JP6965530B2 - Notch prepreg and method of manufacturing notch prepreg - Google Patents

Notch prepreg and method of manufacturing notch prepreg Download PDF

Info

Publication number
JP6965530B2
JP6965530B2 JP2017045667A JP2017045667A JP6965530B2 JP 6965530 B2 JP6965530 B2 JP 6965530B2 JP 2017045667 A JP2017045667 A JP 2017045667A JP 2017045667 A JP2017045667 A JP 2017045667A JP 6965530 B2 JP6965530 B2 JP 6965530B2
Authority
JP
Japan
Prior art keywords
cut
cuts
prepreg
notch
reinforcing fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017045667A
Other languages
Japanese (ja)
Other versions
JP2017171894A (en
Inventor
雄三 藤田
悠太 内藤
一朗 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JP2017171894A publication Critical patent/JP2017171894A/en
Application granted granted Critical
Publication of JP6965530B2 publication Critical patent/JP6965530B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/20Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres
    • B29C70/205Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres the structure being shaped to form a three-dimensional configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/0036Slitting

Description

本発明は、成形時に良好な形状追従性を有し、固化した際に高い力学特性を有する繊維強化プラスチックの中間基材として好適な切込プリプレグおよびその製造方法に関する。 The present invention relates to a cut prepreg suitable as an intermediate base material for a fiber reinforced plastic having good shape followability during molding and high mechanical properties when solidified, and a method for producing the same.

強化繊維と樹脂とからなる繊維強化プラスチックは、比強度、比弾性率が高く、力学特性に優れること、耐候性、耐薬品性などの高機能特性を有することなどから産業用途においても注目され、航空機、宇宙機、自動車、鉄道、船舶、電化製品、スポーツ等の構造用途に展開され、その需要は年々高まりつつある。 Fiber reinforced plastics made of reinforced fibers and resins are attracting attention in industrial applications because they have high specific strength and specific elastic modulus, excellent mechanical properties, and high functional properties such as weather resistance and chemical resistance. It is being developed for structural applications such as aircraft, spacecraft, automobiles, railroads, ships, electrical appliances, and sports, and its demand is increasing year by year.

繊維強化プラスチックの中間基材として、SMC(シートモールディングコンパウンド)がある。SMCは、通常25mm程度に切断し熱硬化性樹脂を含浸したチョップドストランドがランダムに分散したシート状の基材であり、複雑な三次元形状を有する繊維強化プラスチックを成形するのに適した材料として知られている。しかし、SMCにより成形された繊維強化プラスチックはチョップドストランドの分布ムラ、配向ムラが必然的に生じてしまうため、成形体の力学特性が低下し、あるいはその値のバラツキが大きくなってしまう。安定して高い力学特性を発現する繊維強化プラスチックの成形法としては、連続した強化繊維に樹脂を含浸したプリプレグを積層し、オートクレーブにより成形する方法が知られている。しかしながら、連続繊維を用いたプリプレグでは、変形能不足によりシワや強化繊維の突っ張りが発生し、三次元形状等の複雑な形状へと成形することが難しい。 SMC (Sheet Molding Compound) is an intermediate base material for fiber reinforced plastics. SMC is a sheet-like base material in which chopped strands, which are usually cut to about 25 mm and impregnated with a thermosetting resin, are randomly dispersed, and is a material suitable for molding fiber reinforced plastics having a complicated three-dimensional shape. Are known. However, in the fiber reinforced plastic molded by SMC, uneven distribution and uneven orientation of chopped strands inevitably occur, so that the mechanical properties of the molded product deteriorate or the values vary widely. As a method for molding a fiber-reinforced plastic that stably exhibits high mechanical properties, a method is known in which a prepreg impregnated with a resin is laminated on continuous reinforcing fibers and molded by an autoclave. However, in a prepreg using continuous fibers, wrinkles and tension of reinforcing fibers occur due to insufficient deformability, and it is difficult to form a complicated shape such as a three-dimensional shape.

上述のような材料の欠点を埋めるべく、連続的な強化繊維と樹脂とからなるプリプレグに切込を入れて強化繊維を分断することにより、流動可能で、かつ力学特性のバラツキも小さくなるとされる基材が開示されている(例えば特許文献1、2)。 In order to make up for the above-mentioned shortcomings of the material, it is said that by making a cut in the prepreg composed of continuous reinforcing fibers and resin to divide the reinforcing fibers, it is possible to flow and the variation in mechanical properties is reduced. The base material is disclosed (for example, Patent Documents 1 and 2).

特開昭63−247012号公報Japanese Unexamined Patent Publication No. 63-247012 特許第5167953号公報Japanese Patent No. 5167953

特許文献1及び特許文献2に記載の方法は、SMCと比較すると力学特性が大きく向上し、バラツキも小さくなるものの、特許文献1については構造材として適用するには十分な強度とは言えず、三次元形状追従性も向上の余地がある。また特許文献2については、さらに高い強度を発現し三次元形状追従性も良好であるものの、成形時に切込が開口することによりプリプレグ対比、表面品位が劣るという問題があった。 Although the methods described in Patent Document 1 and Patent Document 2 have greatly improved mechanical properties and reduced variations as compared with SMC, Patent Document 1 cannot be said to have sufficient strength to be applied as a structural material. There is room for improvement in three-dimensional shape followability. Further, Patent Document 2 has a problem that although it exhibits higher strength and has good three-dimensional shape followability, the surface quality is inferior to that of the prepreg due to the opening of the notch during molding.

本発明は、かかる背景技術に鑑み、三次元形状追従性に優れ、固化した際に高い表面品位と優れた力学特性を発現する繊維強化プラスチックを得ることのできる中間基材(切込プリプレグ)を提供することにある。 In view of the background technology, the present invention provides an intermediate base material (cut prepreg) capable of obtaining a fiber reinforced plastic which is excellent in three-dimensional shape followability and exhibits high surface quality and excellent mechanical properties when solidified. To provide.

本発明は、かかる課題を解決するために、次のような手段を採用するものである。すなわち、以下である。
(1)一方向に配向した強化繊維と樹脂とを含むプリプレグの少なくとも一部の領域に強化繊維を分断する複数の切込を有する切込プリプレグであって、前記領域内から任意に選択される、10個の直径10mmの円形の小領域内に含まれる切込の個数を母集団とした場合に、母集団の平均値が10以上、かつ変動係数が20%以内である切込プリプレグ。
(2)強化繊維と樹脂とを含むプリプレグの少なくとも一部の領域に強化繊維を分断する複数の切込を有する切込プリプレグの製造方法であって、
プリプレグに対して複数の切込1を挿入する工程1、及び、プリプレグに対して、切込1と重ならない複数の切込2を挿入する工程2とを含む、切込プリプレグの製造方法。
The present invention employs the following means in order to solve such a problem. That is, it is as follows.
(1) A cut prepreg having a plurality of cuts for dividing the reinforcing fibers in at least a part region of the prepreg containing the reinforcing fibers oriented in one direction and the resin, and is arbitrarily selected from the regions. A cut prepreg having an average value of 10 or more and a coefficient of variation of 20% or less when the number of cuts contained in 10 small circular regions having a diameter of 10 mm is used as the population.
(2) A method for producing a cut prepreg having a plurality of cuts for dividing the reinforcing fiber in at least a part of a region of the prepreg containing the reinforcing fiber and the resin.
A method for manufacturing a cut prepreg, which comprises a step 1 of inserting a plurality of cuts 1 into a prepreg and a step 2 of inserting a plurality of cuts 2 which do not overlap with the cut 1 into the prepreg.

本発明によれば、3次元形状追従性に優れ、繊維強化プラスチックとした場合に良質な表面品位と優れた力学特性を発現する中間基材を得ることができる。 According to the present invention, it is possible to obtain an intermediate base material which is excellent in three-dimensional shape followability and exhibits high quality surface quality and excellent mechanical properties when made into a fiber reinforced plastic.

本発明の切込プリプレグの概念図である。It is a conceptual diagram of the cut prepreg of this invention. 均質でない切込パターン(a)と均質な切込パターン(b,c)を例示したものである。The non-homogeneous cut pattern (a) and the homogeneous cut pattern (b, c) are illustrated. 本発明の切込プリプレグに用いられる切込パターンの一例である。This is an example of a cutting pattern used for the cutting prepreg of the present invention. 本発明の切込プリプレグに用いられる切込パターンの一例である。This is an example of a cutting pattern used for the cutting prepreg of the present invention. 本発明の切込プリプレグに用いられる切込パターンの一例である。This is an example of a cutting pattern used for the cutting prepreg of the present invention. 本発明の切込プリプレグに用いられる切込パターンの一例である。This is an example of a cutting pattern used for the cutting prepreg of the present invention. プレス成形用の型である。It is a mold for press molding. 本発明の切込プリプレグに用いられる切込パターンの6つの例である。These are six examples of cut patterns used in the cut prepreg of the present invention. 本発明の切込プリプレグに用いられない切込パターンの5つの例である。These are five examples of cut patterns not used in the cut prepreg of the present invention. 実施例における、切込プリプレグ内の小領域抽出パターンである。It is a small area extraction pattern in a cut prepreg in an Example.

本発明者らは、三次元形状への追従性に優れ、繊維強化プラスチックとした場合に優れた力学特性を発現する中間基材を得るために、鋭意検討し、一方向に配向した強化繊維と樹脂とを含むプリプレグの少なくとも一部の領域に強化繊維を分断する複数の切込が挿入し強化繊維を不連続とすることで3次元形状への追従性を高め、かかる課題を解決することを究明した。 In order to obtain an intermediate base material that has excellent followability to a three-dimensional shape and exhibits excellent mechanical properties when used as a fiber reinforced plastic, the present inventors have diligently studied and made a unidirectionally oriented reinforcing fiber. By inserting multiple cuts that divide the reinforcing fibers into at least a part of the prepreg containing the resin and discontinuing the reinforcing fibers, it is possible to improve the followability to the three-dimensional shape and solve this problem. I investigated.

具体的には、複数の切込が挿入された領域(以下、切込領域という)において任意に選択される10個の直径10mmの円形の小領域内に含まれる切込の個数を母集団とした場合に、母集団の平均値が10以上かつ変動係数が20%以内の切込プリプレグである(以下、母集団の平均値が10以上の状態を高密度、変動係数が20%以内の状態を均質という)。 Specifically, the number of cuts contained in 10 circular small regions having a diameter of 10 mm, which are arbitrarily selected in the region where a plurality of cuts are inserted (hereinafter referred to as the cut region), is defined as the population. In this case, the incision prepreg has an average value of 10 or more and a coefficient of variation of 20% or less in the population (hereinafter, a state in which the average value of the population is 10 or more is high density and a coefficient of variation is 20% or less). Is called homogeneous).

図1(a)はプリプレグ1に複数の切込2が挿入された切込領域3を含む切込プリプレグの概念図を示している。切込領域は、プリプレグの少なくとも一部の領域にありさえすれば、プリプレグの一部のみに存在しても、プリプレグ全域に存在してもよく、プリプレグ内に複数の切込領域が含まれていてもよい。切込領域は、切込プリプレグのいずれの箇所に存在しても構わないが、切込プリプレグを用いて成形して繊維強化プラスチックとした際に、曲面や凹凸など三次元形状を含む領域に存在することが好ましい。切込領域内では、全ての強化繊維が切込によって分断されていても、切込によって分断されない強化繊維を含んでいても良い。また、強化繊維の配向方向と切込とのなす角が2種以上となってもよいし、切込によって分断される強化繊維の長さが2種以上となってもよい。 FIG. 1A shows a conceptual diagram of a cut prepreg including a cut region 3 in which a plurality of cuts 2 are inserted into the prepreg 1. The cut region may be present in only a part of the prepreg or the entire prepreg as long as it is in at least a part of the prepreg, and the prepreg contains a plurality of cut regions. You may. The cut region may exist at any part of the cut prepreg, but when molded using the cut prepreg to make a fiber reinforced plastic, it exists in a region including a three-dimensional shape such as a curved surface or unevenness. It is preferable to do so. Within the cut region, all the reinforcing fibers may be divided by the cut, or may contain reinforcing fibers that are not divided by the cut. Further, the angle formed by the orientation direction of the reinforcing fibers and the cut may be two or more types, or the length of the reinforcing fibers divided by the cut may be two or more types.

図1(b)は切込領域3内で直径10mmの円形の小領域4を10箇所抽出した様子を示している(以降、直径10mmの円形の小領域4を、小領域と略記する)。小領域は、切込領域内で、小領域が重ならない程度に密に抽出することが好ましいが、切込領域が小領域を10個全て重ならずに抽出するのに十分なサイズでない場合には、小領域同士が重なるように抽出しても良い。ただし、前述の母集団の平均値と変動係数をより精度よく測るために、切込領域の境界を越えて小領域を設定してはならない。切込領域の境界は、切込の端部同士を結ぶ線分を繋げた線分群であって、かつ該線分群内に全ての切込が含まれ、該線分群の長さの合計が最小となる線分群とする。 FIG. 1B shows a state in which 10 circular small regions 4 having a diameter of 10 mm are extracted in the cut region 3 (hereinafter, the circular small regions 4 having a diameter of 10 mm are abbreviated as small regions). It is preferable to extract the small areas densely within the cut area so that the small areas do not overlap, but when the cut area is not large enough to extract all 10 small areas without overlapping. May be extracted so that the small areas overlap each other. However, in order to measure the above-mentioned population mean and coefficient of variation more accurately, a small area must not be set beyond the boundary of the cut area. The boundary of the cut area is a line segment group connecting the line segments connecting the ends of the cuts, and all the cuts are included in the line segment group, and the total length of the line segment groups is the minimum. Let it be a line segment group.

小領域内に含まれる切込みの個数とは、小領域内に存在する切込と、小領域の輪郭に一部が接触する切込の合計数とする。なお、前述の母集団の平均値と前述の母集団の変動係数は、10個の小領域内の切込数をni(i=1〜10)とすると、それぞれ式1、式2で計算される。 The number of cuts included in the small area is the total number of cuts existing in the small area and some cuts that partially contact the contour of the small area. The average value of the above-mentioned population and the coefficient of variation of the above-mentioned population are calculated by Equations 1 and 2, respectively, assuming that the number of cuts in the 10 small regions is ni (i = 1 to 10). NS.

Figure 0006965530
Figure 0006965530

Figure 0006965530
Figure 0006965530

切込の個数は高密度であるほど、三次元形状への追従性が向上し、切込プリプレグの変形時に一つ一つの切込の開口が小さくなるため、繊維強化プラスチックとした際に、良好な表面品位を得ることができる。また、全体として切込によって分断される強化繊維の数が同じであっても、繊維強化プラスチックとした際に負荷が与えられた場合、切込が大きい場合は切込周辺の応力集中が大きくなるが、細かくなるほど応力集中が軽減され、力学特性が向上する。 The higher the number of cuts, the better the followability to the three-dimensional shape, and the smaller the opening of each cut when the cut prepreg is deformed. A good surface quality can be obtained. In addition, even if the number of reinforcing fibers divided by the cut is the same as a whole, when a load is applied when the fiber reinforced plastic is used, the stress concentration around the cut becomes large when the cut is large. However, the finer it is, the less stress concentration is reduced and the better the mechanical properties.

したがって、小領域内に含まれる切込の個数を、10個の小領域においてカウントし母集団とした際に、母集団は平均値が10以上であることが好ましい。さらに好ましくは15個以上である。小領域内で同一の強化繊維が複数の切込によって分断されていてもよいが、強化繊維の繊維長さLが10mmより小さい場合、固化後の力学特性が低下する場合があるため、小領域内では同一の強化繊維が複数の切込みによって分断されていないことがより好ましい。なお繊維長さLとは、図2(a)〜(c)に示すように、任意の切込と、強化繊維方向に最近接の切込(対になる切込)とにより分断される強化繊維の長さを指している。母集団の平均値が50より大きい場合、小領域内で同一の強化繊維が複数の切込によって分断される可能性が高くなるため、母集団の平均値は50以下であることが好ましい。一方、切込領域内において、均質に切込が分布しているほど、切込プリプレグ変形時に一つ一つの切込の開口のバラツキが小さくなるため、繊維強化プラスチックとした際に安定した力学特性を発現する。したがって、母集団の変動係数は20%以下が好ましい。さらに好ましくは15%以下である。ここで小領域の抽出方法としては、図1(b)に示すように、小領域同士が比較的近くに存在するように抽出することが好ましい。抽出パターンによって前記変動係数が変動する場合もあるが、その場合は5回抽出パターンを変えて測定し、4回以上前記変動係数が20%以下であれば、本発明の態様を満たすとみなす。 Therefore, when the number of cuts contained in the small region is counted in 10 small regions and used as the population, the average value of the population is preferably 10 or more. More preferably, the number is 15 or more. The same reinforcing fiber may be divided by a plurality of cuts in the small region, but if the fiber length L of the reinforcing fiber is smaller than 10 mm, the mechanical properties after solidification may deteriorate, so that the small region It is more preferable that the same reinforcing fiber is not divided by a plurality of cuts. As shown in FIGS. 2 (a) to 2 (c), the fiber length L is a reinforcement divided by an arbitrary cut and a cut (paired cut) closest to the reinforcing fiber direction. Refers to the length of the fiber. When the average value of the population is larger than 50, the same reinforcing fiber is more likely to be divided by a plurality of cuts in the small region, so that the average value of the population is preferably 50 or less. On the other hand, the more uniformly the cuts are distributed in the cut region, the smaller the variation in the opening of each cut when the cut prepreg is deformed. Therefore, stable mechanical properties are obtained when the fiber reinforced plastic is used. Is expressed. Therefore, the coefficient of variation of the population is preferably 20% or less. More preferably, it is 15% or less. Here, as a method for extracting small regions, as shown in FIG. 1 (b), it is preferable to extract small regions so that they are relatively close to each other. The coefficient of variation may fluctuate depending on the extraction pattern. In that case, the measurement is performed by changing the extraction pattern five times, and if the coefficient of variation is 20% or less four times or more, it is considered that the aspect of the present invention is satisfied.

比較的小さな切込を挿入する概念は既に特許文献2に記載されているが、例えば特許文献2の図2に記載の切込パターンを拡大縮小して前記母集団の平均値が10以上となるようにした場合、強化繊維の繊維長さは10mm以下とならざるを得ず、強化繊維の繊維長さを10mmとした場合には、前記母集団の平均値は5以下と、切込の分布の密度は小さくなる。 The concept of inserting a relatively small cut has already been described in Patent Document 2, but for example, the cut pattern described in FIG. 2 of Patent Document 2 is enlarged or reduced so that the average value of the population becomes 10 or more. In this case, the fiber length of the reinforcing fibers must be 10 mm or less, and when the fiber length of the reinforcing fibers is 10 mm, the average value of the population is 5 or less, which is the distribution of cuts. The density of is small.

また、特許文献1の第1図(A)に代表される多くの既存の切込パターンでは、図2(a)(文献を特定しないときは本明細書の図である。以下同じ)に示すように、強化繊維の長さLに対して、隣接する切込を、Lの半分の長さL/2ずらして、断続的な切込としている。このような切込パターンの場合、切込の長さが短く、繊維長さが長いほど、強化繊維の配向方向にL/2おきに存在する直線状に切込が存在しやすくなり、前記母集団のばらつきが大きくなる。このような場合、切込開口が前記直線上に集中し、開口が顕著に現れる。図2(b)のように、隣接する切込をL/2ではなく、L/5やL/6といった、細かい周期でずらすことで、切込プリプレグ中により切込が均等に分布した切込パターンとなり、切込プリプレグが伸張する際に、伸張箇所が偏ることなく、均質な変形が可能となり、一つ一つの切込の開口が抑制される(以降、切込が均等に分布した切込パターンのことを均質な切込パターンと記す場合もある)。さらに、図2(b)のように、隣り合う切込を階段状にずらすのではなく、図2(c)のようにずらしてもよい。図2(c)はL/10の周期で切込がずれているが、切込によって分断された強化繊維束で、隣り合う強化繊維束の端部同士(例えば図2(c)中の切込s1と切込s2)の距離は、2L/5となっており、図2(b)のL/5よりも長くなっている。隣り合う強化繊維束の端部同士の距離が長いことで、き裂進展や切込開口の連鎖を抑制する効果があり、力学特性・表面品位ともに向上する。図2(a)の場合、隣り合う強化繊維束の端部同士の距離はL/2と長いが、強化繊維束を挟んだ2つの切込同士の距離も近いため、その2つの切込開口による応力集中部が重なりやすく、力学特性としても好ましくない。 Further, in many existing cutting patterns represented by FIG. 1 (A) of Patent Document 1, it is shown in FIG. 2 (a) (when the document is not specified, it is the figure of the present specification; the same applies hereinafter). As described above, the adjacent cuts are shifted by half the length L / 2 of L with respect to the length L of the reinforcing fibers to form intermittent cuts. In the case of such a cut pattern, the shorter the cut length and the longer the fiber length, the more likely it is that the cuts are linearly present at intervals of L / 2 in the orientation direction of the reinforcing fibers. Population variability increases. In such a case, the cut openings are concentrated on the straight line, and the openings appear prominently. As shown in FIG. 2B, by shifting adjacent cuts in fine cycles such as L / 5 and L / 6 instead of L / 2, the cuts are evenly distributed in the cut prepreg. It becomes a pattern, and when the cut prepreg is stretched, the stretched part is not biased and uniform deformation is possible, and the opening of each cut is suppressed (hereinafter, the cuts are evenly distributed). The pattern is sometimes referred to as a homogeneous cut pattern). Further, instead of shifting the adjacent cuts in a step-like manner as shown in FIG. 2 (b), the adjacent cuts may be shifted as shown in FIG. 2 (c). In FIG. 2C, the cuts are deviated in the cycle of L / 10, but the reinforcing fiber bundles are divided by the cuts, and the ends of the adjacent reinforcing fiber bundles (for example, the cuts in FIG. 2C) are cut. The distance between the indentation s1 and the incision s2) is 2L / 5, which is longer than the L / 5 in FIG. 2 (b). The long distance between the ends of adjacent reinforcing fiber bundles has the effect of suppressing crack growth and chaining of cut openings, improving both mechanical properties and surface quality. In the case of FIG. 2A, the distance between the ends of adjacent reinforcing fiber bundles is as long as L / 2, but the distance between the two cuts sandwiching the reinforcing fiber bundle is also short, so the two cut openings The stress concentration parts due to the above are likely to overlap, which is not preferable as a mechanical property.

分断後の強化繊維の長さは10mm以上が好ましく、15mm以上がより好ましく、さらに好ましくは20mm以上である。強化繊維の長さが20mm以上の場合でも、一つ一つの切込によって分断される強化繊維数を少なくすることで、切込が高密度に分布した切込パターン(以降、高密度な切込パターンと記す場合もある)を得ることができ、強化繊維が長いことに加え、切込が小さいことにより、力学特性向上の効果が見込める。図2(b)のように、隣接する切込を細かい周期でずらすことにより、繊維長さを保ちつつ、均質かつ高密度な切込パターンを実現できる。切込が強化繊維の配向方向に対して斜めに挿入されている場合でも同様である。 The length of the reinforcing fiber after splitting is preferably 10 mm or more, more preferably 15 mm or more, still more preferably 20 mm or more. Even when the length of the reinforcing fibers is 20 mm or more, by reducing the number of reinforcing fibers that are divided by each cut, the cut pattern in which the cuts are densely distributed (hereinafter, high-density cuts) (Sometimes referred to as a pattern) can be obtained, and the effect of improving mechanical properties can be expected due to the long length of the reinforcing fibers and the small depth of cut. As shown in FIG. 2B, by shifting the adjacent cuts in a fine cycle, a homogeneous and high-density cut pattern can be realized while maintaining the fiber length. The same applies when the notch is inserted diagonally with respect to the orientation direction of the reinforcing fibers.

本発明における切込プリプレグの態様として、任意の切込Aと、当該切込に最近接する別の切込Bとは、同一の強化繊維を分断していないことが好ましい。最近接する切込同士で分断された強化繊維は、比較的短い強化繊維となってしまうため、繊維強化プラスチックとした際に力学特性を低下させる要因となる。また、切込Aと最近接する切込Bとの間に、切込Aと切込Bのどちらによっても分断されていない強化繊維が存在することで、繊維強化プラスチックとした際に、切込Aと切込Bが損傷により連結しにくくなり、力学特性が向上する。 As an aspect of the cut prepreg in the present invention, it is preferable that the same reinforcing fiber is not divided between the arbitrary cut A and another cut B that is in close contact with the cut. Reinforcing fibers that are separated by the notches that are in close contact with each other become relatively short reinforcing fibers, which is a factor that deteriorates the mechanical properties when made into fiber reinforced plastic. Further, since there is a reinforcing fiber between the notch A and the notch B which is in close contact with the notch A, which is not divided by either the notch A or the notch B, the notch A is used when the fiber reinforced plastic is used. And the notch B becomes difficult to connect due to damage, and the mechanical properties are improved.

図3は切込領域の一部を示しており、切込Aと最近接する切込Bとの間には複数の強化繊維5が存在しており、切込Aと切込Bは同一の強化繊維を分断していない。図3(a)のように、切込Aと切込Bの間の強化繊維5が、切込Aおよび切込Bに最近接していない切込Cによって分断されていてもよいし、図3(b)のように、切込Aと切込Bの間の強化繊維5が、切込によって分断されていなくてもよい。最近接する切込同士の間は、強化繊維の直角方向に、切込を強化繊維に直角な平面に投影した投影長さWsの0.5倍以上であることが好ましく、より好ましくはWsの1倍以上である。 FIG. 3 shows a part of the notch region, and there are a plurality of reinforcing fibers 5 between the notch A and the notch B which is in close contact with each other, and the notch A and the notch B have the same reinforcement. The fibers are not broken. As shown in FIG. 3A, the reinforcing fiber 5 between the notch A and the notch B may be separated by the notch A and the notch C which is not in close contact with the notch B, or FIG. 3 As in (b), the reinforcing fiber 5 between the notch A and the notch B does not have to be divided by the notch. The distance between the cuts that are in close contact with each other is preferably 0.5 times or more, more preferably 1 of Ws, in the direction perpendicular to the reinforcing fibers and the projected length Ws obtained by projecting the cuts on a plane perpendicular to the reinforcing fibers. More than double.

高密度に切込を分布させた切込プリプレグでは、切込同士の距離が近くなり、最近接する切込同士が同一の強化繊維を分断してしまった際には非常に短い強化繊維が混入してしまう可能性があるため、最近接する切込同士が同一の強化繊維を分断しないように間隔を設けることで、高密度な切込パターンであっても短い強化繊維の混入を抑制し、安定した力学特性を発現せさることができる。 In the incision prepreg in which the incisions are distributed at high density, the distance between the incisions becomes short, and when the incisions that are in close contact divide the same reinforcing fiber, very short reinforcing fibers are mixed. Therefore, by providing an interval so that the cuts that are in close contact with each other do not divide the same reinforcing fiber, even if the cut pattern is high-density, the mixing of short reinforcing fibers is suppressed and stable. It is possible to express mechanical properties.

本発明における切込プリプレグの好ましい態様として、図4のように、切込は実質的に同一の長さY(以下、Yを切込長さともいう)であり、最近接する切込同士の距離6は、Yの0.5倍よりも長い切込プリプレグが挙げられる。ここで、実質的に同一の長さとは、全ての切込長さが、全ての切込長さの平均値の±5%以内であることをいう(以下同じ)。なお、本発明において切込は、直線状でも曲線状でもよく、いずれの場合でも切込の端部同士を結ぶ線分を切込長さYとする。 As a preferred embodiment of the cut prepreg in the present invention, as shown in FIG. 4, the cuts have substantially the same length Y (hereinafter, Y is also referred to as a cut length), and the distance between the cuts that are in close contact with each other. Reference numeral 6 denotes a notched prepreg that is longer than 0.5 times Y. Here, substantially the same length means that all the cut lengths are within ± 5% of the average value of all the cut lengths (the same applies hereinafter). In the present invention, the cut may be straight or curved, and in either case, the line segment connecting the ends of the cut is defined as the cut length Y.

最近接する切込同士の距離とは、最近接する切込同士の最短距離を意味する。最近接する切込同士の距離が近い場合、繊維強化プラスチックに損傷が入った場合に、損傷が切込同士を連結しやすくなるため、最近接する切込同士の距離が、切込長さYの0.5倍より大きいことが好ましい。最近接する切込同士の距離は、より好ましくはYの0.8倍以上、さらに好ましくはYの1.0倍以上である。一方で、最近接する切込同士の距離に上限は特にないが、プリプレグに高密度な切込を付与するにあたり、最近接する切込同士の距離が切込長さYの10倍以上とすることは容易ではない。 The distance between the closest cuts means the shortest distance between the closest cuts. If the closest cuts are close to each other, or if the fiber reinforced plastic is damaged, the damage makes it easier to connect the cuts. Therefore, the distance between the most recent cuts is 0, which is the cut length Y. It is preferably larger than .5 times. The distance between the notches that are in close contact with each other is more preferably 0.8 times or more of Y, and further preferably 1.0 times or more of Y. On the other hand, there is no particular upper limit to the distance between the cuts that are in close contact with each other, but when giving a high-density cut to the prepreg, the distance between the cuts that are in close contact with each other should be 10 times or more the cut length Y. It's not easy.

高密度に切込が分布する切込プリプレグにおいては、三次元形状への追従性は向上し、一つ一つの切込が小さいことによる力学特性の向上が見込めるが、切込同士の距離が近い場合よりも切込同士が離れている方が力学特性はさらに向上する。したがって、密に切込を挿入した場合には、切込同士の距離を空けた切込パターン、すなわち最近接する切込同士の距離を、切込長さYの0.5倍より大きくすることが力学特性向上のために特に重要となる。さらに、切込領域内で全ての強化繊維を分断し賦形性を向上させた切込プリプレグの場合、最近接する切込同士の最短距離を切込長さYの0.5倍よりも大きく空け、かつ最近接する切込同士が同一の強化繊維を分断しないことで、三次元形状への追従性および表面品位を損なわずに、最大限に力学特性を発現できる。 In the incision prepreg in which the incisions are distributed in high density, the followability to the three-dimensional shape is improved, and the mechanical characteristics can be expected to be improved by making each incision small, but the distance between the incisions is short. The mechanical properties are further improved when the notches are separated from each other than in the case. Therefore, when the cuts are inserted densely, the cut pattern in which the cuts are separated from each other, that is, the distance between the cuts that are in close contact with each other may be made larger than 0.5 times the cut length Y. It is especially important for improving mechanical properties. Furthermore, in the case of a cut prepreg in which all the reinforcing fibers are divided in the cut region to improve the shapeability, the shortest distance between the cuts that are in close contact with each other should be larger than 0.5 times the cut length Y. Moreover, since the notches that are in close contact with each other do not divide the same reinforcing fiber, the mechanical properties can be exhibited to the maximum without impairing the followability to the three-dimensional shape and the surface quality.

本発明における切込プリプレグの好ましい態様として、切込が、強化繊維の配向方向に対して、斜めに挿入されている切込プリプレグが挙げられる。切込が曲線状の場合は、切込の端部同士を結ぶ線分が、強化繊維の配向方向に対して斜めであることを指す。切込を、強化繊維の配向方向に対して斜めとすることで、切込プリプレグの三次元形状への追従性や繊維強化プラスチックとした際の力学特性を向上することができる。強化繊維の配向方向と切込のなす角度をθとすると、θが2〜60°であることが好ましい。特にθの絶対値が25°以下であることで力学特性、中でも引張強度の向上が著しく、かかる観点からθの絶対値が25°以下がより好ましい。一方、θの絶対値は2°より小さいと切込を安定して入れることが難しくなる。すなわち、強化繊維に対して切込が寝てくると、刃で切込を入れる際、強化繊維が刃から逃げやすく、切込の位置精度を担保しながら挿入することが難しくなる。かかる観点からは、θの絶対値が2°以上であることがより好ましい。 A preferred embodiment of the cut prepreg in the present invention is a cut prepreg in which the cut is inserted diagonally with respect to the orientation direction of the reinforcing fibers. When the cut is curved, it means that the line segment connecting the ends of the cut is diagonal with respect to the orientation direction of the reinforcing fibers. By making the cut diagonal with respect to the orientation direction of the reinforcing fibers, it is possible to improve the followability of the cut prepreg to the three-dimensional shape and the mechanical properties of the fiber-reinforced plastic. Assuming that the orientation direction of the reinforcing fibers and the angle formed by the cut are θ, it is preferable that θ is 2 to 60 °. In particular, when the absolute value of θ is 25 ° or less, the mechanical properties, especially the tensile strength, are remarkably improved, and from this viewpoint, the absolute value of θ is more preferably 25 ° or less. On the other hand, if the absolute value of θ is smaller than 2 °, it becomes difficult to make a stable cut. That is, when the notch falls on the reinforcing fiber, the reinforcing fiber easily escapes from the blade when making a cut with the blade, and it becomes difficult to insert while ensuring the position accuracy of the cut. From this point of view, it is more preferable that the absolute value of θ is 2 ° or more.

高密度に切込が分布する場合に限らず、θの絶対値が小さくなるほど、力学特性の向上が見込める一方、特に切込領域内で全ての強化繊維を分断する場合に、切込同士が近くなり、切込で発生した損傷が連結しやすく力学特性が低下する懸念もある。しかし、任意の切込と、当該切込に最近接する別の切込とは、同一の強化繊維を分断していないこと、かつ切込は、実質的に同一の長さYであり、最近接する切込同士の距離が、Yの0.5倍よりも長いことで、切込が強化繊維の配向方向に対して直角な場合と比較して、さらなる力学特性の向上が見込める。切込が高密度の場合は、特に、力学特性の向上と共に、切込開口の抑制による表面品位の向上が見込める。特許文献2に代表されるように、強化繊維に対して斜めに切込を挿入することは知られた技術であるが、特許文献2の図2(f)や図12のように、隣接する切込が強化繊維の繊維長さLに対してL/2ずれたような切込パターンでは、Lが長く切込の長さが小さい場合には、図2に示した現象と同様に、均質な切込パターンは実現できず、切込プリプレグの伸張時には切込が密な箇所が伸張しやすくなり、繊維強化プラスチックとした場合も切込同士が近くに存在するため、切込同士が連結しやすく、力学特性の低下を招く場合がある。図2(b)や図2(c)のような均質な切込配置に斜めの切込を適用することで、斜めに切込を挿入することによる力学特性向上の効果をより効果的に発現できる。 Not only when the cuts are distributed in high density, the smaller the absolute value of θ, the better the mechanical properties can be expected. On the other hand, especially when all the reinforcing fibers are divided in the cut region, the cuts are close to each other. Therefore, there is a concern that the damage generated by the incision will be easily connected and the mechanical properties will deteriorate. However, any incision and another incision closest to the incision do not divide the same reinforcing fiber, and the incisions are substantially the same length Y and are in close contact. Since the distance between the cuts is longer than 0.5 times Y, further improvement in mechanical properties can be expected as compared with the case where the cuts are perpendicular to the orientation direction of the reinforcing fibers. When the depth of cut is high, it is expected that the mechanical properties will be improved and the surface quality will be improved by suppressing the cut opening. As represented by Patent Document 2, it is a known technique to insert a notch diagonally into a reinforcing fiber, but as shown in FIGS. 2 (f) and 12 of Patent Document 2, they are adjacent to each other. In a cutting pattern in which the cutting is deviated by L / 2 with respect to the fiber length L of the reinforcing fiber, when L is long and the cutting length is small, the same as the phenomenon shown in FIG. 2 is homogeneous. It is not possible to realize a smooth cut pattern, and when the cut prepreg is stretched, it is easy to stretch the part where the cut is dense, and even if it is made of fiber reinforced plastic, the cuts are close to each other, so the cuts are connected to each other. It is easy and may cause deterioration of mechanical properties. By applying the diagonal cut to the homogeneous cut arrangement as shown in FIGS. 2 (b) and 2 (c), the effect of improving the mechanical characteristics by inserting the cut diagonally is more effectively exhibited. can.

本発明における切込プリプレグの好ましい態様として、切込と強化繊維の配向方向とのなす角度θの絶対値が、実質的に同一であり、さらにθが正である切込(正切込という)とθが負である切込(負切込という)を含む切込プリプレグが挙げられる。θの絶対値が実質的に同一とは、全ての切込における角度θの絶対値が、全ての切込における角度θの絶対値から求めた平均値の±1°以内であることをいう。切込プリプレグ内に正切込だけでなく、負切込も挿入することで、切込プリプレグが伸張時に正切込近傍で面内せん断変形が発生した場合に、負切込近傍では逆向きのせん断変形が生じることによりマクロとして面内のせん断変形を抑制し伸張させることができる。 A preferred embodiment of the cut prepreg in the present invention is a cut (referred to as a normal cut) in which the absolute value of the angle θ formed by the cut and the orientation direction of the reinforcing fibers is substantially the same and θ is positive. Examples thereof include a cut prepreg including a cut in which θ is negative (referred to as a negative cut). The fact that the absolute value of θ is substantially the same means that the absolute value of the angle θ in all the cuts is within ± 1 ° of the average value obtained from the absolute value of the angle θ in all the cuts. By inserting not only a positive cut but also a negative cut in the cut prepreg, if in-plane shear deformation occurs near the positive cut when the cut prepreg is extended, the shear deformation in the opposite direction near the negative cut As a macro, it is possible to suppress in-plane shear deformation and extend it.

さらに好ましくは、正切込と負切込を略同数含む、切込プリプレグである。正切込と負切込を略同数含むとは、θが正となる切込の数とθが負となる切込の数が略同数であることを意味する。そして、θが正となる切込の数とθが負となる切込の数が略同数とは、数を基準とした百分率で示した時に、正の角となるθの数と負の数となるθの数がいずれも45%以上55%以下であることをいう(以下同じ)。 More preferably, it is a cut prepreg that includes approximately the same number of positive and negative cuts. Including approximately the same number of positive and negative cuts means that the number of cuts in which θ is positive and the number of cuts in which θ is negative are approximately the same. The number of cuts in which θ is positive and the number of cuts in which θ is negative are approximately the same as the number of θ that is a positive angle and the number of negative numbers when expressed as a percentage based on the number. It means that the number of θ that becomes is 45% or more and 55% or less (the same applies hereinafter).

図5のように正切込と負切込は互いに交互に配置することで、高い密度で切込を挿入しながらも、近接する切込間の距離を確保しやすくなる。また、得られた切込プリプレグを積層する際、正切込または負切込のみを含む切込プリプレグの場合には、同一の強化繊維の配向方向のプリプレグであっても、プリプレグを表から見るか裏から見るかで異なる切込の方向となる。したがって繊維強化プラスチック製造時に、毎回切込の方向が同じようになるように、もしくは同じ強化繊維の方向で切込の方向が異なるものを同じ枚数積層するための積層手順を制御する手間が増える可能性がある。したがって、切込と強化繊維の配向方向とのなす角度θの絶対値が実質的に同一であり、正切込と負切込が略同数となる切込パターンであれば、通常の連続繊維プリプレグ同様の扱いで積層が可能となる。 By arranging the positive cuts and the negative cuts alternately as shown in FIG. 5, it becomes easy to secure the distance between the close cuts while inserting the cuts at a high density. Further, when laminating the obtained cut prepregs, in the case of a cut prepreg containing only positive cuts or negative cuts, whether the prepregs are viewed from the table even if the prepregs have the same reinforcing fiber orientation direction. The direction of the cut differs depending on the direction of the cut when viewed from the back. Therefore, when manufacturing fiber reinforced plastics, it is possible to increase the time and effort required to control the laminating procedure for laminating the same number of fibers having the same cutting direction or different cutting directions in the same reinforcing fiber direction each time. There is sex. Therefore, if the absolute value of the angle θ formed by the cut and the orientation direction of the reinforcing fiber is substantially the same and the number of positive cuts and negative cuts is approximately the same, the cut pattern is the same as that of a normal continuous fiber prepreg. It is possible to stack by handling.

正切込と負切込が略同数存在する切込プリプレグで、かつ正切込と負切込が均一に混合された切込パターンの場合は、特に高密度の切込分布の場合に、任意の切込が、当該切込に最近接する別の切込とで、同一の強化繊維を分断せず、かつ最近接する切込同士の距離がYの0.5倍よりも長い切込パターンを作成しやすくなる。これにより、切込で発生した損傷の連結を抑制することができ、力学特性が向上する。また、正切込と負切込が存在する場合は切込プリプレグ伸張時にも切込の開口が発見されにくく、繊維強化プラスチックとした場合に良好な表面品位を得られるが、高密度な切込分布とした際にはさらに切込が細かくなり、さらに良好な表面品位を得ることができる。切込領域内で全ての強化繊維を分断する際にも当該切込パターンは有効であり、三次元形状への追従性を保ちつつ、力学特性と表面品位を向上させることができる。また、刃を用いてプリプレグに切込を挿入する際に、正切込または負切込のみ挿入する場合は、刃に押し出される際にプリプレグを幅方向に移動する力が作用するため、プリプレグが幅方向にズレやすくなるが、正切込と負切込が略同数含まれた刃を用いることで、プリプレグが幅方向にズレにくくなり、精度よく切込を挿入できる。 In the case of a cut prepreg in which approximately the same number of positive cuts and negative cuts exist, and in the case of a cut pattern in which positive cuts and negative cuts are uniformly mixed, arbitrary cuts are made, especially in the case of a high-density cut distribution. It is easy to create a cut pattern in which the cut does not divide the same reinforcing fiber with another cut that is in close contact with the cut, and the distance between the cuts that are in close contact is longer than 0.5 times Y. Become. As a result, it is possible to suppress the connection of damage caused by the incision, and the mechanical properties are improved. In addition, when there are positive and negative cuts, it is difficult to find the opening of the cut even when the cut prepreg is extended, and good surface quality can be obtained when using fiber reinforced plastic, but the cut distribution is high. In the case of, the cut becomes finer, and a better surface quality can be obtained. The cut pattern is also effective when cutting all the reinforcing fibers in the cut region, and it is possible to improve the mechanical properties and the surface quality while maintaining the followability to the three-dimensional shape. Also, when inserting a cut into the prepreg using a blade, if only a positive cut or a negative cut is inserted, the force that moves the prepreg in the width direction acts when it is pushed out by the blade, so the prepreg is wide. Although it is easy to shift in the direction, by using a blade that contains approximately the same number of positive and negative cuts, the prepreg is less likely to shift in the width direction, and the cut can be inserted with high accuracy.

さらに好ましくは、任意の切込と、当該切込の延長線上に存在する最近接する別の切込との間隔について、正切込同士の間隔と負切込同士の間隔とで長さが異なる、切込プリプレグである。図6は正切込と負切込が略同数ずつ挿入された切込プリプレグを示している。正切込は直線9上に、負切込は直線10上に配置されており、直線9上での正切込の間隔は直線10上での負切込の間隔よりも小さくなっている。このような切込の配置にすることで、均質・高密度かつ近接する切込間の距離を確保することができ、最近接する切込が同一の強化繊維を分断しない切込パターンが作成可能である。さらに、任意の切込と、当該切込の延長線上に存在する最近接する別の切込との間隔について、正切込同士の間隔と負切込同士の間隔とで長さが同一の場合よりも強化繊維の長さを長くすることが可能であり、高密度で切込が分布されていても力学特性を維持することが可能である。なお、切込の延長線上に切込が存在するとは、切込を延長した直線と対象となる切込同士の最も近接する点同士を結んだ直線との角度が1°以内であることを指す。 More preferably, with respect to the distance between an arbitrary cut and another cut that is in close contact on the extension line of the cut, the length differs between the distance between the positive cuts and the distance between the negative cuts. Included prepreg. FIG. 6 shows a cut prepreg in which approximately the same number of positive cuts and negative cuts are inserted. The positive cuts are arranged on the straight line 9 and the negative cuts are arranged on the straight line 10, and the interval between the positive cuts on the straight line 9 is smaller than the interval between the negative cuts on the straight line 10. By arranging the cuts in this way, it is possible to secure a uniform, high-density and close distance between the cuts, and it is possible to create a cut pattern that does not divide the reinforcing fibers with the same cuts that are in close contact with each other. be. Furthermore, regarding the distance between an arbitrary cut and another cut that is in close contact on the extension line of the cut, the length between the positive cuts and the distance between the negative cuts is the same as that of the case where the length is the same. It is possible to increase the length of the reinforcing fibers and maintain the mechanical properties even if the cuts are distributed at high density. Note that the presence of a cut on the extension line of the cut means that the angle between the straight line extending the cut and the straight line connecting the closest points of the target cuts is within 1 °. ..

任意の切込と、当該切込の延長線上に存在する最近接する別の切込との間隔について、正切込同士の間隔と負切込同士の間隔とで長さが異なる切込パターンとすることで、高密度であっても強化繊維の長さをより長くすることができ、さらに切込領域内で全ての強化繊維を分断する場合にも、任意の切込と、当該切込に最近接する別の切込とは、同一の強化繊維を分断せず、最近接する切込同士の距離が切込長さYの0.5倍よりも長い切込パターンが得やすくなる。これにより、より効果的に、表面品位と三次元形状への追従性を損なわずに、力学特性を向上させることができる。すなわち、正切込と負切込が略同数挿入されており、任意の切込と、当該切込の延長線上に存在する最近接する別の切込との間隔について、正切込同士の間隔と負切込同士の間隔とで長さが異なり、任意の切込と、当該切込に最近接する別の切込とは、同一の強化繊維を分断せず、最近接する切込同士の距離が切込長さYの0.5倍よりも長く、切込領域にて実質的に全ての強化繊維が繊維長さ15mm以上に分断されている切込パターンが、三次元形状追従性、表面品位、力学特性の観点から、特に好ましい。特許文献2の図1、図2(d)、図14(d)のように、正切込と負切込が挿入された切込パターンは既知であるが、いずれの切込パターンも、本明細書の図2(a)と同様に、隣接する切込が強化繊維の繊維長さLの半分ズレた切込パターンであり、Lが長く、切込が小さくなるほど、切込配置の疎密が発生しやすくなる。隣接する切込を図2(b)、図2(c)のようにL/2に限定せず、ずらすことで、高密度かつ均質な切込パターンとすることができる。 Regarding the distance between an arbitrary cut and another cut that is in close contact on the extension line of the cut, the length should be different depending on the distance between the positive cuts and the distance between the negative cuts. Therefore, the length of the reinforcing fibers can be made longer even at a high density, and even when all the reinforcing fibers are divided within the cutting region, any cutting and the recent contact with the cutting are made. With another cut, the same reinforcing fiber is not divided, and it is easy to obtain a cut pattern in which the distance between the cuts that are in close contact with each other is longer than 0.5 times the cut length Y. Thereby, the mechanical properties can be improved more effectively without impairing the surface quality and the followability to the three-dimensional shape. That is, approximately the same number of positive cuts and negative cuts are inserted, and the distance between the positive cuts and the negative cuts regarding the distance between any cut and another recently adjacent cut that exists on the extension line of the cut. The length differs depending on the distance between the indentations, and an arbitrary incision and another incision that is in close contact with the incision do not divide the same reinforcing fiber, and the distance between the incisions that are in close contact with each other is the incision length. The cut pattern, which is longer than 0.5 times the length of Y and in which substantially all the reinforcing fibers are divided into fiber lengths of 15 mm or more in the cut region, has three-dimensional shape followability, surface quality, and mechanical properties. It is particularly preferable from the viewpoint of. As shown in FIGS. 1, 2 (d), and 14 (d) of Patent Document 2, a cut pattern in which a positive cut and a negative cut are inserted is known, but both cut patterns are described in the present specification. Similar to FIG. 2A of the book, the adjacent cuts are cut patterns in which the fiber length L of the reinforcing fiber is deviated by half, and the longer L and the smaller the cut, the denser the cut arrangement occurs. It will be easier to do. Adjacent cuts are not limited to L / 2 as shown in FIGS. 2 (b) and 2 (c), but can be shifted to obtain a high-density and uniform cut pattern.

また、切込プリプレグを製造する際に、切込プリプレグの表面に、保護シートを貼りつけ、保護シートを貫通してプリプレグに切込を挿入することで、回転刃ロールと切込プリプレグの粘着を抑制してもよい。そのようにして製造された切込プリプレグの積層時には、保護シートを剥がす必要があり、最近接する切込同士の距離が近いと、保護シートを剥がす際に保護シートが引きちぎれ、取り扱い性が低下する場合がある。したがって、切込プリプレグシートの取り扱い性の観点からも、最近接する切込同士の距離が切込長さYの0.5倍よりも長いことが好ましい。略同数の正切込と負切込が混合して配置されている場合には、保護シートを剥がす際に保護シート上の切込が連結しにくく、切込プリプレグシートの取り扱い性がさらに向上する。任意の切込と、当該切込の延長線上に存在する最近接する別の切込との間隔について、正切込同士の間隔と負切込同士の間隔とで長さが異なる場合は、正切込と負切込をより均一に配置することができ、保護シートが引きちぎれにくくなり、切込プリプレグの取り扱い性がさらに向上する。なお、保護シートの材質の代表的なものにはポリエチレン、ポリプロピレン等のポリマー類が挙げられ、プリプレグに刃で切込を挿入する際、刃に樹脂が粘着することを防ぐ役割や、切込プリプレグ保管時に切込プリプレグ表面をホコリ等の異物から保護する役割がある。 In addition, when manufacturing the notch prepreg, a protective sheet is attached to the surface of the notch prepreg, and the notch is inserted into the prepreg through the protective sheet to make the rotary blade roll and the notch prepreg adhere. It may be suppressed. When laminating the cut prepregs manufactured in this way, it is necessary to peel off the protective sheet. There is. Therefore, from the viewpoint of handleability of the cut prepreg sheet, it is preferable that the distance between the cuts that are in close contact with each other is longer than 0.5 times the cut length Y. When substantially the same number of positive cuts and negative cuts are arranged in a mixed manner, it is difficult to connect the cuts on the protective sheet when the protective sheet is peeled off, and the handleability of the cut prepreg sheet is further improved. Regarding the distance between an arbitrary cut and another cut that is in close contact on the extension line of the cut, if the length differs between the distance between the positive cuts and the distance between the negative cuts, it is considered as a normal cut. The negative cuts can be arranged more evenly, the protective sheet is less likely to be torn off, and the handleability of the cut prepreg is further improved. Typical materials for the protective sheet include polymers such as polyethylene and polypropylene, which play a role in preventing the resin from sticking to the blade when inserting a notch into the prepreg with a blade, and the notch prepreg. It has the role of protecting the surface of the notched prepreg from foreign matter such as dust during storage.

本発明において、切込プリプレグに含まれる樹脂は、熱可塑性樹脂でも熱硬化性樹脂でもよく、熱可塑性樹脂としては、例えば、ポリアミド(PA)、ポリアセタール、ポリアクリレート、ポリスルフォン、ABS、ポリエステル、アクリル、ポリブチレンテレフタラート(PBT)、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリエチレン、ポリプロピレン、ポリフェニレンスルフィド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルイミド(PEI)、ポリエーテルケトンケトン(PEKK)、液晶ポリマー、塩ビ、ポリテトラフルオロエチレンなどのフッ素系樹脂、シリコーンなどが挙げられる。熱硬化性樹脂としては、樹脂が熱により架橋反応を起こし少なくとも部分的な三次元架橋構造を形成するものであればよい。これらの熱硬化性樹脂としては、不飽和ポリエステル樹脂、ビニルエステル樹脂、エポキシ樹脂、ベンゾオキサジン樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂およびポリイミド樹脂等が挙げられる。これらの樹脂の変形および2種以上のブレンドの樹脂を用いることもできる。また、これらの熱硬化性樹脂は熱により自己硬化する樹脂であってもよいし、硬化剤や硬化促進剤等を含むものであってもよい。また、耐熱性や導電性等を向上させるために充填材が含まれていてもよい。 In the present invention, the resin contained in the notch prepreg may be a thermoplastic resin or a thermocurable resin, and examples of the thermoplastic resin include polyamide (PA), polyacetal, polyacrylate, polysulphon, ABS, polyester, and acrylic. , Polybutylene terephthalate (PBT), Polycarbonate (PC), Polyethylene terephthalate (PET), Polyethylene, Polypropylene, Polyphenylene sulfide (PPS), Polyetheretherketone (PEEK), Polyetherimide (PEI), Polyetherketoneketone (PEI) PEKK), liquid crystal polymer, vinyl chloride, fluororesin such as polytetrafluoroethylene, silicone and the like. The thermosetting resin may be any resin as long as it causes a cross-linking reaction by heat to form at least a partial three-dimensional cross-linked structure. Examples of these thermosetting resins include unsaturated polyester resins, vinyl ester resins, epoxy resins, benzoxazine resins, phenol resins, urea resins, melamine resins and polyimide resins. Deformations of these resins and two or more blended resins can also be used. Further, these thermosetting resins may be resins that are self-curing by heat, or may contain a curing agent, a curing accelerator, or the like. Further, a filler may be contained in order to improve heat resistance, conductivity and the like.

本発明の切込プリプレグに含まれる強化繊維は、ガラス繊維、ケブラー繊維、炭素繊維、グラファイト繊維またはボロン繊維等であってもよい。この内、比強度および比弾性率の観点からは、炭素繊維が好ましい。 The reinforcing fiber contained in the cut prepreg of the present invention may be glass fiber, Kevlar fiber, carbon fiber, graphite fiber, boron fiber or the like. Of these, carbon fibers are preferable from the viewpoint of specific strength and specific elastic modulus.

強化繊維の体積含有率Vfは70%以下とすることで切込部の強化繊維のずれがおき、ブリッジングを効果的に抑制し、形状追従性とボイド等の成形不具合の抑制効果を得ることができる。かかる観点からVfが70%以下であることがより好ましい。また、Vfは低いほどブリッジングは抑制できるが、Vfが40%より小さくなると、構造材に必要な高力学特性が得られにくくなる。かかる観点からVfが40%以上であることがより好ましい。より好ましいVfの範囲は45〜65%、さらに好ましくは50〜60%である。 By setting the volume content Vf of the reinforcing fibers to 70% or less, the reinforcing fibers in the cut portion are displaced, bridging is effectively suppressed, and shape followability and molding defects such as voids are suppressed. Can be done. From this point of view, it is more preferable that Vf is 70% or less. Further, the lower the Vf, the more the bridging can be suppressed, but when the Vf is smaller than 40%, it becomes difficult to obtain the high mechanical properties required for the structural material. From this point of view, it is more preferable that Vf is 40% or more. A more preferred range of Vf is 45-65%, even more preferably 50-60%.

切込プリプレグは強化繊維へ部分的に樹脂を含浸させた(すなわち、一部を未含浸とした)プリプレグを用いて製造してもよい。強化繊維に部分的に樹脂を含浸させた切込プリプレグを用いることで、プリプレグ内部の強化繊維の未含浸部が面内の流路となり、積層の際に切込プリプレグの層間に閉じ込められた空気や切込プリプレグからの揮発成分などの気体が切込プリプレグ外に排出されやすくなる(このような気体の流路を脱気パスと呼ぶ)。一方で、含浸率が低すぎると、強化繊維と樹脂の間で剥離が生じ、切込プリプレグ積層時に未含浸部で切込プリプレグが二つに割れてしまうなど作業性が劣ってしまう場合があることや、成形中の含浸時間を長く取らないとボイドが残ってしまう場合があること、などから、含浸率は10〜90%が好ましい。かかる観点から、含浸率の範囲のより好ましい上限は70%であり、さらに好ましい上限は50%であり、含浸率の範囲のより好ましい下限は20%である。 The cut prepreg may be manufactured using a prepreg in which the reinforcing fibers are partially impregnated with resin (that is, partially impregnated). By using a cut prepreg in which the reinforcing fibers are partially impregnated with resin, the unimpregnated portion of the reinforcing fibers inside the prepreg becomes an in-plane flow path, and the air trapped between the layers of the cut prepreg during lamination. Gases such as volatile components from the prepreg and the prepreg are easily discharged to the outside of the prepreg (such a gas flow path is called a degassing path). On the other hand, if the impregnation rate is too low, peeling may occur between the reinforcing fiber and the resin, and the cut prepreg may be split in two at the unimpregnated portion when the cut prepreg is laminated, resulting in inferior workability. The impregnation rate is preferably 10 to 90% because voids may remain if the impregnation time during molding is not long. From this point of view, the more preferable upper limit of the impregnation rate range is 70%, the more preferable upper limit is 50%, and the more preferable lower limit of the impregnation rate range is 20%.

本発明の切込プリプレグは、その表面に樹脂層が存在しても良い。切込プリプレグの表面に樹脂層が存在することで、切込プリプレグを積層した際に、切込プリプレグ同士の間に層間樹脂層が形成される。これにより、面外衝撃荷重が加わった際、クラックが柔軟な層間樹脂層に誘導され、かつ熱可塑性樹脂の存在により靭性が高いため剥離が抑制されることで、面外衝撃後の残存圧縮強度を高くすることができ、航空機などの高い安全性が要求される主構造用材料として適する。 The cut prepreg of the present invention may have a resin layer on its surface. Due to the presence of the resin layer on the surface of the cut prepreg, an interlayer resin layer is formed between the cut prepregs when the cut prepregs are laminated. As a result, when an out-of-plane impact load is applied, cracks are induced in the flexible interlayer resin layer, and the presence of the thermoplastic resin suppresses peeling due to the high toughness, thereby suppressing the residual compressive strength after the out-of-plane impact. It is suitable as a main structural material that requires high safety such as aircraft.

本発明の切込プリプレグは、積層してプレス成形やオートクレーブ成形に適用することができる。積層方法は用途に応じて任意に選択可能であるが、熱の残留応力に起因する反りの抑制や力学特性のバランスを考慮すると擬似等方積層体やクロスプライ積層が特に好ましい。積層時には、積層基材の流動性をさらに高めるために、SMCなどランダムに強化繊維が配向した基材や、樹脂フィルムなどを適宜積層してもよい。 The cut prepreg of the present invention can be laminated and applied to press molding and autoclave molding. The lamination method can be arbitrarily selected depending on the application, but a pseudo-isotropic laminate or a cross-ply laminate is particularly preferable in consideration of suppression of warpage due to residual heat stress and a balance of mechanical properties. At the time of laminating, in order to further increase the fluidity of the laminated base material, a base material in which reinforcing fibers are randomly oriented such as SMC, a resin film, or the like may be appropriately laminated.

以下では、強化繊維と樹脂とを含むプリプレグの少なくとも一部の領域に強化繊維を分断する複数の切込を有する切込プリプレグの製造方法について説明する。 Hereinafter, a method for producing a cut prepreg having a plurality of cuts for dividing the reinforcing fibers in at least a part region of the prepreg containing the reinforcing fibers and the resin will be described.

プリプレグに切込を挿入する手段は、刃を用いて機械的に挿入してもレーザーのような熱源で焼き切ってもよい。より高密度に、精度よく切込を挿入する場合は、刃が定位置に配置されたロールをプリプレグに押し当てる方法が好ましい。 The means for inserting the notch into the prepreg may be mechanically inserted with a blade or burned off with a heat source such as a laser. In order to insert the incision with higher density and accuracy, a method of pressing the roll in which the blade is arranged in a fixed position against the prepreg is preferable.

別の好ましい切込プリプレグの製造方法としては、プリプレグに対して複数の切込1を挿入する工程1、及び、プリプレグに対して切込1と重ならない複数の切込2を挿入する工程2とを含む方法であってもよい。具体的には、刃の配置された打ち抜き型を昇降機に取り付け、打ち抜き型をプリプレグに押し当てることで切込を挿入する装置で、切込1を挿入した後、プリプレグ又は昇降機を移動させ、切込1と重ならない位置に切込2を挿入する方法が挙げられる。打ち抜き型の代わりに回転刃を用いるのも好ましい手段の一つである。また切込1と切込2で切込領域のサイズや形が異なっていてもよい。 As another preferable method for producing the cut prepreg, a step 1 of inserting a plurality of cuts 1 into the prepreg and a step 2 of inserting a plurality of cuts 2 which do not overlap with the cut 1 into the prepreg. It may be a method including. Specifically, it is a device that inserts a notch by attaching a punching die with a blade to the elevator and pressing the punching die against the prepreg. After inserting the notch 1, the prepreg or the elevator is moved to cut. An example is a method of inserting the notch 2 at a position that does not overlap with the indentation 1. It is also one of the preferable means to use a rotary blade instead of the punching die. Further, the size and shape of the cut area may be different between the cut 1 and the cut 2.

本発明における切込プリプレグの製造方法は、切込パターンが、切込と強化繊維の配向方向がなす角が異なる切込が存在する場合にも好ましく用いることができる。具体的には、切込1と強化繊維とのなす角度θ1が正又は負であり、切込2と強化繊維とのなす角度θ2が、前記なす角度θ1とは正負が異なる場合である。特に、刃によって切込を挿入する場合、異なる角度の刃が高密度に配置させた刃を作製することが困難な場合があるため、複数段階に分けて切込を挿入することで、より高密度に切込を挿入することができる。 The method for producing a cut prepreg in the present invention can also be preferably used when the cut pattern has a cut in which the angle formed by the orientation direction of the cut and the reinforcing fiber is different. Specifically, the angle θ1 formed by the notch 1 and the reinforcing fiber is positive or negative, and the angle θ2 formed by the notch 2 and the reinforcing fiber is different from the angle θ1 formed by the notch 2. In particular, when inserting a notch with a blade, it may be difficult to produce a blade in which blades of different angles are arranged at high density. A notch can be inserted in the density.

なお、本発明における切込プリプレグの製造方法は、強化繊維が一方向に配向したプリプレグだけでなく、強化形態が織物やランダムマットである場合にも好ましく適用できる。 The method for producing a cut prepreg in the present invention can be preferably applied not only to a prepreg in which reinforcing fibers are oriented in one direction, but also to a case where the reinforcing form is a woven fabric or a random mat.

以下、実施例により本発明をさらに具体的に説明するが、本発明は、実施例に記載の発明に限定されるものではない。本実施例において、切込プリプレグの作製、切込の密度分布、三次元形状への追従性、繊維強化プラスチックの表面に品位、引張弾性率、引張強度は下記方法に従って測定した。図8、9はそれぞれ実施例および比較例に用いた切込パターンの一部を示しており、切込プリプレグ上で各々の切込パターンがプリプレグ面内で繰り返されている。実施例1〜7、比較例1〜5の結果は表1に示した通りである。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the inventions described in the Examples. In this example, the preparation of the cut prepreg, the density distribution of the cut, the followability to the three-dimensional shape, the grade on the surface of the fiber reinforced plastic, the tensile elastic modulus, and the tensile strength were measured according to the following methods. 8 and 9 show a part of the cut patterns used in Examples and Comparative Examples, respectively, and each cut pattern is repeated in the prepreg plane on the cut prepreg. The results of Examples 1 to 7 and Comparative Examples 1 to 5 are as shown in Table 1.

<切込プリプレグの製造>
“トレカ”(商標登録)プリプレグシートP3052S−15(強化繊維:T700S、樹脂組成物樹脂:2500、強化繊維の体積含有率:56%、片面離型紙を積層)を準備し、刃を設けたシートを巻きつけたロール(回転刃ロール)にプリプレグシートを押し付けることで、切込を挿入した。いずれの実施例においても切込領域はプリプレグ全体とし、全ての切込が同一長さ、切込によって分断される強化繊維の長さも同一となる切込パターンとした。プリプレグシートはシート基材Aである離型紙で担持されており、離型紙と反対側の面にはポリエチレンフィルムが密着している。切込挿入時にはポリエチレンフィルムを貫通し、離型紙にも厚さの50%程度まで切込を挿入した。
<Manufacturing of cut prepreg>
"Treca" (registered trademark) prepreg sheet P3052S-15 (reinforcing fiber: T700S, resin composition resin: 2500, volume content of reinforcing fiber: 56%, single-sided paper pattern laminated) prepared and provided with a blade The notch was inserted by pressing the prepreg sheet against the roll (rotary blade roll) around which the plastic was wound. In each of the examples, the cut region was the entire prepreg, and the cut pattern was set so that all the cuts had the same length and the lengths of the reinforcing fibers divided by the cuts were also the same. The prepreg sheet is supported by the release paper which is the sheet base material A, and the polyethylene film is in close contact with the surface opposite to the release paper. At the time of inserting the cut, the polyethylene film was penetrated, and the cut was inserted into the paper pattern to about 50% of the thickness.

<切込プリプレグの切込パターンの確認>
切込プリプレグに意図通り切込が挿入できているかどうかを確認するために、切込挿入後に、切込プリプレグの表面をデジタルマイクロスコープで撮影し、デジタルマイクロスコープの測定ソフトウェアを用いて、切込分布、切込の長さ、切込によって分断された強化繊維の長さ、強化繊維の配向方向と切込とのなす角(切込角)、切込を強化繊維の配向方向に直角な平面に投影した投影長さWs、最近接する切込同士の距離、切込の延長線上に存在する切込同士の間隔を測定した。撮影した画像を複数枚連結させて50mm×50mmの領域として、測定を行った。
<Confirmation of the cut pattern of the cut prepreg>
After inserting the cut, take a picture of the surface of the cut prepreg with a digital microscope and use the measurement software of the digital microscope to make a cut to check whether the cut is inserted into the cut prepreg as intended. Distribution, length of cut, length of reinforcing fiber divided by the cut, angle between the orientation direction of the reinforcing fiber and the cut (cut angle), plane where the cut is perpendicular to the orientation direction of the reinforcing fiber The projected length Ws projected on the surface, the distance between the cuts that are in close contact with each other, and the distance between the cuts existing on the extension line of the cuts were measured. A plurality of captured images were connected to form a 50 mm × 50 mm region, and measurement was performed.

まず、画像上に存在する切込の端部同士を結んだ線分を、全ての切込において抽出することで、切込パターンを抽出した。ただし、画像の端部と接している切込に関しては線分を抽出していない。画像上に、直径10mmの円形の小領域を図10のように六方最密配置状で10個描き、各小領域内に含まれる線分をカウントした。このとき、小領域の境界に接する線分も小領域内に含まれるとみなした。10個の小領域に含まれる線分数を母集団とし、式1および式2で母集団の平均値と変動係数を算出した。 First, the cut pattern was extracted by extracting the line segments connecting the ends of the cuts existing on the image in all the cuts. However, the line segment is not extracted for the notch in contact with the edge of the image. Ten circular small regions having a diameter of 10 mm were drawn on the image in a hexagonal close-packed arrangement as shown in FIG. 10, and the line segments contained in each small region were counted. At this time, the line segment tangent to the boundary of the small area was also considered to be included in the small area. Using the line fractions contained in the 10 small regions as the population, the average value and the coefficient of variation of the population were calculated using Equations 1 and 2.

切込の長さについては、線分の長さが切込の長さに相当し、画像上に存在する全ての線分の長さの平均値を算出した。全ての線分の長さが平均値±5%の範囲内であれば、全ての切込が実質的に同一であるとみなし、平均値を代表値として切込の長さとした。 Regarding the length of the cut, the length of the line segment corresponds to the length of the cut, and the average value of the lengths of all the line segments existing on the image was calculated. If the lengths of all the line segments were within the range of ± 5% of the average value, all the cuts were considered to be substantially the same, and the average value was used as the representative value as the cut length.

切込角については、強化繊維の配向方向(繊維方向)と線分とのなす角度とした。全ての線分において切込角を測定して平均値を算出し、全ての切込角が平均値±1%の範囲内であれば、全ての切込角が実質的に同一であるとみなし、平均値を代表値として切込角とした。正切込と負切込が存在する場合は、切込角の絶対値を代表値として上記計算を行った。 The cut angle was the angle formed by the orientation direction (fiber direction) of the reinforcing fibers and the line segment. The cut angle is measured for all line segments to calculate the average value, and if all the cut angles are within the range of the average value ± 1%, it is considered that all the cut angles are substantially the same. , The average value was used as the representative value and the cutting angle was used. When there are positive and negative cuts, the above calculation was performed using the absolute value of the cut angle as a representative value.

切込によって分断される強化繊維の長さについては、繊維方向に隣接する線分間の、繊維方向における距離とした。一組の線分間について3箇所の距離を測定してその平均値を線分間距離とし、抽出可能な線分間全てについて同様に線分間距離を測定した。線分間距離の平均値を、切込によって分断された強化繊維の長さとした。 The length of the reinforcing fiber divided by the notch was defined as the distance in the fiber direction between the lines adjacent to the fiber direction. The distances at three points were measured for a set of line segments, and the average value was used as the line segment distance, and the line segment distances were measured in the same manner for all the line segments that could be extracted. The average value of the line-breaking distance was taken as the length of the reinforcing fiber divided by the notch.

Wsについては、各線分について、各線分の端部と接し、繊維方向と平行な直線を描き、該直線同士の直線間距離とした。全ての線分について直線間距離を測定し、平均値を代表地としてWsとした。 For Ws, for each line segment, a straight line was drawn in contact with the end of each line segment and parallel to the fiber direction, and the distance between the straight lines was defined as the distance between the straight lines. The distance between straight lines was measured for all line segments, and the average value was taken as Ws as a representative place.

最近接する切込同士の距離は、任意の線分について線分の端部と、該端部と最も近い線分との最短距離とした。全ての線分の端部について該端部と最も近い線分との最短距離を測定し、平均値を代表地として最近接する切込同士の距離とした。また、任意の切込において、最近接する切込同士の間に、該二つの切込によっても切断されない強化繊維が複数本存在する場合に、任意の切込と、当該切込に最近接する別の切込とは、同一の強化繊維を分断していないとみなした。 The distance between the notches that are in close contact with each other is the shortest distance between the end of the line segment and the line segment closest to the end of any line segment. For the ends of all line segments, the shortest distance between the end and the nearest line segment was measured, and the average value was used as the distance between the most recently contacted cuts. Further, in any cut, when there are a plurality of reinforcing fibers that are not cut by the two cuts between the cuts that are in close contact with each other, the arbitrary cut and another cut that is in close contact with the cut are different. The notch was considered not to divide the same reinforcing fiber.

切込の延長線上に存在する切込同士の間隔については、正切込と負切込が存在する場合に測定した。正切込に関しては、任意の正切込から抽出された線分を延長し、他の正切込から抽出された線分と接触、あるいは限りなく近づく線分が存在し、かつ該2つの線分の中央を結ぶ直線と、どちらか一方の線分との角度が1°以下である場合に、2つの線分が一つの直線状に存在するとみなした。図6の正切込同士の距離11のように2つの線分の近い方の端点同士の距離を最近接する切込同士の距離とした。負切込に関しても同様に同一直線状に隣接する切込間距離12を測定した。 The distance between the cuts existing on the extension line of the cut was measured when there were a positive cut and a negative cut. With respect to a normal cut, a line segment extracted from any normal cut is extended, and there is a line segment that comes into contact with or approaches the line segment extracted from another normal cut as much as possible, and the center of the two line segments. When the angle between the straight line connecting the two line segments and one of the line segments is 1 ° or less, it is considered that the two line segments exist in one straight line. As shown in the distance 11 between the regular cuts in FIG. 6, the distance between the closest end points of the two line segments is defined as the distance between the cuts that are in close contact with each other. Similarly, for the negative cut, the distance 12 between the cuts adjacent to each other in the same straight line was measured.

<プレス成形後の表面品位確認>
切込プリプレグの強化繊維の配向方向を0°とし、[+45/0/−45/90]2sに積層された150mm×150mmの積層体を準備し、図7に示す形状の金型でプレス成形を行った。成形温度は150℃、プレス圧は3MPaとした。成形品の表面品位を以下の3段階で評価した。
<Confirmation of surface quality after press molding>
The orientation direction of the reinforcing fibers of the cut prepreg was set to 0 °, and a 150 mm × 150 mm laminate laminated in [+ 45/0 / −45 / 90] 2s was prepared and press-molded with a die having the shape shown in FIG. Was done. The molding temperature was 150 ° C. and the press pressure was 3 MPa. The surface quality of the molded product was evaluated in the following three stages.

A:切込の存在がほとんど認識できないもの
B:切込の開口は少ないものの切込の存在が認識されるもの
C:切込が開口が大きく開口し、切込開口が目立つもの。
A: The existence of the notch is almost unrecognizable B: The opening of the notch is small but the existence of the notch is recognized C: The notch has a large opening and the notch opening is conspicuous.

<繊維強化プラスチックの引張弾性率・引張強度>
切込プリプレグから300mm×300mm、積層構成が[+45/−45/0/90]2sの切込プリプレグの積層体を作製した。積層時は、ポリエチレンフィルムを剥がした面が上に来るように積層した。その後、切込プリプレグの積層体を350mm×350mmの型を用いてプレス機により3MPaの面圧の下でプレス成形し、350mm×350mmの繊維強化プラスチックを成形した。プレス時の温度は130℃、プレス後に90分保持してから脱型し、室温に放置して冷却した。強化繊維の0度方向が長手方向となるように、25mm×250mmの試験片を切り出し、ASTM D3039(2008)に規定された方法で引張試験を行った。測定した試験片の数は各水準5本とし、引張弾性率および引張強度の平均値を代表値として算出した。
<Tensile modulus / tensile strength of fiber reinforced plastic>
A laminated body of the cut prepreg having a thickness of 300 mm × 300 mm and a laminated structure of [+ 45 / −45 / 0/90] 2s was prepared from the cut prepreg. At the time of lamination, the polyethylene film was laminated so that the peeled surface was on top. Then, the laminated body of the cut prepreg was press-molded by a press machine using a mold of 350 mm × 350 mm under a surface pressure of 3 MPa to form a fiber reinforced plastic of 350 mm × 350 mm. The temperature at the time of pressing was 130 ° C., and after holding for 90 minutes after pressing, the mold was removed and left at room temperature for cooling. A 25 mm × 250 mm test piece was cut out so that the 0 degree direction of the reinforcing fiber was the longitudinal direction, and a tensile test was performed by the method specified in ASTM D3039 (2008). The number of test pieces measured was 5 for each level, and the average value of tensile elastic modulus and tensile strength was used as a representative value.

(実施例1)
切込プリプレグの切込パターンを図8(a)のような切込パターンとした。切込挿入により分断された強化繊維の長さは8mm、切込を強化繊維の配向方向に直角な平面に投影した投影長さWsは1mm、強化繊維の配向方向と切込とがなす角は90°であった。切込によって分断された強化繊維束は、隣接する強化繊維束に対して、強化繊維長さLの1/3ずれて配置されていた。
(Example 1)
The cut pattern of the cut prepreg was set as the cut pattern as shown in FIG. 8 (a). The length of the reinforcing fiber divided by the notch insertion is 8 mm, the projected length Ws projected on the plane perpendicular to the orientation direction of the reinforcing fiber is 1 mm, and the angle between the orientation direction of the reinforcing fiber and the notch is It was 90 °. The reinforcing fiber bundles divided by the notch were arranged with a deviation of 1/3 of the reinforcing fiber length L with respect to the adjacent reinforcing fiber bundles.

プレス成形品は表面に切込の開口が見られた。強化繊維の長さが短いが引張弾性率は高い値となった。 The press-molded product had a notch opening on the surface. Although the length of the reinforcing fiber was short, the tensile elastic modulus was high.

(実施例2)
切込プリプレグの切込パターンを図8(b)のような切込パターンとした。切込挿入により分断された強化繊維の長さは12mm、切込を強化繊維の配向方向に直角な平面に投影した投影長さWsは0.64mm、強化繊維の配向方向と切込とがなす角は40°であった。切込は実質的に同一の長さY=1mmであり、最近接する切込同士の距離は1.7mmでYの0.5倍よりも長い。切込によって分断された強化繊維束は、隣接する強化繊維束に対して、強化繊維長さLの1/6ずれて配置されていた。
(Example 2)
The cut pattern of the cut prepreg was set as the cut pattern as shown in FIG. 8 (b). The length of the reinforcing fiber divided by the cut insertion is 12 mm, the projected length Ws projected on the plane perpendicular to the orientation direction of the reinforcing fiber is 0.64 mm, and the orientation direction of the reinforcing fiber and the cut are formed. The angle was 40 °. The cuts have substantially the same length Y = 1 mm, and the distance between the cuts that are in close contact with each other is 1.7 mm, which is longer than 0.5 times Y. The reinforcing fiber bundles divided by the notch were arranged with a deviation of 1/6 of the reinforcing fiber length L with respect to the adjacent reinforcing fiber bundles.

プレス成形品は表面に切込の開口が見られた。引張弾性率は実施例1と同等であったが引張強度は実施例1より向上した。 The press-molded product had a notch opening on the surface. The tensile elastic modulus was the same as that of Example 1, but the tensile strength was improved as compared with Example 1.

(実施例3)
切込プリプレグの切込パターンを、図8(c)のような切込パターンとした。切込挿入後に確認したところ、任意の切込と、当該切込に最近接する別の切込とは、同一の強化繊維を分断していなかった。切込は実質的に同一の長さY=1mmであり、最近接する切込同士の距離は1mmでYと同等であった。分断された強化繊維の長さは20mm、切込を強化繊維の配向方向に直角な平面に投影した投影長さWsは0.34mm、強化繊維の配向方向と切込とがなす角は20°であった。複数の切込により断続的な直線が形成されていた。
(Example 3)
The cut pattern of the cut prepreg was set as the cut pattern as shown in FIG. 8 (c). When confirmed after inserting the notch, the same reinforcing fiber was not divided between the arbitrary notch and another notch closest to the notch. The cuts had substantially the same length Y = 1 mm, and the distance between the cuts closest to each other was 1 mm, which was equivalent to Y. The length of the divided reinforcing fibers is 20 mm, the projected length Ws projected on a plane perpendicular to the orientation direction of the reinforcing fibers is 0.34 mm, and the angle between the orientation direction of the reinforcing fibers and the cut is 20 °. Met. An intermittent straight line was formed by multiple cuts.

プレス成形品の表面品位は実施例1、2と同等であったが、引張弾性率、引張強度は実施例1、2よりさらに高い値となった。 The surface grades of the press-molded products were the same as those of Examples 1 and 2, but the tensile elastic modulus and the tensile strength were even higher than those of Examples 1 and 2.

(実施例4)
切込プリプレグの切込パターンを、図8(d)のような切込パターンとした。切込挿入後に確認したところ、任意の切込と、当該切込に最近接する別の切込とは、同一の強化繊維を分断していなかった。切込は実質的に同一の長さY=1mmであり、最近接する切込同士の距離は1.5mmでYの1.5倍であった。分断された強化繊維の長さは20mm、切込を強化繊維の配向方向に直角な平面に投影した投影長さWsは0.34mmであった。強化繊維の配向方向と切込とがなす角は20°であった。切込によって分断された強化繊維束は、隣接する強化繊維束に対して、強化繊維長さLの2/5ずれて配置されていた。
(Example 4)
The cut pattern of the cut prepreg was set as the cut pattern as shown in FIG. 8 (d). When confirmed after inserting the notch, the same reinforcing fiber was not divided between the arbitrary notch and another notch closest to the notch. The cuts had substantially the same length Y = 1 mm, and the distance between the cuts closest to each other was 1.5 mm, which was 1.5 times that of Y. The length of the divided reinforcing fibers was 20 mm, and the projected length Ws of the cut projected onto a plane perpendicular to the orientation direction of the reinforcing fibers was 0.34 mm. The angle between the orientation direction of the reinforcing fibers and the notch was 20 °. The reinforcing fiber bundles divided by the notch were arranged with a deviation of 2/5 of the reinforcing fiber length L with respect to the adjacent reinforcing fiber bundles.

プレス成形品の表面品位は実施例3と同等であったが、引張強度は実施例3もよりさらに高い値となった。 The surface quality of the press-molded product was the same as that of Example 3, but the tensile strength was even higher than that of Example 3.

(実施例5)
切込プリプレグの切込パターンを、図8(e)のような切込パターンとした。切込挿入後に確認したところ、切込は実質的に同一の長さY=1mmであり、最近接する切込同士の距離は1.4mmでYの1.4倍であった。分断された強化繊維の長さは12mm、切込を強化繊維の配向方向に直角な平面に投影した投影長さWsは0.64mmであった。強化繊維の配向方向と切込とがなす角θの絶対値は40°でありθが正である正切込とθが負である負切込を略同数含んでいた。
(Example 5)
The cut pattern of the cut prepreg was set as the cut pattern as shown in FIG. 8 (e). As a result of confirmation after the incision was inserted, the incisions had substantially the same length Y = 1 mm, and the distance between the most adjacent incisions was 1.4 mm, which was 1.4 times that of Y. The length of the divided reinforcing fibers was 12 mm, and the projected length Ws of the cut projected onto a plane perpendicular to the orientation direction of the reinforcing fibers was 0.64 mm. The absolute value of the angle θ formed by the orientation direction of the reinforcing fibers and the cut was 40 °, and included approximately the same number of positive cuts in which θ was positive and negative cuts in which θ was negative.

切込プリプレグ製造時には、実施例2の切込パターンでは、プリプレグシートを回転刃ロールに押し当てる際、押し当てた距離が長くなるほどプリプレグシートが幅方向にずれていく傾向が見られたが、実施例5ではプリプレグの幅方向のズレが小さかった。積層時には、離型紙側とポリエチレンフィルム側、どちらが上になるように積層しても正切込と負切込が存在するため、切込プリプレグの裏表気にすることなく積層することができた。また、実施例2の切込パターンではポリエチレンフィルムを剥がす際に、ポリエチレンフィルムがちぎれやすかったが、実施例5ではちぎれることなくポリエチレンフィルムをはがすことができた。 At the time of manufacturing the cut prepreg, in the cut pattern of Example 2, when the prepreg sheet was pressed against the rotary blade roll, the prepreg sheet tended to shift in the width direction as the pressing distance became longer. In Example 5, the deviation of the prepreg in the width direction was small. At the time of laminating, there are positive cuts and negative cuts regardless of which side is on the release paper side or the polyethylene film side, so that the cut prepreg can be laminated without worrying about the front and back. Further, in the cut pattern of Example 2, the polyethylene film was easily torn when the polyethylene film was peeled off, but in Example 5, the polyethylene film could be peeled off without being torn off.

プレス成形品には、切込開口が見られたが、実施例2よりも見えにくくなっていた。引張弾性率、引張強度は実施例2と同等の値となった。 A cut opening was observed in the press-molded product, but it was more difficult to see than in Example 2. The tensile elastic modulus and tensile strength were the same values as in Example 2.

(実施例6)
切込プリプレグの切込パターンを、図8(f)のような切込パターンとした。切込挿入後に確認したところ、任意の切込と、当該切込に最近接する別の切込とは、同一の強化繊維を分断していなかった。切込は実質的に同一の長さY=1mmであり、最近接する切込同士の距離は1.5mmでYの1.5倍であった。分断された強化繊維の長さは20mm、切込を強化繊維の配向方向に直角な平面に投影した投影長さWsは0.34mmであった。強化繊維の配向方向と切込とがなす角θの絶対値は20°でありθが正である正切込とθが負である負切込を略同数含む。さらに、切込の延長線上に存在する切込同士の間隔が、正切込(3.4mm)と負切込(24.5mm)とで異なった。
(Example 6)
The cut pattern of the cut prepreg was set as the cut pattern as shown in FIG. 8 (f). When confirmed after inserting the notch, the same reinforcing fiber was not divided between the arbitrary notch and another notch closest to the notch. The cuts had substantially the same length Y = 1 mm, and the distance between the cuts closest to each other was 1.5 mm, which was 1.5 times that of Y. The length of the divided reinforcing fibers was 20 mm, and the projected length Ws of the cut projected onto a plane perpendicular to the orientation direction of the reinforcing fibers was 0.34 mm. The absolute value of the angle θ formed by the orientation direction of the reinforcing fibers and the cut is 20 °, and includes approximately the same number of positive cuts in which θ is positive and negative cuts in which θ is negative. Further, the distance between the cuts existing on the extension line of the cut was different between the normal cut (3.4 mm) and the negative cut (24.5 mm).

プレス成形品には、切込開口がほとんど見られなかった。引張弾性率、引張強度は実施例3、4よりも高い値となった。 Almost no cut opening was observed in the press-molded product. The tensile elastic modulus and tensile strength were higher than those in Examples 3 and 4.

(実施例7)
切込プリプレグの切込パターンを、図8(f)のような切込パターンとした。切込挿入後に確認したところ、任意の切込と、当該切込に最近接する別の切込とは、同一の強化繊維を分断していなかった。切込は実質的に同一の長さY=1mmであり、最近接する切込同士の距離は1.8mmでYの1.8倍であった。分断された強化繊維の長さは24mm、切込を強化繊維の配向方向に直角な平面に投影した投影長さWsは0.34mmであった。強化繊維の配向方向と切込とがなす角θの絶対値は20°でありθが正である正切込とθが負である負切込を略同数含んでいた。さらに、切込の延長線上に存在する切込同士の間隔が、正切込(33.3mm)と負切込(44.7mm)とで異なった。
(Example 7)
The cut pattern of the cut prepreg was set as the cut pattern as shown in FIG. 8 (f). When confirmed after inserting the notch, the same reinforcing fiber was not divided between the arbitrary notch and another notch closest to the notch. The notches had substantially the same length Y = 1 mm, and the distance between the most adjacent cuts was 1.8 mm, which was 1.8 times that of Y. The length of the divided reinforcing fibers was 24 mm, and the projected length Ws of the cut projected onto a plane perpendicular to the orientation direction of the reinforcing fibers was 0.34 mm. The absolute value of the angle θ formed by the orientation direction of the reinforcing fibers and the cut was 20 °, and included approximately the same number of positive cuts in which θ was positive and negative cuts in which θ was negative. Further, the distance between the cuts existing on the extension line of the cut was different between the normal cut (33.3 mm) and the negative cut (44.7 mm).

プレス成形品には、切込開口がほとんど見られなかった。引張強度は実施例6より高い値となった。 Almost no cut opening was observed in the press-molded product. The tensile strength was higher than that of Example 6.

(比較例1)
切込プリプレグの切込パターンを、図9(a)のような切込パターンとした。切込と、当該切込に最近接する別の切込とは、同一の強化繊維を分断している可能性があり、最近接する切込同士の距離が、切込の長さの0.5倍よりも短い箇所があった。分断された強化繊維の長さが20mm以下、切込を強化繊維の配向方向に直角な平面に投影した投影長さWsは1〜2mm、強化繊維の配向方向と切込とがなす角θは90°の範囲でランダムに挿入されていた。
(Comparative Example 1)
The cut pattern of the cut prepreg was set as the cut pattern as shown in FIG. 9 (a). The notch and another notch closest to the notch may be splitting the same reinforcing fiber, and the distance between the most recent cuts is 0.5 times the length of the notch. There was a shorter part than. The length of the divided reinforcing fibers is 20 mm or less, the projected length Ws projected on a plane perpendicular to the orientation direction of the reinforcing fibers is 1 to 2 mm, and the angle θ between the orientation direction of the reinforcing fibers and the cut is It was randomly inserted in the range of 90 °.

プレス成形品には、切込が大きく開口している箇所があった。引張強度は実施例1〜7のいずれよりも低かった。 In the press-molded product, there was a part where the notch was large and opened. The tensile strength was lower than that of Examples 1 to 7.

(比較例2)
切込プリプレグの切込パターンを、図9(b)のような切込パターンとした。切込と、当該切込に最近接する別の切込とは、同一の強化繊維を分断している可能性があった。分断された強化繊維の長さは20mm、切込を強化繊維の配向方向に直角な平面に投影した投影長さWsは5mmであった。強化繊維の配向方向と切込とがなす角θは40°であった。
(Comparative Example 2)
The cut pattern of the cut prepreg was set as the cut pattern as shown in FIG. 9 (b). It was possible that the notch and another notch closest to the notch were splitting the same reinforcing fiber. The length of the divided reinforcing fibers was 20 mm, and the projected length Ws of the cut projected onto a plane perpendicular to the orientation direction of the reinforcing fibers was 5 mm. The angle θ formed by the orientation direction of the reinforcing fibers and the notch was 40 °.

プレス成形品の表面は、切込が大きく開口していた。引張弾性率、引張強度は比較例1と比べて高かったが、同じ強化繊維の長さとした実施例3、4、6と比較すると低かった。 The surface of the press-molded product had a large notch. The tensile elastic modulus and tensile strength were higher than those of Comparative Example 1, but were lower than those of Examples 3, 4, and 6 having the same reinforcing fiber length.

(比較例3)
切込プリプレグの切込パターンを、図9(c)のような切込パターンとした。切込と、当該切込に最近接する別の切込とは、同一の強化繊維を分断している可能性がある。分断された強化繊維の長さは20mm、切込を強化繊維の配向方向に直角な平面に投影した投影長さWsは5mmであった。強化繊維の配向方向と切込とがなす角θの絶対値は40°でありθが正である正切込とθが負である負切込を略同数含む。
(Comparative Example 3)
The cut pattern of the cut prepreg was set as the cut pattern as shown in FIG. 9 (c). It is possible that the notch and another notch closest to the notch are splitting the same reinforcing fiber. The length of the divided reinforcing fibers was 20 mm, and the projected length Ws of the cut projected onto a plane perpendicular to the orientation direction of the reinforcing fibers was 5 mm. The absolute value of the angle θ formed by the orientation direction of the reinforcing fibers and the cut is 40 °, and includes approximately the same number of positive cuts in which θ is positive and negative cuts in which θ is negative.

プレス成形品の表面は、切込の開口が見られたが、比較例2よりも小さかった。引張強度は比較例2より若干向上した。 On the surface of the press-molded product, an opening of a notch was observed, but it was smaller than that of Comparative Example 2. The tensile strength was slightly improved as compared with Comparative Example 2.

(比較例4)
切込プリプレグの切込パターンを、図9(d)のような切込パターンとした。連続的な切込が挿入されており、分断された強化繊維の長さは20mm、切込と強化繊維の配向方向とがなす角θは20°であった。
(Comparative Example 4)
The cut pattern of the cut prepreg was set as the cut pattern as shown in FIG. 9 (d). A continuous notch was inserted, the length of the divided reinforcing fiber was 20 mm, and the angle θ between the notch and the orientation direction of the reinforcing fiber was 20 °.

プレス成形品の表面は切込が大きく開口していた。引張強度は比較例3よりも高かった。 The surface of the press-molded product had a large notch. The tensile strength was higher than that of Comparative Example 3.

(比較例5)
切込プリプレグの切込パターンを、図9(e)のような切込パターンとした。切込は実質的に同一の長さY=1mmであり、分断された強化繊維の長さは24mm、切込を強化繊維の配向方向に直角な平面に投影した投影長さWsは0.34mmであった。強化繊維の配向方向と切込とがなす角θの絶対値は20°であった。小領域の位置を変えた場合、変動係数が80%を超えるパターンも存在していた。
(Comparative Example 5)
The cut pattern of the cut prepreg was set as the cut pattern as shown in FIG. 9 (e). The cuts have substantially the same length Y = 1 mm, the length of the divided reinforcing fibers is 24 mm, and the projected length Ws obtained by projecting the cuts onto a plane perpendicular to the orientation direction of the reinforcing fibers is 0.34 mm. Met. The absolute value of the angle θ formed by the orientation direction of the reinforcing fibers and the notch was 20 °. When the position of the small region was changed, there was a pattern in which the coefficient of variation exceeded 80%.

切込により分断された繊維長と、θの絶対値が同じであるにもかかわらず、実施例7と比較すると、プレス成形品の表面は切込が大きく開口しており、引張強度は低かった。 Although the fiber length divided by the cut and the absolute value of θ are the same, as compared with Example 7, the surface of the press-molded product had a large cut and the tensile strength was low. ..

Figure 0006965530
Figure 0006965530

1:プリプレグ
2:切込
3:強化繊維を分断する複数の切込を有する領域(切込領域)
4:直径10mmの円形の小領域
5:切込Aと切込Bの間の強化繊維
6:最近接する切込同士の距離
7:正切込
8:負切込
9:正切込が乗る直線
10:負切込が乗る直線
11:同一直線状に隣接する正切込間距離
12:同一直線状に隣接する負切込間距離
1: Prepreg 2: Notch 3: Area with multiple cuts that divide the reinforcing fiber (cut area)
4: Circular small area with a diameter of 10 mm 5: Reinforcing fiber between cut A and cut B 6: Distance between the most adjacent cuts 7: Positive cut 8: Negative cut 9: Straight line on which the positive cut rides 10: Straight line on which negative cuts ride 11: Distance between positive cuts adjacent to the same straight line 12: Distance between negative cuts adjacent to the same straight line

Claims (9)

一方向に配向した強化繊維と樹脂とを含むプリプレグの少なくとも一部の領域に強化繊維を分断する複数の切込を有する切込プリプレグであって、
前記領域内から任意に選択される、10個の直径10mmの円形の小領域内に含まれる切込の個数を母集団とした場合に、母集団の平均値が10以上、かつ変動係数が20%以内である切込プリプレグ。
A cut prepreg having a plurality of cuts that divide the reinforcing fibers in at least a part of a region of the prepreg containing unidirectionally oriented reinforcing fibers and a resin.
When the number of cuts contained in 10 circular small regions having a diameter of 10 mm, which are arbitrarily selected from the above regions, is used as the population, the average value of the population is 10 or more and the coefficient of variation is 20. Incision prepreg within%.
任意の切込と、当該切込に最近接する別の切込とは、同一の強化繊維を分断していない、請求項1に記載の切込プリプレグ。 The cut prepreg according to claim 1, wherein the arbitrary cut and another cut that is in close contact with the cut do not divide the same reinforcing fiber. 切込は、実質的に同一の長さYであり、最近接する切込同士の距離は、Yの0.5倍よりも長い、請求項1または2に記載の切込プリプレグ。 The cut prepreg according to claim 1 or 2, wherein the cuts have substantially the same length Y, and the distance between the closest cuts is greater than 0.5 times Y. 切込が、強化繊維の配向方向に対して、斜めに挿入されている、請求項1〜3のいずれかに記載の切込プリプレグ。 The cut prepreg according to any one of claims 1 to 3, wherein the cut is inserted at an angle with respect to the orientation direction of the reinforcing fibers. 切込と強化繊維の配向方向とのなす角度θの絶対値が、実質的に同一であり、さらにθが正である切込(正切込という)とθが負である切込(負切込という)を含む、請求項1〜4のいずれかに記載の切込プリプレグ。 The absolute value of the angle θ formed by the cut and the orientation direction of the reinforcing fibers is substantially the same, and a cut in which θ is positive (called a positive cut) and a cut in which θ is negative (negative cut). ), The incision prepreg according to any one of claims 1 to 4. 正切込と負切込を略同数含む、請求項5に記載の切込プリプレグ。 The cut prepreg according to claim 5, which includes approximately the same number of positive cuts and negative cuts. 任意の切込と、当該切込の延長線上に存在する最近接する別の切込との間隔について、正切込同士の間隔と負切込同士の間隔とで長さが異なる、請求項5または6に記載の切込プリプレグ。 Claim 5 or 6 regarding the distance between an arbitrary cut and another cut that is in close contact on the extension line of the cut, the length differs between the distance between the positive cuts and the distance between the negative cuts. The notch prepreg described in. 強化繊維と樹脂とを含むプリプレグの少なくとも一部の領域に強化繊維を分断する複数の切込を有する切込プリプレグの製造方法であって、
プリプレグに対して複数の切込1を挿入する工程1、及び、プリプレグに対して切込1と重ならない複数の切込2を挿入する工程2とを含む、切込プリプレグの製造方法。
A method for producing a cut prepreg having a plurality of cuts for dividing a reinforcing fiber in at least a part of a region of the prepreg containing the reinforcing fiber and a resin.
A method for manufacturing a cut prepreg, which comprises a step 1 of inserting a plurality of cuts 1 into a prepreg and a step 2 of inserting a plurality of cuts 2 which do not overlap with the cut 1 into the prepreg.
切込1と強化繊維とのなす角度θ1が正又は負であり、切込2と強化繊維とのなす角度θ2が、前記なす角度θ1とは正負が異なる、請求項8に記載の切込プリプレグの製造方法。 The cut prepreg according to claim 8, wherein the angle θ1 formed by the notch 1 and the reinforcing fiber is positive or negative, and the angle θ2 formed by the cut 2 and the reinforcing fiber is different from the angle θ1 formed by the notch 2. Manufacturing method.
JP2017045667A 2016-03-16 2017-03-10 Notch prepreg and method of manufacturing notch prepreg Active JP6965530B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016051891 2016-03-16
JP2016051891 2016-03-16

Publications (2)

Publication Number Publication Date
JP2017171894A JP2017171894A (en) 2017-09-28
JP6965530B2 true JP6965530B2 (en) 2021-11-10

Family

ID=59971712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017045667A Active JP6965530B2 (en) 2016-03-16 2017-03-10 Notch prepreg and method of manufacturing notch prepreg

Country Status (1)

Country Link
JP (1) JP6965530B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008279753A (en) * 2007-04-13 2008-11-20 Toray Ind Inc Manufacturing method of fiber-reinforced plastics
US9969146B2 (en) * 2013-03-11 2018-05-15 Mitsubishi Chemical Corporation Layered substrate and method for manufacturing same
CN105492510B (en) * 2013-09-10 2019-04-02 三菱化学株式会社 Thermoplasticity prepreg and laminated body

Also Published As

Publication number Publication date
JP2017171894A (en) 2017-09-28

Similar Documents

Publication Publication Date Title
JP6962191B2 (en) Manufacturing method of fiber reinforced plastic and fiber reinforced plastic
JP6597309B2 (en) Cutting prepreg and cutting prepreg sheet
WO2017073460A1 (en) Nicked prepreg, cross-ply laminate, and nicked prepreg production method
JP6907503B2 (en) Manufacturing method of cross-ply laminate and fiber reinforced plastic
JP5678483B2 (en) Fiber-reinforced plastic molded product with curved shape
TWI793144B (en) Prepreg laminate and method for producing fiber-reinforced plastic using prepreg laminate
JP2010018724A (en) Prepreg layered substrate and fiber-reinforced plastic
JP6965530B2 (en) Notch prepreg and method of manufacturing notch prepreg
CN110612196B (en) Fiber reinforced plastic
JP6947163B2 (en) Manufacturing method of fiber reinforced plastic
JP2004346190A (en) Prepreg and fiber reinforced resin composite
US20240059031A1 (en) Prepreg laminate, composite structure, and method for manufacturing composite structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211004

R151 Written notification of patent or utility model registration

Ref document number: 6965530

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151