JP2023130580A - Method for manufacturing molded products using fiber-reinforced thermoplastic resin composite material - Google Patents

Method for manufacturing molded products using fiber-reinforced thermoplastic resin composite material Download PDF

Info

Publication number
JP2023130580A
JP2023130580A JP2022034942A JP2022034942A JP2023130580A JP 2023130580 A JP2023130580 A JP 2023130580A JP 2022034942 A JP2022034942 A JP 2022034942A JP 2022034942 A JP2022034942 A JP 2022034942A JP 2023130580 A JP2023130580 A JP 2023130580A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
fiber
resin composite
composite material
continuous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022034942A
Other languages
Japanese (ja)
Other versions
JP7145472B1 (en
Inventor
護 河村
Mamoru Kawamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Kikai Co Ltd
Original Assignee
Kawamura Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Kikai Co Ltd filed Critical Kawamura Kikai Co Ltd
Priority to JP2022034942A priority Critical patent/JP7145472B1/en
Application granted granted Critical
Publication of JP7145472B1 publication Critical patent/JP7145472B1/en
Publication of JP2023130580A publication Critical patent/JP2023130580A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a molded product using a fiber-reinforced thermoplastic resin composite material made of continuous fibers, which are capable of producing products with excellent strength.SOLUTION: A method for manufacturing a fiber-reinforced thermoplastic resin composite material 100 comprising a base 101 and ribs 102 protruding from the base 101, includes: a composite material preparation step of preparing the continuous fiber thermoplastic resin composite material 100 in which a continuous fiber sheet 100a made of continuous fibers is impregnated with a thermoplastic resin R and is solidified; and a forming step of heating and press-molding the base 101 made of the continuous fiber thermoplastic resin composite material 100 and plastically deforming a part of the base 101 into a protruding shape to form the ribs 102.SELECTED DRAWING: Figure 1

Description

本発明は、繊維強化熱可塑性樹脂複合材を用いた成形品及びその製造方法に関する。 The present invention relates to a molded article using a fiber-reinforced thermoplastic resin composite material and a method for manufacturing the same.

近年、炭素繊維やガラス繊維等の強化繊維材料を熱可塑性樹脂に含浸させて得られた繊維強化樹脂が様々な分野において広く利用されており、例えば、高度の機械的特性が要求される自動車、家電の筐体等に用いられている。 In recent years, fiber-reinforced resins obtained by impregnating thermoplastic resins with reinforcing fiber materials such as carbon fibers and glass fibers have been widely used in various fields, such as automobiles that require high mechanical properties, Used in the housings of home appliances, etc.

このような繊維強化熱可塑性樹脂複合材において、複数の短繊維束(「チョップド材」とも称される。)をランダムに配向し、熱可塑性樹脂により予め一体化させた炭素繊維強化熱可塑性樹脂層を、非強化熱可塑性樹脂層の少なくとも一方の面に設けて積層体を構成し、この積層体に対して加熱プレスすることにより、シート状のベース部に突起状のリブ部を形成するようにして繊維強化熱可塑性樹脂複合材を用いた成形品を製造する方法が知られている(例えば、特許文献1参照)。 In such a fiber-reinforced thermoplastic resin composite material, a carbon fiber-reinforced thermoplastic resin layer in which a plurality of short fiber bundles (also referred to as "chopped materials") are randomly oriented and integrated in advance with a thermoplastic resin is used. is provided on at least one surface of the non-reinforced thermoplastic resin layer to form a laminate, and the laminate is heated and pressed to form protruding ribs on the sheet-like base. A method of manufacturing a molded article using a fiber-reinforced thermoplastic resin composite material is known (for example, see Patent Document 1).

特開2020-049925号公報JP2020-049925A

しかしながら、上記特許文献1に記載の成形品を製造する方法で成形されたものでは、短繊維束がランダムに配向されるとともに、短繊維束の厚みにばらつきがあるため、強度に劣るという問題がある。 However, in the method for producing a molded article described in Patent Document 1, the short fiber bundles are randomly oriented and the thickness of the short fiber bundles varies, so there is a problem that the strength is poor. be.

本発明は、上記課題に鑑みてなされたものであり、強度に優れた製品を製造することができる繊維強化熱可塑性樹脂複合材を用いた成形品を提供することを目的とするものである。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a molded article using a fiber-reinforced thermoplastic resin composite material that can produce a product with excellent strength.

上記目的を解決するため、請求項1に記載の発明は、ベースと、該ベースから突設されたリブとを備える繊維強化熱可塑性樹脂複合材を用いた成形品の製造方法であって、
連続繊維からなる連続繊維シートが熱可塑性樹脂に含浸された後に固化されてなる連続繊維熱可塑性樹脂複合材を準備する複合材準備工程と、
前記連続繊維熱可塑性樹脂複合材からなる前記ベースを加熱プレス成形し、該ベースの一部を前記連続繊維を含んで突状に塑性変形させて、前記リブを形成する成形工程とを含むことを特徴とする。
In order to solve the above object, the invention according to claim 1 is a method for manufacturing a molded article using a fiber-reinforced thermoplastic resin composite material comprising a base and a rib protruding from the base,
a composite material preparation step of preparing a continuous fiber thermoplastic resin composite material in which a continuous fiber sheet made of continuous fibers is impregnated with a thermoplastic resin and then solidified;
a molding step of hot press molding the base made of the continuous fiber thermoplastic resin composite material, and plastically deforming a part of the base into a projecting shape including the continuous fibers to form the ribs. Features.

請求項2に記載の発明は、請求項1に記載の繊維強化熱可塑性樹脂複合材を用いた成形品の製造方法において、
前記成形工程において、前記連続繊維熱可塑性樹脂複合材を160℃以上で加熱することを特徴とする。
The invention according to claim 2 is a method for manufacturing a molded article using the fiber-reinforced thermoplastic resin composite material according to claim 1, comprising:
In the molding step, the continuous fiber thermoplastic resin composite material is heated at 160° C. or higher.

請求項3に記載の発明は、請求項1に記載の繊維強化熱可塑性樹脂複合材を用いた成形品の製造方法において、
前記成形工程において、前記連続繊維熱可塑性樹脂複合材を200℃以上で加熱することを特徴とする。
The invention according to claim 3 is a method for manufacturing a molded article using the fiber-reinforced thermoplastic resin composite material according to claim 1, comprising:
In the molding step, the continuous fiber thermoplastic resin composite material is heated at 200° C. or higher.

請求項4に記載の発明は、請求項1乃至3のうちいずれか一項に記載の繊維強化熱可塑性樹脂複合材を用いた成形品の製造方法において、
前記成形工程において、前記連続繊維熱可塑性樹脂複合材を10t以上の圧力でプレスすることを特徴とする。
The invention according to claim 4 is a method for manufacturing a molded article using the fiber-reinforced thermoplastic resin composite material according to any one of claims 1 to 3,
In the molding step, the continuous fiber thermoplastic resin composite material is pressed at a pressure of 10 tons or more.

請求項5に記載の発明は、連続繊維と熱可塑性樹脂とを含む繊維強化熱可塑性樹脂複合材を用いた成形品であって、
ベース部と、
前記ベースから突出するとともに、少なくとも一の方向に延在するリブ部とを備え、
前記連続繊維に含まれる少なくとも一部の繊維束が複数の変曲点を有しており、前記ベース部から前記リブ部を経由して再び該ベース部に戻るように湾曲形成された湾曲部が前記熱可塑性樹脂に被覆されて該リブ部の延在方向に連続して分布していることを特徴とする。
The invention according to claim 5 is a molded article using a fiber-reinforced thermoplastic resin composite material containing continuous fibers and a thermoplastic resin,
The base part and
a rib portion protruding from the base and extending in at least one direction;
At least some of the fiber bundles included in the continuous fibers have a plurality of inflection points, and a curved portion is formed to curve from the base portion to return to the base portion via the rib portion. The ribs are coated with the thermoplastic resin and are distributed continuously in the extending direction of the rib portion.

請求項6に記載の発明は、請求項5に記載の繊維強化熱可塑性樹脂複合材を用いた成形品において、
前記リブ部における前記連続繊維が層状をなしていることを特徴とする。
The invention according to claim 6 provides a molded article using the fiber-reinforced thermoplastic resin composite material according to claim 5,
It is characterized in that the continuous fibers in the rib portion are layered.

請求項7に記載の発明は、請求項5又は6に記載の繊維強化熱可塑性樹脂複合材を用いた成形品において、
前記リブ部における前記連続繊維の含有割合が前記ベース部における該連続繊維の含有割合よりも大きいことを特徴とする。
The invention according to claim 7 provides a molded article using the fiber-reinforced thermoplastic resin composite material according to claim 5 or 6,
The content ratio of the continuous fibers in the rib portion is higher than the content ratio of the continuous fibers in the base portion.

本発明によれば、強度に優れた製品を製造することができる繊維強化熱可塑性樹脂複合材を用いた成形品を提供することができる。 According to the present invention, it is possible to provide a molded article using a fiber-reinforced thermoplastic resin composite material that can produce a product with excellent strength.

本実施形態に係る繊維強化熱可塑性樹脂複合材を用いた成形品の製造方法の一例について説明する図である。It is a figure explaining an example of the manufacturing method of the molded article using the fiber reinforced thermoplastic resin composite material concerning this embodiment. (A)は、本実施形態により成形されたサンプルの正面図であり、(B)は、(A)に示すA-A断面図である。(A) is a front view of a sample molded according to the present embodiment, and (B) is a sectional view taken along the line AA shown in (A). プレス加工の条件を異ならせてリブを形成した場合の仕上りについて説明する成形品の断面拡大図である。FIG. 3 is an enlarged cross-sectional view of a molded product illustrating the finish when ribs are formed under different press working conditions.

以下、本発明の実施の形態に係る繊維強化熱可塑性樹脂複合材を用いた成形品の製造方法について、図面を参照しながら説明する。ただし、発明の範囲は図示例に限定されない。なお、以下の説明において、同一の機能及び構成を有するものについては、同一の符号を付し、その説明を省略する。 EMBODIMENT OF THE INVENTION Hereinafter, the manufacturing method of the molded article using the fiber reinforced thermoplastic resin composite material based on embodiment of this invention is demonstrated with reference to drawings. However, the scope of the invention is not limited to the illustrated example. In the following description, parts having the same functions and configurations will be denoted by the same reference numerals, and the description thereof will be omitted.

<連続炭素繊維熱可塑性樹脂複合材の製造方法>
本実施形態に係る連続炭素繊維熱可塑性樹脂複合材100の製造方法の一例について、図1を参照しながら説明する。
<Method for manufacturing continuous carbon fiber thermoplastic resin composite material>
An example of a method for manufacturing the continuous carbon fiber thermoplastic resin composite material 100 according to the present embodiment will be described with reference to FIG. 1.

先ず、本実施形態では、図1(1)に示すように、連続炭素繊維からなる連続繊維部100aを用意する。連続繊維部100aは、炭素繊維に限らず、ガラス繊維、炭化ケイ素繊維等の無機繊維、ボロン繊維等の金属繊維、アラミド繊維等の有機繊維が挙げられ、これらのうちのいずれか一つ又は二以上を組み合わせたものを適用することができる。これらの連続繊維は、機械的強度の向上が期待できる連続繊維である。なお、本実施形態における連続繊維は複数層により構成されているが、単層により構成されてもよい。層厚にするほど強度は増すが、材料コストもそれだけ上がるため、本実施形態では、後述するように、連続繊維を単層により構成し、加熱プレス加工によりリブを成形することで強度を高めることができる。なお、言うまでもないが、本実施形態において、連続繊維を複数層にすることを否定するものではなく、複数層により構成してもよい。 First, in this embodiment, as shown in FIG. 1(1), a continuous fiber portion 100a made of continuous carbon fiber is prepared. The continuous fiber portion 100a is not limited to carbon fibers, but may include inorganic fibers such as glass fibers and silicon carbide fibers, metal fibers such as boron fibers, and organic fibers such as aramid fibers. A combination of the above can be applied. These continuous fibers are expected to improve mechanical strength. Although the continuous fibers in this embodiment are composed of multiple layers, they may be composed of a single layer. As the layer thickness increases, the strength increases, but the material cost also increases accordingly. Therefore, in this embodiment, as described later, the strength is increased by forming a single layer of continuous fibers and forming ribs by hot pressing. I can do it. Needless to say, this embodiment does not negate the use of multiple layers of continuous fibers, and may be configured with multiple layers.

続いて、図1(2)に示すように、容器Cに加熱溶融された熱可塑性樹脂Rを注入し、熱可塑性樹脂Rが注入された容器Cに連続繊維部100aを浸し、熱可塑性樹脂Rを連続繊維部100aに含浸させる。本実施形態では、熱可塑性樹脂Rとして熱可塑性ポリウレタンを採用したが他の熱可塑性樹脂であってもよく、例えば、エポキシ樹脂、ポリアミド、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリスチレン、ポリ酢酸ビニル、テフロン(登録商標)、ABS(アクリロニトリルブタジエンスチレン)、アクリル、ポリアミド、ポリアセタール、変性ポリフェニレンエーテル、ポリエステル、環状ポリオレフィン、ポリフェニレンスルファイド、ポリテトラフロロエチレン、ポリサルフォン、ポリエーテルサルフォン、非晶ポリアリレート、液晶ポリマー、ポリエーテルエーテルケトン、熱可塑性ポリイミド、ポリアミドイミド、ポリエチレンテレフタレート、ポリカーボネート等のいずれか一つ又は二以上を混合させたものであってもよい。 Subsequently, as shown in FIG. 1(2), the heated and melted thermoplastic resin R is injected into the container C, and the continuous fiber portion 100a is immersed in the container C into which the thermoplastic resin R is injected. is impregnated into the continuous fiber portion 100a. In this embodiment, thermoplastic polyurethane is used as the thermoplastic resin R, but other thermoplastic resins may be used, such as epoxy resin, polyamide, polyethylene, polypropylene, polyvinyl chloride, polystyrene, polyvinyl acetate, and Teflon. (registered trademark), ABS (acrylonitrile butadiene styrene), acrylic, polyamide, polyacetal, modified polyphenylene ether, polyester, cyclic polyolefin, polyphenylene sulfide, polytetrafluoroethylene, polysulfone, polyethersulfone, amorphous polyarylate, liquid crystal polymer , polyetheretherketone, thermoplastic polyimide, polyamideimide, polyethylene terephthalate, polycarbonate, etc., or a mixture of two or more thereof may be used.

連続繊維部100aを容器Cに所定時間浸した後、連続繊維部100aを取り出すと、図1(3)に示すように、溶融された熱可塑性樹脂Rが連続繊維部100aに含浸されて樹脂部100bを構成し、これにより連続炭素繊維熱可塑性樹脂複合材100が成形される。その後は、樹脂部100bが固化するまで冷却する。このように、本実施形態では、図1(1)~同図(3)に示す工程が複合材準備工程に相当する。なお、予め上述したようにして形成された連続炭素繊維熱可塑性樹脂複合材100を購入等により手に入れて複合材準備工程としてもよい。 After immersing the continuous fiber portion 100a in the container C for a predetermined time, when the continuous fiber portion 100a is taken out, the continuous fiber portion 100a is impregnated with the melted thermoplastic resin R, and the resin portion is 100b, by which the continuous carbon fiber thermoplastic resin composite material 100 is molded. Thereafter, the resin portion 100b is cooled until solidified. Thus, in this embodiment, the steps shown in FIGS. 1(1) to 1(3) correspond to the composite material preparation step. Note that the continuous carbon fiber thermoplastic resin composite material 100 formed as described above may be obtained in advance by purchase, etc., and the composite material preparation step may be performed.

その後、上述したようにして成形された連続炭素繊維熱可塑性樹脂複合材100をプレス機200による加熱プレスを行う。具体的には、図1(4)に示すように、プレス機200には、連続炭素繊維熱可塑性樹脂複合材100が設置される第一の金型200aと、第一の金型200aの上方に配置され、第一の金型200aとともに連続炭素繊維熱可塑性樹脂複合材100をプレスする第二の金型200bとが備えられている。また、第一の金型200a及び第二の金型200bはともに加熱されている。このように構成されたプレス機200を用いて連続炭素繊維熱可塑性樹脂複合材100に対して加熱プレスを行う場合には、先ず、連続炭素繊維熱可塑性樹脂複合材100をプレス機200の第一の金型200a上に設置し、その後、第一の金型200aの上方に配置された第二の金型200bを下方に移動させ、連続炭素繊維熱可塑性樹脂複合材100に対して加熱プレス加工を行う。本実施形態におけるプレス機200の第二の金型200bの下面の適宜位置に凹状の1又は複数のリブ形成部200cが形成されている。本実施形態では、所定温度以上及び所定圧力以上でもって連続炭素繊維熱可塑性樹脂複合材100に対して所定時間の加熱プレスを行う。好適な加熱温度と圧力については後述する。 Thereafter, the continuous carbon fiber thermoplastic resin composite material 100 molded as described above is heated and pressed using a press machine 200. Specifically, as shown in FIG. 1(4), the press machine 200 includes a first mold 200a in which the continuous carbon fiber thermoplastic resin composite material 100 is installed, and an upper part of the first mold 200a. A second mold 200b is provided, which is disposed at , and presses the continuous carbon fiber thermoplastic resin composite material 100 together with the first mold 200a. Further, both the first mold 200a and the second mold 200b are heated. When hot pressing the continuous carbon fiber thermoplastic resin composite material 100 using the press machine 200 configured as described above, first, the continuous carbon fiber thermoplastic resin composite material 100 is pressed into the first press machine of the press machine 200. Then, the second mold 200b placed above the first mold 200a is moved downward, and the continuous carbon fiber thermoplastic resin composite material 100 is heated and pressed. I do. One or more concave rib forming portions 200c are formed at appropriate positions on the lower surface of the second mold 200b of the press 200 in this embodiment. In this embodiment, hot pressing is performed on the continuous carbon fiber thermoplastic resin composite material 100 at a predetermined temperature or higher and a predetermined pressure or higher for a predetermined time. Suitable heating temperatures and pressures will be described later.

すると、図1(5)に示すように、樹脂部100bが溶融されながら連続繊維部100aとともに塑性変形して(すなわち、ベース部101が塑性変形して)、第二の金型200bに形成されたリブ形成部200cに入り込み、リブ102が形成される。すなわち、連続炭素繊維熱可塑性樹脂複合材100に対して第一の金型200aと第二の金型200bとにより加熱プレスを行うと、樹脂部100bと連続繊維部100aとが第二の金型200bに形成されたリブ形成部200cに移動することでリブ102が形成される。本実施形態では、リブ102の高さが約2.5mmとなり、幅が2mm以上となるように第二の金型200bのリブ形成部200cが設定されているとともに、加熱温度、プレス圧力及び加熱プレス時間が調整されている。高さに対し、リブ形成部200cの幅が狭いと連続繊維部100aがリブ形成部200cに入り込み難くなるため、適宜設定されるのが好ましい。 Then, as shown in FIG. 1(5), the resin part 100b is plastically deformed together with the continuous fiber part 100a while being melted (that is, the base part 101 is plastically deformed), and is formed into the second mold 200b. The rib 102 is formed by entering the rib forming portion 200c. That is, when hot pressing is performed on the continuous carbon fiber thermoplastic resin composite material 100 using the first mold 200a and the second mold 200b, the resin portion 100b and the continuous fiber portion 100a are pressed into the second mold. The rib 102 is formed by moving to the rib forming portion 200c formed on the portion 200b. In this embodiment, the rib forming portion 200c of the second mold 200b is set so that the height of the rib 102 is approximately 2.5 mm and the width is 2 mm or more, and the heating temperature, press pressure, and heating Press time has been adjusted. If the width of the rib forming portion 200c is narrow relative to the height, it becomes difficult for the continuous fiber portion 100a to enter the rib forming portion 200c, so it is preferable to set the width appropriately.

その後、連続炭素繊維熱可塑性樹脂複合材100を冷却して硬化させた後、プレス機200から連続炭素繊維熱可塑性樹脂複合材100を取り出すと、図1(6)に示すように、1又は複数のリブ102がベース101から突設された状態で連続炭素繊維熱可塑性樹脂複合材100の成形品が形成される。このように、本実施形態では、図1(4)~同図(6)に示す工程が成形工程に相当する。 Thereafter, after cooling and hardening the continuous carbon fiber thermoplastic resin composite material 100, when the continuous carbon fiber thermoplastic resin composite material 100 is taken out from the press machine 200, as shown in FIG. 1(6), one or more A molded article of the continuous carbon fiber thermoplastic resin composite material 100 is formed with the ribs 102 protruding from the base 101. Thus, in this embodiment, the steps shown in FIGS. 1(4) to 1(6) correspond to the molding step.

このようにして成形された成形品は、例えば、図3(b)や同図(c)に示すように、連続繊維部100aに含まれる少なくとも一部の繊維束がリブ102に突出するように複数の変曲点を形成し、ベース101からリブ102を経由して再びベース101に戻るように湾曲形成された湾曲部が樹脂部100bに被覆されてリブ102の延在方向に連続して分布されるように形成される。このとき、湾曲部は対称性のある分布を有している。また、上述したようにして成形された成形品は、ベース101よりもリブ102の方が樹脂の含有割合が大きくなる。そのため、従来の複数の短繊維束(チョップド材)をランダムに配向し、熱可塑性樹脂により予め一体化させた炭素繊維強化熱可塑性樹脂層と比較してリブの強度が大幅に増大し、連続炭素繊維が湾曲してリブに入り込んでいることにより破断し難くなる。 The molded product formed in this way has a structure in which at least some of the fiber bundles included in the continuous fiber portion 100a protrude into the ribs 102, as shown in FIGS. 3(b) and 3(c), for example. A curved portion that forms a plurality of inflection points and is curved from the base 101 to return to the base 101 via the rib 102 is covered with the resin portion 100b and is continuously distributed in the extending direction of the rib 102. formed to be At this time, the curved portion has a symmetrical distribution. Further, in the molded product molded as described above, the content ratio of the resin is higher in the ribs 102 than in the base 101. Therefore, compared to the conventional carbon fiber-reinforced thermoplastic resin layer in which multiple short fiber bundles (chopped material) are randomly oriented and integrated with thermoplastic resin in advance, the strength of the ribs is significantly increased, and continuous carbon The fibers are curved into the ribs, making them difficult to break.

また、本実施形態によれば、金属プレス成型技術と高温樹脂成型の技術とを組み合わせ、連続炭素繊維熱可塑性樹脂複合材100を加工する際に併せてリブ102を成形することで、樹脂部100bのみならず連続繊維部100aも含めてベース101からリブ102にかけて層状をなすようにしてリブ102を連続的に分布した成形品を成形することができるので、リブ102をベース101に対して固着する等により後付けしたものよりも、リブ102が破断されにくくなり、安定して良好な強度を得ることができるようになる。 Further, according to the present embodiment, by combining metal press molding technology and high temperature resin molding technology, and molding the ribs 102 at the same time as processing the continuous carbon fiber thermoplastic resin composite material 100, the resin portion 100b Since it is possible to mold a molded product in which the ribs 102 are continuously distributed in a layered manner from the base 101 to the ribs 102, including the continuous fiber portion 100a, the ribs 102 are fixed to the base 101. The ribs 102 are less likely to break than those added later, and stable and good strength can be obtained.

また、従来のように、熱硬化樹脂を複数層貼り合わせて焼き固めして複合材を形成するよりも、簡便な方法で短時間で複合材を加工することができるので、製造コストにも優れ、量産にも有利である。 Additionally, compared to the conventional method of bonding multiple layers of thermosetting resin together and baking them to form a composite material, composite materials can be processed in a simpler manner and in a shorter time, resulting in superior manufacturing costs. , which is also advantageous for mass production.

以下の実施例により本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。 The present invention will be explained in more detail with reference to the following examples, but the present invention is not limited to the following examples.

連続炭素繊維を用いた炭素繊維熱可塑性樹脂複合材について、成形条件を変えて加熱プレス加工を行った。 A carbon fiber thermoplastic resin composite material using continuous carbon fibers was heated and pressed under different molding conditions.

[比較例2-1]
連続炭素繊維に熱可塑性ポリウレタンを含浸させて、厚さが約1.0mmとなるようにCFRTP(Carbon Fiber Reinforced Thermo Plastics;繊維体積含有率(Vf)=45%;サンワトレーディング社製)を成形し、このCFRTPを適宜大きさに切断し、プレス機に所定の金型をセットした。使用する金型は、上面が平坦に形成された第一の金型と、広葉樹の葉っぱ様の外形となるような薄葉部301(図2参照)、薄葉部301の上面の長手方向の中央に延在して突設される第一の葉脈部302(図2参照)、及び、第一の葉脈部302から左右方向にそれぞれ突出するようにして薄葉部分の上面から突設される複数の第二の葉脈部303(図2参照)が少なくとも形成されるような凹部がプレス面に形成された第二の金型とを備えている。なお、第一の葉脈部302及び第二の葉脈部302がリブとして機能している。このような条件で成形されたサンプル300を図2に示す。
上記CFRTPを上記プレス機にセットし、第一葉脈部及び第二葉脈部の高さが2.5mm程度となることを目標に、100℃に加熱し6tの圧力にてプレス加工を行った。
[Comparative example 2-1]
Continuous carbon fibers were impregnated with thermoplastic polyurethane and molded into CFRTP (Carbon Fiber Reinforced Thermo Plastics; fiber volume content (Vf) = 45%; manufactured by Sanwa Trading Co., Ltd.) to a thickness of approximately 1.0 mm. This CFRTP was cut into an appropriate size, and a predetermined mold was set in a press machine. The molds used include a first mold with a flat upper surface, a thin leaf part 301 (see Fig. 2) that has a leaf-like external shape of a broad-leaved tree, and a thin leaf part 301 in the longitudinal center of the upper surface of the thin leaf part 301. A first leaf vein part 302 (see FIG. 2) that extends and protrudes, and a plurality of leaf veins that protrude from the upper surface of the thin leaf part so as to protrude from the first leaf vein part 302 in the left-right direction, respectively. A second mold is provided in which a concave portion in which at least a second leaf vein portion 303 (see FIG. 2) is formed is formed on the pressing surface. Note that the first leaf vein portion 302 and the second leaf vein portion 302 function as ribs. A sample 300 molded under such conditions is shown in FIG.
The above CFRTP was set in the above press machine, and was heated to 100° C. and pressed at a pressure of 6 tons, aiming at the height of the first leaf vein portion and the second leaf vein portion to be approximately 2.5 mm.

[比較例2-2]
比較例2-1により成形したCFRTPをプレス機にセットし、第一葉脈部及び第二葉脈部の高さが2.5mm程度となることを目標に、100℃に加熱し8tの圧力にてプレス加工を行った。
[Comparative example 2-2]
The CFRTP molded according to Comparative Example 2-1 was set in a press machine, heated to 100°C and under a pressure of 8 tons, with the aim of making the height of the first and second vein parts about 2.5 mm. Press processing was performed.

[比較例2-3]
比較例2-1により成形したCFRTPをプレス機にセットし、第一葉脈部及び第二葉脈部の高さが2.5mm程度となることを目標に、100℃に加熱し10tの圧力にてプレス加工を行った。
[Comparative example 2-3]
The CFRTP molded according to Comparative Example 2-1 was set in a press machine, heated to 100°C and under a pressure of 10 tons, with the aim of making the height of the first and second vein parts about 2.5 mm. Press processing was performed.

[実施例2-1]
比較例2-1により成形したCFRTPをプレス機にセットし、第一葉脈部及び第二葉脈部の高さが2.5mm程度となることを目標に、160℃に加熱し6tの圧力にてプレス加工を行った。
[Example 2-1]
The CFRTP molded according to Comparative Example 2-1 was set in a press machine, heated to 160°C and under a pressure of 6 tons, with the aim of making the height of the first leaf vein part and the second leaf vein part about 2.5 mm. Press processing was performed.

[実施例2-2]
比較例2-1により成形したCFRTPをプレス機にセットし、第一葉脈部及び第二葉脈部の高さが2.5mm程度となることを目標に、160℃に加熱し8tの圧力にてプレス加工を行った。
[Example 2-2]
The CFRTP molded according to Comparative Example 2-1 was set in a press machine, heated to 160°C and under a pressure of 8 tons, with the aim of making the height of the first leaf vein part and the second leaf vein part about 2.5 mm. Press processing was performed.

[実施例2-3]
比較例2-1により成形したCFRTPをプレス機にセットし、第一葉脈部及び第二葉脈部の高さが2.5mm程度となることを目標に、160℃に加熱し10tの圧力にてプレス加工を行った。
[Example 2-3]
The CFRTP molded according to Comparative Example 2-1 was set in a press machine, heated to 160°C and under a pressure of 10 tons, with the aim of making the height of the first leaf vein part and the second leaf vein part about 2.5 mm. Press processing was performed.

[実施例2-4]
比較例2-1により成形したCFRTPをプレス機にセットし、第一葉脈部及び第二葉脈部の高さが2.5mm程度となることを目標に、200℃に加熱し6tの圧力にてプレス加工を行った。
[Example 2-4]
The CFRTP molded according to Comparative Example 2-1 was set in a press, heated to 200°C and under a pressure of 6 tons, with the aim of making the height of the first leaf vein part and the second leaf vein part about 2.5 mm. Press processing was performed.

[実施例2-5]
比較例2-1により成形したCFRTPをプレス機にセットし、第一葉脈部及び第二葉脈部の高さが2.5mm程度となることを目標に、200℃に加熱し8tの圧力にてプレス加工を行った。
[Example 2-5]
The CFRTP molded according to Comparative Example 2-1 was set in a press machine, heated to 200°C and under a pressure of 8 tons, with the aim of making the height of the first leaf vein part and the second leaf vein part about 2.5 mm. Press processing was performed.

[実施例2-6]
比較例2-1により成形したCFRTPをプレス機にセットし、第一葉脈部及び第二葉脈部の高さが2.5mm程度となることを目標に、200℃に加熱し10tの圧力にてプレス加工を行った。
[Example 2-6]
The CFRTP molded according to Comparative Example 2-1 was set in a press machine, heated to 200°C and under a pressure of 10 tons, aiming at the height of the first leaf vein part and the second leaf vein part to be about 2.5 mm. Press processing was performed.

比較例2-1~比較例2-3及び実施例2-1~実施例2-6によりそれぞれ得られた炭素繊維熱可塑性樹脂複合材の成形品について、それぞれ圧力をかけた時間(圧力時間)と成形良否と、3点曲げ試験(支点間距離=40mm、試験速度=5mm/min)を行い、各成形品の強度の測定とを行った。その結果を表1に示す。また、比較例2-1によって得らえた成形品を切断し、葉脈部(リブ部分)の断面をデジタルマイクロスコープで観察したものを図3(A)に示し、実施例2-1によって得らえた成形品を切断し、葉脈部の断面をデジタルマイクロスコープで観察したものを図3(B)に示し、実施例2-2によって得らえた成形品を切断し、葉脈部の断面をデジタルマイクロスコープで観察したものを図3(C)に示す。 The time during which pressure was applied to the molded products of carbon fiber thermoplastic resin composites obtained in Comparative Examples 2-1 to 2-3 and Examples 2-1 to 2-6, respectively (pressure time) A three-point bending test (distance between fulcrums = 40 mm, test speed = 5 mm/min) was conducted to determine the quality of the molding, and the strength of each molded product was measured. The results are shown in Table 1. In addition, the molded product obtained in Comparative Example 2-1 was cut and the cross section of the leaf vein part (rib part) was observed with a digital microscope as shown in Figure 3(A). The molded product obtained in Example 2-2 was cut and the cross section of the leaf vein part was observed with a digital microscope as shown in Figure 3(B). Figure 3(C) shows what was observed with the scope.

Figure 2023130580000002
Figure 2023130580000002

実施例2-1~実施例2-6のいずれも、高い最大試験力が得られており、十分な性能なものが得られた。特に実施例2-5及び実施例206では、圧力時間が他の実施例よりも短時間で葉脈部が成形されることがわかった。これら実施例2-1~実施例2-6によれば、葉脈部に連続強化繊維が入り込んで層をなすようにして形成されるので、十分な強度が得られているということができる。 In all of Examples 2-1 to 2-6, a high maximum test force was obtained, and sufficient performance was obtained. In particular, it was found that in Examples 2-5 and 206, the leaf veins were formed in a shorter pressure time than in the other Examples. According to these Examples 2-1 to 2-6, the continuous reinforcing fibers enter the leaf veins and are formed in layers, so it can be said that sufficient strength is obtained.

一方、比較例2-1~比較例2-3では、いずれも葉脈部が成形されず、最大試験力も実施例2-1~実施例2-6よりも大きく劣ることがわかった。換言すれば、実施例2-1~実施例2-6は、比較例2-1~比較例2-3よりも最大試験力が平均して1.87倍となっており、従来のものよりも強度が大幅に増大していることがいえる。 On the other hand, in Comparative Examples 2-1 to 2-3, the leaf veins were not molded, and the maximum test force was found to be significantly inferior to Examples 2-1 to 2-6. In other words, the maximum test force of Examples 2-1 to 2-6 is 1.87 times higher on average than that of Comparative Examples 2-1 to 2-3, which is higher than that of the conventional ones. It can be said that the strength has also increased significantly.

以上から、上記CFRTPをプレス機により加熱プレス加工するにあたり、160℃以上で加熱することで、連続強化繊維が入り込んだリブ部分を形成でき、十分な強度を持ったCFRTP製品を成形可能であるということができ、好ましくは、200℃以上で加熱することで、さらに仕上りを良好にすることができるようになる。 From the above, when hot-pressing the above CFRTP using a press machine, by heating it at 160°C or higher, it is possible to form rib portions in which continuous reinforcing fibers are inserted, and it is possible to mold CFRTP products with sufficient strength. Preferably, by heating at 200° C. or higher, the finish can be further improved.

また、上記CFRTPをプレス機により加熱プレス加工するにあたり、10t以上の圧力でプレスすることで、短時間で十分な強度を持ったCFRTP製品を成形可能であるということができる。 Furthermore, when hot pressing the CFRTP using a press machine, it is possible to mold a CFRTP product with sufficient strength in a short time by pressing at a pressure of 10 tons or more.

また、実施例2-1~実施例2-6では、サンプル成形前の炭素繊維熱可塑性樹脂複合材では、Vfが45%で熱可塑性樹脂と連続炭素繊維とが略同程度の割合となっているが、サンプル成形後では、ベース部分よりもリブ部分の方が熱可塑性樹脂の割合が多くなる傾向があることがわかる。特に図3(C)で示される実施例2-2によって得らえたサンプル品にあっては、リブ部分では、8割程度の割合で熱可塑性樹脂が含まれていることがわかる。一方で、ベース部分では、連続炭素繊維の割合の方が熱可塑性樹脂よりも大きくなる傾向があることがわかる。 In addition, in Examples 2-1 to 2-6, in the carbon fiber thermoplastic resin composite material before sample molding, Vf was 45% and the proportions of thermoplastic resin and continuous carbon fiber were approximately the same. However, it can be seen that after sample molding, the proportion of thermoplastic resin tends to be higher in the rib portion than in the base portion. In particular, in the sample product obtained in Example 2-2 shown in FIG. 3(C), it can be seen that the rib portion contains about 80% of the thermoplastic resin. On the other hand, it can be seen that in the base portion, the proportion of continuous carbon fiber tends to be larger than that of thermoplastic resin.

また、本実施形態によれば、ベース101と、ベース101から突出するとともに、少なくとも一の方向に延在するリブ102とを備え、連続繊維部100aに含まれる少なくとも一部の繊維束が複数の変曲点を有しており、ベース101からリブ102を経由して再びベース101に戻るように湾曲形成された湾曲部が樹脂部100bに被覆されてリブ101の延在方向に連続して分布している。その結果、繊維束により形成された湾曲部がリブ部の延在方向に延びて形成されているのでリブ部が破断されにくくなり、従来の複数の短繊維束(チョップド材)をランダムに配向し、熱可塑性樹脂により予め一体化させた炭素繊維強化熱可塑性樹脂層と比較して高い強度とすることができ、したがって、強度に優れた製品を製造することができる繊維強化熱可塑性樹脂複合材を用いた成形品を提供することができるようになる。 Further, according to the present embodiment, the base 101 and the ribs 102 that protrude from the base 101 and extend in at least one direction are provided, and at least some of the fiber bundles included in the continuous fiber portion 100a are connected to a plurality of fiber bundles. A curved portion that has an inflection point and is curved from the base 101 to return to the base 101 via the rib 102 is covered with the resin portion 100b and is continuously distributed in the extending direction of the rib 101. are doing. As a result, the curved part formed by the fiber bundle extends in the extending direction of the rib part, making it difficult for the rib part to break. , a fiber-reinforced thermoplastic resin composite material that can have higher strength than a carbon fiber-reinforced thermoplastic resin layer that is pre-integrated with a thermoplastic resin, and therefore can produce products with excellent strength. It becomes possible to provide molded products using

また、本実施形態によれば、繊維束が熱可塑性樹脂により被覆されているので、連続繊維がリブ部において露出したり、リブ部の延在方向において熱可塑性樹脂の間欠部を有することなくリブ部を滑らかな仕上りとすることができ、仕上りを良化することができるようになる。 Further, according to the present embodiment, since the fiber bundle is coated with thermoplastic resin, continuous fibers are not exposed at the rib portion, and the rib portion does not have intermittent portions of thermoplastic resin in the extending direction of the rib portion. It is possible to give the part a smooth finish, and the finish can be improved.

なお、本発明の実施の形態に記載された作用および効果は、本発明から生じる最も好適な作用および効果を列挙したに過ぎず、本発明による作用および効果は、本発明の実施の形態に記載されたものに限定されるものではない。 The functions and effects described in the embodiments of the present invention are merely a list of the most preferable functions and effects resulting from the present invention, and the functions and effects according to the present invention are not described in the embodiments of the present invention. It is not limited to what has been done.

本実施形態では、比較例2-1に示す要領でCFRTPを成形し、これに対して上述した金型をセットして加熱プレスを行ってサンプルを成形するようにしたが、成形したCFRTPに対し、第一の金型の上面及び第二の金型のプレス面がそれぞれ平坦な金型で、所定温度(例えば、100℃)に加熱しつつ所定の圧力(例えば、10t)にて所定時間(例えば、10秒間)プレスする第一プレス加工を行い、第一プレス加工により再加工して得られたCFRTPに対して加熱プレスを行って、サンプルを成形するようにしてもよい。この場合においても、変わらぬ最大試験力が得られる。 In this embodiment, CFRTP was molded in the manner shown in Comparative Example 2-1, and the mold described above was set and a sample was molded by hot pressing. , the upper surface of the first mold and the press surface of the second mold are both flat, and are heated to a predetermined temperature (e.g. 100°C) and at a predetermined pressure (e.g. 10 t) for a predetermined time ( For example, a sample may be formed by performing a first press process (for example, pressing for 10 seconds) and then hot pressing the CFRTP obtained by reworking the CFRTP by the first press process. Even in this case, the same maximum test force can be obtained.

100 連続炭素繊維熱可塑性樹脂複合材
100a 連続繊維部
100b 樹脂部
101 ベース(ベース部)
102 リブ(リブ部)
200 プレス機
R 熱可塑性樹脂
100 Continuous carbon fiber thermoplastic resin composite material 100a Continuous fiber part 100b Resin part 101 Base (base part)
102 Rib (rib part)
200 Press machine R Thermoplastic resin

請求項5に記載の発明は、連続繊維と熱可塑性樹脂とを含む繊維強化熱可塑性樹脂複合材を用いた成形品であって、
ベース部と、
前記ベースから突出するとともに、少なくとも一の方向に延在するリブ部とを備え、
前記連続繊維に含まれる少なくとも一部の繊維束が複数の変曲点を有しており、前記ベース部から前記リブ部を経由して再び該ベース部に戻るように湾曲形成された湾曲部が前記熱可塑性樹脂に被覆されて該リブ部の延在方向に連続して分布していることを特徴とする。
The invention according to claim 5 is a molded article using a fiber-reinforced thermoplastic resin composite material containing continuous fibers and a thermoplastic resin,
The base part and
a rib portion protruding from the base portion and extending in at least one direction;
At least some of the fiber bundles included in the continuous fibers have a plurality of inflection points, and a curved portion is formed to curve from the base portion to return to the base portion via the rib portion. The ribs are coated with the thermoplastic resin and are distributed continuously in the extending direction of the rib portion.

本発明は、繊維強化熱可塑性樹脂複合材を用いた成形品の製造方法に関する。 The present invention relates to a method for manufacturing a molded article using a fiber-reinforced thermoplastic resin composite.

本発明は、上記課題に鑑みてなされたものであり、強度に優れた製品を製造することができる繊維強化熱可塑性樹脂複合材を用いた成形品の製造方法を提供することを目的とするものである。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a method for manufacturing a molded article using a fiber-reinforced thermoplastic resin composite material, which can produce a product with excellent strength. It is.

上記目的を解決するため、請求項1に記載の発明は、ベースと、該ベースから突設されたリブとを備える繊維強化熱可塑性樹脂複合材を用いた成形品の製造方法であって、
連続繊維からなる連続繊維シートが熱可塑性樹脂に含浸され固化されてなる連続繊維熱可塑性樹脂複合材を準備する複合材準備工程と、
前記連続繊維熱可塑性樹脂複合材からなる前記ベースを200℃以上で加熱するとともに、10t以上の圧力でプレスすることにより加熱プレス成形し、該ベースの一部を前記連続繊維を含んで突状に塑性変形させて、前記リブを形成する成形工程とを含むことを特徴とする。
In order to solve the above object, the invention according to claim 1 is a method for manufacturing a molded article using a fiber-reinforced thermoplastic resin composite material comprising a base and a rib protruding from the base,
a composite material preparation step of preparing a continuous fiber thermoplastic resin composite material in which a continuous fiber sheet made of continuous fibers is impregnated with a thermoplastic resin and solidified;
The base made of the continuous fiber thermoplastic resin composite material is heated at 200° C. or higher and pressed at a pressure of 10 tons or higher to perform hot press molding, and a part of the base is formed into a projecting shape containing the continuous fibers. The method is characterized by including a forming step of forming the ribs by plastic deformation.

本発明によれば、強度に優れた製品を製造することができる繊維強化熱可塑性樹脂複合材を用いた成形品の製造方法を提供することができる。 According to the present invention, it is possible to provide a method for manufacturing a molded article using a fiber-reinforced thermoplastic resin composite material, which can manufacture a product with excellent strength.

Claims (7)

ベースと、該ベースから突設されたリブとを備える繊維強化熱可塑性樹脂複合材を用いた成形品の製造方法であって、
連続繊維からなる連続繊維シートが熱可塑性樹脂に含浸されて固化されてなる連続繊維熱可塑性樹脂複合材を準備する複合材準備工程と、
前記連続繊維熱可塑性樹脂複合材からなる前記ベースを加熱プレス成形し、該ベースの一部を前記連続繊維を含んで突状に塑性変形させて、前記リブを形成する成形工程とを含む繊維強化熱可塑性樹脂複合材を用いた成形品の製造方法。
A method for manufacturing a molded article using a fiber-reinforced thermoplastic resin composite material comprising a base and a rib protruding from the base, the method comprising:
a composite material preparation step of preparing a continuous fiber thermoplastic resin composite material in which a continuous fiber sheet made of continuous fibers is impregnated with a thermoplastic resin and solidified;
Fiber reinforcement comprising the step of heat press molding the base made of the continuous fiber thermoplastic resin composite material, and plastically deforming a part of the base into a convex shape including the continuous fibers to form the ribs. A method for manufacturing molded products using thermoplastic resin composites.
前記成形工程において、前記連続繊維熱可塑性樹脂複合材を160℃以上で加熱する請求項1に記載の繊維強化熱可塑性樹脂複合材を用いた成形品の製造方法。 The method for manufacturing a molded article using a fiber-reinforced thermoplastic resin composite according to claim 1, wherein in the molding step, the continuous fiber thermoplastic resin composite is heated at 160° C. or higher. 前記成形工程において、前記連続繊維熱可塑性樹脂複合材を200℃以上で加熱する請求項1に記載の繊維強化熱可塑性樹脂複合材を用いた成形品の製造方法。 The method for manufacturing a molded article using a fiber-reinforced thermoplastic resin composite according to claim 1, wherein in the molding step, the continuous fiber thermoplastic resin composite is heated at 200° C. or higher. 前記成形工程において、前記連続繊維熱可塑性樹脂複合材を10t以上の圧力でプレスする請求項1乃至3のうちいずれか一項に記載の繊維強化熱可塑性樹脂複合材を用いた成形品の製造方法。 The method for manufacturing a molded article using a fiber-reinforced thermoplastic resin composite according to any one of claims 1 to 3, wherein in the molding step, the continuous fiber thermoplastic resin composite is pressed at a pressure of 10 tons or more. . 連続繊維と熱可塑性樹脂とを含む繊維強化熱可塑性樹脂複合材を用いた成形品であって、
ベース部と、
前記ベースから突出するとともに、少なくとも一の方向に延在するリブ部とを備え、
前記連続繊維に含まれる少なくとも一部の繊維束が複数の変曲点を有しており、前記ベース部から前記リブ部を経由して再び該ベース部に戻るように湾曲形成された湾曲部が前記熱可塑性樹脂に被覆されて該リブ部の延在方向に連続して分布していることを特徴とする繊維強化熱可塑性樹脂複合材を用いた成形品。
A molded product using a fiber-reinforced thermoplastic resin composite material containing continuous fibers and a thermoplastic resin,
The base part and
a rib portion protruding from the base and extending in at least one direction;
At least some of the fiber bundles included in the continuous fibers have a plurality of inflection points, and a curved portion is formed to curve from the base portion to return to the base portion via the rib portion. A molded article using a fiber-reinforced thermoplastic resin composite material, characterized in that the rib portions are coated with the thermoplastic resin and are continuously distributed in the extending direction of the rib portion.
前記リブ部における前記連続繊維が層状をなしていることを特徴とする請求項5に記載の繊維強化熱可塑性樹脂複合材を用いた成形品。 6. The molded article using a fiber-reinforced thermoplastic resin composite material according to claim 5, wherein the continuous fibers in the rib portion are layered. 前記リブ部における前記連続繊維の含有割合が前記ベース部における該連続繊維の含有割合よりも大きいことを特徴とする請求項5又は6に記載の繊維強化熱可塑性樹脂複合材を用いた成形品。 The molded article using the fiber-reinforced thermoplastic resin composite material according to claim 5 or 6, wherein the content ratio of the continuous fibers in the rib portion is larger than the content ratio of the continuous fibers in the base portion.
JP2022034942A 2022-03-08 2022-03-08 Method for manufacturing molded article using fiber-reinforced thermoplastic resin composite Active JP7145472B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022034942A JP7145472B1 (en) 2022-03-08 2022-03-08 Method for manufacturing molded article using fiber-reinforced thermoplastic resin composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022034942A JP7145472B1 (en) 2022-03-08 2022-03-08 Method for manufacturing molded article using fiber-reinforced thermoplastic resin composite

Publications (2)

Publication Number Publication Date
JP7145472B1 JP7145472B1 (en) 2022-10-03
JP2023130580A true JP2023130580A (en) 2023-09-21

Family

ID=83462285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022034942A Active JP7145472B1 (en) 2022-03-08 2022-03-08 Method for manufacturing molded article using fiber-reinforced thermoplastic resin composite

Country Status (1)

Country Link
JP (1) JP7145472B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012117593A1 (en) * 2011-02-28 2012-09-07 帝人株式会社 Molded body comprising fiber-reinforcing composite material
JP2013010254A (en) * 2011-06-29 2013-01-17 Teijin Ltd Lightweight molding having rising part, and method for manufacturing the same
JP2015016649A (en) * 2013-07-12 2015-01-29 パナソニックIpマネジメント株式会社 Method and apparatus for molding fiber-reinforced composite material
JP2016087907A (en) * 2014-11-04 2016-05-23 三菱レイヨン株式会社 Method for producing fiber-reinforced plastic
JP2017080930A (en) * 2015-10-23 2017-05-18 三菱レイヨン株式会社 Fiber-reinforced resin molded article and method for producing the same
JP2021041557A (en) * 2019-09-06 2021-03-18 積水化学工業株式会社 Carbon fiber reinforced thermoplastic resin composite material and manufacturing method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012117593A1 (en) * 2011-02-28 2012-09-07 帝人株式会社 Molded body comprising fiber-reinforcing composite material
JP2013010254A (en) * 2011-06-29 2013-01-17 Teijin Ltd Lightweight molding having rising part, and method for manufacturing the same
JP2015016649A (en) * 2013-07-12 2015-01-29 パナソニックIpマネジメント株式会社 Method and apparatus for molding fiber-reinforced composite material
JP2016087907A (en) * 2014-11-04 2016-05-23 三菱レイヨン株式会社 Method for producing fiber-reinforced plastic
JP2017080930A (en) * 2015-10-23 2017-05-18 三菱レイヨン株式会社 Fiber-reinforced resin molded article and method for producing the same
JP2021041557A (en) * 2019-09-06 2021-03-18 積水化学工業株式会社 Carbon fiber reinforced thermoplastic resin composite material and manufacturing method therefor

Also Published As

Publication number Publication date
JP7145472B1 (en) 2022-10-03

Similar Documents

Publication Publication Date Title
KR920001316B1 (en) Improvements in fiber reinforced plastics sheets
JP4789940B2 (en) Isotropic fiber reinforced thermoplastic resin sheet, method for producing the same and molded plate
JP5459005B2 (en) Press molding method and molded body thereof
Bigg et al. Stamping of thermoplastic matrix composites
EP3042753B1 (en) Production method for fiber-reinforced components
JP5952510B2 (en) Method for producing molded body having opening
CN109109339A (en) The preparation of thermoplastic resin based composite material and the method for enhancing anticollision component
JPH085079B2 (en) Method for producing fiber-reinforced thermoplastics
WO2014112644A1 (en) Manufacturing method for fibre-reinforced resin substrate or resin molded article, and plasticizing exhauster used in manufacturing method
JPS61123636A (en) Habit acceptable composite material ant its production
AU666915B2 (en) Preconsolidation process for making fluoropolymer composites
JP2014104641A (en) Laminate substrate and fiber-reinforced composite material
CA3088144A1 (en) Method for producing fiber-reinforced resin
JP7145472B1 (en) Method for manufacturing molded article using fiber-reinforced thermoplastic resin composite
CN106687266A (en) Production method for fiber-reinforced thermoplastic resin composite material, production method for fiber-reinforced thermoplastic resin tape, production method for press-molding material, production method for molded article, unidirectional prepreg, and molded article
JP2003052409A (en) Safety shoe box toe consisting of filament reinforced thermoplastic resin and method of manufacturing the same
JP5568388B2 (en) Fiber-reinforced resin molded product with good appearance
JP5598931B2 (en) Fiber reinforced resin substrate, method for producing resin molded body, and resin processing machine for implementing the method
CN114555312B (en) Method for producing thermoplastic fiber-reinforced resin molded article
JP2019210417A (en) Process for producing fiber reinforced composite material
EP3950282B1 (en) Method for producing press-molded body
JP5603149B2 (en) Fiber-reinforced resin molded product and forming method
KR20230160999A (en) Products and Overmolding process of 3D printing with recycled composite materials
JP2006001021A (en) Appearance part and its manufacturing method
JPH05154900A (en) Curved-face molded piece and production thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220309

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220309

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220910

R150 Certificate of patent or registration of utility model

Ref document number: 7145472

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150