JP2006001021A - Appearance part and its manufacturing method - Google Patents

Appearance part and its manufacturing method Download PDF

Info

Publication number
JP2006001021A
JP2006001021A JP2004176602A JP2004176602A JP2006001021A JP 2006001021 A JP2006001021 A JP 2006001021A JP 2004176602 A JP2004176602 A JP 2004176602A JP 2004176602 A JP2004176602 A JP 2004176602A JP 2006001021 A JP2006001021 A JP 2006001021A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
base material
molded
substrate
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004176602A
Other languages
Japanese (ja)
Inventor
Yukihiro Nakagawa
幸弘 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nakagawa Sangyo Co Ltd
Original Assignee
Nakagawa Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakagawa Sangyo Co Ltd filed Critical Nakagawa Sangyo Co Ltd
Priority to JP2004176602A priority Critical patent/JP2006001021A/en
Publication of JP2006001021A publication Critical patent/JP2006001021A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an appearance part having excellent appearance commodity properties while having lightweight properties and high rigidity. <P>SOLUTION: The appearance part manufacturing method is characterized in that a base material 1A containing inorganic fibers and thermoplastic resin fibers is heated to melt the thermoplastic resin fibers and molded to obtain a molded base material 1 and a thermoplastic resin layer 7 is injection-molded on the surface 1a of the molded base material 1. Further, the processing of grooves 9 or slits 10 is applied to the surface 1a of the molded base material 1 and the thermoplastic resin layer 7 is injection-molded on the processed surface of the molded base material 1 to increase the rigidity of the appearance part 8 while suppressing the deformation thereof. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、外観部品とその製造方法に関する。   The present invention relates to an external part and a method for manufacturing the same.

自動車、自動二輪車又はバギー等の外装材、例えば、外装ボデーには、ポリプロピレン等の熱可塑性樹脂の射出成形部品、金属製鋼板のプレス部品又はFRP(Fiber Reinforced Plastics)等の熱硬化性樹脂部品が主として使用されている。   For exterior materials such as automobiles, motorcycles, and buggies, for example, exterior bodies include thermoplastic resin injection-molded parts such as polypropylene, metal steel plate press parts, or thermosetting resin parts such as FRP (Fiber Reinforced Plastics). It is mainly used.

また、天井材、ドアトリム等の自動車用内装材として無機繊維及び樹脂繊維を含有する基材から成形した部材が使用されている。   Moreover, the member shape | molded from the base material containing an inorganic fiber and a resin fiber is used as interior materials for motor vehicles, such as a ceiling material and a door trim.

外部に露出する表面を有する外観部品であって、例えば自動車、自動二輪車又はバギー等の外装材に用いられる外観部品には、軽量かつ高剛性で、かつ外観商品性が良いことが要求される。   An external part having a surface exposed to the outside and used for an exterior material such as an automobile, a motorcycle, or a buggy is required to be lightweight and highly rigid and have good appearance merchandise.

また、内部に露出する表面を有する内装材に使用する外観部品であって、例えば自動車室内の内装材に用いられる部品においても、軽量かつ高剛性で、かつ外観商品性が良いことが要求される場合がある。   In addition, it is an external part used for an interior material having a surface exposed to the inside, and for example, a part used for an interior material in an automobile interior is required to be lightweight, highly rigid, and to have good appearance merchandise. There is a case.

前記金属製鋼板のプレス部品は、外観商品性が良く、高剛性であるものの重量が重いという問題点がある。   The pressed part of the metal steel plate has a problem that the appearance merchantability is good, the rigidity is high, but the weight is heavy.

また、前記熱可塑性射出成形部品においては、耐熱性が低いため、耐熱性が要求される部品においては、その部品の内側にアルミ箔等の断熱材を貼り付ける必要があるため、張り付けに手間を要するなどの問題点がある。   In addition, since the thermoplastic injection molded part has low heat resistance, it is necessary to affix a heat insulating material such as aluminum foil on the inside of the part that requires heat resistance. There is a problem such as need.

また、前記熱硬化性樹脂部材は、リサイクルの点において問題がある。
一方、前記無機繊維及び樹脂繊維を含有する基材から成形した成形基材は、軽量かつ高剛性であるものの、表面の外観商品性に劣るため、外観商品性が要求される内装材や外装材に使用するには、外観商品性の向上のため、繊維系表皮又はレザー表皮を張り合わせる必要があり、その張り合わせに手間を要するなどの問題点がある。
Further, the thermosetting resin member has a problem in terms of recycling.
On the other hand, the molded base material molded from the base material containing the inorganic fiber and the resin fiber is light and highly rigid, but is inferior to the surface appearance merchantability, so that the interior material and the exterior material are required to have appearance merchantability. In order to improve the appearance merchantability, it is necessary to bond a fiber-based skin or a leather skin, and there is a problem that the bonding is troublesome.

そこで、本発明は、例えば自動車の外部に表面が露出する外装材や自動車の室内に表面が露出する内装材、すなわち、表面が外視される外観部品において、軽量でかつ高剛性を有し、かつ、外観商品性がよく、更に製造が容易で、リサイクルにもよい外観部品とその製造方法を提供することを目的とする。   Therefore, the present invention is, for example, an exterior material whose surface is exposed to the outside of an automobile and an interior material whose surface is exposed to the interior of an automobile, i.e., an external part whose surface is externally visible, and has light weight and high rigidity. An object of the present invention is to provide an appearance part that has good appearance merchandise, is easy to manufacture, and is easy to recycle, and a method for manufacturing the same.

前記の課題を解決するために、請求項1記載の発明は、無機繊維と熱可塑性樹脂を含有する基材から成形した成形基材の表面に、熱可塑性樹脂層を設けたことを特徴とする外観部品である。   In order to solve the above-mentioned problems, the invention described in claim 1 is characterized in that a thermoplastic resin layer is provided on the surface of a molded substrate formed from a substrate containing inorganic fibers and a thermoplastic resin. Appearance part.

請求項2記載の発明は、無機繊維と熱可塑性樹脂と植物繊維を含有する基材から成形した成形基材の表面に、熱可塑性樹脂層を設けたことを特徴とする外観部品である。   The invention according to claim 2 is an external part characterized in that a thermoplastic resin layer is provided on the surface of a molded substrate formed from a substrate containing inorganic fibers, a thermoplastic resin, and plant fibers.

請求項3記載の発明は、請求項1又は2記載の発明において、前記成形基材の表面に、溝又はスリットをを形成したことを特徴とする外観部品である。   A third aspect of the invention is an external component according to the first or second aspect of the invention, wherein a groove or a slit is formed on the surface of the molding substrate.

請求項4記載の発明は、無機繊維と熱可塑性樹脂繊維を含有する基材を加熱して、該熱可塑性樹脂繊維を溶融させた後に成形した成形基材の表面上に、熱可塑性樹脂層を射出成形することを特徴とする外観部品の製造方法である。   In the invention according to claim 4, the thermoplastic resin layer is formed on the surface of the molded substrate formed by heating the substrate containing inorganic fibers and the thermoplastic resin fibers to melt the thermoplastic resin fibers. It is a manufacturing method of an appearance part characterized by carrying out injection molding.

請求項5記載の発明は、無機繊維、熱可塑性樹脂繊維及び植物繊維を含有する基材を加熱して、該熱可塑性樹脂繊維を溶融させた後に成形した成形基材の表面上に、熱可塑性樹脂層を射出成形することを特徴とする外観部品の製造方法である。   The invention according to claim 5 is a method in which a thermoplastic resin is formed on the surface of a molded substrate formed by heating a substrate containing inorganic fibers, thermoplastic resin fibers, and plant fibers to melt the thermoplastic resin fibers. A method of manufacturing an external part, wherein a resin layer is injection-molded.

請求項6記載の発明は、請求項4又は5記載の発明において、成形基材上に熱可塑性樹脂を射出した後に、その熱可塑性樹脂が冷却する前にその熱可塑性樹脂の圧縮を行うことを特徴とする外観部品の製造方法である。   The invention according to claim 6 is the invention according to claim 4 or 5, wherein after the thermoplastic resin is injected onto the molding substrate, the thermoplastic resin is compressed before the thermoplastic resin cools. It is a manufacturing method of the appearance component characterized.

請求項7記載の発明は、請求項4乃至6のいずれかに記載の発明において、成形基材の表面上に溝又はスリット加工を施し、この溝又はスリット加工を施した成形基材の表面上に熱可塑性樹脂層を射出成形することを特徴とする外観部品の製造方法である。   The invention according to claim 7 is the invention according to any one of claims 4 to 6, wherein a groove or slit processing is performed on the surface of the molding substrate, and the surface of the molding substrate subjected to the groove or slit processing. And a thermoplastic resin layer by injection molding.

本発明によれば、無機繊維と熱可塑性樹脂繊維又はこれらと植物繊維から外観部品を成形するため、軽量かつ高剛性の外観部品が得られる。   According to the present invention, since the appearance part is formed from the inorganic fiber and the thermoplastic resin fiber or these and the plant fiber, a lightweight and highly rigid appearance part can be obtained.

更に、樹脂成形等により外観部品の表面に樹脂層を有し、外観商品性良く仕上げることができるため、前記従来のような外観商品性の向上のための繊維系表皮又はレザー表皮の張合工程を必要とせず、容易に外観部品が製造できる。   Furthermore, since it has a resin layer on the surface of the appearance part by resin molding, etc., and can be finished with good appearance merchandise, the fiber skin or leather skin tensioning process for improving the appearance merchandise as described above Can be easily manufactured.

また、本発明は成形基材に無機繊維を含有しているために、ポリプロピレン等の熱可塑性樹脂単材の射出成形部品と比較すると、耐熱性が高く、熱源を近くに有する部材でも、成形基材面を熱源に向けることで断熱材の貼り付けを必要としない。   In addition, since the present invention contains inorganic fibers in the molding substrate, it has higher heat resistance than a single thermoplastic resin injection molded part such as polypropylene, and even a member having a heat source nearby can be molded. By attaching the surface of the material to the heat source, it is not necessary to apply heat insulating material.

更に、植物繊維を使用することで、外観部品のより軽量化を図ることができる。
更に、従来のような熱硬化性樹脂を使用しないためにリサイクル上にもよい。
Further, the use of plant fibers can reduce the weight of the external parts.
Furthermore, since a conventional thermosetting resin is not used, it is good for recycling.

更に、成形基材の表面に溝又はスリットを施し、この成形基材の表面上に、樹脂を射出成形することにより射出樹脂が溝又はスリット部に侵入し成形基材との密着度を高めると共に、射出樹脂がリブ形状を形成することで、外観部品の剛性向上及び変形の抑制を図ることができる。   Furthermore, a groove or slit is formed on the surface of the molding base material, and injection molding of the resin on the surface of the molding base material increases the degree of adhesion with the molding base material by injecting the injection resin into the groove or slit portion. Since the injection resin forms a rib shape, it is possible to improve the rigidity of the appearance part and suppress deformation.

本発明を実施するための最良の形態を図1乃至図10に基づいて説明する。
まず初めに、無機繊維と熱可塑性樹脂繊維を含有する基材1Aを用意する。また、この無機繊維と樹脂繊維に、更に植物繊維を含有したものを基材1Aとしてもよい。
The best mode for carrying out the present invention will be described with reference to FIGS.
First, a base material 1A containing inorganic fibers and thermoplastic resin fibers is prepared. Moreover, it is good also considering what further contains vegetable fiber in this inorganic fiber and resin fiber as 1 A of base materials.

ここに、無機繊維とは、無機物質を主成分とする繊維である。例えば、ガラス繊維、カーボン繊維、バサルト繊維、アルミナ繊維等があげられる。   Here, the inorganic fiber is a fiber mainly composed of an inorganic substance. Examples thereof include glass fiber, carbon fiber, basalt fiber, and alumina fiber.

熱可塑性樹脂繊維とは、樹脂を主成分とする長鎖状の合成高分子からなる繊維である。例えば、ポリプロピレン系繊維、ポリエチレン系繊維、ポリエステル系繊維等の熱可塑性樹脂繊維があげられる。   The thermoplastic resin fiber is a fiber made of a long-chain synthetic polymer mainly composed of a resin. Examples thereof include thermoplastic resin fibers such as polypropylene fibers, polyethylene fibers, and polyester fibers.

ポリエチレン系繊維は、溶融温度が低いために、低温にて加工できるが、ポリプロピレン系繊維と比較すると剛性が弱い。ポリエステル系繊維は、溶融温度が高いために、加工が施し難い。ポリプロピレン系の繊維は、ポリエチレン系繊維とポリエステル系繊維の間の溶融温度であり、剛性が比較的高い割に加工が施し易い等の特徴がそれぞれある。外観部品の形状、使用用途等に応じて熱可塑性樹脂繊維を使いわけることができる。   Polyethylene fibers can be processed at low temperatures because of their low melting temperature, but they are less rigid than polypropylene fibers. Polyester fibers are difficult to process because of their high melting temperatures. Polypropylene fibers have a melting temperature between polyethylene fibers and polyester fibers, and have characteristics such as being easy to process for relatively high rigidity. Thermoplastic resin fibers can be used properly according to the shape of the external part, the intended use, and the like.

植物繊維としては、植物から得られる天然繊維である。例えば、ケナフ、サイザル等があげられる。   The plant fiber is a natural fiber obtained from a plant. Examples include kenaf and sisal.

ここで、熱可塑性樹脂繊維は、無機繊維のバインターとして使用するため、基材中の熱可塑性樹脂繊維の割合は60〜40%、無機繊維の割合を40〜60%とするのが好ましい。   Here, since the thermoplastic resin fibers are used as a binder for inorganic fibers, the ratio of the thermoplastic resin fibers in the base material is preferably 60 to 40%, and the ratio of the inorganic fibers is preferably 40 to 60%.

また、無機繊維及び植物繊維を基材として使用する場合、熱可塑性樹脂繊維は、無機繊維及び植物繊維のバインターとして使用するため、基材中の配合割合は、熱可塑性樹脂繊維を前記と同様60〜40%、無機繊維を20〜30%、植物繊維を20〜30%とするのが好ましい。   Moreover, when using inorganic fiber and vegetable fiber as a base material, since the thermoplastic resin fiber is used as a binder for inorganic fiber and vegetable fiber, the blending ratio in the base material is the same as that for thermoplastic resin fiber as described above. It is preferable to make -40%, inorganic fiber 20-30%, and vegetable fiber 20-30%.

前記の任意の無機繊維、熱可塑性樹脂繊維及び植物繊維を所定量計量し、各繊維を約50mm程にカットする。カットのサイズは任意に設定することができる。前記カットした繊維を綿状に解繊する。この解繊操作の際に、各繊維は混合される。前記解繊された繊維を積層し、ニードルにて絡ませて図1に示すようなマット状の基材1Aを作る。   A predetermined amount of the above-mentioned arbitrary inorganic fibers, thermoplastic resin fibers and plant fibers are weighed, and each fiber is cut to about 50 mm. The size of the cut can be set arbitrarily. The cut fibers are defibrated into cotton. During the defibrating operation, the fibers are mixed. The fibrillated fibers are stacked and entangled with a needle to make a mat-like substrate 1A as shown in FIG.

次に、前記マット状の基材1Aを加熱炉で加熱し、前記熱可塑性樹脂繊維を溶融させ、熱可塑性樹脂繊維をバインダーとして該溶融状態に於いて、加熱プレス後に冷却プレスを行うことで所定の厚みに圧縮する。前記圧縮をした後に所定の大きさにカットして、図2に示すような基材ボード1Bを成形する。   Next, the mat-like substrate 1A is heated in a heating furnace, the thermoplastic resin fibers are melted, and the thermoplastic resin fibers are used as a binder in the molten state to perform a cooling press after the heating press. Compress to thickness. After the compression, the substrate board 1B is cut into a predetermined size to form a base board 1B as shown in FIG.

次に、前記基材ボード1Bを再度加熱した後に、所望の形状に冷却成形を行う。その後に、形状の一部を削り取って修正する(トリミングという)作業を行い、成形基材1を得る。この成形基材1の形状例として図3に示す。   Next, the substrate board 1B is heated again and then cooled to a desired shape. Thereafter, a part of the shape is scraped off and corrected (referred to as trimming) to obtain the molded substrate 1. An example of the shape of the molded substrate 1 is shown in FIG.

また、マット状基材1Aを加熱し、前記熱可塑性樹脂を溶融させた後に、所望の形状に冷却成形を行った後に、トリミング作業を行い、成形基材1を得てもよい。   Alternatively, the molded substrate 1 may be obtained by heating the mat-shaped substrate 1A to melt the thermoplastic resin and then performing cooling molding to a desired shape and then performing a trimming operation.

また、基材ボード1Bを、成形基材1としてもよい。
次に、前記成形基材1の表面1aに熱可塑性樹脂を射出成形する。
Further, the base board 1 </ b> B may be the molding base 1.
Next, a thermoplastic resin is injection-molded on the surface 1 a of the molding substrate 1.

この射出成形の工程について図4により説明する。
先ず、前記成形基材1を、図4(a)に示すコアプレート2の成形基材取付部3に、図4(b)に示すように取付ける。
The injection molding process will be described with reference to FIG.
First, the molding base 1 is attached to the molding base attachment portion 3 of the core plate 2 shown in FIG. 4A as shown in FIG.

次に、キャビティプレート4を図4(c)に示すX方向に移動し、図4(c)に示すように、成形基材表面1aとコアプレートとの間に射出成形を行う空間(キャビティ)5を形成した位置で停止させる。   Next, the cavity plate 4 is moved in the X direction shown in FIG. 4 (c), and as shown in FIG. 4 (c), a space (cavity) in which injection molding is performed between the molding substrate surface 1a and the core plate. Stop at the position where 5 is formed.

次に、射出ノズル6より、図4(d)に示すように前記空間5内に必要量の溶融した熱可塑性樹脂7を射出する。   Next, as shown in FIG. 4D, a necessary amount of molten thermoplastic resin 7 is injected from the injection nozzle 6 into the space 5.

射出する熱可塑性樹脂として、例えば、ポリプロピレン、アクリロニトリルブタジエンスチレン共重合体、ポリアミド(ナイロン)、ポリカーボネイト、ポリエチレンテレフタレート等の熱可塑性樹脂があげられる。射出樹脂は、外観部品の使用環境、使用部位又は顧客の要求により使い分けることができる。   Examples of the thermoplastic resin to be injected include thermoplastic resins such as polypropylene, acrylonitrile butadiene styrene copolymer, polyamide (nylon), polycarbonate, and polyethylene terephthalate. The injection resin can be properly used depending on the use environment of the external parts, the use site, or the customer's request.

次に、図4(e)に示すようにキャビティプレート4をX方向に更に移動して、前記空間5内に注入された熱可塑性樹脂7を、その高温時に圧縮し、その後に冷却を行う。圧縮を行うことにより、熱可塑性樹脂表面が極め細やかとなり、外観商品性をより向上させることができる。なお、圧縮工程を有しなくても外観商品性の良い外観部品は得られる。   Next, as shown in FIG. 4E, the cavity plate 4 is further moved in the X direction, and the thermoplastic resin 7 injected into the space 5 is compressed at a high temperature, and then cooled. By performing the compression, the surface of the thermoplastic resin becomes extremely fine, and the appearance merchantability can be further improved. In addition, even if it does not have a compression process, an external appearance component with a favorable external appearance merchantability is obtained.

また、成形基材1に熱可塑性樹脂繊維、及び射出樹脂7に熱可塑性樹脂を使用しているため、成形基材1表面に高温高圧で熱可塑性樹脂を射出を行うと、成形基材1が変形するおそれがある。そのため熱可塑性樹脂の射出は低圧にて行うことが望ましい。熱可塑性樹脂の射出を低圧にて行うと、射出熱可塑性樹脂7を成形基材1の表面1aに均一に射出成形することが困難となる。そのため、熱可塑性樹脂7を低圧にて射出した後に、その熱可塑性樹脂7を、高温状態で圧縮することにより、成形基材表面1a上に射出熱可塑性樹脂7を均一に射出成形することができる。   Moreover, since the thermoplastic resin fiber is used for the molding base material 1 and the thermoplastic resin is used for the injection resin 7, when the thermoplastic resin is injected onto the surface of the molding base material 1 at high temperature and high pressure, the molding base material 1 is There is a risk of deformation. Therefore, it is desirable to inject the thermoplastic resin at a low pressure. When the injection of the thermoplastic resin is performed at a low pressure, it is difficult to uniformly injection-mold the injection thermoplastic resin 7 onto the surface 1a of the molding substrate 1. Therefore, after injecting the thermoplastic resin 7 at a low pressure, the injected thermoplastic resin 7 can be uniformly injection-molded on the molding substrate surface 1a by compressing the thermoplastic resin 7 in a high temperature state. .

これら一連の工程により、成形基材表面1aに樹脂層7が射出成形される。
次に、図4(e)の状態からキャビティプレート4をY方向へ移動して脱型し、図4(f)に示すような外観部品8を得る。
Through these series of steps, the resin layer 7 is injection-molded on the molding substrate surface 1a.
Next, the cavity plate 4 is moved in the Y direction from the state of FIG. 4 (e) to be removed from the mold, and an external part 8 as shown in FIG. 4 (f) is obtained.

前記実施例では成形基材表面1aを平面に形成したが、前記図3に示す成形基材表面1aに、成形基材1の表裏を貫通しない溝9、又は成形基材1の表裏を貫通するスリット10の加工を施しても良い。この溝9又はスリット10の加工を施した成形基材1について図5乃至図10により説明する。   In the said Example, although the shaping | molding base material surface 1a was formed in the plane, the groove | channel 9 which does not penetrate the front and back of the shaping | molding base material 1 in the shaping | molding base material surface 1a shown in the said FIG. The slit 10 may be processed. The molded substrate 1 subjected to the processing of the groove 9 or the slit 10 will be described with reference to FIGS.

図5は溝9の加工を施した成形基材1の斜視図、図6は溝9の加工を施した成形基材1の上面図である。図7は、図5に示す溝9の加工を施した成形基材の表面1aに熱可塑性樹脂層7を射出成形したA−A線断面図である。図8は、図5の成形基材1に、溝9の代りにスリット加工を施した成形基材のA−A線断面図である。図9は、図8に示すスリット加工を施した成形基材表面1aに樹脂層を射出成形した外観部品の図7と同様な位置の断面図である。図10は、図9を斜め下から見た外観部品における中央部で切断した斜視図である。   FIG. 5 is a perspective view of the molded base material 1 processed with the grooves 9, and FIG. 6 is a top view of the molded base material 1 processed with the grooves 9. FIG. 7 is a cross-sectional view taken along the line AA in which the thermoplastic resin layer 7 is injection-molded on the surface 1a of the molding base material that has been processed with the grooves 9 shown in FIG. FIG. 8 is a cross-sectional view taken along line AA of a molded base material obtained by subjecting the molded base material 1 of FIG. 5 to slit processing instead of the groove 9. FIG. 9 is a cross-sectional view at the same position as FIG. 7 of the appearance part in which a resin layer is injection-molded on the molding substrate surface 1a subjected to the slit processing shown in FIG. FIG. 10 is a perspective view of FIG. 9 cut at the central portion of the external part as viewed obliquely from below.

この成形基材1の熱可塑性樹脂7を射出成形する側の面1aに、図5乃至図10に示すような成形基材1の表裏を貫通しない溝9、又は成形基材1の表裏を貫通するスリット10の加工を、基材ボード1Bから成形基材1を成形する時に同時に行う。なお、成形基材1を成形した後に溝9又はスリット10の加工を施してもよい。   A groove 9 that does not penetrate the front and back of the molding base 1 as shown in FIGS. 5 to 10 or the front and back of the molding base 1 as shown in FIGS. The slit 10 to be processed is simultaneously performed when the forming substrate 1 is formed from the substrate board 1B. In addition, you may process the groove | channel 9 or the slit 10 after shape | molding the shaping | molding base material 1. FIG.

前記溝9又はスリット10は、所望の間隔で所望の本数を形成する。図5乃至図7に示す溝の断面は、三角形のもので例示したが、四角形、半円形等の所望の形状に形成してもよい。なお、図では溝又はスリットを平行に図示したが、溝又はスリットは、平行に施す必要はなく、交差したり、V字型にする等所望の位置に施すことができる。   The groove 9 or the slit 10 forms a desired number at a desired interval. Although the cross section of the groove shown in FIGS. 5 to 7 is exemplified by a triangle, it may be formed in a desired shape such as a quadrangle or a semicircle. Although the grooves or slits are shown in parallel in the figure, the grooves or slits do not need to be provided in parallel, and can be provided at desired positions such as intersecting or V-shaped.

成形基材表面1aに溝9又はスリット10の加工を施しておくことで、表面に射出された熱可塑性樹脂7の一部が、溝9部又はスリット10部に侵入する。このことにより、図9及び図10で示すように、熱可塑性樹脂層7にリブ11が一体に形成されて、リブ構造が形成され、外観部品8の剛性強度を増すことができる。リブ構造を形成することにより、外観部品の反り等による変形を低減することができる。また、成形基材表面1aに溝やスリット加工を施すことにより、成形基材1の表面積が増大し、成形基材表面1aと射出熱可塑性樹脂7との接触面積が増大することにより、成形基材1と射出熱可塑性樹脂7との密着度を増加することができる。   By processing the groove 9 or the slit 10 on the molding substrate surface 1a, a part of the thermoplastic resin 7 injected on the surface enters the groove 9 or the slit 10 part. As a result, as shown in FIGS. 9 and 10, the rib 11 is formed integrally with the thermoplastic resin layer 7 to form a rib structure, and the rigidity strength of the external component 8 can be increased. By forming the rib structure, it is possible to reduce deformation due to warpage of the external parts. Further, by applying grooves or slits to the molding substrate surface 1a, the surface area of the molding substrate 1 is increased, and the contact area between the molding substrate surface 1a and the injection thermoplastic resin 7 is increased. The degree of adhesion between the material 1 and the injection thermoplastic resin 7 can be increased.

次に、前記の製造工程による実施例について説明する。   Next, examples according to the manufacturing process will be described.

ガラス繊維40〜60%とポリプロピレン系繊維60〜40%を基材とする。該基材から基材マットを形成する。該基材マットをそのポリプロピレン系繊維が溶融する温度に加熱し、所定の厚みに圧縮し、基材ボードに成形する。該基材ボードを加熱後、冷却成形し、成形基材とする。ここで、必要により、成形基材の成形と同時に、成形基材の表面に溝又はスリット加工を施す。該成形基材表面にポリプロピレンを射出し、樹脂が冷却する前に圧縮成形し、外観部品を製造する。   The base material is 40 to 60% glass fiber and 60 to 40% polypropylene fiber. A substrate mat is formed from the substrate. The base mat is heated to a temperature at which the polypropylene fibers melt, compressed to a predetermined thickness, and formed into a base board. The substrate board is heated and then cooled to form a molded substrate. Here, if necessary, grooves or slits are applied to the surface of the molding substrate simultaneously with the molding of the molding substrate. Polypropylene is injected onto the surface of the molding substrate and compression molded before the resin cools to produce an external part.

カーボン繊維40〜60%とポリプロピレン系繊維60〜40%を基材とする。該基材から基材マットを形成する。該基材マットをそのポリプロピレン系繊維が溶融する温度に加熱し、所定の厚みに圧縮し、基材ボードに成形する。該基材ボードを加熱後、冷却成形し、成形基材とする。ここで、必要により、成形基材の成形と同時に、成形基材の表面に溝又はスリット加工を施す。該成形基材表面にポリプロピレンを射出し、樹脂が冷却する前に圧縮成形し、外観部品を製造する。   The base material is 40 to 60% carbon fiber and 60 to 40% polypropylene fiber. A substrate mat is formed from the substrate. The base mat is heated to a temperature at which the polypropylene fibers melt, compressed to a predetermined thickness, and formed into a base board. The substrate board is heated and then cooled to form a molded substrate. Here, if necessary, grooves or slits are applied to the surface of the molding substrate simultaneously with the molding of the molding substrate. Polypropylene is injected onto the surface of the molding substrate and compression molded before the resin cools to produce an external part.

カーボン繊維20〜30%とポリプロピレン系繊維60〜40%とケナフ繊維20〜30%を基材とする。該基材から基材マットを形成する。該基材マットをそのポリプロピレン系繊維が溶融する温度に加熱し、所定の厚みに圧縮し、基材ボードに成形する。該基材ボードを加熱後、冷却成形し、成形基材とする。ここで、必要により、成形基材の成形と同時に、成形基材の表面に溝又はスリット加工を施す。該成形基材表面にポリアミドを射出し、樹脂が冷却する前に圧縮成形し、外観部品を製造する。   The base material is 20-30% carbon fiber, 60-40% polypropylene fiber, and 20-30% kenaf fiber. A substrate mat is formed from the substrate. The base mat is heated to a temperature at which the polypropylene fibers melt, compressed to a predetermined thickness, and formed into a base board. The substrate board is heated and then cooled to form a molded substrate. Here, if necessary, grooves or slits are applied to the surface of the molding substrate simultaneously with the molding of the molding substrate. Polyamide is injected onto the surface of the molding substrate and compression molded before the resin cools down to produce an external part.

カーボン繊維20〜30%とポリプロピレン系繊維40〜60%とサイザル繊維20〜30%を基材とする。該基材から基材マットを形成する。該基材マットをそのポリプロピレン系繊維が溶融する温度に加熱し、所定の厚みに圧縮し、基材ボードに成形する。該基材ボードを加熱後、冷却成形し、成形基材とする。ここで、必要により、成形基材の成形と同時に、成形基材の表面に溝又はスリット加工を施す。該成形基材表面にポリエチレンテレフタレートを射出し、樹脂が冷却する前に圧縮成形し、外観部品を製造する。   The base material is 20-30% carbon fiber, 40-60% polypropylene fiber, and 20-30% sisal fiber. A substrate mat is formed from the substrate. The base mat is heated to a temperature at which the polypropylene fibers melt, compressed to a predetermined thickness, and formed into a base board. The substrate board is heated and then cooled to form a molded substrate. Here, if necessary, grooves or slits are applied to the surface of the molding substrate simultaneously with the molding of the molding substrate. Polyethylene terephthalate is injected onto the surface of the molding substrate and compression molded before the resin cools to produce an external part.

基材マットを示す斜視図。The perspective view which shows a base material mat. 基材ボードを示す斜視図。The perspective view which shows a base material board. 本発明の成形基材の形状例を示す斜視図。The perspective view which shows the example of a shape of the shaping | molding base material of this invention. 本発明の射出成形工程を示す概略図。Schematic which shows the injection molding process of this invention. 成形基材の表面に溝加工を施した斜視図。The perspective view which gave the groove process to the surface of the shaping | molding base material. 図5に示す成形基材表面に溝加工を施した上面図。The top view which gave the groove process to the shaping | molding base material surface shown in FIG. 図5に示す成形基材表面に溝加工を施したA−A線断面図。FIG. 6 is a cross-sectional view taken along line AA in which the surface of the forming base material shown in FIG. 5 is grooved. 図5の成形基材表面に溝の代りにスリット加工を施したA−A線断面図。FIG. 6 is a cross-sectional view taken along line AA in which slit processing is performed on the surface of the forming base material in FIG. 5 instead of grooves. 図8に示すスリット加工を施した成形基材1の表面1aに樹脂層を射出成形した外観部品の図7と同様な位置の断面図。Sectional drawing of the same position as FIG. 7 of the external appearance component which carried out the injection molding of the resin layer on the surface 1a of the shaping | molding base material 1 which gave the slit process shown in FIG. 図9を斜め下から見た外観部品における中央部で切断した斜視図。The perspective view which cut | disconnected the center part in the external appearance component which looked at FIG. 9 from diagonally downward.

符号の説明Explanation of symbols

1 成形基材
5 キャビティ
6 射出口
7 熱可塑性射出樹脂
9 溝
10 スリット


1 Molding Base Material 5 Cavity 6 Injection Port 7 Thermoplastic Injection Resin 9 Groove 10 Slit


Claims (7)

無機繊維と熱可塑性樹脂を含有する基材から成形した成形基材の表面に、熱可塑性樹脂層を設けたことを特徴とする外観部品。 An external part characterized in that a thermoplastic resin layer is provided on the surface of a molded base material formed from a base material containing inorganic fibers and a thermoplastic resin. 無機繊維と熱可塑性樹脂と植物繊維を含有する基材から成形した成形基材の表面に、熱可塑性樹脂層を設けたことを特徴とする外観部品。 An external part characterized in that a thermoplastic resin layer is provided on the surface of a molded base material formed from a base material containing inorganic fiber, thermoplastic resin and vegetable fiber. 前記成形基材の表面に、溝又はスリットを形成した請求項1又は2記載の外観部品。 The external part according to claim 1 or 2, wherein a groove or a slit is formed on a surface of the molding substrate. 無機繊維と熱可塑性樹脂繊維を含有する基材を加熱して、該熱可塑性樹脂繊維を溶融させた後に成形した成形基材の表面上に、熱可塑性樹脂層を射出成形することを特徴とする外観部品の製造方法。 A base material containing inorganic fibers and thermoplastic resin fibers is heated to melt the thermoplastic resin fibers, and then a thermoplastic resin layer is injection molded on the surface of the molded base material. Manufacturing method of appearance parts. 無機繊維、熱可塑性樹脂繊維及び植物繊維を含有する基材を加熱して、該熱可塑性樹脂繊維を溶融させた後に成形した成形基材の表面上に、熱可塑性樹脂層を射出成形することを特徴とする外観部品の製造方法。 Heating a substrate containing inorganic fibers, thermoplastic resin fibers and plant fibers to melt the thermoplastic resin fibers and then injection-molding a thermoplastic resin layer on the surface of the molded substrate. A method of manufacturing a featured external part. 成形基材上に熱可塑性樹脂を射出した後に、その熱可塑性樹脂が冷却する前にその熱可塑性樹脂の圧縮を行うことを特徴とする請求項4又は5記載の外観部品の製造方法。 6. The method of manufacturing an external part according to claim 4, wherein the thermoplastic resin is compressed after the thermoplastic resin is injected onto the molding substrate and before the thermoplastic resin cools. 成形基材の表面上に溝又はスリット加工を施し、この溝又はスリット加工を施した成形基材の表面上に熱可塑性樹脂層を射出成形することを特徴とする請求項4乃至6のいずれかに記載の外観部品の製造方法。

7. A groove or slit process is performed on the surface of the molding substrate, and a thermoplastic resin layer is injection-molded on the surface of the molding substrate subjected to the groove or slit process. The manufacturing method of the external components as described in 2.

JP2004176602A 2004-06-15 2004-06-15 Appearance part and its manufacturing method Pending JP2006001021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004176602A JP2006001021A (en) 2004-06-15 2004-06-15 Appearance part and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004176602A JP2006001021A (en) 2004-06-15 2004-06-15 Appearance part and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006001021A true JP2006001021A (en) 2006-01-05

Family

ID=35769831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004176602A Pending JP2006001021A (en) 2004-06-15 2004-06-15 Appearance part and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006001021A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010274508A (en) * 2009-05-28 2010-12-09 Mitsubishi Rayon Co Ltd Method for manufacturing fiber-reinforced composite material moldings
JP2014505607A (en) * 2011-01-14 2014-03-06 エルジー・ハウシス・リミテッド High strength composite sheet manufacturing apparatus excellent in impregnation and high strength composite sheet manufacturing method using the same
JP2018118704A (en) * 2017-01-27 2018-08-02 本田技研工業株式会社 Resin component for small vehicle and manufacturing method for resin component for small vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5572374A (en) * 1978-11-24 1980-05-31 Matsushita Electric Works Ltd Cord protecting device and method of manufacturing same
JPH01301316A (en) * 1988-05-31 1989-12-05 Nissha Printing Co Ltd In-mold molding having mat surface and manufacture thereof
JPH02244189A (en) * 1989-03-17 1990-09-28 Fuji Tokushu Shigyo Kk Label for in-mold molding
JPH0615687A (en) * 1992-06-30 1994-01-25 Mitsubishi Rayon Co Ltd Production of carbon fiber composite molded product
JPH1148877A (en) * 1997-08-07 1999-02-23 Kasai Kogyo Co Ltd Interior part for automobile
JP2001293746A (en) * 2000-04-14 2001-10-23 Denso Corp Resin molded article

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5572374A (en) * 1978-11-24 1980-05-31 Matsushita Electric Works Ltd Cord protecting device and method of manufacturing same
JPH01301316A (en) * 1988-05-31 1989-12-05 Nissha Printing Co Ltd In-mold molding having mat surface and manufacture thereof
JPH02244189A (en) * 1989-03-17 1990-09-28 Fuji Tokushu Shigyo Kk Label for in-mold molding
JPH0615687A (en) * 1992-06-30 1994-01-25 Mitsubishi Rayon Co Ltd Production of carbon fiber composite molded product
JPH1148877A (en) * 1997-08-07 1999-02-23 Kasai Kogyo Co Ltd Interior part for automobile
JP2001293746A (en) * 2000-04-14 2001-10-23 Denso Corp Resin molded article

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010274508A (en) * 2009-05-28 2010-12-09 Mitsubishi Rayon Co Ltd Method for manufacturing fiber-reinforced composite material moldings
JP2014505607A (en) * 2011-01-14 2014-03-06 エルジー・ハウシス・リミテッド High strength composite sheet manufacturing apparatus excellent in impregnation and high strength composite sheet manufacturing method using the same
US9079362B2 (en) 2011-01-14 2015-07-14 Lg Hausys, Ltd. Apparatus for manufacturing a high-strength composite sheet having superior embeddability, and method for manufacturing a high-strength composite sheet using the same
JP2018118704A (en) * 2017-01-27 2018-08-02 本田技研工業株式会社 Resin component for small vehicle and manufacturing method for resin component for small vehicle

Similar Documents

Publication Publication Date Title
US9511550B2 (en) Molding method for fiber reinforced composite material
JP5721698B2 (en) Manufacturing method of fiber reinforced composite material
JP3290035B2 (en) Fiber reinforced thermoplastic sheet
JPH10138354A (en) Carbon fiber reinforced resin molded product and its manufacture
EP3042753B1 (en) Production method for fiber-reinforced components
JP5725741B2 (en) Fiber reinforced composite
JP2018176746A (en) Resin molding and method for producing the same
JP2012206446A (en) Method for manufacturing lined fiber-reinforced composite material
US11220029B2 (en) Resin molding and method for producing the same
JP2006001021A (en) Appearance part and its manufacturing method
US11318704B2 (en) Vehicle interior material and manufacturing method of the same
CN107433723B (en) Method for manufacturing spare and accessory parts
JP6776944B2 (en) Manufacturing method of resin molded product
JP2017527466A (en) Manufacture of multi-shell composite components with reinforced structures combined
KR102338065B1 (en) Method for manufacturing a functionalized three-dimensional molded body
US10933568B2 (en) Resin molding and method for producing the same
JP5748105B2 (en) Method for producing molded structure and mold
KR101875579B1 (en) Manufacturing method for vehicle interior parts
KR20150079267A (en) Front End Module Carrier containing continuous fiber tow and method for manufacturing the same
KR20060118061A (en) Injection molding material having leather surface and manufacturing method thereof
KR20190138155A (en) Forming method of composite material
JPH10278698A (en) Interior trim material for automobile, and its manufacture
JP2021020377A (en) Resin molded body for vehicle interior and its manufacturing method
JP2023130580A (en) Method for manufacturing molded products using fiber-reinforced thermoplastic resin composite material
WO2018102282A1 (en) Hybrid fiber based molding thermoplastic article and process of forming same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070612

A977 Report on retrieval

Effective date: 20100126

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100413

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20100817

Free format text: JAPANESE INTERMEDIATE CODE: A02