structure consisting of at least a fiber reinforced resin and a resin member (B)3 bonded to at least a part of the outer periphery of the laminate (A)2. The laminate (A)2 is formed by laminating a plate (C)4 and a plate (D)5; the flexural rigidity of the plate (D)5 is larger than that of the plate (C)4; when setting the amount of the resin member (B)3 existing in a region 13 on the side of the plate (C)4 rather than a center line 12 formed by dividing the laminate (A)2 into equal halves in the thick direction to Am1 and the amount of the resin member (B)3 existing in a region 14 on the side opposite thereto to Am2, Am2/Am1 is 2-25.SELECTED DRAWING: Figure 3

Description

本発明は、例えばパソコンやOA機器、携帯電話等の部品や筐体部分として用いられる軽量、高強度・高剛性でかつ薄肉化が要求される用途に適した繊維強化プラスチック成形体に関する。 The present invention relates to a fiber reinforced plastic molded product that is used as a component or housing portion of, for example, a personal computer, an OA device, a mobile phone, etc., and is suitable for applications requiring light weight, high strength, high rigidity, and thinning.

現在、パソコン、OA機器、AV機器、携帯電話、電話機、ファクシミリ、家電製品、玩具用品などの電気・電子機器の携帯化が進むにつれ、より小型、軽量化が要求されている。その要求を満たすために、機器を構成する部品、特に筐体には、外部から荷重がかかった場合に筐体が大きく撓んで内部部品と接触、破壊を起こさないようにする必要があるため、高強度・高剛性化を達成しつつ、かつ薄肉化が求められている。 At present, as electric and electronic devices such as personal computers, OA devices, AV devices, mobile phones, telephones, facsimiles, home appliances, and toy supplies are becoming more portable, smaller size and lighter weight are required. In order to meet this requirement, the parts that make up the equipment, especially the housing, need to be prevented from bending significantly and coming into contact with or breaking the internal parts when an external load is applied. It is required to reduce the wall thickness while achieving high strength and high rigidity.

また、ノート型パーソナルコンピュータ等の電子機器を内部に収容する筐体は、人目に触れ、直接使用者の手に触れる部品であるために意匠性や表面の外観品質が重要視される。そのために、筐体は一般的に外観塗装によって加飾加工され、表面品位は厳しい外観基準で管理されている。近年はクリアメタリック系塗装や、パールクリア系塗装といった意匠性の多様化が進み、表面品位を満足させるため高度な塗装技術が求められるとともに、成形品表面に要求される品位も厳しくなってきている。特に、繊維強化基材である炭素繊維の織物の形状模様を目立たせて、斬新な表面模様をセールスポイントとすることも販売促進には重要な要素と思われる。 Further, since the housing for accommodating electronic devices such as notebook personal computers is a part that is exposed to the human eye and directly touched by the user's hand, the design and the appearance quality of the surface are important. Therefore, the housing is generally decorated by exterior painting, and the surface quality is controlled by strict appearance standards. In recent years, the diversification of designs such as clear metallic coating and pearl clear coating has progressed, and advanced coating technology is required to satisfy the surface quality, and the quality required for the surface of molded products is becoming stricter. .. In particular, it is considered to be an important factor for sales promotion to make the shape pattern of carbon fiber woven fabric, which is a fiber reinforced base material, stand out and to make a novel surface pattern a selling point.

特許文献1では、「少なくとも、独立発泡セルを有する樹脂発泡体から構成される芯材に、強化繊維とマトリックス樹脂からなる表皮材が積層された繊維強化プラスチック積層体において、板厚の薄い表皮材の少なくとも1層に一方向繊維強化プラスチック層を配し、板厚の厚い表皮材は積層構造を備え、少なくとも1層に織物繊維強化プラスチック層を配し、上面表皮材3として、最表層に織物炭素繊維とエポキシ樹脂で構成されるプリプレグAを1層、その下に一方向炭素繊維とエポキシ樹脂で構成されるプリプレグBを4層積層した構成」が記載され、これにより、剛性、軽量性を保持したまま、構造体内部に発生する気泡空隙、いわゆる気泡ボイドの発生による表面外観不良を抑制し、意匠性に優れた良外観の表面状態を保持できる効果が開示されている。 In Patent Document 1, "at least, in a fiber reinforced plastic laminate in which a skin material made of reinforcing fibers and a matrix resin is laminated on a core material made of a resin foam having independent foam cells, a thin skin material is used. A unidirectional fiber reinforced plastic layer is arranged in at least one layer of the above, the thick skin material has a laminated structure, and a woven fiber reinforced plastic layer is arranged in at least one layer, and the upper surface skin material 3 is woven on the outermost layer. "Structure in which one layer of prepreg A composed of carbon fiber and epoxy resin and four layers of prepreg B composed of unidirectional carbon fiber and epoxy resin are laminated" is described, thereby providing rigidity and light weight. The effect of suppressing surface appearance defects due to the generation of bubble voids, so-called bubble voids, which are generated inside the structure while holding the structure, and maintaining a surface state having a good appearance with excellent design is disclosed.

また、特許文献2では、フレーム形状を有する部材(B)の内側に、前記部材(B)と少なくとも一部を離間させて片側表面が意匠面である板材(A)を金型内に配置し、前記板材(A)と前記部材(B)との空隙に接合樹脂(C)を射出成形することにより、少なくとも前記板材(A)の外周縁部で前記板材(A)と前記部材(B)とを接合一体化させる構成が記載され、これにより、複数の構造体が高い接合強度で接合し、その接合境界部が良好な平滑性を有し、成形体が板材の構成部材を有していても反りの低減が図れ、軽量・薄肉化を実現することができる効果が開示されている。 Further, in Patent Document 2, a plate material (A) having a design surface on one side is arranged in a mold inside a member (B) having a frame shape with at least a part separated from the member (B). By injection molding the bonding resin (C) into the gap between the plate material (A) and the member (B), the plate material (A) and the member (B) are formed at least at the outer peripheral edge of the plate material (A). A configuration is described in which a plurality of structures are joined together with a high joining strength, the joining boundary portion has good smoothness, and the molded body has a constituent member of a plate material. However, the effect of reducing warpage and achieving weight reduction and thinning is disclosed.

また、特許文献3では、「サンドイッチ構造を有する積層部材(II)と該積層部材(II)の板端部周囲の少なくとも一部に樹脂部材(III)を配した複合成形品(I)であって、該サンドイッチ構造は硬質部材層(IIa)と軟質部材層(IIb)を有し、積層部材(II)と樹脂部材(III) との接合部において、樹脂部材(III)が軟質部材層(IIb)に対し、少なくとも一部が凸形状を形成している構成が記載され、これにより、軽量、高剛性・高強度で、薄肉化を図ることができる効果が開示されている。 Further, in Patent Document 3, "a composite molded product (I) in which a laminated member (II) having a sandwich structure and a resin member (III) are arranged at least a part around a plate end portion of the laminated member (II). The sandwich structure has a hard member layer (IIa) and a soft member layer (IIb), and the resin member (III) is a soft member layer (III) at the joint portion between the laminated member (II) and the resin member (III). A configuration in which at least a part of the convex shape is formed is described with respect to IIb), and the effect of being lightweight, having high rigidity and high strength, and being able to reduce the wall thickness is disclosed.

また、特許文献4には、スキン層と、不連続繊維とマトリックス樹脂(C)とからなる流動コア層を含むコア層とから構成されるサンドイッチ構造体において、スキン層が連続繊維とマトリックス樹脂(A)とからなる繊維強化樹脂層(X)であり、一方向繊維強化樹脂層と織物繊維強化樹脂層とをそれぞれ1層以上積層させた構成が記載され、軽量、高強度・高剛性であり、スキン層の面外方向に高強度なリブ等の複雑形状をした立設部を一発成形等の簡易な方法で得ることが出来る効果が開示されている。 Further, in Patent Document 4, in a sandwich structure composed of a skin layer and a core layer including a fluid core layer composed of discontinuous fibers and a matrix resin (C), the skin layer is a continuous fiber and a matrix resin ( It is a fiber reinforced resin layer (X) composed of A), and a configuration in which one or more layers of a unidirectional fiber reinforced resin layer and one or more woven fiber reinforced resin layers are laminated is described, and it is lightweight, high strength, and high rigidity. , The effect that a standing portion having a complicated shape such as a rib having high strength in the out-of-plane direction of the skin layer can be obtained by a simple method such as one-shot molding is disclosed.

また、特許文献5では、「芯材と、該芯材の両面に配される強化繊維にマトリックス樹脂が含浸された繊維強化樹脂を含む表皮材とから構成されるサンドイッチパネルの製造方法において、表皮材が、1層の層構造または複数層の積層構造を有した繊維強化樹脂であり、該繊維強化樹脂中の少なくとも1層は連続した強化繊維を含む繊維強化樹脂層であり、連続した強化繊維を含む繊維強化樹脂層が強化繊維の織物を含む構成」が記載され、これにより、表皮材が剛性の高い繊維強化樹脂で構成され、芯材が表皮材よりも見かけ密度の小さい樹脂で構成され、全体厚みを小さくしているので、剛性を保時したままで軽量性およびX線透過性に優れる効果が開示されている。 Further, in Patent Document 5, "a skin is provided in a method for producing a sandwich panel composed of a core material and a skin material containing a fiber reinforced resin in which reinforcing fibers arranged on both sides of the core material are impregnated with a fiber reinforced resin. The material is a fiber reinforced resin having a one-layer structure or a plurality of laminated structures, and at least one layer in the fiber-reinforced resin is a fiber-reinforced resin layer containing continuous reinforcing fibers, and the continuous reinforcing fibers. "Structure in which the fiber reinforced plastic layer containing reinforced plastic contains a woven fabric of reinforced fibers" is described, whereby the skin material is made of a highly rigid fiber reinforced plastic and the core material is made of a resin having an apparent density lower than that of the skin material. Since the overall thickness is reduced, the effect of being excellent in lightness and X-ray transparency while maintaining rigidity is disclosed.

特開2015−193119号公報JP 2015-193119 国際公開2018/110293号パンフレットInternational Publication No. 2018/110293 Pamphlet 特開昭61−24439号公報Japanese Unexamined Patent Publication No. 61-24439 国際公開2017/115640号パンフレットInternational Publication 2017/1156040 Pamphlet 特開2012−76464号公報Japanese Unexamined Patent Publication No. 2012-76464

電気・電子機器等に用いられる筐体を構成する部材には、良好な外観意匠性や平滑性とともに、曲げ剛性が高いことが要求される。例えば、織物等のシート状の繊維強化基材を繊維強化プラスチック成形体の表面に配置して特有の表面形態を付与して外観意匠性を高める試みがなされている。しかし、繊維強化プラスチック成形体において、表層に多軸織物等のシート状の織物繊維強化基材を使用すると、織物模様を表面に配することができるが、織物は炭素繊維が波打つような形態であるため、曲げ剛性等の強度が低下する場合があった。 The members that make up the housing used in electrical and electronic equipment are required to have good appearance design and smoothness, as well as high flexural rigidity. For example, attempts have been made to improve the appearance design by arranging a sheet-shaped fiber-reinforced base material such as a woven fabric on the surface of a fiber-reinforced plastic molded product to give it a unique surface morphology. However, in a fiber reinforced plastic molded body, if a sheet-shaped woven fiber reinforced base material such as a multi-axis woven fabric is used for the surface layer, a woven fabric pattern can be arranged on the surface, but the woven fabric is in a form in which carbon fibers are wavy. Therefore, the strength such as bending rigidity may decrease.

そのため、繊維強化プラスチック成形体を織物等のシート状の織物繊維強化基材に対して、さらに曲げ剛性の高い補強基材を積層して多層構造とすることで一定の強度・剛性を確保することができるが、その構成では成形体は曲げ剛性が異なる層が積層した非対称積層構造となり、成形後に熱収縮の影響で成形体自体に反りが生じる場合があった。このように、曲げ剛性の異なる基材を積層した非対称積層構造では、成形体自体に反りが生じる場合があり、平滑性実現に課題があった。 Therefore, it is necessary to secure a certain strength and rigidity by laminating a fiber-reinforced plastic molded body on a sheet-shaped woven fiber-reinforced base material such as a woven material to form a multi-layer structure. However, in that configuration, the molded body has an asymmetric laminated structure in which layers having different flexural rigidity are laminated, and the molded body itself may be warped due to the influence of heat shrinkage after molding. As described above, in the asymmetric laminated structure in which the base materials having different flexural rigidity are laminated, the molded body itself may be warped, and there is a problem in realizing smoothness.

また、この問題を解消するために、金型のキャビティを、線膨張係数の差によって生じる繊維強化樹脂板材の反り変形を打ち消す形状に、予め形成する方法が開示されている(例えば、特開2015−98173号公報、特開2003−158143号公報)。しかし、金型を特注型として作る必要があり、また複数の試作を行って形状が適切かどうかを確認する必要があり、コスト増大を招く要因となっていた。 Further, in order to solve this problem, a method of preliminarily forming the cavity of the mold into a shape that cancels the warp deformation of the fiber reinforced resin plate material caused by the difference in the coefficient of linear expansion is disclosed (for example, Japanese Patent Application Laid-Open No. 2015). -98173, JP2003-158143). However, it is necessary to make the mold as a custom-made mold, and it is necessary to perform a plurality of trial productions to confirm whether the shape is appropriate, which has been a factor that causes an increase in cost.

このような問題に対し、上述した特許文献1では、芯材の両面に一方向強化繊維プラスチックの表皮材を配することにより、剛性の低下を補えることができ、また、表皮材の最外層に織物を配することにより、高剛性を保持するとともに、外観意匠性も向上させることができるとされているが、非対称積層構造とすることにより発生する可能性の高い成形体の反り低減に関してその課題認識や対策に関する示唆はなされておらず、改善の余地があった。 In response to such a problem, in Patent Document 1 described above, by arranging a unidirectionally reinforced fiber plastic skin material on both sides of the core material, it is possible to compensate for the decrease in rigidity, and the outermost layer of the skin material It is said that by arranging the woven fabric, it is possible to maintain high rigidity and improve the appearance design, but there is a problem in reducing the warp of the molded product that is likely to occur due to the asymmetric laminated structure. There was no suggestion regarding recognition or countermeasures, and there was room for improvement.

また、特許文献2では、板材(A)の外周縁部に射出される接合樹脂(C)は板材(A)と部材(B)とを高い強度で接合させることを目的としたものであり、また、板材(A)の外表面に熱可塑性樹脂層(D)を設け、板材(A)と接合樹脂(C)とは熱可塑性樹脂層(D)を介して接合させる非対称積層構造を記載があるが、熱可塑性樹脂層(D)を設けて非対称積層とした際に生じる可能性のある成形体の反りに関する課題認識やその対策に関する示唆はなされておらず、改善の余地があった。 Further, in Patent Document 2, the bonding resin (C) injected into the outer peripheral edge portion of the plate material (A) is intended to bond the plate material (A) and the member (B) with high strength. Further, the description describes an asymmetric laminated structure in which a thermoplastic resin layer (D) is provided on the outer surface of the plate material (A), and the plate material (A) and the bonding resin (C) are bonded via the thermoplastic resin layer (D). However, there is room for improvement because there is no recognition of problems regarding warpage of the molded product that may occur when the thermoplastic resin layer (D) is provided and asymmetrical lamination is performed, and no suggestions regarding countermeasures thereof have been made.

また、特許文献3では、硬質部材層(IIa)が、一方向に配列した連続強化繊維を含んだシートや連続強化繊維織物を含んだシートを用い、また、積層部材(II)の板端部周囲に樹脂部材(III)を射出成形する構成が記載されているが、積層部材(II)が非対称積層構造とする記載はなく、射出成形される樹脂部材(III)と成形体の反りとの関係を示唆した記載もなく、成形体の反りに関する課題認識やその対策に関する示唆はなされておらず、改善の余地があった。 Further, in Patent Document 3, the hard member layer (IIa) uses a sheet containing continuous reinforcing fibers arranged in one direction or a sheet containing continuous reinforcing fiber woven fabric, and a plate end portion of the laminated member (II). Although the configuration for injection molding the resin member (III) is described in the periphery, there is no description that the laminated member (II) has an asymmetric laminated structure, and the resin member (III) to be injection molded and the warp of the molded body are described. There was no description suggesting a relationship, and there was room for improvement as there was no recognition of issues regarding the warpage of the molded product or suggestions for countermeasures.

また、特許文献4では、スキン層が連続繊維とマトリックス樹脂(A)とからなる繊維強化樹脂層(X)であり、一方向繊維強化樹脂層と織物繊維強化樹脂層とをそれぞれ1層以上積層させた構成とすることで、軽量、高強度・高剛性の特性を得ることができる旨の記載がなされているが、表皮材の表層に織物繊維強化樹脂層を配し非対称積層構造とした際に生じる可能性のある成形体の反り関する課題認識やその対策に関する示唆はなされておらず、改善の余地があった。 Further, in Patent Document 4, the skin layer is a fiber reinforced resin layer (X) composed of continuous fibers and a matrix resin (A), and one or more unidirectional fiber reinforced resin layers and one or more woven fiber reinforced resin layers are laminated. Although it is stated that lightweight, high-strength, and high-rigidity characteristics can be obtained by adopting the structure, when a woven fiber reinforced resin layer is arranged on the surface layer of the skin material to form an asymmetric laminated structure. There was no suggestion regarding the problem recognition and countermeasures related to the warpage of the molded body that may occur in the above, and there was room for improvement.

また、特許文献5では、表皮材が、一方向に引き揃えられた強化繊維や織物の強化繊維を含む繊維強化樹脂層を有することにより、より効率よく強度、弾性率を設計できるとされているが、表皮材の表層に織物繊維強化樹脂層を配し非対称積層構造とした際に生じる可能性のある成形体の反り関する課題認識やその対策に関する示唆はなされておらず、改善の余地があった。 Further, Patent Document 5 states that the strength and elastic modulus can be designed more efficiently by having the fiber-reinforced resin layer containing the reinforcing fibers aligned in one direction and the reinforcing fibers of the woven fabric as the skin material. However, there is room for improvement as there is no recognition of issues related to warpage of the molded body that may occur when a woven fiber reinforced resin layer is arranged on the surface layer of the skin material to form an asymmetric laminated structure, and no suggestions regarding countermeasures have been made. It was.

本発明の課題は、かかる従来技術の問題点に鑑み、曲げ剛性の異なる基材を積層した非対称積層構造において、外観意匠性を高めるとともに、非対称積層構造でありながら、成形体の反りの発生を抑制して平滑性を実現し、かつ、薄肉化と高強度・高剛性化を達成することが可能な繊維強化プラスチック成形体を提供することにある。 In view of the problems of the prior art, the subject of the present invention is to improve the appearance design in the asymmetric laminated structure in which the base materials having different bending rigidity are laminated, and to prevent the molded product from warping even though the structure is asymmetrical. It is an object of the present invention to provide a fiber reinforced plastic molded product which can suppress and realize smoothness, and can achieve thinning, high strength and high rigidity.

上記課題を解決するために本発明は以下の手段を採用するものである。すなわち、
(1)少なくとも繊維強化樹脂からなる面状構造体である積層体(A)と、前記積層体(A)の外周側面部及び/または外周縁部の一部の領域または全領域に接合した樹脂部材(B)とから構成される繊維強化プラスチック成形体であって、
前記積層体(A)は、少なくとも曲げ剛性の異なる板材(C)と板材(D)が積層した構成を有し、前記板材(D)の曲げ剛性は前記板材(C)の曲げ剛性よりも大きく、前記積層体(A)を肉厚方向で半等分に分割し、分割した中央線よりも前記板材(C)が積層されている方の領域(R1)に存在する前記樹脂部材(B)の量をAm1、前記板材(C)が積層されていない方の領域(R2)に存在する前記樹脂部材(B)の量をAm2とすると、Am2/Am1が2〜25の範囲にあることを特徴とする繊維強化プラスチック成形体。
(2)前記板材(D)の曲げ弾性率をMd(GPa)、前記板材(C)の曲げ弾性率をMc(GPa)とすると、Md/Mcが1.2〜17の範囲にある、(1)に記載の繊維強化プラスチック成形体。
(3)前記板材(D)の曲げ弾性率Mdが100〜500GPa、前記板材(C)の曲げ弾性率Mcが30〜80GPaの範囲にある、(1)または(2)に記載の繊維強化プラスチック成形体。
(4)前記板材(D)の肉厚をTd(mm)、前記板材(C)の肉厚をTc(mm)とすると、Td/Tcが1.2〜40の範囲にある、(1)〜(3)のいずれかに記載の繊維強化プラスチック成形体。
(5)前記板材(D)の肉厚Tdが0.6〜2mm、前記板材(C)の肉厚Tcが0.05〜0.5mmの範囲にある、(1)〜(4)のいずれかに記載の繊維強化プラスチック成形体。
(6)前記板材(C)が、織物繊維とマトリクス樹脂から構成される1層又は2層以上の織物繊維強化樹脂であり、前記板材(D)が、一方向性の連続繊維とマトリクス樹脂から構成される1層又は2層以上の一方向性繊維強化樹脂である、(1)〜(5)のいずれかに記載の繊維強化プラスチック成形体。
(7)前記板材(C)が、織物繊維とマトリクス樹脂から構成される1層又は2層以上の織物繊維強化樹脂であり、前記板材(D)が、コア層の両表面を、一方向性の連続繊維とマトリクス樹脂から構成される1層又は2層以上の一方向性繊維強化樹脂または織物繊維とマトリクス樹脂から構成される1層又は2層以上の織物繊維強化樹脂で挟んだサンドイッチ構造部材である、(1)〜(5)のいずれかに記載の繊維強化プラスチック成形体。
(8)前記板材(C)は繊維強化プラスチック成形体の意匠面側最外層に配されている、(1)〜(7)のいずれかに記載の繊維強化プラスチック成形体。
(9)前記樹脂部材(B)が、前記積層体(A)の外周側面部及び/または外周縁部の全周にわたって接合形成されている、(1)〜(8)のいずれかに記載の繊維強化プラスチック成形体。
(10)前記積層体(A)は前記板材(C)が積層されていない側の前記板材(D)の外周縁部の平面部の一部の領域または全領域に接合層(G)を配した構成を有し、前記樹脂部材(B)が接合層(G)を介して、前記積層体(A)と接合されている、(1)〜(9)のいずれかに記載の繊維強化プラスチック成形体。
(11)前記繊維強化プラスチック成形体の反りが2%以下である、(1)〜(10)のいずれかに記載の繊維強化プラスチック成形体。
In order to solve the above problems, the present invention employs the following means. That is,
(1) A resin bonded to a laminated body (A) which is a planar structure made of at least a fiber reinforced resin and a part or all of the outer peripheral side surface portion and / or the outer peripheral peripheral portion of the laminated body (A). A fiber-reinforced plastic molded body composed of a member (B).
The laminated body (A) has a structure in which a plate material (C) and a plate material (D) having at least different bending rigidity are laminated, and the bending rigidity of the plate material (D) is larger than the bending rigidity of the plate material (C). , The laminated body (A) is divided into halves in the wall thickness direction, and the resin member (B) existing in the region (R1) on which the plate material (C) is laminated rather than the divided center line. Assuming that the amount of the resin member (B) existing in the region (R2) on which the plate material (C) is not laminated is Am2, Am2 / Am1 is in the range of 2 to 25. Characterized fiber reinforced plastic molded body.
(2) Assuming that the flexural modulus of the plate material (D) is Md (GPa) and the flexural modulus of the plate material (C) is Mc (GPa), Md / Mc is in the range of 1.2 to 17. The fiber-reinforced plastic molded product according to 1).
(3) The fiber-reinforced plastic according to (1) or (2), wherein the flexural modulus Md of the plate material (D) is in the range of 100 to 500 GPa, and the flexural modulus Mc of the plate material (C) is in the range of 30 to 80 GPa. Molded body.
(4) Assuming that the wall thickness of the plate material (D) is Td (mm) and the wall thickness of the plate material (C) is Tc (mm), Td / Tc is in the range of 1.2 to 40 (1). The fiber-reinforced plastic molded body according to any one of (3).
(5) Any of (1) to (4), wherein the wall thickness Td of the plate material (D) is in the range of 0.6 to 2 mm, and the wall thickness Tc of the plate material (C) is in the range of 0.05 to 0.5 mm. Fiber reinforced plastic molded body described in Crab.
(6) The plate material (C) is one layer or two or more layers of woven fiber reinforced resin composed of a woven fiber and a matrix resin, and the plate material (D) is made of a unidirectional continuous fiber and a matrix resin. The fiber-reinforced plastic molded body according to any one of (1) to (5), which is a unidirectional fiber-reinforced resin having one layer or two or more layers.
(7) The plate material (C) is one layer or two or more layers of woven fiber reinforced resin composed of a woven fiber and a matrix resin, and the plate material (D) is unidirectional on both surfaces of the core layer. One layer or two or more layers of unidirectional fiber reinforced resin composed of continuous fibers and matrix resin, or a sandwich structural member sandwiched between one layer or two or more layers of woven fiber reinforced resin composed of woven fibers and matrix resin. The fiber-reinforced plastic molded body according to any one of (1) to (5).
(8) The fiber-reinforced plastic molded product according to any one of (1) to (7), wherein the plate material (C) is arranged on the outermost layer on the design surface side of the fiber-reinforced plastic molded product.
(9) The method according to any one of (1) to (8), wherein the resin member (B) is joined and formed over the entire circumference of the outer peripheral side surface portion and / or the outer peripheral edge portion of the laminated body (A). Fiber reinforced plastic molded body.
(10) In the laminated body (A), the bonding layer (G) is arranged in a part or all of the flat surface portion of the outer peripheral edge portion of the plate material (D) on the side where the plate material (C) is not laminated. The fiber-reinforced plastic according to any one of (1) to (9), wherein the resin member (B) is bonded to the laminated body (A) via a bonding layer (G). Molded body.
(11) The fiber-reinforced plastic molded product according to any one of (1) to (10), wherein the warpage of the fiber-reinforced plastic molded product is 2% or less.

本発明の繊維強化プラスチック成形体によれば、曲げ剛性の異なる基材を積層した非対称積層構造において、非対称積層構造でありながら、成形体の反りの発生を抑制して良好な平滑性を実現し、かつ、薄肉化と高強度・高剛性化を実現することができる。 According to the fiber-reinforced plastic molded product of the present invention, in an asymmetric laminated structure in which base materials having different flexural rigidity are laminated, the occurrence of warpage of the molded product is suppressed and good smoothness is realized while having an asymmetric laminated structure. Moreover, it is possible to realize thinning and high strength and high rigidity.

本発明の一実施態様に係る繊維強化プラスチック成形体の斜視図である。It is a perspective view of the fiber reinforced plastic molded article which concerns on one Embodiment of this invention. (A)本発明に係る板材(C)と板材(D)を積層した積層体(A)の一例を示す断面図、(B)積層体(A)のプレス成形後、熱収縮により反りが生じた状態の一例を示す断面図である。(A) A cross-sectional view showing an example of a laminated body (A) in which a plate material (C) and a plate material (D) according to the present invention are laminated, and (B) after press molding of the laminated body (A), warpage occurs due to heat shrinkage. It is sectional drawing which shows an example of the state. 積層体(A)の外周側面部に樹脂部材(B)が接合した状態を示した本発明に係る繊維強化プラスチック成形体の一例を示す断面図である。It is sectional drawing which shows an example of the fiber reinforced plastic molded article which concerns on this invention which showed the state which the resin member (B) was bonded to the outer peripheral side surface portion of the laminated body (A). 板材(D)の一方の表面に接合層(G)を形成した積層体(A)の外周側面部及び外周縁部の平面部に樹脂部材(B)が接合した状態の一例を示す本発明に係る繊維強化プラスチック成形体の断面図である。The present invention shows an example of a state in which the resin member (B) is bonded to the outer peripheral side surface portion and the outer peripheral edge portion of the laminated body (A) in which the bonding layer (G) is formed on one surface of the plate material (D). It is sectional drawing of the fiber-reinforced plastic molded article. (A)本発明における板材(D)としてコア層に表皮層がサンドイッチしたサンドイッチ構造部材を使用した積層体(A)の一例を示す断面図、(B)積層体(A)のプレス成形後、熱収縮により反りが生じた状態の一例を示す断面図である。(A) A cross-sectional view showing an example of a laminated body (A) using a sandwich structural member in which a skin layer is sandwiched between a core layer as a plate material (D) in the present invention, and (B) after press molding of the laminated body (A). It is sectional drawing which shows an example of the state which warped by heat shrinkage. 図5で示した積層体(A)の外周側面部に樹脂部材(B)が接合した状態の一例を示す本発明に係る繊維強化プラスチック成形体の断面図である。It is sectional drawing of the fiber reinforced plastic molded article which concerns on this invention which shows an example of the state in which the resin member (B) is bonded to the outer peripheral side surface portion of the laminated body (A) shown in FIG. 板材(D)の一方の表面に接合層(G)を形成した積層体(A)の外周側面部及び外周縁部の平面部に樹脂部材(B)が接合した状態の一例を示す本発明に係る繊維強化プラスチック成形体の断面図である。The present invention shows an example of a state in which the resin member (B) is bonded to the outer peripheral side surface portion and the outer peripheral edge portion of the laminated body (A) in which the bonding layer (G) is formed on one surface of the plate material (D). It is sectional drawing of the fiber-reinforced plastic molded article. 別の形態の積層体(A)の外周側面部に樹脂部材(B)が接合した状態の一例を示す本発明に係る繊維強化プラスチック成形体の断面図である。It is sectional drawing of the fiber reinforced plastic molded article which concerns on this invention which shows an example of the state in which the resin member (B) is bonded to the outer peripheral side surface portion of the laminated body (A) of another form. 板材(D)の一方の表面に接合層(G)を形成した積層体(A)の外周側面部及び外周縁部の平面部に樹脂部材(B)が接合した状態の一例を示す本発明に係る繊維強化プラスチック成形体の断面図である。The present invention shows an example of a state in which the resin member (B) is bonded to the outer peripheral side surface portion and the outer peripheral edge portion of the laminated body (A) in which the bonding layer (G) is formed on one surface of the plate material (D). It is sectional drawing of the fiber-reinforced plastic molded article. 図6で示した積層体(A)の製造工程において、プレス成形下金型に積層体(A)を構成する各部材を配置する前の状態を示した断面図である。6 is a cross-sectional view showing a state before arranging each member constituting the laminated body (A) in the press-molded lower die in the manufacturing process of the laminated body (A) shown in FIG. プレス成形下金型とプレス成形上金型を閉じてプレス成形により形成した積層体(A)の断面図である。It is sectional drawing of the laminated body (A) formed by the press molding by closing the press forming lower die and the press forming upper die. 成形体の製造工程を示す工程図であって、(A)射出成形金型内に図11で示した積層体(A)を配置した状態を示す断面図、(B)樹脂部材(B)を射出ゲート口から射出注入して成形した本発明に係る繊維強化プラスチック成形体の断面図である。It is a process drawing which shows the manufacturing process of a molded body, (A) the cross-sectional view which shows the state which the laminated body (A) shown in FIG. 11 is arranged in the injection molding die, (B) the resin member (B). It is sectional drawing of the fiber-reinforced plastic molded article which concerns on this invention which was molded by injection injection from an injection gate opening. 図7で示した積層体(A)の製造工程であって、プレス成形下金型に積層体(A)を構成する各部材を配置する前の状態を示した断面図である。FIG. 5 is a cross-sectional view showing a state before arranging each member constituting the laminated body (A) in the press-molded lower die in the manufacturing process of the laminated body (A) shown in FIG. 7. プレス成形下金型とプレス成形上金型を閉じてプレス成形により形成した積層体(A)の断面図である。It is sectional drawing of the laminated body (A) formed by the press molding by closing the press forming lower die and the press forming upper die. 成形体の製造工程を示す工程図であって、(A)射出成形金型内に図14で示した積層体(A)を配置した状態を示す断面図、(B)樹脂部材(B)を射出ゲート口から射出注入して成形した本発明に係る繊維強化プラスチック成形体の断面図である。It is a process drawing which shows the manufacturing process of a molded body, (A) the cross-sectional view which shows the state which the laminated body (A) shown in FIG. 14 is arranged in the injection molding die, (B) the resin member (B). It is sectional drawing of the fiber-reinforced plastic molded article which concerns on this invention which was molded by injection injection from an injection gate opening. 繊維強化プラスチック成形体の反りを測定する方法を示す概略図である。It is the schematic which shows the method of measuring the warp of a fiber reinforced plastic molded article.

以下、本発明について図面を参照しながら実施の形態とともに詳細に説明する。なお、本発明は図面や後述の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in detail together with embodiments with reference to the drawings. The present invention is not limited to the drawings and the examples described later.

図1〜図4を参照するに、本発明の繊維強化プラスチック成形体1は、少なくとも繊維強化樹脂からなる面状構造体である積層体(A)2と、積層体(A)2の外周側面部及び/または外周縁部の一部の領域または全領域に、樹脂部材(B)3を接合した繊維強化プラスチック成形体1であって、積層体(A)2は、少なくとも曲げ剛性の異なる板材(C)4と板材(D)5が積層した構成を有し、板材(D)5の曲げ剛性は板材(C)4の曲げ剛性よりも大きく、積層体(A)2を肉厚方向で半等分に分割し、分割した中央線12よりも板材(C)4が積層されている方の領域(R1)13に存在する樹脂部材(B)3の量をAm1、板材(C)4が積層されていない方の領域(R2)14に存在する樹脂部材(B)3の量をAm2とすると、Am2/Am1が2〜25の範囲にあることを特徴とするものである。 With reference to FIGS. 1 to 4, the fiber reinforced plastic molded body 1 of the present invention has a laminated body (A) 2 which is a planar structure made of at least a fiber reinforced resin and an outer peripheral side surface of the laminated body (A) 2. A fiber-reinforced plastic molded body 1 in which a resin member (B) 3 is bonded to a part or all of a part and / or an outer peripheral edge portion, and the laminated body (A) 2 is a plate material having at least a different bending rigidity. It has a structure in which (C) 4 and plate material (D) 5 are laminated, and the bending rigidity of plate material (D) 5 is larger than the bending rigidity of plate material (C) 4, and the laminated body (A) 2 is formed in the wall thickness direction. The amount of the resin member (B) 3 existing in the region (R1) 13 on which the plate material (C) 4 is laminated is larger than that of the divided central line 12, and the amount of the resin member (B) 3 is Am1 and the plate material (C) 4 is divided into halves. Assuming that the amount of the resin member (B) 3 existing in the region (R2) 14 on which the layers are not laminated is Am2, Am2 / Am1 is in the range of 2 to 25.

図1に示すように、本発明の繊維強化プラスチック成形体1は、積層体(A)2と、積層体(A)2の外周側面部及び/または外周縁部の一部の領域または全領域に樹脂部材(B)3を接合した構成である。 As shown in FIG. 1, the fiber-reinforced plastic molded product 1 of the present invention includes the laminated body (A) 2 and a part or all of the outer peripheral side surface portion and / or the outer peripheral peripheral portion of the laminated body (A) 2. The resin member (B) 3 is joined to the resin member (B) 3.

また、積層体(A)2は、図2に示すように、少なくとも板材(C)4と板材(C)4よりも曲げ剛性が大きい板材(D)5を積層した構成である。 Further, as shown in FIG. 2, the laminated body (A) 2 has a configuration in which at least a plate material (C) 4 and a plate material (D) 5 having a flexural rigidity higher than that of the plate material (C) 4 are laminated.

板材(C)4のみから構成される成形体では、その成形体の強度・剛性が十分に得ることができない場合があり、そのため、曲げ剛性が大きい板材(D)5を積層することで成形体に高い強度・剛性を確保することができる。 In a molded body composed of only the plate material (C) 4, the strength and rigidity of the molded body may not be sufficiently obtained. Therefore, the molded body is formed by laminating the plate material (D) 5 having a large bending rigidity. High strength and rigidity can be ensured.

板材(C)4に、板材(C)4よりも曲げ剛性が大きい板材(D)5を積層し、プレス成形により、面状構造体である積層体(A)2を作成する際、プレス成形完了直後では、図2(A)に示すように反りがなく略フラットな形状をなしているが、その後、冷却による熱収縮により、積層体(A)2は図2(B)に示すように中央が凹み、下に凸状に変形してしまう場合がある。これは、積層体(A)2は非対称積層構造となっているため、板材(C)4の熱収縮の影響を受けて、下に凸状に反ってしまうものと考えられる。この状態のままで電気機器装置の筐体等に使用した場合、内部の電子部品等と接触して不具合が生じる場合がある。 When the plate material (D) 5 having a higher bending rigidity than the plate material (C) 4 is laminated on the plate material (C) 4 and the laminated body (A) 2 which is a planar structure is produced by press molding, press molding is performed. Immediately after completion, as shown in FIG. 2 (A), the laminated body (A) 2 has a substantially flat shape without warping, but after that, due to heat shrinkage due to cooling, the laminated body (A) 2 becomes as shown in FIG. 2 (B). The center may be dented and deformed downward. This is because the laminated body (A) 2 has an asymmetric laminated structure, so it is considered that the laminated body (A) 2 is affected by the heat shrinkage of the plate material (C) 4 and warps downward in a convex shape. If it is used in the housing of an electric device or the like in this state, it may come into contact with an internal electronic component or the like and cause a problem.

そこで、このような変形を抑制するため、本発明では、図3に示すように、プレス成形により作成した積層体(A)2の外周側面部及び/または外周縁部の一部の領域または全領域に、樹脂部材(B)3を接合させる。この際、積層体(A)2を肉厚方向で半等分に分割して、その分割した中央線12よりも板材(C)4が積層されていない方の領域(R2)14に存在する樹脂部材(B)3の量を、板材(C)4が積層されている方の領域(R1)13に存在する樹脂部材(B)3の量よりも一定の割合で多くする構成とする。このように成形体1の外周縁部及び/または外周側面部に接合する樹脂部材(B)3の接合量に偏りを持たせることにより、樹脂部材(B)3の収縮により、積層体(A)2の反りとは逆方向への応力が発生し、全体的に反りが相殺される。その結果非対称積層であっても成形時の反りの発生を抑制することができる。図3、図4、図6、図7、図8および図9において、中央線12は積層体(A)2の肉厚11の半等分の中央部を示す線である。 Therefore, in order to suppress such deformation, in the present invention, as shown in FIG. 3, a part or all of the outer peripheral side surface portion and / or the outer peripheral edge portion of the laminated body (A) 2 produced by press molding. The resin member (B) 3 is joined to the region. At this time, the laminated body (A) 2 is divided into half equal parts in the wall thickness direction, and is present in the region (R2) 14 on which the plate material (C) 4 is not laminated than the divided center line 12. The amount of the resin member (B) 3 is made larger than the amount of the resin member (B) 3 existing in the region (R1) 13 on which the plate material (C) 4 is laminated at a constant ratio. By giving a bias in the joining amount of the resin member (B) 3 to be joined to the outer peripheral edge portion and / or the outer peripheral side surface portion of the molded body 1 in this way, the shrinkage of the resin member (B) 3 causes the laminated body (A). ) A stress is generated in the direction opposite to the warp of 2, and the warp is canceled as a whole. As a result, it is possible to suppress the occurrence of warpage during molding even with asymmetric lamination. In FIGS. 3, 4, 6, 7, 8 and 9, the center line 12 is a line indicating the central portion of the laminated body (A) 2 having a wall thickness of 11 in half.

曲げ剛性は、剛性=弾性率×断面二次モーメントで表され、曲げやねじりに対して、部材の変形のし難さを表すものである。従って、この曲げ剛性を規定することにより、基材の厚さや形状を考慮した形で反りとの関連性を表すことができる。 Flexural rigidity is expressed by rigidity = elastic modulus × moment of inertia of area, and represents the difficulty of deformation of a member with respect to bending or torsion. Therefore, by defining the flexural rigidity, the relationship with the warp can be expressed in consideration of the thickness and shape of the base material.

Am2/Am1が2未満であると、反りを相殺させる効果が発揮しにくくなる場合がある。Am2/Am1が25を超えると、成形体自体の板厚が厚くなり、薄肉化の実現が困難となる場合がある。好ましくはAm2/Am1は5〜22、より好ましくはAm2/Am1は8〜20、さらに好ましくは10〜18である。また、樹脂部材(B)3の量は体積で規定する。 If Am2 / Am1 is less than 2, it may be difficult to exert the effect of canceling the warp. If Am2 / Am1 exceeds 25, the thickness of the molded product itself becomes thick, and it may be difficult to realize thinning. Am2 / Am1 is preferably 5 to 22, more preferably Am2 / Am1 is 8 to 20, and even more preferably 10 to 18. The amount of the resin member (B) 3 is specified by volume.

積層体(A)2の外周縁部とは、面状構造体の積層体(A)2の外周部付近の平面部領域であり、積層体(A)2の1辺の長さに対して外周端部から0〜15%の長さの範囲内であることが好ましい。外周側面部とは、面状構造体の積層体(A)2の外周部の平面部に対して垂直な面を有する端部である。 The outer peripheral edge portion of the laminated body (A) 2 is a flat portion region near the outer peripheral portion of the laminated body (A) 2 of the planar structure, and is relative to the length of one side of the laminated body (A) 2. It is preferably within the range of 0 to 15% from the outer peripheral edge. The outer peripheral side surface portion is an end portion having a plane perpendicular to the plane portion of the outer peripheral portion of the laminated body (A) 2 of the planar structure.

また、積層体(A)2の外周側面部及び/または外周縁部の一部の領域または全領域に、樹脂部材(B)3が接合するように配することが好ましい。図3では樹脂部材(B)3の一部が積層体(A)2の外周側面部と接合した状態を示し、図4では樹脂部材(B)3の一部が積層体(A)2の外周側面部及び外周縁部の一部の領域に接合した状態を示している。 Further, it is preferable that the resin member (B) 3 is arranged so as to be joined to a part or all of the outer peripheral side surface portion and / or the outer peripheral edge portion of the laminated body (A) 2. FIG. 3 shows a state in which a part of the resin member (B) 3 is joined to the outer peripheral side surface portion of the laminated body (A) 2, and FIG. 4 shows a part of the resin member (B) 3 of the laminated body (A) 2. It shows a state of being joined to a part of the outer peripheral side surface portion and the outer peripheral edge portion.

樹脂部材(B)3は積層体(A)2の外周側面部及び/または外周縁部の一部の領域または全領域に射出成形により接合させることが好ましい。 It is preferable that the resin member (B) 3 is joined to a part or all of the outer peripheral side surface portion and / or the outer peripheral edge portion of the laminated body (A) 2 by injection molding.

また、本発明において、板材(D)5の曲げ弾性率をMd(GPa)、板材(C)4の曲げ弾性率をMc(GPa)とすると、Md/Mcが1.2〜17であることが好ましい。これにより、成形体の強度を確保することができるとともに、反りを相殺させる効果を得ることができる。 Further, in the present invention, assuming that the flexural modulus of the plate material (D) 5 is Md (GPa) and the flexural modulus of the plate material (C) 4 is Mc (GPa), Md / Mc is 1.2 to 17. Is preferable. As a result, the strength of the molded product can be ensured, and the effect of canceling the warp can be obtained.

Md/Mcが1.2未満であると、反り低減の効果が弱まる場合がある。Md/Mcが17を超えると、反り低減の効果が弱まる場合がある。Md/Mcは好ましくは3〜16、より好ましくは5〜15、さらに好ましくは7〜14である。 If Md / Mc is less than 1.2, the effect of warpage reduction may be weakened. If Md / Mc exceeds 17, the effect of warpage reduction may be weakened. Md / Mc is preferably 3 to 16, more preferably 5 to 15, and even more preferably 7-14.

また、本発明において、板材(D)5の曲げ弾性率Mdが100〜500GPa、板材(C)4の曲げ弾性率Mcが30〜80GPaであることが好ましい。 Further, in the present invention, it is preferable that the flexural modulus Md of the plate material (D) 5 is 100 to 500 GPa and the flexural modulus Mc of the plate material (C) 4 is 30 to 80 GPa.

Mdが100GPa未満であると、積層体(A)2が反り過ぎる場合があり、樹脂部材(B)3を射出成形した際、樹脂部材(B)3との接合が不十分になる場合がある。Mdが500GPaを超えると、基材として取り扱いが難しくまた材料コストが影響して商品競争力が低下する場合がある。 If Md is less than 100 GPa, the laminated body (A) 2 may warp too much, and when the resin member (B) 3 is injection-molded, the bonding with the resin member (B) 3 may be insufficient. .. If Md exceeds 500 GPa, it may be difficult to handle as a base material, and the material cost may affect the product competitiveness.

Mcが30GPa未満であると、成形体1の強度を十分に確保できない場合がある。Mcが80GPaを超えると、積層体(A)2が反り過ぎる場合があり、樹脂部材(B)3を射出成形した際、樹脂部材(B)3との接合が不十分になる場合がある。 If Mc is less than 30 GPa, the strength of the molded product 1 may not be sufficiently secured. If Mc exceeds 80 GPa, the laminated body (A) 2 may warp too much, and when the resin member (B) 3 is injection-molded, the bonding with the resin member (B) 3 may be insufficient.

Mdは好ましくは120〜480GPa、より好ましくは180〜400GPa、さらに好ましくは220〜320GPaである。また、Mcは好ましくは35〜75GPa、より好ましくは45〜65GPa、さらに好ましくは50〜60GPaである。 Md is preferably 120 to 480 GPa, more preferably 180 to 400 GPa, and even more preferably 220 to 320 GPa. The Mc is preferably 35 to 75 GPa, more preferably 45 to 65 GPa, and even more preferably 50 to 60 GPa.

また、本発明において、板材(D)5の肉厚をTd(mm)、板材(C)4の肉厚をTc(mm)とすると、Td/Tcが1.2〜40であることが好ましい。板材(C)4の肉厚に対して、板材(D)5の肉厚を厚くすることにより、板材(C)4の熱収縮の影響を少なくすることができる。 Further, in the present invention, assuming that the wall thickness of the plate material (D) 5 is Td (mm) and the wall thickness of the plate material (C) 4 is Tc (mm), Td / Tc is preferably 1.2 to 40. .. By increasing the wall thickness of the plate material (D) 5 with respect to the wall thickness of the plate material (C) 4, the influence of heat shrinkage of the plate material (C) 4 can be reduced.

Td/Tcが1.2未満であると、反りを相殺させる効果が発揮しにくくなる場合がある。Td/Tcが40を超えると、成形体自体の板厚が厚くなり、薄肉化の実現が困難となる場合がある。Td/Tcは好ましくは、2〜35、より好ましくは5〜32、さらに好ましくは8〜30である。 If Td / Tc is less than 1.2, it may be difficult to exert the effect of offsetting the warp. If Td / Tc exceeds 40, the thickness of the molded product itself becomes thick, and it may be difficult to realize thinning. Td / Tc is preferably 2-35, more preferably 5-3, and even more preferably 8-30.

また、本発明において、板材(D)5の肉厚Tdが0.6〜2mm、板材(C)4の肉厚Tcが0.05〜0.5mmであることが好ましい。反りを相殺させる効果と薄肉化の実現を両立できる範囲である。 Further, in the present invention, it is preferable that the wall thickness Td of the plate material (D) 5 is 0.6 to 2 mm and the wall thickness Tc of the plate material (C) 4 is 0.05 to 0.5 mm. It is a range that can achieve both the effect of offsetting the warp and the realization of thinning.

Tdが0.6mm未満であると成形体自体の強度が低下する場合がある。Tdが2mmを超えると成形体自体の板厚が厚くなり、薄肉化の実現が困難となる場合がある。Tcが0.05mm未満であると、外観不良が発生する場合がある。Tcが0.5mmを超えると成形体自体の板厚が厚くなり、薄肉化の実現が困難となる場合がある。 If Td is less than 0.6 mm, the strength of the molded product itself may decrease. If Td exceeds 2 mm, the thickness of the molded product itself becomes thick, and it may be difficult to realize thinning. If Tc is less than 0.05 mm, poor appearance may occur. If the Tc exceeds 0.5 mm, the thickness of the molded product itself becomes thick, and it may be difficult to realize thinning.

好ましくは、Tdが0.7〜1.8mm、Tcが0.06〜0.4mm、より好ましくは、Tdが0.9〜1.6mm、Tcが0.08〜0.3mm、さらに好ましくは、Tdが1〜1.4mm、Tcが0.1〜0.2mmである。 Preferably, Td is 0.7 to 1.8 mm, Tc is 0.06 to 0.4 mm, more preferably Td is 0.9 to 1.6 mm, Tc is 0.08 to 0.3 mm, and even more preferably. , Td is 1 to 1.4 mm, and Tc is 0.1 to 0.2 mm.

また、本発明において、板材(C)4が織物繊維とマトリクス樹脂から構成される1層又は2層以上の織物繊維強化樹脂であり、板材(D)5が一方向性の連続繊維とマトリクス樹脂から構成される1層又は2層以上の一方向性繊維強化樹脂であることが好ましい。 Further, in the present invention, the plate material (C) 4 is a woven fabric fiber reinforced resin having one or more layers composed of a woven fabric fiber and a matrix resin, and the plate material (D) 5 is a unidirectional continuous fiber and a matrix resin. It is preferably a unidirectional fiber reinforced resin having one layer or two or more layers composed of.

図3に示すように、積層体(A)2は板材(D)5として一方向性繊維強化樹脂を使用し、板材(C)4として織物繊維強化樹脂を使用して積層した構成である。積層体(A)2のいずれか一方の表層に織物繊維強化樹脂を配することにより、炭素繊維の織物の形状模様を目立たせて、特有の表面形態を付与して外観意匠性を高めることができる。また、板材(D)5に一方向性繊維強化樹脂を用いることにより、積層体(A)2の強度を確保することができる。さらに、前述したように、積層体(A)2の外周縁部及び/又は外周側面部に接合する樹脂部材(B)3の接合量に偏りを持たせて接合させることにより、樹脂部材(B)3の収縮により、積層体(A)2の反りとは逆方向への応力が発生し、非対称積層構造であっても、成形体1の反り発生を抑制させることができる。 As shown in FIG. 3, the laminated body (A) 2 has a configuration in which a unidirectional fiber reinforced resin is used as the plate material (D) 5 and a woven fiber reinforced resin is used as the plate material (C) 4. By arranging the woven fiber reinforced resin on the surface layer of either one of the laminated body (A) 2, the shape pattern of the carbon fiber woven fabric can be made conspicuous, and a unique surface morphology can be imparted to enhance the appearance design. it can. Further, by using the unidirectional fiber reinforced resin for the plate material (D) 5, the strength of the laminated body (A) 2 can be ensured. Further, as described above, the resin member (B) is joined by joining the resin member (B) 3 to the outer peripheral edge portion and / or the outer peripheral side surface portion of the laminated body (A) 2 with a bias. ) 3 causes stress in the direction opposite to the warp of the laminated body (A) 2, and even in an asymmetric laminated structure, the warpage of the molded body 1 can be suppressed.

また、本発明において、図5〜図9に示すように、板材(C)4が、織物繊維とマトリクス樹脂から構成される1層又は2層以上の織物繊維強化樹脂であり、板材(D)5が、コア層7の両表面を、表皮層6として一方向性の連続繊維とマトリクス樹脂から構成される1層又は2層以上の一方向性繊維強化樹脂で挟んだサンドイッチ構造部材であることが好ましい。これにより、織物の形状模様の表面形態を付与して外観意匠性を高めることができるとともに、表皮層6として一方向性繊維強化樹脂を使用したサンドイッチ構造部材を積層配置することにより、軽量・薄肉化とともに、一定の強度・剛性を確保することができる。 Further, in the present invention, as shown in FIGS. 5 to 9, the plate material (C) 4 is a woven fabric fiber reinforced resin having one or more layers composed of a woven fabric fiber and a matrix resin, and the plate material (D). Reference numeral 5 denotes a sandwich structural member in which both surfaces of the core layer 7 are sandwiched between one layer or two or more layers of unidirectional fiber reinforced plastic composed of unidirectional continuous fibers and matrix resin as the skin layer 6. Is preferable. As a result, the surface morphology of the woven fabric can be imparted to enhance the appearance design, and the sandwich structural member using the unidirectional fiber reinforced resin is laminated and arranged as the skin layer 6, thereby making the skin lightweight and thin. Along with this, it is possible to secure a certain level of strength and rigidity.

図5(A)及び図5(B)に示すように、積層体(A)2はサンドイッチ構造部材で構成される板材(D)5のいずれか一方の表面に織物繊維強化樹脂で構成される板材(C)4を積層した形態であり、プレス成形により、面状構造体である積層体(A)2を作成する際、前述した図2に示したのと同様に、プレス成形完了直後では、図5(A)のように反りがなく略フラットな形状をなしているが、その後、冷却による熱収縮により、積層体(A)2は図5(B)に示すように中央が凹み、下に凸状に変形してしまう場合がある。 As shown in FIGS. 5 (A) and 5 (B), the laminate (A) 2 is composed of a woven fiber reinforced resin on the surface of any one of the plate members (D) 5 composed of sandwich structural members. When the laminated body (A) 2 which is a planar structure is produced by laminating the plate material (C) 4 by press molding, immediately after the completion of press molding, as shown in FIG. 2 described above. As shown in FIG. 5 (A), the laminated body (A) 2 has a substantially flat shape without warping, but after that, due to heat shrinkage due to cooling, the laminated body (A) 2 has a dent in the center as shown in FIG. 5 (B). It may be deformed in a convex shape downward.

そこで、図6、図7に示すように、積層体(A)2の外周縁部及び/または外周側面部に接合する樹脂部材(B)3の接合量に偏りを持たせることにより、樹脂部材(B)3の収縮により、積層体(A)2の反りとは逆方向への応力が発生し、全体的に反りが相殺される。図6、図7において表示した符号11から14は前述した図3または図4と同様の意味であるので説明は省略する。 Therefore, as shown in FIGS. 6 and 7, the resin member is made to have a bias in the joining amount of the resin member (B) 3 to be joined to the outer peripheral edge portion and / or the outer peripheral side surface portion of the laminated body (A) 2. Due to the shrinkage of (B) 3, stress is generated in the direction opposite to the warp of the laminated body (A) 2, and the warp is canceled out as a whole. Reference numerals 11 to 14 displayed in FIGS. 6 and 7 have the same meanings as those in FIGS. 3 or 4 described above, and thus the description thereof will be omitted.

また、本発明において、図8、図9に示すように、板材(C)4が、織物繊維とマトリクス樹脂から構成される1層又は2層以上の織物繊維強化樹脂であり、板材(D)5が、コア層7の両表面を、表皮層6として織物繊維とマトリクス樹脂から構成される1層又は2層以上の織物繊維強化樹脂で挟んだサンドイッチ構造部材であることも好ましい。 Further, in the present invention, as shown in FIGS. 8 and 9, the plate material (C) 4 is a woven fabric fiber reinforced resin having one or more layers composed of the woven fabric fiber and the matrix resin, and the plate material (D). It is also preferable that reference numeral 5 denotes a sandwich structure member in which both surfaces of the core layer 7 are sandwiched between one layer or two or more layers of woven fiber reinforced resin composed of woven fibers and matrix resin as the skin layer 6.

これにより、織物の形状模様の表面形態を付与して外観意匠性を高めることができるとともに、表皮層6として織物繊維強化樹脂を使用することにより、成形体1を3次元形状等の複雑形状への賦形が容易に行えるとともに、成形体1の強度・剛性を確保することができる。また、図8または図9に示すように、積層体(A)2の外周縁部及び/又は外周側面部に接合する樹脂部材(B)3の接合量に偏りを持たせることにより、積層体(A)2の反りとは逆方向への応力が発生し、全体的に反りが相殺される。 As a result, the surface morphology of the woven fabric shape pattern can be imparted to enhance the appearance design, and by using the woven fabric fiber reinforced resin as the skin layer 6, the molded body 1 can be made into a complicated shape such as a three-dimensional shape. Can be easily shaped, and the strength and rigidity of the molded body 1 can be ensured. Further, as shown in FIG. 8 or 9, the laminated body is formed by giving a bias to the joining amount of the resin member (B) 3 to be joined to the outer peripheral edge portion and / or the outer peripheral side surface portion of the laminated body (A) 2. (A) Stress is generated in the direction opposite to the warp of 2, and the warp is canceled out as a whole.

一方向性繊維強化樹脂や織物繊維強化樹脂に使用する強化繊維としては、炭素繊維、ガラス繊維、アルミナ繊維、シリコンカーバイド繊維、ボロン繊維、炭化ケイ素繊維などの高強度、高弾性率繊維などが挙げられる。高い剛性を保持したまま軽量性を確保するために、弾性率と密度との比である比弾性率が高い炭素繊維を使用することが好ましく、例えばポリアクリロニトリル(PAN)系、ピッチ系、セルロース系、炭化水素による気相成長系炭素繊維、黒鉛繊維などを用いることができ、これらを2種類以上併用してもよい。好ましくは、剛性と価格のバランスに優れるPAN系炭素繊維がよい。 Examples of the reinforcing fibers used for the unidirectional fiber reinforced plastic and the woven fiber reinforced resin include high strength and high elasticity fibers such as carbon fiber, glass fiber, alumina fiber, silicon carbide fiber, boron fiber and silicon carbide fiber. Be done. In order to ensure light weight while maintaining high rigidity, it is preferable to use carbon fiber having a high specific elastic modulus, which is a ratio of elastic modulus to density, for example, polyacrylonitrile (PAN) type, pitch type, and cellulose type. , Gastric growth carbon fiber by hydrocarbon, graphite fiber and the like can be used, and two or more of these may be used in combination. Preferably, PAN-based carbon fiber having an excellent balance between rigidity and price is preferable.

また、一方向性繊維強化樹脂の一方向性繊維として、繊維配向角度が45度又は90度異なる連続繊維基材を2層以上積層した構成とすることが好ましく、これにより成形体の薄肉・軽量化とともに、一定の剛性・強度を付与することができる。 Further, as the unidirectional fiber of the unidirectional fiber reinforced resin, it is preferable to have a structure in which two or more layers of continuous fiber base materials having different fiber orientation angles of 45 degrees or 90 degrees are laminated, whereby the molded body is thin and lightweight. Along with this, it is possible to impart a certain degree of rigidity and strength.

また、本発明において、板材(C)4は繊維強化プラスチック成形体1の意匠面側最外層に配されることが好ましい。板材(C)4として繊維模様に特徴がある織物繊維強化樹脂を使用することにより、繊維模様に特徴があることから、その特徴ある繊維模様を際立たせることができ、意匠外観において差別化できる。最外層に織物繊維基材を用いることにより炭素繊維の織物の形状模様を目立たせて、斬新な表面模様を発現させることができる。 Further, in the present invention, the plate material (C) 4 is preferably arranged on the outermost layer on the design surface side of the fiber reinforced plastic molded body 1. By using the woven fiber reinforced resin having a characteristic fiber pattern as the plate material (C) 4, since the fiber pattern is characteristic, the characteristic fiber pattern can be made to stand out and can be differentiated in the design appearance. By using a woven fiber base material for the outermost layer, the shape pattern of the carbon fiber woven fabric can be made conspicuous and a novel surface pattern can be expressed.

また、本発明において、樹脂部材(B)3が、積層体(A)2の外周側面部及び/または外周縁部の全周にわたって接合形成されていることが好ましい。図1、図3、図6又は図8に示すように、積層体(A)2の外周側面部及び/または外周縁部の全周にわたって樹脂部材(B)3と接合することで、成形体1全体として高い接合強度と薄肉化を実現することができる。 Further, in the present invention, it is preferable that the resin member (B) 3 is joined and formed over the entire circumference of the outer peripheral side surface portion and / or the outer peripheral edge portion of the laminated body (A) 2. As shown in FIGS. 1, 3, 6 or 8, the molded product is joined to the resin member (B) 3 over the entire circumference of the outer peripheral side surface portion and / or the outer peripheral edge portion of the laminated body (A) 2. 1 As a whole, high bonding strength and thinning can be realized.

また、本発明において、積層体(A)2は板材(C)4が積層されていない側の板材(D)5の外周縁部の平面部の一部の領域または全領域に接合層(G)8を配した構成であり、樹脂部材(B)3が接合層(G)8を介して、積層体(A)2と接合される構成であることが好ましい。 Further, in the present invention, the laminated body (A) 2 has a bonding layer (G) in a part or all of the flat surface portion of the outer peripheral edge portion of the plate material (D) 5 on the side where the plate material (C) 4 is not laminated. ) 8 is arranged, and it is preferable that the resin member (B) 3 is bonded to the laminated body (A) 2 via the bonding layer (G) 8.

図4、図7または図9に示すように、板材(C)4が積層された面側と反対側の面に予め接合層(G)8を付着させておき、その後に樹脂部材(B)3を射出成形する。これにより、積層体(A)2は接合層(G)8を介して溶融した樹脂部材(B)3と接合することで成形体1としてより高い接合強度を実現することができる。接合層(G)8としては、熱可塑性樹脂フィルムや熱可塑性樹脂の不織布が適当に用いることができる。 As shown in FIGS. 4, 7 or 9, the bonding layer (G) 8 is previously attached to the surface opposite to the surface on which the plate material (C) 4 is laminated, and then the resin member (B) is attached. 3 is injection molded. As a result, the laminated body (A) 2 can be bonded to the molten resin member (B) 3 via the bonding layer (G) 8 to realize a higher bonding strength as the molded body 1. As the bonding layer (G) 8, a thermoplastic resin film or a non-woven fabric of a thermoplastic resin can be appropriately used.

また、本発明において、コア層7が、樹脂発泡体または不連続繊維と熱可塑性樹脂からなる多孔質基材からなることが好ましい。 コア層7が多孔質で空隙を有することにより、成形体1の軽量化と高剛性化を実現することができる。 Further, in the present invention, it is preferable that the core layer 7 is made of a resin foam or a porous base material made of a discontinuous fiber and a thermoplastic resin. Since the core layer 7 is porous and has voids, it is possible to realize weight reduction and high rigidity of the molded body 1.

発泡体としては、ポリウレタン樹脂、フェノール樹脂、メラミン樹脂、アクリル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリ塩化ビニル樹脂、ポリスチレン樹脂、アクリロニトリル−ブタジエン−スチレン(ABS)樹脂、ポリエーテルイミド樹脂又はポリメタクリルイミド樹脂が好適に使用できる。具体的には、軽量性を確保するためにスキン層より見かけ密度が小さい樹脂を用いることが好ましく、特に、ポリウレタン樹脂、アクリル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエーテルイミド樹脂又はポリメタクリルイミド樹脂が好ましく使用できる。 Examples of the foam include polyurethane resin, phenol resin, melamine resin, acrylic resin, polyethylene resin, polypropylene resin, polyvinyl chloride resin, polystyrene resin, acrylonitrile-butadiene-styrene (ABS) resin, polyetherimide resin or polymethacrylicimide resin. Can be preferably used. Specifically, in order to ensure light weight, it is preferable to use a resin having an apparent density lower than that of the skin layer, and in particular, a polyurethane resin, an acrylic resin, a polyethylene resin, a polypropylene resin, a polyetherimide resin or a polymethacrylicimide resin is used. It can be preferably used.

また、コア層7として熱可塑性樹脂と不連続繊維からなる複合体を用いる場合には、不連続繊維と熱可塑性樹脂とからなるコア層前駆体を準備し、熱可塑性樹脂の軟化点または融点以上に加熱及び加圧した後、加圧を解除し、不連続繊維の残留応力解放時に元に戻ろうとする復元力、いわゆるスプリングバックにより、厚さ方向に膨張させて空隙を形成させて複合体とすることが好ましい。 When a composite composed of a thermoplastic resin and a discontinuous fiber is used as the core layer 7, a core layer precursor composed of the discontinuous fiber and the thermoplastic resin is prepared, and is equal to or higher than the softening point or the melting point of the thermoplastic resin. After heating and pressurizing, the pressurization is released, and the restoring force that tries to return to the original state when the residual stress of the discontinuous fiber is released, so-called springback, expands in the thickness direction to form voids with the composite. It is preferable to do so.

コア層7に用いる不連続繊維としては、前述した連続繊維と同様の種類の強化繊維を用いることができる。不連続繊維の繊維長は1mm以上150mm未満であることが好ましい。1mm未満である場合、不連続繊維の基材としての使用が難しく、一方、繊維長が150mm以上であると成形体1の板厚みのバラつきが大きくなる場合がある。コア層7に用いる熱可塑性樹脂も、前述した熱可塑性樹脂と同様の種類の樹脂を用いることができる。 As the discontinuous fiber used for the core layer 7, the same kind of reinforcing fiber as the above-mentioned continuous fiber can be used. The fiber length of the discontinuous fiber is preferably 1 mm or more and less than 150 mm. If it is less than 1 mm, it is difficult to use the discontinuous fiber as a base material, while if the fiber length is 150 mm or more, the plate thickness of the molded product 1 may vary widely. As the thermoplastic resin used for the core layer 7, the same type of resin as the above-mentioned thermoplastic resin can be used.

また、本発明において、繊維強化プラスチック成形体1の反りが2.0%以下であることが好ましい。これにより、本発明に係る成形体1を電子機器の筐体として用いる場合、高いフラット性を保持することができ、内部の電子部品と接触することなく、薄肉化と高強度を実現することができる。 Further, in the present invention, the warpage of the fiber reinforced plastic molded product 1 is preferably 2.0% or less. As a result, when the molded body 1 according to the present invention is used as a housing of an electronic device, high flatness can be maintained, and thinning and high strength can be realized without contacting internal electronic parts. it can.

また、本発明では、一方向性繊維強化樹脂や織物繊維強化樹脂は、高い剛性を確保するため、その強化繊維の引張弾性率は、成形体1の剛性の点から好ましくは200〜850GPaの範囲内であるものを使用することが好ましい。強化繊維の引張弾性率が、200GPaよりも小さい場合は、軽量性を保持したまま、必要な高い剛性を確保することができない場合があり、850GPaよりも大きい場合は、強化繊維の圧縮強度が弱く折れやすいため、強化繊維にマトリックス樹脂を含浸し、繊維強化樹脂を成形することが困難である。強化繊維の引張弾性率が、前記範囲内であると積層体の更なる剛性向上、強化繊維の製造性向上の点で好ましい。 Further, in the present invention, since the unidirectional fiber reinforced resin and the woven fiber reinforced resin ensure high rigidity, the tensile elastic modulus of the reinforced fiber is preferably in the range of 200 to 850 GPa from the viewpoint of the rigidity of the molded body 1. It is preferable to use the one that is inside. If the tensile elastic modulus of the reinforcing fiber is smaller than 200 GPa, it may not be possible to secure the required high rigidity while maintaining the light weight, and if it is larger than 850 GPa, the compressive strength of the reinforcing fiber is weak. Since it is easily broken, it is difficult to impregnate the reinforcing fibers with a matrix resin to form the fiber reinforced resin. When the tensile elastic modulus of the reinforcing fiber is within the above range, it is preferable in terms of further improving the rigidity of the laminated body and improving the manufacturability of the reinforcing fiber.

また、本発明では、積層体(A)2の成形性、強度の観点から、一方向性繊維強化樹脂の重量繊維含有率が50〜80重量%、織物繊維強化樹脂の重量繊維含有率が40〜70重量%であることが好ましい。 Further, in the present invention, from the viewpoint of moldability and strength of the laminate (A) 2, the weight fiber content of the unidirectional fiber reinforced resin is 50 to 80% by weight, and the weight fiber content of the woven fiber reinforced resin is 40. It is preferably ~ 70% by weight.

一方向性繊維強化樹脂の重量繊維含有率が50重量%未満であると、積層体(A)2の強度の発現が困難となる場合がある。一方向性繊維強化樹脂の重量繊維含有率が80重量%を超えると、繊維量が多すぎることでプリプレグとしての扱いが難しくなる場合がある。好ましくは55〜75重量%、より好ましくは60〜70重量%である。 If the weight fiber content of the unidirectional fiber reinforced resin is less than 50% by weight, it may be difficult to develop the strength of the laminate (A) 2. If the weight fiber content of the unidirectional fiber reinforced resin exceeds 80% by weight, it may be difficult to handle as a prepreg because the amount of fibers is too large. It is preferably 55 to 75% by weight, more preferably 60 to 70% by weight.

織物繊維強化樹脂の重量繊維含有率が40重量%未満であると、積層体(A)2の強度の発現が困難となる場合がある。織物繊維強化樹脂の重量繊維含有率が70重量%を超えると樹脂が不足することで成形後の意匠性を損なう場合がある。好ましくは45〜65重量%、より好ましくは50〜60重量%である。 If the weight fiber content of the woven fiber reinforced resin is less than 40% by weight, it may be difficult to develop the strength of the laminate (A) 2. If the weight fiber content of the woven fiber reinforced resin exceeds 70% by weight, the resin may be insufficient and the design after molding may be impaired. It is preferably 45 to 65% by weight, more preferably 50 to 60% by weight.

また、本発明において、織物繊維強化樹脂に含まれる繊維織物は、平織り、綾織、繻子織及び朱子織から選択される少なくとも1つの織物であることが好ましい。 Further, in the present invention, the fiber woven fabric contained in the woven fiber reinforced resin is preferably at least one woven fabric selected from plain weave, twill weave, satin weave and satin weave.

また、本発明において、一方向性繊維強化樹脂または織物繊維強化樹脂のマトリクス樹脂が熱硬化性樹脂からなることが好ましい。 Further, in the present invention, it is preferable that the matrix resin of the unidirectional fiber reinforced resin or the woven fiber reinforced resin is made of a thermosetting resin.

熱硬化性樹脂としては、不飽和ポリエステル樹脂、ビニルエステル樹脂、エポキシ樹脂、フェノール(レゾール型)樹脂、ユリア・メラミン樹脂、ポリイミド樹脂、マレイミド樹脂、ベンゾオキサジン樹脂などの熱硬化性樹脂などを好ましく用いることができる。特に、エポキシ樹脂は、成形体の力学特性や、耐熱性の観点から好ましい。エポキシ樹脂は、その優れた力学特性を発現するために、使用する樹脂の主成分として含まれるのが好ましく、具体的には樹脂組成物当たり60重量%以上含まれることが好ましい。 As the thermosetting resin, a thermosetting resin such as an unsaturated polyester resin, a vinyl ester resin, an epoxy resin, a phenol (resole type) resin, a urea-melamine resin, a polyimide resin, a maleimide resin, or a benzoxazine resin is preferably used. be able to. In particular, epoxy resin is preferable from the viewpoint of mechanical properties of the molded product and heat resistance. The epoxy resin is preferably contained as a main component of the resin to be used in order to exhibit its excellent mechanical properties, and specifically, it is preferably contained in an amount of 60% by weight or more per resin composition.

また、本発明において、一方向性繊維強化樹脂または前記織物繊維強化樹脂のマトリクス樹脂が熱可塑性樹脂からなることも好ましい。 Further, in the present invention, it is also preferable that the unidirectional fiber reinforced resin or the matrix resin of the woven fiber reinforced resin is made of a thermoplastic resin.

熱可塑性樹脂としては、ポリスチレン樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリエチレンテレフタレート樹脂、ポリエチレン樹脂及びポリプロピレン樹脂から選択される少なくとも1つの熱可塑性樹脂であることが好ましく、樹脂成分を溶融させて積層体(A)を一体化するとともに、樹脂部材と強固な接合強度を得ることができる。 The thermoplastic resin is preferably at least one thermoplastic resin selected from polystyrene resin, polyamide resin, polycarbonate resin, polyester resin, polyethylene terephthalate resin, polyethylene resin and polypropylene resin, and the resin components are melted and laminated. The body (A) can be integrated, and a strong bonding strength with the resin member can be obtained.

また、他の熱可塑性樹脂も好適に使用できる。例えば、ポリブチレンテレフタレート(PBT)樹脂、ポリトリメチレンテレフタレート(PTT)樹脂、液晶ポリエステル樹脂等のポリエステル樹脂や、ポリブチレン樹脂等のポリオレフィン樹脂や、ポリオキシメチレン(POM)樹脂、ポリフェニレンスルフィド(PPS)樹脂などのポリアリーレンスルフィド樹脂、ポリメチルメタクリレート(PMMA)樹脂、ポリ塩化ビニル(PVC)樹脂、ポリフェニレンエーテル(PPE)樹脂、ポリイミド(PI)樹脂、ポリアミドイミド(PAI)樹脂、ポリエーテルイミド(PEI)樹脂、ポリサルホン(PSU)樹脂、ポリエーテルサルホン樹脂、ポリアリレート(PAR)樹脂などの非晶性樹脂、その他、フェノール系樹脂、フェノキシ樹脂、更にポリスチレン系樹脂、ポリオレフィン系樹脂、ポリウレタン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリブタジエン系樹脂、ポリイソプレン系樹脂、フッ素系樹脂、およびアクリロニトリル系樹脂等の熱可塑エラストマー等や、これらの共重合体および変性体等から選ばれる熱可塑性樹脂が挙げられる。中でも、得られる成形品の軽量性の観点からはポリオレフィン樹脂が好ましく、強度の観点からはポリアミド樹脂が好ましく、表面外観の観点からポリカーボネート樹脂やスチレン系樹脂、変性ポリフェニレンエーテル系樹脂のような非晶性樹脂が好ましい。 Further, other thermoplastic resins can also be preferably used. For example, polyester resins such as polybutylene terephthalate (PBT) resin, polytrimethylene terephthalate (PTT) resin, and liquid crystal polyester resin, polyolefin resins such as polybutylene resin, polyoxymethylene (POM) resin, and polyphenylene sulfide (PPS) resin. Polyarylene sulfide resin, polymethylmethacrylate (PMMA) resin, polyvinyl chloride (PVC) resin, polyphenylene ether (PPE) resin, polyimide (PI) resin, polyamideimide (PAI) resin, polyetherimide (PEI) resin, etc. , Polysulfone (PSU) resin, polyether sulfone resin, polyarylate (PAR) resin and other amorphous resins, other phenol-based resins, phenoxy resins, polystyrene-based resins, polyolefin-based resins, polyurethane-based resins, polyester-based Examples thereof include thermoplastic elastomers such as resins, polyamide-based resins, polybutadiene-based resins, polyisoprene-based resins, fluorine-based resins, and acrylonitrile-based resins, and thermoplastic resins selected from copolymers and modified products thereof. Among them, a polyolefin resin is preferable from the viewpoint of lightness of the obtained molded product, a polyamide resin is preferable from the viewpoint of strength, and amorphous such as a polycarbonate resin, a styrene resin, and a modified polyphenylene ether resin from the viewpoint of surface appearance. A sex resin is preferable.

また、本発明において、樹脂部材(B)3が、不連続炭素繊維またはガラス繊維と熱可塑性樹脂から構成されることが好ましい。これにより、成形体1を構成する積層体(A)2と樹脂部材(B)3が高い接合強度で接合するとともに、成形体1の反り低減を図ることができる。 Further, in the present invention, it is preferable that the resin member (B) 3 is composed of discontinuous carbon fiber or glass fiber and a thermoplastic resin. As a result, the laminated body (A) 2 constituting the molded body 1 and the resin member (B) 3 can be joined with high joining strength, and the warp of the molded body 1 can be reduced.

熱可塑性樹脂としては、前述したポリスチレン樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリエチレンテレフタレート樹脂、ポリエチレン樹脂及びポリプロピレン樹脂から選択される少なくとも1つの熱可塑性樹脂であることが好ましく、樹脂成分を溶融させて積層体(A)2を一体化するとともに、樹脂部材(B)3との強固な接合強度を得ることができる。 The thermoplastic resin is preferably at least one thermoplastic resin selected from the above-mentioned polystyrene resin, polyamide resin, polycarbonate resin, polyester resin, polyethylene terephthalate resin, polyethylene resin and polypropylene resin, and the resin component is melted. The laminated body (A) 2 can be integrated and a strong bonding strength with the resin member (B) 3 can be obtained.

また、樹脂部材(B)3の繊維重量含有率は5〜30重量%であることが好ましい。接合強度を高めるとともに、成形体1の反り低減を図ることができる。5重量%未満であると、成形体1の強度確保が困難になる場合があり、30重量%を超えると、射出成形において、樹脂部材(B)3の充填が一部不十分になる場合がある。繊維重量含有率は8〜28重量%がより好ましく、さらに好ましくは12〜25重量%である。また、不連続炭素繊維またはガラス繊維の重量平均繊維長は0.3〜3mmであることが好ましい。 Further, the fiber weight content of the resin member (B) 3 is preferably 5 to 30% by weight. It is possible to increase the joint strength and reduce the warp of the molded body 1. If it is less than 5% by weight, it may be difficult to secure the strength of the molded body 1, and if it exceeds 30% by weight, the filling of the resin member (B) 3 may be partially insufficient in injection molding. is there. The fiber weight content is more preferably 8 to 28% by weight, still more preferably 12 to 25% by weight. Further, the weight average fiber length of the discontinuous carbon fiber or the glass fiber is preferably 0.3 to 3 mm.

ここで、連続繊維と不連続繊維について定義する。連続繊維とは、成形体1に含有された強化繊維が成形体1の全長または全幅にわたって実質的に連続して配置された様態であり、不連続繊維とは断続的に強化繊維が分断されて配置された様態のものをいう。一般的に、一方向に引き揃えた強化繊維に樹脂を含浸させた一方向繊維強化樹脂が連続繊維に該当し、プレス成形に用いるSMC基材、射出成形に用いる強化繊維が含有したペレット材料などが不連続繊維に該当する。 Here, continuous fibers and discontinuous fibers are defined. The continuous fiber is a state in which the reinforcing fibers contained in the molded body 1 are substantially continuously arranged over the entire length or width of the molded body 1, and the reinforcing fibers are intermittently separated from the discontinuous fiber. It refers to the arranged mode. Generally, a unidirectional fiber reinforced resin obtained by impregnating a unidirectionally aligned reinforcing fiber with a resin corresponds to a continuous fiber, such as an SMC base material used for press molding and a pellet material containing the reinforcing fiber used for injection molding. Corresponds to discontinuous fibers.

不連続繊維の中でも射出成形に用いるペレット材料として、長繊維ペレットと短繊維ペレットの2つに分類することができるが、本発明で扱う長繊維とは成形体1のうち、不連続繊維で構成された部材中に残存した重量平均繊維長が0.3mm以上のものをいい、0.3mm未満のものを短繊維と定義する。 Among the discontinuous fibers, the pellet material used for injection molding can be classified into two types, long fiber pellets and short fiber pellets. The long fibers treated in the present invention are composed of discontinuous fibers in the molded product 1. Those having a weight average fiber length of 0.3 mm or more remaining in the members are defined as short fibers, and those having a weight average fiber length of less than 0.3 mm are defined as short fibers.

樹脂部材(B)3に残存した強化繊維が長繊維であることにより、成形体1の反りの相殺効果を高めることができる。重量平均繊維長が0.3mm未満である短繊維の場合、樹脂部材(B)3の強度が低下傾向になる場合がある。重量平均繊維長が3mmを超えると樹脂粘度が高くなり、射出成形時に樹脂部材(B)3を成形金型の隅部分までに均一に充填しにくくなる場合がある。不連続炭素繊維またはガラス繊維の重量平均繊維長は、好ましくは0.4〜2.8mm、より好ましくは、0.7〜1.5mm、さらに好ましくは、0.9〜1.2mmである。 Since the reinforcing fibers remaining in the resin member (B) 3 are long fibers, the effect of canceling the warp of the molded body 1 can be enhanced. In the case of short fibers having a weight average fiber length of less than 0.3 mm, the strength of the resin member (B) 3 may tend to decrease. If the weight average fiber length exceeds 3 mm, the resin viscosity becomes high, and it may be difficult to uniformly fill the resin member (B) 3 up to the corner portion of the molding die during injection molding. The weight average fiber length of the discontinuous carbon fiber or glass fiber is preferably 0.4 to 2.8 mm, more preferably 0.7 to 1.5 mm, and even more preferably 0.9 to 1.2 mm.

また、本発明において、樹脂部材(B)3が、少なくとも一部に立壁形状部10を有することが好ましい。図4または図7の断面図に示す成形体1の側面部に配される樹脂部材(B)3がその下方に延在する形で立壁形状部10を具備することで成形体1を箱型形状体とすることができる。 Further, in the present invention, it is preferable that the resin member (B) 3 has a standing wall-shaped portion 10 at least in a part thereof. The resin member (B) 3 arranged on the side surface portion of the molded body 1 shown in the cross-sectional view of FIG. 4 or 7 is provided with the vertical wall-shaped portion 10 extending below the resin member (B) 3 to form the molded body 1 in a box shape. It can be a shaped body.

次に、本発明の繊維強化プラスチック成形体の製造方法について図面を用いながら説明する。
まず、図6に示した繊維強化プラスチック成形体1の製造方法について、図10〜図12を用いて説明する。図10に示すように、プレス成形下金型21上に、あらかじめ準備した織物繊維強化樹脂4、表皮層6である一方向性繊維強化樹脂6、コア層7及び表皮層6である一方向性繊維強化樹脂6を順に積層配置して積層体(A)2の前駆体を形成する。織物繊維強化樹脂4及び一方向性繊維強化樹脂6は、強化繊維に熱硬化性樹脂が含浸したプリプレグの形態か、または熱可塑性樹脂が含んだUDテープまたは織物の形態とすることが好ましい。織物繊維強化樹脂4は板材(C)4に相当し、一方向性繊維強化樹脂6、コア層7及び一方向性繊維強化樹脂6から構成されるサンドイッチ構造部材は板材(D)5に相当する。
Next, the method for producing the fiber-reinforced plastic molded product of the present invention will be described with reference to the drawings.
First, the method for manufacturing the fiber-reinforced plastic molded product 1 shown in FIG. 6 will be described with reference to FIGS. 10 to 12. As shown in FIG. 10, on the press-molded lower die 21, the woven fiber reinforced resin 4 prepared in advance, the unidirectional fiber reinforced resin 6 which is the skin layer 6, the core layer 7 and the unidirectional which is the skin layer 6 are unidirectional. The fiber-reinforced resin 6 is laminated and arranged in order to form a precursor of the laminated body (A) 2. The woven fiber reinforced resin 4 and the unidirectional fiber reinforced resin 6 are preferably in the form of a prepreg in which the reinforcing fibers are impregnated with a thermosetting resin, or in the form of a UD tape or a woven fabric containing a thermoplastic resin. The woven fiber reinforced resin 4 corresponds to the plate material (C) 4, and the sandwich structural member composed of the unidirectional fiber reinforced resin 6, the core layer 7, and the unidirectional fiber reinforced resin 6 corresponds to the plate material (D) 5. ..

その後、図11に示すように、プレス成形上金型22を一方向性繊維強化樹脂6と接する位置まで下降させ、一定のプレス圧により積層体(A)2の前駆体を圧縮成形して、積層体(A)2を生成する。この際、金型との積層体(A)2の前駆体との間に図示しない離型フィルムを介在させて離型性を補助させることも有効である。 Then, as shown in FIG. 11, the press-molding upper die 22 is lowered to a position where it comes into contact with the unidirectional fiber reinforced resin 6, and the precursor of the laminate (A) 2 is compression-molded by a constant press pressure. The laminated body (A) 2 is generated. At this time, it is also effective to interpose a release film (not shown) between the mold and the precursor of the laminate (A) 2 to assist the releasability.

その後、図12(A)に示すように、樹脂部材(B)3を形成する空間26を有する射出成形下金型23と射出成形上金型24の間に、図11で示した積層体(A)2を配置する。次に、図12(B)に示すように、強化繊維と熱可塑性樹脂から構成される樹脂部材(B)3を射出ゲート口25から射出成形する。これにより、樹脂部材(B)3が積層体(A)2の外周側面部と接合一体化した繊維強化プラスチック成形体1を形成する。 After that, as shown in FIG. 12A, the laminate shown in FIG. 11 is formed between the injection molding lower mold 23 and the injection molding upper mold 24 having the space 26 for forming the resin member (B) 3. A) Place 2. Next, as shown in FIG. 12 (B), the resin member (B) 3 composed of the reinforcing fiber and the thermoplastic resin is injection-molded from the injection gate port 25. As a result, the resin member (B) 3 is joined and integrated with the outer peripheral side surface portion of the laminated body (A) 2 to form the fiber reinforced plastic molded body 1.

次に、図7に示した接合層(G)8を設けて、積層体(A)2の外周縁部の平面部にも樹脂部材(B)9を接合した繊維強化プラスチック成形体の製造方法について、図13〜図15を用いて説明する。図13に示すように、プレス成形下金型21上に、あらかじめ準備した織物繊維強化樹脂4、表皮層6である一方向性繊維強化樹脂6、コア層7、表皮層6である一方向性繊維強化樹脂6及び接合層(G)8を順に積層配置して積層体(A)の前駆体を形成する。織物繊維強化樹脂4は板材(C)4に相当し、一方向性繊維強化樹脂6、コア層7及び一方向性繊維強化樹脂6及び接合層(G)8から構成されるサンドイッチ構造部材は板材(D)5に相当する。 Next, a method for producing a fiber-reinforced plastic molded product in which the bonding layer (G) 8 shown in FIG. 7 is provided and the resin member (B) 9 is also bonded to the flat surface portion of the outer peripheral edge portion of the laminated body (A) 2. Will be described with reference to FIGS. 13 to 15. As shown in FIG. 13, the woven fiber reinforced resin 4 prepared in advance, the unidirectional fiber reinforced resin 6 which is the skin layer 6, the core layer 7, and the unidirectional which is the skin layer 6 are prepared on the press-molded lower die 21. The fiber reinforced resin 6 and the bonding layer (G) 8 are laminated and arranged in this order to form a precursor of the laminated body (A). The woven fiber reinforced resin 4 corresponds to the plate material (C) 4, and the sandwich structural member composed of the unidirectional fiber reinforced resin 6, the core layer 7, the unidirectional fiber reinforced resin 6 and the bonding layer (G) 8 is a plate material. (D) Corresponds to 5.

その後、図14に示すように、プレス成形上金型22を接合層(G)8と接する位置まで下降させ、一定のプレス圧により積層体(A)2の前駆体を圧縮成形して、積層体(A)2を形成する。 After that, as shown in FIG. 14, the press forming upper die 22 is lowered to a position where it comes into contact with the bonding layer (G) 8, and the precursor of the laminated body (A) 2 is compression molded by a constant press pressure to be laminated. Form body (A) 2.

次に、図15(A)に示すように、樹脂部材(B)3を形成する空間26を有する射出成形下金型23と射出成形上金型24の間に、図14で示した積層体(A)2を配置する。 Next, as shown in FIG. 15A, the laminate shown in FIG. 14 is formed between the injection molding lower mold 23 and the injection molding upper mold 24 having the space 26 for forming the resin member (B) 3. (A) Place 2.

次に、図15(B)に示すように、強化繊維と熱可塑性樹脂から構成される樹脂部材(B)3を射出ゲート口25から射出成形する。これにより、樹脂部材(B)3が積層体(A)2の外周側面部及び外周縁部と接合一体化した繊維強化プラスチック成形体1を形成する。 Next, as shown in FIG. 15B, the resin member (B) 3 composed of the reinforcing fiber and the thermoplastic resin is injection-molded from the injection gate port 25. As a result, the resin member (B) 3 forms the fiber-reinforced plastic molded body 1 which is joined and integrated with the outer peripheral side surface portion and the outer peripheral edge portion of the laminated body (A) 2.

以下、実施例によって、本発明の繊維強化プラスチック成形体1およびその製造方法について具体的に説明するが、下記の実施例は本発明を制限するものではない。 Hereinafter, the fiber-reinforced plastic molded product 1 of the present invention and the method for producing the same will be specifically described with reference to Examples, but the following Examples do not limit the present invention.

(1)数平均繊維長の測定
樹脂部材(B)3またはコア層7に含有される強化繊維の数平均繊維長Lnを測定する。繊維強化プラスチック成形体1から測定する樹脂部材(B)3またはコア層7の一部を切り出し、電気炉にて空気中500℃で60分間加熱して樹脂を十分に焼却除去して強化繊維のみを分離した。分離した強化繊維から無作為に400本以上抽出した。これらの抽出した強化繊維の繊維長の測定は、光学顕微鏡を用いて行い、400本の繊維の長さを1μm単位まで測定して、下式を用いて数平均繊維長Lnを算出した。
数平均繊維長Ln=(ΣLi)/400
Li:繊維長(mm)
(1) Measurement of number average fiber length The number average fiber length Ln of the reinforcing fibers contained in the resin member (B) 3 or the core layer 7 is measured. A part of the resin member (B) 3 or the core layer 7 to be measured from the fiber reinforced plastic molded body 1 is cut out and heated in an electric furnace at 500 ° C. for 60 minutes to sufficiently incinerate and remove the resin to remove only the reinforcing fibers. Was separated. More than 400 fibers were randomly selected from the separated reinforcing fibers. The fiber lengths of these extracted reinforcing fibers were measured using an optical microscope, the lengths of 400 fibers were measured up to 1 μm, and the number average fiber length Ln was calculated using the following formula.
Number average fiber length Ln = (ΣLi) / 400
Li: Fiber length (mm)

(2)繊維重量含有率の測定
積層体(A)2を構成する一方向性繊維強化樹脂、織物繊維強化樹脂、コア層または樹脂部材(B)3の繊維重量含有率は、以下の方法により測定した。繊維強化プラスチック成形体1から測定する上記した各部材を切り出し、その重量w0(g)を測定した。次に、切り出したサンプルを空気中で500℃×1時間加熱し、樹脂成分を十分に焼却除去して残存した強化繊維の重量w1(g)を測定した。下式を用いて、繊維重量含有率(wt%)を求めた。測定はn=3で行い、その平均値を用いた。
繊維重量含有率(wt%)=(強化繊維の重量w1/切り出しサンプルの重量w0)×100
(2) Measurement of Fiber Weight Content The fiber weight content of the unidirectional fiber reinforced resin, woven fiber reinforced resin, core layer or resin member (B) 3 constituting the laminate (A) 2 is determined by the following method. It was measured. Each of the above-mentioned members to be measured was cut out from the fiber-reinforced plastic molded body 1, and its weight w0 (g) was measured. Next, the cut-out sample was heated in air at 500 ° C. for 1 hour to sufficiently incinerate and remove the resin component, and the weight w1 (g) of the remaining reinforcing fiber was measured. The fiber weight content (wt%) was determined using the following formula. The measurement was performed at n = 3, and the average value was used.
Fiber weight content (wt%) = (weight of reinforcing fiber w1 / weight of cut-out sample w0) x 100

(3)曲げ剛性、曲げ弾性率の測定
各部材の曲げ弾性率はJIS K 7171に基づいて測定した。各部材の曲げ剛性は、前記曲げ弾性率の測定から得られた曲げ弾性率×断面二次モーメント/板幅により算出した。
(3) Measurement of flexural rigidity and flexural modulus The flexural modulus of each member was measured based on JIS K 7171. The flexural rigidity of each member was calculated by multiplying the flexural modulus obtained from the measurement of the flexural modulus by the moment of inertia of area / plate width.

(4)反りの測定
図16に繊維強化プラスチック成形体1の反りの状態を測定する方法を示す。成形体1の反りはBOSCH社のレーザー距離計を用いて測定した。まず、成形体1を、水平を保持した平板30上に載置する。成形体1の上方にレーザー距離計31が移動できる基準面32を準備する。
(4) Measurement of Warpage FIG. 16 shows a method of measuring the warp state of the fiber reinforced plastic molded body 1. The warp of the molded body 1 was measured using a laser range finder manufactured by BOSCH. First, the molded body 1 is placed on a flat plate 30 that is kept horizontal. A reference surface 32 on which the laser range finder 31 can move is prepared above the molded body 1.

まず、レーザー距離計31により基準面32と成形体1の両最端部33、34の距離を測定し、その端部33と34を結んだ線を反り下基準線35とする。成形体1が例えば長方形であれば4辺それぞれについて測定した。測定箇所は積層体(A)2の4辺の外周端部付近にレーザーを照射して行った。この端部は積層体(A)2の端部であり、樹脂部材(B)3は含めない。 First, the distance between the reference surface 32 and both end portions 33 and 34 of the molded body 1 is measured by the laser range finder 31, and the line connecting the end portions 33 and 34 is set as the warped lower reference line 35. If the molded body 1 is, for example, a rectangle, measurement was performed on each of the four sides. The measurement location was performed by irradiating the vicinity of the outer peripheral ends of the four sides of the laminated body (A) 2 with a laser. This end portion is the end portion of the laminated body (A) 2, and does not include the resin member (B) 3.

次に、レーザー31を両端部33及び34間を一定の等間隔で移動させ、それぞれの場所での基準面32と成形体1との距離を測定する。図16では奇数点の7点を例示している。基準面32と成形体1との距離が最も短い箇所において、反り下基準線35と平行な接線を反り上基準線36とする。両端部33及び34の間の距離をL(mm)、反り下基準線35と反り上基準線36との距離をA(mm)とすると、
反り=(A/L)*100[%]
で規定した。
Next, the laser 31 is moved between both end portions 33 and 34 at regular intervals, and the distance between the reference surface 32 and the molded body 1 at each location is measured. FIG. 16 illustrates seven odd-numbered points. At the place where the distance between the reference surface 32 and the molded body 1 is the shortest, the tangent line parallel to the lower warp reference line 35 is defined as the upper warp reference line 36. Let L (mm) be the distance between both ends 33 and 34, and A (mm) be the distance between the lower warp reference line 35 and the upper warp reference line 36.
Warp = (A / L) * 100 [%]
Specified in.

(材料組成例1−1)一方向性繊維強化樹脂の調製
PAN系炭素繊維束をシート状に一方向に配列させ、エポキシ樹脂を含浸させた一方向性繊維強化樹脂として、以下の一方向プリプレグを準備した。
・一方向プリプレグ(1)(東レ株式会社製、P3452S−15、炭素繊維の重量含有率67%、炭素繊維の引張弾性率235GPa、厚み0.15mm)
・一方向プリプレグ(2)(東レ株式会社製、P3452S−10、炭素繊維の重量含有率67%、炭素繊維の引張弾性率235GPa、厚み0.10mm)
・一方向プリプレグ(3)(東レ株式会社製、P12453F−16、炭素繊維の重量含有率67%、炭素繊維の引張弾性率550GPa、厚み0.15mm)
・一方向プリプレグ(4)(東レ株式会社製、P12453F−11、炭素繊維の重量含有率67%、炭素繊維の引張弾性率550GPa、厚み0.10mm)
(Material Composition Example 1-1) Preparation of Unidirectional Fiber Reinforced Resin The following unidirectional fiber prepreg is used as a unidirectional fiber reinforced resin in which PAN-based carbon fiber bundles are arranged in a sheet shape in one direction and impregnated with an epoxy resin. Prepared.
One-way prepreg (1) (manufactured by Toray Industries, Inc., P3452S-15, carbon fiber weight content 67%, carbon fiber tensile modulus 235 GPa, thickness 0.15 mm)
One-way prepreg (2) (manufactured by Toray Industries, Inc., P3452S-10, carbon fiber weight content 67%, carbon fiber tensile modulus 235 GPa, thickness 0.10 mm)
One-way prepreg (3) (manufactured by Toray Industries, Inc., P12453F-16, carbon fiber weight content 67%, carbon fiber tensile modulus 550 GPa, thickness 0.15 mm)
One-way prepreg (4) (manufactured by Toray Industries, Inc., P12453F-11, carbon fiber weight content 67%, carbon fiber tensile modulus 550 GPa, thickness 0.10 mm)

(材料組成例1−2)織物繊維強化樹脂の調製
織物繊維強化樹脂として、以下の織物プリプレグを準備した。
・引張弾性率が230GPaの織物炭素繊維とガラス転移温度が135℃であるエポキシ樹脂で構成される、目付198g/m、炭素繊維含有率56重量%、厚み0.10mmの織物プリプレグ(1)
・引張弾性率が550GPaの織物炭素繊維とガラス転移温度が135℃であるエポキシ樹脂で構成される、目付198g/m、炭素繊維含有率56重量%、厚み0.10mmの織物プリプレグ(2)
・引張弾性率が230GPaの織物炭素繊維とガラス転移温度が135℃であるエポキシ樹脂で構成される、目付198g/m、炭素繊維含有率56重量%、厚み0.05mmの織物プリプレグ(3)
(Material Composition Example 1-2) Preparation of Woven Fabric Reinforced Resin The following woven prepreg was prepared as the woven fiber reinforced resin.
A woven prepreg (1) having a texture of 198 g / m 2 , a carbon fiber content of 56% by weight, and a thickness of 0.10 mm, which is composed of a woven carbon fiber having a tensile elastic modulus of 230 GPa and an epoxy resin having a glass transition temperature of 135 ° C.
A woven prepreg (2) having a grain size of 198 g / m 2 , a carbon fiber content of 56% by weight, and a thickness of 0.10 mm, which is composed of a woven carbon fiber having a tensile elastic modulus of 550 GPa and an epoxy resin having a glass transition temperature of 135 ° C.
A woven prepreg (3) having a texture of 198 g / m 2 , a carbon fiber content of 56% by weight, and a thickness of 0.05 mm, which is composed of a woven carbon fiber having a tensile elastic modulus of 230 GPa and an epoxy resin having a glass transition temperature of 135 ° C.

(材料組成例2)コア層7の調製
コア層として、以下のコア層を準備した。
・コア層(1):発泡ポリプロピレン(東レ株式会社製、RC2012W)からなるコア層(1)
・コア層(2):多孔質基材として、不連続繊維(東レ株式会社製、T700S、炭素繊維の数平均繊維長5mm)と熱可塑性樹脂(ポリプロピレン)、不連続繊維の重量含有量30重量%からなるコア層(2)
(Material Composition Example 2) Preparation of Core Layer 7 The following core layer was prepared as the core layer.
-Core layer (1): Core layer (1) made of expanded polypropylene (manufactured by Toray Industries, Inc., RC2012W)
-Core layer (2): As a porous base material, discontinuous fiber (manufactured by Toray Industries, Inc., T700S, number average fiber length of carbon fiber 5 mm), thermoplastic resin (polypropylene), weight content of discontinuous fiber 30 weight Core layer consisting of% (2)

(材料組成例3)樹脂部材(B)3の調製
射出成形用ガラス繊維ペレット(帝人株式会社製、GXV3540−UI、ガラス繊維、数平均繊維長0.2mm、ポリカーボネート樹脂、繊維重量含有率40重量%)を準備し、樹脂部材(B−1)3とした。
射出成形用ガラス繊維ペレット(東レ株式会社製、A503−F1、ガラス繊維、数平均繊維長0.2mm)、PPS樹脂、繊維重量含有率30重量%)を準備し、樹脂部材(B−2)3とした。
(Material Composition Example 3) Preparation of Resin Member (B) 3 Glass Fiber Pellet for Injection Molding (manufactured by Teijin Co., Ltd., GXV3540-UI, glass fiber, number average fiber length 0.2 mm, polycarbonate resin, fiber weight content 40 weight %) Was prepared and used as the resin member (B-1) 3.
Prepare glass fiber pellets for injection molding (manufactured by Toray Co., Ltd., A503-F1, glass fiber, number average fiber length 0.2 mm), PPS resin, fiber weight content 30% by weight), and resin member (B-2). It was set to 3.

(材料組成例4)接合層(G)8の調製
ポリエステル樹脂(東レ・デュポン(株)社製“ハイトレル”(登録商標)4057)を二軸押出機のホッパーから投入し、押出機にて溶融混練した後、T字ダイから押出した。その後、60℃のチルロールで引き取ることによって冷却固化させ、厚み0.05mmのポリエステル樹脂フィルムを得た。これを熱可塑接合層(G)8として使用した。
(Material Composition Example 4) Preparation of Bonding Layer (G) 8 Polyester resin (“Hitrel” (registered trademark) 4057 manufactured by Toray DuPont Co., Ltd.) is charged from the hopper of a twin-screw extruder and melted by the extruder. After kneading, it was extruded from a T-shaped die. Then, it was cooled and solidified by taking it up with a chill roll at 60 ° C. to obtain a polyester resin film having a thickness of 0.05 mm. This was used as the thermoplastic joint layer (G) 8.

(実施例1)
実施例1では図3に示した繊維強化プラスチック成形体(1)1を作成した。
板材 ( D)5として材料組成例1−1で準備した300mm×300mmの長方形の一方向プリプレグ(1)を準備し、板材(C)4として材料組成例1−2で準備した300mm×300mm×0.1mmtの織物プリプレグ(1)の2plyを準備し、板材 ( D)5と板材(C)4を積層して、積層体(A−1)2の前駆体を準備した。
(Example 1)
In Example 1, the fiber-reinforced plastic molded body (1) 1 shown in FIG. 3 was prepared.
A 300 mm × 300 mm rectangular unidirectional prepreg (1) prepared in Material Composition Example 1-1 was prepared as the plate material (D) 5, and 300 mm × 300 mm × prepared in Material Composition Example 1-2 as the plate material (C) 4. A 0.1 mmt woven prepreg (1) 2 ply was prepared, and the plate material (D) 5 and the plate material (C) 4 were laminated to prepare a precursor of the laminated body (A-1) 2.

次に、図10に例示する成形金型を用いて、この積層体(A−1)2の前駆体を図示しない離型フィルムで挟み、300mm×300mmの長方形のプレス成形下金型21に載置した。 Next, using the molding die illustrated in FIG. 10, the precursor of the laminated body (A-1) 2 is sandwiched between mold release films (not shown) and placed on a rectangular press-molded lower die 21 of 300 mm × 300 mm. I put it.

次に、図11に例示する成形金型を用いて、プレス成形上金型22をセットした後、盤面温度150℃の盤面の上に配置し、盤面を閉じて3MPaで加熱プレスした。加圧から5分間経過した後、盤面を開き、厚み0.5mm、300mm×300mmの長方形の平板形状をした炭素繊維強化樹脂板である積層体(A−1)2を得た。 Next, using the molding die illustrated in FIG. 11, the press molding upper die 22 was set, placed on a board surface having a board surface temperature of 150 ° C., the board surface was closed, and heat pressing was performed at 3 MPa. After 5 minutes had passed from the pressurization, the board surface was opened to obtain a laminated body (A-1) 2 which is a carbon fiber reinforced resin plate having a thickness of 0.5 mm and a rectangular flat plate shape of 300 mm × 300 mm.

次に、図12(A)に例示する成形金型を用いて、射出成形下金型23と射出成形上金型24とで形成される空間に、積層体(A−1)2を配置し、図12(B)に示すように、材料組成例3で得られた樹脂部材(B−1)3をAm1/Am2が20になるよう射出ゲート口25から射出成形して、繊維強化プラスチック成形体(1)1を製造した。得られた繊維強化プラスチック成形体(1)1の反り量を測定したところ、長方形の4辺ともに辺の長さに対して反りが0.5%以内で、実使用上問題ないレベルであった。繊維強化プラスチック成形体の材料組成、物性特性等をまとめて(表1)に示す。表1に示す反りの量は4辺の反り量のうち最大値を表している。以降の実施例に関しても同様である。 Next, using the molding die illustrated in FIG. 12 (A), the laminate (A-1) 2 is arranged in the space formed by the injection molding lower mold 23 and the injection molding upper mold 24. , As shown in FIG. 12B, the resin member (B-1) 3 obtained in Material Composition Example 3 is injection-molded from the injection gate port 25 so that Am1 / Am2 becomes 20, and fiber-reinforced plastic molding is performed. Body (1) 1 was manufactured. When the amount of warpage of the obtained fiber-reinforced plastic molded body (1) 1 was measured, the warpage of all four sides of the rectangle was within 0.5% with respect to the length of the sides, which was a level that would not cause any problem in actual use. .. The material composition, physical properties, etc. of the fiber-reinforced plastic molded product are summarized in (Table 1). The amount of warpage shown in Table 1 represents the maximum value among the amounts of warpage on four sides. The same applies to the subsequent examples.

(実施例2)
実施例2では図4に示した繊維強化プラスチック成形体(2)1を作成した。
実施例1で示した板材 (D)5と板材(C)4に、材料組成例4で準備した接合層(G)8を積層した以外は実施例1と同様の処方で積層体(A−2)2の前駆体を準備した。
(Example 2)
In Example 2, the fiber-reinforced plastic molded body (2) 1 shown in FIG. 4 was prepared.
A laminate (A-) having the same formulation as that of Example 1 except that the bonding layer (G) 8 prepared in Material Composition Example 4 was laminated on the plate material (D) 5 and the plate material (C) 4 shown in Example 1. 2) The precursor of 2 was prepared.

次に、図13及び図14に例示する成形金型を用いて、実施例1と同様の条件にて炭素繊維強化樹脂板である積層体(A−2)2を得た。 Next, using the molding dies illustrated in FIGS. 13 and 14, a laminated body (A-2) 2 which is a carbon fiber reinforced resin plate was obtained under the same conditions as in Example 1.

次に、図15(A)に例示する成形金型を用いて、射出成形下金型23と射出成形上金型24とで形成される空間に、積層体(A−2)2を配置し、図15(B)に示すように、材料組成例3で得られた樹脂部材(B−1)3をAm1/Am2が表1に示す値になるよう射出ゲート口25から射出成形して、繊維強化プラスチック成形体(2)1を製造した。得られた繊維強化プラスチック成形体(2)1の反りの量は小さく、実使用上問題ないレベルであった。繊維強化プラスチック成形体の材料組成、物性特性等をまとめて(表1)に示す。 Next, using the molding die illustrated in FIG. 15A, the laminated body (A-2) 2 is arranged in the space formed by the injection molding lower mold 23 and the injection molding upper mold 24. As shown in FIG. 15 (B), the resin member (B-1) 3 obtained in Material Composition Example 3 was injection-molded from the injection gate port 25 so that Am1 / Am2 had the values shown in Table 1. A fiber-reinforced plastic molded product (2) 1 was manufactured. The amount of warpage of the obtained fiber-reinforced plastic molded product (2) 1 was small, and there was no problem in actual use. The material composition, physical properties, etc. of the fiber-reinforced plastic molded product are summarized in (Table 1).

(実施例3)
実施例3では図6に示した繊維強化プラスチック成形体(3)1を作成した。
板材(D)5として、材料組成例1−1で準備した一方向プリプレグと材料組成例2−1で準備したコア層(1)を用いて、「一方向プリプレグ(1)0°/一方向プリプレグ(2)90°/コア層(1)/一方向プリプレグ(2)90°/一方向プリプレグ(1)0°」の順序で積層した300mm×300mmの長方形の板材(D)5の前駆体を準備した。次に、板材(C)4として材料組成例1−2で準備した300mm×300mm×0.1mmtの織物プリプレグ(1)の2plyを板材(D)5の前駆体の片面に積層して積層体(A−2)2の前駆体を準備した。板材(D)5の曲げ弾性率Mdは、コア層(1)7の両面に一方向プリプレグをサンドイッチ積層した「一方向プリプレグ(1)0°/一方向プリプレグ(2)90°/コア層(1)/一方向プリプレグ(2)90°/一方向プリプレグ(1)0°」構造のプリプレグ硬化物の弾性率を測定した。
(Example 3)
In Example 3, the fiber-reinforced plastic molded body (3) 1 shown in FIG. 6 was prepared.
As the plate material (D) 5, the unidirectional prepreg prepared in the material composition example 1-1 and the core layer (1) prepared in the material composition example 2-1 were used, and the "unidirectional prepreg (1) 0 ° / unidirectional" was used. Prepreg of 300 mm × 300 mm rectangular plate (D) 5 laminated in the order of prepreg (2) 90 ° / core layer (1) / unidirectional prepreg (2) 90 ° / unidirectional prepreg (1) 0 ° ” Prepared. Next, 2 plies of the 300 mm × 300 mm × 0.1 mmt woven prepreg (1) prepared in Material Composition Example 1-2 as the plate material (C) 4 are laminated on one side of the precursor of the plate material (D) 5. The precursor of (A-2) 2 was prepared. The flexural modulus Md of the plate material (D) 5 is "unidirectional prepreg (1) 0 ° / unidirectional prepreg (2) 90 ° / core layer (1) unidirectional prepreg (1) 0 ° / unidirectional prepreg (2) 90 ° / core layer (1) The elastic modulus of the cured product of the prepreg structure of "1) / unidirectional prepreg (2) 90 ° / unidirectional prepreg (1) 0 °" was measured.

次に、図10及び図11に例示する金型を用いて、実施例1と同様の条件にて、炭素繊維強化樹脂板である積層体(A−3)2を得た。 Next, using the molds illustrated in FIGS. 10 and 11, a laminated body (A-3) 2 which is a carbon fiber reinforced resin plate was obtained under the same conditions as in Example 1.

次に、図12(A)に例示する金型を用いて、射出成形下金型23と射出成形上金型24とで形成される空間に、積層体(A−3)2を配置し、図12(B)に示すように、材料組成例3で得られた樹脂部材(B−1)3をAm1/Am2が表1に示す値になるようになるよう射出ゲート口25から射出成形して、繊維強化プラスチック成形体(3)1を製造した。得られた繊維強化プラスチック成形体(3)1の反りの量は小さく、実使用上問題ないレベルであった。繊維強化プラスチック成形体の材料組成、物性特性等をまとめて(表1)に示す。 Next, using the mold illustrated in FIG. 12 (A), the laminated body (A-3) 2 is arranged in the space formed by the injection molding lower mold 23 and the injection molding upper mold 24. As shown in FIG. 12B, the resin member (B-1) 3 obtained in Material Composition Example 3 is injection-molded from the injection gate port 25 so that Am1 / Am2 have the values shown in Table 1. The fiber-reinforced plastic molded product (3) 1 was manufactured. The amount of warpage of the obtained fiber-reinforced plastic molded product (3) 1 was small, and there was no problem in actual use. The material composition, physical properties, etc. of the fiber-reinforced plastic molded product are summarized in Table 1.

(実施例4)
実施例4では図7に示した繊維強化プラスチック成形体(4)1を作成した。
実施例3で示した板材 (D)5と板材(C)4に、材料組成例4で準備した接合層(G)8を積層した以外は実施例3と同様の処方で積層体(A−4)2の前駆体を準備した。
(Example 4)
In Example 4, the fiber-reinforced plastic molded body (4) 1 shown in FIG. 7 was prepared.
A laminated body (A-) having the same formulation as in Example 3 except that the bonding layer (G) 8 prepared in Material Composition Example 4 was laminated on the plate material (D) 5 and the plate material (C) 4 shown in Example 3. 4) The precursor of 2 was prepared.

次に、図13及び図14に例示する成形金型を用いて、実施例1と同様の条件にて炭素繊維強化樹脂板である積層体(A−4)2を得た。 Next, using the molding dies illustrated in FIGS. 13 and 14, a laminated body (A-4) 2 which is a carbon fiber reinforced resin plate was obtained under the same conditions as in Example 1.

次に、図15(A)に例示する成形金型を用いて、射出成形下金型23と射出成形上金型24とで形成される空間に、積層体(A−4)2を配置し、図15(B)に示すように、材料組成例3で準備した樹脂部材(B−1)3をAm1/Am2が表1に示す値になるよう射出ゲート口25から射出成形して、繊維強化プラスチック成形体(4)1を製造した。得られた繊維強化プラスチック成形体(4)1の反りの量は小さく、実使用上問題ないレベルであった。繊維強化プラスチック成形体の材料組成、物性特性等をまとめて(表1)に示す。 Next, using the molding die illustrated in FIG. 15A, the laminated body (A-4) 2 is arranged in the space formed by the injection molding lower mold 23 and the injection molding upper mold 24. , As shown in FIG. 15 (B), the resin member (B-1) 3 prepared in Material Composition Example 3 was injection-molded from the injection gate port 25 so that Am1 / Am2 had the values shown in Table 1, and the fibers were formed. A reinforced plastic molded product (4) 1 was manufactured. The amount of warpage of the obtained fiber-reinforced plastic molded product (4) 1 was small, and there was no problem in actual use. The material composition, physical properties, etc. of the fiber-reinforced plastic molded product are summarized in (Table 1).

(実施例5)
実施例5では図8に示した繊維強化プラスチック成形体(5)1を作成した。
板材(D)5として、材料組成例1−2で準備した織物プリプレグと材料組成例2−1で準備したコア層(2)を用いて、「綾織プリプレグ(3)0°/綾織プリプレグ(2)90°/発泡ポリプロピレン/綾織プリプレグ(2)90°/綾織プリプレグ(3)0°」の順序で積層した300mm×300mmの長方形の板材(D)5の前駆体を準備した。次に、板材(C)4として材料組成例1−2で準備した300mm×300mm×0.1mmtの織物プリプレグ(1)の2plyを板材(D)5の前駆体の片面に積層して積層体(A−5)2の前駆体を準備した。板材 ( D )5の曲げ弾性率Mdは、コア層(1)7の両面に織物プリプレグをサンドイッチ積層した「綾織プリプレグ(3)0°/綾織プリプレグ(2)90°/発泡ポリプロピレン/綾織プリプレグ(2)90°/綾織プリプレグ(3)0°」構造のプリプレグ硬化物の弾性率を測定した。
(Example 5)
In Example 5, the fiber-reinforced plastic molded body (5) 1 shown in FIG. 8 was prepared.
As the plate material (D) 5, the woven prepreg prepared in Material Composition Example 1-2 and the core layer (2) prepared in Material Composition Example 2-1 were used, and "Twill prepreg (3) 0 ° / Twill prepreg (2). ) 90 ° / foamed polypropylene / twill prepreg (2) 90 ° / twill prepreg (3) 0 ° ”, a precursor of a 300 mm × 300 mm rectangular plate (D) 5 was prepared. Next, 2 plies of the 300 mm × 300 mm × 0.1 mmt woven fabric prepreg (1) prepared in Material Composition Example 1-2 as the plate material (C) 4 are laminated on one side of the precursor of the plate material (D) 5. The precursor of (A-5) 2 was prepared. The flexural modulus Md of the plate material (D) 5 is "twill prepreg (3) 0 ° / twill prepreg (2) 90 ° / foamed polypropylene / twill prepreg (twill prepreg) in which woven prepregs are sandwiched and laminated on both sides of the core layer (1) 7. The elastic modulus of the cured prepreg having a structure of "2) 90 ° / twill prepreg (3) 0 °" was measured.

次に、図10及び図11に例示する金型を用いて、実施例1と同様の条件にて、炭素繊維強化樹脂板である積層体(A−5)2を得た。 Next, using the molds illustrated in FIGS. 10 and 11, a laminated body (A-5) 2 which is a carbon fiber reinforced resin plate was obtained under the same conditions as in Example 1.

次に、図12(A)に例示する金型を用いて、射出成形下金型23と射出成形上金型24とで形成される空間に、積層体(A−5)2を配置し、図12(B)に示すように、材料組成例3で準備した樹脂部材(B−2)3をAm1/Am2が表1に示す値になるようになるよう射出ゲート口25から射出成形して、繊維強化プラスチック成形体(5)1を製造した。得られた繊維強化プラスチック成形体(5)1の反りの量は小さく、実使用上問題ないレベルであった。繊維強化プラスチック成形体の材料組成、物性特性等をまとめて(表1)に示す。 Next, using the mold illustrated in FIG. 12 (A), the laminated body (A-5) 2 is arranged in the space formed by the injection molding lower mold 23 and the injection molding upper mold 24. As shown in FIG. 12B, the resin member (B-2) 3 prepared in Material Composition Example 3 is injection-molded from the injection gate port 25 so that Am1 / Am2 have the values shown in Table 1. , Fiber-reinforced plastic molded product (5) 1 was manufactured. The amount of warpage of the obtained fiber-reinforced plastic molded product (5) 1 was small, and there was no problem in actual use. The material composition, physical properties, etc. of the fiber-reinforced plastic molded product are summarized in (Table 1).

(実施例6)
実施例6では図9に示した繊維強化プラスチック成形体(6)1を作成した。
実施例5で示した板材 (D)5と板材(C)4に、材料組成例4で準備した接合層(G)8を積層した以外は実施例5と同様の処方で積層体(A−4)2の前駆体を準備した。
(Example 6)
In Example 6, the fiber-reinforced plastic molded body (6) 1 shown in FIG. 9 was prepared.
A laminate (A-) having the same formulation as that of Example 5 except that the bonding layer (G) 8 prepared in Material Composition Example 4 was laminated on the plate material (D) 5 and the plate material (C) 4 shown in Example 5. 4) The precursor of 2 was prepared.

次に、図13及び図14に例示する成形金型を用いて、実施例1と同様の条件にて炭素繊維強化樹脂板である積層体(A−6)2を得た。 Next, using the molding dies illustrated in FIGS. 13 and 14, a laminated body (A-6) 2 which is a carbon fiber reinforced resin plate was obtained under the same conditions as in Example 1.

次に、図15(A)に例示する成形金型を用いて、射出成形下金型23と射出成形上金型24とで形成される空間に、積層体(A−6)2を配置し、図15(B)に示すように、材料組成例3で得られた樹脂部材(B−2)3をAm1/Am2が表1に示す値になるよう射出ゲート口25から射出成形して、繊維強化プラスチック成形体(6)1を製造した。得られた繊維強化プラスチック成形体(6)1の反りの量は小さく、実使用上問題ないレベルであった。繊維強化プラスチック成形体の材料組成、物性特性等をまとめて(表1)に示す Next, using the molding die illustrated in FIG. 15A, the laminate (A-6) 2 is arranged in the space formed by the injection molding lower mold 23 and the injection molding upper mold 24. As shown in FIG. 15B, the resin member (B-2) 3 obtained in Material Composition Example 3 was injection-molded from the injection gate port 25 so that Am1 / Am2 had the values shown in Table 1. A fiber-reinforced plastic molded product (6) 1 was manufactured. The amount of warpage of the obtained fiber-reinforced plastic molded product (6) 1 was small, and there was no problem in actual use. The material composition, physical properties, etc. of the fiber-reinforced plastic molded product are summarized in (Table 1).

(比較例1)
比較例1は(表1)に示した材料処方や寸法にて行った。Am2/Am1が低い成形体であり、得られた繊維強化プラスチック成形体1の反りが大きく、実使用上問題があった。
(Comparative Example 1)
Comparative Example 1 was carried out using the material formulations and dimensions shown in (Table 1). It is a molded product having a low Am2 / Am1 and the obtained fiber-reinforced plastic molded product 1 has a large warp, which causes a problem in actual use.

(比較例2)
比較例2は(表1)に示した材料処方や寸法にて行った。Am2/Am1が高い成形体であり、得られた繊維強化プラスチック成形体1の肉厚が大きくなり、また、成形体1の反りが大きく、実使用上問題があった。
(Comparative Example 2)
Comparative Example 2 was performed using the material formulations and dimensions shown in (Table 1). Since the molded product has a high Am2 / Am1, the thickness of the obtained fiber-reinforced plastic molded product 1 is large, and the warpage of the molded product 1 is large, which causes a problem in actual use.

Figure 2020163674
Figure 2020163674

本発明の繊維強化プラスチック成形体は、自動車内外装、電気・電子機器筐体、自転車、スポーツ用品用構造材、航空機内装材、輸送用箱体等に有効に使用できる。 The fiber-reinforced plastic molded product of the present invention can be effectively used for automobile interior / exterior, electrical / electronic equipment housings, bicycles, structural materials for sports equipment, aircraft interior materials, transportation boxes, and the like.

1 繊維強化プラスチック成形体
2 積層体(A)
3 樹脂部材(B)
4 板材(C)
5 板材(D)
6 表皮層
7 コア層
8 接合層(G)
9 積層体(A)の外周縁部の平面部に接合した樹脂部材(B)
10 立壁形状部
11 積層体(A)2の肉厚
12 分割した中央線
13 板材(C)が積層されている方の領域(R1)
14 板材(C)が積層されていない方の領域(R2)
21 プレス成形下金型
22 プレス成形上金型
23 射出成形下金型
24 射出成形上金型
25 射出ゲート口
26 樹脂部材(B)を形成する空間
30 平板
31 レーザー距離計
32 基準面
33、34 成形体の両最端部
35 反り下基準線
36 反り上基準線
1 Fiber reinforced plastic molded body 2 Laminated body (A)
3 Resin member (B)
4 Plate material (C)
5 Plate material (D)
6 Epidermis layer 7 Core layer 8 Joint layer (G)
9 Resin member (B) joined to the flat surface of the outer peripheral edge of the laminated body (A)
10 Standing wall shape portion 11 Wall thickness of laminated body (A) 2 12 Divided center line 13 Region (R1) on which the plate material (C) is laminated
14 Region (R2) on which the plate material (C) is not laminated
21 Press-molded lower die 22 Press-molded upper die 23 Injection-molded lower die 24 Injection-molded upper die 25 Injection gate port 26 Space for forming resin member (B) 30 Flat plate 31 Laser distance meter 32 Reference surfaces 33, 34 Both ends of the molded product 35 Warp lower reference line 36 Warp upper reference line

Claims (11)

少なくとも繊維強化樹脂からなる面状構造体である積層体(A)と、前記積層体(A)の外周側面部及び/または外周縁部の一部の領域または全領域に接合した樹脂部材(B)とから構成される繊維強化プラスチック成形体であって、
前記積層体(A)は、少なくとも曲げ剛性の異なる板材(C)と板材(D)が積層した構成を有し、前記板材(D)の曲げ剛性は前記板材(C)の曲げ剛性よりも大きく、前記積層体(A)を肉厚方向で半等分に分割し、分割した中央線よりも前記板材(C)が積層されている方の領域(R1)に存在する前記樹脂部材(B)の量をAm1、前記板材(C)が積層されていない方の領域(R2)に存在する前記樹脂部材(B)の量をAm2とすると、Am2/Am1が2〜25の範囲にあることを特徴とする繊維強化プラスチック成形体。
A resin member (B) bonded to a laminated body (A) which is a planar structure made of at least a fiber reinforced resin and a part or all of an outer peripheral side surface portion and / or an outer peripheral peripheral portion of the laminated body (A). ), Which is a fiber reinforced plastic molded body.
The laminated body (A) has a structure in which a plate material (C) and a plate material (D) having at least different bending rigidity are laminated, and the bending rigidity of the plate material (D) is larger than the bending rigidity of the plate material (C). , The laminated body (A) is divided into halves in the wall thickness direction, and the resin member (B) existing in the region (R1) on which the plate material (C) is laminated rather than the divided center line. Assuming that the amount of the resin member (B) existing in the region (R2) on which the plate material (C) is not laminated is Am2, Am2 / Am1 is in the range of 2 to 25. Characterized fiber reinforced plastic molded body.
前記板材(D)の曲げ弾性率をMd(GPa)、前記板材(C)の曲げ弾性率をMc(GPa)とすると、Md/Mcが1.2〜17の範囲にある、請求項1に記載の繊維強化プラスチック成形体。 According to claim 1, where the flexural modulus of the plate material (D) is Md (GPa) and the flexural modulus of the plate material (C) is Mc (GPa), Md / Mc is in the range of 1.2 to 17. The fiber reinforced plastic molded article described. 前記板材(D)の曲げ弾性率Mdが100〜500GPa、前記板材(C)の曲げ弾性率Mcが30〜80GPaの範囲にある、請求項1または2に記載の繊維強化プラスチック成形体。 The fiber-reinforced plastic molded product according to claim 1 or 2, wherein the flexural modulus Md of the plate material (D) is in the range of 100 to 500 GPa, and the flexural modulus Mc of the plate material (C) is in the range of 30 to 80 GPa. 前記板材(D)の肉厚をTd(mm)、前記板材(C)の肉厚をTc(mm)とすると、Td/Tcが1.2〜40の範囲にある、請求項1〜3のいずれかに記載の繊維強化プラスチック成形体。 According to claims 1 to 3, where the wall thickness of the plate material (D) is Td (mm) and the wall thickness of the plate material (C) is Tc (mm), Td / Tc is in the range of 1.2 to 40. The fiber reinforced plastic molded body according to any one. 前記板材(D)の肉厚Tdが0.6〜2mm、前記板材(C)の肉厚Tcが0.05〜0.5mmの範囲にある、請求項1〜4のいずれかに記載の繊維強化プラスチック成形体。 The fiber according to any one of claims 1 to 4, wherein the wall thickness Td of the plate material (D) is in the range of 0.6 to 2 mm, and the wall thickness Tc of the plate material (C) is in the range of 0.05 to 0.5 mm. Reinforced plastic molded body. 前記板材(C)が、織物繊維とマトリクス樹脂から構成される1層又は2層以上の織物繊維強化樹脂であり、前記板材(D)が、一方向性の連続繊維とマトリクス樹脂から構成される1層又は2層以上の一方向性繊維強化樹脂である、請求項1〜5のいずれかに記載の繊維強化プラスチック成形体。 The plate material (C) is one layer or two or more layers of woven fiber reinforced resin composed of a woven fiber and a matrix resin, and the plate material (D) is composed of a unidirectional continuous fiber and a matrix resin. The fiber-reinforced plastic molded body according to any one of claims 1 to 5, which is a unidirectional fiber-reinforced resin having one layer or two or more layers. 前記板材(C)が、織物繊維とマトリクス樹脂から構成される1層又は2層以上の織物繊維強化樹脂であり、前記板材(D)が、コア層の両表面を、一方向性の連続繊維とマトリクス樹脂から構成される1層又は2層以上の一方向性繊維強化樹脂または織物繊維とマトリクス樹脂から構成される1層又は2層以上の織物繊維強化樹脂で挟んだサンドイッチ構造部材である、請求項1〜5のいずれかに記載の繊維強化プラスチック成形体。 The plate material (C) is one layer or two or more layers of woven fiber reinforced resin composed of a woven fiber and a matrix resin, and the plate material (D) is a unidirectional continuous fiber on both surfaces of the core layer. It is a sandwich structural member sandwiched between one layer or two or more unidirectional fiber reinforced plastics composed of the matrix resin and one layer or two or more layers of the woven fiber reinforced resin composed of the woven fibers and the matrix resin. The fiber-reinforced plastic molded body according to any one of claims 1 to 5. 前記板材(C)は繊維強化プラスチック成形体の意匠面側最外層に配されている、請求項1〜7のいずれかに記載の繊維強化プラスチック成形体。 The fiber-reinforced plastic molded product according to any one of claims 1 to 7, wherein the plate material (C) is arranged on the outermost layer on the design surface side of the fiber-reinforced plastic molded product. 前記樹脂部材(B)が、前記積層体(A)の外周側面部及び/または外周縁部の全周にわたって接合形成されている、請求項1〜8のいずれかに記載の繊維強化プラスチック成形体。 The fiber-reinforced plastic molded product according to any one of claims 1 to 8, wherein the resin member (B) is joined and formed over the entire circumference of the outer peripheral side surface portion and / or the outer peripheral edge portion of the laminated body (A). .. 前記積層体(A)は前記板材(C)が積層されていない側の前記板材(D)の外周縁部の平面部の一部の領域または全領域に接合層(G)を配した構成を有し、前記樹脂部材(B)が接合層(G)を介して、前記積層体(A)と接合されている、請求項1〜9のいずれかに記載の繊維強化プラスチック成形体。 The laminated body (A) has a configuration in which the bonding layer (G) is arranged in a part or all of the flat surface portion of the outer peripheral edge portion of the plate material (D) on the side where the plate material (C) is not laminated. The fiber-reinforced plastic molded product according to any one of claims 1 to 9, wherein the resin member (B) is bonded to the laminated body (A) via a bonding layer (G). 前記繊維強化プラスチック成形体の反りが2%以下である、請求項1〜10のいずれかに記載の繊維強化プラスチック成形体。 The fiber-reinforced plastic molded product according to any one of claims 1 to 10, wherein the warpage of the fiber-reinforced plastic molded product is 2% or less.
JP2019065922A 2019-03-29 2019-03-29 Fiber reinforced plastic molding Pending JP2020163674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019065922A JP2020163674A (en) 2019-03-29 2019-03-29 Fiber reinforced plastic molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019065922A JP2020163674A (en) 2019-03-29 2019-03-29 Fiber reinforced plastic molding

Publications (1)

Publication Number Publication Date
JP2020163674A true JP2020163674A (en) 2020-10-08

Family

ID=72716848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019065922A Pending JP2020163674A (en) 2019-03-29 2019-03-29 Fiber reinforced plastic molding

Country Status (1)

Country Link
JP (1) JP2020163674A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023276848A1 (en) * 2021-06-29 2023-01-05 東レ株式会社 Integrated molded body
WO2023181645A1 (en) * 2022-03-24 2023-09-28 東レ株式会社 Fiber-reinforced resin structure and method for producing fiber-reinforced resin structure
WO2023248914A1 (en) * 2022-06-23 2023-12-28 東レ株式会社 Integrated molded body and electronic device casing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023276848A1 (en) * 2021-06-29 2023-01-05 東レ株式会社 Integrated molded body
WO2023181645A1 (en) * 2022-03-24 2023-09-28 東レ株式会社 Fiber-reinforced resin structure and method for producing fiber-reinforced resin structure
JP7380945B1 (en) 2022-03-24 2023-11-15 東レ株式会社 Fiber-reinforced resin structure and method for manufacturing fiber-reinforced resin structure
WO2023248914A1 (en) * 2022-06-23 2023-12-28 東レ株式会社 Integrated molded body and electronic device casing

Similar Documents

Publication Publication Date Title
TWI781970B (en) Integral molded body and method for producing the same
JP2020163674A (en) Fiber reinforced plastic molding
WO2014010106A1 (en) Carbon fiber-reinforced composite material and method for producing same
US10571963B2 (en) Housing
US20180270967A1 (en) Housing
US10509443B2 (en) Housing
WO2020202903A1 (en) Fiber reinforced plastic molded body
WO2021200008A1 (en) Fiber-reinforced plastic molded body
JP2020131459A (en) Integrated molding
KR101832303B1 (en) Window bracket for protecting display panel and method for producing the same
WO2020157895A1 (en) Laminated composite material, and method for manufacturing laminated composite material
JP7030622B2 (en) Composite material structure and its formation method
JP7144881B1 (en) Laminates for pressing and pressed laminates
WO2022209454A1 (en) Flat, lightweight member and manufacturing method therefor
JP7220004B2 (en) Fiber-reinforced resin composite molding and method for producing the same
US20230405973A1 (en) Composite material structure and manufacturing method thereof
JP2022149481A (en) sandwich structure
JP2010284807A (en) Long fiber-reinforced resin molding body and method for producing the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190412