JP6907503B2 - Manufacturing method of cross-ply laminate and fiber reinforced plastic - Google Patents

Manufacturing method of cross-ply laminate and fiber reinforced plastic Download PDF

Info

Publication number
JP6907503B2
JP6907503B2 JP2016209243A JP2016209243A JP6907503B2 JP 6907503 B2 JP6907503 B2 JP 6907503B2 JP 2016209243 A JP2016209243 A JP 2016209243A JP 2016209243 A JP2016209243 A JP 2016209243A JP 6907503 B2 JP6907503 B2 JP 6907503B2
Authority
JP
Japan
Prior art keywords
cross
cuts
ply laminate
cut
prepreg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016209243A
Other languages
Japanese (ja)
Other versions
JP2017082210A (en
Inventor
藤田 雄三
雄三 藤田
悠太 内藤
悠太 内藤
一朗 武田
一朗 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JP2017082210A publication Critical patent/JP2017082210A/en
Application granted granted Critical
Publication of JP6907503B2 publication Critical patent/JP6907503B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/0036Slitting

Description

本発明は、強化繊維と樹脂とからなり、かつ複数の切込を有するプリプレグを積層したクロスプライ積層体であって、ハンドレイアップに好適なクロスプライ積層体に関する。 The present invention relates to a cross-ply laminate composed of reinforcing fibers and a resin and in which prepregs having a plurality of cuts are laminated, and is suitable for hand lay-up.

強化繊維と樹脂とからなる繊維強化プラスチックは、比強度、比弾性率が高く、力学特性に優れること、耐候性、耐薬品性などの高機能特性を有することなどから産業用途においても注目され、航空機、宇宙機、自動車、鉄道、船舶、電化製品、スポーツ等の構造用途に展開され、その需要は年々高まりつつある。ハンドレイアップは繊維強化プラスチックの成形法の一つであり、製品形状を有する型や、補修の必要な構造物に対して強化繊維をシート状に加工した繊維基材を手作業によって押し付けて形状を作り、繊維基材に含浸させた樹脂を固化させて繊維強化プラスチックを得る方法である。手作業であるため、必要な箇所を伸ばしながら繊維基材を型に押し付けて賦形することができ、複雑な形状へも高品位に成形できる。 Fiber reinforced plastics made of reinforced fibers and resins are attracting attention in industrial applications because they have high specific strength and specific elastic modulus, excellent mechanical properties, and high functional properties such as weather resistance and chemical resistance. It is being developed for structural applications such as aircraft, spacecraft, automobiles, railroads, ships, electrical appliances, and sports, and its demand is increasing year by year. Hand lay-up is one of the molding methods of fiber reinforced plastic, and it is shaped by manually pressing a fiber base material made by processing reinforced fibers into a sheet shape against a mold having a product shape or a structure requiring repair. Is a method of obtaining a fiber reinforced plastic by solidifying the resin impregnated in the fiber base material. Since it is a manual work, the fiber base material can be pressed against the mold while stretching the required part to shape it, and even a complicated shape can be molded with high quality.

ハンドレイアップには、樹脂の含浸されていない繊維基材を型に押し付けて賦形した後から粘度の低い樹脂を含浸させて固化させる方法(例えば特許文献1)と、繊維基材に予め樹脂が含浸されたプリプレグによって形状を作り固化させる方法(例えば特許文献2)とがある。前者はプリプレグ化工程を経ていない安価な繊維基材を用いて成形可能である。後者は良好な品質の成形品を得るのに有効な方法である。 Hand lay-up includes a method of pressing a fiber base material that is not impregnated with resin into a mold to shape it, and then impregnating it with a resin having a low viscosity to solidify it (for example, Patent Document 1). There is a method (for example, Patent Document 2) in which a shape is formed and solidified by a prepreg impregnated with. The former can be molded using an inexpensive fiber base material that has not undergone the prepregation process. The latter is an effective method for obtaining a good quality molded article.

特開2015−117442号公報Japanese Unexamined Patent Publication No. 2015-117442 特開平8−25491号公報Japanese Unexamined Patent Publication No. 8-25491

しかし特許文献1に記載の方法は、ハンドレイアップ作業中に折れた強化繊維が飛散し作業環境が悪化する場合や、樹脂を含浸させる工程で強化繊維がうねる場合、樹脂が含浸しきらずにボイドが残る場合等がある。また特許文献2に記載の方法は、予め繊維基材に樹脂が含浸されたプリプレグを用いるため、プリプレグ自体のコストが高くなる問題がある。 However, in the method described in Patent Document 1, when the reinforcing fibers broken during the hand lay-up work are scattered and the working environment is deteriorated, or when the reinforcing fibers are undulated in the process of impregnating the resin, the resin is not completely impregnated and voids are formed. May remain. Further, since the method described in Patent Document 2 uses a prepreg in which a fiber base material is impregnated with a resin in advance, there is a problem that the cost of the prepreg itself is high.

プリプレグを用いたハンドレイアップには賦形性に優れた織構造を強化形態とした繊維基材(織物)に樹脂を含浸させたプリプレグを用いることが一般的である。一方で固化させた繊維強化プラスチックの力学特性としては、強化繊維の強化形態が織構造であるよりも、厚み方向のうねりがなく一方向に強化繊維が配向されている方が優れており、高い力学特性の望まれる製品へは一方向に強化繊維が配向されたプリプレグ(一方向プリプレグ)を用いて成形することが好ましい。しかし、一方向プリプレグは繊維方向へは高い剛性を有するため伸張させにくく、三次元形状を有する型へ沿わす際には、角部で強化繊維が突っ張るため形状追従が困難である。また、一方向プリプレグは非繊維方向へは樹脂のみで連結されており、非繊維方向へ引張り荷重が加わった際には割けてしまうため、ハンドレイアップには不向きである。繊維方向の角度を変えて複数枚積層した一方向プリプレグの積層体の場合、プリプレグの割けは軽減されるものの、角部での強化繊維の突っ張りを解消できず、3次元形状を有する型への形状追従は困難である。 For hand lay-up using a prepreg, it is common to use a prepreg in which a fiber base material (woven fabric) having a woven structure having excellent shapeability as a reinforced form is impregnated with a resin. On the other hand, as for the mechanical properties of the solidified fiber reinforced plastic, it is superior that the reinforced form of the reinforced fiber has a woven structure, and that the reinforced fiber is oriented in one direction without undulation in the thickness direction, which is higher. For products with desired mechanical properties, it is preferable to use a prepreg in which reinforcing fibers are oriented in one direction (unidirectional prepreg). However, since the unidirectional prepreg has high rigidity in the fiber direction, it is difficult to stretch it, and when following a mold having a three-dimensional shape, it is difficult to follow the shape because the reinforcing fibers are stretched at the corners. Further, the unidirectional prepreg is not suitable for hand lay-up because it is connected only with resin in the non-fiber direction and breaks when a tensile load is applied in the non-fiber direction. In the case of a laminated body of unidirectional prepregs in which a plurality of sheets are laminated by changing the angle in the fiber direction, the splitting of the prepregs is reduced, but the tension of the reinforcing fibers at the corners cannot be eliminated, and the mold has a three-dimensional shape. Shape tracking is difficult.

そこで本発明の課題は、ハンドレイアップに好適であり、かつ繊維強化プラスチックとした場合に優れた力学特性を発現するプリプレグの積層体を提供することにある。 Therefore, an object of the present invention is to provide a laminate of prepregs that is suitable for hand laying and exhibits excellent mechanical properties when made into a fiber reinforced plastic.

本発明は、かかる課題を解決するために、次のようなクロスプライ積層体積層体を提供する。すなわち、 一方向に配向した強化繊維と樹脂を含む強化繊維の体積含有率Vfが45〜65%である複数枚のプリプレグよりなり、繊維方向が実質的に直角に交わるプリプレグを含むように構成されたクロスプライ積層体であって、
各プリプレグは強化繊維を横切る複数の切込を有する実質的に全ての強化繊維が繊維長さ(L)10〜300mmである切込プリプレグであり、25℃環境下にて以下に示す引張特性1を満たすか、又は、60℃環境下にて以下に示す引張特性2を満たすクロスプライ積層体。
(引張特性1)クロスプライ積層体中のいずれかのプリプレグの繊維方向を0°とした場合に、クロスプライ積層体に対して0°方向へ1%の引張ひずみを加えたときにクロスプライ積層体の0°方向に発生する荷重を荷重1として、クロスプライ積層体に対して0°方向へ2%の引張ひずみを加えたときにクロスプライ積層体の0°方向に発生する荷重を荷重2とすると、荷重1×0.5<荷重2<荷重1×1.5である。
(引張特性2)クロスプライ積層体中のいずれかのプリプレグの繊維方向を0°とした場合に、クロスプライ積層体に対して0°方向へ1%の引張ひずみを加えたときにクロスプライ積層体の0°方向に発生する荷重を荷重1として、クロスプライ積層体に対して0°方向へ2%の引張ひずみを加えたときにクロスプライ積層体の0°方向に発生する荷重を荷重2とすると、荷重1×0.5<荷重2<荷重1×1.5である。
本発明のクロスプライ積層体において、前記プリプレグ内から任意に選択される、10個の直径10mmの円形の小領域内に含まれる切込の個数を母集団とした場合に、母集団の平均値が10以上、かつ変動係数が20%以内であることが好ましい。
The present invention provides the following cross-ply laminated body laminate in order to solve such a problem. That is, it is composed of a plurality of prepregs having a volume content Vf of 45 to 65% of the reinforcing fibers oriented in one direction and the reinforcing fibers containing the resin, and is configured to include the prepregs in which the fiber directions intersect substantially at right angles. It is a cross-ply laminated body
Each prepreg is a cut prepreg having a plurality of cuts across the reinforcing fibers, and substantially all the reinforcing fibers have a fiber length (L) of 10 to 300 mm. A cross-ply laminate that satisfies or satisfies the tensile property 2 shown below in an environment of 60 ° C.
(Tensile property 1) When the fiber direction of any of the prepregs in the cross-ply laminate is set to 0 °, the cross-ply laminate is subjected to 1% tensile strain in the 0 ° direction with respect to the cross-ply laminate. Let the load generated in the 0 ° direction of the body be the load 1, and the load generated in the 0 ° direction of the cross-ply laminated body when a 2% tensile strain is applied to the cross-ply laminated body in the 0 ° direction is the load 2. Then, the load is 1 × 0.5 <load 2 <load 1 × 1.5.
(Tensile property 2) When the fiber direction of any of the prepregs in the cross-ply laminate is set to 0 °, the cross-ply laminate is subjected to 1% tensile strain in the 0 ° direction with respect to the cross-ply laminate. Let the load generated in the 0 ° direction of the body be the load 1, and the load generated in the 0 ° direction of the cross-ply laminated body when a 2% tensile strain is applied to the cross-ply laminated body in the 0 ° direction is the load 2. Then, the load is 1 × 0.5 <load 2 <load 1 × 1.5.
In the cross-ply laminated body of the present invention, when the number of cuts contained in 10 small circular regions having a diameter of 10 mm arbitrarily selected from the prepreg is used as the population, the average value of the population is used. Is preferably 10 or more and the coefficient of variation is preferably 20% or less.

本発明によれば、ハンドレイアップに好適で、繊維強化プラスチックとした場合に優れた力学特性を発現するクロスプライ積層体を得られる。 According to the present invention, it is possible to obtain a cross-ply laminate that is suitable for hand lay-up and exhibits excellent mechanical properties when used as a fiber reinforced plastic.

クロスプライ積層体Cross-ply laminate プリプレグ上に抽出した小領域の一例を示す概念図である。It is a conceptual diagram which shows an example of a small area extracted on a prepreg. 本発明のプリプレグの切込パターンの一例を示す概念図である。It is a conceptual diagram which shows an example of the cut pattern of the prepreg of this invention. 本発明のプリプレグの切込パターンの一例を示す概念図である。It is a conceptual diagram which shows an example of the cut pattern of the prepreg of this invention. 本発明のプリプレグの切込パターンの一例を示す概念図である。It is a conceptual diagram which shows an example of the cut pattern of the prepreg of this invention. 実施例および比較例で適用した切込パターンである。It is a cut pattern applied in Examples and Comparative Examples. 実施例1で用いた型の形状である。This is the shape of the mold used in Example 1. 実施例における、プリプレグ内の小領域抽出パターンである。It is a small area extraction pattern in a prepreg in an Example. 大型の賦形型である。It is a large shaped type.

本発明者らは、ハンドレイアップに好適で、繊維強化プラスチックとした場合に優れた力学特性を発現する中間基材を得るために、一方向に配向した強化繊維と樹脂とを含み、強化繊維の体積含有率Vfが45〜65%のプリプレグを、強化繊維の配向方向(繊維方向)が実質的に直角方向に交わるように複数枚積層したクロスプライ積層体とし、かつ、プリプレグについて強化繊維を横切る複数の切込によって実質的に全ての強化繊維が繊維長さL=10〜300mmに分断された切込プリプレグとして、さらに後述する引張特性を有するクロスプライ積層体とすることで、かかる課題を解決することを究明したものである。
通常強化繊維の繊維方向は剛性が高く伸張させることが困難であるが、切込によって強化繊維を分断することで、プリプレグの繊維方向への伸張も可能とし、プリプレグを積層したクロスプライ積層体とすることで、各層のプリプレグに非繊維方向への荷重が加えられた場合にプリプレグが割けることを抑制する。繊維方向が実質的に直角に交わるように積層されたプリプレグが互いに拘束し合う構成は、縦糸と横糸が互いに拘束し合い、強化繊維の配向していない±45°方向に伸張可能であるため賦形性に優れる織物を模擬した構成となっており、織物と同等の賦形性が期待できるため、クロスプライに積層(繊維方向が実質的に直角に交わるように積層)することが好ましい。同じ大きさの正方形に切り出したプリプレグを90°回転させて積層するだけでよいため、積層が簡便である。なお繊維方向が実質的に直角とは、繊維方向が90°±10°の範囲内であることを指す。
The present inventors include unidirectionally oriented reinforcing fibers and a resin in order to obtain an intermediate base material which is suitable for hand lay-up and exhibits excellent mechanical properties when made into a fiber reinforced plastic. The prepreg having a volume content Vf of 45 to 65% was made into a cross-ply laminated body in which a plurality of prepregs were laminated so that the orientation directions (fiber directions) of the reinforcing fibers intersected substantially in the perpendicular direction, and the reinforcing fibers were used for the prepreg. This problem is solved by forming a cut prepreg in which substantially all the reinforcing fibers are divided into fiber lengths L = 10 to 300 mm by a plurality of crossing cuts, and further forming a cross-ply laminate having tensile properties described later. It is the one that investigated the solution.
Normally, the fiber direction of the reinforcing fiber is high and it is difficult to stretch it, but by dividing the reinforcing fiber by cutting, it is possible to stretch the prepreg in the fiber direction, and the cross-ply laminate in which the prepreg is laminated can be used. By doing so, it is possible to prevent the prepreg from cracking when a load is applied to the prepreg of each layer in the non-fiber direction. The configuration in which the prepregs laminated so that the fiber directions intersect at a substantially right angle is constrained to each other because the warp and weft are restrained to each other and can be stretched in the ± 45 ° direction in which the reinforcing fibers are not oriented. Since it has a structure that imitates a woven fabric having excellent shape and can be expected to have the same shapeability as a woven fabric, it is preferable to laminate it on a cross ply (laminate so that the fiber directions intersect substantially at right angles). Laminating is convenient because it is only necessary to rotate the prepreg cut into squares of the same size by 90 ° and stack them. The fact that the fiber direction is substantially right angle means that the fiber direction is within the range of 90 ° ± 10 °.

繊維方向が実質的に直角に交わるように複数枚積層したクロスプライ積層体について、積層する枚数は特に限定されず、例えば積層構成は[0/0/90/90]、[0/90]、[0/90]などでもでもよく、[0/90/0]など0°と90°の枚数が異なっても良い。異なる切込挿入方法(切込パターン)のプリプレグを積層したクロスプライ積層体でもよい。クロスプライ積層体は厚いほど伸張させにくくなるため、積層後の厚みは1mmより小さいのが好ましい。 The number of cross-ply laminates laminated so that the fiber directions intersect substantially at right angles is not particularly limited, and for example, the laminated configurations are [0/0/90/90], [0/90], [0/90] 2 or the like may be used, and the number of sheets of 0 ° and 90 ° such as [0/90/0] may be different. A cross-ply laminate in which prepregs of different cut insertion methods (cut patterns) are laminated may be used. The thicker the cross-ply laminate, the more difficult it is to stretch. Therefore, the thickness after lamination is preferably smaller than 1 mm.

なお、本発明において実質的に全ての強化繊維が繊維長さL=10〜300mmに分断されているとは、クロスプライ積層体中の各プリプレグにおいて、L=10〜300mmの範囲外の強化繊維の体積の合計が、該プリプレグの体積に対して0%以上10%以下であることを指す。 In the present invention, substantially all the reinforcing fibers are divided into fiber lengths L = 10 to 300 mm. In each prepreg in the cross-ply laminate, the reinforcing fibers outside the range of L = 10 to 300 mm. It means that the total volume of the prepreg is 0% or more and 10% or less with respect to the volume of the prepreg.

各プリプレグの強化繊維の体積含有率Vfは65%以下とすることで切込部の強化繊維のずれがおき、形状追従性を得ることができ、成形時に発生する表面の樹脂欠け抑制に十分な樹脂量を確保できる。かかる観点からVfは65%以下であることが好ましい。また、Vfは低いほど繊維方向への伸張効果が高くなるが、Vfが45%より小さくなると、構造材に必要な高力学特性が得られにくくなる。かかる観点からVfは45%以上であることが好ましい。 By setting the volume content Vf of the reinforcing fibers of each prepreg to 65% or less, the reinforcing fibers at the cut portion are displaced, shape followability can be obtained, and it is sufficient to suppress resin chipping on the surface that occurs during molding. The amount of resin can be secured. From this point of view, Vf is preferably 65% or less. Further, the lower the Vf, the higher the stretching effect in the fiber direction, but when the Vf is smaller than 45%, it becomes difficult to obtain the high mechanical properties required for the structural material. From this point of view, Vf is preferably 45% or more.

切込によって分断された強化繊維はLを300mm以下とすることにより、クロスプライ積層体の繊維方向において切込の存在確率を上げ、細かい凹凸への形状追従性向上を実現することができる。Lを10mm以上にすると、切込同士の距離が離れるため、そのようなプリプレグを用いて成形された繊維強化プラスチックに荷重が負荷された場合には、クラックが連結しにくく強度が高いものとなる。成形時における形状追従性と成形された繊維強化プラスチックの力学特性との関係を鑑みると、Lの好ましい範囲は10〜300mmである。より好ましいLの範囲は10〜100mm、さらに好ましくは15〜30mmである。 By setting L of the reinforcing fibers divided by the cut to 300 mm or less, the existence probability of the cut can be increased in the fiber direction of the cross-ply laminate, and the shape followability to fine irregularities can be improved. When L is set to 10 mm or more, the distance between the cuts is increased, so that when a load is applied to the fiber reinforced plastic formed by using such a prepreg, cracks are hard to be connected and the strength is high. .. Considering the relationship between the shape followability at the time of molding and the mechanical properties of the molded fiber reinforced plastic, the preferable range of L is 10 to 300 mm. The more preferable range of L is 10 to 100 mm, more preferably 15 to 30 mm.

なお繊維長さLとは、図3に示すように、任意の切込と、強化繊維方向に最近接の切込(対になる切込)とにより分断される強化繊維の長さを指している。切込挿入時に強化繊維の逃げが発生することから、プリプレグへわざと長めの切込を挿入することもあり、大多数のLよりも短い繊維長さとなる強化繊維が該プリプレグ内に存在する場合もあるが、その体積割合は該プリプレグの体積の5%より小さいのがよい。また、各プリプレグにおいて切込挿入時の繊維方向の僅かなズレや、切込を挿入する装置の劣化等によって切込が挿入されない強化繊維や、Lが300mmを超える強化繊維が存在する場合があるが、その体積割合は該プリプレグの体積の5%より小さいのがよい。対となる切込によって実質的に全ての強化繊維が所定の繊維長さ範囲(10〜300mm)となることで、三次元形状への追従性、ブリッジング防止につながる。 As shown in FIG. 3, the fiber length L refers to the length of the reinforcing fiber divided by an arbitrary cut and a cut (paired cut) closest to the reinforcing fiber direction. There is. Since the reinforcing fibers escape when the cut is inserted, a long cut may be intentionally inserted into the prepreg, and the reinforcing fibers having a fiber length shorter than the majority of L may be present in the prepreg. However, its volume ratio should be less than 5% of the volume of the prepreg. Further, in each prepreg, there may be a reinforcing fiber in which the cut is not inserted due to a slight deviation in the fiber direction at the time of inserting the cut, deterioration of the device for inserting the cut, or a reinforcing fiber having an L of more than 300 mm. However, its volume ratio should be less than 5% of the volume of the prepreg. By making the paired cuts, substantially all the reinforcing fibers are in a predetermined fiber length range (10 to 300 mm), which leads to followability to the three-dimensional shape and prevention of bridging.

本発明において、室温すなわち25℃環境下にてクロスプライ積層体中のいずれかの一枚のプリプレグの繊維方向を0°とした場合に、クロスプライ積層体に対して0°方向へ1%の引張ひずみを加えたときにクロスプライ積層体の0°方向に発生する荷重を荷重1として、25℃環境下にてクロスプライ積層体に対して0°方向へ2%の引張ひずみを加えたときにクロスプライ積層体の0°方向に発生する荷重を荷重2とすると、荷重1×0.5<荷重2<荷重1×1.5(引張特性1)を満たすことが好ましい。 In the present invention, when the fiber direction of any one of the prepregs in the cross-ply laminate is 0 ° at room temperature, that is, in an environment of 25 ° C., 1% in the 0 ° direction with respect to the cross-ply laminate. When a load generated in the 0 ° direction of the cross-ply laminate when a tensile strain is applied is a load 1, and a 2% tensile strain is applied to the cross-ply laminate in the 0 ° direction in an environment of 25 ° C. Assuming that the load generated in the 0 ° direction of the cross-ply laminated body is the load 2, it is preferable that the load 1 × 0.5 <load 2 <load 1 × 1.5 (tensile characteristic 1) is satisfied.

図1はプリプレグを2層積層させたクロスプライ積層体の概念図であり、上側のプリプレグの繊維方向を0°方向3としている。クロスプライ積層体をハンドレイアップにより型に押し付けて賦形する際、最も伸張させやすいのは45°方向5であるが、45°方向5のみを伸張させながら形づくるのは困難である。45°方向5よりも0°方向3に近い方向に伸張させながら賦形する際は0°方向3が伸張しやすいほど該角度で伸張しやすいため、クロスプライ積層体の0°方向3の伸張しやすさが、クロスプライ積層体の賦形しやすさの目安となる。45°方向5よりも90°方向に近い方向へ伸張させながら形づくる場合には、クロスプライ積層体のもう一枚のプリプレグの0°方向4の伸張しやすさが、クロスプライ積層体の賦形しやすさの目安となる。 FIG. 1 is a conceptual diagram of a cross-ply laminated body in which two layers of prepreg are laminated, and the fiber direction of the upper prepreg is set to 0 ° direction 3. When the cross-ply laminate is pressed against the mold by hand lay-up to shape it, it is most easily stretched in the 45 ° direction 5, but it is difficult to shape it while stretching only the 45 ° direction 5. When shaping while stretching in a direction closer to 0 ° direction 3 than in 45 ° direction 5, the easier it is to stretch in 0 ° direction 3, the easier it is to stretch at that angle. Ease of ease is a measure of the ease of shaping the cross-ply laminate. When shaping while stretching in a direction closer to 90 ° than in 45 ° direction 5, the ease of stretching of another prepreg in the 0 ° direction 4 of the cross-ply laminate is the shaping of the cross-ply laminate. It is a measure of ease of use.

なお、本発明のクロスプライ積層体は、クロスプライ積層体中のいずれか一つのプリプレグの繊維方向を0°とした場合に、前記引張特性(荷重1×0.5<荷重2<荷重1×1.5)を満たすことが重要であり、例えば、上側のプリプレグの繊維方向を0°方向3とした場合に前記引張特性を満たしさえすれば、下側のプリプレグの繊維方向を0°方向とした場合(つまり上側のプリプレグの繊維方向の90°方向4を0°方向とした場合)に前記引張特性を満たさなかったとしても、その態様は本発明のクロスプライ積層体に含まれる。本発明のクロスプライ積層体において特に好ましくは、クロスプライ積層体のいずれか一つのプリプレグの繊維方向を0°とした場合に、0°方向および90°方向において前記引張特性(荷重1×0.5<荷重2<荷重1×1.5)を満たす態様、つまりクロスプライ積層体中の全てのプリプレグについて、その繊維方向を0°とした場合に0°方向において前記引張特性(荷重1×0.5<荷重2<荷重1×1.5)を満たす態様である。 The cross-ply laminate of the present invention has the tensile characteristics (load 1 × 0.5 <load 2 <load 1 ×) when the fiber direction of any one of the prepregs in the cross-ply laminate is 0 °. It is important to satisfy 1.5). For example, when the fiber direction of the upper prepreg is set to the 0 ° direction 3, the fiber direction of the lower prepreg is set to the 0 ° direction as long as the tensile characteristics are satisfied. Even if the tensile property is not satisfied in the case where the above-mentioned tensile property is not satisfied (that is, when the 90 ° direction 4 of the fiber direction of the upper prepreg is set to the 0 ° direction), the embodiment is included in the cross-ply laminate of the present invention. Particularly preferably, in the cross-ply laminate of the present invention, when the fiber direction of any one of the prepregs of the cross-ply laminate is 0 °, the tensile properties (load 1 × 0. A mode that satisfies 5 <load 2 <load 1 × 1.5), that is, for all prepregs in the cross-ply laminate, the tensile characteristics (load 1 × 0) in the 0 ° direction when the fiber direction is 0 °. It is an embodiment that satisfies .5 <load 2 <load 1 × 1.5).

ハンドレイアップ時に、プリプレグの0°方向は0°方向のひずみが1%以上伸張することが好ましいが、弾性変形で伸び続けると賦形後に収縮し形状が維持できない場合や、賦形に要する荷重も増大する場合があるため、クロスプライ積層体の0°方向の引張特性としては非線形性であり、徐々に弾性率が低下する特性を有することが好ましい。すなわち、荷重2<荷重1×1.5であることが好ましい。また、クロスプライ積層体の0°方向のひずみが2%以下で、一部の切込を起点としてクロスプライ積層体が分断される特性を有すると、賦形中にクロスプライ積層体が引きちぎれる場合があるため、クロスプライ積層体の0°方向の引張特性としては、0°方向のひずみが1〜2%の間で荷重が極端に低下しないことが好ましい。すなわち、荷重2>荷重1×0.5であることが好ましい。より好ましい引張特性の範囲は荷重1×0.7<荷重2<荷重1×1.3である。さらに、切込が挿入され、実質的に全ての強化繊維が切断されていても、荷重1がクロスプライ積層体の幅1mmあたり5N以上となるクロスプライ積層体が、クロスプライ積層体の剛性が高いため取り扱い性がよく、好ましい。一方で、荷重1が大きすぎると荷重1×0.5<荷重2<荷重1×1.5を満たす場合でも、人力では伸びにくく、ハンドレイアップに適さない場合がある。したがって、荷重1はクロスプライ積層体の幅1mmあたり100N以下が好ましい。 At the time of hand lay-up, it is preferable that the strain in the 0 ° direction of the prepreg stretches by 1% or more in the 0 ° direction, but if it continues to stretch due to elastic deformation, it contracts after shaping and the shape cannot be maintained, or the load required for shaping. The tensile property of the cross-ply laminated body in the 0 ° direction is non-linear, and it is preferable that the cross-ply laminated body has a property that the elastic modulus gradually decreases. That is, it is preferable that the load 2 <load 1 × 1.5. Further, if the strain of the cross-ply laminate in the 0 ° direction is 2% or less and the cross-ply laminate has a characteristic of being divided starting from a part of the cut, the cross-ply laminate is torn off during shaping. Therefore, as the tensile characteristics of the cross-ply laminated body in the 0 ° direction, it is preferable that the load in the 0 ° direction does not decrease extremely while the strain in the 0 ° direction is 1 to 2%. That is, it is preferable that the load 2> the load 1 × 0.5. A more preferable range of tensile properties is load 1 × 0.7 <load 2 <load 1 × 1.3. Further, even if a notch is inserted and substantially all the reinforcing fibers are cut, the cross-ply laminate having a load of 1 of 5 N or more per 1 mm of the width of the cross-ply laminate has the rigidity of the cross-ply laminate. Since it is high, it is easy to handle and is preferable. On the other hand, if the load 1 is too large, even if the load 1 × 0.5 <load 2 <load 1 × 1.5 is satisfied, it may not be easily stretched by human power and may not be suitable for hand lay-up. Therefore, the load 1 is preferably 100 N or less per 1 mm of the width of the cross-ply laminated body.

荷重1、荷重2の測定には、クロスプライ積層体を短冊状に切り出した引張試験片を用いてもよく、引張ひずみの付与には引張試験機を用いても良い。ひずみは実施例に記載の非接触ひずみ測定器を用いた方法で測定できる。 A tensile test piece obtained by cutting out a cross-ply laminated body into a strip may be used for measuring the load 1 and the load 2, and a tensile tester may be used for applying the tensile strain. The strain can be measured by the method using the non-contact strain measuring device described in the examples.

本発明では、クロスプライ積層体のいずれかのプリプレグの繊維方向を0°とした場合に、クロスプライ積層体に対して0°方向へ2%の引張ひずみを加えた時に、クロスプライ積層体の面積に占める切込開口部の合計の面積(切込開口部の面積率という)が、0%以上1%以下であることが、繊維強化プラスチックの表面品位の観点から好ましい。切込開口部には、樹脂が流動して充填される場合や、樹脂が充填されない場合は隣接層が見える場合がある。いずれの場合も、切込開口部は強化繊維が含まれる箇所とは色が異なって見えるため、繊維強化プラスチックとした際に表面品位を損なわすことが多い。 In the present invention, when the fiber direction of any of the prepregs of the cross-ply laminate is 0 ° and a tensile strain of 2% is applied to the cross-ply laminate in the 0 ° direction, the cross-ply laminate It is preferable that the total area of the cut openings (referred to as the area ratio of the cut openings) in the area is 0% or more and 1% or less from the viewpoint of the surface quality of the fiber reinforced plastic. The notch opening may be filled with the resin flowing, or the adjacent layer may be visible when the resin is not filled. In either case, the cut opening looks different in color from the portion containing the reinforcing fiber, so that the surface quality is often impaired when the fiber reinforced plastic is used.

本発明において切込開口部は、クロスプライ積層体あるいは繊維強化プラスチックの表面において、表面から10cm以上50cm以下の距離から撮影したデジタル画像を画像処理によって二値化した際に、切込と切込以外の箇所を分離できる開口部を指す。 In the present invention, the cut opening is a cut and a cut when a digital image taken from a distance of 10 cm or more and 50 cm or less from the surface is binarized by image processing on the surface of a cross-ply laminate or a fiber reinforced plastic. Refers to an opening that can separate parts other than the above.

クロスプライ積層体における切込開口部の面積率が0%以上1%以下の場合は、切込開口部が目視では認識されにくく、固化後の繊維強化プラスチックの表面品位が良好となる。2%の引張ひずみを与えた場合でも、切込開口部の面積率が0%以上1%以下の場合は、一つ一つの切込の開口が小さい場合や、繊維長が長い場合など切込の存在確立が低い場合等が挙げられる。切込に隣接する強化繊維束の流入によって1%以下の開口とすることが可能である。さらに好ましい切込開口部の面積率は0.8%以下である。 When the area ratio of the cut opening in the cross-ply laminated body is 0% or more and 1% or less, the cut opening is difficult to be visually recognized, and the surface quality of the fiber-reinforced plastic after solidification is good. Even when a tensile strain of 2% is applied, if the area ratio of the cut opening is 0% or more and 1% or less, the cut is made when the opening of each cut is small or the fiber length is long. For example, when the probability of existence of is low. The inflow of reinforcing fiber bundles adjacent to the notch can result in an opening of 1% or less. A more preferable area ratio of the notch opening is 0.8% or less.

本発明におけるクロスプライ積層体は、60℃の温度下にて、クロスプライ積層体中のいずれかの一枚のプリプレグの繊維方向を0°とした場合に、クロスプライ積層体に対して0°方向へ1%の引張ひずみを加えたときにクロスプライ積層体の0°方向に発生する荷重を荷重1として、60℃環境下にてクロスプライ積層体に対して0°方向へ2%の引張ひずみを加えたときにクロスプライ積層体の0°方向に発生する荷重を荷重2とすると、荷重1×0.5<荷重2<荷重1×1.5(引張特性2)を満たすクロスプライ積層体であっても良い。室温での賦形が困難であっても、ドライヤーなどの加熱手段によって加熱しながら賦形する際に、60℃環境下にて荷重1×0.5<荷重2<荷重1×1.5を満たすことで、賦形しやすく、賦形後には形状が固定されやすい。好ましくは、荷重1×0.7<荷重2<荷重1×1.3である。 The cross-ply laminate in the present invention is 0 ° with respect to the cross-ply laminate when the fiber direction of any one of the prepregs in the cross-ply laminate is 0 ° at a temperature of 60 ° C. The load generated in the 0 ° direction of the cross-ply laminate when a tensile strain of 1% is applied in the direction is assumed to be load 1, and the tension of 2% in the 0 ° direction with respect to the cross-ply laminate in an environment of 60 ° C. Assuming that the load generated in the 0 ° direction of the cross-ply laminate when strain is applied is load 2, the cross-ply laminate satisfying load 1 × 0.5 <load 2 <load 1 × 1.5 (tensile characteristic 2). It may be a body. Even if it is difficult to shape at room temperature, when shaping while heating with a heating means such as a dryer, load 1 x 0.5 <load 2 <load 1 x 1.5 under a 60 ° C environment. By filling it, it is easy to shape it, and after shaping it is easy to fix the shape. Preferably, load 1 × 0.7 <load 2 <load 1 × 1.3.

さらに、60℃の温度下であっても、クロスプライ積層体のいずれかのプリプレグの繊維方向を0°とした場合に、クロスプライ積層体に対して0°方向へ2%の引張ひずみを加えた時に、クロスプライ積層体の面積に占める切込開口部の合計の面積(切込開口部の面積率という)が、0%以上1%以下であることが、繊維強化プラスチックの表面品位の観点から好ましい。さらに好ましい切込開口部の面積率は0.8%以下である。 Further, even at a temperature of 60 ° C., when the fiber direction of any prepreg of the cross-ply laminate is set to 0 °, a tensile strain of 2% is applied to the cross-ply laminate in the 0 ° direction. At that time, the total area of the cut openings (referred to as the area ratio of the cut openings) to the area of the cross-ply laminated body is 0% or more and 1% or less from the viewpoint of the surface quality of the fiber reinforced plastic. Is preferable. A more preferable area ratio of the notch opening is 0.8% or less.

なお、引張荷重付与時のクロスプライ積層体における切込開口部の面積率については実施例に記載の方法にて、引張試験中のクロスプライ積層体を撮影した後、画像処理によって測定することができる。なお、クロスプライ積層体の0°方向へ2%の引張ひずみを加える過程において急激な荷重低下が生じ、荷重2<荷重1×0.5となる場合は、強化繊維のうねりが発生し、表面品位は損なわれる。 The area ratio of the cut opening in the cross-ply laminated body when a tensile load is applied can be measured by image processing after photographing the cross-ply laminated body during the tensile test by the method described in the examples. can. When the load drops sharply in the process of applying 2% tensile strain in the 0 ° direction of the cross-ply laminate and the load 2 <load 1 × 0.5, the reinforcing fibers swell and the surface Dignity is impaired.

本発明のクロスプライ積層体におけるプリプレグの好ましい実施態様として、プリプレグ中の複数の切込が、高密度かつ均質に配置されていることが好ましい。具体的には、プリプレグ内において任意に選択される10個の直径10mmの円形の小領域内に含まれる切込の個数を母集団とした場合に、母集団の平均値が10以上かつ変動係数が20%以内の切込プリプレグである(以下、母集団の平均値が10以上の状態を高密度、変動係数が20%以内の状態を均質という)。高密度かつ均質に切込が存在することで、手作業で賦形する際、クロスプライ積層体の任意の箇所を均質に伸張させることができ、取り扱い性が向上する。 As a preferred embodiment of the prepreg in the cross-ply laminate of the present invention, it is preferable that a plurality of cuts in the prepreg are arranged at high density and uniformly. Specifically, when the number of cuts contained in 10 circular small regions having a diameter of 10 mm arbitrarily selected in the prepreg is used as the population, the average value of the population is 10 or more and the coefficient of variation is Is a cut prepreg within 20% (hereinafter, a state where the average value of the population is 10 or more is called high density, and a state where the coefficient of variation is within 20% is called homogeneous). The presence of high-density and homogeneous cuts allows the cross-ply laminate to be uniformly stretched at any location during manual shaping, improving handleability.

図2はプリプレグ1に直径10mmの小領域8を10箇所抽出した様子を示している。小領域は、小領域が重ならない程度に密に抽出することが好ましいが、プリプレグが小領域を10個全て重ならずに含むのに十分なサイズでなければ、小領域同士が重なっていても良い。 FIG. 2 shows a state in which 10 small regions 8 having a diameter of 10 mm are extracted from the prepreg 1. It is preferable to extract the small regions so densely that the small regions do not overlap, but if the prepreg is not large enough to include all 10 small regions without overlapping, even if the small regions overlap each other. good.

小領域内に含まれる切込みの個数とは、小領域内に存在する切込と、小領域の輪郭に一部が接触する切込の合計数とする。なお、平均値と変動係数は、10個の小領域内の切込数をni(i=1〜10)とすると、それぞれ式1、式2で計算される。 The number of cuts included in the small area is the total number of cuts existing in the small area and some cuts that partially contact the contour of the small area. The average value and the coefficient of variation are calculated by Equations 1 and 2, respectively, assuming that the number of cuts in the 10 small regions is ni (i = 1 to 10).

Figure 0006907503
Figure 0006907503

Figure 0006907503
Figure 0006907503

切込の個数は高密度であるほど、三次元形状への追従性が向上し、プリプレグの変形時に一つ一つの切込の開口が小さくなるため、ハンドレイアップ時に引きちぎれにくく、繊維強化プラスチックとした際に、良好な表面品位を得ることができる。また、全体として切込によって分断される強化繊維の数が同じであっても、繊維強化プラスチックとした際に負荷が与えられた場合、切込が大きい場合は切込周辺の応力集中が大きくなるが、細かいほど応力集中が軽減され、力学特性が向上する。したがって、小領域内に含まれる切込の個数を、10個の小領域においてカウントし母集団とした際に、母集団は平均値が10以上であることが好ましい。さらに好ましくは15個以上である。小領域内で同一の強化繊維が複数の切込によって分断されていてもよいが、強化繊維の繊維長さLが10mmより小さい場合、固化後の力学特性が低下する場合があるため、小領域内では同一の強化繊維が複数の切込みによって分断されていないことがより好ましい。母集団の平均値が50より大きい場合、小領域内で同一強化繊維が複数の切込によって分断される可能性が高くなるため、母集団の平均値は50以下であることが好ましい。一方、均質に切込が分布しているほど、ハンドレイアップ時に均質にクロスプライ積層体を伸張させながら形状追従させることができ、プリプレグ変形時に一つ一つの切込の開口のバラツキが小さくなるため、繊維強化プラスチックとした際に安定した力学特性を発現する。したがって、母集団の変動係数は20%以下が好ましい。さらに好ましくは15%以下である。ここで小領域の抽出方法としては、図2に示すように、小領域同士が比較的近くに存在するように抽出することが好ましい。抽出パターンによって前記変動係数が変動する場合もあるが、その場合は5回抽出パターンを変えて測定し、4回以上前記変動係数が20%以下であれば、本発明の態様を満たすとみなす。 The higher the number of cuts, the better the followability to the three-dimensional shape, and the smaller the opening of each cut when the prepreg is deformed. When this is done, good surface quality can be obtained. In addition, even if the number of reinforcing fibers divided by the cut is the same as a whole, when a load is applied when the fiber reinforced plastic is used, the stress concentration around the cut becomes large when the cut is large. However, the finer it is, the less stress concentration is reduced and the better the mechanical properties. Therefore, when the number of cuts contained in the small region is counted in 10 small regions and used as the population, the average value of the population is preferably 10 or more. More preferably, the number is 15 or more. The same reinforcing fiber may be divided by a plurality of cuts in the small region, but if the fiber length L of the reinforcing fiber is smaller than 10 mm, the mechanical properties after solidification may deteriorate, so that the small region It is more preferable that the same reinforcing fiber is not divided by a plurality of cuts. When the average value of the population is larger than 50, the same reinforcing fiber is more likely to be divided by a plurality of cuts in the small region, so that the average value of the population is preferably 50 or less. On the other hand, the more uniformly the cuts are distributed, the more the cross-ply laminate can be uniformly stretched to follow the shape during hand lay-up, and the variation in the opening of each cut becomes smaller when the prepreg is deformed. Therefore, it exhibits stable mechanical properties when it is made of fiber reinforced plastic. Therefore, the coefficient of variation of the population is preferably 20% or less. More preferably, it is 15% or less. Here, as a method for extracting small regions, as shown in FIG. 2, it is preferable to extract small regions so that they are relatively close to each other. The coefficient of variation may fluctuate depending on the extraction pattern. In that case, the measurement is performed by changing the extraction pattern five times, and if the coefficient of variation is 20% or less four times or more, it is considered that the aspect of the present invention is satisfied.

比較的小さな切込を挿入する概念は既に国際公開WO2008/099670号パンフレットに記載されているが、例えば当該国際公開のパンフレットの図2に記載の切込パターンを拡大縮小して前記母集団の平均値が10以上となるようにした場合、強化繊維の繊維長さは10mm以下とならざるを得ず、強化繊維の繊維長さを10mmとした場合には、前記母集団の平均値は5以下と、切込の分布の密度は小さくなる。 The concept of inserting a relatively small notch has already been described in the International Publication WO2008 / 099670 pamphlet. For example, the incision pattern shown in FIG. 2 of the internationally published pamphlet is enlarged or reduced to scale the average of the population. When the value is 10 or more, the fiber length of the reinforcing fiber must be 10 mm or less, and when the fiber length of the reinforcing fiber is 10 mm, the average value of the population is 5 or less. Then, the density of the incision distribution becomes smaller.

また、国際公開WO2008/099670号パンフレットの第1図(A)に代表される多くの既存の切込パターンでは、図3(a)(文献を特定しないときは本明細書の図である。以下同じ)に示すように、強化繊維の長さLに対して、隣接する切込を、Lの半分の長さL/2ずらして、断続的な切込としている。このような切込パターンの場合、切込の長さが短く、繊維長さが長いほど、強化繊維の配向方向にL/2おきに存在する直線状に切込が存在しやすくなり、前記母集団のばらつきが大きくなる。このような場合、切込開口が前記直線上に集中し、開口が顕著に現れる。図3(b)のように、隣接する切込をL/2ではなく、L/5やL/6といった、細かい周期でずらすことで、プリプレグ中により切込が均等に分布した切込パターンを有する切込プリプレグとなり、当該切込プリプレグが伸張する際に、伸張箇所が偏ることなく、均質な変形が可能となり、一つ一つの切込の開口が抑制される(以降、切込が均等に分布した切込パターンのことを均質な切込パターンと記す場合もある)。さらに、図3(b)のように、隣り合う切込を階段状にずらすのではなく、図3(c)のようにずらしてもよい。図3(c)はL/10の周期で切込がずれているが、切込によって分断された強化繊維束で、隣り合う強化繊維束の端部同士(例えば図3(c)中の切込s1と切込s2)の距離は、2L/5となっており、図3(b)のL/5よりも長くなっている。隣り合う強化繊維束の端部同士の距離が長いことで、き裂進展や切込開口の連鎖を抑制する効果があり、力学特性・表面品位ともに向上する。図3(a)の場合、隣り合う強化繊維束の端部同士の距離はL/2と長いが、強化繊維束を挟んだ2つの切込同士の距離も近いため、その2つの切込開口による応力集中部が重なりやすく、力学特性としても好ましくない。 Further, in many existing cutting patterns represented by FIG. 1 (A) of the pamphlet of International Publication WO2008 / 099670, FIG. 3 (a) (when the document is not specified, it is the figure of the present specification. As shown in (same as above), the adjacent cuts are shifted by half the length L / 2 of L with respect to the length L of the reinforcing fibers to form intermittent cuts. In the case of such a cut pattern, the shorter the cut length and the longer the fiber length, the more likely it is that the cuts are linearly present at intervals of L / 2 in the orientation direction of the reinforcing fibers. Population variability increases. In such a case, the cut openings are concentrated on the straight line, and the openings are prominently displayed. As shown in FIG. 3B, by shifting the adjacent cuts in fine cycles such as L / 5 and L / 6 instead of L / 2, a cut pattern in which the cuts are evenly distributed during the prepreg can be obtained. It becomes a cut prepreg to have, and when the cut prepreg is stretched, the stretched part is not biased, uniform deformation is possible, and the opening of each cut is suppressed (hereinafter, the cut is evenly distributed). The distributed cut pattern is sometimes referred to as a homogeneous cut pattern). Further, instead of shifting the adjacent cuts in a staircase pattern as shown in FIG. 3 (b), the adjacent cuts may be shifted as shown in FIG. 3 (c). In FIG. 3 (c), the cuts are deviated in the cycle of L / 10, but the reinforcing fiber bundles are divided by the cuts, and the ends of the adjacent reinforcing fiber bundles (for example, the cuts in FIG. 3 (c)) are cut. The distance between the indentation s1 and the incision s2) is 2L / 5, which is longer than the L / 5 in FIG. 3 (b). The long distance between the ends of adjacent reinforcing fiber bundles has the effect of suppressing crack growth and chaining of cut openings, improving both mechanical properties and surface quality. In the case of FIG. 3A, the distance between the ends of adjacent reinforcing fiber bundles is as long as L / 2, but the distance between the two cuts sandwiching the reinforcing fiber bundle is also short, so the two cut openings The stress concentration parts due to the above are likely to overlap, which is not preferable as a mechanical property.

プリプレグ中の複数の切込が、図3の列9に示すような断続的な直線を複数形成し、該複数の断続的な直線が平行に挿入されていてもよい。ここで、複数の切込が断続的な直線を形成するとは、複数の切込を結ぶことで直線となり、これらの切込が同一直線状に存在することを指す。なお本発明において、複数の切込が同一直線状に存在するとは、切込を延長した直線と対象となる切込同士の最も近接する点同士を結んだ直線との角度が全て1°以内であることを指す。同一直線状に複数の切込が存在する場合、ミシン目の回転丸刃を一直線上に転がすことで切込を挿入したり、レーザー加工用のパルスレーザーを一直線上に高速で走査したりすることでパルス周期に対応する切込を挿入するなど、生産性の高い切込挿入法を適用できる。 The plurality of cuts in the prepreg may form a plurality of intermittent straight lines as shown in column 9 of FIG. 3, and the plurality of intermittent straight lines may be inserted in parallel. Here, the fact that a plurality of cuts form an intermittent straight line means that the plurality of cuts are connected to form a straight line, and these cuts exist in the same straight line. In the present invention, when a plurality of cuts exist in the same straight line, the angle between the straight line extending the cut and the straight line connecting the closest points of the target cuts is within 1 °. Refers to something. When there are multiple cuts in the same straight line, insert the cut by rolling the rotating round blade of the perforation in a straight line, or scan the pulse laser for laser processing in a straight line at high speed. A highly productive incision insertion method can be applied, such as inserting an incision corresponding to the pulse period.

さらに、本発明のクロスプライ積層体におけるプリプレグの好ましい実施態様として、プリプレグ中の複数の切込が、断続的な直線を複数形成し、該断続的な直線を形成する複数の切込が、実質的に同一の長さYであり、該断続的な直線を形成する複数の切込について、近接する切込間距離(以下、同一直線上の切込間距離という)がYの3倍より大きいものが挙げられる。上記のように、切込によって分断された隣り合う強化繊維同士が、L/2ずれている場合は、切込の長さYに対して、同一直線上の近接する切込間距離もYとなるが、L/3以下の周期でずらすことで、同一直線上の切込間距離がYの3倍以上となる。同一直線上に切込が存在する場合は、切込起因の損傷が切込の延長線上に発生する可能性があるので、特に近接する距離が近いほどクラックが連結しやすい。従って同一直線状の切込同士の距離をできるだけ離すことでクラック連結が抑制され、繊維強化プラスチックとした際の強度が向上する。また、同一直線上の切込間距離が近い場合は、ハンドレイアップ時に切込開口が連鎖し、切込が断続的な直線の模様として認識されやすくなる一方、切込同士の距離が離れていることで模様として認識されることがなくなり、表面品位に優れるものとなる。なお本発明においては、プリプレグ中の複数の切込が断続的な直線を複数形成し、該断続的な直線を形成する複数の切込が実質的に同一の長さYであり、該断続的な直線を形成する複数の切込について近接する切込間距離がYの3倍より大きいプリプレグを少なくとも1つ有することが好ましく、特に好ましくは全てのプリプレグについて複数の切込が断続的な直線を複数形成し、該断続的な直線を形成する複数の切込が実質的に同一の長さYであり、該断続的な直線を形成する複数の切込について近接する切込間距離がYの3倍より大きいも態様である。 Further, as a preferred embodiment of the prepreg in the cross-ply laminate of the present invention, the plurality of cuts in the prepreg form a plurality of intermittent straight lines, and the plurality of cuts forming the intermittent straight lines are substantially. For a plurality of cuts having the same length Y and forming the intermittent straight line, the distance between the cuts adjacent to each other (hereinafter referred to as the distance between the cuts on the same straight line) is larger than 3 times Y. Things can be mentioned. As described above, when the adjacent reinforcing fibers separated by the cut are displaced by L / 2, the distance between the cuts on the same straight line is also Y with respect to the cut length Y. However, by shifting at a cycle of L / 3 or less, the distance between cuts on the same straight line becomes three times or more of Y. When the cuts are present on the same straight line, damage due to the cuts may occur on the extension line of the cuts, so that the closer the distance is, the easier it is for the cracks to be connected. Therefore, by keeping the same linear cuts as far apart as possible, crack connection is suppressed and the strength of the fiber reinforced plastic is improved. Also, if the distance between the cuts on the same straight line is short, the cut openings will be chained during hand lay-up, making it easier for the cuts to be recognized as an intermittent straight line pattern, while the cuts will be separated from each other. By being present, it will not be recognized as a pattern, and the surface quality will be excellent. In the present invention, the plurality of cuts in the prepreg form a plurality of intermittent straight lines, and the plurality of cuts forming the intermittent straight lines have substantially the same length Y, and the intermittent straight lines are formed. For a plurality of cuts forming a straight line, it is preferable to have at least one prepreg having a distance between adjacent cuts greater than three times Y, and particularly preferably, for all the prepregs, the plurality of cuts form an intermittent straight line. The plurality of cuts forming the plurality of cuts forming the intermittent straight line have substantially the same length Y, and the distance between the cuts close to each other for the plurality of cuts forming the intermittent straight line is Y. It is also an embodiment larger than 3 times.

本発明のクロスプライ積層体において、プリプレグ中の切込を、そのプリプレグ中の強化繊維の直角方向に投影した場合の投影長さWsが30μm〜1.5mmの範囲内であることが好ましい。Wsを小さくすることにより、一つ一つの切込により分断される強化繊維の量が減り、強度向上が見込まれる。特に、Wsを1.5mm以下とすることで、大きな強度向上が見込まれる。一方で、Wsが30μmより小さい場合、切込位置の制御が難しく、対となる切込によって全ての強化繊維を所定の長さ以下とするのが難しく、賦形時に形状追従性低下を招く場合がある。ここで、“切込を強化繊維の直角方向に投影した投影長さWs”とは、図4、5に示すように、プリプレグの面内において、切込を強化繊維の直角方向(強化繊維に対して直角方向7)を投影面として、切込から該投影面に直角(繊維配向方向6)に投影した際の長さを指す。なお本発明においては、プリプレグ中の強化繊維の直角方向に投影した場合の投影長さWsが30μm〜1.5mmとなるプリプレグを少なくとも1つ有することが好ましく、特に好ましくは全てのプリプレグの投影長さWsが30μm〜1.5mmとなった態様である。 In the cross-ply laminate of the present invention, the projected length Ws when the notch in the prepreg is projected in the direction perpendicular to the reinforcing fibers in the prepreg is preferably in the range of 30 μm to 1.5 mm. By reducing Ws, the amount of reinforcing fibers divided by each notch is reduced, and strength is expected to be improved. In particular, by setting Ws to 1.5 mm or less, a large improvement in strength is expected. On the other hand, when Ws is smaller than 30 μm, it is difficult to control the cutting position, it is difficult to reduce all the reinforcing fibers to a predetermined length or less by the paired cutting, and the shape followability is deteriorated at the time of shaping. There is. Here, "projected length Ws in which the cut is projected in the direction perpendicular to the reinforcing fiber" means that the cut is in the plane of the prepreg in the direction perpendicular to the reinforcing fiber (to the reinforcing fiber), as shown in FIGS. On the other hand, with the projection plane 7) as the projection plane, it refers to the length when projected from the notch at a right angle to the projection plane (fiber orientation direction 6). In the present invention, it is preferable to have at least one prepreg having a projected length Ws of 30 μm to 1.5 mm when projected in the direction perpendicular to the reinforcing fibers in the prepreg, and particularly preferably the projected lengths of all the prepregs. Ws is 30 μm to 1.5 mm.

本発明のクロスプライ積層体において、プリプレグ中の切込と強化繊維とのなす角をθとしたとき、θの絶対値が2〜25°の範囲内であることが好ましい。切込角度が斜めであることにより、切込の長さYの大きさに対して、Wsを小さくすることができるため、Wsが1.5mm以下という極小の切込を工業的に安定して設けることができ、また積層時に連続切込によりプリプレグがばらばらになり難く、プリプレグとしての取り扱い性にも優れる。特にθの絶対値が25°以下であることで力学特性、中でも引張強度の向上が著しく、かかる観点からθの絶対値は15°以下がより好ましい。一方、θの絶対値は2°より小さいと切込を安定して入れることが難しくなる。すなわち、強化繊維に対して切込が寝てくると、切込を入れる際、強化繊維が刃から逃げやすく、切込の位置精度を担保しながら挿入することが難しくなる。かかる観点からは、θの絶対値が5°以上であることがより好ましい。なお本発明においては、プリプレグ中の切込と強化繊維とのなす角をθとしたときのθの絶対値が2〜25°となるプリプレグを少なくとも1つ有することが好ましく、特に好ましくは全てのプリプレグのθの絶対値が2〜25°となった態様である。 In the cross-ply laminate of the present invention, when the angle formed by the notch in the prepreg and the reinforcing fiber is θ, the absolute value of θ is preferably in the range of 2 to 25 °. Since the cutting angle is slanted, Ws can be made smaller than the size of the cutting length Y, so that a very small cut with a Ws of 1.5 mm or less can be industrially stable. It can be provided, and the prepreg is less likely to come apart due to continuous cutting during stacking, and is excellent in handleability as a prepreg. In particular, when the absolute value of θ is 25 ° or less, the mechanical properties, especially the tensile strength, are remarkably improved, and from this viewpoint, the absolute value of θ is more preferably 15 ° or less. On the other hand, if the absolute value of θ is smaller than 2 °, it becomes difficult to make a stable cut. That is, when the notch falls on the reinforcing fiber, the reinforcing fiber easily escapes from the blade when making the cut, and it becomes difficult to insert the reinforcing fiber while ensuring the position accuracy of the cut. From this point of view, it is more preferable that the absolute value of θ is 5 ° or more. In the present invention, it is preferable to have at least one prepreg having an absolute value of θ of 2 to 25 ° when the angle formed by the notch in the prepreg and the reinforcing fiber is θ, and particularly preferably all of them. This is an embodiment in which the absolute value of θ of the prepreg is 2 to 25 °.

本発明のクロスプライ積層体におけるプリプレグの別の好ましい切込パターンとしては、図4に示すように、プリプレグ中の複数の切込が断続的な直線を形成し、該切込と強化繊維とのなす角をθとしたとき、θの絶対値が実質的に同一であり、θが正の角となる切込の数(正切込)とθが負の角となる切込(負切込)の数が略同数であるものが挙げられる。ここでθの絶対値が実質的に同一とは、全ての切込における角度θの絶対値が、全ての切込における角度θの絶対値から求めた平均値の±1°以内であることをいう。さらに正切込の数と負切込の数が略同数とは、θが正となる切込の数とθが負となる切込の数が略同数であることを意味する。そして、θが正となる切込の数とθが負となる切込の数が略同数とは、数を基準とした百分率で示した時に正切込の数と負切込の数がいずれも45%以上55%以下であることをいう(以下同じ)。得られたプリプレグを積層する際、斜め切込が一方向の角度のみの場合には、クロスプライ積層体作製時に2枚のプリプレグの切込の方向が近くなる場合がある。2枚のプリプレグの切込の方向が近くなると、切込同士が重なる場合や、クロスプライ積層体の伸張しやすさに異方性が生じる場合がある。したがって、繊維方向からの切込の傾きの絶対値が実質的に同一であり、正切込と負切込が略同数となる切込パターンであることが好ましい。なお本発明においては、プリプレグ中の複数の切込が断続的な直線を形成し、該切込と強化繊維とのなす角をθとしたとき、θの絶対値が実質的に同一であり、θが正の角となる切込の数とθが負の角となる切込の数が略同数となるプリプレグを少なくとも1つ有することが好ましく、特に好ましくは全てのプリプレグについて複数の切込が断続的な直線を形成し、該切込と強化繊維とのなす角をθとしたときθの絶対値が実質的に同一であり、θが正の角となる切込の数とθが負の角となる切込の数が略同数となる態様である。 As another preferable cut pattern of the prepreg in the cross-ply laminate of the present invention, as shown in FIG. 4, a plurality of cuts in the prepreg form an intermittent straight line, and the cut and the reinforcing fiber are connected to each other. When the angle to be formed is θ, the absolute value of θ is substantially the same, and the number of cuts where θ is a positive angle (positive cut) and the number of cuts where θ is a negative angle (negative cut). The number of is about the same. Here, the fact that the absolute value of θ is substantially the same means that the absolute value of the angle θ in all the cuts is within ± 1 ° of the average value obtained from the absolute value of the angle θ in all the cuts. say. Further, the fact that the number of positive cuts and the number of negative cuts are substantially the same means that the number of cuts in which θ is positive and the number of cuts in which θ is negative are approximately the same. The number of cuts in which θ is positive and the number of cuts in which θ is negative are approximately the same as the number of positive cuts and the number of negative cuts when expressed as a percentage based on the number. It means that it is 45% or more and 55% or less (the same applies hereinafter). When laminating the obtained prepregs, if the diagonal cuts are only at an angle in one direction, the cut directions of the two prepregs may be close to each other when the cross-ply laminated body is manufactured. When the cut directions of the two prepregs are close to each other, the cuts may overlap each other or the stretchability of the cross-ply laminated body may be anisotropic. Therefore, it is preferable that the cut pattern has substantially the same absolute value of the slope of the cut from the fiber direction and substantially the same number of positive cuts and negative cuts. In the present invention, when a plurality of cuts in the prepreg form an intermittent straight line and the angle formed by the cut and the reinforcing fiber is θ, the absolute value of θ is substantially the same. It is preferable to have at least one prepreg in which the number of cuts in which θ is a positive angle and the number of cuts in which θ is a negative angle are approximately the same, and particularly preferably, a plurality of cuts are provided for all prepregs. When an intermittent straight line is formed and the angle formed by the cut and the reinforcing fiber is θ, the absolute value of θ is substantially the same, and the number of cuts in which θ is a positive angle and θ are negative. This is a mode in which the number of cuts at the corners of is approximately the same.

本発明のクロスプライ積層体におけるプリプレグの好ましい実施態様として、図4に示すように、プリプレグに挿入された任意の1つの切込Aに着目したとき、該切込と近接する切込のうち、θの正負が同一である切込Bよりも、最短距離が近いθの正負が異なる切込Cが4つ以上存在するものが挙げられる。三次元形状追従時にプリプレグの切込挿入部は、切込角度と繊維方向との関係で強化繊維端部の動きが決まるため、近接する切込同士は同形状、逆方向の角度であることで、マクロに見た場合、成形後の面内の等方性が担保される。なお、切込Aに着目したときに、該切込と近接する切込のうち、θの正負が同一である切込Bよりも、最短距離が近いθの正負が異なる切込Cの数は4つ以上が好ましく、特に好ましくは4つである。さらに、複数の切込が、断続的な直線を形成し、該断続的な直線を形成する複数の切込が、実質的に同一の長さYであり、該断続的な直線を形成する複数の切込について、近接する切込間距離(以下、同一直線上の切込間距離という)がYの3倍より大きく、かつプリプレグに挿入された任意の1つの切込Aに着目したとき、該切込と近接する切込のうち、θの正負が同一である切込Bよりも、最短距離が近いθの正負が異なる切込Cが4つ以上存在する場合、正切込と負切込がより均質に配置されやすく、三次元形状追従性、表面品位、力学特性の観点から好ましい。なお本発明においては、プリプレグに挿入された任意の切込Aと近接する切込のうち、θの正負が同一である切込Bよりも最短距離が近いθの正負が異なる切込Cが4つ以上存在するプリプレグを少なくとも1つ有することが好ましく、特に好ましくは全てのプリプレグについて挿入された任意の切込Aと近接する切込のうち、θの正負が同一である切込Bよりも最短距離が近いθの正負が異なる切込Cが4つ以上存在する態様である。 As a preferred embodiment of the prepreg in the cross-ply laminate of the present invention, as shown in FIG. 4, when focusing on any one notch A inserted in the prepreg, among the cuts adjacent to the notch, among the cuts adjacent to the notch. There are four or more cuts C having different positives and negatives of θ, which are closer to each other than the cuts B having the same positive and negative values of θ. When following a three-dimensional shape, the movement of the reinforced fiber end of the prepreg cut insertion part is determined by the relationship between the cut angle and the fiber direction. From a macro perspective, the in-plane isotropic property after molding is guaranteed. When focusing on the cut A, the number of cuts C that are close to the cut and have different positive and negative values of θ that are closer in the shortest distance than the cut B that has the same positive and negative values of θ is Four or more are preferable, and four or more are particularly preferable. Further, a plurality of cuts form an intermittent straight line, and the plurality of cuts forming the intermittent straight line have substantially the same length Y, and a plurality of cuts forming the intermittent straight line. When focusing on any one notch A inserted in the prepreg, the distance between the cuts in close proximity (hereinafter referred to as the distance between the cuts on the same straight line) is more than three times Y. If there are four or more notches C that are close to the notch and have different positive and negative values of θ that are closer in the shortest distance than the notch B that has the same positive and negative values of θ, the positive and negative cuts are the positive and negative cuts. Is more uniformly arranged, which is preferable from the viewpoint of three-dimensional shape followability, surface quality, and mechanical properties. In the present invention, among the cuts that are close to any cut A inserted in the prepreg, the cut C that is closer in the shortest distance than the cut B in which the positive and negative of θ is the same and has a different positive and negative of θ is 4 It is preferable to have at least one prepreg existing at least one, and particularly preferably, among the cuts adjacent to any cut A inserted for all prepregs, the shortest cut B having the same positive and negative θ. In this embodiment, there are four or more notches C having different positive and negative values of θ that are close to each other.

さらに、本発明のクロスプライ積層体におけるプリプレグの好ましい実施態様として、図5に示すように、プリプレグ中の複数の切込が直線かつ実質的に同一の長さYで挿入され、近接する切込同士の最短距離が切込の長さYよりも長いものが挙げられる。ここで実質的に同一の長さとは、全ての切込長さが、全ての切込長さの平均値の±5%の差以内であることをいう(以下同じ)。力学特性の観点から、強化繊維の不連続点である切込同士がクラックにより連結された際、繊維強化プラスチックは破壊する。面内の切込同士の距離を離した切込パターンとすることで、少なくとも同一面内でのクラック連結を抑制する効果があり、強度が向上する。近接する切込同士の最短距離は、より好ましくはYの1.2倍以上である。一方で、最近接する切込同士の距離に上限は特にないが、プリプレグに高密度な切込を付与するにあたり、最近接する切込同士の距離が切込長さYの10倍以上とすることは容易ではない。 Further, as a preferred embodiment of the prepreg in the cross-ply laminate of the present invention, as shown in FIG. 5, a plurality of cuts in the prepreg are inserted in a straight line and substantially the same length Y, and the cuts are close to each other. The shortest distance between them is longer than the depth of cut Y. Here, substantially the same length means that all the cut lengths are within ± 5% of the average value of all the cut lengths (the same applies hereinafter). From the viewpoint of mechanical properties, the fiber reinforced plastic breaks when the notches, which are the discontinuities of the reinforcing fibers, are connected by cracks. By using a cut pattern in which the cuts in the plane are separated from each other, there is an effect of suppressing crack connection at least in the same plane, and the strength is improved. The shortest distance between adjacent cuts is more preferably 1.2 times or more of Y. On the other hand, there is no particular upper limit to the distance between the cuts that are in close contact with each other, but when giving a high-density cut to the prepreg, the distance between the cuts that are in close contact with each other should be 10 times or more the cut length Y. It's not easy.

高密度に切込が分布する切込プリプレグにおいては、三次元形状への追従性は向上し、一つ一つの切込が小さいことによる力学特性の向上が見込めるが、切込同士の距離が近い場合よりも切込同士が離れている方が力学特性はさらに向上する。したがって、密に切込を挿入した場合には、切込同士の距離を空けた切込パターン、すなわち近接する切込同士の最短距離を、切込長さYより大きくすることが力学特性向上のために特に重要となる。高密度に切込が分布する場合に限らず、θの絶対値が小さくなるほど、力学特性の向上が見込める一方、切込同士が近くなり、切込で発生した損傷が連結しやすく力学特性が低下する懸念もある。しかし、実質的に同一の長さYであり、近接する切込同士の最短距離がYよりも長くすることで、切込が強化繊維の配向方向に対して直角な場合と比較して、さらなる力学特性の向上が見込める。切込が高密度の場合は、特に、力学特性の向上と共に、切込開口の抑制による表面品位の向上が見込める。国際公開WO2008/099670号パンフレットに代表されるように、強化繊維に対して斜めに切込を挿入することは知られた技術であるが、当該国際公開のパンフレットの図2(f)や図12のように、隣接する切込が強化繊維の繊維長さLに対してL/2ずれたような切込パターンでは、Lが長く切込の長さが小さい場合には、図3(a)に示した現象と同様に、均質な切込パターンは実現できず、切込プリプレグの伸張時には切込が密な箇所が伸張しやすくなり、繊維強化プラスチックとした場合も切込同士が近くに存在するため、切込同士が連結しやすく、力学特性の低下を招く場合がある。図3(b)や図3(c)のような均質な切込配置に斜めの切込を適用することで、斜めに切込を挿入することによる力学特性向上の効果をより効果的に発現できる。なお本発明においては、プリプレグ中の複数の切込が直線かつ実質的に同一の長さYで挿入され、近接する切込同士の最短距離が切込の長さYよりも長いプリプレグを少なくとも1つ有することが好ましく、特に好ましくは全てのプリプレグについて複数の切込が直線かつ実質的に同一の長さYで挿入され、近接する切込同士の最短距離が切込の長さYよりも長い態様である。 In the incision prepreg in which the incisions are distributed in high density, the followability to the three-dimensional shape is improved, and the mechanical characteristics can be expected to be improved by making each incision small, but the distance between the incisions is short. The mechanical properties are further improved when the notches are separated from each other than in the case. Therefore, when the cuts are inserted densely, it is necessary to make the cut pattern in which the cuts are separated from each other, that is, the shortest distance between the adjacent cuts to be larger than the cut length Y to improve the mechanical characteristics. This is especially important. Not only when the cuts are distributed in high density, the smaller the absolute value of θ, the better the mechanical characteristics can be expected. There is also a concern. However, the lengths Y are substantially the same, and the shortest distance between adjacent cuts is longer than Y, so that the cuts are further perpendicular to the orientation direction of the reinforcing fibers. Improvement of mechanical properties can be expected. When the depth of cut is high, it is expected that the mechanical properties will be improved and the surface quality will be improved by suppressing the cut opening. As represented by the internationally published WO2008 / 099670 pamphlet, it is a known technique to insert a notch diagonally into a reinforcing fiber, but FIGS. 2 (f) and 12 of the internationally published pamphlet. In a cut pattern in which adjacent cuts are deviated by L / 2 with respect to the fiber length L of the reinforcing fiber as shown in FIG. 3A, when L is long and the cut length is small, FIG. 3A. Similar to the phenomenon shown in, a uniform cut pattern cannot be realized, and when the cut prepreg is stretched, the dense cuts tend to stretch, and even when using fiber reinforced plastic, the cuts are close to each other. Therefore, the cuts are easily connected to each other, which may lead to deterioration of mechanical properties. By applying the diagonal cut to the homogeneous cut arrangement as shown in FIGS. 3 (b) and 3 (c), the effect of improving the mechanical characteristics by inserting the cut diagonally is more effectively exhibited. can. In the present invention, at least one prepreg in which a plurality of cuts in the prepreg are inserted in a straight line and substantially the same length Y, and the shortest distance between adjacent cuts is longer than the cut length Y. It is preferable to have one, and particularly preferably, a plurality of cuts are inserted in a straight line and substantially the same length Y for all prepregs, and the shortest distance between adjacent cuts is longer than the cut length Y. It is an aspect.

本発明で一方向に配向した強化繊維に含浸させる樹脂は特に限定されず、熱可塑性樹脂でも熱硬化性樹脂でもよい。熱可塑性樹脂としては、例えば、ポリアミド(PA)、ポリアセタール、ポリアクリレート、ポリスルフォン、ABS、ポリエステル、アクリル、ポリブチレンテレフタラート(PBT)、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリエチレン、ポリプロピレン、ポリフェニレンスルフィド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルイミド(PEI)、ポリエーテルケトンケトン(PEKK)、液晶ポリマー、塩ビ、ポリテトラフルオロエチレンなどのフッ素系樹脂、シリコーンなどが挙げられる。熱硬化性樹脂としては、不飽和ポリエステル樹脂、ビニルエステル樹脂、エポキシ樹脂、ベンゾオキサジン樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂およびポリイミド樹脂等が挙げられる。これらの樹脂の変形および2種以上のブレンドの樹脂を用いることもできる。また、これらの熱硬化性樹脂は熱により自己硬化する樹脂であってもよいし、硬化剤や硬化促進剤等を含むものであってもよい。好ましくは、熱硬化性樹脂である。樹脂が熱硬化性樹脂であるプリプレグは室温においてタック性を有しているため、プリプレグを積層した際、上下のプリプレグは粘着により容易に一体化される。プリプレグを積層した後、真空引き等の加圧手段により粘着を強化してもよい。また、熱硬化性樹脂は未硬化では柔らかく、プリプレグを手作業で賦形させるのに適している。 The resin to be impregnated with the reinforcing fibers oriented in one direction in the present invention is not particularly limited, and may be a thermoplastic resin or a thermosetting resin. Examples of the thermoplastic resin include polyamide (PA), polyacetal, polyacrylate, polysulphon, ABS, polyester, acrylic, polybutylene terephthalate (PBT), polycarbonate (PC), polyethylene terephthalate (PET), polyethylene, polypropylene, and the like. Examples thereof include polyphenylene sulfide (PPS), polyetheretherketone (PEEK), polyetherimide (PEI), polyetherketoneketone (PEKK), liquid crystal polymer, vinyl chloride, fluororesin such as polytetrafluoroethylene, and silicone. Examples of the thermosetting resin include unsaturated polyester resin, vinyl ester resin, epoxy resin, benzoxazine resin, phenol resin, urea resin, melamine resin and polyimide resin. Deformations of these resins and two or more blended resins can also be used. Further, these thermosetting resins may be resins that are self-curing by heat, or may contain a curing agent, a curing accelerator, or the like. A thermosetting resin is preferable. Since the prepreg whose resin is a thermosetting resin has tackiness at room temperature, the upper and lower prepregs are easily integrated by adhesion when the prepregs are laminated. After laminating the prepreg, the adhesive may be strengthened by a pressurizing means such as evacuation. In addition, the thermosetting resin is soft when uncured and is suitable for manually shaping the prepreg.

樹脂を熱可塑性樹脂とする場合には、プリプレグのタック性がなく常温で積層して一体化することができないため、プリプレグをプレス成形など加熱と加圧手段を備えた方法により一体化させてクロスプライ積層体を作製するのがよい。 When the resin is a thermoplastic resin, the prepreg is not tacky and cannot be laminated and integrated at room temperature. Therefore, the prepreg is integrated by a method equipped with heating and pressurizing means such as press molding to form a cloth. It is preferable to prepare a ply laminate.

本発明に用いる強化繊維は特に限定されず、ガラス繊維、ケブラー繊維、炭素繊維、グラファイト繊維またはボロン繊維等であってもよい。この内、比強度および比弾性率の観点からは、炭素繊維が好ましい。 The reinforcing fiber used in the present invention is not particularly limited, and may be glass fiber, Kevlar fiber, carbon fiber, graphite fiber, boron fiber or the like. Of these, carbon fibers are preferable from the viewpoint of specific strength and specific elastic modulus.

本発明におけるクロスプライ積層体の好ましい態様として、面積が0.5m以上であることが好ましい。さらに好ましくは0.8m以上である。一方、現実的なクロスプライ積層体の面積の最大値は5mである。通常、積層していないプリプレグは面積が大きくなるほど、たわみやすく、成形時に型に配置する際、シワが発生しやすくなる。クロスプライ積層体とすることで、剛性を向上させ、面積が0.5m以上であっても、型に配置する際にはシワが発生しにくくなる。また、面積の大きいクロスプライ積層体を作製する際に、複数枚の切込プリプレグをつないで1層とする場合がある。クロスプライ積層体とすることで、つなぎ目が存在しても、もう片方の層によって担持され、つなぎ目がばらけることなく、取り扱い性が向上する。つなぎ目は、強化繊維に平行な直線状とすることが、クロスプライ積層体を固化した繊維強化プラスチックの力学特性維持のために好ましい。 As a preferred embodiment of the cross-ply laminate in the present invention, the area is preferably 0.5 m 2 or more. More preferably, it is 0.8 m 2 or more. On the other hand, the maximum area of a realistic cross-ply laminated body is 5 m 2 . Generally, the larger the area of the unlaminated prepreg, the more easily it bends, and the more wrinkles are likely to occur when it is placed in the mold during molding. By using a cross-ply laminated body, the rigidity is improved, and even if the area is 0.5 m 2 or more, wrinkles are less likely to occur when arranging in a mold. Further, when producing a cross-ply laminate having a large area, a plurality of cut prepregs may be connected to form one layer. By using the cross-ply laminate, even if there is a joint, it is supported by the other layer, and the joint is not separated and the handleability is improved. It is preferable that the joint is a straight line parallel to the reinforcing fibers in order to maintain the mechanical properties of the fiber-reinforced plastic solidified from the cross-ply laminate.

本発明のクロスプライ積層体は、平板状のまま金型にセットしてプレス成形してもよいし、クロスプライ積層体を型に押し付けてプリフォームとし、続いて該プリフォームを固化することで繊維強化プラスチックとして製造してもよい。本発明のクロスプライ積層体は強化繊維の配向方向にも伸張することが可能であるため、両面型によるプレス成形など、圧力の高い成形を行う際は、プリフォームは完全に型に追従していなくてもよい。クロスプライ積層体を丁寧に凹凸に沿わせるためには長い時間を要するが、型の表面に対して、完全に追従させなくとも、圧力に寄って型に形状追従可能であり、プリフォーム作製時間も短くなる。型の表面に対して完全に追従させないとは、型に接しているプリフォームの面積が、型の表面積の90%以下であることを示す。プリフォームは手作業(ハンドレイアップ)により型に押し付けられて製造されてもよく、ロボットなどを用いて型に押し付けられてもよい。クロスプライ積層体を細かい凹凸への追従させる際、手作業による賦形では、シワの発生する箇所を確認しながら、伸張させる箇所を限定して、精度よく追従させることができる。クロスプライ積層体を複数枚、角度を変えて重ねて積層してもよい。プリフォームを固化させる際には、型とバグフィルムとの間にプリフォームを配置して密閉空間とし、密閉空間を真空引きして大気圧との差圧でプリプレグ積層体を加圧しながら加熱して、オートクレーブによりさらに圧縮加熱気体によって成形してもよいし、オーブンや接触加熱により真空ポンプを用いて大気圧との差圧による加圧のみで固化させて成形してもよい。あるいは、プリフォームを型で挟み、プレス成形によって固化してもよい。 The cross-ply laminate of the present invention may be set in a mold as it is in a flat plate shape and press-molded, or the cross-ply laminate may be pressed against a mold to form a preform, and then the preform is solidified. It may be manufactured as a fiber reinforced plastic. Since the cross-ply laminate of the present invention can be extended in the orientation direction of the reinforcing fibers, the preform completely follows the mold when performing high-pressure molding such as press molding by a double-sided mold. It does not have to be. It takes a long time to carefully follow the unevenness of the cross-ply laminate, but even if it does not completely follow the surface of the mold, it can follow the shape according to the pressure, and the preform preparation time. Will also be shorter. Not completely following the surface of the mold indicates that the area of the preform in contact with the mold is 90% or less of the surface area of the mold. The preform may be manufactured by being pressed against the mold by hand (hand lay-up), or may be pressed against the mold by using a robot or the like. When the cross-ply laminate is made to follow fine irregularities, in the manual shaping, it is possible to limit the places to be stretched while checking the places where wrinkles occur, and to follow them with high accuracy. A plurality of cross-ply laminates may be laminated at different angles. When solidifying the preform, the preform is placed between the mold and the bag film to form a closed space, and the closed space is evacuated and heated while pressurizing the prepreg laminate with the pressure difference from the atmospheric pressure. Then, it may be further molded by a compression heating gas by an autoclave, or it may be solidified only by pressurization by a pressure difference from the atmospheric pressure using a vacuum pump by an oven or contact heating. Alternatively, the preform may be sandwiched between molds and solidified by press molding.

クロスプライ積層体を型に押し付ける際、クロスプライ積層体を加熱する工程を含むことも好ましい。つまりクロスプライ積層体を型に押し付ける際に、ドライヤーやヒーター等の加熱手段によってクロスプライ積層体を柔らかくする工程を含んでいてもよい。型自体が加熱されるものであってもよい。クロスプライ積層体を加熱することでプリプレグが軟化し、形状追従性が高くなる場合がある。加熱する温度は、クロスプライ積層体の形状が崩れてしまわない程度がよく、樹脂粘度が50Pa・s以上を保つ温度がよい。 When pressing the cross-ply laminate against the mold, it is also preferable to include a step of heating the cross-ply laminate. That is, when pressing the cross-ply laminate against the mold, a step of softening the cross-ply laminate by a heating means such as a dryer or a heater may be included. The mold itself may be heated. By heating the cross-ply laminate, the prepreg may be softened and the shape followability may be improved. The heating temperature is preferably such that the shape of the cross-ply laminate does not collapse, and the temperature at which the resin viscosity is maintained at 50 Pa · s or more is preferable.

以下、実施例により本発明をさらに具体的に説明するが、本発明は、実施例に記載の発明に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the inventions described in the Examples.

本実施例において、クロスプライ積層体の作製、クロスプライ積層体の引張特性測定、切込開口部の面積率の測定、ハンドレイアップ時の形状追従性評価、繊維強化プラスチックの表面品位測定、力学特性測定は下記方法に従って実施した。 In this embodiment, fabrication of a cross-ply laminate, measurement of tensile properties of the cross-ply laminate, measurement of the area ratio of the notch opening, evaluation of shape followability during hand lay-up, measurement of surface quality of fiber reinforced plastic, mechanics. The characteristic measurement was carried out according to the following method.

<クロスプライ積層体の作製>
“トレカ”(商標登録)プリプレグシートP3052S−15(強化繊維:T700S、熱硬化性樹脂:2500、強化繊維の体積含有率:56%、片面離型紙を積層)に切込を挿入し、300mm×300mmに切り出し、離型紙の積層されていない面を繊維方向が直角になるように貼りあわせた。切込はシリンダーに刃を配置したローラーカッターにより、プリプレグの全体にわたって挿入した。貼りあわせたクロスプライ積層体を、30分間真空引きし、2枚のプリプレグの密着を高め、クロスプライ積層体を得た。
<Manufacturing of cross-ply laminate>
Insert a notch into the "Treca" (registered trademark) prepreg sheet P3052S-15 (reinforcing fiber: T700S, thermosetting resin: 2500, volume content of reinforcing fiber: 56%, laminated single-sided paper pattern), and 300 mm x It was cut out to 300 mm, and the non-laminated surfaces of the release paper were laminated so that the fiber directions were perpendicular to each other. The incision was made over the entire prepreg by a roller cutter with a blade placed in the cylinder. The bonded cross-ply laminate was evacuated for 30 minutes to improve the adhesion between the two prepregs to obtain a cross-ply laminate.

<クロスプライ積層体の引張特性測定および切込開口部の面積率測定>
クロスプライ積層体から、クロスプライ積層体の1枚のプリプレグの繊維方向が長手方向(この繊維方向を0°とする)となるように、50mm×250mmのプリプレグ引張試験片を切り出した。25℃環境下にてプリプレグ引張試験片の両端を50mmずつ掴み、スパン間150mmとして引張試験機を用いてプリプレグ引張試験片に引張荷重を加えた。引張ひずみはプリプレグ引張試験片の0°側表面中央に50mm離してマーキングした2つの点の距離を、プリプレグ引張試験片の0°側と対面させた非接触ひずみ計を用いて追うことで測定した。0°方向の引張ひずみが1%時の荷重を荷重1、引張ひずみが2%時の荷重を荷重2として記録した。
<Measurement of tensile characteristics of cross-ply laminate and measurement of area ratio of notch opening>
A 50 mm × 250 mm prepreg tensile test piece was cut out from the cross-ply laminate so that the fiber direction of one prepreg of the cross-ply laminate was the longitudinal direction (this fiber direction is 0 °). Both ends of the prepreg tensile test piece were grasped by 50 mm in an environment of 25 ° C., and a tensile load was applied to the prepreg tensile test piece using a tensile tester with a span interval of 150 mm. The tensile strain was measured by tracking the distance between two points marked at the center of the 0 ° side surface of the prepreg tensile test piece at a distance of 50 mm using a non-contact strain meter facing the 0 ° side of the prepreg tensile test piece. .. The load when the tensile strain in the 0 ° direction was 1% was recorded as the load 1, and the load when the tensile strain was 2% was recorded as the load 2.

引張ひずみ付与中は、プリプレグ引張試験片の0°側とデジタルカメラを非接触ひずみ計と重ならないように30cm離して対面させ、デジタルカメラとの対面側以外は光を遮断するカーテンで覆い、デジタルカメラとの対面側からプリプレグ引張試験片を照らす照明を設置し、0°方向の引張ひずみが2%時のプリプレグ引張試験片のデジタル画像を取得した。デジタル画像から試験片の中央部25mm×25mmの領域に相当するデジタル画像を500×500ピクセルで切り出し、切込に該当するピクセルを1、切込以外の箇所を0となるように二値化し、切込に該当するピクセル数の、切り出したデジタル画像の総ピクセル数における割合から切込開口部の面積率を取得した。 During tensile strain application, the 0 ° side of the prepreg tensile test piece and the digital camera are separated by 30 cm so as not to overlap with the non-contact strain meter, and the sides other than the facing side with the digital camera are covered with a curtain that blocks light, and the digital camera is digitally used. An illumination was installed to illuminate the prepreg tensile test piece from the side facing the camera, and a digital image of the prepreg tensile test piece was acquired when the tensile strain in the 0 ° direction was 2%. From the digital image, a digital image corresponding to the area of 25 mm × 25 mm in the center of the test piece is cut out at 500 × 500 pixels, and the pixel corresponding to the cut is binarized so that the pixel corresponding to the cut is 1 and the part other than the cut is 0. The area ratio of the cut opening was obtained from the ratio of the number of pixels corresponding to the cut to the total number of pixels of the cut out digital image.

<ハンドレイアップ時の形状追従性評価>
図7に示す型に25℃環境下にてクロスプライ積層体を沿わせた。型の底面各辺とクロスプライ積層体の繊維方向を合わせ、一つの角にクロスプライ積層体を押し付け、クロスプライ積層体の45°方向に伸張させる際に、側面に生じるシワを伸張させながら、該角に沿うように賦形した。残りの3つの角に対しても同様に沿わせ、クロスプライ積層体を型に沿う箱型に賦形したプリフォームとした。表1では賦形に要した労力を以下の3段階にわけた。
A:クロスプライ積層体がどの方向にも伸張させやすく、シワなく箱型に賦形できた。
B:クロスプライ積層体が一部のびにくい箇所があったものの、シワなく箱型に賦形できた。
C:クロスプライ積層体が伸びにくく、箱型に賦形した際にシワが残った。
<Evaluation of shape followability during hand lay-up>
The cross-ply laminate was placed along the mold shown in FIG. 7 in an environment of 25 ° C. Align each side of the bottom surface of the mold with the fiber direction of the cross-ply laminate, press the cross-ply laminate against one corner, and stretch the cross-ply laminate in the 45 ° direction while stretching the wrinkles that occur on the sides. It was shaped along the corner. The remaining three corners were similarly aligned to form a preform in which the cross-ply laminate was shaped into a box shape that fits the mold. In Table 1, the labor required for shaping is divided into the following three stages.
A: The cross-ply laminate was easy to stretch in any direction and could be shaped into a box without wrinkles.
B: Although the cross-ply laminate had some parts that were difficult to spread, it could be shaped into a box shape without wrinkles.
C: The cross-ply laminate was difficult to stretch, and wrinkles remained when it was shaped into a box shape.

<成形された繊維強化プラスチック(成形品)の表面品位>
金型の平滑さに表面品位が影響される転写面でない面の品位を確認するために、前記図7の型にクロスプライ積層体を押し当てて作製したプリフォームを、型に押し当てたまま、0.1℃/分で130℃まで昇温させ固化させ、繊維強化プラスチックを製造した。表1では得られた繊維強化プラスチックの表面品位を以下の5段階に分けた。
A:切込の存在がほとんど認識できずシワが発生していないもの
B:切込の開口は少ないものの切込の存在が認識され、シワが発生していないもの
C:切込が開口しているがシワが発生していないもの
D:シワが発生しているもの
<繊維強化プラスチックの力学特性>
繊維強化プラスチックの力学特性としては、ハンドレイアップ後の試験片から安定して力学特性を得られる試験片を切り出すことが困難であった。そこで、350mm×350mmの型を用いて300mm×300mmのクロスプライ積層体にプレス機により3MPaの面圧を加えて伸張させ、350mm×350mmの繊維強化プラスチックのプレス成形品を得た。プレス成形時の温度は130℃で、温度と面圧を保持したまま90分後に加圧・加熱を停止し、室温に放置して冷却した後に脱型した。
<Surface grade of molded fiber reinforced plastic (molded product)>
In order to confirm the quality of the surface other than the transfer surface whose surface quality is affected by the smoothness of the mold, the preform produced by pressing the cross-ply laminate against the mold shown in FIG. 7 is kept pressed against the mold. , The temperature was raised to 130 ° C. at 0.1 ° C./min and solidified to produce a fiber reinforced plastic. In Table 1, the surface grades of the obtained fiber reinforced plastics were divided into the following five stages.
A: The existence of the cut is hardly recognized and no wrinkles occur. B: The opening of the cut is small but the existence of the cut is recognized and no wrinkles occur. C: The cut is opened. Wrinkled but not wrinkled D: Wrinkled <Mechanical properties of fiber reinforced plastic>
As for the mechanical properties of fiberglass reinforced plastics, it was difficult to cut out a test piece capable of stably obtaining mechanical properties from the test piece after hand lay-up. Therefore, using a 350 mm × 350 mm mold, a 300 mm × 300 mm cross-ply laminate was stretched by applying a surface pressure of 3 MPa with a press machine to obtain a press-molded product of a 350 mm × 350 mm fiber reinforced plastic. The temperature at the time of press molding was 130 ° C., and after 90 minutes while maintaining the temperature and surface pressure, pressurization / heating was stopped, left at room temperature to cool, and then demolded.

得られた繊維強化プラスチックから繊維方向が長手方向となるように25mm×250mmに切り出した引張試験片を用いて力学特性を測定し、成形品の力学特性として引張弾性率と引張強度を得た。ただし、積層構成はクロスプライ積層体を4枚、角度を変えて積層させ、プリプレグの積層構成が[+45/−45/0/90]sとなるように積層し、0°方向を引張試験片の長手方向とした。試験はASTM D3039(2008)に基づくものとする。測定した試験片の数は各水準5本とし、引張弾性率および引張強度の平均値を代表値として算出した。 The mechanical properties were measured using a tensile test piece cut out from the obtained fiber reinforced plastic in a size of 25 mm × 250 mm so that the fiber direction was the longitudinal direction, and tensile elastic modulus and tensile strength were obtained as the mechanical properties of the molded product. However, as for the laminated structure, four cross-ply laminated bodies are laminated at different angles, and the prepregs are laminated so that the laminated structure is [+ 45 / -45/0/90] s, and the tensile test piece is oriented in the 0 ° direction. In the longitudinal direction of. The test shall be based on ASTM D3039 (2008). The number of test pieces measured was 5 for each level, and the average value of tensile elastic modulus and tensile strength was used as a representative value.

(実施例1)
切込プリプレグの切込パターンを、図6(a)に示す、分断された強化繊維の長さLは24mm、切込を強化繊維の配向方向に直角な平面に投影した投影長さWsは1mm、強化繊維と切込のなす角度θが25°であった。 切込によって分断された強化繊維束は、隣接する強化繊維束に対して、強化繊維長さLの1/4ずれて配置されていた。
(Example 1)
The cut pattern of the cut prepreg is shown in FIG. 6 (a), the length L of the divided reinforcing fibers is 24 mm, and the projected length Ws obtained by projecting the cut on a plane perpendicular to the orientation direction of the reinforcing fibers is 1 mm. The angle θ between the reinforcing fiber and the notch was 25 °. The reinforcing fiber bundles divided by the notch were arranged with a deviation of 1/4 of the reinforcing fiber length L with respect to the adjacent reinforcing fiber bundles.

クロスプライ積層体の引張特性としては荷重1×0.5<荷重2<荷重1×1.5を満たしていた。引張ひずみ2%時には切込が大きく開口していた。ハンドレイアップによる形状追従性は良好で、シワ無く賦形できた。成形された繊維強化プラスチックの表面品位としては、表面に切込の開口が見られた。 As the tensile characteristics of the cross-ply laminate, the load 1 × 0.5 <load 2 <load 1 × 1.5 was satisfied. When the tensile strain was 2%, the notch was large and opened. The shape followability by hand lay-up was good, and the shape could be formed without wrinkles. As for the surface quality of the molded fiber reinforced plastic, a notch opening was observed on the surface.

(実施例2)
切込プリプレグの切込パターンを、図6(b)に示す、切込パターンとし、クロスプライ積層体を作製した。任意の切込と、当該切込に最近接する別の切込とは、同一の強化繊維を分断していなかった。切込は実質的に同一の長さY=1mmであり、近接する切込同士の最短距離は1.5mmでYの1.5倍であった。分断された強化繊維の長さは20mm、切込を強化繊維の配向方向に直角な平面に投影した投影長さWsは0.34mmであった。強化繊維の配向方向と切込とがなす角は20°であった。切込によって分断された強化繊維束は、隣接する強化繊維束に対して、強化繊維長さLの2/5ずれて配置されていた。複数の切込が断続的な直線を形成し、断続的な直線を形成する複数の切込について、近接する切込間距離はYの22倍であった。図8のように六方細密配置された小領域を抽出し切込の分布を測定したところ、母集団の平均値は12.4、変動係数は10.9%であった。
(Example 2)
The cut pattern of the cut prepreg was set to the cut pattern shown in FIG. 6 (b), and a cross-ply laminated body was produced. The arbitrary cut and the other cut closest to the cut did not separate the same reinforcing fiber. The cuts had substantially the same length Y = 1 mm, and the shortest distance between adjacent cuts was 1.5 mm, which was 1.5 times that of Y. The length of the divided reinforcing fibers was 20 mm, and the projected length Ws of the cut projected onto a plane perpendicular to the orientation direction of the reinforcing fibers was 0.34 mm. The angle between the orientation direction of the reinforcing fibers and the notch was 20 °. The reinforcing fiber bundles divided by the notch were arranged with a deviation of 2/5 of the reinforcing fiber length L with respect to the adjacent reinforcing fiber bundles. The plurality of cuts formed an intermittent straight line, and for the plurality of cuts forming the intermittent straight line, the distance between the adjacent cuts was 22 times Y. As shown in FIG. 8, small regions arranged in six directions were extracted and the distribution of cuts was measured. As a result, the average value of the population was 12.4 and the coefficient of variation was 10.9%.

クロスプライ積層体の引張特性としては荷重1×0.5<荷重2<荷重1×1.5を満たしていた。引張ひずみ2%時には切込の開口が見られたが、実施例1よりも開口面積は小さかった。ハンドレイアップによる形状追従性は若干伸ばしにくい箇所があったものの、シワ無く賦形できた。成形された繊維強化プラスチックの表面品位としては、表面に切込の開口が見られた。 As the tensile characteristics of the cross-ply laminate, the load 1 × 0.5 <load 2 <load 1 × 1.5 was satisfied. An opening of a notch was observed when the tensile strain was 2%, but the opening area was smaller than that of Example 1. The shape followability due to hand lay-up was slightly difficult to stretch, but it was able to be shaped without wrinkles. As for the surface quality of the molded fiber reinforced plastic, a notch opening was observed on the surface.

(実施例3)
切込プリプレグの切込パターンを、図6(c)に示す、切込パターンとし、クロスプライ積層体を作製した。切込は実質的に同一の長さY=1mmであり、近接する切込同士の最短距離は1.4mmでYの1.4倍であった。分断された強化繊維の長さは12mm、切込を強化繊維の配向方向に直角な平面に投影した投影長さWsは0.64mmであった。強化繊維の配向方向と切込とがなす角θの絶対値は40°でありθが正である正切込とθが負である負切込を略同数含んでいた。正切込・負切込がともに複数の切込が断続的な直線を形成し、断続的な直線を形成する複数の切込について、近接する切込間距離は正切込ではYの7倍、負切込ではYの13倍であった。図8のように六方細密配置された小領域を抽出し切込の分布を測定したところ、母集団の平均値は10.9、変動係数は10.4%であった。
(Example 3)
The cut pattern of the cut prepreg was set to the cut pattern shown in FIG. 6 (c), and a cross-ply laminated body was produced. The cuts had substantially the same length Y = 1 mm, and the shortest distance between adjacent cuts was 1.4 mm, which was 1.4 times that of Y. The length of the divided reinforcing fibers was 12 mm, and the projected length Ws of the cut projected onto a plane perpendicular to the orientation direction of the reinforcing fibers was 0.64 mm. The absolute value of the angle θ formed by the orientation direction of the reinforcing fibers and the cut was 40 °, and included approximately the same number of positive cuts in which θ was positive and negative cuts in which θ was negative. For both positive and negative cuts, multiple cuts form an intermittent straight line, and for multiple cuts that form an intermittent straight line, the distance between adjacent cuts is 7 times that of Y for positive cuts and negative. The notch was 13 times that of Y. As shown in FIG. 8, small regions arranged in six directions were extracted and the distribution of cuts was measured. As a result, the average value of the population was 10.9 and the coefficient of variation was 10.4%.

クロスプライ積層体の引張特性としては荷重1×0.5<荷重2<荷重1×1.5を満たしていた。引張ひずみ2%時には切込が若干開口していた。ハンドレイアップによる形状追従性は良好で、シワ無く賦形できた。成形された繊維強化プラスチックの表面品位としては、表面に切込の開口が若干見えた。 As the tensile characteristics of the cross-ply laminate, the load 1 × 0.5 <load 2 <load 1 × 1.5 was satisfied. When the tensile strain was 2%, the notch was slightly open. The shape followability by hand lay-up was good, and the shape could be formed without wrinkles. As for the surface quality of the molded fiber reinforced plastic, some cut openings were visible on the surface.

(実施例4)
切込プリプレグの切込パターンを、図6(d)に示す、切込パターンとし、クロスプライ積層体を作製した。任意の切込と、当該切込に最近接する別の切込とは、同一の強化繊維を分断していなかった。切込は実質的に同一の長さY=1mmであり、最近接する切込同士の距離は1.5mmでYの1.5倍であった。分断された強化繊維の長さは20mm、切込を強化繊維の配向方向に直角な平面に投影した投影長さWsは0.34mmであった。強化繊維の配向方向と切込とがなす角θの絶対値は20°でありθが正である正切込とθが負である負切込を略同数含んでいた。正切込・負切込がともに複数の切込が断続的な直線を形成し、断続的な直線を形成する複数の切込について、近接する切込間距離は正切込ではYの3.4倍、負切込ではYの24.3倍であった。さらに、プリプレグに挿入された任意の切込Aと近接する切込のうち、θの正負が同一である切込Bよりも最短距離が近いθの正負が異なる切込Cが4つ存在していた。図8のように六方細密配置された小領域を抽出し切込の分布を測定したところ、母集団の平均値は11.3、変動係数は7.9%であった。
(Example 4)
The cut pattern of the cut prepreg was set to the cut pattern shown in FIG. 6 (d), and a cross-ply laminated body was produced. The arbitrary cut and the other cut closest to the cut did not separate the same reinforcing fiber. The cuts had substantially the same length Y = 1 mm, and the distance between the cuts closest to each other was 1.5 mm, which was 1.5 times that of Y. The length of the divided reinforcing fibers was 20 mm, and the projected length Ws of the cut projected onto a plane perpendicular to the orientation direction of the reinforcing fibers was 0.34 mm. The absolute value of the angle θ formed by the orientation direction of the reinforcing fibers and the cut was 20 °, and included approximately the same number of positive cuts in which θ was positive and negative cuts in which θ was negative. For both positive and negative cuts, multiple cuts form an intermittent straight line, and for multiple cuts that form an intermittent straight line, the distance between adjacent cuts is 3.4 times that of Y for a normal cut. In the negative cut, it was 24.3 times that of Y. Further, among the cuts close to any cut A inserted in the prepreg, there are four cuts C having different positive and negative values of θ, which are closer in the shortest distance than the cut B having the same positive and negative values of θ. rice field. As shown in FIG. 8, small regions arranged in six directions were extracted and the distribution of cuts was measured. As a result, the average value of the population was 11.3 and the coefficient of variation was 7.9%.

クロスプライ積層体の引張特性としては荷重1×0.5<荷重2<荷重1×1.5を満たしていた。引張ひずみ2%時には切込の開口はほとんど見えなかった。ハンドレイアップによる形状追従性は良好で、シワ無く賦形できた。成形された繊維強化プラスチックの表面品位としては、表面に切込の開口がほとんど見られなかった。 As the tensile characteristics of the cross-ply laminate, the load 1 × 0.5 <load 2 <load 1 × 1.5 was satisfied. When the tensile strain was 2%, the opening of the notch was hardly visible. The shape followability by hand lay-up was good, and the shape could be formed without wrinkles. As for the surface quality of the molded fiber reinforced plastic, almost no cut openings were found on the surface.

(実施例5)
実施例4と同じ切込プリプレグを用いて、クロスプライ積層体の積層構成を[0/90/90/0]とした。クロスプライ積層体の引張特性としては、荷重1が3340N、荷重2が4320Nと、荷重1×0.5<荷重2<荷重1×1.5を満たしていたが、室温での賦形は困難であった。ドライヤーを用いて加熱したところ、形状追従性が良好となり、シワなく型に沿わせることができた。クロスプライ積層体の引張特性を60℃環境下で測定したところ、荷重1が52N、荷重2が45Nであった。
(Example 5)
Using the same cut prepreg as in Example 4, the laminated structure of the cross-ply laminated body was set to [0/90/90/0]. As the tensile characteristics of the cross-ply laminate, load 1 was 3340N and load 2 was 4320N, satisfying load 1 × 0.5 <load 2 <load 1 × 1.5, but shaping at room temperature was difficult. Met. When heated using a dryer, the shape followability was improved, and it was possible to follow the mold without wrinkles. When the tensile properties of the cross-ply laminate were measured in an environment of 60 ° C., the load 1 was 52 N and the load 2 was 45 N.

(実施例6)
実施例4と同じ切込プリプレグを用いて、1000m×1000mのクロスプライ積層体を作製した。元々切込プリプレグは500mm幅であったが、強化繊維の配向方向が長手方向となるように1000mm×500mmの切込プリプレグを切り出し、2枚ずつ貼り合わせて2枚の1000mm×1000mmの切込プリプレグとし、さらに強化繊維の配向方向が直交するように積層し、1000mm×1000mmのクロスプライ積層体とした。積層後、真空引きにより、積層した層間の密着を強めた。1つの層が2枚の切込プリプレグで構成されているにもかかわらず、もう1つの層によって支えられ、取り扱い性は良好であった。
(Example 6)
Using the same cut prepreg as in Example 4, a 1000 m × 1000 m cross-ply laminate was produced. Originally, the cut prepreg was 500 mm wide, but a 1000 mm x 500 mm cut prepreg was cut out so that the orientation direction of the reinforcing fibers was the longitudinal direction, and two 1000 mm x 1000 mm cut prepregs were pasted together. Then, the reinforcing fibers were laminated so that the orientation directions were orthogonal to each other to obtain a 1000 mm × 1000 mm cross-ply laminated body. After laminating, vacuuming was performed to strengthen the adhesion between the laminated layers. Although one layer was composed of two notched prepregs, it was supported by the other layer and was easy to handle.

作製した切込プリプレグを図9(a)の形状を有する型に賦形し、プリフォームを得た。20分程度要したが、図9(b)のように、精度よく凹凸形状に賦形することができた。プリフォームを両面型で挟み、130℃、90分で硬化させて繊維強化プラスチックを得た。得られた繊維強化プラスチックは切込開口がほとんど見えず、良好な表面品位であった。 The prepared cut prepreg was shaped into a mold having the shape shown in FIG. 9A to obtain a preform. It took about 20 minutes, but as shown in FIG. 9B, it was possible to accurately shape the uneven shape. The preform was sandwiched between double-sided molds and cured at 130 ° C. for 90 minutes to obtain a fiber reinforced plastic. The obtained fiber reinforced plastic had a good surface quality with almost no visible notch opening.

(実施例7)
クロスプライ積層体を型に完全に沿わせず、図9(c)のように一部型から浮いた状態に賦形する以外は実施例6と同様にプリフォームを得た。賦形時間は5分と、実施例6よりも速かった。プリフォームを両面型で挟み、130℃、90分で硬化させて繊維強化プラスチックを得た。得られた繊維強化プラスチックはプリフォームの時点では型から浮いていた箇所も凹凸に追従しており、切込開口がほとんど見えず、良好な表面品位であった。
(Example 7)
A preform was obtained in the same manner as in Example 6 except that the cross-ply laminate was not completely aligned with the mold and was shaped so as to be partially floated from the mold as shown in FIG. 9 (c). The shaping time was 5 minutes, which was faster than that of Example 6. The preform was sandwiched between double-sided molds and cured at 130 ° C. for 90 minutes to obtain a fiber reinforced plastic. At the time of preformation, the obtained fiber-reinforced plastic had good surface quality, with the parts floating from the mold following the unevenness, and the notch opening was hardly visible.

(比較例1)
切込の入っていないプリプレグを2枚、繊維方向が直角になるように積層したプリプレグ積層体を作製した。
(Comparative Example 1)
Two prepregs without cuts were laminated so that the fiber directions were at right angles to prepare a prepreg laminate.

プリプレグ積層体の引張特性としては引張ひずみ2%に達する前に破断し急激な荷重低下が生じ、荷重1×0.5<荷重2<荷重1×1.5を満たさなかった。ハンドレイアップによる形状追従性は、繊維方向に伸びにくく、シワを消すことができなかった。 As for the tensile characteristics of the prepreg laminate, it broke before reaching the tensile strain of 2% and a sudden load drop occurred, and the load 1 × 0.5 <load 2 <load 1 × 1.5 was not satisfied. The shape followability by hand lay-up was difficult to extend in the fiber direction, and wrinkles could not be eliminated.

(比較例2)
プリプレグへの切込パターンを、図6(e)に示す、切込パターンとし、クロスプライ積層体を作製した。強化繊維を直角に横切る方向へ複数の切込が設けられており、切込を強化繊維の直角方向に投影した投影長さWsが切込の長さYと等しく1mmであり、繊維長さLが24mmの強化繊維に分断されている。図8のように六方細密配置された小領域を抽出し切込の分布を測定したところ、母集団の平均値は3.7、変動係数は38.3%であった。
(Comparative Example 2)
The cut pattern into the prepreg was set to the cut pattern shown in FIG. 6 (e), and a cross-ply laminated body was produced. A plurality of cuts are provided in the direction of crossing the reinforcing fiber at a right angle, and the projected length Ws obtained by projecting the cut in the direction perpendicular to the reinforcing fiber is 1 mm, which is equal to the length Y of the cut, and the fiber length L. Is divided into 24 mm reinforcing fibers. As shown in FIG. 8, small regions arranged in six directions were extracted and the distribution of cuts was measured. As a result, the average value of the population was 3.7 and the coefficient of variation was 38.3%.

クロスプライ積層体の引張特性としては引張ひずみ2%に達する前に破断し急激な荷重低下が生じ、荷重1×0.5<荷重2<荷重1×1.5を満たさなかった。そのため、切込開口面積率を測定することが不可能であった。ハンドレイアップによる形状追従性は、繊維方向に伸びにくく、シワを消すことができなかった。成形された繊維強化プラスチックの表面品位としては、表面に切込の開口が見られた。 As for the tensile characteristics of the cross-ply laminate, it broke before reaching the tensile strain of 2% and a sudden load drop occurred, and the load 1 × 0.5 <load 2 <load 1 × 1.5 was not satisfied. Therefore, it was impossible to measure the notch opening area ratio. The shape followability by hand lay-up was difficult to extend in the fiber direction, and wrinkles could not be eliminated. As for the surface quality of the molded fiber reinforced plastic, a notch opening was observed on the surface.

(比較例3)
強化繊維の強化形態が織り構造である織物プリプレグF6343B−05(強化繊維:T300B−3000、樹脂:2500)を用いてハンドレイアップによる形状追従性を測定した。ハンドレイアップによる形状追従性は良好であり、シワなく箱型に賦形できた。
(Comparative Example 3)
The shape followability by hand lay-up was measured using a woven fabric prepreg F6343B-05 (reinforcing fiber: T300B-3000, resin: 2500) in which the reinforcing form of the reinforcing fiber is a woven structure. The shape followability by hand lay-up was good, and it was possible to shape it into a box shape without wrinkles.

(比較例4)
クロスプライ積層体ではなく、積層されていない切込プリプレグを用いて図9の型へ賦形した。切込プリプレグの幅は1000mm×500mmなので、2枚の切込プリプレグを独立して賦形しようとしたが、賦形する前に切込プリプレグにシワが入り、そのシワを消すことができず、賦形を断念した。
(Comparative Example 4)
It was shaped into the mold of FIG. 9 using an unlaminated cut prepreg instead of a cross-ply laminate. Since the width of the cut prepreg is 1000 mm x 500 mm, I tried to shape the two cut prepregs independently, but before shaping, the cut prepreg wrinkled and the wrinkles could not be eliminated. I gave up shaping.

Figure 0006907503
Figure 0006907503

切込と強化繊維のなす角θを、表においては切込角θと記す。 The angle θ formed by the cut and the reinforcing fiber is referred to as the cut angle θ in the table.

1:プリプレグ
2:切込
3:クロスプライ積層体の0°方向
4:クロスプライ積層体の90°方向
5:クロスプライ積層体の45°方向
6:プリプレグの繊維方向
7:プリプレグの強化繊維に対して直角方向
8:直径10mmの小領域
9:複数の切込によって形成された断続的な直線
10:断続的な斜め切込(繊維方向に対して正の角度)
11:断続的な斜め切込(繊維方向に対して負の角度)
12:プリフォーム
1: Prepreg 2: Notch 3: 0 ° direction of cross-ply laminate 4: 90 ° direction of cross-ply laminate 5: 45 ° direction of cross-ply laminate 6: Prepreg fiber direction 7: For prepreg reinforcing fibers On the other hand, in the direction perpendicular to 8: a small area with a diameter of 10 mm 9: an intermittent straight line formed by a plurality of cuts 10: an intermittent diagonal cut (a positive angle with respect to the fiber direction)
11: Intermittent diagonal cut (negative angle with respect to fiber direction)
12: Preform

Claims (13)

一方向に配向した強化繊維と樹脂を含む強化繊維の体積含有率Vfが45〜65%である複数枚のプリプレグよりなり、繊維方向が実質的に直角に交わるプリプレグを含むように構成されたクロスプライ積層体であって、
各プリプレグは強化繊維を横切る複数の切込を有する実質的に全ての強化繊維が繊維長さ(L)10〜300mmである切込プリプレグであり、前記プリプレグ内から任意に選択される、10個の直径10mmの円形の小領域内に含まれる切込の個数を母集団とした場合に、母集団の平均値が10以上、かつ変動係数が20%以内であり、かつ、
25℃環境下にて以下に示す引張特性1を満たすか、又は、60℃環境下にて以下に示す引張特性2を満たすクロスプライ積層体。
(引張特性1)クロスプライ積層体中のいずれかのプリプレグの繊維方向を0°とした場合に、クロスプライ積層体に対して0°方向へ1%の引張ひずみを加えたときにクロスプライ積層体の0°方向に発生する荷重を荷重1として、クロスプライ積層体に対して0°方向へ2%の引張ひずみを加えたときにクロスプライ積層体の0°方向に発生する荷重を荷重2とすると、荷重1×0.5<荷重2<荷重1×1.5である。
(引張特性2)クロスプライ積層体中のいずれかのプリプレグの繊維方向を0°とした場合に、クロスプライ積層体に対して0°方向へ1%の引張ひずみを加えたときにクロスプライ積層体の0°方向に発生する荷重を荷重1として、クロスプライ積層体に対して0°方向へ2%の引張ひずみを加えたときにクロスプライ積層体の0°方向に発生する荷重を荷重2とすると、荷重1×0.5<荷重2<荷重1×1.5である。
A cloth composed of a plurality of prepregs having a volume content Vf of unidirectionally oriented reinforcing fibers and reinforcing fibers containing a resin of 45 to 65%, and comprising prepregs in which the fiber directions intersect at substantially right angles. It is a ply laminate
Each prepreg is a cut prepreg having a plurality of cuts across the reinforcing fibers, in which substantially all the reinforcing fibers have a fiber length (L) of 10 to 300 mm, and 10 pieces arbitrarily selected from the prepregs. When the number of cuts contained in a small circular region with a diameter of 10 mm is used as the population, the average value of the population is 10 or more, the coefficient of variation is 20% or less, and
A cross-ply laminate that satisfies the tensile property 1 shown below in an environment of 25 ° C. or the tensile property 2 shown below in an environment of 60 ° C.
(Tensile property 1) When the fiber direction of any of the prepregs in the cross-ply laminate is set to 0 °, the cross-ply laminate is subjected to 1% tensile strain in the 0 ° direction with respect to the cross-ply laminate. Let the load generated in the 0 ° direction of the body be the load 1, and the load generated in the 0 ° direction of the cross-ply laminated body when a 2% tensile strain is applied to the cross-ply laminated body in the 0 ° direction is the load 2. Then, the load is 1 × 0.5 <load 2 <load 1 × 1.5.
(Tensile property 2) When the fiber direction of any of the prepregs in the cross-ply laminate is set to 0 °, the cross-ply laminate is subjected to 1% tensile strain in the 0 ° direction with respect to the cross-ply laminate. Let the load generated in the 0 ° direction of the body be the load 1, and the load generated in the 0 ° direction of the cross-ply laminated body when a 2% tensile strain is applied to the cross-ply laminated body in the 0 ° direction is the load 2. Then, the load is 1 × 0.5 <load 2 <load 1 × 1.5.
25℃環境下において、クロスプライ積層体中のいずれかのプリプレグの繊維方向を0°とした場合に、クロスプライ積層体に対して0°方向へ2%の引張ひずみを加えたときに、クロスプライ積層体の面積に占める切込開口部の合計の面積(切込開口部の面積率)が、0%以上1%以下であるか、
60℃環境下において、クロスプライ積層体中のいずれかのプリプレグの繊維方向を0°とした場合に、クロスプライ積層体に対して0°方向へ2%の引張ひずみを加えたときに、クロスプライ積層体の面積に占める切込開口部の合計の面積(切込開口部の面積率)が、0%以上1%以下である、請求項1に記載のクロスプライ積層体。
In an environment of 25 ° C., when the fiber direction of any of the prepregs in the cross-ply laminate is 0 ° and a tensile strain of 2% is applied to the cross-ply laminate in the 0 ° direction, the cloth is crossed. Whether the total area of the cut openings (area ratio of the cut openings) in the area of the ply laminate is 0% or more and 1% or less.
When the fiber direction of any of the prepregs in the cross-ply laminate is set to 0 ° in an environment of 60 ° C. and a tensile strain of 2% is applied to the cross-ply laminate in the 0 ° direction, the cloth is crossed. The cross-ply laminate according to claim 1, wherein the total area of the cut openings (area ratio of the cut openings) in the area of the ply laminate is 0% or more and 1% or less.
前記プリプレグ中の複数の切込が、断続的な直線を形成し、
該断続的な直線を形成する複数の切込が、実質的に同一の長さYであり、
該断続的な直線を形成する複数の切込について、近接する切込間距離がYの3倍より大きい、請求項1または2に記載のクロスプライ積層体。
The plurality of cuts in the prepreg form an intermittent straight line.
The plurality of cuts forming the intermittent straight line are substantially the same length Y.
The cross-ply laminate according to claim 1 or 2 , wherein the distance between adjacent cuts is larger than 3 times Y for the plurality of cuts forming the intermittent straight line.
前記プリプレグ中の切込を、そのプリプレグ中の強化繊維の直角方向に投影した場合の投影長さWsが、30μm〜1.5mmである、請求項1〜のいずれかに記載のクロスプライ積層体。 The cross-ply laminate according to any one of claims 1 to 3 , wherein the projected length Ws when the cut in the prepreg is projected in the direction perpendicular to the reinforcing fibers in the prepreg is 30 μm to 1.5 mm. body. 前記プリプレグ中の切込と強化繊維とのなす角をθとしたとき、θの絶対値が2〜25°である、請求項1〜のいずれかに記載のクロスプライ積層体。 The cross-ply laminate according to any one of claims 1 to 4 , wherein the absolute value of θ is 2 to 25 °, where θ is the angle formed by the notch in the prepreg and the reinforcing fiber. 前記プリプレグ中の複数の切込が、断続的な直線を形成し、
該切込と強化繊維とのなす角をθとしたとき、θの絶対値が実質的に同一であり、
θが正となる切込の数とθが負となる切込の数が略同数である、請求項1〜のいずれかに記載のクロスプライ積層体。
The plurality of cuts in the prepreg form an intermittent straight line.
When the angle formed by the cut and the reinforcing fiber is θ, the absolute value of θ is substantially the same.
The cross-ply laminate according to any one of claims 1 to 5 , wherein the number of cuts in which θ is positive and the number of cuts in which θ is negative are substantially the same.
前記プリプレグが、プリプレグに挿入された任意の切込Aと近接する切込のうち、θの正負が同一である切込Bよりも最短距離が近いθの正負が異なる切込Cが4つ以上存在する、請求項に記載のクロスプライ積層体。 Among the cuts in which the prepreg is close to any cut A inserted in the prepreg, there are four or more cuts C in which the shortest distance is closer than that of the cut B in which the positive and negative of θ are the same and the positive and negative of θ are different. The cross-ply laminate according to claim 6, which is present. 前記プリプレグ中の複数の切込が、直線かつ実質的に同一の長さYであり、
近接する切込同士の最短距離が、切込の長さYよりも長い、請求項1〜のいずれかに記載のクロスプライ積層体。
The plurality of cuts in the prepreg are straight and substantially the same length Y.
The cross-ply laminate according to any one of claims 1 to 7 , wherein the shortest distance between adjacent cuts is longer than the length Y of the cuts.
前記樹脂が熱硬化性樹脂である請求項1〜のいずれかに記載のクロスプライ積層体。 The cross-ply laminate according to any one of claims 1 to 8 , wherein the resin is a thermosetting resin. 面積が0.5m2以上の請求項1〜のいずれかに記載のクロスプライ積層体。 The cross-ply laminate according to any one of claims 1 to 9 , which has an area of 0.5 m2 or more. 請求項1〜10のいずれかに記載のクロスプライ積層体を、型に押し付けてプリフォームとし、続いて該プリフォームを固化することを特徴とする、繊維強化プラスチックの製造方法。 A method for producing a fiber reinforced plastic, wherein the cross-ply laminate according to any one of claims 1 to 10 is pressed against a mold to form a preform, and then the preform is solidified. クロスプライ積層体を型に押し付ける際にクロスプライ積層体を加熱する工程を含む、請求項11に記載の繊維強化プラスチックの製造方法。 The method for producing a fiber reinforced plastic according to claim 11 , further comprising a step of heating the cross-ply laminate when pressing the cross-ply laminate against a mold. 型に押し付ける方法が手作業である、請求項11または12に記載の繊維強化プラスチックの製造方法。
The method for producing a fiber reinforced plastic according to claim 11 or 12 , wherein the method of pressing against the mold is manual.
JP2016209243A 2015-10-27 2016-10-26 Manufacturing method of cross-ply laminate and fiber reinforced plastic Active JP6907503B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015210445 2015-10-27
JP2015210445 2015-10-27

Publications (2)

Publication Number Publication Date
JP2017082210A JP2017082210A (en) 2017-05-18
JP6907503B2 true JP6907503B2 (en) 2021-07-21

Family

ID=58710682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016209243A Active JP6907503B2 (en) 2015-10-27 2016-10-26 Manufacturing method of cross-ply laminate and fiber reinforced plastic

Country Status (1)

Country Link
JP (1) JP6907503B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7099318B2 (en) * 2017-06-19 2022-07-12 東レ株式会社 Fiber reinforced plastic
CN107933050B (en) * 2017-11-30 2020-04-17 成都飞机工业(集团)有限责任公司 Method for accurately controlling angle of composite unidirectional laminated board
KR102018678B1 (en) * 2018-03-05 2019-09-05 (주)한국신소재 Composite material and method of adjusting color of the same
US20220315718A1 (en) * 2019-08-06 2022-10-06 Toray Industries, Inc. Incised prepreg and fiber-reinforced plastic
CN114932693B (en) * 2022-06-14 2023-07-28 中复神鹰(上海)科技有限公司 Preparation method of carbon fiber composite laminated board with high open-pore tensile strength
CN116001309B (en) * 2022-12-16 2023-09-08 江苏君华特种工程塑料制品有限公司 Forming method of unidirectional continuous fiber reinforced thermoplastic resin matrix composite product

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101435967B1 (en) * 2007-02-02 2014-08-29 도레이 카부시키가이샤 Prepreg base material, layered base material, fiber-reinforced plastic, process for producing prepreg base material, and process for producing fiber-reinforced plastic
JP2014189722A (en) * 2013-03-28 2014-10-06 Mitsubishi Chemicals Corp Laminated base material of fiber-reinforced plastic and method for producing the same
US10604633B2 (en) * 2013-09-10 2020-03-31 Mitsubishi Chemical Corporation Thermoplastic prepreg and laminate

Also Published As

Publication number Publication date
JP2017082210A (en) 2017-05-18

Similar Documents

Publication Publication Date Title
JP6907503B2 (en) Manufacturing method of cross-ply laminate and fiber reinforced plastic
JP6962191B2 (en) Manufacturing method of fiber reinforced plastic and fiber reinforced plastic
WO2017073460A1 (en) Nicked prepreg, cross-ply laminate, and nicked prepreg production method
JP4779754B2 (en) Prepreg laminate and fiber reinforced plastic
KR102344759B1 (en) Infeed prepreg and manufacturing method of infeed prepreg
KR20150016083A (en) Continuous fiber reinforced composite material and molded product thereof
JP6988812B2 (en) A method for manufacturing a fiber-reinforced plastic using a prepreg laminate and a prepreg laminate.
JPWO2019031478A1 (en) Fiber-reinforced plastic and method for producing fiber-reinforced plastic
JP6947163B2 (en) Manufacturing method of fiber reinforced plastic
ES2949968T3 (en) Method for producing fiber reinforced plastic
JP6332846B2 (en) Manufacturing method of prepreg
CN110612196A (en) Fiber reinforced plastic
JP6965530B2 (en) Notch prepreg and method of manufacturing notch prepreg
JP7042172B2 (en) Resin complex
US20240059031A1 (en) Prepreg laminate, composite structure, and method for manufacturing composite structure
JP2004323755A (en) Prepreg and fiber-reinforced composite material
JP6832536B2 (en) Pre-preg laminate and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210614

R151 Written notification of patent or utility model registration

Ref document number: 6907503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151